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ABSTRACT

Microbial communities, besides its many applications, can represent a solution for pollution
problems with reduced costs. However, to explore them in our favor, it is necessary to
understand how they work and be able to infer their potential regarding specific metabolic
networks.

Because of the continuous growth of genomic data, various tools have been developed
for homology and metabolic pathway inference, however new and improved strategies and
algorithms still being required.

In this work, it has been developed a pipeline that makes use of clusters of orthologous
data to perform the annotation of unknown sequences, and after that, the prediction of
species’ functional potential and microbial interactions. For that were developed two tools,
OrtScraper, for the download of bulk organized data from specif pathways of interest, and
OrtAn that performs the annotation on clusters of orthologous groups. The test and evalua-
tion of the pipeline were focused on the well-known transformation of benzoate to acetyl-CoA
(BTA) pathway. Two different genome sets were used, set A, from whose the annotation
of the sequences was known, and set B, from whose the capacity regarding the benzoate
degradation was known.

Both tools successfully performed the desired goal and for the annotation, the best cases
presented an F; score over 0.90. The recall values of the annotation showed to be the weakest
point of this pipeline, which led, possibly, to the unsatisfactory results on the prediction of
the species functional potential.

Some improvements to the developed tools and pipeline were proposed to improve the

annotation and species functional potential inference.

Keywords: Clustering; Orthologous; Homology; Annotation; Microbial Communities;

Functional Potential.






RESUMO

As comunidades microbianas, além das suas varias aplicacbes, podem representar uma
solucdo, de custos reduzidos, para problemas de poluicdo. No entanto, para explord-las a
nosso favor, é necessario entender como funcionam e poder inferir seu potencial em relacao a
redes metabdlicas especificas.

Devido ao crescimento continuo dos dados gendémicos, varias ferramentas tém sido desen-
volvidas para a inferéncia de homologia e de vias metabdlicas, no entanto, estratégias e
algoritmos novos e melhorados ainda sdo necessarios.

Neste trabalho, foi desenvolvida uma pipeline que faz uso de clusters de ortélogos para a
realizacao de anotacgao de sequéncias desconhecidas e, posteriormente, a previsao do potencial
funcional das espécies e previsao de interagoes microbianas. Para isso foram desenvolvidas
duas ferramentas, o OrtScraper, para o download de dados em massa organizados pertencentes
a vias metabdlicas de interesse, e o OrtAn, que realiza a anotagdo a partir de clusters de
ort6logos. O teste e a avaliagdo da pipeline foram focados na bem conhecida transformagao
do benzoato em acetil-CoA (BTA). Foram utilizados dois conjuntos de genomas diferentes,
o conjunto A, de onde se conhecia a anotagdo das sequéncias, e o conjunto B, de onde se
conhecia a capacidade de degradacao do benzoato.

Ambas as ferramentas realizaram com sucesso o objetivo desejado e, para a anotagao, os
melhores casos apresentaram pontuacao F; acima de 0,90. Os valores de recall da anotacao
mostraram-se o ponto mais fraco desta pipeline, o que levou, possivelmente, aos resultados
insatisfatérios na previsdo do potencial funcional das espécies.

Foram propostas algumas melhorias nas ferramentas e pipeline desenvolvidas para melhorar

a anotacao e a inferéncia do potencial funcional das espécies.

Palavras-chave: Clustering; Ortdlogos; Homologia; Anotagdao; Comunidades Microbiais;

Potencial Funcional.
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INTRODUCTION

1.1 MOTIVATION AND GOALS

Over the years scientists have been trying to find the best way to deal with pollution
problems. An effective approach with reduced costs for the treatment of polluted ecosystems
is the use of microbial communities that can take advantages of industrial residues (like
benzoate that can be used as a carbon source for some bacterial species)(B, 2012; Fetzer
et al., 2015). However, to use microbial communities for solving these problems, it is essential

that community structure and functional capabilities are understood.

In the last years, genomic data for single microorganism species or microbial communities
(metagenomic) has been accumulated, mostly due to the new technologies of sequencing such
as next-generation sequencing technologies (SHOKRALLA et al., 2012). However, new and
improved algorithms and frameworks that enable the efficient analyses of a large amount of
data are still required (Stephens et al., 2015; Schatz, 2012).

This work is included on a larger project which aims to improve our understanding of the
potential response of microbial communities to introduced chemicals whose main objective is
the design of scientifically based policies aimed at preventing and halting the loss of ecosystem

services.

The main goal of this work is the development of a bioinformatics tool that allows character-
izing metabolic networks of interest in microbial communities present in soil samples. These
networks allow determining, in a specific environment, which interspecies interactions allow
performing a given task. This tool will allow determining the microbial communities with
the potential to degrade a given chemical compound. In the state of the art section, we will
discuss current approaches used for homology inference (functional annotation), metabolic

networks reconstruction/inference and microbial interactions from genomic information.

Afterwards, a bioinformatics tool will be developed with the most suitable framework.
Finally, the benzoate degradation network of a well-known set of microorganisms will be used

as a case of study, to evaluate the tool and developed pipeline.
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1.2 STRUCTURE OF THE DOCUMENT

This document is organized in the following parts:

Chapter 2

State of the art

Role of genomics in the world of the big data. The soil and the importance of microbial
communities to its health. Overview of different homology and clustering tools. Strategies
and tools used for metabolic network inference and the prevision of the potential microbial

interactions.

Chapter 3
Proposed Approach

Brief explanation of the proposed approach to reach the project goals.

Chapter 4

Methods

Overview of the data collected to test and evaluate the pipeline. Description of: the tool
chosen for the clustering step and its evaluation; the annotation strategy and its evaluation;

method for retrieve species functional potential and microbial interactions.

Chapter 5
Tools and Workflow
Description of the developed tools, to assist the pipeline on the data collection phase and

annotation phase.

Chapter 6
Results and Discussion
Presentation and discussion of the results from the clustering evaluation and the various

pipeline steps. Discussion of the tool’s performance.

Chapter 7
Conclusions and Future work
Main conclusions of the thesis results and description of possible improvements and further

work.



STATE OF THE ART

2.1 BIG DATA

When compared with the other major generators of Big Data (astronomy, YouTube, and
Twitter), genomics is on par with these domains in terms of the acquisition, storage, distri-
bution, and analysis requirements (Stephens et al., 2015).

Concerning the acquisition of data, the advances in next-generation sequencing technologies
revolutionized this field and even made possible the emergence of new ones, like metagenomics,
that corresponds to the analysis of environmental DNA (and made possible the sequenc-
ing of microorganisms that, outside of their natural environment have yet to be cultured)
(SHOKRALLA et al., 2012). Considering the current rate growth on this field, Stephens
et al. (2015) predict that by the year 2025 the mark of 1 zetta-bases/year of genomic data
will be achieved. In fact, they estimate the sequencing of 100 million to 2 billion human
genomes by this year, which would lead to an exceeding growth when compared to the other
Big Data domains.

With respect to data analyses, genomics appears to be the most challenging domain. A very
important and common operation, like a whole genome alignment between human and mouse,
consumes approximately 100 CPU hours (Kurtz et al., 2004). To perform the whole genome
alignments between all the pairs of species available in 2025, the resources allocated should
allow performing these operations in a magnitude of six times faster than what is possible
today (Stephens et al., 2015). These challenges must be faced by knowledge professionals of
the field (quantitative biologists, bioinformaticians, and computer scientists and engineers)
(Schatz, 2012) and efficient solutions (both in terms of hardware and software) and algorithms
for the different problems should be created so the analysis of the available data is made

possible.

2.2 SoOIL

In 1996 Doran et al. (1996) defined a healthiness of a soil as the ”capacity of soil to function

as a vital living system to sustain biological productivity, maintain environmental quality, and
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promote plant, animal, and human health”. Ensuring a healthy soil is ensuring the quality of
the water we drink, of the air surrounding us and of the food we produce (Wall and Six, 2015).
To maintain the benefits of the soil, this resource should be used with care and in a sustainable
way since human actions could have a very negative effect on soil and the biodiversity of its
communities (Wall et al., 2015).

A threat to this ecosystem, for instance, is the extensive use of chemical substances. When
some chemical substances produced in between industrial processes cease to have value and
become unwanted, its improper elimination could lead to possible environmental contamina-
tion. (B, 2012; Harvey et al., 2017). This is a common problem in industrial cities distributed
around the world (Filippelli et al., 2015). UN-HABITAT and Ltd. (2011) show that there was
an increase on the urban settings from less than 30% in 1950 to 47% in 2000 and, by 2025,
is expected to increase to 60% of the percentage of urban dwellers. Thus, it is important to

address this problem.

One solution for the process of soil decontamination is the use of appropriated micro-
bial communities, as microorganisms are capable of degrading both natural and synthetic
substances as a means to obtain energy and nutrients (B, 2012). Already in the 50’s, the
‘microbial infallibility hypothesis’ was proposed, which suggests that microorganisms will be
found to degrade every chemical substance synthesized by any living organism. To date, many
studies (Krueger et al., 2015; Ayangbenro and Babalola, 2017; dos Santos and Maranho, 2018)
point single microorganisms, as well as microbial communities, as being an effective biotech-

nological approach to help in pollution problems.

2.3 MICROBIAL COMMUNITIES

2.3.1  Microbial communities as a solution for pollution problems

Over the years, microbial communities have been pointed out as a solution for pollution
or contamination problems in various ecosystems. dos Santos and Maranho (2018) discuss
bioremediation as an alternative tool for recovery of petroleum-contaminated soils, focusing
on a phytoremediation strategy where roots and colonies of microorganisms work together for
the biodegradation of petroleum. Jiang et al. (2017) show that there are microbial communi-
ties capable of removing propazine (an s-triazine herbicide) residues from farmland soil. This
process is important to ensure a safe crop production. Another study referring to bioremedi-
ation of herbicides with microorganisms is the study of Horemans et al. (2016). They showed
that some bacteria were responsible for the degradation of the phenylurea herbicide linuron
on agricultural soils as well as bacterial populations capable of mineralizing the downstream

metabolites of linuron hydrolysis.
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Debbarma et al. (2018) studied potential bacterial strains for electronic waste (e-waste)
treatment, providing a protocol for screening and selection of efficient e-waste utilizing bac-
teria and demonstrating potential consortia ready to be used. Krueger et al. (2015) have
written a review gathering the existing knowledge about the use of microbial communities on
the degradation of several plastic types that pollute marine, limnic and terrestrial ecosystems.
They identify microorganisms as promising candidates for bioremediation of environmental
plastics. Ayangbenro and Babalola (2017) describe groups of microorganisms with biosorbent

potential for heavy metal removal from the environment.

Fernandez-Luqueno et al. (2011) suggested microorganisms as an effective and economical
solution for PAHs (polycyclic aromatic hydrocarbons) contaminated soils and refer to better
strategies to improve this process. Liu et al. (2017) investigate microbial communities re-
lated to roxarsone degradation and identified the bacteria that played important roles in this

process.

2.3.2  Microbial communities behavior and interactions

As indicated in the section above, microbial communities can be a solution for soil pollution,
but to take advantage of them or at least, recognize their capacities and limitations, we first

must understand their behavior.

Inclusive fitness theory introduced by Hamilton (1964) proposes that cooperation should be
common between organisms sharing the same genotype (genetically distinct set of microbial
cells, in particular, groups of cells that are identical at the loci for a social phenotype) (Mitri
and Richard Foster, 2013). Furthermore, this theory also indicates that organisms with
different genotypes may be in competition. But these assumptions may not always be the
case (West et al., 2006).

In Sieuwerts et al. (2008), the authors explain microbial interactions in mixed cultures.
The classification of these interactions is based on the fitness consequences to the effector,
who performs the behavior, and the target, that is affected by the behavior of the effector.
See table 1. These behaviors can be divided into six main classes: mutualism, parasitism,
competition, commensalism, amensalism, and neutralism. In the first two referred classes,
the effector of the behavior benefit from the interaction. With respect to mutualism, both
microorganisms behave like effector and target at the same time, so both benefit from the
interaction. In the case of the parasitism, the target suffers detrimental effects. In competition,
both microorganisms involved act like effector and target, like in mutualism, but in this case,
both suffer detrimental effects (like when two species compete for the same limited carbon
source or other nutrients). In the last classes, the effector is not affected for the behavior but
it could be beneficial for the target microorganism (commensalism), detrimental (amensalism)

or neutral too (neutralism).
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Table 1.: Classification of microbial interactions based on the effect on the participant’s
microorganisms fitness. (Sieuwerts et al., 2008)

Effect on effector
Beneficial Detrimental Neutral

Beneficial Mutualism Commensalism
Effect on target Detrimental Parasitism Competition  Amensalism
Neutral Neutralism

It is easy to understand why natural selection led to the cases where the effector benefit
from the interaction, but the situations where only the target microorganism take benefit from
it are more difficult to explain. Nevertheless, a wide range of known microbe phenotypes
is consistent with this altruistic behavior (West et al., 2007). Examples are the secretion
of extracellular enzymes that digest compounds making them accessible for other organisms
(Wandersman, 1989) and siderophores, which allow cells to harvest poorly soluble iron (Pattus
and Abdallah, 2000).

If different organisms can be cooperative and live within a community, another factor that
could be taken into account when trying to understand the ecosystem behavior is the biodi-
versity. There are studies suggesting that the biodiversity of many ecosystems is decreasing
(Butchart et al., 2010) but the consequences of these changes still remain unclear (Naeem,
2002).

Frequently, species abundance and variety have a positive effect on the ecosystem behavior,
but there are other factors that could have an impact on the community. The biodiversity-
ecosystem functioning (BEF) relationship could be affected by the number and type of species,
their evenness in the community, their functional attributes or abilities, and their interactions
(Maestre et al., 2012; Mulder et al., 2001). For instance, to maximize the multi-functionality
of a community, Maestre et al. (2012) indicated that particular combinations of attributes
may be required. The environmental context should also not go unnoticed, as ecosystems are
constantly facing multiple environmental changes that could lead to negative effects on the
BEF (Cardinale, 2011). The stability of an ecosystem could be characterized by its resistance
("the degree to which microbial composition remains unchanged in the face of a disturbance”
(Allison and Martiny, 2008)) and resilience ("the rate at which microbial composition returns
to its original composition after being disturbed” (Allison and Martiny, 2008)).

Fetzer et al. (2015) showed that high biodiversity could benefit the community when facing
environmental changes because some species could have some relevant traits or allow new
interactions which would allow the community to survive. However, Pfisterer and Schmid
(2002) suggested a negative correlation between biodiversity and stability.

Hence, it is important to know which are the functional capabilities of the species within a

community to understand the functioning of an ecosystem and its potential.
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2.4 HOMOLOGY

The need for computational tools to analyze the vast amount of data being generated was
addressed in the section 'Big Data’. Regarding protein sequence data, an important step is to
infer the proteins’ functions via homology (common evolutionary origin) analyses (Mazumder
et al., 2008).

