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M O D E L O C I N É T I C O D O M E TA B O L I S M O D O C A R B O N O C E N T R A L
PA R A P R O D U Ç Ã O D E Á C I D O A C R Í L I C O E M E S C H E R I C H I A C O L I

resumo

O Ácido Acrílico (AA) é um composto químico que atualmente possui um valor de
mercado considerável. Contudo, a maioria do AA comercializado ainda é proveniente da
oxidação de derivados do petróleo, como o propileno e o propeno, método que se revela
dispendioso e que contribui para o deterioramento do planeta. Assim sendo, existe a neces-
sidade de encontrar novos métodos, mais sustentáveis, para a produção deste composto.

Recentemente a literatura tem demonstrado que o uso de uma via fermentativa, que
permita a produção de AA em Escherichia coli usando o ácido 3-hidroxipropanoico (3-HP)
como intermediário, pode vir a ter aplicações à escala industrial. Atualmente conhecem-se
três vias que permitem a produção de AA através do glicerol, malonil-CoA, ou β-alanina,
distinguidas apenas na via para produção de 3-HP.

Os objetivos deste trabalho foram a implementação dessas vias num modelo cinético
do metabolismo do carbono central de E. coli para comparar as vias, e, subsequentemente,
encontrar possíveis estratégias de optmização que permitam aumentar a produção de AA.
Para isso, este trabalho gerou 12 modelos capazes de simular a produção de 3-HP e AA a
partir de glucose our glicerol.

Uma vez que o método para o cálculo dos Vmax na via heteróloga foi usado com o
intuito de evitar a acumulação de intermediários, estes modelos foram mais eficazes na
previsão da produção de 3-HP do que de AA. Não obstante, foi concluído que a escolha da
fonte de carbono deve depender da via utilizada. Sendo que, para a via do glicerol parece
ser mais eficiente usar glicerol, enquanto para as restantes duas vias, o uso de glucose
pode ser benéfico. Além disso, este trabalho também sugere que a utilização da via do
malonil-CoA pode trazer vantagens para uma produção à escala industrial, uma vez que, ao
contrário da via do glicerol, esta não necessita de suplementação de vitaminas, permitindo
ainda assim obter uma boa produção de AA. Para finalizar, este trabalho também propõe
algumas enzimas que podem ser sobre-expressadas para melhorar a produção de AA. Para
a via do glicerol as enzimas são a glicerol-3-fosfato desidrogenase e a glicerol-3-fosfato
fosfatase. No caso da via do malonil-CoA é a acetyl-CoA carboxilase. Finalmente, para a via
da β-alanina, os alvos sugeridos são a aspartato aminotransferase e a aspartato carboxilase.

Palavras chave: Ácido 3-Hidroxipropanoico, Ácido Acrílico, E. coli, Modelos Cinéticos.
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A K I N E T I C M O D E L O F T H E C E N T R A L C A R B O N M E TA B O L I S M F O R
A C RY L I C A C I D P R O D U C T I O N I N E S C H E R I C H I A C O L I

abstract

Acrylic Acid (AA) is a chemical compound that nowadays has a considerable market
value. However, the majority of AA used worldwide still comes from the oxidation of
petroleum derivatives, like propylene and propane, which revealed to be expensive and to
contribute towards the planet deterioration. Hence, there is currently a need for new and
sustainable ways to synthesize this compound.

Recently, the literature has been demonstrating the use of a direct fermentation route
that allows Escherichia coli to produce AA using 3-hydroxypropionate (3-HP) as an interme-
diary, and its subsequent application to industrial-scale production. There are three distinct
pathways to produce AA, via glycerol, malonyl-CoA, or β-alanine, which mainly differ in
the route towards 3-HP production.

The goals of this work were the implementation of these three distinct pathways
in a dynamic model of the central carbon metabolism of E. coli, in order to compare the
pathways, and, subsequently, find possible optimization targets to increase AA production.
With that in mind, this work generated 12 models that can simulate 3-HP and AA produc-
tion from either glucose or glycerol.

Because the method for Vmax calculation in the heterologous pathway was used to
prevented intermediary accumulation, these models were more effective in predicting the
production of 3-HP than AA. Despite that, it was concluded that the best carbon source to
produce AA depends on the pathway used. With the glycerol route, it seems more efficient
to use glycerol, while with the malonyl-CoA and β-alanine routes, glucose appears to be
more beneficial. Besides, the work also suggested that using the malonyl-CoA route might
be beneficial for industrial-scale production, as it does not need any supplementation of vi-
tamins, contrary to the glycerol route, while also presenting good AA yields. Furthermore,
this work also suggests some enzymes that were considered as targets for over-expression
in each pathway. For the glycerol route, these enzymes were the glycerol-3-phosphate de-
hydrogenase and the glycerol-3-phosphate phosphatase. In the malonyl-CoA route, it was
the acetyl-CoA carboxylase. Finally, for the β-alanine route, the suggested targets were the
aspartate aminotransferase and the aspartate carboxylase.

Keywords: 3-Hydroxypropionate, Acrylic Acid, E. coli, Kinetic Models.
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1
I N T R O D U C T I O N

1.1 context and motivation

Acrylic acid (AA) (C3H4O2) is an important chemical that is widely used as an indus-
trial feedstock to the production of a wide variety of products daily used such as polymeric
flocculants, paints, adhesives, coatings, dispersants, and binders for leather, paper, and tex-
tile [1]. Besides, AA is also one of the key components of several polymeric products, such
as superabsorbent polymers, which further increases its value [2]. According to the Allied

Market Research, in 2015 the global market for AA was valued at 12,500 million US dollars.
Furthermore, according to their prediction, between 2016 and 2022, the value is expected
to increase 6.6% per year, reaching a total of 19,500 million US dollars, which confirms the
economic importance of this product [3].

Despite its commercial value, the vast majority of AA is still produced by the oxida-
tion of propylene or propane. In this process, those metabolites are oxidized to acrolein,
and then directly converted into AA in a purely chemical process with high energy demand
(Figure 1) [4, 2, 5, 6]. Ergo, the principal method for AA production is highly dependent on
the world’s petroleum reserves, which are not renewable and are in rapid decline, greatly
enhancing the production cost. In addition, the oxidization to AA contributes to the carbon
dioxide accumulation in the atmosphere, leading to greenhouse effect aggravation, which
is one of the most significant problems humankind is currently facing [4, 1]. With this in
mind, it is possible to conclude that this chemical process is expensive, has a high energy
demand, and it contributes to the planet’s deterioration. Hence, the development of an
innovative, clean, and sustainable biological method for its production has attracted consid-
erable attention from the scientific community in recent years [4, 7, 1].

In the last decade, several semi-biological methods have arisen and were subsequently
optimized. Those methods usually consist of a first step where an adequate organism
produces an intermediate through fermentation, and a final step where AA is produced
separately by a chemical process [4, 2, 5]. From such semi-biological methods, two stand
out because of the promising results obtained in several different works, namely, the lactic

acid (LA) route and the 3-hydroxypropionate (3-HP) route (Figure 1).

1



1.1. Context and Motivation 2

The first route consists in the bio-based production of LA and a subsequent chem-
ical step to convert it into AA. Even though LA production from bacterial pathway has
presented significantly high yields, its dehydration to AA still presents selectivity issues,
which affect the resulting yield (around 78%). Alternatives to this catalytic step have been
found and have proven to be efficient, as the conversion of LA to 2-acetoxypropionic acid
and the subsequent pyrolysis to AA reached a yield over 90%. However, this process still
lacks further studying to be applied for industrial-scale production [2, 8, 9]. Finally, the
second route consists in the fermentation of simple sugars to produce 3-HP, which is then
purified and converted to AA by catalytic dehydration. Compared to the dehydration of
LA, this method does not present selectivity issues in the catalytic step and has presented
very high yields when converting 3-HP to AA (around 97%). However, despite the current
efforts, the fermentation step is still associated with low 3-HP production [4, 2, 8].

Figure 1.: Representation of the known processes for acrylic acid (AA) production. There are three
main ways to produce it: through purely chemical methods, from propylene and propane;
through semi-biological methods, where selected organisms produce some intermediates,
such as 3-hydroxypropionic acid (3-HP) and lactic acid (LA), that are then transformed
into AA through chemical processes; and finally, from a bio-based direct route, where
living cells express the entire AA pathway using carbon sources like glucose and glycerol.
Adapted from Chu et al. (2015) [4].
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Although substantial improvements were obtained when compared to the synthesis
from propylene and propane, those semi bio-based methods always include a chemical step,
such as purification of the intermediate through chemical extraction or the use of chemical
catalysts. Generally, those steps are associated with high energy demand, which increases
production costs, and consequently, diminishes the economic return that could be achieved
if those steps were not required [4, 1]. With this in mind, the ideal method should be a
bio-based direct AA route that does not require any chemical catalysts [4].

Fortunately, in recent years, it has been proven that it is possible to use engineered
Escherichia coli to perform the complete conversion of glucose and glycerol into AA. That can
be achieved by inserting the heterologous pathways for AA biosynthesis that were already
identified into the bacteria through synthetic biology approaches. In theory, as microbial
feedstocks would be cheaper to maintain and the energy demands would be much lower,
this method would allow higher profit margins than the other approaches. Unfortunately,
despite being a very promising pathway, the AA yields reported by Tong et al. (2016) (37.7
mg/L in 48 hours), Chu et al. (2015) (0.12 g/L in 15 hours), and Liu and Liu (2016) (13

mg/L in 24 hours) demonstrated that this process still needs to be optimized to compete at
an industrial scale with the currently used methods [4, 7, 1, 2].

1.2 goals

The goal of this project was to use kinetic models of E. coli central carbon metabolism

(CCM) to determine which pathway used in the literature to produce AA had a higher po-
tential, and how to optimize the biosynthetic pathways to further improve the production.

In more detail, this dissertation aimed to:

• Identify the distinct pathways for AA production that used 3-HP as an interme-
diary and their respective kinetic information;

• Insert the heterologous pathways into the model, and perform in silico simula-
tions to determine which pathway had a better AA yield;

• Test the use of glucose or glycerol as carbon sources to assess which is associated
with an higher AA production;

• Identify possible optimization strategies at a genetic level that may increase AA
production.
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1.3 thesis outline

The document was organized as follows:

• Chapter 2: State-of-the-Art

– Overview of systems biology;

– Brief introduction to the databases used to obtain information;

– Theoretical introduction to kinetic models;

– Brief overview of the available kinetic models for the central carbon metabolism
of E. coli;

– Theoretical overview of the bioinformatics tools to be used in this work;

– Overview of the E. coli importance and metabolism;

– Mapping of the pathways that are relevant for the development of a bio-based
direct AA route.

– Literature review concerning 3-HP and AA production in vivo.

• Chapter 3: Materials and Methods

– Selected model and its characteristics;

– Description of the tasks associated to kinetic data annotation, and kinetic model-
ing;

– Kinetic description of all the reactions to be inserted into the model;

– Detailed information regarding how the time course simulations here performed
once the model was assembled;

– Description of the optimization strategies used to improve AA production.

• Chapter 4: Results and Discussion

– Results of the Vmax calculation;

– Results of the in silico simulations of AA production, and comparison with pub-
lished results for in vivo production;

– Results of the in silico optimization of AA yields using the methods that were
described in chapter three.

• Chapter 5: Conclusion and Further Work



2
S TAT E - O F - T H E - A RT

This chapter aims to reflect on the importance of systems biology and bioinformatics
in metabolic engineering. More specifically, the relevance of kinetic models to predict the
production of a product of interest and to identify optimization strategies to improve the
yields obtained. Moreover, the state-of-the-art methods will be presented, as well as an
overview of E. coli importance for this kind of works, and the central metabolism of this
organism. This chapter ends with a detailed description of the three main routes to produce
AA using 3-HP as an intermediary.

2.1 systems biology

Biology has entered a new era in the last decades since the first genome was fully
sequenced in 1995 [10]. That and a significant improvement in technology have led this
field further by combining computational tools, theoretical approaches, and experimental
data. Furthermore, the widespread use of this computational biology has aroused the
arrival of new study fields such as bioinformatics and systems biology [10, 11].

Systems biology is an interdisciplinary field that relies on computational tools and
the theoretical study of biology to identify, deduce, and model relationships between genes,
proteins, metabolites, reaction networks, and the cell itself. Thus, the aim of systems biology
is not to concentrate on the genetic information and metabolic components themselves, but
instead on the nature of the interactions between them [10, 12].

The process of studying those relationships comprises four critical steps. The first
step involves the listing of the components of the process that will be studied and the
interactions between them. Secondly, those individual components are conjugated into a
network and then described as a mathematical model. Thirdly, the resulting models are
used to perform in silico phenotype predictions that, in the final step, are used to evaluate,
describe, and predict the biological functions of that system. Hence, this effort should
culminate in a detailed description of the chemical reactions present in the system, and
their underlying functions [10].

5



2.1. Systems Biology 6

Since it is an area that generates a considerable amount of data that needs to be
interpreted, curated, and then stored, systems biology is heavily dependent on the available
computational tools. With this in mind, in the next sections, essential tools used in systems
biology will be briefly introduced. Namely, online databases, that are used to store genetic,
metabolic and enzymatic information, and metabolic models, on which in silico phenotype
predictions are performed.

2.1.1 Online Databases

Online databases are one of the most relevant tools in systems biology. They allow
researchers to access a massive amount of data on metabolites, reactions, enzymes, and also
to store a considerable set of metabolic models, which are also very important in this field.
With this in mind, all the online databases used to complete this work are briefly described
in this section (Table 1).

Table 1.: Databases used in this work, with their respective access link and literature references.

Database Link References

BioModels https://www.ebi.ac.uk/biomodels-main/ [13, 14, 15]

Kyoto Encyclopedia of Genes
and Genomes (KEGG)

https://www.genome.jp/kegg/ [16, 17, 18]

MetaCyc https://metacyc.org/ [19, 20]

Braunschweig Enzyme
Database (BRENDA)

https://www.brenda-enzymes.org/ [21, 22]

SABIO-RK http://sabio.h-its.org/ [23, 24, 25]

eQuilibrator https://equilibrator.weizmann.ac.il/ [26, 27]

2.1.1.1 BioModels

BioModels (Table 1) is an online database that hosts an extensive collection of mathe-
matical models of biological processes. This repository comprises two main branches, one
with models retrieved from the publications, and another where the models were gener-
ated automatically from pathway data resources [15]. A report from 2015 estimated that
this database comprised 1,200 models withdrawn from publication, and over 140,000 mod-
els from automated methods. Moreover, BioModels also possesses a comprehensive set of
curated models whose reproducibility and accuracy for the replicated biological process
was already verified [13, 14, 15].
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2.1.1.2 KEGG

Kyoto Encyclopedia of Genes and Genomes (KEGG) (Table 1) is a well-known bioinformat-
ics tool that provides a high-level and genomic understanding of the functions and utilities
of several organisms. KEGG can be a powerful tool to search for data related to genomics
and metabolism, such as enzymes, genes, reactions, and metabolites, which are usually
retrieved from molecular-level data [16, 17, 18].

