
Universidade do Minho
Escola de Engenharia
Departamento de Informática

Sérgio Manuel Rodrigues Caldas

Performance Tuning to Determine
Electronic Properties of Materials
with Quantum Espresso

November 2019

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Sérgio Manuel Rodrigues Caldas

Performance Tuning to Determine
Electronic Properties of Materials
with Quantum Espresso

Master Dissertation
Master Degree in Computer Science

Dissertation supervised by:
Alberto José Proença
Ricardo Mendes Ribeiro

November 2019

D I R E I T O S D E A U T O R E C O N D I Ç Õ E S D E U T I L I Z A Ç Ã O D O
T R A B A L H O P O R T E R C E I R O S

Este é um trabalho académico que pode ser utilizado por terceiros desde que respeitadas
as regras e boas práticas internacionalmente aceites, no que concerne aos direitos de autor
e direitos conexos.

Assim, o presente trabalho pode ser utilizado nos termos previstos na licença abaixo
indicada.

Caso o utilizador necessite de permissão para poder fazer um uso do trabalho em condições
não previstas no licenciamento indicado, deverá contactar o autor, através do RepositóriUM
da Universidade do Minho.

Licença concedida aos utilizadores deste trabalho

https://creativecommons.org/licenses/by/4.0/

ii

https://creativecommons.org/licenses/by/4.0/

A G R A D E C I M E N T O S

A presente dissertação contou com o apoio, incentivo e motivação de algumas pessoas,
sem as quais este trabalho não teria sido possível e às quais estarei eternamente grato.

Ao meu orientador, Prof. Alberto Proença, por toda a motivação, disponibilidade e ded-
icação demonstrado ao longo da orientação deste trabalho. As reuniões semanais sob a
sua orientação tiveram um papel preponderante ao longo deste trabalho, quer pelas críticas
construtivas, quer pelo seu acompanhamento regular. Ao meu co-orientador, Prof. Ricardo
Ribeiro, pelo papel activo que teve, sobretudo na componente de Física deste trabalho, pela
motivação, dedicação e interesse demonstrado. Ao Ícaro Jael, pela disponibilidade, ajuda e
prontidão revelado na realização de testes que serviram de base de estudo desta dissertação.

À minha família, pela confiança e apoio incondicional. Um agradecimento muito especial
à minha mãe, Rita Rodrigues, por ser aquela pessoa que nunca me desamparou e me
apoiou em toda a minha vida e em todas as minhas decisões. Sem ela este trabalho nunca
teria sido possível e nunca me teria tornado a pessoa que sou hoje. À minha namorada
Angelina Vieira por toda a compreensão que teve, pelas noites sem descanso e por todo o
apoio e incentivo que me deu, sem dúvida que teve um papel muito importante neste meu
percurso.

A todos os meus amigos, por todas as horas de descontração que me proporcionaram
nos momentos mais difíceis durante o meu precurso académico e sobretudo pelo apoio
incondicional. Um agradecimento muito especial ao Filipe Oliveira, Márcia Lomba, Carlos
Sá, Carla Couto, Catarina Barbosa e Mafalda Varanda por serem as pessoas que me acom-
panharam em todo o meu percurso académico, pelos "puxões de orelha", pela paciência e
por o todo apoio na dissertação e na licenciatura.

Por fim, e não menos importante, um agradecimento muito especial à Dra. Elsa Dourado,
por todo o suporte que me proporcionou, pelas técnicas e ajuda que me fizeram ultrapassar
uma mão cheia de desafios, e por toda a paciência demonstrada. Sem ela este percurso
teria sido muito díficil.

Esta dissertação foi realizada no âmbito do Projeto "UTAustin | Portugal - UTA-P Gestão
2013 (Protocolo entre FCR-UNL e UMinho)", financiado pela Fundação para a Ciência e a
Tecnologia, através do Programa de Cooperação Internacional UT Austin Portugal para as
Tecnologias Emergentes, CoLab.

iii

S TAT E M E N T O F I N T E G R I T Y

I hereby declare having conducted this academic work with integrity. I confirm that I
have not used plagiarism or any form of undue use of information or falsification of results
along the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the
University of Minho.

iv

R E S U M O

Ajuste de Desempenho para Determinar Propriedades Eletrónicas de Materiais com Quan-
tum Espresso

Desde os anos 70, a teoria do funcional da densidade tem sido uma das técnicas mais
utilizadas em física quântica para resolver a equação de Schrödinger, para determinar as
propriedades eletrónicas dos materiais, usando funções de onda eletrónica e a energia de
cada eletrão. O método de resolução do campo autoconsistente (sigla em inglês SCF) é um
processo iterativo que calcula a densidade dos eletrões a partir de funções de onda. Estes
cálculos com a equação de Schrödinger são realizados múltiplas vezes de forma sucessiva
até se atingir a convergência autoconsistente.

O SCF neste processo iterativo é atualmente calculado em pacotes de software dedicado,
como o Quantum ESPRESSO (QE), um produto open-source em Fortran 90, para cálculo da
estrutura eletrónica dos materiais. Sendo estes cálculos computacionalmente intensivos, a
sua execução paralela permite melhorar o desempenho do processo de cálculo. O Quantum

ESPRESSO (QE) suporta paralelismo em ambiente de memória distribuída, com message
passing interface (MPI) e, mais recentemente, em memória partilhada, com OpenMP.

A presente dissertação apresenta várias propostas de instalação e configuração desta fer-
ramenta. Estas propostas sugerem diferentes estratégias de paralelismo tendo em vista
obter melhorias de desempenho deste tipo de simulações, comparativamente a um estudo
anterior realizado nas mesmas condições de experimentação. Para o presente estudo foram
utilizados processadores multicore e many-core do cluster SeARCH. Estes testes exploraram
o impacto de versões multiprocesso com múltiplos fios de execução por processo, introduzi-
das em versões mais recentes do QE com desenvolvimento de paralelizações híbridas.

Através de diferentes casos de teste, diferentes instalações e parâmetros configuráveis
(número de pools) este trabalho explorou e procurou obter um ambiente de execução que
melhor favorecia o desempenho de simulações do tungsten diselenide (WSe2) no cluster
SeARCH. Os resultados obtidos nestes testes, onde se aconselham certas configurações e
se desaconselham outras, destinam-se a ajudar as comunidades de Física a encontrar um
ambiente de execução afinado em termos de desempenho, para o caso concreto deste tipo
de simulações.

Palavras-Chave: Biblioteca ELPA, Computação Paralela, Disselénio de Tungsténio, Efi-
ciência Computacional, Intel KNL, Quantum Espresso

v

A B S T R A C T

Performance Tuning to Determine Electronic Properties of Materials with Quantum Espresso

Since the 70’s, density functional theory (DFT) has been one of the most used techniques
in quantum physics to solve the Schrödinger equation. The resolution of this equation
assumes a prominent role in the characterization of the electronic properties of the materials,
with the use of wave functions and the energy of each electron. The computation method
follows an iterative process, known as self consistent field (SCF), to compute the electrons
density from an initial set of wave functions. This iterative process successively recurs to
the Schrödinger equation until it reaches a self-consistence convergence.

The SCF computation uses QE, an open-source software package written in Fortran 90,
to determine the electronic structure of materials. This calculation is computationally very
intensive, requiring an adequate support for parallelism to improve the computation per-
formance to reach the convergence point. The QE already has message passing interface
(MPI) support for distributed memory systems and recently introduced support for shared
memory parallelization with OpenMP.

This dissertation presents alternative approaches to adequately install and configure QE
in a compute cluster with distributed memory nodes, where each node contains one or
more multicore devices sharing the same memory address space. These approaches suggest
different parallelism strategies that will reflect performance improvements on simulations,
when compared to an earlier study, conducted under the same experimental conditions.
The testbed uses multicore and many-core processors from the SeARCH cluster to mea-
sure the impact of multi-process simulations with multiple threads per process, recently
introduced in QE with hybrid parallelizations.

Using different case studies and through different installations and parameters config-
urations (number of pools), this work explored and aimed to reach an efficient execution
environment for the simulations of tungsten diselenide (WSe2) in the SeARCH cluster. The
obtained results in the experimental tests aim to help Physics communities to find the best
performance environment for this type of simulations.

Keywords: Computational Efficiency, ELPA-library, Intel KNL, Parallel Computing, Quan-
tum Espresso, Tungsten Diselenide

vii

C O N T E N T S

1 introduction 1

1.1 Motivation and goals 2

1.2 Contribution 3

1.3 Dissertation structure 4

2 the electronic structure of materials 5

2.1 Case study: WSe2 multilayers 6

2.2 The computational point of view 8

3 efficiency in quantum espresso installation 11

3.1 Target computing platforms 11

3.1.1 Cluster modes in KNL 14

3.1.2 High-Bandwidth memory modes in KNL 17

3.2 Quantum ESPRESSO as a key tool 19

3.2.1 Quantum ESPRESSO parallelism 20

3.3 Installation and tuning of Quantum ESPRESSO 22

3.3.1 Requirements 22

3.3.2 Configuration 22

3.3.3 Optimized libraries 24

3.3.4 FFTW vs. FFTW3 25

3.3.5 Quantum ESPRESSO compilation on a co-processor Intel Xeon Phi 26

3.3.6 A multi-node installation with MPI 27

3.4 Challenges to improve the computational efficiency 27

4 experimental evaluation 31

4.1 Experimental setup 32

4.1.1 Characterization of the multicore environment 32

4.1.2 Characterization of the many-core environment 34

4.1.3 Software and libraries versions 35

4.1.4 Input characterization 36

4.2 Selecting adequate installations 38

4.2.1 Hybrid installation 38

4.2.2 Using ELPA solver for performance tuning 41

4.2.3 Quantum ESPRESSO installation with ELPA 42

4.3 Performance evaluation on multicore devices 43

4.4 Performance evaluation on many-core devices 54

ix

x Contents

5 conclusions 59

5.1 Summary 59

5.2 Future work 61

a tutorial for quantum espresso installations with elpa 65

a.1 Quantum Espresso installation with ELPA on multicore and many-core 65

a.1.1 Sequential installation 65

a.1.2 Shared Memory Installation 68

a.1.3 Distributed Memory Installation 71

a.1.4 Hybrid Installation 74

b the wse2 input definition file 79

c callgraph (all routines) 81

L I S T O F F I G U R E S

Figure 1 Density functional theory (DFT) calculation diagram 6

Figure 2 WSe2 single layer. 7

Figure 3 WSe2 single layer unitcell (left: top view; right: side view). 7

Figure 4 WSe2 multilayer (8 layers). 8

Figure 5 Overview of a NUMA dual-multicore device 12

Figure 6 Left: Intel Xeon KNL. Right: A Tile of Intel Xeon KNL [10] 13

Figure 7 All to all 15

Figure 8 Quadrant mode 15

Figure 9 Sub-NUMA Clustering mode 16

Figure 10 Cache mode 18

Figure 11 Flat mode 18

Figure 12 Hybrid mode 18

Figure 13 Theoretical Peak Floating Point Operations per Watt: Double Preci-
sion 19

Figure 14 Quantum ESPRESSO directory and generated files 23

Figure 15 "PWscf module execution using QE FFTW3 multithreaded version
compared with FFTW hybrid implementation and pure message pass-
ing interface (MPI) FFTW3 implementation. Performance evaluation
based on execution times of QE FFTW3 pure MPI, and FFTW3 im-
plicit and explicit version" [12] 26

Figure 16 SeARCH dual 8-core server overview 33

Figure 17 SeARCH dual 10-core server overview 33

Figure 18 Heaviest routines of the PWscf 44

Figure 19 Execution times to measure the impact of multithreading on multi-
core devices (dual 10-core server). Reference time: 2.60 minutes 45

Figure 20 VTune profiling diagrams for PWscf execution with 1 process 46

Figure 21 VTune profiling diagrams for PWscf execution with 5 processes 47

Figure 22 Diagram of the processes mapped by socket 48

Figure 23 Diagram of the processes mapped by core 48

Figure 24 Impact of explicit linkage libraries and process mapping on a multi-
core device (10-core server) with only 1 thread per process. Reference
time: 2.60 minutes 49

xi

xii List of Figures

Figure 25 Execution times to measure the node scalability for QE on multicore
devices (dual 8-core server). Reference time: 2.60 minutes 50

Figure 26 Execution times for shared, distributed and hybrid memory instal-
lations of QE using ELPA on a dual 10-core server. Reference time:
2.60 minutes 52

Figure 27 Impact of using ELPA solver with QE on multicore devices (dual
10-core server) 54

Figure 28 Execution times for different node configurations for 64 processes.
Reference time: 2.60 minutes 55

Figure 29 Execution times for distributed memory and hybrid installation with
-numactl switch. Reference time: 2.60 minutes 56

Figure 30 Impact of Eigenvalue soLvers for Petaflop Applications (ELPA) in QE us-
ing proc-pools parameter with variable no of processes and 1 thread
per each process. Reference time: 2.60 minutes 57

L I S T O F TA B L E S

Table 1 Available architectures in Quantum ESPRESSO 24

Table 2 Specifications for the dual 8-core and dual 10-core servers on SeARCH
33

Table 3 Intel KNL node specifications 35

Table 4 Software packages versions 36

Table 5 Most relevant properties of the case study (WSe2) 37

xiii

L I S T O F L I S T I N G S

4.1 Default installation on a multicore node . 39

4.2 Second installation on the SeARCH cluster . 39

4.3 First Installation on KNL . 40

4.4 Example of the hostfile . 50

4.5 Example of the mpirun command line used 51

4.6 Example of nodes request line on PBS job . 51

xv

A C R O N Y M S

API application programming interface. 20

BZ Brillouin zone. 7, 9, 20

CP Car-Parrinello. 20

DFT density functional theory. vii, xi, 1–6, 9, 19, 20, 24, 59

DTD distributed tag directory. 15

ELPA Eigenvalue soLvers for Petaflop Applications. xii, 35, 38, 41–45, 51, 53–57, 60, 61, 65,
66, 68, 69, 71–77

GPU graphic processing unit. 22

HBM High-Bandwidth memory. 13, 14, 17, 18, 35, 61

HLL High-level language. 35

HPC high performance computer. 9, 47

KNL Knights Landing. 3, 13–15, 17, 18, 34, 35, 38–42, 59–62

MCDRAM multi-channel dynamic random access memory. 13–18, 34, 40, 56–58

MKL Math Kernel Library. 24, 25, 27, 41, 43, 59

MPI message passing interface. v, vii, xi, 2, 11, 20–22, 24–29, 38–41, 49, 53, 66, 68, 69, 71

NCPP norm-conserving pseudopotentials. 20

NEB nudged elastic band. 20, 28

NSCF non-self consistent field. 1

NUMA non-uniform memory access. 12–14, 16, 18, 38, 47

PP pseudopotentials. 2, 9, 20

PW plane waves. 1, 2, 8, 9, 20, 21

QE Quantum ESPRESSO. v, vii, ix, xi–xiii, 1–4, 9, 11–13, 19–29, 31, 34–42, 46, 49–51, 53, 54,
57, 59–63, 66–68, 70, 71, 73, 74, 76, 77

RT reference time. xi, xii, 31, 45, 49, 50, 52, 53, 55–57

SCF self consistent field. v, vii, 1, 5, 8, 9, 19, 20, 36, 37

xvii

xviii Acronyms

SeARCH Services and Advanced Research Computing with HTC/HPC. v, vii, xi, xiii,
32–35, 39, 40, 42, 45, 49, 59, 62

SMT simultaneous multithreading. 46

SNC Sub-NUMA Clustering. 14, 16

TD tag directory. 15, 16

USPP ultrasoft pseudopotentials. 20

WSe2 tungsten diselenide. v, vii, xi, xiii, 2–4, 6–8, 20, 31, 32, 34–37, 43, 44, 51, 54, 59–61

1

I N T R O D U C T I O N

The density functional theory (DFT) is the most used method in computational quantum
mechanical modeling. This theory is used in physics, chemistry and material sciences to
calculate the electronic structure of many-body systems, typically solids and molecules. It
departs from the notion that it is not necessary the full knowledge of the wave function of
the electrons to determine the electronic properties of the system: the electron density is
sufficient. To build the electron density, the Kohn-Sham scheme uses single electron wave
functions to match the real density. These single particle wave functions can be very close
to the real ones, if the electron-electron interaction is not very strong.