Genes that descent from a common ancestral DNA (deoxyribonucleic acid) sequence are
called homologous genes. Depending on their evolutionary relation, they can be either orthol-
ogous or paralogous. Orthologues are genes from different species that originated through
speciation events whilst paralogues are genes within the same genome that originated through
duplication events. Unlike paralogous genes that evolve into new functions, orthologous genes
are more likely to share the same function (Fitch, 1970). In addition to these additional terms
were suggested for a more specific classification when determining the evolutionary relation-
ship: out-paralogs (not orthologous because these precede a speciation event), and in-paralogs
(orthologous as these were duplicated after the speciation event) (Remm et al., 2001). Precise
clusters of orthologous groups (COGs) (sets of genes/proteins able to perform the same func-
tion) are useful for having best results when predicting functions. Thus, several tools, able
to assemble COGs, have been successfully developed for comparative genomics and genome

annotation.

2.4.1  Homology inference

The sequence and/or structural similarities between proteins allow the inference of homol-
ogy. Here we describe approaches and tools used for homology inference based on sequence
similarities. A simple and very common way to compare proteins and search for similarities
in a vast set of sequences in a database is the use of Basic Local Alignment Search Tool
(BLAST)(Altschul et al., 1990). The BLAST algorithm is described in figure 1.

For the analyses of the BLAST results, it is necessary to understand some concepts and
vocabulary regarding the performed alignments. These concepts and vocabulary are used
not only for BLAST reports but for many other sequence search tools that follow similar

strategies. Some of them will be referred to below.

Alignment is a process of trying to match up the nucleotides or amino acid residues of two
(or more) sequences. The goal is to achieve maximal levels of identity to assess the degree of
similarity and the possibility of homology between two sequences. There are two main types
of alignments, the global ones (that attempt to align the whole sequences involved) and the
local (that try to find local regions of high similarity between two sequences) (Henikoff and
Henikoff, 1992), the ones that BLAST attempts to do.
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(1) For the query find the list of high scoring words/seeds of lenght w.

Query sequence of lenght L
i Maximum of L-w+I seeds
— (typically w=3 for proteins)
.
-
—

For each seed from the query sequence find
the list of seeds that will score at least T
when scored using a pairscore matrix (e.g.
PAM 250). For typical parameters there are
around 50 seeds per residue of the query.

(2) Compare the seed list to the database and identify exact matches.

/ m Database
Sequences
L |

—

Exact matches of seeds
from seed list

(3) For each seed match, extend alignment in both directions to find alignments that score
greater than score threshold S.

T

|

I

Maximal Segment Pairs (MSPs)

Figure 1.: Schematic illustration of the BLAST algorithm. Adapted from Sansom (2000).
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In an alignment between two sequences, there are, the normally called, query sequence and

subject sequence. The subject, or reference sequence, is a sequence present in the database

and to which some information is known, for instance, its origin and functional annotation.

The query is the sequence for which is attempted to find a match in the database, that is, a
similar reference sequence. The word "hit” is used when, for a query sequence, it is found a
match in the database (Altschul et al., 1990, 1997b; Wheeler and Bhagwat, 2007).

An example of a hit/alignment resulting from BLAST is represented in figure 2. The range
of alignment is the length of the section of both sequences involved in the alignment. In the
range of alignment there are identical matches (represented by a ”|” in figure 2 and correspond
to the positions in the alignment where the nucleotide or amino acid is the same in both query
and subject sequences), the mismatches (correspond to positions in the alignment were the
nucleotide or amino acid is not the same between both sequences) and gaps (represented by

9N

a in the figure 2 and corresponds to a space introduced into an alignment to compensate
for insertions and deletions in one sequence relative to another) (Fassler and Cooper, 2011;

Kerfeld and Scott, 2011).

Range of alignment
|

ATTGTCAAAGAGTTGAGCTGATGCAT

BINARImIIN
GGCAGACATGA CTGACAAGGGTATCG

Mismatch Gap

Figure 2.: Scheme representing an example of a local alignment. Adapted from Fassler and
Cooper (2011).

To evaluate the similarity between two sequences a score is calculated, where the matches
between the same nucleotide or amino acid contribute positively to the score and the miss
matches and gaps contribute negatively or do not contribute. These values for the different
cases of matches and miss matches are defined by a scoring matrix. This matrix contains the
values that should be assigned to each possible case. They are constructed by the observations
of larger samples of verified pairwise alignments and indicate the probability of, for instance,
an amino acid ¢ be substituted by an amino acid j. With this arises a new parameter that

can be evaluated in the alignments, the percentage of positive matches. These are matches

that have a positive value on the score matrix used to calculate the score of the alignment.

These cases include identical matches, that always have positive values, and matches between

11
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similar amino acids (Henikoff and Henikoff, 1992; Fassler and Cooper, 2011; Kerfeld and Scott,
2011).

Some other parameters that can be taken into account, besides not always retrieved directly
by these tools, are the query and subject coverage. These terms correspond to the percentage
of the query or subject sequence that is involved in the alignment. Another very important
parameter is the Expected value (usually called e-value) that represents the likelihood of
the present alignment scores or higher occurs by chance in the database. E-value is mostly
important when using big databases, because, in those cases, it becomes more likely to be
included matches to a query sequence that is due by change and not for homology (Kerfeld
and Scott, 2011; Korf et al., 2003).

Dayhoff et al. (1975) was the first to suggest the concept of protein families (or family
domains), that consists in sets of proteins grouped by similarity. Several databases store
protein information based on this homology concept, such as Pfam (Finn et al., 2014) (protein
families database), ProDom (Servant et al., 2002) (Protein domain families database) and
PROSITE (Sigrist et al., 2013) (Database of protein domains, families and functional sites).
Currently, these families (or family domains) are usually represented by multiple alignments
(Mazumder et al., 2008) and there are bioinformatics representations, such as position-specific
scoring matrices (PSSMs) (Gribskov et al., 1987) and hidden Markov models (HMMs) EDDY
et al. (1995), wich allow the comparisons to be much more sensitive than a simple search with
the BLAST algorithm.

Thus, when BLAST searches are not enough to predict a protein function, advanced se-
quence analyses can be performed such as profile searches (HMM and PSSM), pattern search
(conserved motif analysis) and phylogenetic tree reconstruction (Mazumder et al., 2008). One
of these tools is the Specific Iterative (PSI)-BLAST (Altschul et al., 1997a). PSI-BLAST is
a protein sequence profile search method that generates a PSSM from a multiple alignment
generated by the hits of a first run of the BLAST. In the following iterations, the search in
the database is performed with the generated PSSM as a matrix of scores. The PSSM cap-
tures the conserved patterns in the multiple alignment. This allows the detection of distant

relationships between proteins.

Although BLAST is an efficient algorithm, with the constant increase of genomic data the
necessity of new algorithms and tools, to decrease computational time and resources whilst

maintaining precision, arises.

RAPSerach2 (Zhao et al., 2012), an optimized version of RAPSerach (Ye et al., 2011), was
developed with the aim of analyzing large amounts of sequences generated by transcriptomic
or metagenomics samples, inferring putative functions by similarity searches. This algorithm
follows the same approach as BLAST regarding the seed-and-extend paradigm, with the
difference that RAPSearch2 uses a reduced amino acid alphabet (10 symbols representing

groups of amino acids) when looking for flexible-length seeds (or "words” in figure 1). With
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an optimization regarding the way of the index of the protein database, RAPSearch2 became
more quickly and memory efficient than RAPSearch, which was already faster than BLAST

(achieving up to a 90X acceleration) while missing less than 5% of potential protein hits.

GHOSTX (Suzuki et al., 2014) is another sequence homology search tool developed for
functional annotation of metagenome sequences. A workflow that summarizes the GHOSTX
is shown in figure 3. It follows the seed-extension approach used in BLAST, also with the
difference of flexible-length seeds and, to speed up the process, it uses suffix arrays of both
queries and database sequences. After finding seeds, with a method relying on a score-based
optimal seed length, GHOSTX performs alignments by extending seeds without gaps. Lastly,
it makes alignments with gaps. With the optimization of the seed search step (one of the most
computationally intensive parts of BLAST) GHOSTX can be faster than BLAST searches
with similar levels of sensitivity. Compared to RAPSearch2, GHOSTX can also be faster (up

1.4 times) and achieve higher levels of accuracy.

Query Database
Construction of suffix array Construction of suffix array
v A 4
Suffix array Suffix array
— Seed search —

A 4
Ungapped extension
\ 4
Gapped extension
\ 4
Trace back

Figure 3.: The workflow of GHOSTX. Adapted from Suzuki et al. (2014).

DIAMOND (Buchfink et al., 2015) is another tool inserted in this group of tools that uses
the seed-and-extend paradigm that is described in figure 1 (when explaining the BLAST
algorithm functioning). The DIAMOND algorithm only works with protein sequences and

13
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claims to be 20,000 times faster than BLAST aligning short reads while maintaining a similar
level of sensitivity. Regarding the seed-and-extend strategy, it consists of a first phase where
there is a search for matching seeds in the database, and then, the second phase is responsible
for the ’extend’ or alignment between the sequences. This requires the programs to store the
index of the seeds found in the sequences from the database. The usual approach after that
is to scan the query sequences linearly and match their seeds to the seeds from the reference
sequence accessing then the created index in a randomly way. The way DIAMOND approaches
up this process is by the used of double indexing, where all the seeds, from both queries and
reference sequences, have their seeds and locations listed. Both lists are sorted and passed
through at the same time to determine all the seeds that match and their locations. This
strategy reduces the demands on the main memory bandwidth. To reduce the time compared
to the alignment search tools referred to before, DIAMOND made other modifications to the
strategy normally used. Normally the seeds used are single consecutive short seeds because
the use of longer seeds causes a decrease in the sensitivity. However, short seeds slow down
the computation (Ma et al., 2002). What DIAMOND does to increase speed and do not lose
sensitivity is to use spaced seeds, having the positions of these a specific number and layout
carefully chosen to fulfill the needs (Ilie et al., 2011). Besides that, DIAMOND also uses a
reduced amino acid alphabet but composed of 11 letters instead of the 10 symbols used by
RAPSearch2. It was already shown that the information lost when using a reduced alphabet
that doesn’t go from less than 10 letters is very little (Murphy et al., 2000) and does not
compromise the homology search. Thus, using a reduced alphabet, both RAPSearch2 and
DIAMOND can perform the comparisons faster without compromising too much sensitivity.
DIAMOND also uses simple exact match criteria to decide which seeds are passed to the
extension phase, which consists of a computation of a Smith-Waterman alignment (Smith
and Waterman, 1981). DIAMOND achieved impressive results in terms of the time needed to
compare big quantities of sequences. However, to use the default or "fast” mode of DTAMOND,
that can be 20,000 times faster than BLAST), is necessary to abdicate some sensitivity. Only
the DIAMOND ”sensitive” mode, 2,000 times faster than BLAST, is capable of achieving
sensitivity results close to the ones obtained with BLAST (the loss of recovered matches is
less than 10%)(Buchfink et al., 2015).

The homology search problem can also be seen as a statistical inference problem underlying
two hypothesis: First, the target sequence is a homologue of the query sequence. Second, the
null hypothesis, the target sequence is a "random” (not homologous) sequence (Eddy, 2009).

Hereupon, tools for homology inference were developed based on this strategy.

HMMER is a homology search tool based on probabilistic inference using profile HMMs
in its implementation. This tool could be used for single sequence search (e.g. BLAST)

or for iterative/profile search (e.g. PSI-BLAST), normally using profile databases such as
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Pfam. HMMER can work at the same speed as BLAST while being able to detect remote
homologues, relying on the strength of its underlying probability models (Eddy, 2009).

Lately, researchers are trying to take advantage of the promising field of machine learning
in genetics and genomics (Libbrecht and Noble, 2015). Zou et al. (2017) present an ensemble
learning framework called EnMIMLNN that uses RBF (radial basis function) neural networks
(Bishop, 1995) which are able to learn from Multi-Instance Multi-Label examples (objects used
to train have multiple labels) to address the prediction task. For the same prupose, but in
the branch of deep learning, Zou et al. (2017) propose deep restricted Boltzmann machines
(DRBM). The two approaches present promising results; however, these are limited to GO
(Gene Ontology) terms (Ashburner et al., 2000) classification.

2.4.2  Clustering of orthologous tools

As previously mentioned, clustering of orthologues tools could be advantageous in the
process of functional annotation. Examples of algorithms that perform best in identification
of orthologues, whilst maintaining the balance of sensitivity and specificity (Hulsen et al.,
2006; Chen et al., 2007), are INPARANOID (Remm et al., 2001) and OrthoMCL (Li et al.,
2003).

INPARANOID is able to distinguish orthologous and in-paralogous genes from out-paralogous
genes, though this approach is limited to comparisons between two species. The algorithm
starts with the detection of sequence pairs with mutually best hits between the two species
in the analysis, which result from all-versus-all BLAST searches. The matched area from the
BLAST result is forced to be longer than 50% of the longer sequence, thus avoiding clustering
sequences that share only short domains. After the definition of a cluster and its main se-
quences, additional orthologous genes are added to the cluster. In-paralogous genes are only
assigned if their sequence is more similar to the main orthologous gene than to any sequence
from other species. In the end, to solve overlapping cases, depending on the type and extent

of the overlap, overlap groups can be merged, deleted or separated (Remm et al., 2001).

To overcome INPARANOID’s limitations, OrthoMCL was developed. Unlike the for-
mer, OrthoMCL allows performing the identification of orthologous groups between multi-
ple species (Li et al., 2003). This approach is similar to INPARANOID, though it uses the
Markov Cluster algorithm (MCL; based on probability and graph theory and allows simul-
taneous classification of global relationships in a similarity space) (van Dongen, 2000) which
allows solving the problem relative to multi-genome comparisons. In figure 4, a workflow that
summarizes the OrthoMCL algorithm approach is shown.

Emms and Kelly (2015) describe a problem common to tools such as INPARANOID and
OrthoMCL that use BLAST to measure pairwise sequence similarity and lack the consid-
eration of the length of the sequences in analyses. The problem is that in BLAST short
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Protein sequences from
organisms of interest

All-against-all
BLASTP

Between Species: Whithin Species:
Reciprocal best similarity pairs Reciprocal better similarity pairs
Putative orthologs (recent) paralogs

gl

Similarity Matrix
(normalized by species)

Markov
Clustering

Ortholog groups with
(recent) paralogs

Figure 4.: Flow chart of the OrthoMCL algorithm for clustering orthologous proteins.
Adapted from Li et al. (2003).

sequences alignments do not result in large bit scores or low e-values, while long sequences
result in several hits with better scores than best hits involving short sequences. Thus, the
results from these tools could contain orthologous groups missing short genes and orthologous

groups with long genes that should not be clustered.

OrthoFinder (Emms and Kelly, 2015) aims to solve this problem. It uses an approach
similar to OrthoMCL but includes a score transformation to eliminate gene length bias in the
detection of orthologous groups. In figure 5 an overview of the steps of OrthoFinder algorithm

is shown.

All-versus-all BLAST searches require intensive computational resources, and consequently,
specially when using large data sets for clustering, leads to long running times (Li et al., 2012).
To overcome this challenge, new methods for clustering sequences were developed, such as
CD-HIT(Li and Godzik, 2006) and Uclust (Edgar, 2010). CD-HIT’s first step is the ordering
of the sequences by length, and then, set the longest sequence as the seed of the first cluster.
After that, the remaining sequences are compared with the seeds of the existent clusters

and the sequence in question is grouped into a COG if the similarity with the seed meets
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Figure 5.: Flow chart of the OrthoFinder algorithm for clustering orthologous genes.
Adapted from Emms and Kelly (2015).



