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ABSTRACT 

Throughout the years, Deep Learning has proven to be an excellent technology to solve 

problems that would otherwise be too complex. Furthermore, it has shown great success in the area 

of medical imaging, especially when applied to segmentation of brain tissues. As such, this 

dissertation explores a possible new approach, using Deep Artificial Neural Networks to perform 

spatial normalization on brain MRI studies as well as classify using Brain MRI studies regarding their 

state of brain atrophy.  

Spatial normalization of Magnetic Resonance images by tools like the FSL, or SPM turned 

out to be inefficient for researches as they need too many resources to achieve good results. These 

resources include, for example, wasted human and computer time when executing the commands 

to normalize and waiting for the process to finish, this can take up to several hours just for one study. 

Therefore, a new approach was needed, a faster and easier way to normalize the MRI studies. To do 

so, Deep Artificial Neural Networks were used by creating a python program to deal with said studies 

in much less time. This program should free the researchers’ time for other more relevant tasks and 

help reach conclusions faster in their studies when trying to find patterns between the analysed 

brains. Several architectures were tried, having better results with U-Net based architecture as well 

as GAN architecture. 

At the end, the model couldn’t learn correctly all the brain features to be changed in any of 

the approaches but showed great potential. Even though the final model did achieve the correct 

shape it could not yet achieve the final normalization. 

With some more time invested in perfecting the models, these could, in the future, learn to 

correctly perform the final normalization and allow the researchers to perform it in less than 10 

seconds per exam instead of hours. 

Regarding the Brain Atrophy models, the models showed some potential too as the 

predictions were partially correct. With more data, and less unbalanced, the model could probably 

learn correctly and output the expected results for all classes. 

 

Keywords: Brain, Deep Learning, MRI, Neuroimaging, Spatial Normalization. 
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RESUMO 

Ao longo dos anos, abordagens Deep Learning têm provado ser uma excelente tecnologia 

para resolver problemas que seriam complexos demais. Além disso, demonstrou grande sucesso 

na área da imagem médica, principalmente quando aplicada em segmentação de imagens. Como 

tal, esta dissertação explora uma possível nova abordagem, usando as Redes Neurais Artificiais 

Profundas para realizar a normalização espacial em estudos de RM do cérebro, bem como classificá-

las usando estudos cerebrais de RM em relação ao seu estado de atrofia cerebral. 

A normalização espacial dos estudos de ressonância magnética através de ferramentas 

como a biblioteca FSL acabou sendo pouco eficiente para uso na investigação, pois estas 

ferramentas precisam de muitos recursos para obter bons resultados. Esses recursos incluem, por 

exemplo, desperdício de tempo humano e de computador ao executar os comandos para normalizar 

e aguardar a conclusão do processo; o que pode demorar várias horas, apenas para um estudo. 

Portanto, uma nova abordagem é necessária, uma maneira mais rápida e fácil de normalizar os 

estudos de RM. Para isso, foram utilizadas Redes Neurais Artificiais Profundas, criando um programa 

em python para lidar com os estudos em muito menos tempo. Esse programa deve liberar o tempo 

dos investigadores para outras tarefas mais exigentes e ajudar a chegar a conclusões mais 

rapidamente nos seus estudos, ao tentar encontrar padrões entre os cérebros analisados. Várias 

arquiteturas para o modelo foram testadas, obtendo melhores resultados com a arquitetura baseada 

em U-Net e com a arquitetura GAN. 

No final, o modelo não conseguiu aprender corretamente todos os detalhes do cérebro a 

serem alterados em nenhuma das abordagens, mas mostrou grande potencial. Apesar de o modelo 

final ter atingido a forma correta, ainda não conseguiu a normalização final. 

Com mais tempo investido no aperfeiçoamento dos modelos, estes poderiam, no futuro, 

aprender a executar corretamente a normalização final e permitir que os pesquisadores realizassem 

este processo em menos de 10 segundos por exame, em vez de horas. 

Em relação aos modelos de atrofia cerebral, estes também mostraram algum potencial, 

pois as previsões estavam parcialmente corretas. Com mais dados e menos desequilíbrio nos 

mesmos, o modelo provavelmente poderia aprender corretamente e gerar os resultados esperados 

para todas as classes. 

Palavras-chave: Cérebro, Neuroimagem, Normalização Espacial, Redes Neurais 

Artificiais, Ressonância Magnética.  
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GLOSSARY 

Activation Function Used in Neural Networks, this is the function in the neuron also called 
the threshold function. It takes in the weighted sum of all of the inputs 
from the previous layer and then generates and passes an output value 
(typically nonlinear) to the next layer. 

Artificial Intelligence (AI) Computer programs designed to solve difficult problems which humans 
(and animals) routinely solve. It allows machines to make decisions and 
perform tasks that simulate human intelligence and behavior. 

Artificial Neural Networks 
(ANN) 

A model that, taking inspiration from the brain, is composed of layers 
(at least one of which is hidden) consisting of simple connected units or 
neurons followed by nonlinearities. 

Batch In Artificial Neural Networks, it is a set of examples or samples used in 
one iteration. 

Class In a Machine Learning context, a class refers to the output category of 
the data. A label in a dataset points to one of the classes. 

Convolutional Neural 
Network (CNN) 

A CNN are a Deep Artificial Neural Network that is currently the state-of-
the-art in image processing. Its major advantage is the little pre-
processing steps required when compared to other image classification 
algorithms. 

Dataset A collection of examples. Each example contains one or more features 
and a label (if using supervised training). 

Deep Learning (DL) A subset of AI and Machine learning which allows computational models 
composed of multiple processing layers to learn representations of data 
with multiple levels of abstraction. 

DICOM DICOM (Digital Imaging and Communications in Medicine) is a standard 
for handling, storing, printing, and transmitting information in medical 
imaging. It includes a file format definition and a network 
communications protocol. 

Dropout A form of regularization useful in training Artificial Neural Networks. 
Dropout regularization works by removing a random selection of a fixed 
number of the units in a network layer for a single gradient step. The 
more units dropped out, the stronger the regularization. 

Design Science Research 
(DSR) 

The DSR methodology is a rigorous scientific research methodology that 
is well known to be effective in the area of computer science and medical 
informatics. 
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Epoch A full training pass over the entire data set such that each example has 
been seen once. 

Feature In a Machine Learning context, a feature is the specification of an 
attribute and its value. It expresses a piece of measurable information 
about something. 

FSL A library of analysis tools for FMRI, MRI and DTI brain imaging data. This 
library contains the tools used in the spatial normalization process. 

Machine Learning (ML) The use of data-driven algorithms that perform better as they have more 
data to work with. The fundamental goal of ML is to generalize beyond 
the examples in the training set. 

Magnetic Resonance 
Imaging (MRI) 

Non-invasive imaging modality used for disease detection and treatment 
monitoring. MRI scanners are particularly well suited to image the soft 
tissues of the body e.g., brain, spinal cord and nerves, muscles and 
ligaments. 

NiBabel Python package that provides easy read and write access to some of the 
common neuroimaging file formats. Among the accepted formats are 
the NIfTI format, the format of the MRI images of the dataset used. 

NIfTI A simple, minimalistic format which has been widely adopted in 
neuroimaging research, allowing scientists to mix and match image 
processing and analysis tools developed by different teams. 

Overfitting Creating a model that matches the training data so closely that the 
model fails to make correct predictions on new data. 

Test set The subset of the dataset that is used to test the model after the model 
has gone through initial vetting by the validation set. 

Train set The subset of the dataset used to train a model. 

Validation set A subset of the dataset — disjunct from the training set—that is used to 
adjust hyperparameters. 

Voxel Unit of graphic information that defines a point in three-dimensional 
space. 

XNAT An open source imaging informatics software platform designed to 
facilitate common management and handling of neuroimaging and 
associated data. 
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1.1 CONTEXT AND MOTIVATION 

Medical informatics was once considered as a ‘nice-to-have’ rather than ‘need-to-have’ as it is 

becoming nowadays. During the last decade, the field has grown steadily and is now one of the 

foundations of medicine and health care [1]. 

Medical imaging, as its name implies, is a field that deals with the process of creating visual 

representation of the interior of the human body for medical purposes. Several types of medical 

imaging modalities exist, such as MRI (Magnetic Resonance Imaging), whose images can be 

functional, molecular or structural depending on the objective of the study, Computed Tomography 

(CT) which is based on X-rays and Positron Emission Tomography (PET). Several of these modalities 

can also be combined, using medical image fusion to take advantage of the best parts of each 

modality [2].  

Medical Image Analysis is a part of the field of Computer Vision. It emerged in the early 1990s when 

researchers began to apply methods that solved problems in other areas to medical images [3]. 

One of the possible applications of the modalities mentioned above is the acquisition of brain images 

(neuroimaging), which can be very helpful for different types of studies. Neuroimaging data can help 

understand how the brain functions, how its different areas respond to different stimuli, or help 

diagnose multiple psychiatric disorders and diseases, such as tumors.  

For example, the paper “Scanning patients with tasks they can perform” [4] studies psychologically 

impaired patients and presents an overview of types of imaging experiments that can be performed 

on them. Another paper, “Mapping function in the human brain with Magnetoencephalography, 

anatomical Magnetic Resonance Imaging, and functional Magnetic Resonance Imaging” [5], makes 

it possible to take advantage of the different pros each modality has, specifically, EEG, MRI and MEG 

(Magnetoencephalography). By combining the different strengths of these modalities, the individual 

limitations of the mentioned neuroimaging techniques can be overcome and thus much faster 

conclusions can be drawn. 

Regarding MRI scans, specifically the brain studies, sometimes a spatial normalization of the brain 

is required. This normalization essentially makes it possible for the researchers to take conclusions 

of the brain areas among several brains as it computes them all into the same space using a template 

as a reference. Nowadays, this process is accomplished through several tools that sometimes take 

several steps to achieve this goal. Furthermore, they can take a long time to achieve the results, 
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results that are not always up to expectations. A better solution would therefore improve the everyday 

work-life of researchers. 

Deep Learning, DL for short is, as shown in Figure 1-1, a subset of one of the subfields of Artificial 

Intelligence (AI) called Machine Learning [6][7]. It enables computers to learn from past experiences 

and understand the world as we need [8].  

 

 

Figure 1-1. Deep Learning as part of Artificial Intelligence. 

 

DL began with Artificial Neural Networks, which are inspired by the interconnections between the 

neurons of the brain. However, unlike a biological brain, where each neuron can connect to any other 

within a certain physical distance, these networks have layers, connections, and directions of data 

propagation [9]. Each neuron assigns a weight to its inputs and, depending on the weighting and the 

input data, a certain output is obtained at each neuron. To optimize the weighting, all the network 

needs is training, it needs to see hundreds of thousands, even millions of images so that the 

weightings are tuned to perfection. At that point, the network will get the answer right practically 

every time [9]. 

Deep Learning has already proven to be a fundamental tool in Medical imaging [10]. Many studies 

mention its benefits when used in this area. It is shown that DL can achieve faster and more accurate 

results than non-DL algorithms/methods when using an adequate model.  
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After considering the disadvantages of the existing tools and the positive aspects of DL, a model 

using DL could theoretically help the normalization process, both in terms of accuracy and time it 

takes to complete. Hopefully, this model would not only be faster and more accurate than other 

solutions, but also an automated or at least semi-automated solution that requires little to no human 

intervention when a brain needs to be normalized for a study. 

 

 

1.2 OBJECTIVES 

The main goal of this work was to develop a Deep Artificial Neural Network to perform the process 

of brain normalization faster and more accurately than other already existing solutions like the FSL 

tools and as much automated as possible. This way, researchers save time to focus on other more 

demanding tasks when they need to normalize a series of brain images for their studies. This Artificial 

Neural Network could then be used alongside a UI (User Interface) to perform the normalizations or 

integrated in tools like the XNAT server to achieve an all-in-one solution where storage and processing 

of the studies is made. 

While studying the MRI studies, a second goal appeared for this work, regarding analysis. The second 

goal would be the development of another other Deep Artificial Neural Network. This time, brain MRI 

studies should be classified depending on their condition of cerebral atrophy. This would save time 

as the classification could, this way, be done automatically. 

 

 

1.3 INVESTIGATION METHODOLOGY 

Before the writing of this dissertation, a detailed investigation to the literature was needed to find 

possible approaches to solve the problem in hands. To optimize this investigation a strategy had to 

be used. As such the Design Science Research (DSR) was chosen as a strategy. Well known to be 

effective in the area of computer science and medical informatics, the DSR methodology (Figure 1-2), 

is a rigorous scientific research methodology that can be divided into six main steps [11][12].  

Following the DSR methodology, after identifying the problem and motivation and defining the 

objectives to this work, literature was searched to help in the design and development of the solution 

to the problem in hands. To find literature, tools like Google Scholar, PubMed and others were used 
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to ensure the quality of the information. Among the searched keywords were MRI, brain spatial 

normalization, Deep Learning and brain analysis. 

Deep Learning was used, due to its impressive results that surpass other Machine Learning 

algorithms and, according to the literature, even exceed the humans in accuracy [7]. After finding 

some results, a good approach according to the literature, with Deep Learning would be to use a U-

Net based architecture due to its impressive results in the area of medical imaging [13]. Hence, U-

Nets were investigated to obtain information on how to implement one, starting the first experiment. 