2.1.1.3 MetaCyc

MetaCyc (Table 1) integrates the BioCyc Database Collection [19] and is currently a
reference database for systems biology. Its 2570 pathways derived from over 54,000 publi-
cations crowns this database as the most extensive collection of curated data for metabolic
pathways. Moreover, this database contains detailed information on pathways and enzymes
that are retrieved from experimental data, and thus providing meaningful knowledge on
metabolic pathways, reactions, enzymes, and chemical compounds [19, 20].

2.1.1.4 BRENDA

Braunschweig Enzyme Database (BRENDA) (Table 1) is a free online database that com-
prises data on enzymes and enzymes-ligand systems. All the information that BRENDA
contains is retrieved from four sources: literature, text mining procedures, prediction algo-
rithms, and integration of external data. There are over 4.3 million data entries for approx-
imately 84,000 enzymes manually curated directly from over 140,000 literature references.
Furthermore, text mining algorithms provide information on kinetic data, occurrence, and
enzyme-disease relationships. Furthermore, prediction algorithms provide data for several
fields, like genome and locations, and external connections with other databases complete
the enzyme information with functional and structural data. Hence, this online resource is
a key database in enzyme and enzyme-ligand information in over 30 years [21, 22].

2.1.1.5 SABIO-RK

SABIO-RK (Table 1) is an online resource that stores a large amount of information on
biochemical reactions and their kinetic properties. All information comprised in SABIO-RK
is either manually extracted from the literature or directly learned from laboratory exper-
iments. Additionally, data is consistently checked by automated processes and manually
curated [23, 24, 25].
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2.1.1.6 eQuilibrator

eQuilibrator is an online tool that analysis biochemical reactions and estimates its
thermodynamic parameters, like Gibbs free energy and equilibrium constant (Keq), at any
given ionic strength, pH and reactant concentration [26, 27]. In order to do that, this tool
relies on a broad and comprehensive database that gathers meticulous data on thermody-
namic properties of compounds and reactions. That enables eQuilibrator to estimate the
necessary energy to produce a compound by an approximation called group contribution,
which in turn allows for the thermodynamic analysis of a given system [28, 29, 27].

2.1.2 Metabolic Models

Metabolic models are an attempt to simplify and replicate the cellular metabolism
[30, 31]. Cellular metabolism comprises a highly complex network of hundreds of metabo-
lites and reactions whose regulatory mechanisms are not yet fully comprehended. Hence,
at least to date, the representations that are used do not comprise the full mechanics of cel-
lular behavior and are merely a tool that simplifies the process, thus helping in phenotype
prediction [31]. Furthermore, metabolic models have also become important in biotechnol-
ogy because without them, identifying and optimizing a particular pathway would require
researchers to test a high number of combinations to obtain genetic changes that suited
their propose, which would be very difficult [32].

There are two types of metabolic models that are widely used in metabolic engineer-
ing, namely, stoichiometric and kinetic models. Stoichiometric models describe a set of
biochemical pathways as stoichiometric equations that represent the system and are usu-
ally used when there is no kinetic information available for the reactions. Whereas kinetic
models also combine reaction kinetics with stoichiometry, thus better representing the dy-
namics that come into play in a metabolic network, but on the other hand, some reactions
lack kinetic data so those models cannot always be used [31, 33].

Both types of models are mainly available in a Systems Biology Markup Language

(SBML) format [34]. This language is a subtype of the Extensible Markup Language (XML)

language, and therefore, can be broken down into different elements, such as species, reac-
tions, stoichiometries, rate laws, and parameters that are then used to assemble the model.
This specific type of format appeared because the diversity of computational tools led to the
existence of different formats that could not be interchanged between tools. SBML solved
that problem because it allowed different computational tools to translate their specific files
into this universal language, and vice-versa, so that it can be used in other tools. Nowa-
days it has reached a widespread acceptance and has become the standard data language
in systems biology [34, 35].
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2.1.2.1 Kinetic Models

Kinetic models, also known as dynamic models, are widely used in biotechnology. In
addition to predicting which reactions take place, kinetic models also predict to what extent
those reactions occur, providing a more detailed description of the metabolic network than
stoichiometric models do. That is particularly important to biotechnology because they can
be used to predict the effects of genetic engineering, and so, to design new pathways for
compound production and to optimize their yields [36]. Despite their importance, there is
a significant disadvantage associated with dynamic models. Kinetic data is hard to obtain,
and some parameters are specific to the assay conditions, resulting in a lack of information
on many reactions, which, in turn, has been responsible for the slower progress of this type
of models [33].

The best way to describe these dynamic systems is to build mathematical expressions
of the reaction kinetics. Then, those expressions are incorporated in the mass balance
equations to describe how the biochemical species fluctuate with time [36]. These equations,
also called ordinary differential equations (ODE), should be defined simultaneously with the
initial conditions:

dX

dt
= S · v (X; P); X(0) = X0 (1)

where X stands for the vector of metabolite concentration, S represents the stoichio-
metric matrix, v (X; P) the vector of the reaction rate in function of the metabolite concen-
tration (X) and the kinetic data (P), and X0 the initial metabolite concentration [36].

As mentioned before, these models use kinetic data, so it is crucial to understand
kinetic rate expressions and their parameters. Considering this, the main kinetic laws,
namely mass action kinetics, Michaelis-Menten kinetics, and two substrate mechanisms, as
well as the effect of an inhibitor in their related equations, will be discussed next.

Mass Action Kinetics

The Law of Mass Action [37] that is usually applied to one-step reactions, states
that the reaction rate is proportional to the reagents concentrations. So, considering the
following reaction (Equation 2):

S1
K1
→ S2 (2)

assuming that S1 and S2 represent two chemical species and K1 the reaction rate on
which S1 is converted into S2. For this example the resulting equations would be:

x1(t) = −K1 · S1(t) (3)
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x2(t) = K1 · S1(t) (4)

where xi(t) (i=1,2) represents the variation of the species concentration Si.
Furthermore, this law can be applied to a network of reactions by simply combining

the kinetics of their elementary reactions. This results in a model that predicts the behavior
of reactions if a dynamic equilibrium state is met [36, 37, 38, 39].

Michaelis-Menten Kinetics

The Michaelis-Menten expression is a kinetic description of the activity of the enzyme.
This activity is mainly tracked by the rate of catalysis (Vo), which translates as the number of
moles of product formed per second, and depends on the substrate concentration. As stated
by this hypothesis, the rate of catalysis increases with the increase of substrate concentration
until it begins to asymptotically approach the maximal rate (Vmax) [40].

Consider the conversion of a substrate (S) to a product (P) catalyzed by an enzyme
(E) demonstrated in the following reaction:

E + S
KS
→

← ES
Kcat
→ E + P (5)

To summarize the reaction, the enzyme firstly binds to the substrate, forming an
enzyme-substrate complex (ES). Then, it can either catalyze the conversion to the product
or reverse to the original state [40]. Hence, the kinetic equation of this reaction can be
described as:

V0 = Vmax ·
[S]

Km + [S]
(6)

The Michaelis constant (Km) has two meanings. Firstly, it represents a measure for the
strength of the enzyme-substrate complex, in which a low Km represents a strong binding
of the enzyme to the substrate. Secondly, this constant also represents a measure for the
concentration of substrate needed for the catalysis to occur, which is the concentration at
which half of the Vmax is reached. The Km is given by:

Km =
[E] · [S]

[ES]
(7)

The maximal rate (Vmax) represents the substrate concentration at which all the cat-
alytic sites of the enzyme are saturated with substrate. This rate is given by the product of
the catalytic rate constant Kcat and the concentration of active sites ([E]T) (Equation 8).

Vmax = Kcat · [E]T (8)
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Reversible Michaelis-Menten

Although the Michaelis-Menten kinetic was an essential hallmark in the development
of kinetic models, in practice, reactions are for the most part reversible [40, 41]. Considering
the previous example of the conversion of a substrate (S) to a product (P) (Equation 5),
generally, once the product is obtained, it can re-bind to the enzyme (E), regenerating the
substrate as demonstrated in the following example:

(9)

where Ki represent the reaction rates towards product formation (i = 1, 2) and to-
wards substrate regeneration (i = -1, -2). Because of this, the original Michaelis-Menten was
updated to account for the reversibility of the reactions, resulting in the following equation:

V0 = Vmax ·

([S]− [P]
Keq

)

Km,S · (1 +
[P]

Km,P
) + [S]

(10)

where Km,S and the Km,P represent the Michaelis-Menten constants of the substrate
and product, respectively and the Keq stands for the equilibrium constant [40, 41].

Two Substrate Mechanisms

Despite the prevalence of reactions involving multiple substrates and products in bio-
logical systems, the Michaelis-Menten equation was designed considering only single sub-
strate reactions, and, sometimes, it fails to describe certain reactions. That happens because
more complex reactions have more sophisticated mechanisms to describe the enzymatic
activity involved [42].

So, considering the two substrates (A and B) and two products (P and Q) case:

A + B
E
→

← P + Q (11)

the reaction can be driven by distinct mechanisms, the sequential mechanism, and the
non-sequential mechanism.

In the sequential mechanism, all the substrates must be bound to the enzyme for the
reaction to take place, which can occur in an order or in a random sequence. In an ordered
mechanism (Figure 2 A), there is a specific order for the substrates to bind to the enzyme.
First A must bind, then B, and only then P and Q are produced. On the other hand, in a
random fashion (Figure 2 B), B can bind to the enzyme after A or the other way around
[43, 42, 44].
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Figure 2.: Representation of the sequential mechanism for multi-substrate reactions. A and B repre-
sent the substrates, P and Q the products, and E the enzyme that catalyzes the reaction.
(A) In an order sequential mechanism, both substrates must bind to the enzyme for the
reaction to occur. In addition, in this case, the order of binding is crucial for the reaction,
meaning that B will only bind to the enzyme if A is already bound. (B) On the other hand,
the random sequential mechanism does not need a specific order to occur. Adapted from
Michaelis-Menten Kinetics by Roskoski (2011) [43].

Furthermore, those sequential mechanisms can be described by the following kinetic
equation:

V0 = Vmax ·
[A] · [B]

Kd,A · Km,b + Km,A · [B] + Km,B · [A] + [A] · [B]
(12)

where Km,A and Km,B are, respectively, the Michaelis-Menten constants for the two
substrates of the reaction, A and B, and Kd,A is the dissociation constant for A.

Lastly, in the non-sequential mechanism (Figure 3), also known as ping-pong mecha-
nism, there is no need for all the substrates to be bound to the enzyme for the catalysis to
take place. That means that A connects to the enzyme and immediately produces P, and
only afterward, B will connect and produce Q [43, 42, 44].

Figure 3.: Representation of a ping-pong mechanism. In this case, a substrate (A) connects to a free
enzyme, forming an enzyme-substrate complex (EA). Then A is converted to P, which is
then released from the enzyme-product complex (EP). The free enzyme can then bind to
the other substrate (B), and form the second product (Q). Adapted from Michaelis-Menten
Kinetics by Roskoski (2011) [43].
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With this in mind, the following kinetic equation can be derived from this specific
mechanism:

V0 = Vmax ·
[A] · [B]

Km,A · [B] + Km,B · [A] + [A] · [B]
(13)

where Km,A and Km,B are, respectively, the Michaelis-Menten constants for the two
substrates of the reaction, A and B.

Inhibitors

Inhibitors are molecules that block or impair the activity of enzymes by changing their
structure or binding to the active center, preventing catalysis to take place. There are four
types of reversible inhibition mechanisms, the competitive inhibition, the uncompetitive
inhibition, the non-competitive inhibition, and finally, the mixed inhibition [45].

Starting with the competitive mechanism, it describes a situation where the substrate
(S) and the inhibitor (I) both bind to the same active site. This way, if the inhibitor binds the
enzyme, the substrate cannot, preventing the reaction from taking place, which means that
the two molecules are competing for the same active site. Considering this, the parameter
that is affected by this type of inhibition is the Km, and therefore, the kinetic equation for a
one substrate one product irreversible reaction resembles the following [45]:

V0 =
Vmax · [S]

Km

(

1 + I
Ki

)

+ [S]
(14)

In the uncompetitive inhibition, the inhibitor binds the enzyme-substrate complex in
the proximity of the binding site, blocking the formation of the product. In this case, in the
presence of an inhibitor, the Vmax and the Km are both negatively affected, so the equation
should be modified to [45]:

V0 =

Vmax

1+ I
Ki

· [S]

Km

1+ I
Ki

+ [S]
(15)

Non-competitive and mixed mechanisms are two similar cases of reversible inhibition.
In both cases, the inhibitor binds to the active site of the enzyme or the enzyme-substrate
complex. However, the differences between these mechanisms lay in the Ki [45].

In the non-competitive inhibition, the Ki for the enzyme is the same as for the enzyme-
substrate complex. This results in a negative impact on the Vmax value, that is translated to
the following modified Michaelis-Menten equation [45]:

V0 =

Vmax

1+ I
Ki

· [S]

Km + [S]
(16)
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Finally, in a mixed inhibition, the dissociation constant for the enzyme (Ki) is different
from the constant for enzyme-substrate complex (K′i). This results in the following equation
[45]:

V0 =
Vmax · [S]

Km

(

1 + I
Ki

)

+ [S]
(

1 + I
K′i

) (17)

2.1.2.2 Escherichia coli Kinetic Models

E. coli is the main prokaryote used in metabolic engineering. Hence, in this subsection,
the kinetic models of E. coli assessed for this work will be described.

Chassagnole et al. (2002)

In 2002, Chassagnole and his partners were able to design and validate a kinetic
model, comprising the glycolysis and the penthose-phosphate (PP) pathway of E. coli. This
effort resulted in the first dynamic model to connect the transport of sugar to the central
carbon metabolism of E. coli. This model was also able to replicate experimentally observed
dynamics of metabolites, and it has been successfully used in recent works involving dy-
namic models [46].

Peskov et al. (2012)

Peskov and co-workers aimed to build a dynamic model of E. coli’s CCM. To accom-
plish that, they used assumptions based mainly on experimental data and metabolic and
regulatory reconstructions. Furthermore, they also included both in vitro and in vivo exper-
imental data in the development and verification of the model in order to provide a more
detailed description of the metabolism. As a result, a kinetic model was developed to de-
scribe E. coli aerobic growth in continuous cultures when the concentration of the carbon
source is limited [47].

Khodayari and Maranas (2016)

In 2016, Khodayari and Maranas developed a genome-scale kinetic model of E. coli.
The model, named K-ecoli457, covers 337 metabolites, 457 reactions, and 295 regulatory
interactions. Furthermore, this model adequately reproduces fluxomic data for wild-type
and 25 mutant strains under distinct growth conditions [48].
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Millard et al. (2016)

Millard and colleagues aimed to understand the role of metabolic regulation in E. coli.
With this goal in mind, they developed a kinetic model of the bacterium CCM. Further-
more, to validate this model, they used 778 independent flux data originated from 266 ex-
periments. Hence, they were able to link cell proliferation and environment to metabolism
for the first time. Besides, this work showed that E. coli metabolism had far more signifi-
cant self-regulation capacities, since, without invoking gene expression regulation, kinetic
considerations alone were able to explain data obtained in hundreds of studies [49].