18

Chapter 2. state of the art

Table 2.: Comparative table of some important features of the clustering tools.

INPARANOID OrthoMCL OrthoFinder CD-HIT Uclust
Multiple species No Yes Yes Yes Yes
allowed
Inparalogs detec- Yes Yes Yes No No
tion
Need of all Yes Yes Yes No No
against all com-
parison
Comparisons and BLAST BLAST BLAST (but The similarities are Usearch
Measure of Sim- includes a score estimated by
ilarities between transformation to common word
sequences eliminate gene counting.

length bias).

Clustering Algo- Uses MCL MCL Greedy incremental Greedy incremental

rithm

bi-directionally
best hits to find
the main pair of
each group, where
additional

orthologouss (or
in-paralogs) are
clustered latter.

algorithm

algorithm

Main advantages

High sensitivity
and specificity

when clustering
orthologous.

High sensitivity
and specificity

when clustering
orthologous.

High sensitivity
and specificity
when clustering
orthologous; An
easy command that
uses as input a
multiFASTA file
(one per species);
Minimizing the bias
of the length of the

Ultrafast

Ultrafast

sequences.
Main disadvan- Needs a lot of Needs a lot of Needs a lot of Only highly similar Only highly similar
tages dependencies dependencies dependencies sequences are sequences are
including BLAST; including BLAST including BLAST grouped in the grouped in the
Limited to two and MCL and MCL same cluster. same cluster.

species. algorithms to run; algorithms to run.
Difficult to use (a
lot of commands
needed).
Year of realease 2001 2003 2015 2001 2010

a pre-defined cut-off value.

Unclustered sequences becomes the seed of a new clusters (Li

et al., 2012). Uclust also follows a greedy incremental approach like CD-HIT, but for fast
sequence comparison, it uses a heuristic called Usearch. It gains speed by comparing a few
top sequences, the ones which have shorter words in common, instead of the full databases
(Li et al., 2012; Edgar, 2010).

All the algorithms described above in this subsection are able to cluster sequences based on
their similarity, but could lead to slight differences in their results. OrthoFinder is the most ac-
curate between all the algorithms previously described followed by OrthoMCL which exhibits
more potential for accurate functional annotation of unknown protein sequences compared to
INPARANOID (Chen et al., 2007; Emms and Kelly, 2015). The referred algorithms are not
specifically focused on finding orthologous genes, but in group similar sequences. They could
be viable methods, for instance, to transform large redundant data sets into non-redundant
data set ones (Li et al., 2012).

In the table 2 the tools previously mentioned are compared regarding some important

features and their main advantages and disadvantages.
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2.5 METABOLIC NETWORKS INFERENCE

Knowledge on which metabolic pathways present in an organism or microbial community
allow to understand what can happen in a given environment. Therefore, following the func-
tional annotation, one can perform metabolic network reconstruction / inference. Several
strategies have been developed to determine which metabolic networks are present in a given
community and databases containing metabolic networks data play a major role in this pro-
cess. Two projects that contain pathways information that could be taken as reference when
performing functional annotation and pathway reconstruction of large data sets are KEGG
(Kyoto Encyclopedia of Genes and Genomes) (Kanehisa et al., 2017) and MetaCyc (Caspi
et al., 2018) (Altman et al., 2013).

KEGG is a database with functional information about genes and genomes. In KO (KEGG
Orthology), molecular function data is organized in functional orthologous groups. The KO
identifiers, £ numbers, are used across KEGG, including the KEGG pathway maps. These

maps include diagrams of networks of molecular interactions/reactions.

MetaCyc contains a large curated collection of metabolic pathways, including information
about reactions and involved components, enzymes and chemical compounds. Its data has

been utilized for pathway prediction in the BioCyc database collection (Caspi et al., 2016).

The strategy commonly used when trying to perform the pathways reconstruction of a
genome or metagenomics sample consists in the simple mapping of genes/proteins, based on
their homology, to a database containing pathways information. Next, a pathway is considered
to be present if one or more of the previewed functions in the pathway are identified. For
instance, KAAS (KEGG Automatic Annotation Server) (Moriya et al., 2007) uses KEGG
database to perform the annotation of a data set. It first finds the homologues of the query
sequences and assigned them a k number (based on which KO group the gene belongs to)
after which, the functions identified are mapped to the reference pathways (KEGG pathway
maps). The output is a list of all the pathway maps with a link in which & numbers found are
identified. According to Ye and Doak (2011), this simple approach could lead to a problem
of over-estimation of the number of pathways, in which the same protein is linked to multiple

pathways.
Hence, MinPath (Ye and Doak, 2011) was developed to address this issue. Unlike the pre-

viously mentioned approach for pathway reconstruction (given a set of functions, reconstruct
the complete pathways encoded or identify the pathways that have at least one function

associated), this approach is based on a parsimony problem.

The algorithm consists of a linear programming (LP) problem, in which all the variables
assume integer values, making it an integer programming (IP) problem. The objective func-
tion of this called minimal pathway reconstruction problem is in equation 1. The algorithm

aims at finding the minimal set of pathways that can be performed by all assigned functions
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(inferred from the sequence data), that may come from complete or incomplete genomes or

metagenomes. n is the number of functions annotated in a data set.

The minimal set of pathways that can be performed by all the given functions is composed

by the pathways with P;/=1, where:

P
min Z P]-
j=1

P
st. Y M;jP;>1 Vie[l,n]
j=1

p is the number of putative pathways which have at least one component function annotated;

M is the mapping of protein functions to the pathways, Mi= 1 if function ¢ is involved in

pathway j, otherwise 0;
P;j indicates if the pathway j is on the final list or not (1 if selected, 0 otherwise);

Although MinPath uses a sensible approach for inferring pathways represented in a set of

sequences, it still not perfect and there is room for improvements (Ye and Doak, 2011).

Jiao et al. (2013) proposed a probabilistic approach to infer the reactions available in a
community. The approach uses a Markov Chain Monte Carlo (MCMC) algorithm for sampling
potential and valid subnetworks (networks possible to occur in the community) taking as
input the list of annotated reactions in the community and a global network to analyze. After
the MCMC sampling, the probability of the occurrence of each reaction is calculated. This
method takes into account a problem normally dismissed in pathway inference methods, the
promiscuous enzymes. Promiscuous enzymes are those mapped to more than one reaction.
However, given certain environmental conditions like pH and temperature, there is a higher
likelihood of the enzyme to catalyze a given reaction than the others. Thus, when inferring
about metabolic networks, it should not be assumed that all the reactions are catalyzed
equally Nobeli et al. (2009). The algorithm also indirectly favors highly connected networks,
reducing the number of terminal metabolites, a fact that is also taken into account when

reconstructing metabolic networks (Feist et al., 2009).

However, this approach has limitations, such as the lack of consideration of compartmen-
talization (although other studies (Greenblum et al., 2012) also ignore these boundaries when
studying a whole microbial community), the assumption that the reactions are reversible
(which does not normally occur in the cellular environment) and not taking into account the

enzymes abundance.
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2.6 POTENTIAL OF MICROBIAL INTERACTIONS

Approaches used to determine the function of genome/metagenome sequences, followed by
several strategies used to construct/infer the metabolic pathways from the annotated reactions
have been described. Next, the prediction of potential interactions between microorganisms

within a community will be discussed.

The approaches vary from mathematical modeling (Song et al., 2014) to text mining of sci-
entific literature (Freilich et al., 2010). Regarding mathematical modeling, Song et al. (2014)
describe in their review a wide range of approaches varying on their main focus, the neces-
sary input, and in problem formulations. One way to classify these approaches is dividing
them by the modeling unit that is considered in the problem, in other words, the entities of
which the interactions are evaluated. These modeling units can be individual cells, species,
functional guilds (groups of organisms sharing similar traits) or even a community as a whole.
Supra-Organismal is the name of those approaches where the chosen modeling unit is the
community. Here instead of treat a community as a set of species, the community is seen
as a set of genes/reactions from which interactions are calculated. Also, cell boundaries are
not considered in the problem. This technique is used in comparative metagenome analysis
eliminating the need to identify genes origin species (Tringe, 2005). Two approaches possible
to be used with the supra-organismal concept are Stoichiometric Model-Based Analysis and
Metabolic Function-Based Dynamic Modeling, first developed for analyzing single organisms
(Song et al., 2014). Stoichiometric models are given by the mass balances in conjunction
with reactions flux boundaries. To apply the super-organismal concept in this approach, a
metabolic network representative of the whole community has to be reconstructed. This
networks could then be used with flux balance analysis (FBA) (Orth et al., 2010), a stoi-
chiometric based-model that obtains an optimal pathway regarding biomass (or metabolites
such as ATP) production through linear programming (LP) problem. While stoichiometric
models evaluate the flux distributions of the community in a specific environment, dynamic
modeling adjusts to the environment, so the response to environment variations could be
studied. Dynamic models are very complex, so there are some strategies created with the
goal of reducing this complexity. One is to focus only on some key metabolic functions for
the network. An example following this strategy is Gene-centric approach (Reed et al., 2014)
that also takes into account the dependencies of the network reaction on the functional genes

and their dynamic responses.

Population-based models are the most used ones to study the communities dynamics. The
entities or modeling units taking into account in these type of models are either species or
functional guilds. These models assume homogeneity in the cells phenotypic behavior within a
population. To include on the modeling the heterogeneity observed in populations, individual

cells have to be the modeling units (Song et al., 2014).
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To infer microbial interactions we can simply assume that, for instance, a species A has a
positive effect on species B if this one grows better on the presence of species A. If species A
is not affected by species B, this could be a case of commensalism. In the case of mutualism,
both species have a positive effect on each other, and in the case of competition, this effect
is negative (Faust and Raes, 2012). These basic interactions could be verified by analyzing
the growth rates of these species alone and together in a specific environment. But doing
this experimentally is difficult, so there’s the necessity of theoretical tools capable of preview

these interactions (Song et al., 2014).

It is possible to extract information about community composition and species abundance
from metagenomic samples (Mande et al., 2012). Through this abundance data, microbial
interactions are inferred based on the correlation of their abundance patterns. If the patterns
are not correlated they are competitive species, but if the patterns are similar it could be a

case of cooperation (e.g. mutualism) (Faust and Raes, 2012).

Stoichiometric models can also be used to preview interactions between species or func-
tional guilds in an environment, in addition to flux distributions. A variant of the FBA
approach, called community flux balance analysis (cFBA), is used to study microbial commu-
nities (Khandelwal et al., 2013). Zomorrodi and Maranas (2012) created a framework called
OptCom implementing cFBA where both the community-level and individual cell-level are
under optimization. Zomorrodi et al. (2014) also developed a dynamic version of OptCom,
d-OptCom. However, these are complex problems and are difficult to execute with a large
community where both the number of species/guilds or reactions are really big, making the
memory requirements huge. Thus, they are limited to simple consortia. But there are a
lot of other techniques to infer these relationships ranging from Nonlinear Regression (Elith
and Leathwick, 2009) to Thermodynamically-Based Models (LAROWE et al., 2008) and
Trait-Based Modeling (Boon et al., 2014) where the dynamic of the community is analyzed
focusing on the traits as entities that mediate microbial interactions with each other and the

environment.

Also, studies where interactions in a community were previewed with the simple analysis
of metagenomics data, are available. In Li et al. (2018), interactions between the species of
Microcystis microbiome with the information achieved with the reconstruction of some specific

pathways (after the processes of genome reconstruction and annotation), were predicted.

NetCooperate (Levy et al., 2015) is a tool that aims to determine the cooperative potential
between microorganisms (and between host-microbe). This tool is based on the reverse-
ecology framework (Levy and Borenstein, 2012), which focuses on obtaining information about
microbial interactions with its ecosystem making use of a large amount of genomic data. The
input of NetCooperation tool are the metabolic networks of two species, each one encoded as

a directed graph where the nodes represent compounds and the edges represent reactions.



2.6. Potential of Microbial Interactions

The first step is to determine the seed set, a concept derived from reverse-ecology framework
that refers to the minimal set of compounds acquired exogenously from the microorganism
that enables the production of the all the other compounds of the network, providing indica-
tions of what should be the habitat of the microorganism.

Based on the calculated seed sets for each species, two metrics are then used: Biosynthetic
Support Score (BSS) (refers to compatibility between host and parasite) (Borenstein and
Feldman, 2009) and Metabolic Complementarity Index (MCI) (refers to compatibility between
two microbial species) (Levy and Borenstein, 2013). The latter is calculated based on the
fraction of seeds of the first species that can be found in the network of the second species,
but not in its seed set (see figure 6). Both scores range from 0 (no potential for cooperation)
to 1 (full cooperation). The purpose of the scores is the comparison between pairs of species,

allowing to predict each one present more potential for cooperation.

Figure 6.: Simplification scheme of the measurement of potential cooperation between two
different species (MCI). Here are represented two microbes each one with simple net-
works represented. It possible to see that the seed A (blue species) is a product in red
species network, allowing a cooperation (represented with the grey arrow). On the other
hand, compound F is a seed in both species, and so the red species cannot complement F for
the blue species. The resultant MCI of the red species on the blue species is 0.5. Adapted
from Levy et al. (2015).
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PROPOSED APPROACH

As discussed in the previous chapter, the goal of this work is to develop a simple and easy to
use framework for functional annotation of microbes based on any specific pathway. Further,
this framework also allows to infer potential synergistic microbial interactions. The pipeline
starts with the assembly of COGs from a set of genomes from a microbial community of
interest. Next, annotation of the generated clusters is performed based on a set of reactions
that compose a pathway of interest. Finally, potential interspecies interactions are inferred
based on the combined genetic potential of microbial clusters to encode all proteins necessary
for a complete pathway.

Tools and strategies used for the clustering of genomic sequences and functional annotation
are determined based on their efficiency, performance, simple use and easy integration into
the pipeline.

All the developed work and the resulting pipeline is described in detail in the following

chapters.
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METHODS

In the present chapter, the datasets and their sources, the clustering and annotation strat-

egy, and pipeline evaluation method, is described.

4.1 DATA

The development and evaluation of a pipeline that goes from clustering of genomes to
sequence annotation and metabolic pathways inference, requires high amounts of data and
prior information concerning specific pathways and genome annotations. Thus, data regard-
ing a well-known model pathway was collected on which the whole evaluation was focused
on. The evaluation of the clustering and annotation methods was based on a set of anno-
tated genomes belonging to model organisms. Furthermore, an additional set of genomes,
whose behavior regarding the selected pathway was known, was used for characterizing their

functional potential.

4.1.1 Data resources

KEGG database was the main resource of the data used in this work. The reason to select
this database was its simplicity, the fact that is one of the most used biological databases and
the way that genes and gene products (enzymes/reactions involved in various pathways) are
linked, facilitating the collection of bulk data in an organized way (Kanehisa, 2019).