 

 

Figure 1-2. DSR process diagram [14]. 
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1.4 STRUCTURE OF THE DISSERTATION 

This dissertation is structured in 5 sections. First, an Introduction is given to bring the reader into 

contact with the problem and to specify the objectives of this dissertation. The next section, 

Technologies and Concepts, describes in more detail the problem as well as the technologies used 

throughout this work to overcome it. The section Spatial Normalization of the Brain then describes 

the materials and methods for solving the main problem described in the first sections. The solutions 

achieved are also included in this section. Subsequently, the Brain Atrophy Classification section 

describes the solution for the secondary problem as well as the results obtained. Finally, this 

dissertation ends with Conclusions summarizing everything that has been discussed and presenting 

what can be done in a future work to improve the outcome. 

 

 

 

  



 

 
 
 

  

 TECHNOLOGIES AND 

CONCEPTS 
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This second section describes all the technologies and concepts used throughout this work and their 

use. It also describes the process of the spatial normalization and tools involved in that process to 

better contextualize the reader on how a better solution would improve the researches job. 

  

 

2.1 MAGNETIC RESONANCE IMAGING 

Magnetic Resonance (MR) is an amazing combination of advanced science and engineering, as this 

technology makes use of fields like superconductivity and quantum physics to obtain a useful image 

of a part of a patient’s body [15]. Along the years, Magnetic Resonance Imaging (MRI) has evolved 

from unpromising beginnings in its early stages to becoming nowadays the imaging method of choice 

for a large proportion of radiological examinations [15]. One of the reasons for being the modality of 

choice is its relative safety as it is ‘noninvasive’ [16]. It uses radiation in the RF range, unlike X-rays, 

which doesn’t damage tissue and utilizes the natural magnetic properties of the human body to 

produce detailed images [17]. This makes it also safer than other modalities since X-rays have long 

been known to increase the risk of cancer [18]. An MRI scanner is represented below in the Figure 

2-1. 

 

 

Figure 2-1. Representation of a MR scanner. 
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Even though the physics behind how this modality works are too extensive and complex to cover in 

this dissertation, some basis are required to have a better understanding on this matter.  

Essentially this modality makes use of the water present in the human body, more specifically the 

magnetic properties of the hydrogen nuclei which are a part of the water molecule [15][16][17]. 

While acquiring images with this modality, essentially three phases are involved. In the first one, the 

magnetic phase, the MRI scanner emits energy to the targets’ body in the form of a magnetic field. 

This magnetic field (B0) aligns the hydrogen nuclei in the body from a random spin to a spin with the 

same direction as the magnetic field created by the scanner. A greater proportion of nuclei aligns 

parallel to the magnetic field (low energy nuclei) than antiparallel (high energy nuclei) as seen on 

Figure 2-2. 

 

 

Figure 2-2. Spin alignment to the magnetic field. 

 

After this phase of alignment enters the second phase, the resonance. In this phase Radio Frequency 

(RF) pulses are applied to the, now aligned, nuclei to cause disturbance in the alignment [16][17]. It 

does so by emitting RF pulses at specific frequencies that resonate with some nuclei. Several 

frequencies are needed as the nuclei don’t resonate with the same frequency. The scanner can also 

emit frequencies just in certain areas where an image is to be obtained. The time to reach equilibrium 

after this disturbance is known as relaxation time. And finally comes the last phase, the imaging. The 

relaxation is different from nuclei to nuclei, however, all the nuclei (hydrogen nuclei in most of the 

cases) disturbed by the resonance of the RF pulses absorb energy in that stage and, in the relaxation 

release this energy. This energy is then captured by the scanner among other information and then 

the image is constructed in a computer.  
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Several types of MRI exist such as the discussed in the next sub sections: structural MRI, functional 

MRI and DTI. But other exist like FLAIR (Fluid-Attenuated Inversion Recovery) not depicted in this 

dissertation. 

 

2.1.1 STRUCTURAL MRI 

Structural MRI as the name implies, essentially involves the MRI studies regarding the structure of 

the human body. Several contrasts can be applied, noting that changing the contrast is not the same 

as changing the window or level of the image [15]. Varying this contrast or the timing of the sequence 

can for instance make a tumor seem more apparent among the brain tissue by making the tumor 

darker and the brain tissue lighter [15]. 

As said before, the Relaxation times describe how long the tissue takes to get back to equilibrium 

after the RF pulses. The well-known relaxation times are the spin-lattice relaxation time and spin-spin 

relaxation time, denoted T1 and T2 respectively [15]. These two times depend on the tissue as 

described in the Table 2-1. 

 

Table 2-1. T1 and T2 times (in milliseconds) for different tissues [15]. 

Tissue type T1 times T2 times 

Fluids 1500–2000 700–1200 

water-based tissues 400–1200 40–200 

fat-based tissues 100–150 10–100 

 

As it can be seen on the table, T2 is always shorter that the respective T1 for each tissue type. The 

T1 and T2 (among other variables) influence the image contrast. For example, T2-weighted exams 

show tissues with long T2 with a bright appearance. T1-weighted exams on the other hand are the 

opposite, bright pixels on T1 are associated with short T1s [15]. The Table 2-2 shows a summary of 

how the tissues are represented in T1 and T2 MRI.  
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Table 2-2. Summary of T1, T2 sequences [15]. 

Sequence Recognition Good for 

T1 

Tissue Contrast 

Fat based Bright 

Fluids Very Dark 

Water based Grey 
 

Known as ‘anatomy scans’: 
Boundaries between different tissues are clearer  

T2 

Tissue Contrast 

Fat based Grey 

Fluids Bright 

Water based Grey 
 

Known as ‘pathology’ scans: 
Abnormal fluids are bright  
Normal tissue is darker  

 

In the brain, MRI techniques like structural MRI can differentiate between White Matter (WM) and 

Grey Matter (GM). These techniques can also detect aneurysms and tumors by differentiating them 

from the “normal” brain tissue. 

 

 

2.1.2 FUNCTIONAL MRI 

Functional Magnetic Resonance Imaging (fMRI) is a type of MRI used to image changes in the neural 

activity by checking changes in neural metabolism [19]. We do so by monitoring oxygenation changes 

in the tissues [15]. These changes can be triggered by asking the patient to perform certain tasks, 

in order to target a specific cognitive process, or can occur naturally while the patient is in “resting 

state” [19]. For example, if a volunteer is asked to move a thumb, the signal received by the scanner 

would show an increase in the flow on a specific motor area of the brain [16]. The fMRI signal 

intensity variation is a result of the BOLD, Blood Oxygen Level Dependent which depends on the ratio 

of oxyhemoglobin which is diamagnetic and deoxyhemoglobin which is paramagnetic [19][20]. This 

signal intensity doesn’t change much but, by modulating the oxygenation in the areas in study using 

the tasks, a difference between the images can be made and the area where the oxygen was more 

concentrated becomes evident. We do this by subtracting the control image (image where the oxygen 

was equally distributed by the brain) to the image acquired when the task is being performed, the 

experimental image. This process is illustrated in Figure 2-3. 
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Figure 2-3. Illustration of fMRI process – based on [19]. 

 

 

2.1.3 DIFFUSION TENSOR IMAGING MRI 

Diffusion tensor imaging (DTI) MRI is a type of MRI that consists in a group of techniques where 

various diffusion properties of a certain tissue can be analyzed and are used to create images  [21]. 

It is nowadays well established that the MR diffusion tensor can provide useful information of the 

body that is not available from other imaging modalities [22]. Diffusion is the process by which matter 

is irreversibly transported as a result of random molecular motion [23]. 

The sensitivity of MR signals to diffusion has been known since over half a century ago. However, 

only more recently has diffusion-weighted MRI (DW-MRI) established itself as an important method 

[15]. This type of imaging behaves to some extent like an inverse of T2 weighting imaging described 

earlier. In this case, water-based tissues give lower signal intensity whilst other more solid tissues 

give a stronger signal. The possible orientation of the water molecules in a tissue in study in 

combination with the applied RF gradient direction will also determine the obtained signal intensity. 

Generally, the diffusion properties are described mathematically by a diffusion tensor which is a 

matrix of nine values, each corresponding to a gradient orientation and a cell orientation [15][23]. 

The diffusion tensor is defined by: 

 

𝐷𝑇 =  [

𝐷𝑥,𝑥 𝐷𝑥,𝑦 𝐷𝑥,𝑧

𝐷𝑦,𝑥 𝐷𝑦,𝑦 𝐷𝑦,𝑧

𝐷𝑧,𝑥 𝐷𝑧,𝑦 𝐷𝑍,𝑧

]            (1) 
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Noting that the tensor presents some redundancy where, for instance, 𝐷𝑥,𝑦 =  𝐷𝑦,𝑥. 

Using the tensor, several values can be calculated, such as values called eigenvalues and 

eigenvectors which are used to create the images [21]. The trace diffusion constant can also be 

computed from the values in the tensor using the expression: 

 

𝑇𝑟𝑎𝑐𝑒(𝐷) =  𝐷𝑥,𝑥 +  𝐷𝑦,𝑦 +  𝐷𝑍,𝑧             (2)  

 

From which the ADC can then be obtained with: 

 

𝐴𝐷𝐶 =  
1

3
∗ 𝑇𝑟𝑎𝑐𝑒(𝐷)              (3) 

 

The ADC, apparent diffusion coefficient, is usually sufficient to characterize the diffusion properties 

of a tissue [22].  

 

Table 2-3. Common Apparent Diffusion Coefficient (ADC) values for human brain elements [15]. 

Tissue ADC value (x10-3mm2s-1) 

CSF 2.94 

Grey Matter 0.76 

White Matter 0.45 

 

 

2.2 SPATIAL NORMALIZATION 

Sometimes the fMRI data is obtained only with the purpose of understanding just one person. This 

data can then be used, for instance, to plan a surgery to remove a tumor on that person.  

Most of the times, however, a generalization across individuals is needed so that it is possible to take 

conclusions about the brain’s function or structure that apply to conditions or even species more 

broadly. To make this possible, the data needs to be integrated across individuals. This constitutes 

a problem as individual brains greatly differ in size, shape and positioning within the scanner. As 

such, it is necessary that the brains are firstly transformed so that they are aligned with each other. 
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The process of transforming the brains to align them in the same space is known as spatial 

normalization [24].  

 

 

2.2.1 BRAIN ANATOMY 

The brain is a part of the central nervous system. Its anatomy is very complex as can be seen in the 

Figure 2-4, but it can be divided in three main parts. These main parts are the forebrain (cerebrum 

and diencephalon), midbrain and hindbrain (pons, medullaoblongata and cerebellum) [25]. The 

largest part of the brain is the cerebrum which consists of two cerebral hemispheres which are 

connected by a mass called the corpus callosum [25]. 

 

 

Figure 2-4. Arteries and cranial nerves on the inferior surface of the brain [25]. 

 

 

2.2.2 BRAIN TEMPLATES 

To align different brains in a single space, we first need a reference space to align them into. For 

that there are two main template systems that are widely used for most MRI studies, the Talairach 

Atlas (which is the oldest of the two) and the MNI templates [24][26]. Both templates represent a 
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reference image of what a normalized brain should look. Having that reference allows the tools to 

compute the brain exams to perform the spatial normalization. 

 

 

2.2.2.1 TALAIRACH ATLAS 

The Talairach Atlas, represented in Figure 2-5, is one of the best-known brain atlases. Created by 

Talairach in 1967 and afterward updated in 1988 by Talairach & Tournoux, this atlas provided a set 

of sagittal, coronal, and axial sections that were labelled. It presented three important innovations: a 

brain coordinate system (Talairach coordinate system), a spatial transform (to match different sized 

brains) and an atlas of a brain oriented according to the defined coordinate system [27]. However, 

this atlas presents several problems. A major one is that there is no MRI scan available from the 

individual on whom the atlas is based upon and, therefore, an accurate MRI template cannot be 

created for this atlas [24]. This happens because the brain represented in the atlas is from a, at the 

time, 60 year old female postmortem specimen, whose brain was sliced sagittally and used to create 

the drawings of the atlas [27]. 

 

 

Figure 2-5. The Talairach Atlas [26]. 
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2.2.2.2 MNI TEMPLATES 

The most common templates used nowadays for spatial normalization are those known as the MNI 

templates, represented in Figure 2-6, developed at the Montreal Neurological Institute. They are 

commonly referred as MNI-152 as the template represents an average of 152 different brain scans 

[27]. These templates were developed to provide an MRI-based template that would allow automated 

registration rather than landmark-based registration as in the Talairach Atlas [24]. Unlike the atlas 

described before, these templates provide an MRI template, in NIfTI format to be used by the tools. 

 

 

Figure 2-6. The MNI-152 Template. 

 

2.2.3 TOOLS 

Typically, in neuroimaging, to obtain answers we need to extract pertinent information from imperfect 

images of the brain [28]. When dealing with MRI, several tools are needed to obtain these desired 

answers. Sometimes a normalization of the brain’s MRI is required to correctly obtain information 

and, as such, tools to perform such transformations are needed. Several programs can perform this 

process, such as FSL, which will be the main program used and described throughout this thesis, 

but also SPM, ANTS and Brain Suite. 