Jahan et al. (2016)

Another essential work with kinetic models of E. coli was performed by Jahan and
coworkers in 2016 [50]. In this study, a model for the central carbon metabolism that in-
cluded: the glycolytic pathway, tricarboxylic acid (TCA) cycle, PP pathway, Entner-Doudoroff
pathway, anaplerotic pathways, glyoxylate shunt, oxidative phosphorylation, and the phos-
photransferase system was developed. As a result, this model was able to reproduce the
dynamics of wild-type E. coli and multiple genetic mutants accurately [50].

Matsuoka and Kurata (2017)

In 2017, Matsouka and Kurata developed a model of E. coli’s CCM that can simulate
the redox regulation of the metabolism under several oxygen concentrations. They used
experimental data of a wild-type strain to validate the model, and they came up with a
dynamic model that consistently predicts the dynamics of fermentation in E. coli [51].

2.2 bioinformatics tools

In this section, the state-of-the-art of the bioinformatics tools used for model manipu-
lation, simulation, and optimization are presented.

2.2.1 COPASI

COmplex PAthway SImulator (COPASI) is an open-source software that has become an
essential tool for computational modeling. Despite being able to perform simple analysis
with stoichiometric models, COPASI is specialized in the creation, modification, simulation,
and optimization of kinetic models [52]. This software is a widely accepted tool, mainly be-
cause it has a very user-friendly interface, but it is also controllable via scripting languages
in the command line for faster results [52, 53].
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2.2.1.1 Files formats

COPASI is able to import and export models in SBML [34] format, which enables it
to use models from a wide range of online databases, like, for example, BioModels. This
tool also stores information in its own XML format (.copasi), and a Simulation Experiment

Description Markup Language (SED-ML) [54] format to export time course simulations and
parameter scans [52, 53].

2.2.1.2 Creating and modifying a model

COPASI has a user-friendly interface that allows to create or change a model. Models
can be created by adding chemical species that are present in a specific compartment and
that enter in a specific reaction. Furthermore, each reaction requires a kinetic law to define
the rate at which it occurs, and that law can be chosen from a list of standard functions
or manually entered. When entering a new kinetic law, COPASI will automatically change
the units based on the expression, making it much more accessible and practical for non-
mathematicians. Lastly, COPASI is also able to automatically update the model, meaning
that, when a new reaction is added that involves a new species, the species is also added to
the model [52].

2.2.1.3 Simulations

COPASI can use two different methods to simulate the dynamics of any given model,
the deterministic and the stochastic approaches. The deterministic approach, uses the Liv-
ermore Solver for Ordinary Differential equations, with an Automatic method switching
for stiff and non-stiff problems, and with Root-finding, also known as LSODAR [55]. This
integrator is a modified version of the Livermore Solver of Ordinary Differential Equations

(LSODE) that automatically decides whether a problem can be solved more efficiently. That
is achieved through a combination of stiff and non-stiff methods, where the program uses
resulting information at the end of each step to automatically decide which one to apply
for a more efficient result [55]. The second method uses stochastic formalisms to determine
the system solution [56]. To do that, COPASI uses different algorithms, like Gillespie’s
Direct Method [57], Gibson–Bruck [58], τ-Leap, or adaptive SSA/τ-leap [59]. Moreover, it
can also separate reversible reactions into their forward and backward directions to aid its
user in adapting deterministic rate equations into their stochastic equivalent, and perform
stochastic corrections to rate equations [52, 53].

Furthermore, COPASI also incorporates algorithms that use a combination of both
deterministic and stochastic approaches in a more time-efficient manner. They are called
hybrid approaches, and COPASI possesses three of them, the Hybrid RungeKutta, the Hy-
brid LSODA, and the Hybrid RK-45. The first two determine the particle number for each
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reaction, and if it is below a threshold, it employs a deterministic approach, and above a
stochastic. In turn, the Hybrid RK-45 allows the user to decide which approach to use for
each reaction [52].

2.2.1.4 Metabolic Control Analysis

A significant advantage of kinetic models lies in predicting the outcome of genetic
alterations, such as gene under and over-expression, and gene deletion. One way to perform
that is to implement a local parameter sensitivity analysis, to determine to what extent an
alteration in a property of the model, like a concentration or a flux, can influence the
outcome of the simulation. Although this analysis only considers a local point in the much
complex system that is a microorganism, it is undeniable that this tool has some predictive
capacities that can be useful to identify targets for metabolic engineering that are suitable
for the desired purpose [36].

One important type of sensitivity analysis is the metabolic control analysis (MCA) [60,
61, 62]. This tool evaluates how the control of the steady-state fluxes is scattered among the
reactions of the system. To do so, the MCA calculates three different metrics, the elasticity
coefficients, the flux control coefficients (FCC), and the concentration control coefficients. Of
those three, the most important metric for this work is the FCC. This metric evaluates a
chosen reaction and returns a value, for each remaining reactions of the system, that reflects
how they are impacting its flux. Furthermore, this value can be positive, if one reaction is
limiting the flux that arrives a downstream reaction, thus creating a bottleneck, or negative,
if it deflects the flux towards other pathways. Either way, even if those results cannot be
taken as indisputable facts, this value provides a guideline to identify potential targets for
genetic manipulation [36].

2.2.1.5 Optimization

Lastly, COPASI is also able to perform optimization tasks to minimize or maximize
an objective function defined by the user. Furthermore, any parameter of a reaction, or
even from multiple reactions, can be minimized or maximized so that the solution meets
the objective function, as well as to what extent they should be modified. To do so, COPASI
is equipped with a wide range of local (Hooke & Jeeves [63]; Levenberg–Marquardt [64];
Nelder–Mead [65]; praxis [66]) and global optimization methods (differential evolution [67];
evolutionary strategy [68]; evolutionary programming [69]; genetic algorithm [70]; particle
swarm [71], scatter search [72]; random search, simulated annealing [73]) to find the best
values toward the set goal.
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2.3 Escherichia coli

Prokaryotic cells are excellent experimental models for the study of essential aspects
of biochemistry and molecular biology because of their simplicity. Additionally, from a
vast range of bacterial species that have been studied, E. coli is the most comprehended
one. Hence, since the beginning of molecular biology, there is a deep understanding of this
bacterium’s genome and metabolism [74].

E. coli is a gram-negative, fast-growing, and non-sporulating bacillus that was first
discovered in 1884 by a German microbiologist named Theodor Escherich. Each cell is
about 1 µm long and 0.35 µm wide and, depending on the strain, it may or may not
possess flagella to move around the environment, or a pilli to attach to other cells [74, 75,
76]. Furthermore, E. coli is a facultative aerobe, meaning that it can grow either in the
presence or absence of oxygen, and sensible to extreme temperatures and pH, with an
optimal temperature of 37 ◦C and optimal pH of 7 [77, 78].

In addition, E. coli is commonly found in the gastrointestinal tract of most mammals,
more specifically in a thin layer of mucus that limits the gut, and is mostly a commensal
inhabitant, although some strains are described to cause bloodstream or urinary tract in-
fections. This occasional pathogenicity is due to the presence of, among others, adhesins,
toxins, polysaccharide coats, and invasins in the virulent strains [79, 80]. Finally, despite
being frequently found inside a host, these bacteria are also able to adapt to the severe
conditions of life outside the host and survive in external environments [81].

Nowadays, E. coli is the most important model organism that is being used in molec-
ular biology, as it has been used to study even the most basic aspects of life and will most
likely continue to be [82]. It has also become essential in the pharmaceutical industry and
biotechnology. Historically this happened because this bacteria is very easy to find, as they
can be found in every human, easy to grow in a culture medium, and easy to manipulate
[75]. Hence, the entire genome of E. coli has already been sequenced, consisting of approxi-
mately 4.6 million base pairs encoding 4000 different proteins. This bacterium genome is a
thousand times smaller than the human genome (3,000 million base pairs), thus bein more
straightforward to study [74].

2.3.1 Importance in Metabolic Engineering

E. coli is by no means perfect to work with, as it possesses some disadvantages that
can represent a threat to culture growth at an industrial scale [83]. Firstly, they do not have
the ability to produce every product, such as glycosylated proteins, or proteins with a high
number of disulfide bonds [84]. Furthermore, despite being able to grow in a wide range
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of conditions, E. coli can not survive extreme conditions of pH and temperature. Hence,
cultures will be more exposed to microbial contamination and phage attacks [85, 86, 87, 88].

Despite this, E. coli is still the preferred prokaryote for both scientific and industrial
applications. The increase of knowledge regarding its physiology and genetics allowed
researchers to rapidly overcome the organism’s limitations and to adapt different strains to
surpass the wild type ones [83].

In addition to being extremely easy to grow and maintain in a culture medium, sev-
eral techniques of genetic manipulation have been developed and perfected for developing
new mutants, overcoming those disadvantages and making E. coli more profitable to use at
the industrial scale [84]. Hence, this organism is still among the top choices for metabolic
engineering, has there are currently 484 fully sequenced E. coli strains and some of them
are the hosts for the industrial production of several chemicals, such as tryptophan, pheny-
lalanine, and lysine [83, 89].

2.3.2 Central Carbon Metabolism

The CCM in E. coli comprises three main metabolic pathways, namely Glycolysis, TCA
cycle, and the PP pathway. These pathways allow the production of the energy required to
survive and reproduce. The CCM will be discussed and its importance highlighted in the
next section.

2.3.2.1 Glycolysis

Glycolysis (Figure 4) is the central pathway for glucose degradation, and in the
case of several organisms, the main energy-producing pathway. In this metabolic route
one molecule of glucose, a six-carbon molecule, is converted into pyruvate (three-carbon
molecule), with an energetic balance of two adenosine triphosphate (ATP) and two reduced
nicotinamide adenine dinucleotide (NADH) molecules [90].

Glycolysis can be divided into two phases, the preparatory phase and the pay-off
phase. The first one consists of the five first reactions of the pathway (Figure 4). In steps one
to three, glucose is converted in fructose- 1,6-bisphosphate (F-1,6-P), by phosphorylation
and isomerization. Then, this molecule will be cleaved in two different molecules. Two
molecules of glyceraldehyde-3-phosphate (Ga3P) will be generated and two molecules of
ATP will be invested (Figure 4) [90].

The pay-off phase, consists of the five final steps in the pathway (Figure 4) and culmi-
nates with the production of two pyruvate molecules, as well as four ATP and two nicoti-

namide adenine dinucleotide (NAD) molecules, thus providing a final balance of two ATP and
two NADH molecules [90].
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Figure 4.: Schematic representation of the glycolysis pathway. In the preparatory phase, glucose
is initially phosphorylated to form glucose-6-phosphate (G6P), converted into fructose-6-
phosphate (F6P), and then into fructose-1,6-bisphosphate (F-1,6-P) by a second phosphory-
lation (Reaction 1-3). Subsequently, the six-carbon molecule is cleaved into glyceraldehyde-
3-phosphate (Ga3P) and dihydroxyacetone phosphate (DHAP) (three-carbon molecules)
(Reaction 4). The preparatory phase is then completed when the DHAP is converted
into another molecule of Ga3P (Reaction 5). The pay-off phase consists of the final five
reactions of the pathway. Firstly, Ga3P is put through three consecutive reactions form-
ing sequentially, 1,3-bisphosphoglycerate (1,3-BPGC), 3-phosphoglycerate (3PGC), and 2-
phosphoglycerate (2PGC) (Reactions 6-8). Then 2PGC is converted into phosphoenolpyru-
vate (PEP), which is then converted to pyruvate in the final reaction (Reaction 9 and 10). In
this metabolic route, each molecule of glucose is turned into two molecules of pyruvate,
two adenosine triphosphate (ATP) and two reduced nicotinamide adenine dinucleotide
(NADH). Adapted from Lehninger Principles of Biochemistry by Nelson and Cox (2005) [90].

2.3.2.2 Tricarboxylic Acid cycle

For most aerobic organisms, glycolysis is not the only step in the breakdown of glu-
cose. The subsequent step is called TCA cycle and is responsible for harnessing most energy
these organisms can get from simple sugars. This pathway is divided into two phases. The
first phase includes the glycolysis, with an additional reaction were pyruvate is coupled to
a coenzyme A (CoA) molecule to form acetyl-Coenzyme A (acetyl-CoA) (Figure 5), which
also generates one NADH and one CO2 molecule [90].

The second is the TCA cycle per se, and it includes eight reactions (Figure 5) starting
with the fusion of acetyl-CoA and oxaloacetate to produce citric acid. After seven reac-
tions, the pathway culminates in the regeneration of oxaloacetate, thus restarting the cycle.
Furthermore, from the two pyruvate molecules generated from the glycolysis, the TCA cy-
cle can generate eighth molecules of NADH, two of reduced flavin adenine dinucleotide
(FADH2), and two guanosine triphosphate (GTP) [90].
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Figure 5.: Schematic representation of the Tricarboxylic Acid Cycle (TCA). In this metabolic route,
pyruvate is converted into acetyl coenzyme A (acetyl-CoA) and reduced nicotinamide ade-
nine dinucleotide (NADH). The acetyl-CoA will then be assimilated in the cycle. Through
a series of reactions, the pathway will produce three more molecules of NADH, one
of reduced flavin adenine dinucleotide (FADH2) and one guanosine triphosphate (GTP).
Adapted from Lehninger Principles of Biochemistry by Nelson and Cox (2005) [90].

2.3.2.3 Penthose-phosphate pathway

The PP pathway is an alternative route for glucose metabolism that is divided into
oxidative and non-oxidative phases (Figure 6). The oxidative phase comprises three reac-
tions that deflect glucose-6-phosphate (G6P) from glycolysis and ultimately culminate in
the production of ribulose-5-phosphate (R5P) and two molecules of reduced nicotinamide
adenine dinucleotide phosphate (NADPH) (Figure 6). This intermediate is vital as, besides
being a precursor to the non-oxidative phase, it is also an intermediate for the synthesis
of nucleotides, coenzymes, DNA, and RNA. Finally, the non-oxidative phase consists of a
couple of steps that ensure the regeneration of glucose-6-phosphate (Figure 6) [90].
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Figure 6.: Schematic representation of the Penthose-phosphate pathway. In the oxidative phase,
glucose-6-phosphate is converted into ribulose-5-phosphate, in a process that releases
two reduced nicotinamide adenine dinucleotide phosphate (NADPH). On the other hand,
in the non-oxidative phase, ribulose-5-phosphate is converted into fructose-6-phosphate
(F6P) and glyceraldehyde-3-phosphate (Ga3P), which in turn are responsible for the re-
generation of glucose-6-phosphate. Adapted from Lehninger Principles of Biochemistry by
Nelson and Cox (2005) [90].

2.4 pathways for acrylic acid production

As in semi-biological methods, the bio-based direct AA route can be divided into two
major steps. The first one consists in the conversion of the carbon source into the primary
intermediate, 3-HP, which may include different intermediary products. The second con-
cerns the final transformation to AA, for which there is only one known biological pathway
able to perform this conversion [4, 1, 91].

When considering the first step to obtain 3-HP, the three main studied pathways are
the glycerol, the malonyl-CoA, and β-alanine routes. Since glucose can be converted into
glycerol, and glycerol can be converted to an intermediate of the glycolysis, all of them can
be used to convert both carbon sources into 3-HP [91, 92, 93].