A big component of KEGG is KEGG PATHWAY, a collection of graphical diagrams, called
pathway maps. In these pathway maps it is easy to visualize the links between enzymes/reac-
tions and compounds in a specific metabolic pathway. Another valuable trait of these maps
is that, through the reactions in the metabolic pathway, it is possible to access and retrieve
KEGG Orthology (KO) groups. These KO groups are manually defined functional ortholo-
gous, and KO identifiers are a cluster of genes from annotated genomes that can be accessed
through KEGG. The KO identifiers allow accessing gene identifiers from various organisms,

as well as their nucleotide and amino acid sequences (Kanehisa, 2019). These features allow
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a simple visualization of the connections between the elements of a metabolic pathway. Fur-
thermore, it is also possible to download bulk data in an organized manner, which facilitates

the analysis and processing of the data.

4.1.2 Metabolic Pathway

For the evaluation of the pipeline a set of reactions of the well-known transformation of
benzoate to acetyl-CoA (BTA) pathway (KEGG pathway identifier - map00362) were selected.

The selected set of reactions are shown in Figure 7, where 3 alternative paths were considered:

o path 1 (P1) - represented in red, is composed of 12 reactions/enzymes and 32 associ-

ated KO groups;

o path 2 (P2) - is an alternative to the path 1, were the reactions R05579 and R03028
are replaced by the reaction R02488 (in yellow), composed with 11 reactions/enzymes

and 31 KO groups;

o path 3 (P3) - represented in green, is composed of 7 reactions/enzymes and 14 KO

groups.

In total there are 20 reactions, involving 20 enzymes and 47 related KOs. The gene-protein-
reaction (GPR) rules were manually analyzed to enable a better evaluation and discussion of

the results.

4.1.3 Databases

All amino acid sequences from the genes, belonging to the previously identified KO groups,
were downloaded from the KEGG database. The database format used in this pipeline consists
of a folder containing FASTA format files, each corresponding to one function (in this case, one
KO). All sequences belonging to the selected model organisms used in this study (described
in subsection 4.1.4) were not included in the database, to prevent bias of the results. Finally,
48755 sequences associated to 47 KO groups were downloaded. The database was created
using the OrtScraper (ort, b) a tool specifically developed to download bulk data from KEGG
database, explained in detail in the next chapter. The created database was divided into
three databases, each one to represent each of the alternative paths referenced before. These
databases were used for the annotation pipeline. The information regarding the number
of reactions, enzymes, KO and sequences represented in each one of the created databases
(complete BTA, BTA P1, BTA P2, and BTA P3) are shown on table 3.

More information regarding the associations between reaction 1Ds, Enzyme Commission
(EC) numbers and KO identifiers can be found in Supplementary tables 21,22,23 and 24.
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Figure 7.: BTA pathway map. Three alternative paths are represented: path 1 (red), path 2 (yellow,
differing from path 1 in the transformation from Glutaryl-CoA to Crotonoyl-CoA), path 3
(green).

Table 3.: Number of reactions, enzymes, KO groups and sequences represented in each
alternative path.

BTA | BTA P1 | BTA P2 | BTA P3
Total Reactions 20 12 11 7
Total Enzymes 20 12 11 7
Total KO groups 47 32 31 14
Total number of sequences | 48755 37976 40431 8253

4.1.4 Genomes

Two different sets of genomes were collected: Set A and Set B.

Set A encompassed a total of 18 species (Table 4) from who’s the annotated genomes were
downloaded from KEGG. Species were selected based on their genetic ability to encode pro-
teins in at least one reaction involved in Benzoate to Acetyl-CoA conversion. An additional
subset of 3 genes associated to KO IDs K05783, K07537 and K07538 from Burkholderia viet-
namiensis G4, Azoarcus sp. CIB and Aromatoleum Aromaticum EbN1, respectively, were
artificially mutated in their coding sequences at the rates of 0.01, 0.03, 0.05, 0.1, 0.15 and
0.25. Each rate of mutation resulted in a new genome. The mutated genes were used to

determine how clustering of orthologous was affected by different sequence similarities. From
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Table 4.: Name, taxonomic code, genome entry code and complete paths from the species
represented in Set A of this study.

Name and strain Taxonomic code | Genome entry code (KEGG) | Complete paths
Acinetobacter defluvii WCHA30 adv T05474 P3
Arabidopsis thaliana ath T00041

Azoarcus sp. KH32C aza T02502 P2
Azoarcus sp. DN11 azd T05691 P2
Azoarcus sp. CIB azi T04019 P2
Burkholderia cepacia DDS 7TH-2 bced T03302 P3
Burkholderia vietnamiensis G4 bvi T00493 P3
Cycloclasticus sp. P1 cyq T02265 P3
Cycloclasticus zancles 7T8-ME cza T02780 P3
Desulfosporosinus orientis DSM 765 dor T01675

Aromatoleum aromaticum EbN1 eba T00222 P2
Latimeria chalumnae (coelacanth) lem T02913

Magnetospirillum sp. XM-1 magx T04231 P2
Paraburkholderia aromaticivorans BN5 | parb T05169 P3
Rhodococcus ruber P14 oV T05142 P3
Sulfuritalea hydrogenivorans sk43H shd T03591 P2
Staphylococcus sciuri FDAARGOS__285 | sscu T05176

Thauera sp. MZ1T tmz T00804 P2, P3

the manually retrieved GPR rules it was possible to calculate which species had the genetic
potential to encode all proteins necessary for one of the complete benzoate degradation path-
ways. A total of 7 and 8 species had the genetic potential to perform the complete pathways
2 and 3, respectively. No single species had the genetic potential to completely implement
pathway 1. This information was used as a reference when evaluating the pathway inference
step of the pipeline with set A. The information regarding the annotated genes was used as

a reference on the evaluation of the annotation step of the pipeline.

Set B was assembled according to the species used by Fetzer et al. (2015)(Table 5). Genome
recovery was performed as follows. Bacterial cryo-cultures were revived on LB agar plates.
Single colonies were picked and grown overnight in 2 ml LB medium at 37°C. The cells
were pelleted by centrifugation, cells were lysed and genomic DNA was extracted using a
Nucleospin Tissue Kit (Machery and Nagel). Approx. 150 to 1000 ng of DNA were used for
fragmentation (insert size: 300 — 700 bp) and sequencing library preparation following the
NEB Ultra IT FS Kit protocol (New Enland Biolabs). Libraries were quantified using a JetSeq
Library Quantification Lo-ROX Kit (Bioline) and quality-checked by Bioanalyzer (Agilent).
Libraries were sequenced on an Illumina MiSeq Instrument with a final concentration of 8
pM using the v3 600 cycles chemistry and 5% PhiX.

Gene prediction and protein sequences were calculated using Prodigal (Hyatt et al., 2010).

For each species, it was known the capability of benzoate degradation (present in the
last column of table 5). Only 5 of the 12 species are considered benzoate degraders. This
information was used as a reference when evaluating the pathway inference step of the pipeline
with set B.
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Table 5.: Name, code and information regarding benzoate degradation capabilities from
the species represented in Set B.

Name and Strain Code | Benzoate Degrader
Bacillus subtilis ATCC 6633 A No
Paenibacillus polymyzra ATCC 842 B No
Brevibacillus brevis ATCC 8246 C No
Comamonas testosteroni ATCC 11996 | D Yes
Cupriavidus necator JMP 134 E Yes
Variovorax paradoxus ATCC 17713 H No
Acidovoraz facilis Isolate UFZ J No
Pseudomonas putida ATCC 17514 F Yes
Pseudomonas fluorescens DSM 6290 G Yes
Rhodococcus sp. Isolate UFZ I No
Rhodococcus ruber BU3 K Yes
Sphingobium yanoikuyae DSM 6900 L No

4.2 CLUSTERING

Clustering, as mentioned in chapter 3, is the first step of the pipeline. Here, COGs are
generated based on the provided genomes of interest. This process allows assessing the degree

of similarity sequences must share to be grouped together.

4.2.1 OrthoFinder

OrthoFinder was selected for clustering of genomic sequences. OrthoFinder provides infor-
mation regarding orthologous genes detection, inference of rooted gene trees and species trees,
identification of gene duplication events and comprehensive statistics for further comparative
genomics analyses. The clusters created with this tool comprise sequences for multiple species,
called orthogroups (Nichio et al., 2017).

4.2.2  C(Clustering evaluation

To assess whether sequences clustered together would share the same function, and how the
sequence aligner (DIAMOND or BLAST) used by OrthoFinder would affect results, the clus-
tering evaluation was performed by pair-wise precision and recall. The attributes necessary

for calculating performance are as follows:

o true positives (TP) are pairs of sequences that share the same function and were indeed

clustered together;
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« true negatives (TN) are pairs of sequences that do not share the same function and were

not clustered together;

o false positives (FP) are pairs of sequences that were wrongfully clustered together,

though not sharing the same function;

o false negative (FN) are pairs of sequences sharing the same function but were not clus-

tered together.

The precision, recall, and F; were calculated following the equations:

TP
precision = P+ TP (2)
TP
Il = ———
reca N £ TP (3)
E—o precision - recall (4)
T precision + recall

In which, precision is the fraction of the pairs of sequences clustered together that should
effectively be clustered together. Recall is the fraction of sequences that should have been

clustered together, successfully clustered. F; is the harmonic mean between them.

4.3 ANNOTATION

The goal for the annotation strategy is to make use of the clustering information to perform
a precise and rapid annotation of the sequences. The simplest way to achieve this goal is to
select a few random representatives from each cluster, compare the representative sequences
against the known sequences from the database, and annotate all the sequences from a cluster
to the function that the representative sequence was annotated for. A potential limitation
with this strategy is the propagation of precision errors from the clustering to the annotation
phase. That is, if sequences clustered together do not share the same function that means

that a cluster should not be annotated with only a single function.

Thus, a new strategy (described in 4.3.1) was employed to make use of the clustering infor-
mation, reduce the search space for higher efficiency whilst not compromising the precision

of annotation.



4.3. Annotation

4.3.1 Annotation strategy

The annotation phase of this pipeline takes as inputs the clusters of sequences obtained
during the clustering phase and a user-defined database organized into groups of annotated
sequences sharing the same function.

Annotation is divided into two main steps: relaxed search and restrictive search, explained

in detail below.
B Relaxed Search

The goal of relaxed search is to decrease the number of alignments required to assign
function to COGs. Here, for each COG, one random sequence per each ten sequences is aligned
to the groups of sequences in the database. Clusters, where these sequences share a predefined
identity percentage value to sequences in the database, are selected for the restrictive search.

Notice that one or more functions might be assigned to each cluster.
B Restrictive Search

In the restrictive search a more stringent set of parameters are employed to assign function

to individual sequences. The main steps of restrictive search are as follows:

1. Search between clusters and associated functions - compare all the sequences from the
clusters against all the sequences from the database with the function that the cluster

was associated with during the relaxed search.
2. Annotation — filtering from the obtained results the best hits for each sequence and
assignment of function are based on the following parameters:
e Percent of identity;
e Percent of positive matches;
e Query coverage;

e Subject coverage.

Since the definition of the best threshold to be used for each one of the parameters could
be difficult, a score in which each one of the parameters has the same weight is used. This
score is calculated as follows:

Yoidentity + % Y% t%
score — identity + pos4+ qcov + t7scov (5)

The %identity is referent to the percent of identity, %pos to the percent of positive matches,

% qcov to the percent of the query coverage and %scov to the percent of the subject coverage.
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4.3.2 Annotation evaluation

The evaluation of sequence annotation was also performed by calculating precision and
recall. However, here TP, TN, FP, and FN have different definitions:

e TP is a sequence that is assigned to the correct function;
¢ TN is a sequence that is correctly not assigned with any function from the database;

o FP is a sequence assigned to a wrong function (where the correct result should have

been another function or none of the database);
e FN is a sequence not assigned to any function when it should have been.

In this case, the precision is the fraction of the annotated sequences that were assigned to
the correct function. Recall is the fraction of sequences that should have been annotated to

some function, that were successfully annotated. F; is the harmonic mean between them.

4.4 SPECIES FUNCTIONAL POTENTIAL AND MICROBIAL INTERACTIONS

The assessment of the functional potential of individual species, present in the input genome,
set to implement a pathway of interest is based on GPR rules of said pathway. Furthermore,
the potential synergistic interactions between species to implement a complete pathway is
based on their combined genetic content (e.g., if a microbe is missing a single gene to theo-
retically perform the complete pathway, all other microbes with that gene after considered

potential interacting partners).



TOOLS AND WORKFLOW

In the present chapter the developed tools and pipeline construction is described. All code
is written with Python 3.6 and compatible with UNIX systems. To make the distribution and
installation easy for users the Python library setuptools (set) is used. For the setup of the
virtual environment Python 3 wirtualenv tool (ven) is recommended. The argparse Python
module (arg) is employed to allow the creation of a user-friendly command-line interface. The
developed tools, OrtScraper and OrtAn, are available on the GitHub platform, along with
README files in which the installation and usage of the tools is described.

5.1 ORTSCRAPER

OrtScraper (ort, b) is a tool developed to retrieve data in bulk from the KEGG database,

and create, with the download data, a customized and organized database.

5.1.1 Input

The tool accepts different types of inputs, which can be:
e A single pathway map ID from KEGG;
o A text file containing reaction IDs from KEGG (one per line);
o A text file containing EC numbers (one per line);

o A text file containing KO group IDs from KEGG (one per line);

5.1.2  Qutput

The output of the tool is:

e Organized database, where each FASTA file corresponds to a KO group and contains
all the sequences from the KEGG database assigned to that KO group;
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e A text file containing the associations between reactions IDs or EC numbers and the
selected KO to download (this file does not exist in case of the input being a pathway
map ID or a list of KO groups, since in case the input being a pathway ID all the KO
groups download are associated to that pathway ID).

5.1.3 Implementation

OrtScraper consists of 3 scripts:
B download_ kos.py

The download_ kos.py is the main script, which executes the OrtScraper pipeline. First,
KEGG is accessed to retrieve the list of KO groups associated with a given list of identifiers.
This procedure is skipped in the cases where the input provided by the user already consists
of a list of KO groups. Once the list of KO groups is defined, the next task, still with this
script, is to retrieve the list of all the genes in the KEGG database assigned to each KO group.
Finally, a FASTA file e generated for each KO, where the sequences of all the obtained genes
are stored. By default, OrtScraper downloads amino acid sequences for each genome but the

user also has the option to request nucleotide sequences.
B MultipleRequests.py

The MultipleRequests.py script is responsible for performing the requests. It uses a Python
library called grequests (gre) that helps to make asynchronous HTTP requests simple. Asyn-
chronous HTTP requests uses non-blocking I/0; i.e., the program is not blocked while waiting
for an answer, allowing for multiplied requests to be made at the same time (using different
threads), accelerating the entire process of getting all the requested responses from the KEGG
database (htt).

B aux.py

The aux.py script is responsible for calling the methods for parsing the responses retrieved
from the requests and makes use of the library BeautifulSoup (bfs) that simplifies the parsing
of HTML pages.