Regarding FSL, it is a comprehensive library of analysis tools for fMRI, MRI and DTI brain imaging 

data [29][30]. This library contains tools such as bet, Flirt and Fnirt that are used in the normalization 

process.  

The bet tool, Brain Extraction Tool, uses a deformable model that evolves to fit the brain's surface. It 

then removes the non-brain part of the image, leaving just the brain tissue. It’s a very fast method 

and requires no pre-processing [31][32]. 

The Flirt tool, FMRIB's Linear Image Registration Tool, is a fully automated tool for linear brain image 

registration, both intra- and inter-modal [33]. This tool has been used by several researchers 
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including trained neurologists, psychologists and physiologists to perform thousands of registrations 

in the context of fMRI analysis and structural studies [34]. As Flirt is a linear tool, it can translate, 

rotate, zoom and shear one image to match it with another [35].  

The Fnirt tool, FMRIB's Non-linear Image Registration Tool, is similar to Flirt but unlike it in many 

ways, as it is a non-linear tool. The local deformations permitted by Fnirt, as it is a non-linear method, 

may accomplish better results when the differences between subjects are such that the linear 

transform (performed by Flirt) is not sufficient to achieve good registration [35]. 

All the tools described before can be seen in Figure 2-8, which explains the process of spatial 

normalization and clearly shows the inputs/outputs of each tool. 

 

 

2.2.4 PROCESS  

Although the tool used to normalize the brain images works, sometimes the results are not perfectly 

accurate.   

The Figure 2-7 shows an example of a normalization comparing the original image, the MNI template 

(Reference) and the output which has a small error marked red. In this case, the error is not 

significative as it doesn’t affect the brain tissue in the image. 

 

 

Figure 2-7. Comparison between original, reference and resulting image with a small error marked in red. 

 

The process to normalize the images using FSL is illustrated in Figure 2-8, the figure also shows a 

side-by-side comparison of the original and final image with representations of intermediate steps. 
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Figure 2-8. MNI Brain Normalization Process Diagram. 

 

As represented in Figure 2-8, the process for brain normalization using FSL tools is as follows: 

Firstly, the raw data coming from the machine may have undergo pre-processing to possibly correct 

errors that may happen when acquiring the image. This pre-processing, although not mandatory, 

may include movement correction for instance. After that, the original image i.e. the image before 

the normalization process is obtained. In the next step, the brain is extracted from the image, using 

the bet tool. To the resulting image is then applied the Flirt tool, which makes linear corrections to 

the image of only the brain to approximate it from the reference image, giving two outputs, an image 

of the extracted brain (which is now closer to the reference) and a text file which describes the 

changes made to achieve the result from Flirt. Finally, the Fnirt tool is used, it uses the original 

image, before the brain extracted, the matrix produced from Flirt and, again, the standard image. 
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This tool, opposite to the previous one, distorts the image in a non-linear way, i.e. expands or 

contracts several spots in the image instead of the linear version that stretches or contracts the 

image equally in the whole axis or even rotates the image. The result from Fnirt is the so desired 

normalized image as well as a special matrix (designated warp matrix) which contains the information 

of the local deformation for each of the individual voxels of the original image to obtain the final result. 

The final image can then be used by the researcher as a normalized version of the initial image and 

can be saved in a database or archive like, for example, XNAT. 

 

 

2.3 XNAT - NEUROIMAGING ARCHIVE 

When dealing with neuroimaging, a lot of data is generated, data that needs to be handled, either to 

be stored securely or to be distributed. This can sometimes be a challenge so, to make it easier to 

handle all the data XNAT can be used. XNAT (Extensible Neuroimaging Archive Toolkit) is an open 

source imaging informatics software platform [36]. XNAT was developed to facilitate common 

management and handling of neuroimaging and associated data [37]. It can handle importing, 

archiving, processing and securely distributing of that imaging and its related study data. As can be 

seen on Figure 2-9, the XNAT server is able to capture data from multiple sources, maintain it in a 

secure repository, and then distribute it, when needed, to authorized users. The user access to the 

archive is done by a secure web application which provides several quality control and productivity 

features, including detailed reports, upload and download tools as well as security tools [37].  
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Figure 2-9. XNAT captures data and distributes it securely to a variety of end users - based on [37]. 

 

The server can also be accessed by using one of several python libraries capable of bypassing the 

web interface and interact directly with the server. One of these libraries is PyXNAT, originally 

developed in the context of the IMAGEN European project, PyXNAT acts as an interface to an XNAT 

database [38]. Other library capable of handling XNAT via python is xnatum1 [39]. This last library 

was the one chosen to be used in the container. 

A workflow is implemented by XNAT to support the quality, integrity, and security of data. Imaging 

data from the scanners enter the workflow using mechanisms like DICOM (Digital Imaging and 

Communications in Medicine) “pushes”, SFTP (Secure File Transfer Protocol), or portable hard 

media. Non-imaging data, on the other hand, such as clinical assessments, subject demographics 

and genetic measures are passed via web-based forms, spreadsheet uploads, or XML (eXtensible 

Markup Language) [40]. Data can only be stored within XNAT if organized according to projects. This 

required project association is the basis of the XNAT security model as users are only given access 

to data which belongs to a project they are included [41]. To keep data organized and tailored to the 

user needs, projects are just one of the many hierarchy levels of the XNAT data structure. Inside a 

project, several subjects can be inserted, where a subject is anyone participating in that specific 

project associated study. These subjects don’t exist outside the project they are inserted into. The 

                                                 
1 Currently in version 1.2 
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fields of information to be filled for each subject can be defined before creating the subjects and this 

information can be as short as just a single identification number or as extensive as the user needs 

it to be, including fields like the gender of the subject or the age for instance. By creating and 

assigning at least one subject to a project, the next hierarchy level can be accessed. A subject can 

contain multiple experiments which is the term used in XNAT to describe data gathered or measured 

from direct interaction with a subject. The data inside these experiments ranges from non-image data 

like a consent form signed by the subject to image data like, for instance, MR or PET sessions 

acquired in a scanner.  

The experiment level is then divided in 3 sub-levels: scans, reconstructions and assessments. The 

first one, as the name implies, represents the individual acquisitions, or Series in DICOM terminology, 

at the scanner. The second sub-level, reconstructions, represents the files that join data from multiple 

scans like, for example, an image resulting from an average across multiple runs. This sub-level is 

intended to store simple imaging data that rather than the complex data structures other levels store. 

The final experiments sub-level, assessments, represents the derived data generated from processing 

and analyzing image data such as images, logs and spreadsheets. In addition to these levels and 

sub-levels, each hierarchy level has its own child level called resources. 

XNAT uses a special file, an XSD (XML Schema Document), to define its core data model, including 

all the hierarchy levels. In that file, projects, subjects and experiments are defined as the three default 

core data structures. All other necessary structures to be used can be defined and added by relating 

to one of those core types. This highlights one of the main advantages of XNAT which is, as the tool’s 

name implies, the extensibility as the XNAT allows its users to extend the schema to create new data 

types as needed. To create a new data type the user just needs to create the XSD that defines the 

data type itself [41]. 

By using the newest XNAT 1.7 version, new functionalities such as these custom data types can be 

added via plugins, self-contained packages that are separate from the XNAT server but, once added 

and enabled, run as a fully integrated extension to the XNAT server core. 

As explained before, XNAT provides a web interface to access the data. Figure 2-10 shows the 

interface used in this work. In that figure, several key features of XNAT explained before can be seen. 

The projects tab lists the projects the user has access to see and projects with write permission. In 

the figure, only the Brain normalization project has full access. The subjects tab can also be seen. 
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Figure 2-10. XNAT web interface. 

 

 

2.4 DEEP NEURAL NETWORKS 

The human brain is one of the most important organs of our body and the most complex of them all. 

Due to this very important organ, humans are capable of thinking, producing and accessing 

memories, but most importantly, acquiring new information and learning from it. Computers on the 

other hand can’t simply acquire information and learn from it in order to solve a given problem. 

However, given that usually computers can perform tasks faster than humans, developing a way for 

a computer to, in some way, learn to perform a task as expected should be beneficial. This is where 

Deep Learning comes in. Deep Learning or DL for short is, as represented in the Figure 2-11, a 

subset of Machine Learning, one of the subfields of Artificial Intelligence [6][7].  
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Figure 2-11. The difference between Artificial Intelligence, Machine Learning and Deep Learning [9]. 

 

DL had its origins in the Artificial Neural Networks which are inspired by the interconnections between 

the brain’s neurons. Unlike the human brain however, the Artificial Neural Networks are constituted 

by artificial neurons, a computational version of the original natural neurons encountered on the 

human brain. Each of the neurons constituting the Artificial Neural Networks assign a weight to its 

inputs and, a certain output is obtained at each neuron depending on the input. In order to optimize 

the weights used in each artificial neuron, and in consequence ‘learn’ how to achieve a good output 

to that input, the network needs some training. This learning process of the network can, once again, 

be compared to the human learning. Taking, children as an example, while growing up, they learn 

to recognize different objects, animals or patterns in general. They do so by seeing lots of examples 

of what they are learning and, after trying to guess what it is, they are told by their parents if their 

answer was, or not, correct. In both scenarios, the feedback from the parents is important because 

if the answer was correct, they now learned to recognize that object. If on the other hand, if they 

were wrong, they are corrected by the parents to improve the way they recognize the object.  

The process is the same whether we try to learn new patterns or a physical task such as driving a 

car, we learn from the mistakes and improve our knowledge. Either case, learning means getting 

better at a task. This is what Machine Learning focuses on, developing algorithms that try to get 

better at a certain task over time. As the tasks get more complex, the data involved also gets more 

complex. To accommodate that complexity and achieve good results, Deep Learning is used. The 

deep in Deep Learning is due to its immense amount of layers [10]. These Deep Learning algorithms 
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not only far surpass other kinds of ML algorithms, but also rival the accuracies achieved by humans 

[7]. 

 

 

2.4.1 ARTIFICIAL NEURAL NETWORKS 

The base unit of the human brain is the neuron, a cell optimized to receive and transmit information 

from and to other neurons, processing information along the way. This natural phenomenon can be 

translated into computers to create artificial models capable of learning.   

An Artificial Neural Network (ANN) is a hierarchical composition of basic computational elements 

known as artificial neurons or perceptrons [10]. Very different from the natural neuron, as can be 

seen on the representation of the Figure 2-12, but with the same principle, the artificial neurons or 

perceptrons have the function of receiving information from other perceptrons, processing it in some 

way and then send it to the next set of perceptrons. The artificial neurons do so by taking some 

number of inputs x, each of which is multiplied by a specific weight w. These weighted inputs are 

then summed together and, in many cases, may also include a bias, which is a constant [7]. The 

result of this sum is then passed through an activation function f to produce the output of the neuron 

and be transmitted to the next neuron or neurons. The representation of the perceptron with the 

inputs, weights, bias and activation function can be seen on the Figure 2-13(a). 

 

 

Figure 2-12. From biology to Deep Artificial Neural Networks [42]. 

 

Several of these artificial neurons can coexist in a single level of the hierarchy of the artificial model 

creating a single layer of that network [10]. These layers of perceptrons can then be stacked to create 

the ANN where the standard networks of this type are also known as Multi-Layer Perceptrons (MLPs). 
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The perceptrons are organized in layers because, like in the natural neuron, one unit doesn’t have 

the power to take a decision alone, several neurons (natural or artificial) are needed to, given an 

input information, process it and take a conclusion. The stacking of the perceptrons can be visualized 

in the Figure 2-13. 

 

 

Figure 2-13. Multiple Perceptrons (a) create a Multi-Layer Perceptron (b). 

 

An Artificial Neural Network has, typically, one layer for input, one for output and at least one hidden 

layer between them. Many hidden layers in an ANN make it deep [10] i.e. create a Deep Artificial 

Neural Network, the basis of Deep Learning. 

 

 

2.4.1.1 ACTIVATION FUNCTIONS 

Most neurons are defined by a function, an activation function, to be exact. That function is what 

defines what output will be generated from a set of inputs in a given neuron. A simplified 

representation of a neuron can be seen in Figure 2-14. There are several types of functions and 

these can be linear or nonlinear. Regarding the linear ones, the resulting neurons are easier to 

compute but can run into limitations [7]. On the other hand, in the nonlinear group, there are three 

main functions applied to neurons: Sigmoid, Tanh and ReLU. 

To better understand the parameters of each of these functions further explained below and where 

they act in the neuron, Figure 2-14 shows a sample perceptron with all parameters labeled with three 

inputs as an example. 
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Figure 2-14. A simplified representation of a perceptron. 

 

In the figure, x1, x2 and x3 denote the inputs; w1, w2, and w3 denote the weights and b the bias. 

The output y is the result of the activation function f over z. 

Regarding the nonlinear functions, the sigmoid function is defined by: 

 

𝑓(𝑧) =
1

1 + 𝑒−𝑧
      (4) 

 

As can be seen below in Figure 2-15, the Sigmoid function gives a S-shaped output where, if z is 

high the output y will be near the value 1 and, on the other hand, if the z value is low the output will 

be closer to 0. 

 

The Tanh function, defined below, has a S-shaped graphic like the sigmoid. 