The distinct bio-based direct AA routes that are suited for this work are described
next. This section will be divided into two subsections, where the production of 3-HP will
be firstly discussed, and then the AA production.
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2.4.1 3-Hydroxypropionic Acid Production

The 3-HP production can be carried out using three different intermediates, glycerol,
malonyl-CoA and β-alanine (Figure 7). As E. coli is able to produce these three metabolites
naturally, the focus of this subsection will be the required steps to produce 3-HP.

Figure 7.: Pathways to convert glucose to 3-hydroxypropionate (3-HP). 3-HP can be produced from
glucose through three distinct intermediates that are naturally produced in Escherichia
coli: glycerol, malonyl-CoA, and β-Alanine. Glycerol route: in the first reaction, vita-
min B12 activates the conversion of glycerol to 3-hydroxypropionaldehyde (3-HPA) by the
glycerol dehydratase, which is then converted to 3-HP by the aldehyde-dehydrogenase en-
zyme. Malonyl-CoA route: in the first reaction, catalyzed by the malonyl-CoA reductase,
the Coenzyme A (CoA) molecule is removed from malonyl-CoA, and at the same time,
reduced nicotinamide adenine dinucleotide phosphate (NADPH) is oxidized to nicoti-
namide adenine dinucleotide phosphate (NADP+), which in turn results in the formation
of malonic semialdehyde (MSA). In the final reaction, catalyzed by the malonic semi-
aldehyde reductase, MSA is converted to 3-HP alongside with the oxidation of NADPH.
β-Alanine route: firstly, β-Alanine and α-ketoglutarate are converted to malonic semialde-
hyde and L-glutamate by the β-alanine aminotransferase. Then the malonic semialdehyde
reductase converts MSA to 3-HP, and also NADPH to NADP+. Furthermore, the ar-
rows highlighted in red represent the reactions of the pathways that are native to E.coli.
Adapted from Chu et al. (2015) [4], Liu et al. (2016) [94] and Borodina et al. (2015) [95].

2.4.1.1 Glycerol pathway

Besides being one of the cheapest carbon sources in the market, glycerol can also
be produced from glucose. For this conversion to take place, glucose needs to be directed
towards the glycolysis pathway, forming dihydroxyacetone phosphate, an intermediary that
is then converted to glycerol [4, 1, 91, 46].
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Regarding this route, only two reactions need to take place to obtain 3-HP. The first
one consists in the dehydration of glycerol into 3-hydroxypropionaldehyde (3-HPA) by an en-
zyme called glycerol-dehydratase. The last enzyme is the 3-hydroxypropionaldehyde dehy-
drogenase, an it uses 3-HPA, NAD, and H2O as substrates to produce 3-HP, NADH and
H2 (Figure 7) [4, 1].

Despite being very promising and having good yields associated, this pathway fea-
tures a significant setback [96]. The reaction responsible for the 3-HPA formation requires
vitamin B12 (Figure 7) to take place. This molecule does not interact directly in the reaction,
but its presence is required to activate the catalytic activity of the enzyme [93, 97]. That
represents a considerable disadvantage to this route since E. coli cannot naturally biosyn-
thesize B12, and therefore, the vitamin needs to be supplied to the culture medium, which
is an expensive practice that is not at all desired when the main goal is to maximize the
profits from AA production [98, 99].

2.4.1.2 Malonyl-Coenzyme A pathway

Malonyl-CoA is directly obtained from acetyl-CoA, an intermediate of the TCA cycle
that is produced using both glucose and glycerol as the carbon source [91, 97].

Two consecutive reactions are required to produce 3-HP from this intermediary. In
the first one, the malonyl-CoA reductase performs the reduction of malonyl-CoA to malonic

semialdehyde (MSA) coupled with the oxidation of NADPH to nicotinamide adenine dinu-

cleotide phosphate (NADP), while at the same time removing the CoA cofactor from malonyl-
CoA. Similarly, in the second reaction, performed by the malonic semialdehyde reductase,
MSA is reduced to 3-HP, and at the same time, NADHP is oxidized to NADP (Figure 7)
[91, 100, 97].

2.4.1.3 β-Alanine pathway

β-alanine can be obtained from oxaloacetate, which is an intermediary of the TCA
cycle. Oxaloacetate is converted into L-aspartate, which can then be turned into β-alanine.
Hence, as in the remaining routes, it is possible to use this pathway when using the two
carbon sources [95, 91, 101, 102].

When β-alanine is used as substrate, two reactions are required to produce 3-HP
(Figure 7). The first reaction is catalyzed by β-alanine aminotransferase, in which β-alanine
and α-ketoglutarate are used to obtain MSA and L-glutamate. The second one consists
in the reduction of MSA to 3-HP which is catalyzed by malonic semialdehyde redutase, a
reaction that also belongs to the malonyl-CoA route (Figure 7) [95, 91, 101, 102].
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2.4.2 Acrylic Acid Production

According to Tong et al. (2016) and Chu et al. (2015), once 3-HP is obtained, three
steps are missing to complete the pathway for AA production. These steps consists in three
consecutive reactions that involve three distinct enzymes (Figure 8) [4, 1].

First, 3-hydroxypropionyl-CoA synthase uses ATP to bind a molecule of CoA to 3-HP,
resulting into 3-hydroxypropionyl-CoA (3-HP-CoA). Then, the 3-hydroxypropionyl-CoA de-
hydratase turns 3-HP-CoA into acrylyl-CoA (AA-CoA), releasing a water molecule (H2O) in
the process (Figure 8) [4, 91]. In the final step of this pathway, the acrylyl-CoA thioesterase
uses H2O to remove the CoA molecule from AA-CoA, releasing it along with a proton (H+),
producing AA (Figure 8) [4, 91].

Figure 8.: Pathway for the conversion of 3-hydroxypropionate (3-HP) to acrylic acid (AA). First,
the 3-hydroxypropionyl-CoA synthase joins 3-HP with a Coenzyme A (CoA) molecule
forming 3-hydroxypropionyl-CoA (3-HP-CoA), while, at the same time, Adenosine
Triphosphate (ATP) is dephosphorylated to Adenosine Monophosphate (AMP) and two
molecules of Pi. Then, by the action of a 3-hydroxypropionyl-CoA dehydratase, the 3-
HP-CoA is converted to acrylyl-CoA (AA-CoA) and H2O. Finally, AA-CoA is then trans-
formed into AA, with the release of a Coenzyme A molecule (CoA) and a proton (H+)
by the acrylyl-CoA thioesterase. Adapted from Chu et al. (2015) [4] and Zhijie Liu et al.
(2016) [7].

2.5 literature review of 3-hp and aa producing strains

Several studies conducted in recombinant E. coli to test and improve 3-HP and AA
production from batch cultures, using either glucose or glycerol, were found. As shown
in Table 2, 3-HP production through the glycerol pathway is associated with higher yields,
reaching up to 8.10 g/L of 3-HP when using glycerol as carbon source [98]. Furthermore,
the malonyl-CoA route has also been tested as a viable alternative, and in the work of Liu et

al. (2016) it reached a production of 3.60 g/L of 3-HP [94] (Table 2). The β-alanine pathway
is by far the less studied route in E. coli and is associated with the lower reported yields
(0.09 g/L of 3-HP) (Table 2).

Concerning AA production, it was not possible to gather as much information as in
3-HP producing routes. However, as shown in Table 3, the reports that tested the full
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fermentation pathway from the glycerol and malonyl-CoA routes presented low yields
[4, 7, 1].

Table 2.: Literature review on 3-hydroxypropionate (3-HP) production in metabolical engineered
Escherichia coli.

Paper Pathway
Carbon

Source

Intial Carbon

Conc. (g/L)

Titer

(g/L)
Reference

Raj et al. (2009) Glycerol Glycerol 9.20 2.80 [103]
Rathnasingh et al. (2009) Glycerol Glycerol 18.40 4.40 [104]

Chu et al. (2015) Glycerol
Glycerol 40.00 8.10 [4]
Glucose 21.50 3.90 [4]

Cheng et al. (2015) Malonyl-CoA Glucose 10.00 1.80 [105]
Liu et al. (2016) Malonyl-CoA Glucose 20.00 3.60 [94]

Song et al. (2016) β-alanine Glucose 15.00 0.09 [93]

Table 3.: Literature review on acrylic acid (AA) production in metabolical engineered Escherichia coli.

Paper Pathway
Carbon

Source

Intial Carbon

Conc. (g/L)

Titer

(g/L)
Reference

Tong et al. (2016) Glycerol Glycerol 20.00 0.0377 [1]
Chu et al. (2015) Glycerol Glucose a 0.12 [4]

Liu and Liu (2016) Malonyl-CoA Glucose 20.00 0.013 [7]

a - Information not available.

With this in mind, the studied pathways for AA production (via β-alanine, malonyl-
CoA and glycerol) were compared through in silico modelling using COPASI. To do so, the
seven models described here, namely, the Chassagnole [46], the Peskov [47], the Khodayari
[48], the Millard [49], the Jaham [50], and the Matsuoka [51] models, were evaluated to select
the one that better complied with the requirements of this work. Then, the three pathways
were inserted separately in the chosen model. Furthermore, both glycerol and glucose
were tested as the carbon source to assess which of them is associated with higher AA
yields. Finally, once AA production was obtained, optimization strategies were identified
to enhance the obtained yields. This work allowed the identification of the AA route that
has the most potential for higher yields so that it can be implemented in vivo for industrial-
scale production.



3
M AT E R I A L S A N D M E T H O D S

This chapter will focus on the detailed description of the materials and methods used
for the assembly, simulation, and optimization of the developed dynamic models.

3.1 model selection

From the seven previously described models, the Millard et al. (2016) [49] metabolic
model was selected, as it provides a thorough description of the CCM. This model in-
cludes the main pathways, namely the glucose phosphotransferase system, glycolysis, glu-
coneogenesis, pentose phosphate pathway, tricarboxylic acid cycle, glyoxylate shunt, ac-
etate metabolism, anaplerotic reactions, nucleotide interconversion reactions and finally
oxidative phosphorylation (Figure 9). In total, this model encompasses 62 metabolites, 68

reactions, and three compartments (extracellular, periplasm, and cytoplasm) [49].
Besides providing a more detailed description of E. coli metabolism than previous

models, Millard and colleagues were also able to couple the degradation of glucose to ox-
idative phosphorylation. This fact allowed the inclusion of cofactors like ATP, NAD, NADP
and flavin adenine dinucleotide (FAD) as part of the metabolism instead of using pseudo-
reactions like in previous models [49], which also influenced the decision.

Moreover, this kinetic model is capable of simulating E. coli growth in a chemostat
under glucose-limited conditions, namely a reactor with 100 liters of culture medium, 0.25

liters of periplasmatic volume, and 1 liter of cytosolic volume, with a glucose feed of 0.23

mM/s. Unfortunately, despite being a detailed model, it does not include the production
of glycerol, malonyl-CoA, and β-alanine, which are usually produced by E.coli. This means
that, the first step to achieve in silico production of AA is to extend the CCM to produce
those three intermediaries.

The SBML version of the metabolic model is available for download in the BIOMOD-
ELS database [15] with the identifier MODEL1505110000.

27
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Figure 9.: Representation of the dynamic model of Escherichia coli central carbon metabolism de-
veloped by Millard et al. (2016). This model comprises the glucose phosphotransferase
system, glycolysis, gluconeogenesis, pentose phosphate pathway, tricarboxylic acid cycle,
glyoxylate shunt, acetate metabolism, and oxidative phosphorylation, with a total of 62

metabolites and 68 reactions. Retrieved from Millard et al. (2016) [49].
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3.2 kinetic modeling

The development of the model was divided into three steps, the extension of the CCM
to include the production of the three intermediaries (glycerol, malonyl-CoA and β-alanine),
production of 3-HP from those metabolites, and finally, production of AA.

3.2.1 Parameter Selection

Kinetic equations and their respective parameters were retrieved from the available
literature. Databases like BioCyc [20], BRENDA [22] and Sabio-RK [25] were used to obtain
Km, Ki, Kd, activation constants (Ka), specific activity (SA), and Kcat values. Furthermore, the
eQuilibrator [26] database was also used to determine equilibrium constants (Ke) required
to characterize the reaction reversibility. The last kinetic parameter required to describe
each reaction is the Vmax. Unfortunately, this parameter is highly specific for the concen-
tration of enzyme available, which will in turn depend on the specific conditions of the
assay, and is seldom reported in the literature. Therefore, two distinct methods were used
to estimate the Vmax, according to the origin of the reaction (the CCM extension or the
heterologous pathways).

Method 1 was employed for reactions that belong to the native metabolism of E.coli,
the Vmax estimation was adapted from a method used by Chassagnole and colleagues while
developing the kinetic model in 2002 [46]. Initially, a steady-state flux distribution is deter-
mined for the original kinetic model. Then, a genome-scale model of E.coli K-12 MG1655

(iML1515) [106] is used to predict the flux of the new reactions. For this, the common
reactions between the kinetic model and the stoichiometric model are constrained to the
previously determined flux distribution (± 0.01 mM/s). Then, a flux variability analysis
is performed to determine the estimated flux (v). By equalizing v to the rate law of the
reaction, the following equation is obtained:

v = Vmax · F(X, K)⇔ Vmax =
v

F(X, K)
(18)

in which X is a vector of parameters and K a vector of steady-state concentrations for
the metabolites involved. Furthermore, it is worth noting that for newly added metabolites,
the steady-state concentration was assumed to be 1 mM.

Method 2 was used for reactions of the heterologous pathways, the Vmax was esti-
mated assuming that the total concentration of enzyme was in surplus (100 mM), which
allowed calculating this parameter as shown in equation 8.
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3.2.2 Model Extension

The selected model represents a chemostat system, thus the first step to assemble the
AA production model was converting the original model into a batch system. Therefore,
the glucose feed and the drain for acetate were deleted. The next step was to extend
the model of the CCM to include all three intermediaries and allow the use of glycerol
as carbon source. In this subsection, all the Vmax values were calculated using Method
1, and the remaining parameters were retrieved from articles presenting a more complete
characterization of the enzyme’s kinetics.

3.2.2.1 Glycerol, Malonyl-CoA and β-alanine Production

Regarding the glycerol pathway, two reactions are required to obtain glycerol from
dihydroxyacetone phosphate (DAP), namely reactions catalyzed by the glycerol-3-phosphate
dehydrogenase (G3pD) and the glycerol-3-phosphate phosphatase (G3pP). Moreover, con-
sidering that the latter is not reversible and that this route requires to be reversible to use
glycerol as carbon source, the reaction catalyzed by the glycerol kinase (GlyK) was also
included. This reaction allows converting glycerol into glycerol-3-phosphate (Figure 10).
Only one reaction is required to obtain malonyl-CoA, namely the reaction catalyzed by the
acetyl-CoA carboxylase (AccC) (Figure 10). Finally, three reactions are necessary to include
the β-alanine route. Two to produce β-alanine, and one to produce L-glutamate, an essential
intermediary for β-alanine production also absent from the original model. These reactions
are promoted by the aspartate aminotransferase (AspAT), the aspartate carboxylase (AspC),
and the L-glutamate dehydrogenase (GluD) (Figure 10) [18, 20].