5.1.4 Usage

After the installation, facilitated by the use of the virtualenv tool and the setuptools library,
OrtScraper is ready to use through a command-line interface. The only command available
in the tool is download_kos . The available arguments and their respective actions in this

command are:
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- h - print in the console information regarding the tool and all the possible arguments;
- o - path to the output directory, i.e., the folder where the database will be stored;

- m - pathway map ID from where the user pretends to download the associated KO

groups;

- r - path to a text file containing the reaction IDs from where the user pretends to

download the associated KO groups;

- e - path to a text file containing the EC numbers from where the user pretends to

download the associated KO groups;

k - path to a text file containing the KO group IDs that the user pretends to download;

p - used to indicate that the user pretends to download amino acid sequences (default

option);
- g - used to indicate that the user pretends to download nucleotide sequences;

- s - defines the number of requests that are made to the KEGG database at the same
time (default: 5);

- v - used to set loglevel to DEBUG, allowing the user to see debug information while

the command is running.
Some examples of how the tool can be used are as follows:

1. download_kos -o /path/to/output/folder/ -m map map00362

2. download_kos -o /path/to/output/folder/ -k kos.txt

In the first example, the tool will download all the gene sequences (amino acid) assigned to
the KO groups associated with the pathway with the ID map00362. In the second example,
the tool will create a database with all gene sequences (amino acid) assigned with the KO
groups listed in the file kos.txt. The created database always corresponds to a directory with
the individual FASTA files for each KO group.

5.2 ORTAN

OrtAn (ort, a) is a tool developed to perform genome annotation via the orthogroups
generated by OrthoFinder. OrtAn uses DIAMOND as sequence aligner. The workflow of

OrtAn is shown in Figure 8.
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Figure 8.: Ort An workflow. The workflow of OrtAn is divided into five sections separated by dotted

lines, each corresponding to one of the main steps/commands of the tool. It is possible to
visualize which information is necessary for every command to run, which information is
generated by each command and which are the outputs of each command that constitutes
the final results for the user (inside the dashed box). The first step is create_project ,

and only consists of the input database (in the OrtScraper output format). The second step
is the relaxed_search , which calculates associations between the clusters generated by
OrthoFinder and the functions in the database. The main actions of this step are represen-
tative selection (that consists of selecting representative sequences from each orthogroup)
and DTAMOND search that will find the first associations between orthogroups and func-
tions represented in the database - the output of this step. The ‘relaxed’ name comes
from the relaxed threshold used to filter these associations (should be between 40% and
70%). The restrictive_search step consists in doing a second DTAMOND search with
stricter parameters. Here, each search corresponds to all the sequences of an orthogroup
as queries and all the sequences of the functions that the orthogroup was associated with
in the relaxed_search step. The results obtained in the restrictive_search step are

then used in the annotation step. The annotation consists of filtering the DIAMOND
search results (using the values of identity, positive matches, query and subject coverage
percent combined in a unique score). At the end of the filtering, the kept hits are used to
register the annotation of the individual sequences (and not the orthogroups as a whole)
and extract information about the functional potential of each species. Further, an overview
of the annotated sequences in each orthogroup are calculated and returned as an output
to the user. The last and optional step is create_db , whose only purpose is to build a
new database combining the initial database with the recently annotated sequences. In
both search steps, the DIAMOND searches are possible to be parallelized, since the used
database is organized in different FASTA files and, in case of the restrictive_search
step, different query files are used.
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5.2.1 Input

To perform the annotation the tool needs two inputs:
e OrthoFinder results obtained with the genomes that the user pretends to annotate;

o Organized database (OrtScraper returned format) containing the functions that the user

pretends to find in the genomes.

5.2.2  Qutput

From the relaxed search step, described in the previous chapter, the output is a text file
(/Results/Associations.txt) containing the associations between the orthogroups and the func-
tions represented in the database.

From the restrictive search/annotation step are outputted 6 different text files:

o /Results/Annotation_ Function_ Protein.txt - Shows in the first column the func-
tions and in the second the sequences annotated to that function (one association per

line);

o /Results/Annotation_ Protein_ Function.txt - Shows in the first column the se-
quences and the second the functions for which the sequences were annotated to (one

association per line);

e /Results/ConOG.txt - Consistent Orthogroups (ConOGs), orthogroups where all the
sequences were annotated to with same function. The function that was assigned to the

orthogroup is also indicated in the second column;

o /Results/DivOG.txt - Divergent Orthogroups (DivOGs), orthogroups where not all
the sequences were annotated to the same function. This means that the orthogroup
could have sequences that were not annotated to any function or sequences annotated
to different functions. The functions that were associated with the DivOGs are also

indicated in the file, second column;

o /Results/Orthogroups__Annotation.csv - This file shows a table indicating how

many sequences in each orthogroup were annotated and to which function;

o /Results/Species__Annotation.csv - This file shows a table indicating which func-
tions are present in which species (1 - at least one sequence annotated to the function,

0 - no sequences annotated to the function);

o /Results/Overview.csv - This file shows a table containing an overview of the values

obtained through all the process, comparing the values from where the tool started to
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the relaxed search and restrictive search. The values presented in this table and its

meaning are the following:

Total orthogroups: total number of orthogroups obtained with OrthoFinder
(input data);

KOs in the database: Number of different KO groups/ functions represented in
the database;

Selected orthogroups: number of orthogroups that had at least one association
with some of the functions represented in the database in the relaxed search step
(one of the randomly selected representatives presented at least one alignment
against a sequence from the database with an identity value higher than the used
cut-off);

% Selected orthogroups: percent of selected orthogroups (the number of se-

lected orthogroups divided by the number of total orthogroups);

Associated KOs: number of KO groups/functions represented in the database

that were associated with at least one orthogroup;

% Associated KOs: percent of associated KO groups (the number of associated
KO groups divided by the number of total KO groups in the database, multiplied
by 100);

Orthogroups with annotated sequences: number of orthogroups that had at

least one of its sequences annotated to some KO group/function;

% of Orthogroups with annotated sequences: percent of orthogroups with at
least one annotated sequence (the number of orthogroups with annotation divided

by the number of total orthogroups, multiplied by 100);

KOs with assigned sequences: number of KO groups/functions that were as-

signed to at least one sequence between the orthogroups;

% KOs with assigned sequences: percent of KO groups with assigned se-
quences (the number of assigned KO groups divided by the number of total KOs
in the database, multiplied by 100);

ConOG: number of consistent orthogroups (orthogroups were all the sequences

were annotated to the same function);

DivOG: number of divergent orthogroups (orthogroups were not all the sequences
were annotated to the same function, could be not annotated to any or annotated

to another one);

DivOG with more than one KO: number of divergent orthogroups sequences

annotated to different KO groups/functions;
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- Lost orthogroups: number of orthogroups that were associated with some KO
group/function in the relaxed search step but in the restrictive search step, none

of its sequences was annotated to any KO group/function;

- % Lost orthogroups: percent of lost orthogroups (the number of selected or-
thogroups (relaxed search) minus the number of orthogroups annotated sequences
(restrictive search), divided by the number of selected orthogroups (relaxed search),
multiplied by 100);

- Lost KOs: number of KO groups/functions that were associated with some or-
thogroup in the relaxed search step but were not assigned to any sequence in the

restrictive search/annotation step;

- % Lost KOs: percent of lost KO groups/functions (the number of associated
KO groups (relaxed search) minus the number of assigned KO groups (restrictive
search), divided by the number of associated KO groups (relaxed search), multi-
plied by 100).

5.2.3 Implementation

The OrtAn pipeline is divided into 5 steps, assured by 5 main scripts, which are also
responsible for the 5 possible commands involved in each step. The commands, that must be

performed sequentially, are described as follows:
B create_project

This command takes as input the path where the user wants to store all the information
generated by the tool (working directory) and the path to the database. Some of the tasks
performed by this command are common to all the others (validation of the input format;
creation of a log file (if desired by the user) to store the messages regarding the command
runs; and the storage of information regarding the actions successfully performed). The main
task of this command is the creation of the structure for the working directory, where some
temporary data (for instance query and database files to use with DIAMOND as well as
its results files) will be stored, as well as some persistent data to use between the different
commands. The directory where all the results will be stored is also created in this step.
A dictionary variable that is stored in a JSON file with the purpose to share data between
the different commands regarding the actions that were successfully performed, and other

relevant aspects is also generated during this step.
B relaxed_search

This step takes as input the path to the working directory of the project (generated in the
create_project step) and the path to the OrthoFinder results directory. Here the tool
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performs the relaxed search referred in the previous chapter (with DIAMOND) between the
orthogroups (resulted from OrthoFinder) and the given database. Only 1 in 10 sequences from
each orthogroup are randomly selected and used as queries to find an association between
the orthogroups and the functions from the database. All the representative sequences of the
orthogroups are used as queries in the DIAMOND search, and the used database is composed
by the sequences from the input database. In this step, only the identity percentage is used
to filter the DTAMOND results and to retrieve the associations between orthogroups and
functions. If at least one of the sequences used to represent an orthogroup has a hit with an
identity percent equal or higher than the selected threshold, the orthogroup will be associated
with the respective function of the hit subject sequence. The user can indicate the identity
threshold to be used. Theoretically, the lower the identity threshold, the higher the number
of associations that will be found between the orthogroups and the database functions. A
higher number of associations means a higher number of sequences to be included in the
DIAMOND searches of the next step, which could affect negatively the time performance
of the tool. However, a lower identity threshold could lower the number of FN in the final
annotation results (i.e., minimizing the chances of missing annotations). The default value
is 50%. The output of this step is the established associations between the orthogroups, and

the functions represented in the database.
B restrictive_search

The sole input of this step is the working directory of the project (that contains all the
necessary information generated until here). Here, the tool uses the calculated associations
in the relaxed search. Considering each one of the associations, DIAMOND is used to search
for the best hits between all the sequences from an orthogroup (queries) against all the
sequences from the database (subjects) annotated to the function of which the orthogroup

was associated.
B annotation

The input here is, as before, the working directory. The default value for the score to be used
to filtering the DIAMOND hits (used to perform the annotation) is 90%. All the parameters
(% identity, % positive matches, % subject coverage, % query coverage) contribute equally
to the score (see equation 5). However, the option to limit the annotation with a specific
parameter is also offered. For instance, the user can exclude hits with values lower than 95%
for the query coverage, and, this way, even in cases where the score threshold is fulfilled, if
the query coverage value is under 95%, the hit is not kept for the annotation.

From the DIAMOND results calculated in the restrictive search, the hits are filtered ac-

cording to the following:
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- In case there were thresholds defined to each parameter, all the hits that do not meet

the threshold are eliminated;
- All hits below the defined score threshold are eliminated;

- If the same query sequence has hits corresponding to subject sequences annotated to

different functions, only the hit with the highest score is kept.

In the end, the kept hits are used to perform the annotation. All the query sequences
among these results are annotated with the function of the subject sequence that they were

aligned with.

The goal of this step is to provide a very accurate annotation of orthogroup sequences.

Thus, the used thresholds to make the selection from the DIAMOND search results and

minimize the presence of FP, performed in the restrictive search, should be more stringent.

The output of this step is 1) a list of sequences from the genomes that were annotated to any
of the functions represented in the database, 2) information regarding the functions that were
found in each species/genome, 3) information regarding the annotation of the orthogroups
(ConOGs, DivOG, and the exact number of annotated sequences) and 4) an overview of all
the values obtained through the OrtAn steps.

B create db

With the create_db command (optional) the user has the opportunity to update the
given database with the recently annotated sequences from the input genomes. The user also
has the option to maintain the original database and create a new one that includes all the
sequences (which requires the user to provide the working directory and the directory where

the new database is to be stored).
The auxiliary scripts to help in the main commands are:
B aux.py

This script is composed of various auxiliary functions that go from preparing query files or
databases to parsing/filtering results files from the DIAMOND searches.

B diamond_mp.py

This script is responsible for calling the DIAMOND commands and manage the parallel
processes. Here the commands used to run DIAMOND are makedb (with the default options)
which is used to create the databases in the required format which will be used to perform
the searches, and blastp that performs the searches between the amino acid sequences. The

options used in the blastp command are set to return all the hits found (unless the user has
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defined a specific threshold to be respected for one of the parameters referred before, %identity,
%positive matches, %query coverage, and %subject coverage). The default filtration by the e-
value that DTAMOND employs is disabled. This is necessary because the e-value is dependent
on the database size and sequences, and, since different databases are used, the e-value cannot
be compared between the different searches (Kerfeld and Scott, 2011). Since in each step,
there are normally various independent searches to be made, the code is prepared to run the
DIAMOND searches in parallel (depending on the number of cores available in the machine).

The number of parallel processes can also be defined by the user.

5.2.4 Usage

Similarly, to OrtScraper, the OrtAn installation is facilitated by the wvirtualenv tool and
the setuptools library. The communication of the user with the tool is also made through
a user-friendly command-line interface. As already referred (in the subsection 5.2.3), the 5
commands of the tool must be performed sequentially. The parameters in each command

that can be defined by the user are described in detail below.

B create_project
- h - displays information regarding the tool usage and all the possible arguments;
- out - path to the folder that will be the working directory;

- db - path to the database directory;

1 - used to send log messages to a file in the output directory;
- v - used to set loglevel to DEBUG, allowing the user to see debug information
while the command is running.
B relaxed_search
- h - displays information regarding the tool usage and all the possible arguments;
- wd - working directory;

- of - path to OrthoFinder results directory. This directory must contain the
Orthgroups, Orthogroup_ Sequences and WorkingDirectory folders;

ident - identity percentage threshold used to filter the DIAMOND results;

- t - the number of processes to run in parallel. By default, it uses all CPUs

available on the machine. Setting to ’1’ will make the processes run sequentially;

- del - used to delete the results stored from DIAMOND. This option should be

used to save memory space, between steps;

1 - used to send log messages to a file int the output directory;
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v - used to set loglevel to DEBUG, allowing the user to see debug information

while the command is running.

B restrictive_search

h - displays information regarding the tool usage and all the possible arguments;
wd - working directory;

t - the number of processes to run in parallel. By default, it uses all CPUs

available on the machine. Setting to '1’ will make the processes run sequentially;
ident - identity percent threshold used to filter the DIAMOND results.
1 - used to send log messages to a file in the output directory;

v - used to set loglevel to DEBUG, allowing the user to see debug information

while the command is running.

B annotation

h - displays information regarding the tool usage and all the possible arguments;
wd - working directory;

s - score threshold used to filter the DIAMOND results;

ident - identity percent threshold used to filter the DTAMOND results;

qgc - query sequence coverage percent threshold used to filter the DIAMOND

results;

sc - subject sequence coverage percent threshold used to filter the DIAMOND

results;

ppos - positive matches percent threshold used to filter the DIAMOND results
(should be equal or higher to the identity percent threshold);

1 - used to send log messages to a file in the output directory;

v - used to set loglevel to DEBUG, allowing the user to see debug information

while the command is running.

B create_db

h - displays information regarding the tool usage and all the possible arguments;
wd - working directory;

o - path to the output directory to create a new database (initial database + new

annotated sequences);

up - used to update the initial database with the new annotated sequences. By

using this option, the initial database will be changed permanently;
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- 1 - used to send log messages to a file in the output directory;

- v - used to set loglevel to DEBUG, allowing the user to see debug information

while the command is running.