 

𝑓(𝑧) =  tanh(𝑧)   (5) 

 

However, despite the same shape, they present different ranges, whereas the Sigmoid ranges 

between 0 and 1, the Tanh ranges from -1 and 0.  

Finally, the ReLU function defined by: 

 

𝑓(𝑧) = max(0, 𝑧)   (6) 

 

This function results in a characteristic hockey stick shaped output and has recently become the 

activation function of choice especially in computer vision [7].  

 



TECHNOLOGIES AND CONCEPTS 

27 

Much like the ReLU, a more advanced activation function exists, the Leaky ReLU, (used in one of the 

models created). It behaves just like ReLU for positive values however, for the negative ones, instead 

of blocking them, it attenuates them. Leaky ReLU is defined by: 

 

𝑓(𝑧) = max( 𝛼𝑧  ,   𝑧 )   (7) 

 

In the function above, α denotes the attenuation to the negative values. This variable should have 

values in the range 0 < α < 1 where common values are 0.1 and 0.2. One particularity of this 

activation function is that if the value of α was 0, the function would behave like a normal ReLU and, 

on the other hand, if the value was 1, it would behave like the linear function. 

 

 

Figure 2-15. Different activation functions used in Artificial Neural Networks. 

 

One function not represented in the image above but very useful for multi-classification tasks is the 

SoftMax function. It normalizes the outputs of the previous layer so that they sum up to one [6][7]. 

This output represents the probability, predicted by the model, of each class to be the correct output. 

As such, a good prediction will have one of the entries close to 1 and the rest close to 0, meaning 

the model is almost certain it chose the right class. On the other hand, a bad prediction will present 

multiple possible labels [7]. 

 

 

2.4.1.2 LOSS AND OPTIMIZER 

Just like the activation function discussed before, other important parameters while creating a model 

are the loss function and the optimizer. The loss represents a penalty value for the incorrect 

predictions the model outputs, if no penalty was implemented, the model would not have feedback 
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about its output. This way, by having a penalty if the output is incorrect, the model can self-evaluate 

and, if all goes as expected, learn the correct features and output a correct prediction.  

This penalty is then used by the learning algorithm whose task is to minimize the loss, i.e. minimize 

the sum of the penalties of each neuron in the network. It does so by tuning automatically the set of 

w (weights), b (biases) parameters on each neuron [43]. 

One of the most used loss functions is called cross entropy loss and is defined by: 

 

𝐶 =  −
1

𝑛
 ∑[𝑦 ln 𝑎 + (1 − 𝑦) ln(1 − 𝑎)    (8)

𝑥

 

 

In the expression, 𝑎 denotes the application of the Activation Functions on the weights and bias, 𝑛 

denotes the total number of items of training data, the sum is over all 𝑥 training inputs, and 𝑦 

denotes the corresponding desired output [43]. 

Analyzing the cross-entropy function, it is positive, and tends toward zero as the neuron gets better 

at computing the desired output of a given input [43]. This means, a zero loss would represent a 

perfectly correct prediction of the model on every output.  

Other important loss function is the dice loss function, based on the Dice Similarity Coefficient (DSC) 

[44]. This loss is defined by: 

 

𝐷𝑖𝑐𝑒 𝐿𝑜𝑠𝑠 = 1 − 𝐷𝑆𝐶 = 1 −  2
|𝑋 ∩ 𝑌|

|𝑋| + |𝑌|
    (9) 

 

The Dice Similarity Coefficient is used to measure the overlap of, for instance, input and output 

images represented in the equation as X and Y [45]. If the overlap is perfect, the result of DSC would 

be 1 and, therefore, the Dice Loss tends to 0 as the overlap improves. A Dice Loss of 0 would mean 

a perfect overlap and consequently a model predicting correctly its output. 

To minimize the penalty or loss while training the model, an optimizer is used. Some of the common 

optimizers are Adam (Adaptive Moment Estimation), RMSprop (Root Mean Square Propagation) and 

SGD (Stochastic Gradient Descent). A good explanation of how an optimization algorithm works would 

involve differentiable functions and statistics and is not as important to understand the main problem 

discussed in this dissertation, it will not be described in this work. 
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2.4.1.3 CONVOLUTIONAL NEURAL NETWORKS (CNN) 

The type of architectures known as Convolutional Neural Networks are of primary importance in 

image analysis [10]. Like the ANN architectures, the CNNs also consist in an artificial neural network 

composed of multiple organized perceptron layers.  However, instead of simple layers like the first, 

we encounter three different kinds of layers (Figure 2-16)  in these networks: Convolutional layers, 

Pooling layers, and Fully connected layers [10]. 

 

 

Figure 2-16. Layers of a CNN. 

 

The first of these characteristic layers, the convolutional are the main strength of the CNNs hence 

the name Convolutional Neural Networks. These layers perform, as its name implies, a convolution, 

this means they apply several filters, or kernels, to their input image in order to extract features from 

that image. The result of this convolution operation (Figure 2-17) is convolved images also called 

feature maps as they are an extraction of the features of the initial image. 

 

 

Figure 2-17. The convolution operation [46]. 
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As shown in the figure, the convolution multiplies and sums the values of the input pixels to obtain 

the features.  

To reduce the dimensionality of the feature maps and sharpen the features, the pooling layers are 

applied after the convolutional ones. By reducing the dimension of the feature maps, the pooling 

layers also reduce the computational complexity of the network. There are several types of pooling, 

one of the most common is the max pooling. It divides the feature map in tiles and afterwards runs 

a pooling window through them, in the example shown in the Figure 2-18, the window size is set to 

2 x 2. The pooling then applies a function to the values capture by that window, in this case, the max 

pooling applies the maximization function which selects the maximum value of each window. 

 

 

Figure 2-18. Max pooling layer. 

 

These layers, convolution and pooling, are often seen as a CNN block and several blocks are stacked 

to create the CNN. The Figure 2-19 shows an example of a CNN where 2 blocks of convolution and 

pooling can be observed. 

 

 

Figure 2-19. Convolutional Neural Network basic structure. 
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2.4.2 COMMON ARCHITECTURES 

2.4.2.1 AUTOENCODERS 

An autoencoder is one of the types of artificial neural network architectures. A representation of an 

autoencoder can be seen in the Figure 2-20. The main idea of this type of architecture is that it 

attempts to copy its input to the output while, simultaneously, learning a more powerful 

representation of that input [10]. To do so, at its core, it contains latent space consisting in a layer 

or a group of layers that describe the input [8]. That space is often called bottleneck as it is the 

narrowest part of the model in this type of architecture and being so, it only allows the characteristic 

features of the input to pass through, as such, if the output is as expected, it means the bottleneck 

can almost fully describe the input with a minimum number of features.  

 

 

Figure 2-20. Autoencoder structure representation. 

 

 

2.4.2.2 U-NET 

U-net is a type of FCN (Fully convolutional network), it is known as U-Net due to its typical U shape 

for the architecture as represented on Figure 2-21. Like some architectures it is composed by an 

encoder and decoder however, unlike the others, some layers of the encoder and decoder are 

connected by skip connections [13]. This type of architecture has shown impressive results in the 

area of medical imaging, especially in image segmentation [13]. As such, due to its impressive 
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results, this architecture was used on one of the experiments on this dissertation to attempt to solve 

the problem of the spatial normalization. The results of the architecture implemented can be seen 

in section 3.4. 

 

 

Figure 2-21. Example of a U-Net based architecture [47]. 

 

 

2.4.2.3 GAN 

The GAN architecture (Generative Adversarial Network) is a Deep Learning Artificial Neural Network 

architecture proposed by Ian Goodfellow and few other researchers in 2014 [48][49]. 

This architecture can be considered a variation of Autoencoders. It is composed of two parts which 

are two Artificial Neural Networks, a generative model often called Generator and a discriminative 

model often called Discriminator [10][49]. The general structure of a GAN is represented on Figure 

2-22. The Generator part of the GAN generates a sample which is sent to the Discriminator part as 

well as ‘real’ samples, i.e. samples of the actual training data. The Discriminator then tries to classify 

the sample received as real or fake [10].  

The objective of the Generator is, essentially, learn to trick the Discriminator into thinking the 

generated samples are real. By doing so, the Generator ends learning how to generate the expected 

data from a given input. 

This more complex architecture was used in the second experiment and the results obtained can be 

analyzed in section 3.5. 
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Figure 2-22. Typical GAN workflow. 

 

 

2.5 WORKING ENVIRONMENT 

2.5.1 FSL 

FSL (FMRIB's Software Library) was developed at the Oxford Centre for Functional MRI of the Brain 

(FMRIB), it consists of a set of freely available software tools that can be used in brain MRI studies 

[50]. 

This library can be easily installed in several types of machines and OS. For that, the user only needs 

to run a script with python 2 which automatically installs all the tools within FSL and configures the 

path to allow the user to use these tools. The script also makes sure that the tools it installs are the 

latest version2. 

FSL was chosen to be used in this work due to its ease of use and powerful tools, which allow to 

perform the brain spatial normalization as described previously in chapter 2.2. The MRI images 

contained in the provided dataset were all normalized using this tool and, therefore, provide a 

baseline to compare the results of the model obtained. 

 

 

                                                 
2 When writing this dissertation, the latest version of FSL was 6.0 released in October 2018 [29] 
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2.5.2 DOCKER 

Docker provides a way to implement OS virtualization [51] by creating containers, minimal versions 

of a base OS. Through this, docker also creates an isolation between each of them, as well as with 

the OS itself as represented in Figure 2-23. The containers can be seen as a virtual machine, as they 

allow each container to have its own libraries, configuration, etc. [51]. Additionally, Docker allows 

each container to access common resources in the machine, specifically the CPU, GPU and RAM. 

 

 

Figure 2-23. Docker containers encapsulation of applications’ dependencies [52]. 

 

This makes it possible for each container to have its own experiments without compromising the 

machine they are running on. To start a new container, Docker builds software images by reading a 

Docker File, which contains the instructions to create the container, by specifying the base image of 

the container and any subsequent changes needed to that specific image for the specific container 

[51][53]. 

The main modules installed in the container via pip or conda and its versions are specified below in 

Table 2-4. 

 

 

 

 



TECHNOLOGIES AND CONCEPTS 

35 

Table 2-4. Most important modules used in this work and respective version. 

Keras 2.2.4 

TensorFlow 1.11.0 

NumPy 1.15.4 

NiBabel 2.4.1 

xnatum 1.0.6 

 

 

 

2.5.3 JUPYTER NOTEBOOK  

To make this thesis possible and create the DL model to ease the researchers’ work, an IDE was 

needed to provide a place where code could be written and tested. However, instead on a common 

IDE, Jupyter Notebook was used. Jupyter Notebook is an open-source and browser-based tool that 

supports workflows, code, data and visualization [54]. It can handle text, code and output of said 

code in the same file which can be then exported to be shared in an editable way or even in formats 

like pdf. The files created by Jupyter Notebooks are called notebooks [6]. The notebooks also allow 

long experiments to be split into smaller pieces that are executed independently giving the possibility 

of running only a part of the code that did not work instead of losing valuable time running all the 

code again [6]. 

Instead of the plain version of Jupyter Notebooks, JupyterLab was used in this thesis, the next-

generation user interface for Jupyter Notebooks. It offers all the familiar building blocks of the classic 

Jupyter and some more in a dominant user interface [55].  

 

 

2.5.4 KERAS AND TENSORFLOW 

Keras is a high-level yet user-friendly library, that provides high-level building blocks for developing 

Deep Artificial Neural Networks [6]. It was used together with TensorFlow, due to its ease of use and 

extremely powerful structural bases for the network. Using Keras and TensorFlow allowed fast 

prototyping when trying to achieve the perfect network for the case study. Another advantage of these 
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APIs was the possibility of working with both CPU and GPU. As such, the GPU was used to process 

the large amount of data when creating, compiling and most importantly training the neural network 

model while, at the same time, doing it faster when compared to a CPU. The Figure 2-24 shows a 

representation of the software and hardware stack when using Keras and TensorFlow. As seen in the 

image, Keras is run on top of TensorFlow. 

 

 

Figure 2-24. Software and hardware stack using Keras and TensorFlow [6]. 

 

 

2.5.5 NIBABEL 

NiBabel3 is a Python package that provides easy read and write access to some of the most common 

neuroimaging file formats such as DICOM. Among the accepted formats is also the NIfTI format 

which is the format of the MRI images of the dataset used. As such the library was used to access 

the image data to be used throughout the process. To do so, the “load” method of the NiBabel library 

was used. It takes the path of the image to load as an argument and returns an object with the 

information contained in that NIfTI file. The returned information consists of a header (which contains 

information about the MRI study) and the data of the study itself, i.e. the image. This data can then 

be extracted from the object using the “get_fdata” method. Doing so returns a NumPy array with the 

image data. This data was afterwards pre-processed before being used to train the model as will be 

discussed in a further section. 

                                                 
3 At the moment of writing this dissertation, the most recent NiBabel version was 2.4.1 [62]. 
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This library was also useful to save the prediction of the model also in NIfTI format. To do this, two 

methods were utilized, firstly a NIfTI object was created using the method “Nifti1Image” receiving, 

as one of its input arguments, the image data in the format of a NumPy array to be converted and 

saved to NIfTI. Finally, the “save” method takes the NIfTI object and saves it to the specified path. 