To build the single particle wave functions, a basis of functions is needed. The most
common ones are: (i) a set of Gaussian functions, which are more widely used by chemists
to study molecules, and (ii) plane waves (PW) basis, which are more used by physicists
to study the solid state. For small systems, the calculations of the electronic structure of
materials are readily done and with fast calculation times. The size of the calculations
is given by the number of included electrons and the numerical precision of the calculus.
The numerical precision is defined by the size of the PW basis used to describe the single
electron wave functions. In general, for each electron and electron state, one full PW basis
is needed. Once computed, these wave functions are usually stored in disk for later use.

These calculations are an iterative process, known as SCF, in which we first use a set
of trial wave functions to build an initial density and then, using the potential that this
electron density generates, a new set of wave functions is calculated that will be used to
build another electronic density. This process is repeated until it converges. Once the
electronic density has converged, it is saved and used latter to calculate as many electronic
states (wave functions and their energies) as needed for the desired properties. These
calculations are called non-self consistent field (NSCF). Some properties like the dielectric
function (which defines the optical properties of the material) are then calculated using
these electronic states.

There are several software packages available to perform the described calculations, for
instance, the QE package. The QE is a very complete open-source software package for
the calculation of the electronic structure of materials. Furthermore, this software already

1

2 Chapter 1. introduction

supports parallelism in distributed systems (with MPI) and in shared memory systems
(with OpenMP), which is an added value since these calculations can take several hours or
even days.

The Quantum ESPRESSO is composed by multiple computation modules, among which,
PWscf. This is the core module of Quantum ESPRESSO using pseudopotentials and plane
wave basis. The module contains the DFT functions for electronic structure, density func-
tional perturbation, and density functional theory computations. Before being integrated in
Quantum ESPRESSO, the PWscf module already existed as an independent project. PWscf
is the main software package used to solve Kohn-Sham equations in the simulation of the
inorganic compound tungsten diselenide (WSe2) presented in chapter 2. The module can be
used for atomic forces, structural optimizations, molecular dynamics on the ground-state
Born-Oppenheimer surface simulations, macroscopic polarization, electric fields through
modern polarization theory (associated with Berry Phases), and many others.

Throughout this dissertation a performance study is introduced using several variations
of the use of the PWscf module. A set of different PWscf installations were made using mul-
tiple configurations in different computational platforms. The main goal to achieve is to de-
termine the best performance execution environment to simulate in Quantum ESPRESSO
the case study: the tungsten diselenide coumpound.

1.1 motivation and goals

The PWscf is the core component of the QE package that performs the electronic prop-
erties calculations of materials in any crystalline structure, both insulating and metals. The
process of calculation uses density functional theory, plane waves (PW) and pseudopotentials
(PP). Since this calculation requires the solution of an equation system with a high number
of PW, the computational performance plays a relevant role.

Over the past decades, DFT simulations were being seen as physics problems that require
high performance tools, for applications in areas like industrial research in order to develop
novel materials. QE, and namely his module PWscf, stands out as being one of the key
performance bottlenecks to reach efficient executions of these simulations. This software
is currently considered the state-of-the-art application to explore DFT related simulations
in multiple areas, such as research of nanomaterials or catalysis. During the past decade,
several scientific papers used DFT to explore new materials for future technologies, such as
WSe2, which is the case study of this work [5].

The QE tool already supports parallelism in shared and distributed memory computing
environments. However, the increase in the simulations performance is related not only
with parallelism strategies, but also with the software installation and configuration on the

1.2. Contribution 3

computer systems where the simulations are performed. Different strategies of parallelism,
together with an adequate installation and configuration of the QE tool, present different
performance levels and challenges. This dissertation aims to study and analyze the perfor-
mance levels on computer systems based on multicore and many-core devices, such as the
Intel Xeon Phi with the Knights Landing (KNL) architecture.

The many-core approach offers the possibility of improving the performance and go
further in the solution accuracy by taking advantage of the parallel features available in QE,
whether using shared memory or distributed memory paradigms. There is an opportunity
to explore performance improvements by tuning the installation and configuration process
for these architectures. The performance of these simulations are a trade-off between the
performance achieved by solving the Schrödinger equation, to obtain energies and forces,
and the accuracy of the final solution.

1.2 contribution

The work developed for this dissertation aimed to be a direct contribution to the scientific
community of Quantum Physics. The main contribution of this work is to offer an execution
environment with better performance than the default Quantum ESPRESSO installations
used to run WSe2 simulations on a massively parallel supercomputer. The present work
proposes an overall approach with better performance, running these simulations on clus-
ters, with more efficient solver libraries, and tuning the parameters of the software package
that affects performance. The simulations of WSe2 case study, run in the core package of
QE - the PWScf - used for self-consistent computations of electronic structure properties in
density functional theory (DFT). This package uses Plan-Waves basis and a set of pseudopo-
tentials of the case study as input. To achieve a better performance environment, multiple
PWscf installations are used, with a comparative analysis of their performance based on the
simulation execution time.

The performance results achieved with these installations takes previous study results
as a comparison basis, using the same case study, similar test conditions, and same hard-
ware. The tests include simulations using multithread and multiprocess implementations
of PWscf. The evaluation of the results was made based on the solution’s convergence
criteria, on the total energy variation of the system, and estimated Harris-Foulkes energy
value. These values were obtained with the tool, according to the case study at each process
iteration.

After reading this study, Quantum Physics community will be able to pack and make
custom installations of PWscf with better performance for WSe2 simulations in a cluster
environment.

4 Chapter 1. introduction

1.3 dissertation structure

Following this introduction, this document is split in 4 more chapters. The chapter 2

corresponds to the state of the art which approaches the electronic structure of materials
used as a case study to validate the performance improvements, tungsten diselenide (WSe2)
and the computation side of DFT calculations. Chapter 3 presents the computational effi-
ciency in QE, starting with the description of the target computing platforms, the QE as
the key software package, the installations and tuning of the QE package followed by the
challenges to improve the computational efficiency of the QE. Chapter 4 explores the whole
experimental work, the results validation with different configuration strategies and instal-
lations of QE. The work is done in two computational nodes, the first equipped with a
multicore and the other with a many-core device. This chapter also explores the execution
in a distributed and shared memory environments using one or more nodes.

As a closing of the developed work, chapter 5 summarizes the achieved experimental
results, drawing the main conclusions with a critical review and suggestions of new chal-
lenges for future work.

2

T H E E L E C T R O N I C S T R U C T U R E O F M AT E R I A L S

To characterize the electronic properties of materials, the wave function is needed for all
electrons in the system. This wave function is a function of 3N variables, where N is the
number of electrons, and it is a solution of the N-electron Schrödinger equation, which is
prohibitively difficult to solve, even for a very small number of electrons.

Density functional theory (DFT) solves this problem by noticing that, to obtain the prop-
erties of a system, one does not need to have all the information that an all-electron wave
function has, but just the electron density n(~r) is enough. The electron density is a function
of just the three spatial variables which is a much easier solution. The biggest problem to
overcome was how to obtain an accurate density value without having to use the actual
all-electron wave functions.

The solution came with the Kohn-Sham scheme [7] which uses single electron wave
functions to build the density. These wave functions are a solution of a single electron
Schrödinger equation, constructed using a potential that is obtained by an iterative method.
This iterative process, named self consistent field (SCF), is the starting point of the proce-
dure used in DFT and is used to determine the potential that will be used as the input to the
single electron Schrödinger equation. As a result of this equation, a set of single electron
wave functions is obtained and used to build the electron density. This process is repeated
until the electron density converges, as stated in Figure 1.

Once the electronic density has converged, it is saved and used latter to calculate as many
electronic states (wave functions and their energies) as needed for the properties wanted.

The properties of the system (including the total energy) can be obtained by an appro-
priate function of the electron density. In many cases, the exact function is unknown, and
approximations have to be made.

One approximation often used is to consider the single electron wave functions and their
energies as the real ones, and make calculations using this single electron approximation.
An example is the dielectric function that defines the optical properties of the material.

For more information on DFT see references [6] and [7].

5

6 Chapter 2. the electronic structure of materials

Figure 1.: Density functional theory (DFT) calculation diagram

2.1 case study : WSe2 multilayers

The systems used as a case study are the tungsten diselenide (WSe2) multilayers [1] that
may be built by stacking WSe2 single layers, like the one shown in Figure 2.

These materials are two dimensional crystals, which means they have translation symme-
try in the plane but not in the perpendicular direction to the plane. To have translational
symmetry means that there is a unit that is repeated indefinitely in the plane, and that unit
is called unitcell, as shown in Figure 3.

We can use this repetition to simplify the calculations by using the reciprocal space (mean-
ing the Fourier transform of the crystal). With this, the problem is then reduced to a single

2.1. Case study: WSe2 multilayers 7

Figure 2.: WSe2 single layer.

Figure 3.: WSe2 single layer unitcell (left: top view; right: side view).

cell in reciprocal space, which is called the Brillouin zone (BZ). The coordinates in the recip-
rocal space are wave vectors ~k and not space coordinates, since the reciprocal space is the
Fourier transform of the real space.

In our calculations we will frequently need to integrate in the reciprocal space, which
means that we will have to choose a sample of wave vectors ~k (usually called k points) in
the Brillouin zone (BZ). The more points chosen, the better the accuracy of the calculated
integral.

Besides that, for each k point we will have a set of wavefunctions ψm,k and energies Em,k.
Each set of wavefunctions with the same m is called a band. Each band can have a maximum
of one or two electrons, depending if the spin is included or not in the calculation.

8 Chapter 2. the electronic structure of materials

For this material, we use full relativistic calculations; then, for each electron there will be
a spinor with four components i.e. there will be four functions to describe the state ψm,k.
Each band will have at most one electron [6].

To make the SCF calculations, one needs one band for each electron in the unit cell. A
tungsten atom has 6 valence electrons and a sulfur atom has another six. Then each unit
cell of a single layer will have 18 electrons. For multilayers, we will have 18 electrons per
layer. Figure 4 shows eight single layers stacked to form a multilayer.

Figure 4.: WSe2 multilayer (8 layers).

2.2 the computational point of view

To describe the wave functions, a set of well known functions is needed in order to form
a basis. The Gaussian and plane waves (PW) are the most used functions to form a basis
set, in which by applying a linear combination, the wave functions are obtained.

In this work, only PW are used. For a PW basis, the more basis functions that are used,
the better and more accurate the description of the wave function will be, but the more
processing time is required. This leads to a trade off between accuracy and resources: a
higher number of basis functions leads to a better accuracy, but a larger number of compu-
tational time and resources is needed. In practice, there is a cutoff in the series expansion
that is determined by an energy (the energy that an electron with that wave vector would
have), which is called Ecut. The larger the Ecut, the better the accuracy, but also the larger

2.2. The computational point of view 9

the computational resources that are needed [6]. The Ecut value determines the accuracy of
the calculations necessary to predict forces, pressures or other properties of the material.

As shown in Figure 1, the Kohn-Sham equations are central in the iteration process. These
equations are a set of coupled partial differential equations. They are translated to a set of
matrix operations, which are then computed. The size of these matrix depends on the
number of plane waves in the basis set, which depends on the variable Ecut.

Each wave function describes one electron state. In a SCF calculation for a crystal (which
is the case in this work), one state is used for each electron and for each point considered in
the reciprocal space of the crystal. These points in the reciprocal space are a set of so called
k points that cover uniformly the Brillouin zone of the crystal, and are used for sampling
when integration in the reciprocal space is needed. The larger the number of k points, the
better the quality of the integration, and so the better the numerical precision of the full
calculation.

There are three aspects that define the weight of the computation: the size of the basis
set (Ecut), the number of k points and the number of electrons. The first two parameters
affect the quality of the numerical precision and they can be modified in order to obtain a
preferred balance between accuracy and resources. The number of electrons depends on
the system under study but, usually, only the valence electrons are used since they are the
most relevant for these calculations. Most of the electrons of the atoms are then hidden
in pseudopotentials, and are not explicitly taken into account leading to an increase of the
computational efficiency involved in the simulation [9] [11]. The quality associated with
pseudopotentials is defined by the accuracy they provide in electron computations.

The scientific community has multiple DFT software codes available to explore different
kinds of materials. These codes are mainly distinguished from each other by the basis set
they use and the algorithm to solve the linear system in the Kohn-Sham equations. Most of
them allow the use of several different types of pseudopotentials and exchange correlation
functionals. Quantum ESPRESSO or VASP are examples of codes that use pseudopotentials
and plane waves, and enable high performance calculations of electronic structures. This
study uses the QE package.

DFT material simulations usually do not require a high performance computer (HPC). A
simulation can be made using a farm of multiple computer nodes forming a cluster with
multiple multicore devices, with an high amount of memory and fast inter-communication
buses.

3

E F F I C I E N C Y I N Q U A N T U M E S P R E S S O I N S TA L L AT I O N

There are multiple platforms supported by Quantum ESPRESSO (QE). The support level
of this tool guarantees their compatibility with homogeneous platforms.

QE offers installation support and configuration for multiple computing platforms. Ho-
mogeneous architectures have one or more multicore/many-core devices with the same
architecture on the motherboard with parallelism capabilities on which QE can be used.
However, there are some concerns regarding the efficient use and exploitation of these de-
vices to determine the electronic properties in QE: the efficient map of pools, plane waves
and task group parallelization among available processing units are some of the challenges
that are needed to be addressed.

3.1 target computing platforms

When using single-thread applications, multicore devices should reach a higher level of
performance, as vector single-threaded applications. The QE implementation used in this
dissertation is based on a multi-thread and multi-process (MPI) paradigm, which offers
parallelism at both thread and process levels.

The main focus for this dissertation is to measure the impact of these implementations,
running the electronic simulations on these computing platforms. As stated in Figure 5,
multicore based platforms, usually adopt multiple processing units (known as "cores") in a
single device (chip). The CPU instructions are addressed to different cores and processed
at the same time (in parallel). Each multicore device usually has its own L3 and Random
Access Memory address space, shared by all cores in the chip. To scale the parallel capabil-
ities, multiple multicore devices can be attached together using interconnected based buses
for communication purposes.

11

12 Chapter 3. efficiency in quantum espresso installation

Figure 5.: Overview of a NUMA dual-multicore device

Due to the Amdahl’s law, computing platforms evolved in a sense of increasing the
number of cores with lower clock frequencies instead of increasing the clock frequency.
This approach quickly gave rise to many-core devices, with a significant higher number of
cores compared to multicore devices, surpassing 40 cores on a single chip.

The parallel work in PWscf (and in QE in general) is made by splitting the calculations
and by the division of data structures (pools, bands or images) between the cores to be pro-
cessed in parallel. These images and pools are loosely coupled so they usually imply a low
inter-processor communication. The same does not apply for processors within each pool
which are tightly coupled so the communication costs can be higher. These characteristics
mean that the interconnect technology is important if the number of pools extends over
more than a few processors on different non-uniform memory access (NUMA) nodes.

Alongside with multicore processors, many-core devices have emerged with tens and
hundreds of processing units. These devices offer the capacity for a high level of explicit
parallel processing and higher throughput than multicore devices. In multicore devices, the
number of processing units are significantly lower compared with many-core devices. They
are usually designed to run both serial and parallel applications, with higher number of

3.1. Target computing platforms 13

superscalar units and larger caches compared to many-core devices. Multicore and many-
core devices have been studied over the last few years since they were commonly adopted
as the main computing platforms to run the eletronic-structure calculations and materials
modeling in PWscf. However, performance concerns arised in the simulation process on
these computing platforms which lead the performance tuning to be the frontside challenge
in the scientific community and QE developers. Some of this challenges related to the
installation process and case study parameters configuration will be explored using both
multicore and many-core devices. An example of a many-core device commonly adopted
to run PWscf (and also used in this study) is represented in Figure 6.

Regarding this many-core device, the cores are organized in a mesh fashion within the
chip, with private L1 and L2 cache shared only between cores of a single tile. The mem-
ory accesses are performed by the cores using an XY routing rule. Following this strategy,
memory accesses and message communications are first performed in a vertical propaga-
tion until the target row is reached and then, in a horizontal propagation through the inter-
connected buses until the destination is reached [10]. Data propagation between cores and
multi-channel dynamic random access memory (MCDRAM) is controlled by heuristics respon-
sible for the minimization of the access distance of the propagation. The number of hops is
a metric that classifies the distance implied in a memory access between the cores and the
main memory which corresponds to the number of bus interconnect crossings implied in a
memory access.

Figure 6.: Left: Intel Xeon KNL. Right: A Tile of Intel Xeon KNL [10]

The Knights Landing offers the possibility of reconfigure the cluster mode and High-
Bandwidth memory (HBM) modes. The cluster mode re-configurations affects the organiza-
tion of the NUMA nodes leading to a direct impact in the way memory accesses are made,
which affects performance. The HBM modes offer the possibility to reconfigure the MC-

14 Chapter 3. efficiency in quantum espresso installation

DRAM to be used as cache, main memory or a mix of both. In the following sections the
KNL cluster and HBM modes are explored in detail.