An example of how OrtAn is run after the installation is shown below. First, $work_dir
is used to refer to the path of the desired working directory. Second $database is set as the
path of the input database. Third, $orthof is used to set the path where the OrthoFinder

results are stored and last, $new_db is used to set the desired path to store the new database.

1. create_project -out $work_dir -db $database

2. relaxed_search -wd $work_dir -of $orthof -t 1 -ident 60
3. restrictive_search -wd $work_dir -t 2

4. annotation -wd $work_dir -s 95

5. create_db -wd $work_dir -o $new_db

In this example, a new OrtAn project will be created with a previously prepared database
(1). The relaxed search step will run sequentially (-t 1) and the results will be filtered by
an identity percent threshold of 60 (2). The restrictive search step will then run with two
DIAMOND search processes running in parallel (3). The annotation will be performed using
the score threshold of 95 (4). Lastly, a new database containing the recently annotated

sequences will be created, maintaining the initial one intact (5).



RESULTS AND DISCUSSION

In this chapter, all the results obtained are shown as well as the evaluation of the different
steps of the pipeline with the different sets of data (described in chapter 4, section 4.1). Also,

the performance of the developed tools will be discussed.

First, the results of the clustering evaluation, performed with the genome set A containing
the mutated genomes as well, will be presented. The pipeline, performed with the genomes
set A and set B, starts with the clustering step. After that, the annotation. The annotation
evaluation (with the calculation of the precision, recall and F; values) is only performed with
set A since the annotation for the sequences composing the genomes of set B is not known.
Then, it is performed the metabolic network inference with the annotation results (for both
genome sets) for assessment of species functional potential and possible microbial interactions.

To end this chapter, the performance of both tools, OrtScraper and OrtAn, will be discussed.

6.1 CLUSTERING EVALUATION

The clustering evaluation was made using the genome set A with the extra mutated genomes.
The purpose was to focus only on the sequences that were known to belong to the BTA
pathway and analyze if the sequences sharing the same function were effectively clustered
together. For the clustering evaluation, as was already referred in chapter 4, was used a
pair-wise precision and recall method. The pool of all the possible pairs included only the
sequences involved in the BTA pathway. Each pair of functions clustered together would
count as a TP, if they shared the same function, or as a FP, if otherwise. The pairs that were
not clustered together and shared the same function would count as a FN. Based on these
values, the precision, recall, and F; were calculated. This evaluation method was employed
for both OrthoFinder results (using BLAST or DIAMOND as an alignment search tool), and

the results are shown in Table 6.

Although the DIAMOND aligner is recommended by OrthoFinder developers (D.M. and
S., 2018) due to a better trade-off between execution time and sensitivity, both options were

independently used to evaluate the influence of the sequence aligner in the final results. The
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Table 6.: Pair-wise precision and recall method evaluation results of OrthoFinder clusters
using BLAST and DIAMOND as an alignment search tool. The OrthoFinder input
was the genome set A + mutated genomes.

OrthoFinder - BLAST | OrthoFinder - DIAMOND
TP 47270 51848
FP 27479 28668
FN 13602 8917
Precision 0.63 0.64
Recall 0.77 0.85
Fq1 0.69 0.73

difference observed between both aligners were not noteworthy, thus DIAMOND was main-
tained as the default method. Another observation when analyzing the obtained orthogroups
when using DIAMOND was the fact that all the mutated sequences, even those with a muta-

tion rate of 25% were clustered together with the original sequence.

6.2 PIPELINE

This section shows the results obtained running the different steps of the pipeline: clustering,
annotation and metabolic pathway inference. Here, only genome set A (without mutated
genomes) and set B were used. The use of the genome set A was crucial on the evaluation
of the OrtAn sequence annotation since the sequences could be mapped to the reactions
(and KO groups) involved in the BTA pathway. Genome set B was used to evaluate how
the pipeline could be used for the inference of functional potential of microbial species and
provide information of potential synergistic microbial interactions. All the created databases,
BTA, BTA P1, BTA P2, and BTA P3 (described in chapter 4, section 4.1) were used to test
the pipeline and to understand the effect that different sets of data can have in the adjustment

of the parameters.

6.2.1 Clustering: Set A

Genomes set A consisted of a total of 157788 genes of which 90787 (57,5%) were assigned to
orthogroups. A total of 10692 orthogroups were generated of which 558 were species-specific
(i.e., orthogroups were all sequences originated from a single species). A total of 4126 (2.6%)
of the genes were assigned to species-specific orthogroups. Further, a total of 228 orthogroups
were obtained that were composed of sequences from all the species represented in set A and
7 single-copy orthogroups which were composed by exactly one single gene from each species.

Orthogroups were, on average and median, composed of 8.5 and 4 sequences, respectively.
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6.2.2 Clustering: Set B

Genome set B consisted of 69210 genes of which54856 (79.3%) were assigned to orthogroups.

The assigned genes were distributed across 8362 orthogroups of which 45 were species-specific,
containing 120 genes (0.2%). A total of 546 and 196 orthogroups were obtained that contained
genes belonging to all species present in the genome set and that contained a single gene from
each species, respectively. The mean and the median of genes per orthogroup was 6.6 and

3.0, respectively.

6.2.3  Annotation: Set A

Genome set A was used to test for different thresholds for the relaxed and restrictive search
parameters. The databases tested were the BTA, BTA P1, BTA P2, and BTA P3. For the
relaxed search, identity cut-off values of 40% and 70% were used to test the effects of identity
stringency in the first associations. For the restrictive search step, score cut-off values of 90%
and 95% were employed. The results obtained for the different cases are presented in table 7
(score cut-off of 90%) and table 8 (score cut-off of 95%).

As it can be seen in both tables, 7 and 8, in the section referent to the results obtained
in the relaxed search step, the percentage of selected orthogroups was very low. This was
already expected since the used databases represent only a very small fraction of the functions
composing a genome, in this study the BTA pathway. This outcome becomes increasingly
striking when using only one of the alternative paths for benzoate to acetyl-CoA conversion

due to the reduction in the number of reactions.

The number of selected orthogroups in the relaxed search step is always smaller when using
an identity cut-off of 70%. This is expected since, using a more stringent threshold, more
of the aligned hits do not meet the threshold and, therefore, are not used to calculate the
associations between orthogroups and functions, i.e., the selected orthogroups. The same
behavior can also be seen regarding the number of selected KO groups. For the same reason,
more hits that don’t meet the threshold, using an identity cut-off of 70% leads to a lower
number of KO groups that were associated with orthogroups. This is an important aspect

to be aware of because, if a KO group is not associated with any orthogroup in the relaxed

search, its sequences will not be compared with the genome sequences in the further steps.

Therefore, this function/KO group won’t be annotated to any sequence.

Comparing the values obtained in the relaxed search section of the tables 7 and 8 is possible

to observe that the results slightly differ even when using the same data and identity cut-off.

The reason for that is the fact that they correspond to different OrtAn runs and, since the
orthogroups representative selection is made randomly, different representatives can lead to

different results regarding the associations between orthogroups and KO groups.
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Table 7.: Overview of OrtAn results with Genome set A for the databases BTA, BTA
P1, BTA P2, and BTA P3, relaxed search identity cut-off of 40% and 70% and
restrictive search score cut-off of 90%. The meaning of the values in each line is
described in chapter 5, subsection 5.2.2. (OrtAn Overview.csv output file).

Genome Set Set A
Database BTA BTA P1 | BTA P2 | BTA P3
Relaxed Search identity cut-off 40 | 70 | 40 | 70 | 40 [ 70 | 40 | 70
Annotation score cut-off 90
Total orthogroups 10692
KOs in the database 47 ‘ 32 ‘ 31 ‘ 14
Relaxed Search
Selected orthogroups 62 27 50 20 47 19 11 9
% Selected orthogroups 0.6 03 05 1]02]|04]| 02|01 ] 01
Associated KOs 47 21 31 13 29 14 12 12
% Associated KOs 100.0 | 44.7 | 96.9 | 40.6 | 93.5 | 45.2 | 85.7 | 85.7
Restrictive Search/Annotation
Orthogroups with annotated sequences 34 25 26 18 25 17 8 9
% of Orthogroups with annotated sequences | 0.3 02 0202102 02] 01|01
KOs with assigned sequences 40 21 26 12 24 14 11 12
% KOs with annotated sequences 85.1 | 44.7 | 81.2 | 37.5 | 77.4 | 45.2 | 78.6 | 85.7
ConOG 5 5 4 4 4 4 1 1
DivOG 29 20 22 14 21 13 7 8
DivOG with more than one KO 12 5 6 2 5 3 3 3
Relaxed Search to Restrictive Search
Lost orthogroups 28 2 24 2 22 2 3 0
% Lost orthogroups 45.2 | 74 | 48.0 | 10.0 | 46.8 | 10.5 | 27.3 | 0.0
Lost KOs 7 0 5 1 5 0 1 0
% Lost KOs 149 | 0.0 | 16.1 | 7.7 | 17.2 | 0.0 | 83 | 0.0
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Table 8.: Overview of OrtAn results with Genome set A for the databases BTA, BTA

P1, BTA P2, and BTA P3, relaxed search identity cut-off of 40% and 70% and
95%. The meaning of the values in each line is
described in chapter 5, subsection 5.2.2. (OrtAn Overview.csv output file).

restrictive search score cut-off of

Genome Set Set A
Database BTA BTA P1 BTA P2 BTA P3
Relaxed Search identity cut-off 40 | 70 | 40 | 70 | 40 | 70 | 40 [ 70
Annotation score cut-off 95
Total orthogroups 10692
KOs in the database 47 ‘ 32 ‘ 31 ‘ 14
Relaxed Search
Selected orthogroups 61 26 51 18 46 18 14 6
% Selected orthogroups 0.6 | 0.2 0.5 0.2 0.4 02 | 01 | 01
Associated KOs 45 24 32 13 31 13 13
% Associated KOs 95.7 | 51.1 | 100.0 | 40.6 | 100.0 | 41.9 | 929 | 57.1
Restrictive Search/Annotation
Orthogroups with annotated sequences 29 20 22 11 22 11 8 6
% of Orthogroups with annotated sequences | 0.3 | 0.2 0.2 0.1 0.2 0.1 | 0.1 | 0.1
KOs with assigned sequences 34 21 22 11 22 11 12 8
% KOs with annotated sequences 72.3 | 447 | 68.8 | 344 | 71.0 | 35.5 | 85.7 | 57.1
ConOG 0 0 0 0 0 0 0 0
DivOG 29 20 22 11 22 11 8 6
DivOG with more than one KO 10 4 5 3 5 2 4 2
Relaxed Search to Restrictive Search
Lost orthogroups 32 6 29 7 24 7 6 0
% Lost orthogroups 52.5 | 23.1 | 56.9 | 389 | 52.2 | 389 | 429 | 0.0
Lost KOs 11 3 10 2 9 2 1 0
% Lost KOs 244 | 125 | 31.2 | 154 | 29.0 | 154 | 7.7 0.0
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Analysis of results obtained during the restrictive search and annotation steps reveal that
a complete assignment of KO groups to a sequence is never reached. Among others, factors

that can contribute to the results are:

o Restrictive search cut-off score too restrictive:

By using a score cut-off of 95%, the number of KO groups will only be associated with
any highly similar sequences, leading to improved precision. However, more restrictive

thresholds lead to a higher number of FN which decreases recall.

¢ KO groups poorly represented in the database:

For instance, K04105 is only represented by 19 sequences in the database, K07547 is only
represented 5 and K07548 only 6. This makes it harder to identify sequences having the
same function in different genomes due to the decreased number of reference sequences

of the function in the analysis.

e KO groups that, besides separated, correspond to the same function.

This issue arises due to the annotation of KO groups in the sources used to retrieve
data. An example case of that is a set of 10 KO groups (K07515, K01825, K07514,
K07511, K01782, K15016, K01692, K13767, K01715 and K10527) that are assigned to
the enzyme 4.2.1.17 (present in path 1 and 2) and where the product is the same for all,
enoyl-CoA hydratase. The number of sequences in the database for each one of these
KO groups goes from 130 to 6554. The KO group represented with more sequences will
probably lead to more alignments with sequences in the genome set that have the same
function, making it easier to find a hit with best values. Because OrtAn only allows the
annotation of each sequence to the function of the best hit, it is more probable that all
the sequences that the product corresponds to enoyl-CoA hydratase will be more easily
associated with the KO group that has more reference sequences representing it in the

database.

Another interesting outcome of the restrictive search step, is the higher number of DivOG
than ConOG. This is an indicator that an annotation strategy of annotating all the sequences
from an orthogroup to a function would frequently lead to misleading results, especially
considering that some of the DivOG have sequences annotated to different KO groups. It
is also interesting that when using a restrictive search score cut-off of 95% no ConOG was
obtained. A possible explanation for this scenario is that due to a very restrictive score the
less likely that all the sequences from a KO will be annotated to a sequence in the database.

The number of orthogroups at the end of the restrictive search phase using different re-
laxed search parameters shows a direct correlation to identity cutoffs. When using a lower
identity cut-off on the relaxed search step, a higher number of orthogroups analyzed in the

restrictive search end up not having any sequence annotated to any of the functions to which
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the orthogroup was associated before. The number of lost KO groups behaves the same way.
This shows that using a very low cut-off of the relaxed search can lead to extra work in the
further steps, i.e., more comparisons to be made that were unnecessary. Conversely, if a very
high identity cut-off is used, that can translate in a loss of opportunity to identify sequences
related to the functions in the database. The goal of presenting these values in the OrtAn
results is to show if the used thresholds are adjusted to the data.

Regarding the cases of DivOGs with sequences annotated to different KO groups, most of
the cases correspond to KOs that correspond to the same function (like the case of 10 KO
groups explained before). Some cases showed to correspond indeed to KO groups that don’t
correspond to the same function, reinforcing the importance of not assign the same function
to all the sequences in an orthogroup to avoid some misleading results.

The evaluation of the annotation using OrtAn is shown in tables 9 (annotation score cut-
off of 90%) and 10 (annotation score cut-off of 95%). The reference results used for this

evaluation were the annotation present in KEGG for the genomes composing set A.

Table 9.: Annotation evaluation (Set A). Presenting TP, FN, FP, precision, recall and F; values
for genome set A annotation evaluation for different relaxed search identity cut-off (40% and
70%), restrictive search score cut-off of 90% and for 4 different databases (BTA, BTA P1,
BTA P2 and BTA P3).

Relaxed Search identity cut-off 40 ‘ 70 H 40 ‘ 70 H 40 ‘ 70 H 40 ‘ 70
Restrictive search/Annotation score cut-off 90

Database BTA BTA P1 BTA P2 BTA P3
TP 436 376 296 254 307 273 126 129
FN 168 228 151 193 149 183 16 13
FP 36 31 36 29 32 32 0 0
Precision 0.923 | 0.923 || 0.891 | 0.897 || 0.905 | 0.895 1.0 1.0
Recall 0.721 | 0.622 || 0.662 | 0.568 || 0.673 | 0.598 || 0.887 | 0.908
F; 0.810 | 0.743 || 0.759 | 0.695 || 0.772 | 0.717 || 0.940 | 0.952

Table 10.: Annotation evaluation (Set A).Presenting TP, FN, FP, precision, recall and F; values
for genome set A annotation evaluation for different relaxed search identity cut-off (40%
and 70%), restrictive search score cut-off of 95% and for 4 different databases (BTA, BTA
P1, BTA P2 and BTA P3).