The reactions and their respective stoichiometry are shown below:

G3pD : DAP + NADPH + H+ = Glycerol-3-Phosphate + NADP+ (19)

G3pP : Glycerol-3-Phosphate + H2O → Glycerol + Pi (20)

GlyK : Glycerol + ATP → Glycerol-3-Phosphate + ADP + H+ (21)

AccC : Acetyl-CoA + ATP + HCO3 → Malonyl-CoA + ADP + Pi (22)

GluD : α-Ketoglutarate + NADP + H2O = L-Glutamate + NADPH + NH3 + H+ (23)

AspAT : Oxaloacetate + L-Glutamate = L-Aspartate + α-Ketoglutarate (24)

AspC : Aspartate → β-alanine + CO2 (25)

Furthermore, an additional set of pseudo-reactions were included in the model, the
Synth reactions. These reactions were inspired by the work of Chassagnole et al. (2012) [46]
and Machado et al. (2014) [107], and are used to represent the pathways involved in the
breakdown of the newly added metabolites.
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All reactions described next were added to the original model from Millard et al.

(2016), resulting in the CCMext_GLC model, that depicts the production of all the three
intermediaries when glucose is used as the carbon source.

Figure 10.: Representation of the central carbon metabolism of Escherichia coli and the reactions
added to the kinetic model. The reactions depicted by the blue, orange, green and yellow
arrows represent, respectively, the glycolysis, pentose-phosphate pathway, tricarboxylic
acid cycle and the glyoxylate shunt, which are all present in the original model. The
black arrows represent the seven reactions that were added to obtain glycerol, malonyl-
CoA and β-alanine. Finally, the red arrows depict the Synth reactions that were added
to account for the deviation of the newly added metabolites to other pathways. Adapted
from KeGG [16, 17, 18] and MetaCyc [19, 20].
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Glycerol-3-Phosphate Dehydrogenase (G3pD)

This enzyme catalyzes the conversion of DAP to glycerol-3-phosphate (Equation 19).
The kinetic properties of G3pD were fully characterized in the work of Edgar and Bell
(1978) [108]. As shown in table 4, they reported a Km of 0.18 mM for DAP (Km,a), 0.0034

mM for NADPH (Km,b), 0.03 mM for glycerol-3-phosphate (Km,p), and finally 0.165 mM for
NADP (Km,q) and a Keq of 900 for this reaction. They did not accurately identify the kinetic
mechanism of the enzyme, but noted that the most probable one was the Rapid Equilibrium
Random Bi Bi [108], which was also corroborated by other works for this enzyme [109].

Glycerol-3-Phosphate Phosphatase (G3pP)

The G3pP catalyzes the irreversible transformation of glycerol-3-phosphate to glycerol
(Equation 20). This reaction follows a single substrate Michaelis-Menten kinetic. According
to literature [110], the respective Km for glycerol-3-phosphate is equal to 2.9 mM [110], as
shown in Table 4.

Glycerol Kinase (GlyK)

This enzyme has been described by Pettigrew et al. (1990) [111]. They reported a
Km for glycerol (Km,b) of 0.0049 mM and for ATP (Km,a) of 0.0084 mM, and a dissociation
constant for ATP (Kd,a) of 0.086 mM. They also reported that the enzyme seemed to have a
random bi kinetic mechanism [111].

Acetyl-CoA Carboxylase (AccC)

The kinetic parameters of this enzyme were described by Soriano et al. (2005), in
which they reported a Km for acetyl-CoA (Km,a) of 0.16 mM and for ATP (Km,b) of 0.06 mM
[112]. Moreover, a study by Freiberg et al. (2004) showed that malonyl-CoA, a product
of this reaction, presented competitive inhibition towards acetyl-CoA [113]. The inhibition
constant (Ki,p) they determined for this product was 0.1 mM. Hence, a two substrate order
Bi kinetics with substrate inhibition towards acetyl-CoA was adopted.

Glutamate Dehydrogensase (GluD)

This enzyme is responsible for the oxidation of α-ketoglutarate to L-glutamate (Equa-
tion 23). This enzyme’s kinetic parameters were characterized by Sharkey and Engel (2008).
They reported Km values for α-ketoglutarate (Km,a) and for NADP (Km,b) of 0.68 mM and
0.018 mM, respectively, and a hill coeficient for NADP of 0.92. Furthermore, they reported
that this enzyme exhibited Michaelis-Menten kinetics for α-ketoglutarate and a hill cooper-
ativity kinetics for NADP [114].
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Aspartate Aminotransferase (AspAT)

Yagi et al. (1985) presented a kinetic description on the AspAT in which Km values of
15 mM, 0.01 mM, 0.24 mM, and 1.3 mM, were reported for L-glutamate (Km,a), oxaloacetate
(Km,b), aspartate (Km,p), and α-ketoglutarate (Km,q), respectively [115]. Unfortunately, the un-
derlying mechanism of this enzyme was not specified in this paper, but according to BioCyc,
this enzyme is known to follow a reversible ping-pong Bi Bi mechanism [116, 117]. More-
over, to finish the characterization of this enzyme, the eQuilibrator database was accessed
to retrieve the Keq, whose value was 3.2.

Aspartate Carboxylase (AspC)

Finally, the last reaction consisted in the conversion of aspartate to β-alanine (Equa-
tion 25). Like the G3pP, this enzyme is characterized by a single substrate Michaelis-Menten
kinetic, with a Km of 0.151 mM [118].

Synth Reactions

These reactions were added to account for fluxes of metabolites produced by the new
reactions, though not metabolized in the heterologous pathway. The sum of all fluxes from
the reactions that metabolize the intermediary metabolites in the stoichiometric model sim-
ulation was determined and, assuming mass action kinetics, the value of k was calculated
using the same principle as Method 1.

3.2.2.2 Alternative Glycerol Assimilation Route

The reaction catalyzed by G3pD has a Keq value of 900, thus requiring excessively
high concentrations of glycerol-3-phosphate and NADP to flow in the reverse direction.
Hence, glycerol was not assimilated into the CCM, meaning that ATP and other cofactors
were not being produced. Since GlyK requires ATP to produce glycerol-3-phosphate, this
cofactor was immediately depleted, and the metabolite was not synthesized in a sufficient
amount. G3pD did not catalyze the reaction in the reverse direction, thus not allowing to
test AA production using glycerol as carbon source.

Therefore, the stoichiometric model was used to identify alternative routes for glyc-
erol intake. Two additional reactions catalyzed by the enzymes glycerol dehydrogenase
(GlyD) and the dihydroxyacetone phosphate transferase (DhaPT) were included in model
CCMext_GLC (Figure 10), thus creating model CCMext_GLY.

These reactions and their respective stoichiometry are the following:

GlyD : Glycerol + NAD+
→ Dihydroxyacetone + NADH + H+ (26)

DhaPT : Dihydroxyacetone + Phosphoenolpyruvate → DAP + Pyruvate (27)
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Table 4.: Rate Law (RL), equations, and respective parameters of the reactions that belong to the
native metabolism of E.coli. The following abbreviations were used: RERBB: Rapid Equi-
librium Random Bi Bi; MM - Michaelis-Menten; RBB - Random Bi Bi; OBB - Order Bi Bi;
PPBB - Ping-Pong Bi Bi.

Reaction RL Equation Parameters

G3pD RERBB Vmax ·





A·B−

(

P·Q
Keq

)

Km,a ·Km,b





(

1+ A
Km,a ·

B
Km,b

)

+
(

1+ P
Km,p ·

Q
Km,q

)

−1

Km,a = 0.18 mM
Km,b = 0.0034 mM
Km,p = 0.03 mM
Km,q = 0.165 mM

Keq = 900

G3pP MM Vmax ·
A

Km+A Km = 2.9 mM

GlyK RBB Vmax ·
A·B

Ki,a·Km,b+Km,b·A+Km,a·B+A·B

Km,a= 0.0084 mM
Km,b = 0.0049 mM
Kd,a = 0.086 mM

AccC OBB Vmax ·
A

Km,A·
(

1+ P
Ki,P

)

+A
·

B
Km,B+B

Km,a = 0.16 mM
Km,b = 0.06 mM
Ki,p = 0.1 mM

GluD MM Vmax ·
A

Km,a+A ·
Bn

(Km,b)n+Bn

Km,a = 0.68 mM
Km,b = 0.018 mM

n = 0.92

AspAT PPBB Vmax ·





A·B−

(

P·Q
Keq

)

Km,a ·Km,b





(

1+ A
Km,a ·

Q
Km,q

)

·

(

1+ B
Km,b

·
P

Km,p

)

Km,a = 15 mM
Km,b = 0.01 mM
Km,p = 0.24 mM
Km,q = 1.3 mM

Keq =3.2

AspC MM Vmax ·
A

Km+A Km = 0.151 mM
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Glycerol Dehydrogenase

This reaction was characterized in E. coli by Piattoni et al. (2013) [119], with Km values
of 76 mM and 0.81 mM, for glycerol (Km,a) and NAD (Km,b), respectively. Moreover, accord-
ing to the authors, this enzyme exhibited a behavior that seemed to fit hill cooperativity
kinetics, with a hill coefficient (n) of 0.9 (Table 5) [119].

Dihydroxyacetone Phosphate Transferase

This enzyme was not fully characterized for both substrates, as the Km value for
phosphoenolpyruvate was not found in any of the databases. Therefore mass action kinetics
were used to represent the dynamics of this reaction, and the k value was calculated using
method 1.

Table 5.: Rate Laws, equations, and respective parameters for the alternative glycerol assimilation
route. The following abbreviations were used: HC - Hill Cooperativity; MA - Mass Action.

Reaction ID Rate Law Equation Parameters

GlyD HC Vmax ·
An

(Km,a)n+Bn ·
Bn

(Km,b)n+Bn

Km,a = 76 mM
Km,b = 0.81 mM

n =0.9

DhaPT MA k · A · B

3.2.3 Pathways for acrylic acid production

Once the model was able to produce glycerol, malonyl-CoA, and β-alanine, the follow-
ing step was to add the remaining reactions that lead to AA production. With that in mind,
this step was divided into two different sub-steps. First, each of the three distinct pathways
to produce 3-HP was inserted in the model separately, thus creating distinct models for
each carbon source. Then the inclusion of the subsequent reactions for the production of
AA. In this subsection, the main factor influencing the strain and parameter choice was the
existence of a complete characterization of the underling kinetic mechanism of the respec-
tive enzyme. Furthermore, the Vmax values for the heterologous enzymes were calculated
using Method 2. In the end, twelve models were created, six for the synthesis of 3-HP and
six for AA (Table A.1).
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3.2.3.1 Glycerol pathway

Two 3-HP producing models were generated by adding two reactions to the CCMext_-
GLC and CCMext_GLY models, creating the 3HP_GlyPath_GLC and the 3HP_GlyPath_-
GLY models. As shown in Figure 7, the first reaction is catalyzed by the glycerol dehy-
dratase (GlyDH), that converts glycerol into 3-HPA, and the second reaction is promoted
by the 3-hydroxypropionaldehyde dehydrogenase (3hpaD):

GlyDH : Glycerol → 3-HPA + H2O (28)

3hpaD : 3-HPA+NADP++H2O→3-HP+NADPH+2H+ (29)

Glycerol Dehydratase (GlyDH)

The kinetic parameters of the enzyme in Lactobacillus collinoides were determined by
Sauvageot et al. (2002). In their work they reported a Km of 8.3 mM for glycerol, and an
activation constant (Ka) of 0.008 mM for vitamin B12. Furthermore, they also reported a
specific activity of 0.018 µmol ·min−1

·mg−1 when glycerol was the substrate, and a molec-
ular weight of 207 kDa, which allowed the calculation of a Kcat value of 0.0621 s−1 [120].
Considering the available kinetic parameters, and the fact that B12 is an activator of the
reaction and not an intermediary, the specific activation mechanism rate law was assumed
(Table 6).

3-hydroxypropionaldehyde Dehydrogenase (3hpaD)

The kinetic properties of the 3hpaD from E. coli were studied by Jo et al. (2008). This
study reported a Kcat of 28.54 s−1 when 3-HPA was used as a substrate, as well as Km values
of 0.49 mM and 0.06 mM for 3-HPA (Km,a) and NADP (Km,b), respectively [121]. Consid-
ering that no kinetic mechanism was associated with this enzyme, a simple two substrate
Michalis-Menten equation was assumed (Table 6). Furthermore, since this reaction had no
flux in the stoichiometric model when using the flux constraints of the original model, the
Vmax was calculated using the method for the heterologous reactions (Method 2).

3.2.3.2 Malonyl-CoA pathway

The malonyl-CoA route was also included in each carbon source’s model, creating
models 3-HP_McoaPath_GLC and 3-HP_McoaPath_GLY. These models have two additional
reactions, the first catalyzed by the malonyl-CoA reductase (McoaR) and the second cat-
alyzed by malonic semialdehyde reductase (MsaR) (Figure 7):

McoaR : Malonyl-CoA + NADPH + H+
→ MSA + CoA + NADP+ (30)

MsaR : MSA + NADPH +H+
→ 3-HP + NADP+ (31)
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Table 6.: Rate Laws, equations, and respective parameters for the reactions of the glycerol pathway
that culminate with the productions of 3-hydroxypropionate.

Reaction ID Rate Law Equation Parameters

GlyDH Specific Activation E·Kcat·A·Activator
Km,a·Ka+(Km,a+A)·Activator

E = 100 mM
Kcat = 0.0621 s−1

Km = 8.3 mM
Ka = 0.008 mM

3hpaD Michaelis-Menten E·Kcat·A·B
Km,a·Km,b+Km,b·A+Km,a·B+A·B

E = 100 mM
Kcat = 28.54 s−1

Km,a = 0.49 mM
Km,b = 0.06 mM

Malonyl-CoA Reductase (McoaR)

The McoaR catalyzes the conversion of malonyl-CoA to MSA (Equation 30). This
enzyme is present in Chloroflexus aurantiacus and was described by Hügler et al. (2002),
which reported a Kcat of 50 s−1 when malonyl-CoA was used as a substrate, and Km values
of 0.3mM and 0.025 mM for malonyl-CoA (Km,a) and NADPH (Km,b), respectively. The
authors also stated that the enzyme exhibited a two substrate Michaelis-Menten behavior
[100] (Table 7).

Malonic Semialdehyde Reductase (MsaR)

The MsaR enzyme, which catalyzes the final reaction of the malonyl-CoA pathway
was described by Kockelkorn and Fuchs (2009). The authors characterized this enzyme
from Metallosphaera sedula and were able to identify the kinetic parameters of the enzyme.
The Kcat value reported when malonyl-CoA is used as the substrate is 115 s−1, and the Km

values are 0.07 mM for both MSA (Km,a) and NADPH (Km,b) [122]. Finally, a two substrate
Michaelis-Menten mechanism was assumed for this model (Table 7).

Table 7.: Rate Laws, equations, and respective parameters for the reactions of the malonyl-CoA path-
way that culminate with the productions of 3-hydroxypropionate.