3.1.1 Cluster modes in KNL

The affinity control between software threads and the hardware is a typical challenge
when parallelism and performance are the main goal. The way software threads are as-
signed to specific processing units and the physical distance between them and the main
memory has a direct impact in the latency of memory accesses.

The multicore and many-core devices faced these concerns over the years since computer
architectures have provided a design solution where every processing unit is located at the
same distance to the main memory and with the same memory access latency. This is also
a problem faced in the KNL architecture - depending on the relative position of a tile in
a processor grid and the MCDRAM he needs to access, the memory access is made in a
non-uniform way similar to NUMA in multicore devices. This is specially problematic in a
many-core architecture where the number of cores is significantly higher which aggravates
the communication delay between cores and MCDRAM. The bottleneck in communication
can be minimized using affinity.

The KNL provides three clustering modes to configure the way tiles access the MCDRAM.
Depending on the activated cluster mode, each tile privileges the memory access to the clos-
est MCDRAM. This type of affinity minimizes the distance that is necessary to go through
in a L2 miss and minimizes the communication delay between tile and memory. The avail-
able cluster modes are:

• All-to-all

• Hemisphere/Quadrant mode

• Sub-NUMA Clustering (SNC) Mode (SNC-2 and SNC-4)

The all-to-all mode (represented in the Figure 7) is the less restrictive memory access
mode. In this mode each tile accesses MCDRAM randomly and there is no restriction
defined for the way the chosen tiles and the MCDRAM obtains the data. There is no
affinity defined so the expected performance is the lowest of all the cluster modes available,
since each memory access can take a long path between the tile that incurred in the miss
and the memory that owned the data [10].

3.1. Target computing platforms 15

Figure 7.: All to all

The hemisphere/quadrant mode defines a logical division between all the tiles. The tiles
are equally divided into 2 groups (hemisphere) or 4 groups (quadrants), and each group
is assigned to the closest MCDRAM. The tiles in a group privileges the memory access to
the MCDRAM of its own group. However, this group mode does not restrict the memory
access to its own group because a tile can communicate with a tile from a different group
and access its MCDRAM to obtain the data as is illustrated in Figure 8.

The yellow tile in the figure performs the request line of cache across yellow and red tiles
until reach the tag directory (TD)1 tile (red).

Figure 8.: Quadrant mode

1 KNL uses a distributed tag directory (DTD) for cache coherency, each tile has his own TD that identifies the
location and the state of each line of cache on the chip.

16 Chapter 3. efficiency in quantum espresso installation

Since the clustering mode is defined to quadrant mode, the TD obtains the data from the
MCDRAM of its own quadrant only. The line of cache returns back to the yellow tile where
the miss occurred. The longest path in a memory access in quadrant mode is shorter than
in the all-to-all mode (and so the incurred latency)2 leading the quadrant mode to have a
more effective memory access [10].

Similar to the quadrant mode, the Sub-NUMA Clustering (SNC) configuration (shown in
Figure 9) is also based in a logical division of tiles and MCDRAM, which can be divided
in two or four parts (hemisphere and quadrant respectively). Compared to the other two,
this mode configuration is more restrictive to how the MCDRAM accesses are made: a miss
incurred by a certain tile is satisfied by a directory and a memory controller of the NUMA
domain where that tile belongs, and no one from the others. This division establishes an
affinity commitment between each group of tiles and the correspondent memory controllers
of each NUMA node. This cluster mode provides the best minimization of communication
latency when a miss occurs since all the traffic is self-contained in each NUMA node. How-
ever, in order to take full advantage of this cluster mode, the software needs to be NUMA
aware: the memory allocations and software threads must occur in the same NUMA node.

Figure 9.: Sub-NUMA Clustering mode

There are some tools that allows to take control over the affinity policy as the numactl
for memory allocations and taskset/OpenMP for thread pinning in both quadrant or SNC
cluster configurations.

2 Source: https://colfaxresearch.com/knl-numa/

https://colfaxresearch.com/knl-numa/

3.1. Target computing platforms 17

3.1.2 High-Bandwidth memory modes in KNL

In the last decades, processor and memory manufacturers focused their attention to
reduce memory bottlenecks in computer systems. This efforts has been translated into
caching mechanisms, multiple memory hierarchy levels, and improved memory access tech-
nology.

Computer applications based in memory bound algorithms are the most negatively af-
fected by memory bottlenecks. This types of applications have more frequent memory
accesses leading to a higher impact in performance.

The high memory bandwidth demanded by memory bound applications is handled by
the on package High-Bandwidth memory (HBM) modes available in KNL, using MCDRAM
memory technology. These modes have different caching strategies and offers the possibil-
ity of using the MCDRAM as cache, as regular addressable memory or both. The technol-
ogy behind MCDRAM offers a memory storage solution with up to 5 times the memory
bandwidth when compared to regular DDR4 memories [10].

Since HBM modes have a direct impact on memory operations, the performance of mem-
ory bound applications in KNL is directly affected by the chosen HBM mode. The KNL
offers three different HBM modes:

• Cache mode;

• Flat mode;

• Hybrid mode.

In the cache mode, shown in Figure 10, the whole MCDRAM is used as cache. The memory
address requests are first made to the MCDRAM, and if the result of the request is a
miss, then the request is addressed to the DDR. However MCDRAM is a much wider
memory compared to usual cache memories so the number of collisions is smaller due
to cache direct mapping. The cache mode is commonly seen as the "standard" for most
applications. However, if a low hit rate in MCDRAM is verified, flat or hybrid modes
should be considered and can be configured in boot time.

The MCDRAM can also be configured as regular main memory (not only as cache) in
the same systems address space. This is the configuration used by Flat mode and shown in
Figure 11. The Flat mode is particularly more adequate for streaming applications, since the
bandwidth of the embedded RAM (MCDRAM) is far better than external RAM, while its
use as cache may impair performance due to high latency of the embedded stacked RAM.

The bandwidth in flat mode is higher compared to cache mode since it does not depend
on the hit rates - specially for allocated memory datasets over 16 GiB. The reasons for that

18 Chapter 3. efficiency in quantum espresso installation

Figure 10.: Cache mode Figure 11.: Flat mode

Figure 12.: Hybrid mode

is that accesses to memory objects do not have to query the on-package HBM in the first
place [10]. The flat mode is the mode that offers more control over memory allocations
to the developer. The developer can take the control over memory page allocations in
MCDRAM and DDR memory at runtime (using numactl), or using Memkind Library for
manual allocations in KNL HBM using C/C++ memory allocators injected in the code.

In this mode, MCDRAM is seen by the hardware as a separate NUMA node with no
processor, and the processing units has its own internal addressable memory in the NUMA
node where it belongs3.

The Hybrid mode, shown in Figure 12, is the most flexible. This mode offers the possibility
to combine the advantages of both cache and flat modes. The developers can therefore ma-
nipulate and configure the amount of HBM memory used as addressable memory, leaving
the rest to be used as cache. This memory distribution can be configured at boot time. In

3 Source: https://colfaxresearch.com/knl-mcdram

https://colfaxresearch.com/knl-mcdram

3.2. Quantum ESPRESSO as a key tool 19

practice, the cache portion acts as cache memory in cache mode and the addressable memory
portion acts the same way as in flat mode. However in this configuration the processing
units can perform a dual higher throughput to MCDRAM configured as addressable mem-
ory, and to MCDRAM used as cache simultaneously.

Figure 13 shows the theoretical peak floating point operations per Watt with double
precision comparison between Intel Xeon multicore devices (in blue) and Intel Xeon Phi’s
co-processors (black). For a dense matrix-matrix multiplication algorithm, the Intel Xeon
Phi’s has 3 to 4 advantage in GFLOPS/Watt in comparison with multicore devices. The
higher theoretical peak performance by many-core devices suggest a potential for a better
performance compared with multicore devices.

Figure 13.: Theoretical Peak Floating Point Operations per Watt: Double Precision4

3.2 Quantum ESPRESSO as a key tool

The Quantum ESPRESSO is an open-source software package, mostly implemented in
Fortran 90. This software is used to calculate the electronic properties of materials at a
nanoscale. The PWscf (a module of QE to explore DFT), is used to compute the self consis-

20 Chapter 3. efficiency in quantum espresso installation

tent field (SCF) using plane waves. The QE supports the utilization of two pseudopotentials
classes: ultrasoft pseudopotentials (USPP) and norm-conserving pseudopotentials (NCPP), both
implemented in PWscf 5.

The self consistent field (SCF) is obtained in the PWscf through a modified Broyden
method, with addition of some refinements. The reciprocal space region is defined by a set
of k points (wave vectors) in the Brillouin zone (BZ). A selection of a region with a greater
number of k points gradually improves the accuracy of calculations. The k points can be
distributed by different computer cores for parallel execution. The performance costs can
be reduced by restricting the Brillouin zone (BZ) sample region that will be integrated [3].

Other software packages in the QE suite, besides PWscf, can be used in other study cases6.
In this dissertation only the PWscf module and the WSe2 material will be used as a main
case study. The use of other modules of this software package is outside the scope of this
dissertation.

The Car-Parrinello (CP) module, like PWscf, is a core package for calculations of the prop-
erties of the electronic structure of materials, through DFT and with the use of plane waves.
This module implements the same functions of PWscf, with the exception of hybrid func-
tionalities [2]. There are other modules beyond PWscf with other specifications not explored
on this dissertation.

The PHonon module is used to calculate the vibration properties of materials, using func-
tional density perturbation theory. The ballistic conductance is explored on PWcond module,
nudged elastic band (NEB) calculations are made with PWneb module, and on PostProc have
codes and utilities for post-processing data.

The PWscf already has support for parallelism, which was implemented in MPI for dis-
tributed memory, OpenMP for shared memory environments and hybrid parallelizations
that include the simultaneous implementation of MPI with OpenMP. These are explored in
the next section.

3.2.1 Quantum ESPRESSO parallelism

The software package Quantum ESPRESSO (QE), mainly developed in Fortran 90 and C,
offers the possibility of exploring the hardware parallelism, through application programming
interfaces (APIs), OpenMP and libraries for MPI function calls. The application parallelism
boils down to the distribution of tasks and data structures (e.g., vectors) by the available

5 Source: http://www.quantum-espresso.org/pseudopotentials/about/
6 According to user manual available in: http://web.mit.edu/espresso_v6.1/i386_linux26/qe-6.1/
Doc/user_guide.pdf

http://www.quantum-espresso.org/pseudopotentials/about/
http://web.mit.edu/espresso_v6.1/i386_linux26/qe-6.1/Doc/user_guide.pdf
http://web.mit.edu/espresso_v6.1/i386_linux26/qe-6.1/Doc/user_guide.pdf

3.2. Quantum ESPRESSO as a key tool 21

cores, allowing the development of new functionalities and methods that guarantee the
possibility of being executed in parallel.

Over the years, QE was developed with special focus on the execution of intensive com-
putation simulations. In this calculation process, the computation effort involved is directly
related to the number of wave functions used. Over the years, this package has been de-
veloped to increase the performance of these calculations on computer architectures with
support for parallelism. The parallelism of this software is organized in a multi-level hierar-
chy. On the software documentation, four levels of parallelism are highlighted: image, pool,
plane waves and task groups parallelizations [3].

The image parallelization is the process where tasks are distributed among images and
grouped in sets (groups), assigned to different cores to be executed in parallel (used on neb
calculations). On the second level (Pool parallelization), the cores are divided in sets (pools),
where each one deals with one or more k points. The third level is implemented assigning
the plane waves (PW) groups to the available cores in each pool. The last level of parallelism
is the task group where the cores are divided into task groups according the formula:

nFFT =
nPW

ntask
(1)

Each core handles different electron states and Fourier transforms, which are parallelized
by each task groups. Alongside with the third level (plane waves), there is an additional level
of parallelism that involves linear algebra calculations. Different libraries, like SCALA-
PACK, use alternative calculations and work distribution methods to obtain a higher level
of parallelism and therefor increase the performance of the simulations. The input speci-
fications (for instance, the number of k points, cut energies and the number of electrons)
define the computational problem size [3].

In this dissertation, the simulations use a fixed number of k points. The parallelism ap-
proach is based on the pool parallelization level, with parameters choise set in the execution
command (-nk).

Lately, Quantum ESPRESSO (QE) development focused specially in parallelism exploita-
tion in multicore architectures. The latest versions of QE have support to OpenMP par-
alelizations and hybrid simulations. The main approach followed in this study is the de-
velopment and analysis of hybrid, MPI and OpenMP tests and the main focus was on the
optimization of the PWscf module execution environment for the case study referred in
section 2.1.

22 Chapter 3. efficiency in quantum espresso installation

3.3 installation and tuning of Quantum ESPRESSO

The Quantum ESPRESSO (QE) is a versatile multi-platform tool compatible with multi-
ple operating systems, offering support to take advantage of multiple architectures. This
support goes from multicore devices to the use of computing accelerators, such as graphic
processing units (GPUs). The package is distributed in a source mode with pre-compiled
binary files for 32 and 64 bits based devices with Linux, Windows and MacOS. For special-
ized IBM and CRAY based hardware the tool has dedicated compilation and configuration
rules. This broad level of support is followed by multiple installation possibilities: not re-
stricted to the type of server hardware but to different parallel paradigms and libraries as
well. Multiple performance libraries as BLAS, LAPACK and FFTW are available for differ-
ent installations of QE: OpenMP or MPI only, OpenMP and MPI used in conjunction for
hybrid environment codes.

This work explores the performance impact of using different types of installations along-
side with some allowed refinements in the installation process, for performance tuning, to
specific Intel’s multicore and many-core devices. On the following sections, the installation
process will be explored from the pre-defined installation to a customizable one, with the
goal of improving performance.

3.3.1 Requirements

The installation of Quantum ESPRESSO (QE) has multiple solutions available: pre-
compiled executables for Windows platforms, or directly from source code for Linux and
MacOS. An Unix environment with make and other compilation utilities is needed, even
to Windows installation with help of Cygwin for an Unix-like emulation. Alongside with
the Unix environment, a C and Fortran 90/95/2003 compiler is also needed for libraries
compilation and parallelism support. The parallelism is implemented with MPI libraries
(OpenMPI or IntelMPI for example) and OpenMP.

3.3.2 Configuration

The Quantum ESPRESSO (QE) package has a configuration script to prepare the envi-
ronment according to the system hardware, compilers and operating system. The package
is supposed to work on most Linux 32-bit and 64-bit x-86 devices (all Intel and AMD CPUs)
and multiple GPU-accelerated hardware. The following sequence will produce a parallel
executable if a parallel environment is detected7:

7 Source QE user guide: http://web.mit.edu/espresso_v6.1/i386_linux26/qe-6.1/Doc/user_
guide.pdf

http://web.mit.edu/espresso_v6.1/i386_linux26/qe-6.1/Doc/user_guide.pdf
http://web.mit.edu/espresso_v6.1/i386_linux26/qe-6.1/Doc/user_guide.pdf

3.3. Installation and tuning of Quantum ESPRESSO 23

cd quantum-espresso.X.Y.Z/

./configure

make all

After running the second line, multiple files are generated within the package, as shown
in the figure below:

Figure 14.: Quantum ESPRESSO directory and generated files

• make.inc - is the file that contains all compilation rules and flags that will be used
in the Makefile7; This file can be edited in order to change some performance tuning
parameters, resulting in a custom installation, for tuning QE to a specific hardware
platform;

• install/configure.msg - is a configuration report, not needed for compilation, but in-
forms the user of all linked libraries so that he can check if everything is in place for
installation;

• install/config.log - a detailed log with configuration made for installation7;

• include/fft defs.h and include/c defs.h - Fortran 90 and C definitions used by Fortran
90 and C files7.

After running the configure command, if the processing device is unknown, the ARCH
variable needs to be specified with a set of values, depending on the architecture of the
system:

./configure ARCH=...

24 Chapter 3. efficiency in quantum espresso installation

ARCH= Description
IA32 Intel 32 bits instruction set architecture
IA64 Intel 64 bits instruction set architecture

x86_64 x86 instruction set of 64 bits
AIX A series of Unix operative system developed by IBM

Solaris An Unix operative system developed by SUN Microsystems

SPARC
Stands for Scalable Processor Architecture. Is an instruction set with a reduced number of
instructions (RISC)

Cray XT4 A massively parallel MIMD supercomputer with distributed memory developed by Cray Inc
cygwin A Unix environment simulator with command line interface used on Windows operative systems

mingw32 A development open-source software used to create 32 bit Windows applications
mingw64 A development open-source software used to create 64 bit Windows applications
NEC SX A SX vector supercomputers made by NEC. Is one of the most advanced vector supercomputers

ppc64

An identifier frequently used on Linux, GNU Compiler Collection (GCC) and LLVM.
This identifier is used to refer the target architecture for optimized applications for 64-bit
PowerPC and Power Architectures.

arm Extends to Advanced RISC Machine, is a family of RISC architecture for computer processors.