Relaxed Search identity cut-off 40 | 70 [ 40 [ 70 ]| 40 | 70 [ 40 | 70
Restrictive search/Annotation score cut-off 95

Database BTA BTA P1 BTA P2 BTA P3
TP 299 259 187 147 200 169 106 84
FN 305 345 260 300 256 287 36 58
FP 16 12 16 16 15 14 0 0
Precision 0.949 | 0.956 || 0.921 | 0.902 || 0.930 | 0.923 1.0 1.0
Recall 0.495 | 0.429 || 0.418 | 0.329 || 0.439 | 0.371 || 0.746 | 0.596
F; 0.651 | 0.592 || 0.575 | 0.482 || 0.596 | 0.529 || 0.855 | 0.743

The differences in the results obtained with the different databases show the impact that the
database can have on the annotation. Here, the best annotation results were obtained for BTA
P3 database. The lesser performance of databases BTA P1 and P2 can be attributed to KO

53



54

Chapter 6. results and discussion

groups with low numbers of representative sequences, that, as referred before in this section,
can difficult the identification of sequences having the same function. This contributed to

high numbers of FN and consequently to low recall.

When looking at cases were only the relaxed search identity cut-off was changed, it is
possible to observe that the precision values do not fluctuate meaningfully but the recall
values do. Again, this highlights the impact that the identity cut-off on the relaxed search
can have on the recall values of annotation. F; values showed better when using the identity
cut-off on the relaxed search of 40%. The only exception to this is the database BTC P3
when using 90% as score cut-off on the restrictive search. In this case, the results obtained
when using an identity cut-off of 70% were slightly better. An explanation for this can be the
randomly orthogroups representatives’ selection. In the case of the run where was used the
identity cut-off of 40%, the selected representative for an orthogroup could have led it to not

be associated with the function that it should.

Considering only the score cut-off (90% on table 9 or 95% on table 10) as a factor shows
that both precision and recall values are affected. The precision values are better when using
a high score cut-off, however, the recall also suffers a higher decrease. This leads to F; values

worse than the ones obtained when using 90% as score cut-off on the restrictive search step.

In general, for the tested datasets, was observed that the best combination of thresholds
used are 40% for the identity cut-off in the relaxed search, and 90% for the score cut-off in

the restrictive search.

6.2.4 Annotation: Set B

In the table 11 (score cut-off of 90%) and 12 (score cut-off of 95%), are presented the results
obtained with OrtAn for set B. The test of the pipeline with this set was similar to the set
A. Tt was tested for the 4 different databases (BTA, BTA P1, BTA P2, and BTA P3), for an
identity cut-off on the relaxed search step of 40% and 70%, and a score cut-offs of 90% and

95% for the restrictive search.

Most of the observations made with set A can be seen in set B results as well. In tables 11
and 12, on the section regarding the relaxed search results, it is possible to observer that there
was a low percentage of the selected orthogroups, because the databases used represent only
a small fraction of the functions presented in a genome. This percent was even smaller when
using an identity cut-off of 70%, as expected. Here, contrary to the set A results, there wasn’t
any case where 100% of the KO groups would have at least one association with an orthogroup.
Since the genomes here are different, belonging to different species and the annotation of the
amino acid sequences is not known is difficult to justify why this happened. It could be due

to the quality of the databases used, or simply by the fact that there are no sequences with
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Table 11.: Overview of OrtAn results with Set B for the databases BTA, BTA P1, BTA
P2, and BTA P3, relaxed search identity cut-off of 40% and 70% and restrictive
search score cut-off of 90%. The meaning of the values in each line is described in
chapter 5, subsection 5.2.2. (OrtAn Overview.csv output file).

Genome Set Set B
Database BTA BTA P1 BTA P2 | BTA P3
Relaxed Search identity cut-off 40 [ 70 [ 40 70 | 40 | 70 | 40 | 70
Annotation score cut-off 90
Total orthogroups 8362
KOs in the database 47 ‘ 32 ‘ 31 ‘ 14
Relaxed Search
Selected orthogroups 71 38 47 32 54 31 16 8
% Selected orthogroups 08 | 0.5 | 06 04| 06 | 04| 02| 0.1
Associated KOs 38 19 24 10 26 13 26 8
% Associated KOs 80.9 | 404 | 75.0 31.2 | 83.9 | 41.9 | 83.9 | 57.1
Restrictive Search/Annotation
Orthogroups with annotated sequences 38 34 29 29 29 28 11 8
% of Orthogroups with annotated sequences | 0.5 | 0.4 | 0.3 03 | 0.3 | 0.3 | 0.1 | 0.1
KOs with assigned sequences 23 18 11 9 11 12 13 8
% KOs with annotated sequences 48.9 | 38.3 | 34.4 28.1 | 35.5 | 38.7 | 929 | 57.1
ConOG 19 19 15 15 16 16 3 3
DivOG 19 15 14 14 13 12 8 5
DivOG with more than one KO 8 3 5 3 4 3 3 1
Relaxed Search to Restrictive Search
Lost orthogroups 33 4 18 3 25 3 5 0
% Lost orthogroups 46.5 | 10.5 | 38.3 94 | 46.3 | 9.7 | 31.2 | 0.0
Lost KOs 15 1 13 1 15 1 1 0
% Lost KOs 39.5 | 53 | 542 10.0 | 57.7 | 7.7 | 7.1 | 0.0

these functions present in any of the genomes analyzed. Also, the gene prediction carried out
with Prodigal could have not identified some of these genes.

Regarding the restrictive search step, the number of ConOG and DivOg are more balanced.

Another aspect that differs from the results obtained with set A is that the number of
ConOG obtained with set B does not change significantly when using different score cut-
offs of 90% and 95%. From this, it can be assumed that the ConOG that were maintained
when using a score cut-off of 95% correspond to orthogroups with more similar or conserved
sequences.

The losses of orthogroups and KO groups from the relaxed search to the restrictive search
step presented the same pattern regarding the comparison between both identity cut-offs used,

i.e., small losses when using higher identity cut-offs.

6.3 METABOLIC NETWORK INFERENCE

The metabolic network inference strategy combines the information regarding the GPR

rules (in this case, manually retrieved from the KEGG database for the BTA pathway) and the
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Table 12.: Overview of OrtAn results with Set C for the databases BTA, BTA P1, BTA
P2, and BTA P3, relaxed search identity cut-off of 40% and 70% and restrictive
search score cut-off of 95%. The meaning of the values in each line is described in
chapter 5, subsection 5.2.2. (OrtAn Overview.csv output file).

Genome Set Set B
Database BTA BTA P1 | BTA P2 | BTA P3
Relaxed Search identity cut-off 40 [ 70 [ 40 [ 70 | 40 | 70 | 40 | 70
Annotation score cut-off 95
Total orthogroups 8362
KOs in the database 47 [ 32 | 31 | 14
Relaxed Search
Selected orthogroups 69 40 49 31 52 29 14 11
% Selected orthogroups 08 | 05 | 0.6 | 04 | 06 | 0.3 | 0.2 | 0.1
Associated KOs 39 21 25 10 25 11 13 9
% Associated KOs 83.0 | 44.7 | 78.1 | 31.2 | 80.6 | 35.5 | 92.9 | 64.3
Restrictive Search/Annotation
Orthogroups with annotated sequences 37 35 26 26 27 25 10 11
% of Orthogroups with annotated sequences | 0.4 | 0.4 | 0.3 | 0.3 | 0.3 | 0.3 | 0.1 | 0.1
KOs with assigned sequences 22 19 9 9 11 10 12 9
% KOs with annotated sequences 46.8 | 40.4 | 28.1 | 28.1 | 35.5 | 32.3 | 85.7 | 64.3
ConOG 17 17 13 13 14 14 3 3
DivOG 20 18 13 13 13 11 7 8
DivOG with more than one KO 8 4 5 4 5 3 3 0
Relaxed Search to Restrictive Search
Lost orthogroups 32 5 23 5 25 4 4 0
% Lost orthogroups 46.4 | 12.5 | 46.9 | 16.1 | 48.1 | 13.8 | 28.6 | 0.0
Lost KOs 17 2 16 1 14 1 1 0
% Lost KOs 43.6 | 9.5 | 64.0 | 10.0 | 56.0 | 9.1 | 7.7 | 0.0
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results obtained with OrtAn, more specifically the ones present in the file Species Annotation.csv.
This file indicates which functions/KO groups were found in each species of the genome set.
By combining this information, it is possible to calculate if a species has a minimum combi-
nation of genes that would allow the complete performance of one of the alternative paths
(P1, P2 or P3) used in this work.

In a more detailed way, to determine if a species has the potential to perform a complete
pathway, in each reaction it is verified if a minimum combination of genes/KO groups that
enable the performance of the reaction (recurring for that to the GPR rules and the OrtAn
annotation) is present in that species genome. For genome set A, the reference results are
based on the annotation data from the KEGG database (the same data used to validate the
annotation). For set B, the reference results correspond to the information regarding if the

species are considered benzoate degraders or not.

The results presented here are only the ones obtained with OrtAn output that originated,
in general, the best results in the annotation evaluation (an identity cut-off of 40% for the

relaxed search, and a score cut-off of 90% for the restrictive search).

6.3.1 Set A

Since the results of the annotation using a score cut-off on the restrictive search of 95%
were not satisfactory, in this step of the pipeline, it was decided to evaluate the pathway

inference only with the cases using a score cut-off of 90%.

Also, for each one of the alternative paths inference, the OrtAn results obtained using the

database containing the functions necessary to the respective path were used.

In Tables 13, 14, and 15, it is possible to compare, for path 1, 2 and 3 respectively, the
expected reactions and those that were identified with OrtAn annotation pipeline. With
the green boxes representing the correct results, it is possible to observe that most of the
reactions were correctly previewed. Most of the errors (red boxes) are related to reactions
that were not found in the species with the OrtAn annotation results but should have been.
The only case where a reaction was found when it shouldn’t have been, occurred in path
1, reaction R01422, and species code parb. These tables also allow us to easily understand
which species were previewed to perform the complete path, that is, the lines/species were all
the columns/reactions are filled with an x. It also allows to easily observe the cases were a
reaction failed to be found in most of the species. A case to notice is that corresponding to
the reaction R02451 (pathl and 2 only), which was not found in any of the 7 species where
it should have been. According to the GPR rules, for this reaction to be performed 4 genes
are required corresponding to the functions from the KO groups K04114, K04113, K04112,
and K04115. These KO groups are represented in the database from only 18, 28, 24 and 18

sequences respectively. This could be the reason for this reaction not being found in any of the
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Table 13.: Reactions inference of BTA alternative path 1 in set A. The calculations were made
using the GPR rules relative to the BTA pathway and the annotation results obtained with
OrtAn (database — BTA P1, identity cut-off - 40%, score cut-off - 90%). The reference
results had into consideration the annotation present in KEGG. x — represents a reaction
that was correctly found recurring to OrtAn annotation; o — represents a reaction not found

but that should be.

assumptions, respectively.

The green and red boxes help to visualize the correct and wrong

Species code Reaction code
R00238 | R01422 | R01976 | R02451 | R03026 ‘ R03028 | R05305 | R05579 ‘ R05581 | R05586 | R05594 ‘ R05597
adv x % < -
ath x X < =
aza x ” = B ‘
o : S -
azi x x = .
bced X < < .
bvi < X x .
cyq X b X x
cza x < . J = |
dor x = X = = =
cb - : — .
lem x X = .
—2EX z X = X X X X
parb x % « .
rrz X = = -
shd x X = -
X
X

species, because a poor representation of a function in the database makes it more difficult for
the identification of sequences with the same function in the genomes. The reaction R03028
(path 1) was not identified in any of the species. Other reactions, despite being identified,
were only previewed to be performed in less than half of the species that were expected. For
instance, R05581 (represented by only 14 sequences in the database), R05594 (represented by
17 sequences), and R05597 (represented by 17 sequences), path 1 and 2, were only shown to
be performed by 2 of the expected 7 species).

Table 16 contains an assembly of the information from tables 13, 14, and 15. The second
column indicates the paths that each species is described with the ability to fully perform
(according to KEGG annotation) and the third column indicates the paths that were found
via OrtAn pipeline. Path 3 was shown to be fully performed by 6 of the 8 species. Path 2
was found to not be completed by any 7 expected species. This leads to the assumption that
there are insufficient genes, in any species, to perform some of the required reactions. Path 1
was also not found to be fully performed by any species as expected.

An explanation for the absence of species with the ability to perform the complete path 2 can
be tied to low recall values (0.673) after using the BTA P2 database for annotation. When
observing the recall values on the annotation evaluation for path 3, they are considerably
better. Around 90% of the sequences that should be were effectively annotated, and that
translates in better results when inferring the presence of path 3 in this set of species.

Using the species that were not able to perform any of the paths alone, it was tested if it

was possible to find complete paths in different combinations of two, three and four species.
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Table 14.: Reactions inference of BTA alternative path 2 in set A. The calculations were made
using the GPR rules relative to the BTA pathway and the annotation results obtained with
OrtAn (database — BTA P2, identity cut-off - 40%, score cut-off - 90%). The reference
results had into consideration the annotation present in KEGG. x — represents a reaction
that was correctly found recurring to OrtAn annotation; o — represents a reaction not found
but that should be; * — represents a reaction found that wasn’t present in the reference
results. The green and red boxes help to visualize the correct and wrong assumptions,

respectively.
. Reaction code
Species code
R00238 | R01422 | R01976 | R02451 | R02488 | R03026 | R05305 | R05581 | R05586 | R05594 | R05597

adv X X X X X
ath X b'q X X
aza x x X x
azd X X b'q X
azi X X X X
bced X X X X X
bvi X X b'e X X
cyq X X X X
cza x x x x
dor X X X X X
lem X X X X X
magx X x X X X X X x
parb X X b'e X X
rrz X X X X X
shd X b'e b'e X X

x

x x x x x

In combinations of two species, 89 of a total of 253 were found to be able to perform the path
3. For combinations of three, 615 of 816 and for combinations of four, 2646 of 3060. Path 1

and 2 were never reveal.

6.3.2 Set B

The analysis performed for genome set B was similar to that of genome set A, however, for
set B the only information available was if the species was or not a benzoate degrader. In
Tables 17, 18 and 19 it is shown which reactions were identified in each species, for path 1, 2
and 3 respectively. As in genome set A, path 3 is the only one where all the reactions were
found in at least one species. For paths 1 and 2, some reactions, similar to the results with
set A, were not identified in any of the species. The reactions R03028 and R02451 were not
identified in any of the species of set A or set B. Additionally on set B, the reactions R05579,
R05581, R05594, and R05597 were not identified either.

Due to the absence of annotation references, it cannot be affirmed that these results are due
to the poor representation of the genes involved in reactions in the database, or if, effectively
the genomes in analyses don’t possess the genes necessary to perform the reactions.