Reaction ID Rate Law Equation Parameters

McoaR Michaelis-Menten E·Kcat·A·B
Km,a·Km,b+Km,b·A+Km,a·B+A·B

E = 100 mM
Kcat = 50 s−1

Km,a = 0.3 mM
Km,b = 0.025 mM

MsaR Michaelis-Menten E·Kcat·A·B
Km,a·Km,b+Km,b·A+Km,a·B+A·B

E = 100 mM
Kcat = 115 s−1

Km,a = 0.07 mM
Km,b = 0.07 mM
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3.2.3.3 β-Alanine pathway

Finally, the β-alanine pathway also required adding two additional reactions for the
model to produce 3-HP. The first one is the β-alanine aminotransferase (BaAT), and then as
the final reaction, the MsaR, a common reaction to the malonyl-CoA pathway (Figure 7):

BaAT : β-alanine + α-Ketoglutarate → MSA + L-Glutamate (32)

MsaR : MSA + NADPH +H+
→ 3-HP + NADP+ (33)

Two models (3HP_BalaPath_GLC and 3HP_BalaPath_GLY) were created, according
to the carbon source.

β-Alanine Aminotransferase (BaAT)

E. coli’s BaAT was described by Liu et al. (2005). The authors believed that the enzyme
followed ping-pong bi bi with competitive substrate inhibition by α-ketoglutarate, and pro-
ceeded to estimate the respective parameters. They reported a Kcat of 47.4 s−1, and a Km

for β-alanine (Km,a) and α-ketoglutarate (Km,b), of 5.8 mM and 1.07 mM, respectively. Fur-
thermore, the Ki,b for α-ketoglutarate was also estimated, and was equal to 10.2 mM [123]
(Table 8). Even though this enzyme was characterized for E. coli, it was not present in the
stoichiometric model, thus the Vmax was calculated using the Method 2.

Malonic Semialdehyde Reductase (MsaR)

This enzyme was already characterized for the malonyl-CoA pathway. Thus, the
kinetic description used before was adopted for the β-alanine pathway (Table 8).

Table 8.: Rate Laws, equations, and respective parameters for the reactions of the β-alanine pathway
that culminate with the productions of 3-hydroxypropionate.

Reaction ID Rate Law Equation Parameters

BaTA Ping-Pong Bi Bi E·Kcat·A·B

Km,b·A+Km,a·B·
(

1+ B
Ki,B

)

+A·B

E = 100 mM
Kcat = 47.4 s−1

Km,a = 5.8 mM
Km,b = 1.07 mM
Ki,b = 10.2 mM

MsaR Michaelis-Menten E·Kcat·A·B
Km,a·Km,b+Km,b·A+Km,a·B+A·B

E = 100 mM
Kcat = 115 s−1

Km,a = 0.07 mM
Km,b = 0.07 mM
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3.2.3.4 Acrylic Acid pathway

When 3-HP is obtained, only three more reactions are required for producing AA,
namely:

• 3-Hydroxypropionyl-CoA Synthase (3hpcoaS): Alber and Fuchs (2002) studied a vari-
ant of the 3hpcoaS from Chloroflexus aurantiacus. In their work they stated that the en-
zyme probably follows a Michaelis-Menten mechanism, and the parameters for that
mechanism are a Kcat of 36 s−1, and the Km values for 3-HP (Km,a) of 0.015 mM, CoA
(Km,b) of 0.01 mM, and ATP (Km,c) of 0.05 mM [124] (Table 9). The reaction catalyzed
by this enzyme is the following:

3-HP + CoA + ATP → 3-HP-CoA + 2P + AMP (34)

• 3-Hydroxypropionyl-CoA Dehydratase (3hpcoaDH): This enzyme is a variant of the
3hpcoaDH from M. sedula characterized by Teufel et al. (2009), whose work helped to
understand the underlying mechanism that controls the enzyme’s activity. According
to this study, the enzyme follows a Michaelis-Menten kinetics, with a Kcat of 96 s−1,
and Km value of 0.06 mM for 3-HP-CoA [125] (Table 9). This enzyme catalyzes the
following reaction:

3-HP-CoA = AA-CoA + H2O (35)

• Acrylyl-CoA Thioesterase (AcoaTioE): No studies characterizing this enzyme’s ki-
netic parameters were found in literature. Hence, an enzyme catalyzing a similar
reaction was sought. Ultimately, E. coli’s acyl-CoA thioesterase was selected as surro-
gate. This enzyme was the one used in the work of Chu et al. (2015), which using a
direct bio-based route [4] achieved AA production for the first time. As opposed to
the original reaction, this one was characterized in a report by Zhuang et al. (2008),
where it was reported that this enzyme kinetics follow the Michaelis-Menten model,
with a Kcat of 96 s−1, and Km for AA-CoA of 0.167 mM [126] (Table 9).

AA-CoA + H2O → AA + CoA + H+ (36)

The three reactions were added to the six 3-HP producing models, thus creating the
six final models able to produce AA, through the different routes, using either glucose or
glycerol as carbon source, namely:

• AA_GlyPath_GLC

• AA_GlyPath_GLY

• AA_McoaPath_GLC

• AA_McoaPath_GLY
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• AA_BalaPath_GLC

• AA_BalaPath_GLY

Table 9.: Rate Laws, equations, and respective parameters for the reactions required to convert 3-
hydroxypropionate into acrylic acid.

Reaction ID Kinetic Law Equation Parameters

3hpcoaS Michaelis-Menten E · Kcat ·
A

Km,a+A ·
B

Km,b+B ·
C

Km,c+C

E = 100 mM
Kcat = 36 s−1

Km,a = 0.015 mM
Km,b = 0.01 mM
Km,c = 0.05 mM

3hpcoaDH Michaelis-Menten E·Kcat·A
Km+A

E = 100 mM
Kcat = 96 s−1

Km = 0.06 mM

AcoaTioE Michaelis-Menten E·Kcat·A
Km+A

E = 100 mM
Kcat = 0.55 s−1

Km = 0.167 mM

3.2.4 Exchange reaction

The exchange reactions allow the transport of AA (XCH_AA), glycerol (XCH_GLY),
malonyl-CoA (XCH_MCOA), and β-alanine (XCH_BA) from the cytoplasm to the extracel-
lular compartment. Since no kinetic data concerning transport reactions for these metabo-
lites was found, these reactions were included akin to the ones in the original model [49],
and they represent the diffusion through the outer membrane [127]. Furthermore, this en-
tire set of reactions follows the reversible Michaelis-Menten kinetics, with a Vmax of 100

mM/s and a Km of 10 mM, as it was arbitrarily chosen in the original model [49].

3.3 time course simulation

The time course simulations were performed to assess not only AA production but
also the yields of the main intermediaries, glycerol, malonyl-CoA, β-alanine and 3-HP.
Therefore, these simulations were conducted using a deterministic method (LSODA) from
COPASI [53], with a duration of three or six hours, to allow the consumption of all the
carbon source.

As one of the goals of this project was also to compare the AA yields associated with
glucose and glycerol, these simulations were conducted using both carbon sources. The
initial concentrations for glucose and glycerol were, respectively, 55.5 mM (10 g/L) and
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217.2 mM (20 g/L), which allowed comparing both carbon sources, and the three pathways
for each carbon source. The glycerol concentration is two times higher to maintain the
same amount of carbon. Furthermore, to compare the results obtained in these models to
the results found in the literature for these routes, the initial concentration of the carbon
source for each simulation was set to replicate the initial conditions of the published result.

3.4 optimization strategies

For each AA producing model that will be used in this section, two new models were
generated. One is the exact copy of the respective model, to perform the optimization and
simulate AA production, and the other were they are converted to a chemostat system,
which was used to perform the MCA. These models represent the first mutant strain (Mu-
tant 0) of each pathway, from which the optimization was performed. The names of the
resulting models are presented in Table 10.

Table 10.: Mutant 0 models of each pathway, generated from the previously assembled models to
find optimization strategies to improve acrylic acid production.

Pathway Model

Glycerol

Route

GlyPath_SIM_Mutant0

GlyPath_MCA_Mutant0

Malonyl-CoA

Route

McoaPath_SIM_Mutant0

McoaPath_MCA_Mutant0

β-alanine

Route

BalaPath_SIM_Mutant0

BalaPath_MCA_Mutant0

In genetic engineering, the three main techniques to optimize a pathway are genes
over-expressions, under-expressions, and knock-outs. In kinetic models, these modifica-
tions can be simulated by adjusting the Vmax value accordingly. For instance, if a gene
is over-expressed ten times, the enzyme concentration should present a tenfold increase,
which according to equation 8, involves having a Vmax tenfold higher. Likewise, for under-
expressions, a tenfold under-expression is represented by a decrease in the Vmax. Whereas,
knock-outs are simulated in silico by setting the Vmax to zero. Furthermore, in the latter case,
before changing the reaction, it is essential to verify if the reaction belongs to the set of crit-
ical reactions, as knocking-out those reactions in vivo leads to the death of the organism,
diminishing AA production.
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Therefore, the first step was to obtain the FCC through a MCA for each pathway,
using the chemostat models. These coefficients reflect the control each reaction has over AA
formation. Thus, the reaction with most influence was selected and modified accordingly
to improve the pathway yields, creating new mutant strains.

The following step was to use the batch models from the simulations and to use CO-
PASI’s optimization tasks to optimize AA production, by creating in silico mutant strains
(labeled Mutant 1). The random search method was selected as optimization strategy. This
method modifies random combinations of selected parameters to determine the combina-
tion that better fits the objective function and exclude the ones that do not fulfill the selected
constraints. Furthermore, this method requires a large number of iterations to bestow cor-
rect results, as the chance of finding a global solution for the objective function is directly
proportional to the number of iterations [128]. Hence, in this work the limit was set to a
thousand iterations.

Moreover, it is worth mentioning that the goal of this method is not to meticulously
predict the final concentration of AA, but rather finding reactions that are promising targets
for optimization. Therefore, the under and over-expressions were limited to 50 times the
original Vmax value. This limit allows overcoming the negative influence of that reaction in

silico, whilst not impairing its implementation in vivo.
Finally, after creating new mutants, this process was repeated to optimize mutant

strains. The optimization eventually stopped once either the glucose feed was limiting the
AA production, the limiting reaction was already optimized, or the system could no longer
reach a stable steady-state point.



4
R E S U LT S A N D D I S C U S S I O N

This chapter will focus on the presentation and discussion of the results obtained
with the simulations of 3-HP and AA models, using either glucose or glycerol as the carbon
source, and their respective optimization strategies.

4.1 vmax calculation

This section is divided into the calculation of the Vmax values for the CCM extension
and the k values for the synth reactions.

4.1.1 Central Carbon Metabolism Extension

Using a stoichiometric model, the Vmax of the enzymes that belong to the native
metabolism of E. coli were calculated according to Method 1. The resulting values for all
the nine reactions required for the extension of the CCM are presented in Table 11:

Table 11.: Vmax values calculated for the reactions required for the extension of the central carbon
metabolism.

Reaction ID Vmax

G3pD 0.03095 mM/s
G3pP 0.38996 mM/s
GlyK 0.10557 mM/s
AccC 0.23910 mM/s
GluD 0.52125 mM/s

AspAT 1.96832 mM/s
AspC 1.15×10−05 mM/s
GlyD 13.1052 mM/s

DhaPT 0.0586 mM/s

43
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4.1.2 Synth Reactions

Using the same principle of Method 1, the k values for the synth reactions were
calculated using the fluxes determined with the stoichiometric model. The calculated values
are presented in Table 12.

Table 12.: Synth reactions added to the model and respective parameters. These reactions were
created for dihydroxyacetone phosphate (DAP), acetyl-CoA (ACCOA), malonyl-CoA
(MCOA), L-glutamate (LGLU), aspartate (ASP) and β-alanine (BA).

Reaction ID Parameter (1/s)

SynthDAP k = 0.02006

SynthACCOA k = 0.69799

SynthMCOA k = 0.09250

SynthLGLU k = 0.38260

SynthASP k = 0.05180

SynthBA k = 0,00001

4.2 acrylic acid production

The results of the simulations performed, to assess 3-HP and AA production in all
models, are presented in this section. Furthermore, the end goal is to understand which
is the best carbon source for AA production and which pathway has more potential for
AA industrial-scale production, comparing the results with published data from in vivo

experiments.

4.2.1 Central Carbon Metabolism Extension

First it is necessary to analyze the results of the CCM extension to assess the pro-
duction of the three intermediates (glycerol, malonyl-CoA, and β-alanine), and to compare
the results for the two carbon sources used. Concerning glucose as carbon source, the
CCMext_GLC was able to consume the 10 g/L of glucose provided in the simulation time
frame (Figure 11A), producing 0.17 g/L of glycerol (Figure 11B), a maximum value of 1.20

g/L of malonyl-CoA (Figure 11c), and 0.0009 g/L of β-alanine (Figure 11D). It is worth
mentioning that when all glucose is consumed, malonyl-CoA suddenly drops. That is due
to the fact that when the production of malonyl-CoA stops, the Synth reaction for malonyl-
CoA (SynthMCOA) (Figure 10) is still consuming this metabolite, causing a drop in its
concentration.
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Even though the simulation of the production of glycerol and malonyl-CoA was suc-
cessful, the β-alanine model exhibited a major setback. The extremely low Vmax of the AspC
enzyme (Table 4) was limiting the amount of β-alanine produced. The Vmax was calculated
with the flux obtained from the stoichiometric model simulation (Method 1), which resulted
in a relevant bottleneck. Thus, this parameter was recalculated using the method developed
for the heterologous pathway reactions’ parameters (Method 2), shifting the β-alanine flux
production limits towards L-aspartate formation. According to Ramjee et al. (1997), the Kcat

value for this enzyme is 0.57 s−1 [118]. Therefore, the Vmax value was set to 57 mM/s in all
the models, which drastically altered the production of β-alanine two orders of magnitude
(0.037 g/L) (Figure 11E).

Figure 11.: Results of the CCMext_GLC model concerning glucose (GLC) consumption (A), and the
production of glycerol (GLY) (B), malonyl-CoA (MCOA) (C), and β-alanine (BA) before
(D) and after (E) increasing Vmax of the AspC reaction.

Considering glycerol as the only source of carbon, the CCMext_GLY model was able
to produce a maximum of 1.33 g/L of malonyl-CoA and 0.0026 g/L of β-alanine, within the
simulation time frame, while consuming 20 g/L of glycerol (Figure 12A). When comparing
these results with the ones of the CCMext_GLC, it is possible to observe that the malonyl-
CoA concentration peaked at a higher value (Figure 12B), but its concentration started to
decay much sooner because there was an issue with the assimilation of glycerol, causing
the accumulation of intermediaries (Figure 12D). Furthermore, it can also be observed that
this carbon source produced a tenfold smaller concentration of β-alanine (Figure 12C).
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Figure 12.: Results of the CCMext_GLY model concerning glycerol (GLY) consumption (A), and the
production of malonyl-CoA (MCOA) (B), and β-alanine (BA) (C).

4.2.2 Glycerol Models

Issues were found in the models created for modeling 3-HP and AA production,
when glycerol was used as carbon source. The flow of carbon toward the CCM stopped
seconds after the simulation started, leading to the accumulation of 3-HP (Figure A.1). After
analyzing the system, it was determined that two factors were responsible for this behavior.