Table 1.: Available architectures in Quantum ESPRESSO

3.3.3 Optimized libraries

The Quantum ESPRESSO (QE) installation can be customized to introduce some opti-
mizations and to enable parallelism. The default installation presented before, will auto-
matically enable MPI executable if a parallel architecture platform is detected. An addi-
tional switch enables OpenMP (using --enable-openmp in the configuration step). The
QE package includes the following optimized libraries for compilation:

• BLAS - an internal BLAS library available with the switch --with-internal-blas;
however, users can define their own versions of BLAS in the configuration step;

• LAPACK - the Fortran 90 optimized routines to solve linear equations using matrix
factorization as Cholesky, LU, Schur or SVD;

• FFTW - FFTW libraries for discrete Fourier transform calculation (DFT), using one or
multiple dimensions.

Another optimized and relevant library is the Intel Math Kernel Library (MKL). This is
not a self-contained library in QE but highly recommended since simulations can benefit
significantly with performance gains in Intel’s devices. If MKL is available on the system,
configure command will use this installation7 and the same goes for ACML to take advan-
tage of AMD devices. The MKL libraries can also be used in AMD devices with optimized
libraries, but with reduced performance levels compared with Intel devices. The configure
command included in QE can be used to recognize the MKL libraries installed in the system
but the switch --with-openmp should be specified in the configuration phase, otherwise,

3.3. Installation and tuning of Quantum ESPRESSO 25

a single threaded version of MKL will be linked. The FFTW can be used with MKL to
combine the benefits of multithreading and distributed memory execution.

3.3.4 FFTW vs. FFTW3

Since FFTW3 library is supported in Quantum ESPRESSO (QE), multithreading is avail-
able alongside with hybrid parallelism, when combined with MPI. The FFTW3 library sup-
ports multi-threading in two modes:

• implicit mode: the routines of this library can be executed with internal multitreading,
being called like serial code (requires installation of the library libfftw3_omp);

• explicit mode: this mode uses serial routines that are called by multiple parallel
threads; the routines for FFT execution are thread-safe.

The FFTW3 library, with only one routine call, makes calculations of many transforms.
This allows performance and flexibility, within multiple platforms.

In the performance test of the threaded FFTW3 library, the FFTW library was chosen for
comparison (this library is internally supplied with QE) since it is the only one that supports
threading in the hybrid mode. It is also an open-source library and widely available [12].

The experimental measurements in Figure 15 show a performance test of the FFTW li-
brary with multiple threads. This test was made on multiple dual quad-core servers, inter-
connected with Gigabit Ethernet. The code was compiled with icc compiler (v.11.1), with
-O3 flag, and ifortran for compilation of QE [12].

The FFTW3 hybrid library was tested with PWscf module of QE. The measured execution
times were made by increasing the number of processing devices - 2 and 4 threads per MPI
process - and comparing with pure MPI. The total number of computing cores is equal to
the number of MPI processes times the number of threads per MPI process.

Figure 15 shows that the FFTW3 (implicit and explicit) with 2 threads presents the fastest
execution times when compared with the FFTW internal with 2 threads. The execution
times of implicit and explicit FFTW3 with 2 threads are very close to each other and the
same happens with 4 threads. However, the FFTW3 with pure MPI displays the best results
and for the implicit and explicit FFTW3 with pure MPI the execution times are always faster
when compared with FFTW internal.

These results led to the selection of the FFTW3 library on the second installation of
QE. Depending on the test case, FFTW3 seems to be a good performance library for pure
distributed algorithms using QE.

26 Chapter 3. efficiency in quantum espresso installation

Figure 15.: "PWscf module execution using QE FFTW3 multithreaded version compared
with FFTW hybrid implementation and pure MPI FFTW3 implementation. Per-
formance evaluation based on execution times of QE FFTW3 pure MPI, and
FFTW3 implicit and explicit version" [12]

There are other approaches to scale up QE simulations, taking the maximum advantage
of modern architectures: some of them based on offloading CPU-bound workload to a
co-processor with a higher number of cores than a traditional multicore device. The Intel
Xeon Phi is an example of these many-core devices, supporting different ways of workload
offloading, as presented in the next section.

3.3.5 Quantum ESPRESSO compilation on a co-processor Intel Xeon Phi

Quantum ESPRESSO (QE) can be installed on a Intel Xeon multicore device with a many-
core Xeon Phi co-processor, with a higher number of cores, in order to take advantage of
offloading workload. There are three ways of compiling QE on an Intel Xeon Phi.

• native mode: the workload is completely offloaded and executed on the co-processor7;

• offload mode: the execution flow starts on the main multicore device but higher groups
of workload can be automatically offloaded to the co-processor in a transparent fash-
ion to the programmer7;

• symmetric mode: requires the creation of both binaries (not well explored)7.

3.4. Challenges to improve the computational efficiency 27

The offload mode requires the libxphi library, which is compiled and dynamically linked
to QE. It allows offloading BLAS and the MKL library functions into the Xeon Phi to hide
communication latency costs7. The switch -mmic should be activated during compilation.

3.3.6 A multi-node installation with MPI

Current computer clusters with multiple shared memory servers run some version of MPI
and the QE works with MPI implementations taking advantage of an hybrid environment of
shared and distributed memory. The configure command will recognize a properly installed
parallel environment and prepare the parallel compilation.

In a Linux cluster with MPI, the configure command can take multiple behaviours. It tries
to locate a parallel compiler in a logical place with a logical name, but if it has a odd name
or it is located in a odd location, the programmer has to instruct the configuration script
where to find it7.

On the other hand, the configure can try to locate mathematical and parallel libraries in
the usual places with usual names, but if they have unknown names or odd locations, the
programmer has to rename/move them, or instruct the configure where to find them. If MPI
libraries are not found, parallel compilation is disabled7. The configure can also revert to
serial compilation if libraries cannot be linked without conflicts and missing symbols.

3.4 challenges to improve the computational efficiency

Quantum ESPRESSO (QE) already uses parallelization (MPI and OpenMP) so one of the
challenges was to improve its computational efficiency, namely selecting the most adequate
parameters for execution, specially with very large data sets. The QE implements several
MPI parallelization levels based on the selection of parameters. These parameters combine
different group configurations among cores, responsible to process one or more groups of
k points. These parameters assume different designations, namely:

• images, which divides the number of cores into different "images", where each group
of images corresponds to a different self-consistent or linear-response calculation;

• world, which establishes one group containing all cores;

• pools, each image is placed in pools, where each one is responsible for a group of k
points; this was the main parameter used in this study;

• bands, where each pool can be placed in a group of bands, each band group taking
care of a group of wave-functions;

28 Chapter 3. efficiency in quantum espresso installation

• tasks, which can be organized in multiple groups to process multiple wave-functions
in parallel; this organization usually occurs when the number of cores exceeds the
number of FFT planes to allow a higher parallelization level7.

There are multiple flags to control the number of cores in each group:

• -nimage, to change the number of images (-ni);

• -npools, for the number of pools (-nk);

• -nband, to handle the number of bands (-nb);

• -ntg, to modify the number of task groups (-nt).

These are the main parameters that define the bounds of parallelization. The k points
are divided among different pools and mapped into the different cores to be processed
in parallel. The k points distribution among cores are made in a transparent way by the
PWscf package of QE. The k point parallelization is limited to Nk processor pools (Nk,
parameter configured with -nk switch). The chosen number of pools was 1, 2, or 4. The
FFT parallelization should not exceed N3 processors, where N3 is the dimension of the FFT
grid along the Z axis. For the simulations performed with -nk switch, the number of MPI
processes (N) should be N = Nk × N3 MPI processes at most, where N is the value passed
to mpirun command for the -np parameter 8.

The key to obtain good performance values using PWscf is to achieve the best compro-
mise between the parameters used in the described control flags. The goal is to achieve
a good load balancing among MPI processes. The number of k-point pools should be an
integer divisor of Nk (pools). The number of processors for FFT parallelization should be
an integer divisor of N3. These parameters can be used together if needed, as shown in the
following example:

mpirun -np 4096 ./neb.x -ni 8 -nk 2 -nt 4 -i my.input

Some of these parameters (i.e. -ni) are used for specific modules, such as NEB. The
images are properties of the NEB module input.

In the above example, the NEB module of QE, for the input file my.input, runs on 4096

cores, divided into 8 images groups, each one with 512 cores, 2 pools of k points with 256

cores each, and 4 task groups, each one with 64 cores. If these parameters are not set, the
default value used for -ni, -nk and -nt is 17.

8 Source, PWscf user guide: http://www.afs.enea.it/software/qu_esp/Doc/pw_6.1.0.pdf

http://www.afs.enea.it/software/qu_esp/Doc/pw_6.1.0.pdf

3.4. Challenges to improve the computational efficiency 29

The configuration of these parameters is the main challenge: finding the perfect balance
between the possible values is crucial in order to obtain the best parallelization of the QE
and therefor the best possible performance.

Another challenge regarding the parallelization is the performance of the QE when all
the available cores are used which may lead to a better performance value. If more than
one node of the cluster is used with MPI, it is necessary to be aware of the communications
overhead between nodes, as well as the best k points configuration for a good distribution
by the pools.

The size and the data type of the linear algebra system of the case study has an impact
to the effectiveness of parallelization, together with the inter-process communication time.
The communication between nodes should be performed using Gigabit Ethernet up to 4 or
8 sockets to reduce the communication latency. The wave functions data represented in the
algebra system should be kept in cache for as long as possible.

The size of the pool can also affect the performance. Depending on the case study and
its size, pools should be divided into multiple task groups. This pool distribution should
be performed when the number of processors exceeds the number of FFT planes. The
advantage of this approach is that each task group can simultaneously process multiple
wave functions9.

The next chapter presents a comprehensive performance evaluation between different
installations and configurations of QE in order to find out the best use of the hardware
resources.

9 Source, PWscf user guide: http://www.afs.enea.it/software/qu_esp/Doc/pw_6.1.0.pdf

http://www.afs.enea.it/software/qu_esp/Doc/pw_6.1.0.pdf

4

E X P E R I M E N TA L E VA L U AT I O N

A set of performance tests with multiple configurations and installations of QE are pre-
sented in this chapter, as the experimental work of this dissertation, in order to characterize
the fastest execution environment of WSe2 simulation in QE. These tests are based on mul-
tithreaded implementations and distribution of processes among the available processing
units. The goal is to measure the impact of using faster solver libraries, hybrid installations,
k points distribution among processing pools and the impact of other configurations.

In a first phase, the computational platforms used to explore these tests are based on
servers with x86 multicore devices. A comprehensive study of these platforms and their
potential was made for a better decision process related to the workload distribution con-
figuration for fine tuning the performance.

Once the best environment execution for the simulation using multicore devices is found,
the same group of tests was applied on a many-core based server. The first goal for this
study was to aid a physicist of University of Minho to improve the time results for his WSe2

simulations in QE. The reference time (RT) for the comparative evaluation used the same QE
version and was scheduled for 20 processes on a dual 10-core Xeon server. The value of
the RT achieved by the physicist was 2.60 minutes. The second goal was to consider the
best execution times achieved with the multicore devices under different configurations
and measure the effective performance improvements of the many-core server with the
simulation of WSe2 in QE.

The study of both computational platforms includes an architecture overview over their
cores micro-architecture, available memory and functional units in order to fine tune the
workload distribution. In the many-core based server, multiple configuration "modes" are
supported, with different core grid organizations and memory access layouts. For the sec-
ond goal, the impact of these possible configuration modes was taken into account to com-
pare the measured performance value with the measured values on the multicore server.

31

32 Chapter 4. experimental evaluation

4.1 experimental setup

This chapter presents and discusses the measured execution times, using multiple com-
pute nodes (servers) in the Services and Advanced Research Computing with HTC/HPC (SeARCH)
cluster - a research computing platform composed by multiple interconnected nodes.

The compute nodes of the cluster are equipped with multiple multicore and many-core ar-
chitectures. The cluster gives support to the University of Minho R&D projects, in all fields
of science and engineering. The current architecture of the SeARCH cluster is equipped
with 2 nodes for the front-end, 54 computing nodes with dual-socket Intel Xeon 64-bit de-
vices and one node with a many-core Xeon Phi Knights Landing (KNL). Other 6 nodes pro-
vide fast direct access to a SAN with about 40 TiB. The cluster also contains 12 nodes with
accelerators based on Nvidia GPUs and 9 nodes with the Intel Xeon Phi co-processor. The
inter-node communication is performed by Gb Ethernet and some nodes are also equipped
with 10 Gb Myrinet cards. Linux CentOS is used as the operating system of the nodes and
the cluster management1 is done by Rocks Cluster Distribution.

Two computing nodes were used for the exploratory study, with the same Intel Xeon
device generation (Ivy Bridge), but with different number of cores (8 and 10). The follow-
ing subsections present a full characterization and architecture analysis of these compute
nodes, followed by a description of the input data set: a mathematical representation of an
inorganic compound tungsten diselenide.

4.1.1 Characterization of the multicore environment

In a first phase of the experimental work, two different Intel Ivy Bridge servers were used:
a dual 8-core server and a dual 10-core server (Figures 16 and 17 respectively), both with
the Sandy Bridge architecture. These are the multicore servers that were used to measure
the execution times for the different test cases, including the results achieved with the tuned
installations.

In both devices, each core has 64 KiB L1 cache - 32 KiB for instructions and 32 KiB for
data - and 256 KiB L2 cache. The size of the L3 cache is coherent with Intel’s approach, 2.5
MiB per core: 20 MiB in the 8-core device, and 25 MiB in the 10-core device. The devices
also have a slight different clock frequency: 2.6 GHz for the 8-core device and 2.5 GHz
for the 10-core. The WSe2 crystal dataset is the same for all tests, which makes it possible
to carry out a comparative performance study. The dataset, described in section 4.1.4, has
about 6.75 GiB in size, so it does not fit entirely in any of the cache levels of the devices
used.

1 SeARCH DI Uminho: http://search6.di.uminho.pt/wordpress/?page_id=43

http://search6.di.uminho.pt/wordpress/?page_id=43

4.1. Experimental setup 33

Figure 16.: SeARCH dual 8-core server overview

Figure 17.: SeARCH dual 10-core server overview

The table 2 shows the main differences between both servers:

Node dual 8-core server dual 10-core server
Devices Intel Xeon E5-2650 v2 Intel Xeon E5-2670 v2

#Sockets 2 2

Micro-Architecture Sandy Bridge Sandy Bridge
#Cores per Socket 8 10

#Virtual Cores per Socket 16 20

Clock Frequency 2.6 - 3.4 GHz (Max) 2.5 - 3.3 GHz (Max)
SIMD AVX AVX
Cache Level 1 (L1) 32 + 32 KiB per Core 32 + 32 KiB per Core
Cache Level 2 (L2) 256 KiB per Core 256 KiB per Core
Cache Level 3 (L3) 20 MiB 25 MiB
#Memory Channels 4 4

Memory RAM 64 GiB per Node 64 GiB per Node
Memory Bandwidth 59.7 GiB/s 59.7 GiB/s

Table 2.: Specifications for the dual 8-core and dual 10-core servers on SeARCH

34 Chapter 4. experimental evaluation

A set of multiple performance tests were made for both nodes with Ivy Bridge using the
same dataset. All tests were made running the simulation software only with a minimum
of intrusion level as possible. As stated in Table 2, the compute nodes used for this study
have a variable CPU frequency from a 2.6 GHz to 3.4 GHz (dual 8-core server) and 2.5 GHz
to 3.3 GHz (dual 10-core server). To prevent execution time variations (which could lead to
inaccurate results), the clock frequency was fixed to 2.6 GHz and 2.5 GHz in the dual 8-core
server and dual 10-core server respectively. Each of the walltimes documented in section
4.3 is the weighted result of the 5-best executions.

4.1.2 Characterization of the many-core environment

Over the last decades, processor manufacturers released processors with a higher number
of cores and lower clock frequency as opposed to the increase of the internal clock frequency.
The many-core architectures have emerged in the last ten years with a considerable higher
core density in the chip compared to multicore architectures.