In Table 20 it is possible to compare the information regarding the species that are con-

sidered benzoate degraders and the results obtained with the BTA inference from the OrtAn
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Table 15.: Reactions inference of BTA alternative path 3 in set A. The calculations were made
using the GPR rules relative to the BTA pathway and the annotation results obtained with
OrtAn (database — BTA P3, identity cut-off - 40%, score cut-off - 90%). The reference
results had into consideration the annotation present in KEGG. x — represents a reaction
that was correctly found recurring to OrtAn annotation; o — represents a reaction not found
but that should be. The green and red boxes help to visualize the correct and wrong
assumptions, respectively.

Reaction code

Species code

R00228 | R00750 | R0O0813 | R00816 | R02601 | R02604 | R05621

adv
ath
aza

azd
azi
bced
bvi
cyq
cza
dor
eba
lecm
magx
parb
rrz
shd
sscu
tmz




Table 16.:
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BTA alternative paths inference in set A. The first column indicates the species
code, the second the reference results calculated with KEGG annotation, and the third
column indicates the results calculated with OrtAn annotation results (database - the one
corresponding to the path in analyses, identity cut-off - 40%, score cut-off - 90%) .The green
and red boxes on the third column help to visualize the correct and wrong assumptions,
respectively.

Species code | Reference results | Results obtained with OrtAn annotation
adv P3
ath
aza P2
azd P2
azi P2
bced P3
bvi P3
cyq P3
cza P3
dor
eba P2
lem
magx P2
parb P3
rrz P3
shd P2
sscu
tmz P2, P3
Table 17.: Reactions inference of BTA alternative path 1 in set B. The calculations were made

using the GPR rules relative to the BTA pathway and the annotation results obtained with
OrtAn (database — BTA P1, identity cut-off - 40%, score cut-off - 90%). x - represents a
reaction that was expected to be performed.

Species code

Reaction code
R00238 | R01422 | R01976 | R02451 | R03026 | R03028 | R05305 | R05579 | R05581 | R05586 | R05594 | R05597

X X X X X

X

e

A R R N Nl el ]

BIR 7| =i Q) H o w >

R R R Nl e Rl Rl ]
"

R R R R Rl A Rl Rl ]

R R R Nl Rl Rl

R R R

61



62 Chapter 6. results and discussion

Table 18.: Reactions inference of BTA alternative path 2 in set B. The calculations were made
using the GPR rules relative to the BTA pathway and the annotation results obtained with
OrtAn (database — BTA P2, identity cut-off - 40%, score cut-off - 90%). x - represents a
reaction that was expected to be performed.

Reaction code
R00238 | R01422 | R01976 | R02451 | R02488 | R03026 | R05305 | R05581 | R05586 | R05594 | R05597
X X X X X

Species code

“

R R RN N el ol
SRR R N Rl Rl

SRS T Q O QW e
AR R R R R E RN N
"

AR R R R R RN R

AR R R R R R

A R ]

Table 19.: Reactions inference of BTA alternative path 3 in set B. The calculations were made
using the GPR rules relative to the BTA pathway and the annotation results obtained with
OrtAn (database — BTA P3, identity cut-off - 40%, score cut-off - 90%). x - represents a
reaction that was expected to be performed.

Species code Reaction code

R00228 | R00750 | R00813 | R00816 | R02601 | R02604 | R05621
A X X
B X X
C X X X
D X X X
F X X X X X X X
G X X X X X
H
J
I X X X
E X X X X X X X
K X X X X X X
L X X X X X X X
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Table 20.: BTA alternative paths inference in set B. The first column indicates the species
code, the second the indication if the species is a benzoate degrader or not, and the third
column indicates the results calculated with OrtAn annotation results (database - the one
corresponding to the path in analyses, identity cut-off - 40%, score cut-off - 90%) . The
green and red boxes on the third column help to visualize the correct (species is a benzoate
degrader and a complete path was found, or it is not, and no path was found) and wrong
(the species is a benzoate degrader but no path was found or species is not a benzoate
degrader but a complete path was found) assumptions, respectively.

Species Code | Benzoate Degrader | Results obtained with OrtAn annotation

Yo

Yes P3

Yes P3

HR-QIH S T DA wE
Z
o

annotation pipeline. Path 3 was found in three species, being only two of them considered

benzoate degraders.

It was not possible to find combinations of species (excluding the ones where the path 3

was found) that would be able to perform any of the alternative paths.

Currently available data limits the ability to provide in-depth explanations for the obtained
results. The fact that the pipeline didn’t identify complete paths in the species considered
benzoate degraders, could be due to low recall or imprecise annotations. Another possible
explanation is that the species identified as benzoate degraders perform degradation using a

different set of reactions not included in this study.

6.4 TOOLS PERFORMANCE

6.4.1 OrtScraper

The installation is simply done and the usage consists of a simple command. The process
of downloading all the sequences from KEGG requires a lot of time, but that was optimized

with the use of the library grequests that does not wait until a request has an answer to do

the next one. But some additional features could make OrtScraper more useful, for example:
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o Provide metadata about the KO groups being downloaded and the number of sequences

downloaded for each one;
e Provide information about the interactions between reactions, enzymes, and pathways;

e Before creating the database, make a preview of the resources that will be needed to
store all the data and attempt to preview the time left to finish all downloads (according

to the requests in waiting and the time the responses are taking);

e Use the syntax of the KEGG database to automatically extract the GPR rules and store
them together with the database (in the future, this could be used by OrtAn to perform

the pathway inference right after the annotation without additional work for the user);

e Add new commands focused on extracting other types of information from KEGG
database, for instance, lists of genes from a reaction, lists of species involved in a

pathway, etc;

o Allow storing the database in a different format, for instance, the one used by DIA-
MOND. These options could also be convenient to OrtAn since it would save time cre-
ating the database for DIAMOND and space as there wouldn’t be needed two databases

of different formats containing the same data.

6.4.2 OrtAn

The installation is simple, as well as the usage. Despite having more commands, this allows
the user to shape the criteria used. The reason to separate the restrictive_search and
annotation is to allow the user to run the annotation more than one time, if need, without
having to run the restrictive_search (the more time and space demanding task) as well.
For instance, if the user chooses over-restrictive parameters for the annotation, the annotation
process can be repeated with different values without performing all the DIAMOND searches
of the restrictive search again.

The most challenging part of creating the OrtAn tool was the combination of the developed
strategy with DIAMOND. The chosen strategy uses an organized database, and, mainly in
the restrictive search step, there are various combinations of query files and databases that
should be run against each other. Apart from DIAMOND’s fast sequence alignment, its power
is mostly exploited by using big query and database files. However, because of the OrtAn
strategy, the sequences to be compared are divided into different processes of DIAMOND
searches and the power of DIAMOND regarding its fast sequence alignment is not fully
harnessed. Some adaptations were already made to take more advantage from DIAMOND’s
and revert this situation. In the restrictive search, when a series of various orthogroups

needed to be compared against the same KO group, the sequences of these orthogroups were
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put together in only one query file to avoid initiating a lot of different processes unnecessarily.

This leads to a storage problem since sequences will be repeated in different FASTA files. A

different method to store all the data and avoid having these unnecessary repetitions (same

data in different files or formats) should be implemented in future versions of the pipeline.

Thus, the most interesting update to OrtAn would be an improved adaptation of the tool

strategy to DIAMOND or use other sequence alignment search tool.
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CONCLUSIONS AND FURTHER WORK

The main objective of this work, create a pipeline for the annotation of genomes through
COGs data and the inference of metabolic pathways, was fulfilled. All the pipeline testing,
from the clustering to annotation and pathway inference was focused on one metabolic path-
way, the benzoate to acetyl-CoA conversion. To evaluate and adjust the parameters used
throughout the pipeline, a genome set from whose annotation was known was used. The final
test of the pipeline was made with the genome set B where the only information available
was about their capability as benzoate degraders.

The clustering, despite not resulting in perfect orthogroups (i.e., all the sequences in a
orthogroup sharing the same function) helps in reducing the work performed in the subsequent
steps of the pipeline. The annotation with OrtAn exhibited good precision results. However,
one of the biggest problems of the pipeline was the low recall values of the annotation. This

problem arises because of two main reasons:

e Some of the functions in the database had a small number of sequences representing
them. This makes it more difficult to find these functions in a genome set with variability

in their genomes and with genomes that vary from the ones present in the database.

e« DIAMOND lower sensitivity when compared to traditionally-used sequence alignment
search tools such as BLAST.

The homology search is key for the annotation. Due to the increase in the genomic data,
the homology search tools were constructed to work on big sets of data, and their strategy
was optimized for that. That is the purpose of DIAMOND as well, where some sensibility was
compromised for faster results. The pipeline developed in this thesis is constantly reducing the
number of sequences to be compared with these search tools. It starts with a database smaller
than usual since the analyses are focused on only one metabolic pathway. In the relaxed
search, only one per 10 sequences in each orthogroups is selected to be part of the query file.
In the restrictive search, the orthogroups are only compared with groups of sequences that
are already expected to be similar. Thus, the power of DTAMOND is potential not being

completely explored, especially on the restrictive search when we only allow being compared
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sequences that have a good chance of being a good match. Thus, the question is raised: is
DIAMOND a good option for this pipeline? Or should it be used another homology search
tool, that did not comprise so much sensibility, to get better annotation results?

In summary, improvements can and should be made to the developed pipeline to make it

more attractive for users:

e Add to OrtScraper the ability to extract GPR rules automatically from the KEGG
database and solve the cases where sequences with the same function are assigned to

different KO groups;
e Add to OrtAn a feature for metabolic network inference;

o Add to OrtAn the option to use a more sensitive homology search tool;
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Table 21.: BTA database information. All the selected reactions, the enzymes, the related KO
groups and the number of gene sequences existent to each KO group are shown. Additionally,
the total number of reactions, enzymes, KO groups, and gene sequences is also indicated.

Reaction ID EC number | KO Number of sequences
R01422 6.2.1.25 K04105 | 19
K04110 | 68
R02451 1.3.7.8 K04113 | 28
Ko04112 | 24
Ko04114 | 18
K04115 | 18
R05597 4.2.1.100 KO07537 | 17
R05581 1.1.1.368 KO07538 | 14
R05594 3.7.1.21 KO07539 | 17
R05305 1.1.1.35 KO01825 | 835
KO00022 | 258
KO07514 | 130
KO07547 | 5
KO07516 | 2044
KO01782 | 1815
KO08683 | 227
KO07548 | 6
K15016 | 176
K10527 | 369
R05586 2.3.1.16 KO07508 | 272
K00632 | 4110
KO07509 | 224
KO07513 | 699
R05579 1.3.99.32 K16173 | 26
R03028 7.2.4.5 KO01615 | 45
R03026 4.2.1.17 KO07515 | 246
KO01825 | 835
KO07514 | 130
KO07511 | 348
KO01782 | 1815
K15016 | 176
K01692 | 6554
K13767 | 232
KO01715 | 1057
K10527 | 369
R01976 1.1.1.157 KO00074 | 4699
R00238 2.3.1.9 K00626 | 13376
R02488 1.3.8.6 K00252 | 2526
R05621 1.14.12.10 K05550 | 475
K05549 | 499
RO00813 1.3.1.25 KO05783 | 424
R00816 1.13.11.2 K00446 | 530
KO07104 | 1188
R02604 3.7.1.9 K10216 | 143
R02601 4.2.1.80 K02554 | 923
K18364 | 185
R00750 4.1.3.39 K01666 | 1112
K18365 | 157
R00228 1.2.1.10 K00132 | 63
K18366 | 156
K04072 | 1571
K04073 | 827
Total Reactions 20
Total Enzymes 20
Total KO groups | 47
Total Sequences 48755




Table 22.: BTA P1 database information. All the selected reactions, the enzymes, the related KO
groups and the number of gene sequences existent to each KO group are shown. Additionally,
the total number of reactions, enzymes, KO groups, and gene sequences is also indicated.

Reaction ID

EC number

KO

Number of sequences

R01422

6.2.1.25

K04105

19

K04110

68

R02451

1.3.7.8

Ko04114

18

K04113

28

K04112

24

K04115

18

R05597

4.2.1.100

KO07537

17

R05581

1.1.1.368

KO07538

14

R05594

3.7.1.21

K07539

17

R05305

1.1.1.35

K10527

369

KO07516

2044

K08683

227

K00022

258

K01825

835

K15016

176

K01782

1815

KO07547

K07514

130

K07548

R05586

2.3.1.16

KO07509

224

KO07513

699

KO07508

272

K00632

4110

R05579

1.3.99.32

K16173

26

R03028

7.2.4.5

K01615

45

R03026

4.2.1.17

K10527

369

KO01715

1057

K01825

835

K15016

176

K01692

6554

K07514

130

K13767

232

K01782

1815

KO07515

246

KO07511

348

RO1976

1.1.1.157

K00074

4699

R00238

2.3.1.9

K00626

13376

Total Reactions

12

Total Enzymes

12

Total KO groups

32

Total Sequences

37976
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Table 23.: BTA P2 database information. All the selected reactions, the enzymes, the related KO
groups and the number of gene sequences existent to each KO group are shown. Additionally,
the total number of reactions, enzymes, KO groups, and gene sequences is also indicated.

Reaction ID EC number | KO Number of sequences
R01422 6.2.1.25 K04105 | 19

KO04110 | 68

R02451 1.3.7.8 Ko04114 | 18

KO04113 | 28

K04112 | 24

KO04115 | 18

R05597 4.2.1.100 KO07537 | 17

R05581 1.1.1.368 KO07538 | 14

R05594 3.7.1.21 KO07539 | 17

R05305 1.1.1.35 K10527 | 369

KO07516 | 2044

KO08683 | 227

K00022 | 258

KO01825 | 835

K15016 | 176

KO01782 | 1815

KO7547 | 5

KO07514 | 130

KO07548 | 6

R05586 2.3.1.16 KO07509 | 224

KO07513 | 699

KO07508 | 272

K00632 | 4110

R02488 1.3.8.6 K00252 | 2526

R03026 4.2.1.17 K10527 | 369

KO1715 | 1057

KO01825 | 835

K15016 | 176

K01692 | 6554

KO07514 | 130

K13767 | 232

KO01782 | 1815

KO07515 | 246

KO7511 | 348

R01976 1.1.1.157 KO00074 | 4699

R00238 2.3.1.9 K00626 | 13376

Total Reactions 11
Total Enzymes 11
Total KO groups | 31
Total Sequences | 40431




Table 24.: BTA P3 database information. All the selected reactions, the enzymes, the related KO
groups and the number of gene sequences existent to each KO group are shown. Additionally,
the total number of reactions, enzymes, KO groups, and gene sequences is also indicated.

Reaction ID EC number | KO Number of sequences

R05621 1.14.12.10 K05549 | 499
K05550 | 475

R00813 1.3.1.25 KO05783 | 424

R00816 1.13.11.2 KO07104 | 1188
K00446 | 530

R02604 3.7.1.9 K10216 | 143

R02601 4.2.1.80 K18364 | 185
K02554 | 923

R00750 4.1.3.39 K18365 | 157
K01666 | 1112

R00228 1.2.1.10 K18366 | 156
K04073 | 827
K00132 | 63
K04072 | 1571

Total Reactions 7

Total Enzymes 7

Total KO groups | 14

Total Sequences | 8253