 

 



 

 
 
 

 

  

 SPATIAL NORMALIZATION 

OF THE BRAIN  
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This section describes the dataset used to train the Artificial Neural Networks used to learn how to 

perform the spatial normalization on the inputted brain MRI studies as well as the whole workflow 

that lead into the results. It also describes some of the attempts to recreate the existing tools in a 

Deep Artificial Neural Network approach before the final Deep Learning model. Finally, this section 

describes the results obtained in this work with this experiment. 

 

 

3.1 SPATIAL NORMALIZATION 

As explained in a previous chapter (2.2), when dealing with brain images, conclusions can’t be taken 

by simply comparing the brains on each study directly. In order to do so, a spatial normalization 

must be applied which allows having all the exams in the same dimensional space. To normalize the 

brains a template is needed: it provides a target to compute all the images into. There are two well-

known templates, the more broadly used MNI templates and the Talaraich Atlas. Furthermore, a tool 

is required to apply these templates to a given MRI study. Applying the MNI templates or the Atlas 

to the brain images normalizes the brains spatially and enables the possibility of taking conclusions 

regarding the areas of the brain of the different individuals in the brain dataset. However, the 

normalization has a disadvantage, it usually takes a lot of time. This is due to a very complex set of 

transformations that must occur for the normalization to be complete.  

With that in mind, this section of the dissertation explores the attempts at trying to develop a new 

tool to perform the spatial normalization process faster by making use of Deep Artificial Neural 

Networks. 

 

 

3.2 MATERIALS 

As stated before, the goal of this work is to develop a DL model to normalize the MR image of the 

brain. As such, one of the most important materials used was, in fact, the MRI studies themselves. 

The dataset used, stored in a XNAT server, contained a total of 213 studies, properly anonymized to 

ensure the data of the patient stayed secure, in NIfTI format which were divided in three groups of 

71 where each study in one group had a corresponding one in the other two. The groups were the 

following: a group of original studies (the data obtained in the MRI without spatial normalization), one 
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of brain extracted studies (obtained from the corresponding original study) and finally one of 

Normalized studies (result of the normalization of the first group by an already existing tool). Of these 

groups, the ‘original’ was used as input for the Deep Learning model and the ‘normalized’ as an 

output. The brain extracted group was only used to pre-process the input for the model.  

One of the studies contained in the dataset, more specifically one that has been normalized, can be 

visualized in Figure 3-1 where all slices of that study can be seen. 

 

 

Figure 3-1. Visualization of all slices in one of the normalized studies. 
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To create and train said model, a programing language was needed as well as a suitable environment 

to work, Python was the chosen as the programing language, with very comprehensive imaging 

libraries as well as DL ones. Jupyter Notebooks was used as an environment in which the tools 

described in this dissertation were created. 

The tools and materials described before are useless if there is no machine to use them and the 

capabilities of said machine may influence the results obtained. As such, the settings of the machine 

used while working to develop this dissertation can be seen in the Table 3-1. 

 

Table 3-1. Specifications of the system used to develop the deep neural network models. 

OS Ubuntu 10.04 LTS (64 bit) 

CPUs Intel® Xeon® CPU E5-1650 V2 @ 3.5 GHz – 6 Cores 

RAM 64 GB 

Disk space 
2 x 2TB disks 
1 x 512GB disk  

GPU 
NVIDIA QUADRO P6000 GPU (24GB of GDDR5X dedicated memory) 
Cuda Parallel-Processing Cores 3840 
FP32 Performance 12 TFLOPS 

 

 

3.3 DATA PREPROCESSING 

The first step to create the DL model was to prepare the dataset in order to be compatible with the 

model that was, at the time, yet to be developed. This preprocessing of the dataset ensures the data 

to be loaded in the model is tailored to suit the model like a glove. If the preprocess wasn’t done, the 

data outputted by the model could not be as expected due to improper data in the input. By 

separating the preprocessing and loading into different stages we can also preprocess just once and 

load the already preprocessed dataset ready to use in a matter of seconds before the training of the 

model instead of having to spend time processing the data each time the model has to run. 
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3.3.1 PROCESSING 

The preprocessing step is one of the most important, as this is the step that prepares the data to 

work perfectly with the model.  

To achieve a perfect match between the data and the model, several steps are required. Firstly, a 

supported data format is required, the deep neural network model won’t simply accept the MRI 

images as they are. To solve this issue, a python library called NiBabel which can handle files in NIfTI 

format, is used to extract the data from each exam into NumPy arrays. The next issue involves the 

data itself, the model needs to have meaningful data at its input, in other words, not any data will 

achieve good results. Therefore, the data from the exams, now in NumPy arrays, needs to be 

normalized to achieve good and repeatable results. This can be done by realizing several simple 

operations on the arrays. At the normalization step, the borders of the not normalized images are 

cut, leaving the brain intact. This insures the brain portion of the image is intact, yet it saves some 

space in memory, which is useful when training the model. The next step is to make sure all images 

have the same dimensions. To solve that, padding is added to the images as zeros to reach a final 

size. It was added to the images instead of removing to maintain as much valuable information as 

possible, not tampering possible crucial values. Finally, the values of all the arrays must be between 

0 and 1, insuring that the model can take conclusions from all the images independently of their 

maximum or minimum value. As the minimum value of all the arrays was already 0, the maximum 

value was the target for the normalization. The solutions to present values between the required 

interval was to divide each not normalized image by its maximum and the corresponding normalized 

by the same value. That makes sure the maximum value is 1 and enables repeatability. 

At last, the now preprocessed dataset, is separated in train and test NumPy arrays to be saved in 

four NumPy files (X_train.npy, Y_train.npy, X_test.npy and Y_test.npy) to get a faster data loading 

when needed. By doing this the data can be preprocessed only once and loaded much faster anytime 

the model needs to train. To separate the data in training and testing sets, 50 of the studies were 

used for training (about 70% of the dataset) and the remaining 21 (remaining 30%) were used for 

testing. The train set is used to train the model and the test set will evaluate the model capabilities 

whilst training. 

The Figure 3-2 represents, in general, the operations made by the function for preprocessing the 

data and then splitting it into the files.  
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Figure 3-2. General process of the data preprocessing. 

 

 

3.3.2 LOADING 

To load the pre-processed data into the model, a function was created to ease the process. That 

function’s job, as represented in the Figure 3-3, was to access the four NumPy files mentioned 

earlier, created when preprocessing the data using the function described in the section 3.3.1. It 

then returns the data as four different NumPy arrays, ready to be used in the DL model. The arrays 

are named: X_train, Y_train, X_test and Y_test. The first two are, as the name implies, for the training 

of the model and the last ones for both testing and validation. 
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Figure 3-3. Data loading process diagram. 

 

After successfully loading the data from the files, the next step was to create and compile the models 

to train them afterwards. The creation and training of the models for each experiment made was 

slightly different due to the requirements of each model tried. As such that information is split 

between the two experiments, using in one a U-Net based architecture and a GAN in the other. 

 

 

3.4 BRAIN SPATIAL NORMALIZATION USING A U-NET BASED ARCHITECTURE 

This first experiment used a U-Net based architecture for the Deep Artificial Neural Network. This 

network was created and tested as described in the following sub-chapters. Although this experiment 

didn’t solve the initial problem of developing a substitute for existing spatial normalization tools as it 

didn’t achieve the best results it did, however, get the shape of the brains correct as can be seen 

further below while evaluating the model in 3.4.2. 
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3.4.1 CREATING AND TRAINING THE MODEL 

The Deep Artificial Neural Network was created in a separate python module named 

“modelo_unet.py”. 

To try solving the spatial normalization problem, at first an Autoencoder architecture was used, 

however, this structure was quickly changed to a U-Net based one due to its more powerful 

capabilities. 

For creating and compiling the model contained in the first module we simply call the 

“create_compile_model()” function contained in said module. This function starts by adding layers 

to create the U-Net based structure of the model. It then compiles the model using Dice Similarity 

Coefficient (DSC) as loss function and Adam (Adaptive Moment Estimation) with a lr of 1e-6 as an 

optimizer. As activation functions, ReLU and Leaky ReLU were used strategically. Several learning 

rates were experimented with but the specified above was the one which obtained the best results. 

This module also contains helpful parameters to be used such as the input size as well as callbacks 

to use later while training the model. The callbacks used in the first experiment were: 

• ModelCheckpoint – saves the weights of the model at defined points of the training, in this 

case saves the best possible weights of the training; 

• EarlyStopping – this callback monitors the model training and automatically ends training if 

the model is not learning as it should; 

• ReduceLROnPlateau – Adapts the learning rate (lr) of the model to adapt its learning and 

hopefully achieve better results; 

• PlotLossesKeras – Implements a plot which updates each epoch to show the model history, 

i.e. accuracy and loss at each epoch. 

All these callbacks are very helpful and improve the chances of achieving good results with the model. 

In the Figure 3-4 the code to create and train the model can be analyzed. First the model is created 

and compiled using the function explained before. Next, some important settings are specified such 

as the number of epochs to train the model as well as the batch and the callbacks to use (if needed). 

As said before, the functions present in the callbacks part of the settings are specified in the model 

module. 
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Figure 3-4. Steps to create and train the U-Net based model in the code. 

 

Both the number of epochs and batch size were changed to influence the training of the model 

hoping to improve the model performance. Where the number of epochs represents the number of 

passes through the training samples whilst training. The batch size essentially represents the number 

of samples presented to the model at each time. As expected, a higher batch size represents a higher 

number of images being presented to the model and as such more memory space is needed to 

accommodate all the data. 

Even though the model was trained using a high-performance GPU the training process took much 

time due to the size of the dataset, in the case of this architecture, about 6 hours with the specified 

settings. 

After training using the GPU, the model is evaluated to understand if it performed as expected. It’s 

structure in “. json” format and weights in “.h5” format using h5py package4 are then saved in disk 

to further reference. Thanks to one of the callbacks used, the weights of the model at the best stage 

were also saved. At this stage, the plots of the loss and accuracy of the model are shown or, thanks 

to the PlotLossesKeras callback, these are shown throughout the training process in constantly 

updated plots. These are then used to measure the performance of the model. 

 

 

3.4.2 MODEL EVALUATION 

After training with the given dataset, the model was evaluated to understand its performance. This 

was done using both the evaluate and predict model. The evaluate model evaluates the model and 

outputs its scores, loss and accuracy, after the training. The predict method uses the model and 

predicts an output to the given input. The output predicted by this model using this method, to a 

                                                 
4 H5py is a Pythonic interface to the HDF5 (Hierarchical Data Format) binary data format 
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random input can be seen in the Figure 3-5. In the figure the input is the column ‘FSL in’, the output 

by the FSL is ‘FSL out’ and the model output is ‘DL out’.  

 

 

Figure 3-5. Comparison between the original image, image obtain trough FSL and prediction of the trained model. 

 

To achieve a perfect result, the third column of the image should coincide with the second as the 

second is the output of the normalization obtained with FSL and the third represents the output of 

the trained DL model. As can be seen, the results are not perfect but are close to the target image 

as the shape of the output coincides almost perfectly to the expected. Especially when inspecting the 

top row, we can see the model predicted the features correctly. Therefore, it achieved good results 

but not good enough to compete with the already existing tools.  

By analyzing the dice loss function of the model, which as explained before measures the overlapping 

areas of the images, its value gets very close to 0, meaning the model performed good while 

deforming the original brain to achieve the final form even though the image in a whole does not look 
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as expected. The graph of the loss function throughout the training of the model can be seen on 

Figure 3-6. The accuracy graph however, will not be shown as it’s not a good metric for how good 

the model learned in this specific case. This is because even if two corresponding pixels have very 

similar values but not the same, this is considered a wrong prediction even though it would be 

acceptable. That being said, the accuracy achieved by the model was very low and constant despite 

the fact that the model got the shape right as seen above in the Figure 3-5. 

 

 

Figure 3-6. Evolution of the loss when training the model. 

 

The specific architecture used in this first model can be seen in a representation the Appendix B – 

U-Net based architecture used. 

Since this experiment didn’t solve the problem, despite getting the shapes correctly, a new approach 

was made. This new approach, using a GAN architecture would try to solve the problems the first 

architecture had and hopefully achieve better results. 
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3.5 BRAIN SPATIAL NORMALIZATION USING A GAN ARCHITECTURE 

As stated before, to attempt to improve the results obtained in the previous experiment (see section 

3.4), this experiment followed a new approach using a GAN architecture. This chapter describes the 

creation and testing of said network and its evaluation, showing some of the results obtained.  

 

3.5.1 CREATING AND TRAINING THE MODEL 

Although having some similarities with the first experiment’s network, this type of architecture is 

more complex yet simpler at the same time. As all GANs, the main GAN network was created by 2 

smaller and independent ones, the Generator and Discriminator. These were then combined to 

create the so-called GAN, the main network. As explained in more detail in the section 2.4.2.3, the 

Generator takes noise as input and tries to reproduce an image which, if the model is tuned, should 

be close to the real ones. This essentially means the GAN can generate an expected image from that 

noise. To create the generator, a function called “create_generator()” is used. It creates the 

sequential model of the generator by adding its layers in sequence and then compiles it. To compile 

the generator, Adam was used as optimizer and binary crossentropy as a loss function. A lr of 0.0002 

was established in the optimizer. Regarding the Discriminator, it was created the same way, a 

“create_discriminator()” function was used which adds layers to create the discriminator. The 

discriminator was compiled with the same parameters as the generator, Adam with an established 

lr of 0.0002 as an optimizer and binary crossentropy as a loss function. 