The first group of tests running WSe2 simulation was made in the compute nodes using
a multicore architecture. The second group of tests was made in a many-core architecture,
available in the SeARCH cluster, to study the possibility of getting an higher level of parallel
work and better performance results compared with the results already achieved in the
multicore tests. To perform these tests, an Intel Xeon Phi Knights Landing (KNL) many-
core device was used, replicating the same test cases, for the same case study.

The goal with these tests is to find out if many-core devices such as, the Intel Xeon
Phi KNL can be considered a good target devices for performance running this type of
simulations using QE. The Intel Xeon KNL used for the second group of tests is similar to
the processor showed in Figure 6 of section 3.1.

The many-core device in the SeARCH compute node, equipped with an Intel Xeon KNL,
has 32 dual-core tiles (64 cores) interconnected by a 2D mesh of bi-directional rings. Each
tile has 2 cores, each with 2 VPU, and 1 MiB of L2 cache. This device has no on-chip L3

cache. Regarding RAM memory, KNL has 8x 2 GiB MCDRAM on-package (3D stacked
chips), which can be configured as L3 cache or RAM. An high bandwidth of 8 DDR4

channels can connect up to 384 GiB of RAM. In terms of I/O, this device has 36 lanes of
PCIe Gen3 and 4 lanes of DMI per chipset [10].

In terms of performance, for scalar operations, this chip is theoretically 3x faster than the
Xeon Phi Knights Corner. For vector operations each core in this chip has two vector units
each with 512 bits as mentioned before, with the potential to perform 32 single precision
operations per clock cycle and 16 double precision operations per clock cycle (it supports
Fused Multiply-Accumulate, FMA), at each core.

4.1. Experimental setup 35

The hardware specifications for this chip (Table 3) also shows that Knights Landing intro-
duces two AVX-512 units (SIMD technology for vector instructions). These vector units are
specially suitable for compilers with good vectorization heuristics, such as the compilers for
High-level language (HLL) (C/C++ and Fortran) [10]. Since QE is written in these languages,
the installations made for KNL tests were made using appropriate flags for vectorization
during the package compilation.

Device Intel Xeon Phi 7210

#Sockets 1

Micro-Architecture Knights Landing
#Tiles 32

#Cores 64 (2 per Tile)
#Virtual Cores 256

Clock Frequency 1.3 - 1.5 GHz (Max)
SIMD 2 x AVX-512 per core

Cache Level 1 (L1) 32 + 32 KiB per Core
Cache Level 2 (L2) 1 MiB per Tile

Memory RAM 384 GiB
Embedded RAM 8 x 2 GiB

#Memory Channels 8

Table 3.: Intel KNL node specifications

This many-core device, installed on the SeARCH cluster, offers the possibility to configure
the cluster modes (all to all, SNC4 and quadrant mode) as well as the HBM modes (flat and
cache mode). These multiple modes configuration were previously described in sections
3.1.1 and 3.1.2. For a dataset below 16 GiB, the Flat mode revealed to be an important
HBM mode to tune the performance of WSe2 simulation in QE. This tuning was achieved
through memory allocation manipulations using numactl.

The multiple possibilities of memory allocations suggest a comparative performance test
between different HBM configurations. The performance results using these configurations
(cluster and HBM modes) will be explored in section 4.4.

4.1.3 Software and libraries versions

Table 4 shows the version of the software packages (QE, compilers, libraries and solvers)
that were used on the experimental work of this dissertation. The versions of QE and ELPA
were the most recent versions at the moment of the study. When the several installations
were made for the experimental work, the versions of the compilers were also the most
recent (installed in the SeARCH cluster) at that time.

36 Chapter 4. experimental evaluation

Versions
Without ELPA With ELPA

Description Multicore Many-core Multicore Many-core
Quantum ESPRESSO 6.1
Intel Compilers and Libraries 2013.1.117 2017.1.132 2017.4.196 2017.3.191

Intel OpenMPI MX 1.8.2 N/A
ELPA Solver N/A 2016.11.001

Table 4.: Software packages versions

4.1.4 Input characterization

The input files for PWscf module are described as a structured list of Fortran 90 construc-
tors called NAMELISTS and specific QE codes named INPUT_CARDS. Among the several
NAMELISTS available, there are three mandatory to use in PWscf (also included in the
input file of the present case study): &CONTROL, &SYSTEM and &ELECTRONS.

The &CONTROL namelist defines a group of variables responsible for flux control of the
computation. For example, the specification of the task to be performed (SCF defined by
default), a title to define the input, verbosity level, input and output files directories, among
others.

The &SYSTEM namelist specifies the properties related to the material under study,
which can be the number of atoms in the unit cell, the number of electronic states to be
computed, the kinetic energy cutoff for wavefunctions, or the total charge of the system,
among others.

The control variables used in the algorithms to achieve self-consistent solutions are de-
fined in the &ELECTRONS namelist. This last namelist is specially important to define
the variables to achieve the solutions of Kohn–Sham equations for the electrons (already ex-
plained in chapter 2). These variables includes the maximum number of SCF step iterations,
the diagonalization approach (Davidson approach or conjugate-gradient).

Regarding the QE NAMELISTS, PWscf can process other additional NAMELISTS that
defines moving properties. The &IONS namelist can be used as an input variable that
defines the movement of ions in molecular dynamics, as long as &CELL namelist that
defines cell-shape evolution whenever a cell moves. The &EE namelist can be used to
perform charge corrections when the problems have boundary conditions.

These movement simulation namelists and &EE are not used in this thesis since the
study of WSe2, with the input file used, does not have any charge corrections. To define the
relative position of each atom in the cell, INPUT_CARDS are used. This code also allows
to specify the name, the type and the mass of multiple species of atoms. The existing
INPUT_CARDS are:

4.1. Experimental setup 37

• CELL_PARAMETERS: contains the vectors that defines the cell;

• ATOMIC_SPECIES: defines the mass, name and pseudo-potential used for each atomic
species in the input file;

• ATOMIC_POSITIONS: defines the type and the relative position of each atom in the
cell (represented with three dimensional coordinates);

• K_POINTS: defines the coordinates and weights of the k points.

The input case study of WSe2 uses mostly NAMELISTS and INPUT_CARDS, as described
before (except for &IONS, &CELL and &EE). The complete WSe2 definition input file is in
appendix B. Table 5 shows the most relevant crystal properties defined in the input file,
namely the number of defined k points (144, 12 × 12 × 1, where only 78 were used after
symmetries removal), the kinetic energy cutoff in the wave functions (ecutwfc), the number
of electronic states (nbnd) and the number of G-Vectors.

Properties Value
K Points 78

Electrons 18

ecutwfc 50 eV
nbnd 23

G-Vectors 75113

Table 5.: Most relevant properties of the case study (WSe2)

The memory consumption directly depends on the number of G-Vectors, the number of
electrons and the number of k points. These k points can be divided into a set of pools
(represented by QE -nk parameter). A pool is the designation used in QE for a group of
processing cores by which the k points are distributed.

To run a simulation using a dataset, an input file is used with self consistent field config-
uration values for these parameters. The dataset size, used in memory, can be computed
by the following expression, where the size of a complex number is 2 doubles: one for the
real part and the other for the imaginary part:

(#GVectors × Electrons × 4 × kpoints)2 × SizeO f ComplexNumber (2)

The case study considered 18 electrons, 75,113 G-Vectors, and 78 k points, which led to
a dataset size of approximately 6.75 GiB. The size of the output file is also in this order of
magnitude. The key performance metric for all tests is the wall time of QE simulation 2.

2 Source, PWscf user guide: http://www.afs.enea.it/software/qu_esp/Doc/pw_6.1.0.pdf

http://www.afs.enea.it/software/qu_esp/Doc/pw_6.1.0.pdf

38 Chapter 4. experimental evaluation

4.2 selecting adequate installations

One of the major advantages of QE is its integrated suite with support for exploring
electronic structure materials in different parallel paradigms. Different paradigms suggest
different strategies to split data between processing units, or even different compute nodes
to increase the scalability. QE can be installed to explore electronic structure materials for
codes using message passing interface (MPI) (mainly for wave-functions distribution across
multiple computes nodes), OpenMP for shared memory environment, or hybrid environ-
ment combining the advantages of shared memory parallelism and data distribution across
multiple nodes. By default, the parallelism in QE is explored using performance libraries
as SCALAPACK.

The efficiency of the computations in performance libraries such as SCALAPACK is
granted by a block cyclic data distribution, or block-partitioned algorithms for matrix data
reuse. When programmers make a standard installation of QE (as presented in section
3.3.2), SCALAPACK is installed by default. However, as it will be demonstrated in this
study, the adoption of alternative libraries allows to push up toward the performance in
cases such as eigensystem calculations, using solvers to overcome potential computational
bottlenecks. Considering this, the present study starts by exploring the default installation
that uses SCALAPACK as the default performance library in multiple parallel paradigms.

The ELPA is used as an alternative direct solver to understand the influence of the solver
in terms of performance. This library is mentioned in some studies, like quantum chemistry,
biological networks and materials science, as one of the best libraries for massively parallel
executions [8]. The installations in Intel KNL allows to verify the impact of using ELPA in
an alternative many-core architecture.

4.2.1 Hybrid installation

The installation process of Quantum ESPRESSO (QE) supports multiple configurations
depending on the computing platform used to run the simulations. These can run in shared
memory environments (SMP or NUMA servers) as well as in multiple nodes in distributed
memory environments, with high bandwidth interconnects. When no parameters for a
specific architecture are configured in the installation process, QE is installed with a basic
multiparadigm support. This type of installation cannot take full advantage of partitioning
input strategies or data distribution across nodes, limiting the performance.

4.2. Selecting adequate installations 39

Quantum ESPRESSO installation on SeARCH

Nowadays, is common to see Hybrid applications in HPC infrastructures to improve
performance. These improvements can be achieved to combining OpenMP and MPI imple-
mentations. The main advantage of these hybrid environments is the reduction of memory
required for the application in general. The QE provides an hybrid package for hybrid
simulations that was used in this study.

1 # Load modules

module load intel/2013.1.117

3 module load intel/openmpi_mx/1.8.2

5 # Command configure

./configure --enable-openmp

7

Installation

9 make pw

Listing 4.1: Default installation on a multicore node

This first installation was used as a reference to be compared with other installations
that take advantage of performance tuning configurations for the compute node and KNL
(addressed in section 4.2.1).

1 # Load modules

module load intel/2013.1.117

3 module load intel/openmpi_mx/1.8.2

5 # Command configure

./configure --enable-openmp --enable-parallel

7

Changes on make.inc

9 DFLAGS = -D__OPENMP -D__INTEL -D__DFTI -D__MPI -D__SCALAPACK -D__FFTW3

LAPACK_LIBS = -lmkl_blacs_intelmpi_lp64

11

Installation

13 make pw

Listing 4.2: Second installation on the SeARCH cluster

In this installation, the hybrid execution counts with a clean package installation using
FFTW3 library through direct linkage without any additional improvements. As said before,
in section 3.3.4, this library should be considered when multithreaded or MPI simulations
are used to process multiple transforms in parallel.

40 Chapter 4. experimental evaluation

This installation includes the addiction of LAPACK library with direct linkage enabled
by Intel MPI module for a architecture optimized installation. The LAPACK was chosen
as the performance library instead of ATLAS, but it is not a fully replacement as described
in QE manual7. As in the previous installation, the same modules for ICC and MPI were
used.

Quantum Expresso installation on a many-core device

Since the first installations, all the tests were made using multicore nodes. In this sec-
tion there is a new approach of testing Quantum ESPRESSO in a computer architecture
equipped with a many-core device: the Intel Xeon Phi Knights Landing.

This architecture provides a next level scaling performance from QE taking advantage
of their high core count and hardware threading architecture. As opposed to Intel Xeon
processors, KNL has a higher number of cores (64 cores), 4 SMT threads (Simultaneous
multithreading), and wider AVX instructions (two units of AVX-512 bit). Regarding the
memory architecture, the KNL embedded in-package RAM chips have three different mem-
ory modes: flat, cache and hybrid. These systems level configurations of the physical ad-
dressable space, allows for a better use of the systems MCDRAM chips, to reduce memory
accesses.

The following listing shows the configurations made on the installation process of QE in
the compute node of the SeARCH cluster that contains this many-core processor.

1 # Load modules

source /opt/intel/compilers_and_libraries_2017.1.132/linux/bin/compilervars.sh

intel64

3 source /opt/intel/mkl/bin/mklvars.sh intel64

source /opt/intel/impi/2017.1.132/bin64/mpivars.sh

5

Command configure

7 ./configure CC=mpiicc MPIF90=mpiifort F90=mpiifort F77=mpiifort CPP="icc -E"

FC=mpiifort LIBDIRS="/share/apps/fftw/3.4.0/include/fftw3" --enable-openmp --

enable-parallel

9

Changes on make.ink

11 DFLAGS = -D__OPENMP -D__INTEL -D__PARA -D__MPI -D__SCALAPACK -D_FFTW3

LAPACK_LIBS = -lmkl_blacs_intelmpi_lp64

13 SCALAPACK_LIBS = -lmkl_scalapack_lp64 -lmkl_blacs_intelmpi_lp64

15 # Installation

make pw

Listing 4.3: First Installation on KNL

4.2. Selecting adequate installations 41

The configuration of the MKL, ICC and MPI compilers were made in the node as the
starting point. After that, the makefile of PWscf module was adjusted with some minor
changes to ensure the use of the 64-bit LAPACK and SCALAPACK libraries. This installa-
tion tests differ from the tests done so far, since they are made directly on the node without
a batching process and neither a frontend to schedule the tests.

Until now, the main key to improve performance was the adoption of performance li-
braries such as SCALAPACK and FFTW3. These libraries were compiled to ensure a tuned
installation of QE in Intel Xeon based compute nodes and in KNL. The core values of
SCALAPACK include efficiency (run the algorithms as fast as possible), scalability (improv-
ing performance when increasing the problem size and number of used cores) and porta-
bility, since SCALAPACK is compatible with the main parallel processor architectures.

Besides the usage of previous performance libraries, many studies also recommend other
approaches for performance tuning, namely the use of switches that enable AVX instruc-
tions as well as the ELPA library. These approaches were also explored in this study to
measure their performance impact. In the following section the ELPA library is presented.

4.2.2 Using ELPA solver for performance tuning

The acronym ELPA stands for Eigenvalue soLvers for Petaflop Applications. It is a par-
allel library for scalable solutions involving multidimensional matrices and vectors. In this
study the ELPA library is used to solve a set of equations, which is the highest expensive
operation in QE. In electronic structure theory, as well as in other computational sciences,
the processing weight of these operations increases as the size of the problem increases.

The ELPA library has proven to be a good Eigenvalue solver replacement over SCALA-
PACK. The solver can be compared with the SCALAPACK library but uses their own sub-
routines in the parallel solution steps. The library can be configured for MKL, ICC and Intel
MPI used in QE and provides an efficient algebraic solution for the symmetric Eigenvalue
and Hermitian problems of dense matrices that have real and complex values. The key per-
formance of the ELPA solver is its subroutines, that are a constituint part of its parallel so-
lution steps. The solver can even outperform the SCALAPACK library that implements the
interface for SCALAPACK, such as the known MKL from Intel. The critical zone in terms of
performance is the matrix reduction to a tridiagonal form and their back-transformation of
eigenvectors. The solver provides two different tri-diagonalization methods: the first one,
only uses Householder transformations and the second one is the two-step transformation
which is more efficient for larger matrices and for a higher number of processing units.

The library is based on MPI and hybrid MPI/OpenMP implementation that provides a
singular step for tri-diagonalization and two different steps for matrix transformations. If

42 Chapter 4. experimental evaluation

the size of the matrices is high enough, as the number of CPU’s increases, the efficiency of
these steps also tends to increase [8].

The task of finding eigenvectors and eigenvalues for matrices with higher dimensions is a
common problem in computer science, specially in electronic structure theory. Remember-
ing Kohn-Sham theory presented in 1, the electron problem and the self-consistent solution
can be represented in a matrix format. The equation system is solved using algebraic so-
lutions as in LAPACK or SCALAPACK, integration solutions or iterative processes. ELPA
has its own functions of linear algebra for critical areas in terms of performance.

4.2.3 Quantum ESPRESSO installation with ELPA

The next step in this study was to explore the impact of the ELPA solver on two different
compute nodes of the SeARCH cluster: a dual multicore Xeon node and a single many-
core Xeon Phi node. This section presents the several installations that were made on both
servers, in order to accomplish a better tuning to the conventional installation of QE.