The first factor is associated with the heterologous pathway, as the Vmax of all reac-
tions in this pathway was set as not to limit flux through these reactions. Therefore, these
reactions would uptake most of the available glycerol, thus limiting the amount of carbon
towards the CCM, which eventually led to the depletion of crucial cofactors for AA synthe-
ses, such as NAD and ATP.

The second factor is associated with the NAD affinity to enzymes GlyD and 3hpD.
The Km value in the GlyD is over tenfold higher than in 3hpD, thus the low concentration of
NAD available was mainly used by the 3hpD, which will block the flux towards the CCM,
exacerbating the energy production problem even further.

A couple of hypotheses were devised to circumvent these problems. Because the
NAD affinity issue was blocking the flux of carbon towards the CCM, the first hypothesis
was increasing the affinity of the GlyD enzyme towards NAD. When comparing the affinity
with other enzymes present in the model, this enzyme had a significantly higher value.
Therefore, other works that characterized this enzyme were searched, to find an alternative
for this Km value. In the work of Zang et al. (2010) [129] this enzyme, using another
substrate, was described with an affinity towards NAD of 0.0165 mM. Thus, the value
was updated and simulated in a period of three hours. However, the problem persisted
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as most glycerol was still going towards the formation of 3-HP (Figure A.2). The next
strategy was increasing the maximal rate of the GlyD to increase the flux in the CCM,
allowing the continuous production of AA. Hence, the Vmax was recalculated according to
Method 2, resulting in a Vmax of 4298.4 mM/s, which ultimately led to an accumulation of
dihydroxyacetone as the activity of the DhaPT enzyme was not enough to quickly consume
all the dihydroxyacetone produced by the GlyD (Figure A.3).

The third hypothesis involved decreasing the affinity of the 3hpD towards NAD, to
improve the activity of the GlyD, and the maximum rate of the GlyDH to control the flux
that is directed towards to heterologous route. Since no further Km value for the 3hpD was
found in the literature, it was assumed that this enzyme had a similar affinity as the GlyD
(Km = 0.8 mM). Furthermore, the Vmax of the GlyDH was set to 0.621 mM/s, representing an
enzyme concentration of 10 mM instead of the 100 mM used in Method 2. These changes
allowed directing flux towards the CCM, which resulted in the production of AA without
the excessive accumulation of any intermediaries.

After solving the previous issues, simulations were performed and the results are
presented next. Regarding the production of 3-HP, COPASI predicted that the 3HP_Gly-
Path_GLC model is able to convert 10 g/L of glucose into 0.17 g/L of 3-HP in three hours
(Figure 13). In contrast, when using 20 g/L of glycerol, the 3HP_GlyPath_GLY model pro-
duced 8.3 g/L of 3-HP over the course of six hours (Figure 13).

Figure 13.: Simulation results concerning glucose consumption (GLC) (A) and 3-hydroxypropionate
(3HP) production (B) for the 3HP_GlyPath_GLC model, and glycerol (GLY) consumption
(C) and production of 3HP (D) for the 3HP_GlyPath_GLY model.

The results were compared to the yields retrieved from available literature (Table
2), to assess the predictive capabilities of the final 3-HP models. The 3HP_GlyPath_GLY
model was used to simulate the synthesis of 3-HP for different concentrations of glycerol
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that replicate the work of different publications (9.2 g/L, 18.4 g/L, and 40 g/L). When
using a concentration of 9.2 g/L of glycerol, the model predicted a production of 3.65 g/L
of 3-HP, which, as shown in Table 2, is close to what was reported by Raj et al. (2009) [103].
However, in the latter cases, there were considerable differences between what was reported
and what was predicted. Using 18.4 g/L, the model predicted a 3-HP concentration of 7.62

g/L, which is almost two times higher than what was obtained by Rathnasingh et al. (2009)
[104] (Table 2). Finally, using 40 g/L of glycerol, 17.11 g/L of 3-HP were synthesized in

silico, a twofold higher concentration than the yield of Chu et al. (2015) [4] (Table 2).
Furthermore, Chu and colleagues also tested 3-HP synthesis using glucose as carbon

source [4]. When replicating the initial conditions of this study (Table 2) in silico, the 3HP_-
GlyPath_GLC model predicted the synthesis of 0.36 g/L of 3-HP. The difference might be
associated with the production of glycerol, more specifically, in the flux through G3pD and
G3pP (Figure 10), as according to Chu et al. (2015) this strain is able to accumulate more
glycerol (2.5 g/L) than this model is able to produce, for this amount of glucose (0.34 g/L).

Finally, when considering the expression of the complete pathway for AA production,
the results showed a significantly higher amount of AA when glycerol was used as the
carbon source. As shown in Figure 14, whereas glycerol allows producing 6.65 g/L of
AA, glucose only produces 0.13 g/L, which is consistent with the results obtained for the
3-HP production. Moreover, since the reactions of the heterologous pathway had high Vmax

values, there is no 3-HP accumulation in both cases (Figure 14), which is not in line with
what was found in the literature as 3-HP accumulation was always reported [4, 1].

Figure 14.: Simulation results concerning glucose consumption (GLC) (A) and acrylic acid (AA)
production (B) for the AA_GlyPath_GLC model, and glycerol (GLY) consumption (C)
and production of AA (D) for the AA_GlyPath_GLY model.
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Concerning the full pathway to AA production, two works were found in the litera-
ture. Using the initial concentration of glycerol used in the work of Tong et al. (2016) [1],
the AA synthesis predicted by the model (6.65 g/L) was considerably higher than what the
authors reported (Table 3). This difference might be related, as previously mentioned, with
the high flux in the heterologous pathway preventing the accumulation of intermediaries.
Moreover, Chu et al. (2015) also tested AA production from glucose (Table 3) in a geneti-
cally engineered E. coli strain. However, the initial glucose conditions were not stated in the
article, thus a comparison with their results was not possible.

When considering a relative similar amount of carbon, the glycerol pathway is associ-
ated with higher AA yields when using glycerol, as this carbon source has a straightforward
path towards the heterologous pathway, thus reducing the flux in upstream reactions. This
result is in agreement with most published works, concerning the use of the glycerol in

vivo, instead of glucose, as the main carbon source for the glycerol pathway. For instance,
in the work of Chu et al. (2015), when using relatively similar carbon quantities, the bacteria
produced more 3-HP when using glycerol as carbon source.

4.2.3 Malonyl-CoA Models

The 3HP_McoaPath_GLC model predicted the production of 1.64 g/L of 3-HP (Fig-
ure 15), which is a 9.6-fold increase when comparing to the results of the glycerol pathway,
when using 10 g/L glucose. Furthermore, when 20 g/L of glycerol were used, the model
3HP McoaPath GLY only produced 0.19 g/L (Figure 15), which is significantly less than
what was produced by glycerol pathway (43-fold decrease). However, the use of a different
carbon source did not directly decreased the production of AA. The low availability of phos-
phoenolpyruvate limits the flux through the DhaPT (Figure 10), inducing the accumulation
of dihydroxyacetone, thus restricting the amount of carbon reaching the CCM (Figure A.4).
Therefore, this model seems to be impaired when considering glycerol as carbon source,
and will probably return erroneous results regarding AA synthesis.

Several works were published using this pathway reporting different yields, when
using glucose as carbon source [7]. However, regarding shake flask experiments, two stand
out. The first one was performed by Cheng et al. (2015), which reported the 3-HP produc-
tion from 10 g/L of glucose [105]. From such initial condition the 3HP_McoaPath_GLC
model produced 1.64 g/L of 3-HP, which is very similar to the final concentration reported
(Table 2). Using 20 g/L of glucose the simulations predicted the production of 3.26 g/L of
3-HP, which is in line with the value achieved by Liu et al. (2016) (Table 2) [7]. Therefore,
regarding the predicted production of 3-HP from glucose, the malonyl-CoA model seemed
to match the results found in the literature.
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Figure 15.: Simulation results concerning glucose consumption (GLC) (A) and 3-hydroxypropionate
(3HP) production (B) for the 3HP_McoaPath_GLC model, and glycerol (GLY) consump-
tion (C) and production of 3HP (D) for the 3HP_McoaPath_GLY model.

Finally, in the AA models, the 3-HP was converted to AA with considerable high
yields, which resulted in virtually no intermediary accumulation (Figure 16). Furthermore,
when using glucose, the model predicted the production of 1.33 g/L of AA, thus 81% of
the 3-HP was converted into AA. When glycerol was used as carbon source, 0.15 g/L of AA
were produced, which means that 79% of the produced 3-HP was converted (Figure 16).

Figure 16.: Simulation results concerning glucose consumption (GLC) (A) and acrylic acid (AA)
production (B) for the AA_McoaPath_GLC model, and glycerol (GLY) consumption (C)
and production of AA (D) for the AA_McoaPath_GLY model.
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Liu and Liu (2016) developed a genetically engineered strain of E. coli to produce AA
using malonyl-CoA as an intermediate. The resulting strain produced 0.013 g/L of AA from
20 g/L of glucose [7] (Table 3), whereas the model predicted the production of 2.65 g/L of
AA for the same environmental conditions. This difference can be associated with several
factors. However, as the 3-HP results seemed to be in line with some published results, the
most likely reason is that the heterologous pathway reactions Vmax was calculated assuming
excess availability of enzymes. As mentioned before, these conditions prevent intermediary
accumulation, which does not reflect what has been reported in the literature [4, 7, 1].

Model predictions for both the 3HP_MCOAPath_GLY and AA_MCOAPath_GLY are
skewed due to the accumulation of dihydroxyacetone, not allowing comparison with simu-
lations performed with glucose as carbon source. Regardless, all studies that tested AA or
3-HP through the malonyl-CoA pathway, used glucose, which can be seen as an indicator
that this metabolite is, in fact, the best carbon source for this route. This premise should be
corroborated as no actual experimental work comparing both carbon sources was found.

4.2.4 β-alanine Models

The β-alanine pathway is by far the less studied route for 3-HP and AA production
in E. coli. In fact, to the best of our knowledge, only a few articles have been published
concerning this intermediate for 3-HP synthesis in E. coli [93]. Works in which AA is
produced via the β-alanine route are yet to be published, which might be related with the
fact that publications using this route reported significantly lower yields when compared
with the glycerol and malonyl-CoA pathways [96]. In fact, this study models successfully
replicated these results, as this route predicted the production of 0.03 g/L of 3-HP from
glucose, representing a 5.6-fold decrease from the glycerol model and 54.6-fold from the
malonyl-CoA model (Figure 17). Furthermore, the simulation results when glycerol was
used as carbon source also showed a significant decrease in production, with 8.8× 10−04

g/L of 3-HP (Figure 17). However, as in the malonyl-CoA model, these are misleading
results due to issues with the fluxes of the glycerol assimilation via (Figure A.5). Hence, a
comparison between both carbon sources is once more impaired.

Even though the production of 3-HP via β-alanine has not been thoroughly studied,
in 2016 Song and colleagues [93] metabolically engineered a strain of E. coli to express the
heterologous pathway. In their experiment, they grew the cells in a batch system with of
glucose as the main carbon source, at a concentration of 15 g/L. From this concentration, a
total of 0.09 g/L of 3-HP were synthesized (Table 2), which is a very similar result to the
β-alanine model predictions (0.05 g/L).

Despite the lack of in vivo experiments to compare the results for AA production, the
complete bio-based route was still tested to compare with the other two pathways. Once
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again, the percentage of 3-HP converted to AA is still high, with approximately 0.03 g/L
produced from glucose and 7.2× 10−04 g/L from glycerol (Figure 18).

Figure 17.: Simulation results concerning glucose consumption (GLC) (A) and 3-hydroxypropionate
(3HP) production (B) for the 3HP_BalaPath_GLC model, and glycerol (GLY) consump-
tion (C) and production of 3HP (D) for the 3HP_BalaPath_GLY model.

Figure 18.: Simulation results concerning glucose consumption (GLC) (A) and acrylic acid (AA)
production (B) for the AA_BalaPath_GLC model, and glycerol (GLY) consumption (C)
and production of AA (D) for the AA_BalaPath_GLY model.
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From this work it was possible to assess which of the three bio-based routes for AA
production was associated with higher yields. First, as shown in Table 14, the results of
these models suggest that the β-alanine route is by far the route that produced lower yields.
This is in agreement with the literature review for this pathway [93, 96]. On the other
hand, the glycerol pathway exhibited the highest yields, when combined with the use of
glycerol as the carbon source (Table 13 and 14). Although this pathway is well established
[7], a relevant caveat most be recalled. As mentioned before, this pathway has a reaction
that is dependent on the presence of vitamin B12, which represents a significant economic
disadvantage in an industrial-scale production [93, 96, 97, 98, 99]. Hence, to make this
route viable, either the yield must be significantly improved to overcome the cost of the
supplementation, or a cheaper way to produce B12 must be found. Therefore, in this con-
text, the malonyl-CoA route gains significance as it does not require the supplementation
of vitamins while providing acceptable AA yields (Table 13 and 14) [95, 96, 105].

Table 13.: Summarized results of the 3-hydroxypropionate producing models for the three distinct
pathways using either glucose or glycerol as carbon source.

Model Carbon Source Yield (g/L)

Glycerol

Model

Glucose 0.17

Glycerol 8.30

Malonyl-CoA

Model

Glucose 1.64

Glycerol 0.19

β-alanine

Model

Glucose 0.03

Glycerol 8.8× 10−04

Table 14.: Summarized results of the acrylic acid producing models for the three distinct pathways
using either glucose or glycerol as carbon source.

Model Carbon Source Yield (g/L)

Glycerol

Model

Glucose 0.13

Glycerol 6.65

Malonyl-CoA

Model

Glucose 1.33

Glycerol 0.15

β-alanine

Model

Glucose 0.03

Glycerol 7.2× 10−04
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4.3 optimization strategies

Ideally, the optimization should be performed for all the developed model. However,
the AA_GlyPath_GLY model did not provide a stable steady-state, thus performing a MCA
was not possible. Furthermore, the malonyl-CoA and β-alanine models presented issues
when using glycerol as carbon source. Therefore, only models where glucose was used as
the carbon source were optimized.

Furthermore, it is worth noting that the optimizations were not performed with the
intent of accurately predicting indisputable improvements in AA production, but are rather
a guideline in the search for strategies for strain optimization [36]. Therefore, the results
presented here should not be used to perform quantitative comparisons between different
pathway designs, but rather to provide a general idea of what are the best targets to improve
the AA yields in vivo.

The optimization strategies identified for each of these three models (AA_GlyPath_-
GLC, AA_McoaPath_GLC, and AA_BalaPath_GLC) will now be presented.