Both the Generator and Discriminator used Leaky ReLU as an activation function with 0.2 as 

parameter except for the last layer, where the sigmoid function was used in order to maintain the 

final output between 0 and 1. 

Finally, the GAN itself is created by using the two models built as described before. As seen in the 

Figure 3-7, the GAN is created using the “create_gan()” function. Its input is predicted by the 

Generator and then passed to the Discriminator which tries to guess if the image it received was, or 

not, a real image. The model is compiled using the same settings as the two smaller ones and the 

layers are named to better understand the model. 
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Figure 3-7. Code for creating and compiling the GAN model. 

 

The step of creating the model is, despite having to create several models for the main model to 

work, very similar to the model in the first experiment. The training process however, is completely 

different. In the case of the first experiment’s model, the training used only one step: applying the fit 

method to the model. This time, the training is much more complex involving several steps as the 

training, in this case, is alternating between training only the Generator and training only the 

Discriminator. 

To perform the training, we start by loading the data. A small change to the arrays is made, the data 

in them is reshaped to, instead of having several 2D images in the arrays, having several one-

dimensional arrays. Note that the information is still present and can be rearranged again to become 

2D images. As the images had dimensions of 220x184, they were resized to a vector with a length 

of 40480 (220*184). After this slight modification, the 3 models are initialized, first the Generator 

and Discriminator and then the GAN which uses the first two to be created. The training process then 

begins, using a for loop to repeat the instructions for each of the defined epochs. Firstly, random 

images from the X_train array, now in the 1D vector form, are selected i.e. a random amount of non-

normalized images. The number of images selected is represented by the batch size. These images 

are then inputted to the Generator as ‘noise’ and the output is predicted to get the generated images. 

The same number of images is then selected randomly from the Y_train array, the normalized 

images, to represent ‘real’ images. The generated images and real images are then concatenated in 

a single array and a matching array, which contains labels identifying the images as real or generated, 

is created. Now, with a set of images and corresponding labels, we train the Discriminator, after 
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setting it as trainable by indicating Discriminator.trainable as True. This is done using the method 

train_on_batch. This method takes two arguments, the images and the respecting labels, and then 

trains, for this epoch, the Discriminator. As the Discriminator finished its training, for the time being, 

it is set to not trainable to maintain its weights in the next step. Now, a new set of random non 

normalized images is chosen as well as the respective labels, this time to train the GAN and, 

consequently the Generator as the Discriminator is set to non-trainable. However, there is a twist this 

time, the labels created for the chosen random non normalized images are set as these were 

normalized ones. By doing so, we try to trick the discriminator into thinking they are indeed the 

correct ones. Once again, the train_on_batch method is used, this time on the GAN, using the 

mentioned images and respective labels. If all goes as expected, the Generator will, at some point 

learn how to create the normalized images using the given ‘noise’ (non-normalized images) in a way 

that the Discriminator can’t recognize they are not the real images, meaning the Generator of the 

GAN should learn to generate the expected images in a convincing way. 

This process is then repeated a set number of times, determined by the number of epochs 

established for the model train.  

Just like in the first experiment, both batch size and epochs were changed to experiment with the 

model and analyze the changes made to it. Changing the batch size and epoch number influences 

greatly the time needed to train, taking for example a few hours to train 1000 epochs or even several 

days to train 20000 epochs. 

After finishing the training using the GPU, the model had to be evaluated to understand if it learned 

correctly. 

 

 

3.5.2 MODEL EVALUATION 

To help evaluate the GAN a function was created to predict, using the Generator of the GAN, a set 

quantity of samples each set number of epochs to keep track of the GAN’s performance. The function 

in question, “plot_generated_images()” takes as parameters, the epoch at which it was called to 

name the output plot of predicted images, the Generator to predict them from the test set and the 

test set itself. The number of images to be plotted can also be passed to the function using the 

“examples” parameter, which by default is set to 100. 
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As an example, Figure 3-8 shows side by side, the output of the function, while training the model, 

where the plot A was after the first epoch and B after 1000. To better fit the pages of this dissertation, 

not every plotted test image is shown in the figure, showing a matrix of plotted images of 5x5 instead 

of the 10x10 generated by the function. 

 

 

Figure 3-8. GAN output sample after first epoch (A) and 1000th epoch (B). 

 

The GAN was also tested in its final epoch to observe the result of the training. After training, the 

model was again used to predict a random study of the dataset and was compared with the respective 

original study and exam outputted by the FSL, i.e. the reference output, to understand if the model 

could perform the spatial normalization of the brain as was expected. One of the results of this final 

test can be seen below in the Figure 3-9. 
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Figure 3-9. Comparison between original image, expected output and GAN output. 

 

The figure shows, the model used to predict that study was not successful at achieving a good 

normalization but once again, just like the previous experience with the U-Net based architecture, 

the shape was approximated by the model. The result also shows that, in comparison, the U-Net 

based architecture had a better performance and learned more features than the GAN as it achieved 

better results. 
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3.6 RESULTS AND DISCUSSION 

Several parameters can be used to evaluate a model’s characteristics and performance when 

predicting its output. This evaluation can be as simple as comparing the class predicted by the model 

to what the true class should be and, if both are equal, the model performed as expected, or it could 

be something more intricate such as comparing the areas of two features to see if they are as close 

as possible. Different models call for different approaches so, different metrics were used to correctly 

evaluate the models’ performance. Usually the main metric to evaluate the model is the accuracy 

metric which indicates the percentage of correctly predicted outputs. 

However, despite seeming the best metric to evaluate a model, accuracy is not always the best 

choice. In the case of spatial normalization for instance, depicted in this dissertation, this metric 

doesn’t stand for a valid method to evaluate the model. This is because in this case accuracy does 

not understand the values it is dealing with. It analyses, in this case, each pixel of the image in the 

output, if the value is not the same for that pixel, when comparing its expected value with the 

predicted one, the accuracy metric doesn’t understand the context of the value, it just outputs if the 

value was correct or not regardless the fact that close values would be accepted as a good prediction. 

As an example, Figure 3-10 shows two images side by side, where one of them has all its pixels 

tampered from the original as a unit was added to each of the pixels. As a reference, the image on 

the left is the original and the one on the right is the tampered version. Even though the images are 

considered different to the computer and, as such, are considered as a bad prediction by the model, 

they are indeed the same as they are intended to be interpreted by a human and not a computer. 

 

 

Figure 3-10. Comparison between two images with one unit added to all pixels. 
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Naturally, if the values are much different from what they should, the image is indeed wrongly 

predicted but a range of values close to the expected could be accepted as a good prediction. Also, 

an accuracy of, for instance, 90% or higher would probably mean the model is working as expected 

as it does indeed usually get the output predicted correctly to reach such high accuracy. However, 

low accuracy doesn’t necessarily mean the model is not predicting correctly as already shown. 

To overcome the confusion generated by the accuracy metric a new way to evaluate the results was 

necessary. To correctly evaluate the model performance the dice loss was used in the U-Net based 

model. This loss function is based on the Dice Similarity Coefficient (DSC) [44]. The Sørensen–Dice 

coefficient or Dice Similarity Coefficient is used to measure the overlap of two areas. If the overlap is 

perfect, the result of DSC will be 1 meaning 100% is overlapped. On the other hand, a DSC of 0 

would mean areas totally spaced apart or a 0% overlap. Figure 3-11 illustrates the DSC depending 

on the overlap percentage. 

 

 

Figure 3-11. Dice Similarity Coefficient (DSC) for different overlaps. 

 

The Dice Loss, opposite to the DSC it is based on, tends to 0 as the overlap improves. A Dice Loss 

of 0 would mean a perfect overlap and consequently a model predicting correctly its output. The Dice 

Loss value obtained with the U-Net based approach was 0.00313, meaning the overlap was almost 

perfect whereas the accuracy did not evaluate the model as it should, as it was a constant of 16.69% 

accuracy throughout the training of the model without any alterations. The side-by-side comparison 

between the expected result and the obtained result by the U-Net is shown in Figure 3-12. 
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Figure 3-12. Comparison between the expected (Left) and the obtained result by the U-Net (Right). 

 

For the GAN approach an evaluation of the results was harder to do as several models have to be 

trained to train the main GAN network.  

In the case of the GAN approach, the results were analyzed simply by comparing the output of the 

network with the expected one. As seen in Figure 3-13, the results are promising like the ones 

obtained in the U-Net based architecture where the shape is somewhat close in general. However, 

this time, the output shows that maybe this type of architecture isn’t up to the task of handling the 

spatial normalization.  
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Figure 3-13. Comparison between the expected (Left) and the obtained result by the GAN (Right). 

 

Changing the architecture of the GAN could impact its performance in a way that could achieve better 

results but, with the experiments made, the U-Net based architecture seems to achieve far better 

results and, with some more alterations could possibly achieve a proper brain spatial normalization.  
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This section describes the dataset used and models prepared to predict the atrophy stage of brain 

MRI studies. It starts by introducing brain analysis and then describes the materials used (dataset 

and system). Next it describes the approach made with the model described in detail, explaining how 

it was created, trained and, most importantly, how it was evaluated to understand its performance. 

Finally, the results are discussed for a better understanding of what was obtained. 

 

 

4.1 BRAIN ANALYSIS 

Distinguishing between the different neurodegenerative causes of dementia is vitally important to 

allow affected individuals and their families to access appropriate treatment, support and care [56]. 

Structural neuroimaging is widely available and recommended as part of the clinical evaluation in all 

patients with suspected dementia, MRI in particular allows for global and regional cerebral atrophy 

to be assessed [57]. A wide number of sophisticated methods of analysis is nowadays available to 

quantify global and regional atrophy from MRI [58][59]. However, almost no progress has been made 

to integrate these methods into clinical work streams. This is due to several reasons, but mainly 

special hardware requirements and long processing times [57]. Therefore, the main method for 

extracting useful clinical information in MRI studies for a diagnostic continues to be a visual scan 

assessment. However, without proper operational guidelines to identify the atrophy patterns with 

diagnostic value in dementia, a lot of potentially relevant information may be under-utilized [57]. 

A solution that could be integrated in the clinical workflow that would solve this would therefore be 

much helpful than to visually inspect every single scan to identify brain atrophy. This would, if properly 

implemented, save time both to the professionals as well as to the patients, where the patients could 

be diagnosed faster, and the professionals would have much more time to act accordingly. 

 

 

4.2 MATERIALS 

The goal of this experiment was to develop a DL model to classify, when presented with a brain MRI 

study, it’s stage of atrophy from class 0 to 4 as the Medial Temporal lobe Atrophy (MTA) score (Figure 

4-1). Class 0 would mean no atrophy detected in the brain presented and, on the other hand, class 
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4 would mean the worst stage of atrophy. According to the MTA score the classification is made as 

follows [60]: 

• Class 0 - no Cerebrospinal fluid (CSF) is visible around the hippocampus; 

• Class 1 - choroid fissure is slightly widened; 

• Class 2 - moderate widening of the choroid fissure, mild enlargement of the temporal horn 

and mild loss of hippocampal height; 

• Class 3 - marked widening of the choroid fissure, moderate enlargement of the temporal 

horn, and moderate loss of hippocampal height; 

• Class 4 - marked widening of the choroid fissure, marked enlargement of the temporal horn, 

and the hippocampus is markedly atrophied, and internal structure is lost. 

 

 

Figure 4-1. Visualization of images with different MTA scores [60]. 

 

The dataset provided, in T2 contrast, once again stored in a XNAT server, was properly anonymized 

to ensure the data of the patients was protected. Not all studies were used to this experiment as 

studies in different planes were available for each individual patient. As such, from the dataset 

provided, only the coronal plane studies, 129 in total, were used due to its abundance and uniformity 
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among all of them. Each study was labeled by a set of two labels, corresponding to the average MTA 

score of the left side of the brain and the average MTA score for the right side of the brain when 

classified by 2 different experts.  

Just like in the section 3.2, the dataset is useless if there is no machine in which to create the models 

and train them. As such, the settings of the machine used while working to develop this experiment 

can be seen in the Table 4-1. 

 

Table 4-1. Specifications of the system used to develop the deep neural network models. 

OS Ubuntu 10.04 LTS (64 bit) 

CPUs Intel® Xeon® CPU E5-1650 V2 @ 3.5 GHz – 6 Cores 

RAM 64 GB 

Disk space 
2 x 2TB disks 
1 x 512GB disk  

GPU 
NVIDIA QUADRO P6000 GPU (24GB of GDDR5X dedicated memory) 
Cuda Parallel-Processing Cores 3840 
FP32 Performance 12 TFLOPS 

 

 

 

4.3 METHODS 

4.3.1 DATA PREPROCESSING 

When dealing with Artificial Neural Networks, Deep Artificial Neural Networks in this case, one of the 

most important steps is to do preprocessing of the data. This prepares the data to work perfectly 

with the network but most importantly insures consistency if the results are to be reproduced in some 

way. To preprocess the data to work with the Artificial Network several steps were required. The first 

step was to ‘exclude’ the unnecessary studies for this experiment, this means all studies that wouldn’t 

be used were ignored. Next, as 5 different classes exist, a for cycle was created to cycle all of them. 