In the previous sections, the study was centered in tuning the installation of QE consider-
ing the system’s architecture as the basis. On previous approaches, no changes were made
to the default kernels used in order to make the necessary computations. From now on,
all the presented installations use ELPA for different paradigms: shared and distributed
memory.

ELPA can be installed using configuration wrapper scripts3. Fortunately, ELPA has a
bunch of different wrappers scripts available for different paradigms and architectures,
including KNL. The ELPA solver and QE configuration can be made using the tutorial
suggested by Intel4, which was used for the first installation of QE using ELPA.

Throughout this study, four different sets of installations5 were made for each device,
multicore and many-core (as stated in appendix A): a sequential installation, distributed
and shared memory installations and a hybrid installation which combines shared and
distributed memory. From these installations, different tests were made on the SeARCH
with Intel Xeon based devices and KNL. These tests allows to understand the impact of the
ELPA solver using two different devices categories: multicore and many-core. FFTW3 and
SCALAPACK libraries were used, as the installations presented so far.

3 http://elpa.mpcdf.mpg.de/elpa-tar-archive
4 https://software.intel.com/en-us/articles/quantum-espresso-for-the-intel-xeon-phi-processor
5 https://gitlab.mpcdf.mpg.de/elpa/elpa/blob/6bb59888ab6a5c5558d1200083cb47ee765b37ab/
INSTALL.md

http://elpa.mpcdf.mpg.de/elpa-tar-archive
https://software.intel.com/en-us/articles/quantum-espresso-for-the-intel-xeon-phi-processor
https://gitlab.mpcdf.mpg.de/elpa/elpa/blob/6bb59888ab6a5c5558d1200083cb47ee765b37ab/INSTALL.md
https://gitlab.mpcdf.mpg.de/elpa/elpa/blob/6bb59888ab6a5c5558d1200083cb47ee765b37ab/INSTALL.md

4.3. Performance evaluation on multicore devices 43

4.3 performance evaluation on multicore devices

This section presents the results of the experimental component of this work. An analysis
of the achieved performance values using all the custom installations, faster solver libraries
and parameter tuning used for the WSe2 case study is presented. Even though the used
parameters may apply to other case studies in a general way, only the WSe2 case study
was used to validate the results. The experimental results are shown in a comparative
perspective to an usual (basic) installation, without using FFTW3 and MKL libraries or the
ELPA solver.

The main goal of the tests is to measure the possible performance gains of using these
libraries. The multiple test variants explores the best execution environment by changing
the number of threads and processes evolved in the simulation, adopting FFTW3 library,
faster solvers, using multiple compute nodes for parallel computation, or even changing
the mapping strategy between threads/processes and processing units.

The first step measuring the performance evaluation of PWscf was to get a control flow
graph that allows to measure the impact of the heaviest routines (and subroutines) in terms
of number of calls and spent execution times. Figure 18 shows the critical path in terms
of performance when executing PWscf running the WSe2 case study. This callgraph was
extracted and exploited using callgrind and the full callgraph tree is available in appendix C
for future reference. This graphic representations helps to identify the heaviest routines in
WSe2 simulation, PWscf own routines or routines of their linked/external libraries that are
called during the code execution. The heaviest routines have an high impact on the whole
PWscf performance and are the ones that require performance improvements.

After collecting profiling data and drawing the callgraph multiple times, the critical path
suggests that the heaviest routines in the execution are the ones of the MKL library. How-
ever, the MKL library is widely known for being extremely efficient since their routines are
based on BLAS, LAPACK and SACLAPACK.

Since the performance of the PWscf directly depends on the performance of these li-
braries, getting a better performance out of the PWscf cannot be restricted to code inspec-
tion for detecting targets to parallelize the workload.

44 Chapter 4. experimental evaluation

Figure 18.: Heaviest routines of the PWscf

The next steps in this study were redirected to understand how much the libraries config-
uration, PWscf configurations itself and the execution environment parameters at runtime
can affect the performance of the whole simulation.

This section exploits a performance evaluation of WSe2 simulations using PWscf only for
multicore devices. The goal of these results are to measure the performance at the following
levels:

1. The impact of multithread and multiprocess implementations.

2. An alternative installation adopting FFTW3 and LAPACK libraries explicitly linked,
comparing the performance of the installation with the default linkage with no opti-
mizations in the configuration phase of PWscf. This group of tests will also measure
the impact of process affinity comparing the results achieved using two different map-
ping strategies: mapping processes by core and mapping processes by socket.

3. The impact of multinode computation.

4. Using parameterized executions for different parallel computing paradigms installa-
tions with ELPA: shared, distributed and hybrid memory.

4.3. Performance evaluation on multicore devices 45

5. The impact of adopting ELPA as the main eigensolver to solve the linear equation
system in the simulation since PWscf supports the configuration of different direct
solvers.

The following tests were performed using the 5-best metrics regarding the execution
times. Each test was performed with a full compute node reservation and with a minimum
number of processes running to decrease as much as possible the intrusion effect.

Impact of multithread and multiprocess

Figure 19 shows the results achieved with a variable number of processes and threads in
a 10-core node of the SeARCH.

Figure 19.: Execution times to measure the impact of multithreading on multicore devices
(dual 10-core server). Reference time: 2.60 minutes

Figure 20 shows the CPU time and the spin time for a single-process/single-thread and
single-process/four-threads. The performance considerably decreases for more than one
thread per core which indicates an handicap of PWscf taking advantage of multithread in
multicore architectures.

After profiling the simulation for a single thread per core, VTune shows an almost 100%
core usage. The same profiling applied to more than one thread per core shows that the
wait time increases for all threads as long as their spinning time. This can explain why
all the tests with more than one thread per core have worse results. This behaviour also

46 Chapter 4. experimental evaluation

(a) PWscf execution with 1 Process 1 Thread (b) PWscf execution with 1 Process 4 Threads

Figure 20.: VTune profiling diagrams for PWscf execution with 1 process

occurs in tests with more than one process using multiple threads which indicates that the
workload is not being correctly balanced among all the threads. The threads are then in
a waiting state and spinning most of the time as stated in the right side of the Figure 20b,
where almost 30% of the time corresponds to spinning time.

After making the same profiling for a higher number of processes, the effect of an in-
creased spinning and overhead time is aggravated. As stated in Figure 21, the brown
region which corresponds to an active state of the thread, is prominent for one thread per
process, but the spinning time overlaps the next tests when the number of threads per
process increases. As already showed in Figure 19, the adoption of a higher number of pro-
cesses using a single thread contributes to lower execution times. On the other hand, when
the number of threads per process is increased, the spinning and overhead time increases
leading to higher execution times which consequently compromises the performance.

For the first group of tests, the best time achieved was 1.28 min using 20 processes and
a single thread in a compute node with 20 physical cores. For future simulations, using a
default installation of PWscf, this execution environment should be considered as having
the best process/thread distribution. These first group of tests revealed that future versions
of QE should improve the parallelism at a thread level, since the simulations performance
decreased and the spinning time increased for more than one thread.

A better load balancing mechanism, routines and data structures should be improved to
take advantage of simultaneous multithreading (SMT) capabilities of the hardware. Taking in
consideration the reference time (2.60 minutes), the result achieved in this group of tests
(1.28 minutes for 20 processes and 1 thread) has revealed a performance gain of about 2x.

4.3. Performance evaluation on multicore devices 47

(a) PWscf execution with 5 Process 1 Thread (b) PWscf execution with 5 Process 2 Threads

(c) PWscf execution with 5 Process 4 Threads

Figure 21.: VTune profiling diagrams for PWscf execution with 5 processes

Impact of FFTW3 and LAPACK libraries with explicit linkage and process mapping strate-
gies

The next group of tests explores the impact of the process affinity at the socket and
core levels. The affinity concept is a popular technique in HPC that allows the process
and threads distribution among physical cores and sockets in order to increase the amount
of parallel workload. An wisely affinity strategy can significantly improve the workload
throughput per second by distributing and pinning the processes to specific cores or sockets.
This distribution can also improve the throughput in main memory accesses of NUMA
architectures, by spreading processes among available cores and sockets, so that they can
concurrently access data with less contentions.

The "map" or "binding" designations are commonly used for affinity. They are used to
describe this technique of distributing processes and threads among cores or sockets. There
are multiple strategies available to perform these mappings. It is possible to distribute

48 Chapter 4. experimental evaluation

cores and threads in an interleaved fashion among cores in sockets, attribute more than one
process or thread to the same physical core, distribute firstly to the cores of a certain socket
and then to the other sockets, and many others.

In this study, a group of tests were made to measure the impact of two different map-
ping strategies provided by mpirun: --map-by-socket and --map-by-core. The
--map-by-socket strategy uses an interleaved way of mapping among available sockets,
as shown in Figure 22, while the --map-by-core first distributes the processes among the
available cores of the first device and then among the cores of the other device (Figure 23).

Figure 22.: Diagram of the processes mapped by socket

Figure 23.: Diagram of the processes mapped by core

4.3. Performance evaluation on multicore devices 49

Depending on the algorithm used, the pattern of memory accesses, main memory alloca-
tions and the amount of independent workload available, it is not possible to state that a
specific mapping strategy is better than another.

The plot in Figure 24 shows the execution times of the first two installations in order to
evaluate the results of the core mapping, socket mapping and direct linked libraries.

Figure 24.: Impact of explicit linkage libraries and process mapping on a multicore device
(10-core server) with only 1 thread per process. Reference time: 2.60 minutes

In conclusion, the mapping by socket strategy and the installation with explicit linkage of
FFTW3 and LAPACK libraries, did not had a significant impact compared to the installation
used with default linkage. These four tests are a good example to demonstrate that the
decrease execution time is mainly caused by the increase of the number of processes and
not directly by the mapping strategy adopted. For this group of tests the performance gain
over the reference time was 2x as the previous group of tests.

Impact of multinode computation

The plot in Figure 25 shows the results achieved by running the application with a sin-
gle and multiple compute nodes in parallel on the SeARCH. The test demonstrates that
QE scales considerably well for this case study when multiple nodes are used. The best
execution time achieved was with 32 processes, distributed to the cores among four nodes.
Given that the SeARCH has a limitation of eight MPI processes per node, no other test with
a higher number of processes was possible to develop.

50 Chapter 4. experimental evaluation

Figure 25.: Execution times to measure the node scalability for QE on multicore devices
(dual 8-core server). Reference time: 2.60 minutes

Both tests were made using the same number of proc-pools, which corresponds to the
−nk parameter of QE. This parameter defines the the number of sets of cores to be used
in the simulation. For example, with 32 cores choosing 8 proc-pools (sets), QE will divide
those 32 cores by 8 sets resulting in 4 cores per set, so the number of k points will be divided
among these sets. After several tests, using a broad range of proc-pool numbers, the results
using 8 proc-pools revealed to be the ones with the best performance configuration for the
compute node used.

The configuration of the multiple node tests, required the development of a hostfile (4.4),
which is invoked in the job script, with information of the compute nodes to be used in the
test, using mpirun (as stated on listing 4.5) and the number of cores. In the listing bellow,
the number of slots represents the number of cores to be used in each node.

compute-641-10 slots=8

2 compute-641-12 slots=8

compute-641-13 slots=8

4 compute-641-14 slots=8

Listing 4.4: Example of the hostfile

The tests revealed a decrease in execution times, using 4 nodes, as the number of pro-
cesses used increases. This decrease is less accentuated after 16 processes are used. The
single node tests showed that the execution times decreases when using up to 16 processes,

4.3. Performance evaluation on multicore devices 51

which is the number of physical cores available in the node, at which point the usage of
more processes leads to a gradually increase in the execution times.

mpirun -np $ppn --hostfile hosfile_name --mca mtl mx --mca pml cm ./

excutable_name

Listing 4.5: Example of the mpirun command line used

The number of cores chosen should be equal to the total number of available cores in the
node in order for the entire node to be reserved exclusively for the tests execution. The
listing 4.6 shows how to properly request the entire resources of each compute node.

1 #PBS -l nodes=compute-641-10:ppn=32+compute-641-12:ppn=32+compute-641-13:ppn=32+

compute-641-14:ppn=32

Listing 4.6: Example of nodes request line on PBS job

Even though only four nodes were used, the number of nodes can be increased, leading
to a better expected performance. However an higher number of requested nodes implies
an higher waiting time. In order to streamline the testing process, the maximum number
of nodes that was possible to use in this study, were four compute nodes.

To summarize, the simulation scaled well in terms of performance, when more than one
compute node was used with myrinet inter-node communication. Comparing the results
between single node and 4 nodes, the best speedup was about 3.7 times. Taking in account
the reference time, the performance gain was also about 3.7 times. The application scales
well running the simulation with four compute nodes. However it was not possible to
determine the critical point in execution time (the point where the application stops scaling)
because it was not possible to test the simulation with more than four compute nodes due
to limitations in the availability of nodes.

Parameterized executions for different parallel paradigms installations with ELPA

The next group of tests are referred to the installations made with ELPA solver. The
installation and the configuration process of the QE with this solver for different computing
paradigms (shared, distributed and hybrid memory) are described in appendix A.

The first installation using ELPA solver was a sequential version of QE and ELPA. This
sequential test allowed to assert that the WSe2 simulation time was about 15.22 minutes in
a dual 10-core server with 4 proc-pools. To achieve a better execution time, three groups
of tests were made for multiple installation paradigms of the QE using ELPA, as shown in
Figure 26.

52 Chapter 4. experimental evaluation

(a) Shared memory installation

(b) Distributed memory installation

(c) Distributed and shared memory (hybrid) installation

Figure 26.: Execution times for shared, distributed and hybrid memory installations of QE
using ELPA on a dual 10-core server. Reference time: 2.60 minutes

4.3. Performance evaluation on multicore devices 53

These results were obtained using shared, distributed and hybrid memory implemen-
tations for different numbers of proc-pools. These results were also the best results of all
single-node multicore tests. The execution time with these implementations decreased from
15.22 minutes to 0.90 minutes in distributed and hybrid memory implementations, which
reflects a gain of almost 17 times.

Only one thread per process was used for the distributed and hybrid memory implemen-
tations. However, these two installations are actually different since the hybrid installation
can support multiple threads per process, while the distributed installation can not. Due
to the fact that the use of more than one thread per process revealed to have the worst
performance in previous tests (Figure 19), in both installations was used a single thread per
process.

The best results of QE are usually achieved with distributed memory implementations.
The obtained performance figures using distributed memory and shared memory reveals
that parallelization made in shared memory implementations are worst than MPI imple-
mentations for distributed memory. Shared memory achieved the best results using 2 and
5 proc-pools distributed among 4 threads. The best results for distributed and hybrid mem-
ory implementations were obtained using 4 proc-pools distributed among 20 processes. The
shared memory installation cannot compete with the distributed and hybrid installations
and this is without taking into account that the hybrid installation did not use multiple
threads per process, since previous tests showed that this is a worst solution, as mentioned
before. Overall the performance gain of this group of tests over the reference time was
about 2.8 times.

Impact of using ELPA solver with QE

To summarize the tests on multicore devices, the plot in Figure 27 shows the best results
without using ELPA solver and the impact of using it. The use of the ELPA solver improved
the performance of the simulation in about 10%. Both tests were performed using hybrid
installations and the same number of proc-pools.

At this point in the study and in general, the installations using ELPA revealed a better
performance compared with all previous groups of tests stated in this study so far. In the
next section a performance evaluation will be explored in detail for tests in a many-core
devices, taking advantage of hardware design re-configurations, ELPA solver and multi-
paradigm installations.

54 Chapter 4. experimental evaluation

Figure 27.: Impact of using ELPA solver with QE on multicore devices (dual 10-core server)

4.4 performance evaluation on many-core devices

Until this section, all WSe2 simulation tests were performed on a multicore environment
in order to explore different computing paradigms and specific implementations.

In this section, the QE simulation is done in a many-core device to be able to explore
different clustering and memory modes, already explained in Section 3.1. All tests in this
section were performed on a single compute node with a many-core device, for multiple
computing paradigm installations, variable number of processes and threads, and multiple
parameter configurations. The goal of these results are to measure the performance at the
following levels:

1. Impact of the cluster and memory modes with the use of proc-pools parameters.

2. Multi-paradigm installations with the -numactl switch.

3. Impact of ELPA solver on many-core devices with the use of proc-pools parameters.

Since the plots for multicore revealed that it was possible to increase the performance in
about 10% using ELPA, all the tests for many-core devices were made with this solver.

4.4. Performance evaluation on many-core devices 55

Impact of the cluster and memory modes

The bellow plot shows the execution times for the different node configurations . The
values in the plot of Figure 28 are the fastest times for each configuration test, which com-
bines two different cluster modes (all-to-all and quadrant), two memory modes (flat and
cache mode), and a fixed value of 16 proc-pools.