4.3.1 Glycerol Model

The first MCA was performed in the GlyPath_MCA_Mutant_0 model. The FCC that
resulted from this analysis showed that the flux towards AA formation is mainly controlled
by the G3pD reaction (Equation 19), which exhibited the highest positive FCC (Figure 19).
This reaction is a potential bottleneck for AA production, thus a target for overexpres-
sion. The GlyPath_SIM_Mutant_0 model was optimized using COPASI’s optimization task,
which suggested an optimum Vmax of 1.5475 mM/s, a nearly 50-fold increase in the activity
of the G3pD. Hence, the parameter was modified for both models, creating Mutant 1 (Gly-
Path_MCA_Mutant_1 and GlyPath_SIM_Mutant_1). This model was able to produce 1.60

g/L of a AA (Figure 20), a value eleven fold higher than the initial production.
A second iteration using the Mutant1 models was performed, in which reaction G3pP

(Equation 20) was determined to have the highest FCC in the AA yields (Figure 19). The
positive coefficient led to the over-expression of the G3pP by increasing its Vmax 4.7 fold
(1.8098 mM/s) for maximizing AA synthesis. Mutant 2 was created (GlyPath_MCA_Mu-
tant_2 and GlyPath_SIM_Mutant_2), producing 3.77 g/L of AA (Figure 20), thus increasing
its production over twenty-eight times than the original value.

It is important to mention that enzymes such as the glyceraldehyde-3-phosphate dehy-
drogenase (GDH) and the GlyK were considered as targets for under-expression or knock-
outs, because of their negative coefficients (Figure 19). Since both were included in the
critical reactions of E. coli, they were only tested as under-expression targets. Unfortunately,
reducing the activity of those enzymes did not significantly improve AA production.
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Figure 19.: Flux Control Coefficients for the mutants of the glycerol pathway, where the reaction
with the most impact in the production of acrylic acid is highlighted in red.

Another MCA was performed in the Mutant 2 model, but the steady-state analysis
could not reach a stable steady-state. Hence, the FCC were not available and the optimiza-
tion of this pathway was terminated. Nevertheless, this analysis was useful to identify two
potential targets for optimization in this pathway, the G3pD, and the G3pP (Figure A.6).

Figure 20.: Acrylic acid production from the three mutants developed for the glycerol model. The
simulations were conducted with 10 g/L of glucose for all the mutants. Mutant 0 -
model with the heterologous pathway; Mutant 1 - 50-fold increase in the Vmax of the
G3pD; Mutant 2 - 4.7-fold increase in the Vmax of the G3pP.

4.3.2 Malonyl-CoA Model

In the malonyl-CoA chemostat model (McoaPath_MCA_Mutant_0), the FCC values
(Figure 21) show that the AccC reaction (Equation 22) has a major influence in AA pro-
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duction (Figure A.6). Moreover, the positive FCC indicates that this reaction acts as a
bottleneck resulting in the accumulation of acetyl-CoA. Therefore, the best strategy is an
over-expression to increase the flux of this reaction.

Figure 21.: Flux Control Coefficients for the mutant of the malonyl-CoA pathway, where the reaction
with the most impact in the production of acrylic acid is highlighted in red.

Using the batch model (McoaPath_SIM_Mutant_0) it was determined that the opti-
mum Vmax is 0.5873 mM/s, which corresponds to a 2.4-fold over-expression. Mutant 1 was
then created (McoaPath_MCA_Mutant_1 and McoaPath_SIM_Mutant_1), producing 3.21

g/L of AA, which is more than two times higher than the value obtained in Mutant 0 (Fig-
ure 22). It was not possible to recalculate the FCC as a new stable steady-state was not
available for the new model.

Figure 22.: Acrylic acid production from the two mutants developed for the malonyl-CoA model.
The simulations were conducted with 10 g/L of glucose for all the mutants. Mutant 0

- model with the heterologous pathway; Mutant 1 - 2.4-fold increase in the Vmax of the
AccC.

Even though other optimization strategies are recommended in the literature, it seems
to be well established that increasing the flux through the AccC reaction is the primary
strategy to improve AA production [96], which supports the result obtained. This enzyme
is maintained at low concentrations in wild type cells. Hence, it makes sense that the
first strategy should be over-expressing it [130]. Nevertheless, other modifications could
also be performed to overcome this bottleneck, like redirecting the carbon flux towards the
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formation of acetyl-CoA, increasing the availability of ATP, or increasing the specificity of
the enzyme towards its substrates [96].

4.3.3 β-alanine Model

Performing the MCA with the chemostat model (BalaPath_MCA_Mutant_0), revealed
that the β-alanine model has several reactions affecting the AA yields, but the one with the
most significant impact is the AspAT (Figure A.6), which is responsible for the conversion
of oxaloacetate into L-aspartate (Equation 24). This reaction has a positive coefficient indi-
cating that it is a bottleneck that impairs the downstream flux towards β-alanine. Therefore,
the strategy applied was, once again, an over-expression.

Figure 23.: Flux Control Coefficients for the mutants of the β-alanine pathway, where the reaction
with the most impact in the production of acrylic acid is highlighted in red.

Using the BalaPath_SIM_Mutant_0 model, COPASI estimated that a 50-fold over-
expression, resulting in a Vmax of 97.9716 mM/s, would maximize AA production. This
approach allowed creating Mutant 1 (BalaPath_MCA_Mutant_1 and BalaPath_SIM_Mu-
tant_1), a strain in which the predicted AA concentration after three hours is 0.87 g/L,
which corresponds to a twenty-nine times increase.

After that, another iteration of the method was performed in the models for Mutant
1, but the MCA result showed that the most significant influence on the AA yield was
the glucose feed, which is not a viable target for optimization. Other reactions, like the
phosphoenolpyruvate carboxykinase (PCK) and the malate quinone oxidoreductase (MQO),
with coefficients around 0.2, also seem to have an impact over this pathway. Nevertheless,
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Figure 24.: Acrylic acid production from the two mutants developed for the β-alanine model. The
simulations were conducted with 10 g/L of glucose for all the mutants. Mutant 0 - model
with the heterologous pathway; Mutant 1 - 50-fold increase in the Vmax of the AspAT.

over-expressing those reactions did not produce significant increases in AA. Therefore, only
the AspAT was identified as a target, which is in agreement with the results of Borodina et al.

(2015). In that work, it was suggested that the increase of the flux towards L-aspartate was
a viable strategy to increase AA production [95]. However, the AspC (Equation 24), which
is responsible for the production of β-alanine from L-aspartate, can also be considered as
a limiting factor for pathway flux, and a target for optimization, as the Vmax had to be
increased for the β-alanine model to work correctly.

As mentioned before, assessing AA production was not the goal of this method. How-
ever, when it comes to the pathway with the highest AA yield from glucose, a paradigm
shift was observed. As shown in Table 15, the highest AA production was achieved by the
glycerol route with 3.77 g/L. Moreover, the malonyl-CoA and β-alanine routes produced
3.21 and 0.87 g/L, respectively.

Table 15.: Summarized results of acrylic acid production for the mutant strains developed for the
glycerol, malonyl-CoA, and β-alanine models, using 10 g/L of glucose as substrate.

Model Strain Yield (g/L)

Glycerol
Route

Mutant 0 0.13
Mutant 1 1.60
Mutant 2 3.77

Malonyl-CoA
Route

Mutant 0 1.33
Mutant 1 3.21

β-alanine
Route

Mutant 0 0.03
Mutant 1 0.87
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C O N C L U S I O N A N D F U RT H E R W O R K

5.1 conclusion

In conclusion, this work resulted in the development of 12 distinct models that allow
the prediction of 3-HP or AA production using either glucose or glycerol as carbon sources
(Table A.1). From the comparison of the results provided from these models with published
in vivo results, it seems that the models were more effective predicting 3-HP production than
the production of AA. That happened because the Vmax values for the heterologous pathway
were calculated with an excessive enzyme concentration, thus the main limiting factor in
the synthesis of AA were the fluxes in the CCM. Unfortunately, that does not happen in vivo

since the reports that tested the full bio-based route showed that some amounts of 3-HP
and other intermediates are accumulated in the process.

Regarding AA production, an overall best carbon source was not found. Instead, that
answer is specific to each pathway. If the goal is to implement the glycerol pathway, it may
be advantageous using glycerol as it allows for a more straightforward path. This route
reduces the chance of other reactions diverting the carbon from the heterologous pathway.
On the other hand, for the malonyl-CoA and β-alanine routes, results were not robust
enough to suggest that one source would have better yields, as models that used glycerol
did not work acceptably. Nevertheless, the literature review showed that glucose was the
only tested carbon source for these pathways, which might mean that it is beneficial to use
this carbon source. However, it is essential to test AA production in vivo using both carbon
sources, to confirm if it is the case.

Besides, this work also provided more insights on which pathway is capable of pro-
viding higher profit margins. Even though the glycerol pathway appears to be correlated
with higher AA yields, it is a route that is dependent on vitamin B12 supplementation,
which can prove to be expensive on an industrial scale. Therefore, despite producing less
AA, it seems to be beneficial to use the malonyl-CoA route, since it still has the second
higher yield, it does not need the supplementation of any vitamin, and still was room for
optimization.

59
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Finally, since the yields from theses routes remain too low to implement them for
industrial-scale production, there is a need for optimization strategies that allow an in-
crease in AA synthesis. From this work, several targets for over-expression were suggested
that, theoretically, should increase the amount of AA formed. In the glycerol route, the op-
timization targets are the G3pD and G3pP. The main goal of these over-expressions was to
increase the flux towards glycerol formation, thus increasing its availability for the heterol-
ogous pathway. For the malonyl-CoA route, the goal was also to increase the production
of malonyl-CoA, which can be achieved by over-expressing the AccC reaction as it is the
main limiting factor due to the low bioavailability of the corresponding enzyme in wild

type cells. Finally, when using the β-alanine route, two targets were suggested, the AspAT
and the AspC. The over-expression of these reactions should increase β-alanine formation,
which is the main restricting factor in the dynamic model. A final aspect to consider for the
optimization of the AA yields is that this model only comprises the CCM. This means that
other pathways are almost certainly diverting flux from the AA route. Therefore, as it can
be confirmed from the literature, other strategies, like gene knockouts or under-expressions,
should be used to force the flux towards the heterologous pathway.

5.2 further work

In the future, further work is required to improve the developed kinetic models. Fur-
thermore, that work should focus on improving the characterization of some key enzymes
that presented some difficulties in the development of these models. First, it seems to be
crucial to determine the flux of the AspC reaction. The flux determined by the stoichiomet-
ric model resulted in a significant limitation for AA formation and had to be modified to
allow the β-alanine route to be compared with the other two pathways. Hence, it is essential
to obtain experimental data for that reaction, to assess if the modification reflected reality.
Moreover, the flux of the G3pD and G3pP reactions, from the glycerol model, seemed to
be underestimated due to the low yields when glucose was used as carbon source. Thus,
obtaining experimental data on these reactions can also help to improve the models. An-
other step towards the improvement of the models should be the kinetic characterization
of the underlying mechanisms of the DhaPT reaction, and the glycerol transport reactions.
This might fix the problems in the assimilation of glycerol, preventing the accumulation of
dihydroxyacetone.
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After the improvement of the model, the final step should be the validation of the
results. Therefore, these heterologous pathways, and their respective optimization strate-
gies, should be implemented in vivo, using both carbon sources, to assess the validity of the
results provided. Furthermore, these metabolically engineered strains could also be used
to determine the flux of the reactions in the heterologous pathway. That would avoid the
use of high enzyme concentrations and thus account for the accumulation of intermedi-
ates, which would improve the predicting capabilities towards AA formation. Finally, no
mechanism for 3-HP and AA transport was described or even identified in vivo. There-
fore, it becomes important to study the existence of such a mechanism, and if it does exist,
determine the kinetic properties that regulate that transport.
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A
S U P P O RT I N G M AT E R I A L

a.1 developed models

Table A.1.: Kinetic models developed to achieve 3-hydroxypropionate (3HP) and acrylic acid (AA)
from either glucose or glycerol. All the models presented in this table are available at
https://nextcloud.bio.di.uminho.pt/s/g6y8PjszaYaQr4j.

Model ID Pathway
Carbon

Source

End

Product
Metabolites Reactions

3HP_GlyPath_GLC Glycerol Glucose 3-HP 91 89

3HP_GlyPath_GLY Glycerol Glucose AA 94 93

AA_GlyPath_GLC Glycerol Glycerol 3-HP 94 92

AA_GlyPath_GLY Glycerol Glycerol AA 97 96

3HP_McoaPath_GLC Malonyl-CoA Glucose 3-HP 90 89

3HP_McoaPath_GLY Malonyl-CoA Glucose AA 91 91

AA_McoaPath_GLC Malonyl-CoA Glycerol 3-HP 93 92

AA_McoaPath_GLY Malonyl-CoA Glycerol AA 94 94

3HP_BalaPath_GLC β-alanine Glucose 3-HP 90 89

3HP_BalaPath_GLY β-alanine Glucose AA 91 91

AA_BalaPath_GLC β-alanine Glycerol 3-HP 93 92

AA_BalaPath_GLY β-alanine Glycerol AA 94 94
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a.2 glycerol model

Figure A.1.: Results of the time course simulations concerning glycerol (GLY) consumption (A), and
the production of 3-hydroxypropionate (3HP) (B) and acrylic acid (AA) (C), and flux of
the glycerol dehydrogenase (GlyD) (D), in the original AA_GlyPath_GLY model.
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Figure A.2.: Results of the time course simulations concerning glycerol (GLY) consumption (A), and
the production of 3-hydroxypropionate (3HP) (B) and acrylic acid (AA) (C), and flux of
the glycerol dehydrogenase (GlyD) (D), considering the AA_GlyPath_GLY model after
the affinity towards NAD of the GlyD was changed to 0.0165 mM.
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Figure A.3.: Results of the time course simulations concerning glycerol (GLY) consumption (A), and
the production of 3-hydroxypropionate (3HP) (B), dihydroxyacetone (DHA) (C), and
acrylic acid (AA) (D), considering the AA_GlyPath_GLY model after the Vmax of there-
action glycerol dehydrogenase was changed to 4298.4 mM/s.
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a.3 malonyl-coa model

Figure A.4.: Results of the time course simulations obtained with the AA_McoaPath_GLY model.
This model presented issues in the assimilation of glycerol, evidenced by the accumu-
lation of dihydroxyacetone (DHA) (A). This accumulation is caused by the low activity
of the dihydroxyacetone phosphate transferase (DhaPT) (B), which in turn is caused by
the low availability of phosphoenolpyruvate (PEP) in the system (C).

a.4 β-alanine model

Figure A.5.: Results of the time course simulations obtained with the AA_BalaPath_GLY model. This
model presented issues in the assimilation of glycerol, evidenced by the accumulation
of dihydroxyacetone (DHA) (A). This accumulation is caused by the low activity of the
dihydroxyacetone phosphate transferase (DhaPT) (B), which in turn is caused by the
low availability of phosphoenolpyruvate (PEP) in the system (C).
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a.5 optimization strategies

Figure A.6.: Schematic representation of the central carbon metabolism of Escherichia coli, where
the reactions that were identified as targets for optimization are highlighted in green.
For the glycerol pathway, the production of acrylic acid from glucose is limited by
the glycerol-3-phosphate dehydrogenase (G3pD) and glycerol-3-phosphate phosphatase
(G3pP), and the results suggested an over-expression for both reactions. Moreover,
for the malonyl-CoA pathway, the acetyl-CoA carboxylase (AccC) is a bottleneck that
limits the flux of the subsequent reaction, and, therefore, they should be over-expressed.
Finally, in the β-alanine route, two more reactions were suggested for over-expression,
the aspartate aminotransferase (AspAT) and the aspartate carboxylase (AspC).