In each cycle, the studies to be used were classified 1 or 0, as they had, or not the class being 

processed at that moment in the cycle. For example, a study labeled as class 2 atrophy in the dataset 

would represent a 1 for the class 2 model and 0 for the remaining.  



BRAIN ATROPHY CLASSIFICATION 

62 

Afterwards the studies needed to be normalized and, to do so, the max value of the studies voxels 

were used, after cutting the image, with a margin, around the brain, the images were divided by their 

max value. This made them all smaller, due to the removed part of the images and left them with 

values between 0 and 1 (due to being divided by the max value). At this point, several experiments 

were made to analyze how the results of the model would be affected. In some experiments the 

images were resized by adding 0s as padding, others left this to the Keras ImageDataGenerator to 

handle and finally, the use of the brain extracted images, i.e. the studies with everything but the brain 

tissue removed, instead of the studies with a margin around the brain removed, was tested.  

After the normalization process the data was split to form the train and test sets. A percentage of 

80% was used for the splitting, 80% for training and the remaining 20% for testing the model. 

The Table 4-2 shows how the studies were distributed between the classes as well as the split 

between the train and test sets. 

 

Table 4-2. Distribution of the data cases among the train and test of the different classes. 

Class 0 Train Test  Class 1 Train Test  Class 2 Train Test 

True 8 1  True 43 10  True 45 15 

False 95 25  False 60 16  False 58 11 

           

Class 3 Train Test  Class 4 Train Test     

True 25 8  True 11 3     

False 78 18  False 92 23     

 

Finally, the images resulting of this preprocessing needed to be saved. To do this, several folders 

were created to distribute the files. The Figure 4-2 represents generally the preprocessing step and 

shows how the figures were distributed among these folders. Each class had their folder, inside each 

of them, exists a train and a test folder. Each of the two has 2 sub folders, named 0 and 1. The 

images were distributed by the corresponding folders. For example, an image on the train set of class 

2 classified as 1 would be saved in Class2 > train > 1 > example_image.png. 
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Figure 4-2. Preprocess diagram for the Brain Atrophy experiment. 

 

 

4.3.2 CREATING AND TRAINING THE MODEL 

This experiment started using an InceptionV3 based model. This was, however, quickly changed to 

a model based on the VGG19 architecture due to some problems encountered when adapting the 

first architecture. These problems were caused by one of the batch normalization layers of the 

InceptionV3 model initially used as a basis.  

A model was created and trained for each of the 5 stages of atrophy and adapted to classify the 

corresponding stage in 2 classes as True or False, if it was present in the inputted image, instead of 

the 1000 classes of the original VGG model, more specifically to classify the brain atrophy stage. The 

general structure of the models used to classify the brain images regarding the stage of atrophy can 

be seen in Figure 4-3. As the classes were unbalanced and each MRI study had 2 labels regarding 

the left and right side of the brain, the model had to be tailored to each class. As such, the model 

had a custom block for each of the classes. 
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Figure 4-3. General structure of the model used for Brain Atrophy classification. 

 

The models were all placed in a separate module named “modelo_atrophy_5class_complex.py”. 

This module contained every function necessary to use the model, the most important is 

“create_compile_model()” which creates the model and compiles it using the settings specified in 

said module. This functions also takes one input parameter to differentiate the output model 

depending of the atrophy class to be predicted. It does so by calling other function that adds the 

class specific block to the model. The settings specified in the module to compile the model are the 

loss function to use and the optimizer. As an optimizer, SGD was used with a learning rate of 0.001 

and for loss, categorical cross entropy was used. ReLU was used as activation function except for 

the last layer where SoftMax was used. This allowed the output to quantify the probability, according 

to the model, for the class outputted to correspond to the image inputted. To help train the model 

some more functions were placed in the module, specifically functions to create the callbacks to be 

used. The callbacks implemented were the same as described in the section 3.4.1. 

Regarding the training of the model, it required some special methods to work, as the dataset 

involved a large amount of data, the Figure 4-4 shows the loading process for the training and testing 

steps. For that ‘heavy lifting’ loading, firstly, two ImageDataGenerator were created. It is a special 

Keras function that will load the data from a specified directory in a way that doesn’t overload the 

memory space. That specific method is called flow_from_directory and, in that method some settings 

are specified to allow it to perform correctly. These settings include the size of the images to be used, 

as it can resize them if needed, and most importantly the path to the images to indicate the place 
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from where the images are to be loaded. It can be a general path to the images as the algorithm 

used by the method automatically attributes classes to the images according to the way the folders 

are set up in that path with the dataset. Other methods can for instance take a CSV (Comma-

Separated Values) file with the paths to the files and use it as a guide to know where to get the files. 

At least 2 data generators must be created (one for train end one for test) and can be defined before 

or after creating the model but must be defined before the training as the training uses a special 

method called fit_generator. There, the settings to train the model such as epochs are entered as 

well as the generators and callbacks. The batch size is entered whilst calling the flow_from_directory 

method. Several settings were adjusted throughout the experiments with this model, such as settings 

in the data generators as well as epochs and batch size. 

After the training was complete, the plots of accuracy and loss were obtained as well as confusion 

matrices to help evaluate the model performance later. 

 

 

Figure 4-4. Loading using ImageDataGenerators. 

 

 

4.3.3 MODEL EVALUATION 

As discussed before in this dissertation, there are several ways to measure the quality of a model. 

Several of these measures of the quality of classification are built from a confusion matrix. This matrix 

records correctly and incorrectly recognized examples for each class [61]. Most importantly, it gives 

insight not only into the errors being made by the model but also into the types of errors that are 
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being made by it. By having access to the type of errors being made, the model can be more easily 

adapted to overcome the problem. This type of matrix can be constructed in several ways, from 2x2 

matrix when only two classes exist to whatever size suits the needs of the model. In this work, 5x5 

confusion matrices were constructed initially as there are 5 classes of atrophy. However, it eventually 

came to be only 2x2 matrices as the models where simplified to classify each atrophy stage as 

existing or not in the study. A 2x2 confusion matrix can assign for example the columns for the 

predicted and the rows for the true value of the output (Table 4-3).  

  

Table 4-3. Confusion matrix for tumor classification (binary). 

 
 Predicted label 

 
 Has that atrophy stage Other atrophy stage 

True label 

Has that atrophy stage TP FN 

Other atrophy stage FP TN 

 

The combination of columns and rows of this specific type confusion matrix results in: 

• True Positive -- TP: values correctly predicted as True. 

• True Negative -- TN: values correctly predicted as False. 

• False Positive -- FP: values incorrectly predicted as True. FP is also called type I error. 

• False Negative -- FN: values incorrectly predicted as False. FN is also called type II error. 

 

Several metrics can then be calculated from this confusion matrix. Accuracy, for instance, is defined 

as: 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP + TN

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
    (1) 

 

To evaluate the model, just like the training step, special methods were used due to the data 

generators; the process is illustrated in Figure 4-5. The “evaluate_generator” method was used to 

evaluate the model and get its accuracy and afterwards the “predict_generator” method, close to 

the predict method but for data generators, was used in order to get a prediction from the model.  
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Figure 4-5. Illustration of how labels are predicted by the predict_generator. 

A prediction using this model outputs the probability for each of the output classes (True or False) to 

be present in the image. Using argmax in that prediction can then identify which of the outputs has 

a higher probability and as such determine if the atrophy stage represented by that model was, or 

not, present in the image depending on the higher probability output. This is done for each of the 

atrophy classes where for every atrophy class the image is predicted to be True (has that stage of 

atrophy) or False (doesn’t have that stage).  

In the end, to understand the model’s performance more clearly, a confusion matrix was constructed, 

for each of the models, to better understand the meaning of the predicted data. These confusion 

matrices compare the true labels and the predicted labels (Figure 4-6). In them, the number of 

correctly predicted labels can be identified. 

 

 

Figure 4-6. Normalized confusion matrix corresponding to class 0 model. 
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As can be analyzed in the figure, the results were partially good. As 98% of the Images classified as 

0 for the class 0 were correctly predicted. The True label and predicted label should coincide to 

obtain good results and if that was the case, the matrix would show a diagonal with the value 1. This 

would mean 100% of the samples were predicted correctly both the ones that have that atrophy 

stage as well as the ones that do not. 

The remaining classes had similar results were the class 2 had the most balanced results. 

 

 

4.4 RESULTS AND DISCUSSION 

Accuracy usually represents a good metric but as discussed before this is not always the case. Again, 

in the Brain Atrophy models the accuracy was not the best metrics as in, for example, the class 0 

model, an accuracy of 95.94% was achieved. This value is, however, meaningless when analyzing 

its confusion matrix (Figure 4-6). As the dataset was very unbalanced, only a few cases represented 

a true class 0, which were all badly classified by the model. However, as the model correctly predicted 

the studies which did not have the class 0, a high accuracy was achieved even though the model 

didn’t learn as it should. 

Although the results obtained by these models weren’t the expected, it got some interesting results 

nonetheless. 

The Figure 4-7 shows the percentages of True Positive, True negative, False Positive and False 

Negative obtained by the models and normalized to present a percentage. The TP and FN should 

sum up to 100% as well as the FP with the TN. As can be seen some of the models where more 

successful than others but all failed at some point. 

 

 

Figure 4-7. Percentage of TP, TN, FP and FN of the Brain Atrophy models. 

 

Even though they didn’t classify the images correctly in most cases, as seen in Figure 4-8 and  Figure 

4-9, GradCam was applied to the models to observe, in a way, what the model found interesting in 
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the images to classify them as it did. As seen on the referred images, the models couldn’t produce 

every type of classification, i.e. didn’t get all the TP, FP, etc. They did, however, show some type of 

consistency at where the model ‘looked’ for features. In several images the model looked at the 

outside of the brain area, an explanation for this can be, the model is trying to compare blank space 

in the brain tissue with the external space. Two sets of images where applied to observe if the model 

was consistent. As seen below, the results of the Brain Atrophy model were partially good, with more 

balanced data, better results could be achieved by the model in the future 

 

 

Figure 4-8. GradCam applied to the models of the Brain Atrophy - first set of images. 
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Figure 4-9. GradCam applied to the models of the Brain Atrophy - second set of images. 
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This final section of the dissertation concludes it by summarizing what was discussed throughout 

this work. It then continues by discussing the obtained results as well as possible ideas to improve 

this work if continued in the future.  

 

 

5.1 SUMMARY 

Summing up the topics depicted in this dissertation, it started with an Introduction to the main topics 

and described the problem with the brain spatial normalization as it is obtained nowadays and 

proposes a new way to perform the spatial normalization, a Deep Artificial Neural Network. A detailed 

description of the Technologies and Concepts involved in the creation of the network to attempt to 

outperform the existing normalization tools was then made. It starts by contextualizing the MRI, the 

main technology involved as it provides the brain studies data that need to undergo the normalization 

procedure. Next, the process of normalization itself was explained to better understand how beneficial 

a new approach would be to solve the problems of the existing one. The XNAT was then introduced 

to understand the benefits of having a secure archive to store the brain studies. It was also explained 

what Artificial Neural Networks are and the environment in which they were implemented to allow 

the replication of results in the future. 

As the main contributions of this work, the approaches made were then better described. Spatial 

Normalization of the Brain explained the process of creating the Deep Artificial Neural Network and 

the results achieved by each architecture experimented while trying to achieve a better normalization 

of the data. Brain Atrophy Classification then described the second objective of the dissertation, the 

creation of a Deep Artificial Neural Network to predict the stage of Brain Atrophy of the presented 

studies. It described the approach made and results obtained with the network used. Finally, 

conclusions are made as well as an identification of future work to achieve usable results. 
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5.2 CONCLUSION 

The main goal for this work was the development of Deep Learning tools to improve already existing 

solutions. One of these tools tried to solve the problem of spatial normalization whereas the second 

tool sought to assist clinical professionals when trying to evaluate their patients’ brain atrophy state. 

Although seemingly different areas they have much in common throughout this work. 

To conclude this work and develop the desired tools, knowledge of several technologies had to be 

acquired. Firstly, the MRI technology had to be understood in order to properly handle the MRI studies 

in both datasets. In the case of spatial normalization, the process itself and the tools involved in it 

had to be understood and in the case of the brain atrophy, the condition had to be understood too 

in order to correctly create DL models to perform the necessary tasks. After understanding the MRI, 

spatial normalization and brain atrophy, knowledge in Deep Artificial Neural Networks had to be 

acquired to create proper architectures which had to be tailored to solve the problems in hands. 

Several architectures were tried to approximate from the desired output. Throughout this work, 

access to a machine with a very powerful GPU was indispensable as common GPUs would not be 

capable of handling the quantity of information and processing involved. As such dealing with said 

machine and with the Deep Learning technologies was very enriching and interesting. 

Furthermore, XNAT was also a key module in this work as it allowed easy access to the MRI studies 

both in download as well as in upload. The container used as well as Jupyter Notebooks contained 

in it were also indispensable where the Python modules could be developed without interferences 

and with an user-friendly UI.  