Figure 28.: Execution times for different node configurations for 64 processes. Reference
time: 2.60 minutes

The results show that the best execution environment in terms of performance was
achieved with the quadrant mode with flat memory access and using 16 proc-pools, which
results in 16 sets of 4 cores, each responsible for a group of k points. In addition to the use
of ELPA with the many-core device, the quadrant and flat modes were fixed for the next
group of tests. The result for quadrant and flat modes overtook the performance results of
the reference time, with a gain of ~1.5 times, using 64 single-threaded processes.

Multi-paradigm installation tests

Until now tests explored different hardware configurations, parameter values, number of
processes and threads and mapping modes. However, none of the tests explicitly addressed
memory allocations.

The next plots show the way memory allocations are performed in the many-core device
and compares the results in multiple paradigms. All tests with numactl were made in

56 Chapter 4. experimental evaluation

flat mode, using the Unix tool numactl to instruct the compiler to place the data in the
embedded or external RAM, using the following switches:

• --preferred=1: to give preference to MCDRAM, before allocating in external DRAM.

• --membind=1: to force memory allocations only in MCDRAM.

• --membind=0: to force memory allocations only in the external RAM.

Since tests on a shared memory environment with multicore devices showed that using
more than 1 thread leads to a performance degradation, the same outcome was obtained
on the many-core server.

Figure 29 shows that the performance of the distributed memory installation with numactl
--preferred=1 is better than hybrid installations with any other numactl configuration.
This is true because accessing the MCDRAM is faster than accessing the external DRAM.

Figure 29.: Execution times for distributed memory and hybrid installation with -numactl
switch. Reference time: 2.60 minutes

None of these tests overtook the performance of the reference time. However, the appro-
priate use of the parameters can actually improve these timings, as shown in the next group
of tests.

Impact of ELPA solver on a many-core device

Figure 30 illustrates the results of using ELPA solver in the simulation process, as was
already done for multicore devices. For many-core devices it is possible to draw the same

4.4. Performance evaluation on many-core devices 57

conclusions about the impact of this solver. The use of the solver has provided a small
improvement in the overall performance of the simulation. The higher gain obtained in this
group of tests reflects a performance gain in execution time of 17% for 16 proc-pools.

Figure 30.: Impact of ELPA in QE using proc-pools parameter with variable no of processes
and 1 thread per each process. Reference time: 2.60 minutes

Comparing the usage of ELPA between multicore and many-core tests, these final results
shows that the impact of ELPA is more expressive in many-core devices. The installation
of ELPA is then recommended for this type of simulations and the QE installation should
preceed the installation of ELPA so that the library can be linked to QE. The three tests
without the usage of ELPA resulted in a performance loss so they can be ignored. For both
implementations with and without ELPA, the usage of 16 proc-pools revealed to be the
best parameter configuration for performance. Contrary to the previous tests (where the
proc-pools parameter was not used), the execution times from 32 processes to 64 processes
actually decreased.

To guarantee a fair comparison between tests, all were made using the memory allocation
on MCDRAM whenever possible, otherwise the memory allocation will be made in DRAM.
This was ensured using numactl -preferred=1 since the tests in Figure 29 revealed that
this was the best data allocation strategy.

The usage of proc-pools parameters, showed in Figure 30, had a positive impact on per-
formance. When this parameter is used with a value of 16, the total number of available
cores in the hardware (64 cores) is organized in 16 sets (4 cores per set). The number of

58 Chapter 4. experimental evaluation

k points are internally divided between these 16 sets. Probably these 16 sets are evenly
divided by the 4 quadrants (as described before, this test uses a quadrant mode configura-
tion). When the proc-pools parameter is not used, there is only 1 set with all the cores, and
the distribution of k points across them may be uneven (worst case scenario, one core may
receive all the k points to process while the other cores idle).

The main advantage of the quadrant mode is the logical division of all tiles and each
quadrant is assigned to the closest MCDRAM. The tiles of each quadrant privileges the
memory access to MCDRAM of its own quadrant, so the distance incurred in a memory
access by a tile in a quadrant is shorter, as long as the latency penalty.

The results shows that this presumed combination between proc-pool parameters and
quadrant mode, leads to a performance improvement, specially when compared to the
tests/configurations without the usage of proc-pools. Compared to the referenced time,
the performance gain of using 64 processes, 1 thread and 16 proc-pools was about 1.5
times.

5

C O N C L U S I O N S

5.1 summary

The main goal of the developed work in this dissertation was to aid physicists on quan-
tum mechanical modeling problems, namely the usage of density functional theory and
Quantum ESPRESSO, to improve the execution times of their software application in dif-
ferent parallel computing platforms, supporting both shared and distributed memory envi-
ronments. Although the QE tool already supports both parallelism paradigms, the multiple
available versions and configuration options have a significant impact on the application
performance. This required a detailed analysis and experimental work to determine the
performance outcomes using different software installations and configurations, different
multi-thread and multi-process implementations, different parallel computing platforms,
memory organizations and hardware configurations, namely on many-core devices such as
the Intel Xeon Phi KNL.

The case study was the tungsten diselenide simulation process using the PWscf module
from Quantum ESPRESSO, while the testbed used was the SeARCH cluster environment.
This study allowed to gauge a tuned installation and execution environment in terms of per-
formance running PWscf. The obtained outcomes can serve as a starting point to enable the
physics community to be able to speedup application codes similar to the WSe2 simulation
in QE, using an installation with better performance and a better execution environment
for different computing paradigms (shared, distributed and hybrid).

As a starting point, a profiling study was made using the Intel VTune 2016 in order
to inspect the critical path of the whole simulation process and discover which routines
were more computationally intensive. The results lead to the conclusion that most of the
simulation execution time was spent performing numerical computations with the Intel
MKL library, which contains routines that already have a very high level of computational
efficiency. With this conclusion, the focus on this work was in a performance analysis to
measure the impact of multi-threading and multi-processing using multicore and many-
core based servers.

59

60 Chapter 5. conclusions

The reference time to be improved was the better execution time a physics researcher
managed to reach with a standard installation and configuration of the Quantum ESPRESSO
package. To improve this time, the first step was to address the simulation execution envi-
ronment in QE: changes were made in the installation process, in the simulation parameters
configuration, testing each variation’s performance against the result achieved with a stan-
dard installation. The reference execution time was 2.60 min, achieved with 20 processes
on a dual 10-core server.

The developed tests are organized in two major groups: the tests made on multicore
servers (dual 10-core and dual 8-core servers), and on a server with a many-core device
(the Intel Xeon Phi KNL).

The multicore group of tests acheived better execution times when the simulation used an
ELPA solver and was performed on a dual 10-core server, with 20 single-threaded processes
and a number of proc-pools equal to 4, in a distributed memory environment. For these
parameters, the simulation execution time was ~2.8 times faster than the reference time.

The hybrid installation lead to the same gain as in the distributed memory installation.
This same gain is taking into account that it was not possible to take full advantage of the
hybrid installation since using more than one thread immediately lead to a performance
degradation. With the ELPA solver, in multicore devices, the gains were 10% more com-
pared with the same configuration test but without this solver. Linking FFTW3 and LA-
PACK libraries did not lead to any significant improvement. The shared memory approach
registered the worst time results and this paradigm should be discarded when exploring
performance on this device with the Quantum ESPRESSO package.

Using multiple nodes - 4 dual 8-core servers interconnected with a 10 Gb Myrinet and 8

proc-pools - the performance gain was even higher: 3.7 times faster than the reference time.

The second group of tests, using the many-core device, concluded that the quadrant flat
mode was the best KNL node configuration to run the QE simulation of WSe2. The best
execution time was 1.5x faster than the reference time, using 16 proc-pools and 64 processes
with a single thread.

Using this device the tests also showed that multi-paradigm installations did not provide
a significant performance improvement. However, the distributed memory installation man-
aged to be the best paradigm option using numactl -preferred=1, compared with the
hybrid and shared memory installations, as happened in the first group of multicore tests.
The shared memory tests led to the same conclusion as in multicore devices: the worst
results and this negative impact was even larger than on multicore tests.

The simulation using the ELPA solver led to a 17% gain over the simulation times with-
out this solver, compared with the 10% gain measured in the multicore server. The usage

5.2. Future work 61

of parameters in ELPA test revealed a significant execution time reduction for a number of
proc-pools equal to 16. However, the overall performance gain with the ELPA solver was
lower than in the multicore server: only 1.5 times the reference time.

Comparing multicore and many-core results, the best one were achieved in the multicore
device. This can be explained by the fact that the simulation is memory-bound and despite
of the high memory bandwidth of the embedded RAM in the many-core KNL package,
if the number of memory accesses in the simulation is significantly high, the simulation
performance is drastically affected by the lack of a L3 cache.

To summarize, the best execution time for the simulation of WSe2 in QE was achieved
on a multi-node configuration (3.7 times faster than the reference time on 4 dual 8-core
servers), while the best configuration on a single server was on a dual 10-core server with
a distributed memory environment using ELPA solver (2.8 times faster than the reference
time). The number of processes considered in the execution environment should be equal
to the number of physical cores using 4 proc-pools. An installation tutorial can be accessed
in the Appendix A.1.3.

5.2 future work

After all the tests made searching for the best execution environment to run WSe2 sim-
ulations in QE, some considerations and suggestions can be made in order to expand this
study. All experimental tests aimed to tune the execution environment of a software pack-
age for the different computing paradigms, without performing any changes to the code
itself.

All the improvements in execution times for the simulation were achieved by changing
the way the software operates on data, how that data is mapped in the memory hierarchy
and the heuristics used to distribute the workload in runtime. Since the QE algorithm is
memory bound, some possible changes in the code can be considerd in order to improve
the way memory data is stored - for example, by changing the memory allocator. When the
HBM modes were studied in section 3.1.2, the pointer to the developer’s guide3 suggests the
usage of the Memkind library to take advantage of the memkind and the high bandwidth
memory allocator (hbwmalloc).

As showed in the results of the shared memory tests, using more than one thread always
leads to a performance degradation. This was the main limitation found in QE for multi-
threaded tests. Therefore, the second suggestion for future work is to improve the routines
parallelization, and the workload division among cores for this paradigm. This sugges-
tion should be seriously considered because the benefits of improving the shared memory
paradigm can lead to a positive impact in the hybrid memory simulation environments.

62 Chapter 5. conclusions

The best results achieved were when the computation of the simulation was distributed
among multiple independent nodes. This led to the conclusion that QE positively scales
the performance in a distributed memory environment. However, due to limitations in
the number of nodes and the number of processes per node, it was only possible to use 4

compute nodes and 8 processes per each. As a consequence, the inflection point for this
scalability was not possible to determine. If more than 4 nodes were used, maybe it would
have been possible to improve the execution time even more. The third suggestion refers
to the determination of this inflection point, where the simulation stops scaling in order to
understand the limits of distributed memory simulations for this case study.

The last suggestion refers to the exploration of the simulation performance in heteroge-
neous environments, using GPUs to offload heavy workloads, since QE offers this support.
This type of computing accelerators were not explored in this study since the goal was to
explore the expected performance gains, using this kind of simulations in a KNL server.
This server was the most recent many-core based server installed in SeARCH cluster when
this dissertation work started.

B I B L I O G R A P H Y

[1] R. Coehoorn, C. Haas, J. Dijkstra, C. J. F. Flipse, R. A. de Groot, and A. Wold. Electronic
structure of mose2, mos2, and wse2. i. band-structure calculations and photoelectron
spectroscopy. Physical review. B, Condensed matter, 35, 1987.

[2] M. d’Avezac, M. Calandra, and F. Mauri. Density functional theory description of hole-
trapping in Sio2: A self-interaction-corrected approach. Physical review. B, Condensed
matter and materials physics, 71, 2005.

[3] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, and
et al. Quantum ESPRESSO: a modular and open-source software project for quantum
simulations of materials. Journal of Physics: Condensed Matter, 21, 2009.

[4] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli, M. Calandra, R. Car,
and et al. Advanced capabilities for materials modelling with Quantum ESPRESSO.
Journal of Physics: Condensed Matter, 29, 2017.

[5] J. Hafner, C. Wolverton, and G. Ceder. Toward computational materials design: The
impact of density functional theory on materials research. MRS Bulletin, 31, 2006.

[6] J. Kohanoff. Electronic Structure Calculations for Solids and Molecules: Theory and Compu-
tational Methods. Cambridge University Press, 1st edition, 2006.

[7] W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation
effects. The Physical review, 140, 1965.

[8] A. Marek, V. Blum, R. Johanni, V. Havu, B. Lang, T. Auckenthaler, A. Heinecke, H-J
Bungartz, and H. Lederer. The elpa library: scalable parallel eigenvalue solutions for
electronic structure theory and computational science. Journal of Physics: Condensed
Matter, 26, 2014.

[9] J. Paier, R. Hirschl, M. Marsman, and G. Kresse. The perdew–burke–ernzerhof
exchange-correlation functional applied to the g2-1 test set using a plane-wave basis
set. The Journal of Chemical Physics, 122, 2005.

[10] A. Sodani, R. Gramunt, J. Corbal, H. Kim, K. Vinod, S. Chinthamani, S. Hutsell,
R. Agarwal, and Y. Chen Liu. Knights landing: Second-generation intel xeon phi
product. IEEE Micro, 36, 2016.

63

64 Bibliography

[11] J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-
Portal. The siesta method for ab initio order-n materials simulation. Journal of Physics:
Condensed Matter, 14, 2002.

[12] D. Stanković, P. Jovanović, A. Jović, V. Slavnić, D. Vudragović, and A. Balaž. Implemen-
tation and benchmarking of new fft libraries in quantum espresso. In High-Performance
Computing Infrastructure for South East Europe’s Research Communities. Springer, 2014.

A
T U T O R I A L F O R Q U A N T U M E S P R E S S O I N S TA L L AT I O N S W I T H E L PA

a.1 quantum espresso installation with elpa on multicore and many-
core

a.1.1 Sequential installation

1. Download the ELPA configure wrapper scripts (XCONFIGURE reference).

2. Download an ELPA release and unarchive:

1 $ wget http://elpa.mpcdf.mpg.de/html/Releases/2016.11.001.pre/elpa

-2016.11.001.pre.tar.gz

$ tar xvf elpa-2016.11.001.pre.tar.gz

3 $ cd elpa-2016.11.001.pre

3. Copy the respective configure wrapper scripts (according to your architecture) into
ELPA root folder.

For Sandy Bridge architecture (multicore):

1 $ cp /path/to/xconfigure/elpa/configure-elpa-snb.sh .

For KNL architecture (many-core):

1 $ cp /path/to/xconfigure/elpa/configure-elpa-knl.sh .

4. Load the compiler modules.

On multicore:

65

https://github.com/hfp/xconfigure/archive/master.zip
https://github.com/hfp/xconfigure#xconfigure
https://elpa.mpcdf.mpg.de/html/Releases/2016.11.001.pre/elpa-2016.11.001.pre.tar.gz

66 Appendix A. tutorial for quantum espresso installations with elpa

1 $ source /share/apps/intel/compilers_and_libraries_2017.4.196/linux/bin/

compilervars.sh intel64

$ source /share/apps/intel/compilers_and_libraries_2017.4.196/linux/mkl/

bin/mklvars.sh intel64

On many-core:

$ source /opt/intel/compilers_and_libraries_2017.3.191/linux/bin/

compilervars.sh intel64

2 $ source /opt/intel/compilers_and_libraries_2017.3.191/linux/mkl/bin/

mklvars.sh intel64

5. Run the configuration wrapper script for ELPA.

On multicore node:

$./configure-elpa-snb.sh <directory_seq_installation_elpa> --with-mpi=0

On many-core node:

$./configure-elpa-knl.sh <directory_seq_installation_elpa> --with-mpi=0

<directory_seq_installation_elpa> is the directory where sequential version of ELPA will
be installed and --with-mpi=0 will disable the MPI.

6. Build and install ELPA:

$ make -j

$ make install

7. Download QE and unarchive:

$ wget https://github.com/QEF/q-e/archive/qe-6.1.0.tar.gz

$ tar xvf qe-6.1.tar.gz

$ cd qe-6.1

https://github.com/QEF/q-e/archive/qe-6.1.0.tar.gz

A.1. Quantum Espresso installation with ELPA on multicore and many-core 67

8. Copy the respective configure wrapper scripts (according to your architecture) into
QE root folder.

For Sandy Bridge architecture (multicore):

1 $ cp /path/to/xconfigure/qe/configure-qe-snb.sh .

For KNL architecture (many-core):

1 $ cp /path/to/xconfigure/qe/configure-qe-knl.sh .

9. Load the compiler modules.

On multicore:

1 $ source /share/apps/intel/compilers_and_libraries_2017.4.196/linux/bin/

compilervars.sh intel64

$ source /share/apps/intel/compilers_and_libraries_2017.4.196/linux/mkl/

bin/mklvars.sh intel64

On many-core:

$ source /opt/intel/compilers_and_libraries_2017.3.191/linux/bin/

compilervars.sh intel64

2 $ source /opt/intel/compilers_and_libraries_2017.3.191/linux/mkl/bin/

mklvars.sh intel64

10. Run the configuration wrapper script for QE.

On many-core:

1 $./configure-qe-snb.sh <directory_seq_installation_qe> --disable-

parallel

68 Appendix A. tutorial for quantum espresso installations with elpa

On multicore:

1 $./configure-qe-knl.sh <directory_seq_installation_qe> --disable-

parallel

<directory_seq_installation_qe> is the directory where sequential QE will be installed
(the name of this directory need to be the same of the <directory_seq_installation_elpa>
and need to be in the same directory of ELPA folder). --disable-parallel will
disable the MPI.

11. Add the -D__FFTW3 flag on DFLAGS in make.inc

1 DFLAGS = ... -D__FFTW3

12. Build the QE application that you need (e.g., "pw", "cp", or "all"):

1 $ make pw -j

a.1.2 Shared Memory Installation

1. Download the ELPA configure wrapper scripts (XCONFIGURE reference).

2. Download an ELPA release and unarchive:

1 $ wget http://elpa.mpcdf.mpg.de/html/Releases/2016.11.001.pre/elpa

-2016.11.001.pre.tar.gz

$ tar xvf elpa-2016.11.001.pre.tar.gz

3 $ cd elpa-2016.11.001.pre

3. Copy the respective configure wrapper scripts (according to your architecture) into
ELPA root folder.

For Sandy Bridge architecture (multicore):

1 $ cp /path/to/xconfigure/elpa/configure-elpa-snb-omp.sh .

https://github.com/hfp/xconfigure/archive/master.zip
https://github.com/hfp/xconfigure#xconfigure
https://elpa.mpcdf.mpg.de/html/Releases/2016.11.001.pre/elpa-2016.11.001.pre.tar.gz

A.1. Quantum Espresso installation with ELPA on multicore and many-core 69

For KNL architecture (many-core):

1 $ cp /path/to/xconfigure/elpa/configure-elpa-knl-omp.sh .

4. Load the compiler modules.

On multicore:

1 $ source /share/apps/intel/compilers_and_libraries_2017.4.196/linux/bin/

compilervars.sh intel64

$ source /share/apps/intel/compilers_and_libraries_2017.4.196/linux/mkl/

bin/mklvars.sh intel64

On many-core:

$ source /opt/intel/compilers_and_libraries_2017.3.191/linux/bin/

compilervars.sh intel64

2 $ source /opt/intel/compilers_and_libraries_2017.3.191/linux/mkl/bin/

mklvars.sh intel64

5. Run the configuration wrapper script for ELPA.

On multicore node:

$./configure-elpa-snb-omp.sh <directory_omp_installation_elpa> --with-

mpi=0

On many-core node:

$./configure-elpa-knl-omp.sh <directory_omp_installation_elpa> --with-

mpi=0

<directory_omp_installation_elpa> is the directory where shared memory version of
ELPA will be installed and --with-mpi=0 will disable the MPI.

6. Build and install ELPA:

70 Appendix A. tutorial for quantum espresso installations with elpa

$ make -j

$ make install

7. Download QE and unarchive:

$ wget https://github.com/QEF/q-e/archive/qe-6.1.0.tar.gz

$ tar xvf qe-6.1.tar.gz

$ cd qe-6.1

8. Copy the respective configure wrapper scripts (according to your architecture) into
QE root folder.

For Sandy Bridge architecture (multicore):

1 $ cp /path/to/xconfigure/qe/configure-qe-snb-omp.sh .

For KNL architecture (many-core):

1 $ cp /path/to/xconfigure/qe/configure-qe-knl-omp.sh .

9. Load the compiler modules.

On multicore:

1 $ source /share/apps/intel/compilers_and_libraries_2017.4.196/linux/bin/

compilervars.sh intel64

$ source /share/apps/intel/compilers_and_libraries_2017.4.196/linux/mkl/

bin/mklvars.sh intel64

On many-core:

$ source /opt/intel/compilers_and_libraries_2017.3.191/linux/bin/

compilervars.sh intel64

2 $ source /opt/intel/compilers_and_libraries_2017.3.191/linux/mkl/bin/

mklvars.sh intel64

https://github.com/QEF/q-e/archive/qe-6.1.0.tar.gz

A.1. Quantum Espresso installation with ELPA on multicore and many-core 71

10. Run the configuration wrapper script for QE. On many-core:

1 $./configure-qe-snb-omp.sh <directory_omp_installation_qe> --disable-

parallel

On multicore:

1 $./configure-qe-knl-omp.sh <directory_omp_installation_qe> --disable-

parallel

<directory_omp_installation_qe> is the directory where shared memory version of QE
will be installed (this directory need to be in the same directory of ELPA folder, the
name of this directory need to be the same of the <directory_omp_installation_elpa>).
--disable-parallel will disable the MPI.

11. Add the -D__FFTW3 flag on DFLAGS in make.inc

1 DFLAGS = ... -D__FFTW3

12. Build the QE application that you need (e.g., "pw", "cp", or "all"):

1 $ make pw -j

a.1.3 Distributed Memory Installation

1. Download the ELPA configure wrapper scripts (XCONFIGURE reference).

2. Download an ELPA release and unarchive:

1 $ wget http://elpa.mpcdf.mpg.de/html/Releases/2016.11.001.pre/elpa

-2016.11.001.pre.tar.gz

$ tar xvf elpa-2016.11.001.pre.tar.gz

https://github.com/hfp/xconfigure/archive/master.zip
https://github.com/hfp/xconfigure#xconfigure
https://elpa.mpcdf.mpg.de/html/Releases/2016.11.001.pre/elpa-2016.11.001.pre.tar.gz

72 Appendix A. tutorial for quantum espresso installations with elpa

3 $ cd elpa-2016.11.001.pre

3. Copy the respective configure wrapper scripts (according to your architecture) into
ELPA root folder.

For Sandy Bridge architecture (multicore):

1 $ cp /path/to/xconfigure/elpa/configure-elpa-snb.sh .

For KNL architecture (many-core):

1 $ cp /path/to/xconfigure/elpa/configure-elpa-knl.sh .

4. Load the compiler modules.

On multicore:

1 $ source /share/apps/intel/compilers_and_libraries_2017.4.196/linux/bin/

compilervars.sh intel64

$ source /share/apps/intel/compilers_and_libraries_2017.4.196/linux/mkl/

bin/mklvars.sh intel64

On many-core:

$ source /opt/intel/compilers_and_libraries_2017.3.191/linux/bin/

compilervars.sh intel64

2 $ source /opt/intel/compilers_and_libraries_2017.3.191/linux/mkl/bin/

mklvars.sh intel64

5. Run the configuration wrapper script for ELPA.

On multicore node:

$./configure-elpa-snb.sh <directory_mpi_installation_elpa>

A.1. Quantum Espresso installation with ELPA on multicore and many-core 73

On many-core node:

$./configure-elpa-knl.sh <directory_mpi_installation_elpa>

<directory_mpi_installation_elpa> is the directory where distributed memory version of
ELPA will be installed.

6. Build and install ELPA:

$ make -j

$ make install

7. Download QE and unarchive:

$ wget https://github.com/QEF/q-e/archive/qe-6.1.0.tar.gz

$ tar xvf qe-6.1.tar.gz

$ cd qe-6.1

8. Copy the respective configure wrapper scripts (according to your architecture) into
QE root folder.

For Sandy Bridge architecture (multicore):

1 $ cp /path/to/xconfigure/qe/configure-qe-snb.sh .

For KNL architecture (many-core):

1 $ cp /path/to/xconfigure/qe/configure-qe-knl.sh .

9. Load the compiler modules.

On multicore:

1 $ source /share/apps/intel/compilers_and_libraries_2017.4.196/linux/bin/

compilervars.sh intel64

$ source /share/apps/intel/compilers_and_libraries_2017.4.196/linux/mkl/

bin/mklvars.sh intel64

https://github.com/QEF/q-e/archive/qe-6.1.0.tar.gz

74 Appendix A. tutorial for quantum espresso installations with elpa

On many-core:

$ source /opt/intel/compilers_and_libraries_2017.3.191/linux/bin/

compilervars.sh intel64

2 $ source /opt/intel/compilers_and_libraries_2017.3.191/linux/mkl/bin/

mklvars.sh intel64

10. Run the configuration wrapper script for QE. On many-core:

1 $./configure-qe-snb.sh <directory_mpi_installation_qe>

On multicore:

1 $./configure-qe-knl.sh <directory_mpi_installation_qe>

<directory_mpi_installation_qe> is the directory where distributed memory version of
QE will be installed (the name of this directory need to be the same of the <direc-
tory_mpi_installation_elpa> and need to be in the same directory of ELPA folder).

11. Add the -D__FFTW3 flag on DFLAGS in make.inc

1 DFLAGS = ... -D__FFTW3

12. Build the QE application that you need (e.g., "pw", "cp", or "all"):

1 $ make pw -j

a.1.4 Hybrid Installation

1. Download the ELPA configure wrapper scripts (XCONFIGURE reference).

https://github.com/hfp/xconfigure/archive/master.zip
https://github.com/hfp/xconfigure#xconfigure

A.1. Quantum Espresso installation with ELPA on multicore and many-core 75

2. Download an ELPA release and unarchive:

1 $ wget http://elpa.mpcdf.mpg.de/html/Releases/2016.11.001.pre/elpa

-2016.11.001.pre.tar.gz

$ tar xvf elpa-2016.11.001.pre.tar.gz

3 $ cd elpa-2016.11.001.pre

3. Copy the respective configure wrapper scripts (according to your architecture) into
ELPA root folder.

For Sandy Bridge architecture (multicore):

1 $ cp /path/to/xconfigure/elpa/configure-elpa-snb-omp.sh .

For KNL architecture (many-core):

1 $ cp /path/to/xconfigure/elpa/configure-elpa-knl-omp.sh .

4. Load the compiler modules.

On multicore:

1 $ source /share/apps/intel/compilers_and_libraries_2017.4.196/linux/bin/

compilervars.sh intel64

$ source /share/apps/intel/compilers_and_libraries_2017.4.196/linux/mkl/

bin/mklvars.sh intel64

On many-core:

$ source /opt/intel/compilers_and_libraries_2017.3.191/linux/bin/

compilervars.sh intel64

2 $ source /opt/intel/compilers_and_libraries_2017.3.191/linux/mkl/bin/

mklvars.sh intel64

5. Run the configuration wrapper script for ELPA.

On multicore node:

https://elpa.mpcdf.mpg.de/html/Releases/2016.11.001.pre/elpa-2016.11.001.pre.tar.gz

76 Appendix A. tutorial for quantum espresso installations with elpa

$./configure-elpa-snb-omp.sh <directory_hybrid_installation_elpa>

On many-core node:

$./configure-elpa-knl-omp.sh <directory_hybrid_installation_elpa>

<directory_hybrid_installation_elpa> is the directory where hybrid version of ELPA will
be installed.

6. Build and install ELPA:

$ make -j

$ make install

7. Download QE and unarchive:

$ wget https://github.com/QEF/q-e/archive/qe-6.1.0.tar.gz

$ tar xvf qe-6.1.tar.gz

$ cd qe-6.1

8. Copy the respective configure wrapper scripts (according to your architecture) into
QE root folder.

For Sandy Bridge architecture (multicore):

1 $ cp /path/to/xconfigure/qe/configure-qe-snb-omp.sh .

For KNL architecture (many-core):

1 $ cp /path/to/xconfigure/qe/configure-qe-knl-omp.sh .

9. Load the compiler modules.

On multicore:

https://github.com/QEF/q-e/archive/qe-6.1.0.tar.gz

A.1. Quantum Espresso installation with ELPA on multicore and many-core 77

1 $ source /share/apps/intel/compilers_and_libraries_2017.4.196/linux/bin/

compilervars.sh intel64

$ source /share/apps/intel/compilers_and_libraries_2017.4.196/linux/mkl/

bin/mklvars.sh intel64

On many-core:

$ source /opt/intel/compilers_and_libraries_2017.3.191/linux/bin/

compilervars.sh intel64

2 $ source /opt/intel/compilers_and_libraries_2017.3.191/linux/mkl/bin/

mklvars.sh intel64

10. Run the configuration wrapper script for QE. On many-core:

1 $./configure-qe-snb-omp.sh <hybrid_installation_directory>

On multicore:

1 $./configure-qe-knl-omp.sh <hybrid_installation_directory>

<directory_hybrid_installation_qe> is the directory where hybrid version of QE will be
installed (this directory need to be in the same directory of ELPA folder and the name
of this directory need to be the same of the <directory_hybrid_installation_elpa>).

11. Add the -D__FFTW3 flag on DFLAGS in make.inc

1 DFLAGS = ... -D__FFTW3

12. Build the QE application that you need (e.g., "pw", "cp", or "all"):

1 $ make pw -j

B
T H E W S E 2 I N P U T D E F I N I T I O N F I L E

&CONTROL

title = ’MX2’ ,

calculation = ’scf’ ,

restart_mode = ’from_scratch’ ,

outdir = ’./out/’ ,

pseudo_dir = ’./’ ,

prefix = ’MX2’ ,

/

&SYSTEM

ibrav = 0,

celldm(1) = 1,

nat = 3,

ntyp = 2,

ecutwfc = 50.0 ,

nosym = .false. ,

nbnd = 23,

occupations = ’smearing’ ,

degauss = 0.01 ,

smearing = ’gaussian’ ,

starting_magnetization(1) = 0.00001,

starting_magnetization(2) = 0.00001,

noncolin = .true. ,

angle1(1) = 0,

angle1(2) = 0,

angle2(1) = 45,

angle2(2) = 0,

lspinorb = .true. ,

london = .true. ,

/

&ELECTRONS

/

CELL_PARAMETERS hexagonal

5.500000000 3.175426480 0.000000000

5.500000000 -3.175426480 0.000000000

0.000000000 0.000000000 45.000000000

ATOMIC_SPECIES

W 183.84000 W.RMR-pbe-TM.UPF

Se 78.96000 Se.rel-pbe-n-nc.UPF

ATOMIC_POSITIONS crystal

Se 0.333333333 0.333333333 -0.070606112

Se 0.333333333 0.333333333 0.070606112

W 0.000000000 0.000000000 0.000000000

K_POINTS automatic

12 12 1 1 1 0

79

C
C A L L G R A P H (A L L R O U T I N E S)

81

	1 Introduction
	1.1 Motivation and goals
	1.2 Contribution
	1.3 Dissertation structure

	2 The electronic structure of materials
	2.1 Case study: WSe2 multilayers
	2.2 The computational point of view

	3 Efficiency in Quantum Espresso installation
	3.1 Target computing platforms
	3.1.1 Cluster modes in KNL
	3.1.2 High-Bandwidth memory modes in KNL

	3.2 qe as a key tool
	3.2.1 qe parallelism

	3.3 Installation and tuning of qe
	3.3.1 Requirements
	3.3.2 Configuration
	3.3.3 Optimized libraries
	3.3.4 FFTW vs. FFTW3
	3.3.5 qe compilation on a co-processor Intel Xeon Phi
	3.3.6 A multi-node installation with MPI

	3.4 Challenges to improve the computational efficiency

	4 Experimental evaluation
	4.1 Experimental setup
	4.1.1 Characterization of the multicore environment
	4.1.2 Characterization of the many-core environment
	4.1.3 Software and libraries versions
	4.1.4 Input characterization

	4.2 Selecting adequate installations
	4.2.1 Hybrid installation
	4.2.2 Using ELPA solver for performance tuning
	4.2.3 qe installation with ELPA

	4.3 Performance evaluation on multicore devices
	4.4 Performance evaluation on many-core devices

	5 Conclusions
	5.1 Summary
	5.2 Future work

	A Tutorial for Quantum ESPRESSO installations with ELPA
	A.1 Quantum Espresso installation with ELPA on multicore and many-core
	A.1.1 Sequential installation
	A.1.2 Shared Memory Installation
	A.1.3 Distributed Memory Installation
	A.1.4 Hybrid Installation

	B The WSe2 input definition file
	C Callgraph (all routines)