Regarding the Spatial Normalization approach made, the results were very promising where, 

especially in the approach using a U-Net based architecture, the shape was accomplished correctly 

having a dice loss value of 0.00313 at the final stage of training, meaning 99.687% (0.99687) of the 

predicted output was overlapped with the expected image, i.e. an almost perfect shape was 

predicted. With some more modifications made to the model it could achieve even better results. For 

the time spent and data available to train the model the results were very good. The GAN network 

did not achieve results as good as the U-Net, but the shape was correctly approximated nonetheless.  

Concerning the brain atrophy model, the results were also partially good, where part of the classes 

where correctly predicted. The results obtained are not perfect as, for instance, the class 0 was hard 

to classify but, as there was not that much time to develop both the spatial normalization and the 

brain atrophy models the results are very good. In both cases, more time invested into the 
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development of the model and better data (less unbalanced in the brain atrophy and more data in 

both cases) the results achieved would outperform the current ones. 

In brief, the results generated by this work, in both approaches, shows great potential and shows 

that these problems can indeed be solved if some more effort is put into developing a solution.  

 

 

5.3 FUTURE WORK 

Looking at the results obtained, although very promising, there is still a lot to be improved and 

optimized. For the Brain Spatial Normalization section of this work, a bigger dataset for example, 

would probably help achieve better results, however, the amount of memory to process that higher 

amount of data could be considerable. As such, methods like the Image Data Generator used in the 

Brain Atrophy network would be beneficial. If an even better machine was available to compute the 

network, a different architecture could also be tried. Changing the architecture would probably have 

a great impact in the results if the architecture involved 3-dimensional convolutions instead of the 2-

dimensional ones used due to lack of resources. Even though the machine used was way above 

average, it had its limitations and couldn’t compute an architecture with that kind of complexity. The 

3-dimensional version of the convolutions would help evaluate the MRI studies used as a hole instead 

of looking at them slice by slice. This would probably be what would impact the results the most as 

this way the model process would be closer to the actual normalization process where the study is 

arranged until it matches the reference image.  

If a better machine could not be used, the model settings could also be changed again to reach 

better results. The pre-processing step could also be improved, where the step of normalizing the 

data to be between 0 and 1 could be done in a different way. The approach made in this work was 

to divide each study by its maximum value. Although this works, it doesn’t guarantee the data is 

normalized properly as the studies had very different maximum values and a wide range of intensities 

throughout the studies themselves. A possible better way to normalize the values would be to divide 

all the studies by the same value, higher than the maximum value of all the studies. This would 

probably make the max normalized values would not reach the value 1 but this way the data is all 

normalized equally. Other approach would be to also include an intensity normalization of the studies. 

As seen on the results of the U-Net based architecture, this architecture could be revisited in the 

future using the changes discussed before as it presented the best results of the architectures tried. 
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As seen on Figure 5-1, which is part of Figure 3-5, we can see the U-Net based architecture got the 

main shapes right as they can be recognized in the right most image. This shows that, with some of 

the modifications mentioned, the architecture could improve its results. 

 

 

Figure 5-1. Results obtained by the U-Net based architecture. 

 

One last possible approach to make would be to use the model not to predict the normalized image 

but to predict a warp matrix as used by the FSL. This way, the information to predict would be less 

complex and the warp matrix could then be used in FSL to perform the normalization still in a much 

faster way than the existing solution. 

Regarding the brain atrophy section, several improvements can also be made. Firstly, the dataset 

provided, although containing a high number of images, could not be used in its entireness. Several 

planes were provided for each patient in the dataset but only one type of plane could be used. The 

first thing to try in a future work would be to use a better dataset containing a higher number of 

samples and all in the same plane. This would insure a good percentage of the studies in the dataset 

was used and help improve results. The other disadvantage of the dataset used was the unbalance 

present. As the classes were fairly unbalanced a model was instead trained for each class. Doing 

this improved the results but was not enough to produce the desired outcome, as the classes were 

still very unbalanced, even when classifying the studies regarding the presence or not of that specific 

class. Therefore, a more balanced dataset could improve the results. Finally, in the topic of the 

dataset used, one more thing that had a great impact in the results was the labeling method. The 

dataset was labeled with two labels for each patient, corresponding to the presence of atrophy in 

each of the patients’ half of the brain. This becomes challenging as it would not be beneficial to 

divide the studies in half and label each half. On the other hand, by having two labels, only one can 

be used, and the label used can be wrongly chosen. To overcome this the data was duplicated in the 

cases where the two labels were different and one label was attributed to each of the copies, and the 
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cases where the labels where the same, it was simply attributed to the corresponding image. In a 

future work, if the same dataset had to be used, it could hopefully be labeled in a better way, using 

only one label per study and not per patient. By using one label per patient like the dataset used, 

doesn’t guarantee the atrophy is present in every slice of the patient’s brain. This means, a better 

evaluation of the dataset by a professional would help to maintain the integrity and validity of the 

information. 

After solving the dataset problems, several settings can be changed in the model to hopefully achieve 

a better result. One of the changes that could be mad would be to, like in the spatial normalization 

change the convolutions to 3-dimensional convolutions which would make sure the model considers 

the image in its entirety. 

In the end, when both the Spatial Normalization and the Brain atrophy models work as intended, a 

possible future work would be to implement an user-friendly UI (User Interface) to easily use them. 

This UI could, for instance, be integrated in the XNAT server or created in an independent way. 
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A – FULL LIST OF USED LIBRARIES 

To allow replication of the results obtained in this work, the full list of modules used, and respective 

versions are discriminated below in the Table A-1. The settings of the machine used are also 

described in sections 3.2 and 4.2 to fully replicate the results. 

 

Table A-1. Table of conda-list and pip list full information. 

Package name Package version  Package name Package version 

absl-py 0.7.1  nb_conda 2.2.1 

alabaster 0.7.12  nb_conda_kernels 2.2.0 

ann-visualizer 2.5  nbconvert 5.3.1 

asn1crypto 0.24.0  nbformat 4.4.0 

astor 0.7.1  ncurses 6.1 

attrs 18.2.0  networkx 2.3 

babel 2.6.0  nibabel 2.4.1 

backcall 0.1.0  ninja 1.8.2 

backports 1.0  notebook 5.7.4 

backports.os 0.1.1  numexpr 2.6.9 

bcolz 1.2.1  numpy 1.15.4 

beautifulsoup4 4.6.3  numpy-base 1.15.4 

blas 1.0  nvidia-ml-py3 7.352.0 

bleach 3.1.0  olefile 0.46 

blosc 1.15.0  opencv-python 4.0.0.21 

bokeh 1.0.4  openssl 1.1.1b 

bottleneck 1.2.1  packaging 18.0 

bzip2 1.0.6  pandas 0.24.0 

ca-certificates 2019.1.23  pandas-summary 0.0.5 

certifi 2019.3.9  pandoc 2.2.3.2 

cffi 1.11.5  pandocfilters 1.4.2 

chardet 3.0.4  parso 0.3.1 

click 7.0  partd 0.3.9 

cliff 2.8.2  path.py 11.5.0 

cloudpickle 0.6.1  patsy 0.5.1 

cmd2 0.9.7  pbr 5.1.1 

colorama 0.4.1  pcre 8.42 

configparser 3.7.1  pexpect 4.6.0 

cryptography 2.6.1  pickleshare 0.7.5 
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cssselect 1.0.3  pillow 5.4.1 

cuda90 1.0  pip 19.1 

cuda92 1.0  plac 0.9.6 

cudatoolkit 10.0.130  preshed 2.0.1 

cycler 0.10.0  prettytable 0.7.2 

cymem 2.0.2  progressbar2 3.34.3 

cython 0.29.2  prometheus_client 0.5.0 

cytoolz 0.9.0.1  prompt_toolkit 2.0.7 

dask 1.0.0  protobuf 3.7.1 

dask-core 1.0.0  psutil 5.4.8 

dbus 1.13.6  ptyprocess 0.6.0 

decorator 4.3.0  pyarrow 0.12.0 

dicom2nifti 2.1.5  pycparser 2.19 

dill 0.2.8.2  pydicom 1.2.2 

distributed 1.25.2  pydot 1.4.1 

docutils 0.14  pygments 2.3.1 

entrypoints 0.3  pyhamcrest 1.9.0 

expat 2.2.6  pyopenssl 18.0.0 

fastai 1.0.42  pyparsing 2.3.1 

fastprogress 0.1.18  pyperclip 1.7.0 

feather-format 0.4.0  pyqt 5.9.2 

fontconfig 2.13.0  pysocks 1.6.8 

freetype 2.9.1  pytables 3.4.4 

future 0.17.1  python 3.6.8 

gast 0.2.2  python-dateutil 2.7.5 

glib 2.56.2  python-graphviz 0.10.1 

glob2 0.7  python-utils 2.3.0 

gmp 6.1.2  pytorch 1.0.0 

grpcio 1.20.1  pytz 2018.9 

gst-plugins-base 1.14.0  pywavelets 1.0.3 

gstreamer 1.14.0  pyyaml 3.13 

h5py 2.9.0  pyzmq 17.1.2 

hdf5 1.10.4  qt 5.9.7 

heapdict 1.0.0  qtconsole 4.4.3 

html5lib 1.0.1  readline 7.0 

icu 58.2  regex 2018.01.10 

idna 2.8  requests 2.21.0 

imageio 2.5.0  scikit-image 0.15.0 
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imagesize 1.1.0  scikit-learn 0.20.2 

imgaug 0.2.9  scipy 1.2.0 

importlib_metadata 0.7  seaborn 0.9.0 

intel-openmp 2019.1  send2trash 1.5.0 

ipykernel 5.1.0  setuptools 39.1.0 

ipython 7.2.0  shapely 1.6.4.post2 

ipython_genutils 0.2.0  simplegeneric 0.8.1 

ipywidgets 7.4.2  sip 4.19.8 

isodate 0.6.0  six 1.12.0 

isoweek 1.3.3  sklearn-pandas 1.8.0 

jedi 0.13.2  snappy 1.1.7 

jinja2 2.10  snowballstemmer 1.2.1 

jpeg 9b  sortedcontainers 2.1.0 

jsonschema 2.6.0  soupsieve 1.7.1 

jupyter 1.0.0  spacy 2.0.18 

jupyter_client 5.2.4  sphinx 2.0.1 

jupyter_console 6.0.0  sphinx-rtd-theme 0.4.3 

jupyter_contrib_core 0.3.3  sphinxcontrib-
applehelp 

1.0.1 

jupyter_contrib_nbexte
nsions 

0.5.1  sphinxcontrib-devhelp 1.0.1 

jupyter_core 4.4.0  sphinxcontrib-htmlhelp 1.0.2 

jupyter_highlight_sele
cted_word 

0.2.0  sphinxcontrib-jsmath 1.0.1 

jupyter_latex_envs 1.4.4  sphinxcontrib-qthelp 1.0.2 

jupyter_nbextensions_
configurator 

0.4.1  sphinxcontrib-
serializinghtml 

1.1.3 

jupyterlab 0.35.4  sqlite 3.26.0 

jupyterlab_server 0.2.0  statsmodels 0.9.0 

kaggle-cli 0.12.13  stevedore 1.30.0 

keras 2.2.4  tblib 1.3.2 

keras-applications 1.0.7  tensorboard 1.11.0 

keras-preprocessing 1.0.9  tensorflow-estimator 1.13.0 

keras-tqdm 2.0.1  tensorflow-gpu 1.11.0 

kiwisolver 1.0.1  termcolor 1.1.0 

libedit 3.1.20181209  terminado 0.8.1 

libffi 3.2.1  testfixtures 6.3.0 

libgcc-ng 8.2.0  testpath 0.4.2 

libgfortran-ng 7.3.0  thinc 6.12.1 

libiconv 1.15  tk 8.6.8 
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libpng 1.6.36  toolz 0.9.0 

libsodium 1.0.16  torch 1.0.0 

libstdcxx-ng 8.2.0  torchsummary 1.5.1 

libtiff 4.0.10  torchtext 0.2.3 

libuuid 1.0.3  torchvision 0.1.9 

libxcb 1.13  tornado 4.5.3 

libxml2 2.9.9  tqdm 4.29.1 

libxslt 1.1.32  traitlets 4.3.2 

livelossplot 0.4.1  typing 3.6.4 

locket 0.2.0  ujson 1.35 

lxml 4.0.0  urllib3 1.24.1 
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B – U-NET BASED ARCHITECTURE USED 

To better understand the Artificial Neural Network architecture used in this work, the Figure A-1, 

describes in more detail the specific U-Net based architecture used. 

 

 

Figure A-1. U-Net based architecture used. 
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C – GAN ARCHITECTURE USED 

To allow replication of the results obtained with the GAN network, the specific architecture used is 

shown below in Figure A-2. 

 

 

Figure A-2. General structure of the GAN used. 
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D – SPECIFIC CLASS BLOCKS USED IN THE BRAIN ATROPHY MODEL  

The figures below, Figure A-3 - Figure A-7, represent the block used specifically for each class in the 

architecture described in section 4.3.2. Each figure represents the block used in the corresponding 

class. 

 

 

Figure A-3. Block for class 0. 

 

 

Figure A-4. Block for class 1. 
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Figure A-5. Block for class 2. 

 

 

Figure A-6. Block for class 3. 
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Figure A-7. Block for class 4. 

 

 

 

 


