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A C KNOWL EDG EMEN T S

The first time I heard about quantum computation was in the far far away year of 2002, when I was still in

high school, during a conversation with my colleagues in the interval of physics class. It came at a time

where I was simultaneously entering my adulthood and taking important decisions about what to do with

my professional life. I can say that the idea immediately captured my attention, not only due the potential

impact of the technology, which was clear from the very first moment, but mostly because it somehow

combined two things I truly enjoyed: physics and computation. For practical reasons, I did not pursue the

study quantum computation immediately by then, but many years later, after many twists and turns in

my career and life, I decided to enroll on a doctoral programme to study the topic and many years after

that moment, I am able to put together this work. The path was long, and somehow tortuous at times, but

definitely rewarding. There are, of course, many important people who supported me along the way, helping

to make this work a reality, to whom I feel very grateful.

First and foremost, my most sincere thanks to my advisor Prof. Luís Soares Barbosa, for the great

opportunity of pursuing this interest of mine, for the uncountable opportunities that truly helped me becoming

a better researcher, and also for the patience, generosity, time and dedication to this work, for which I will

be forever indebted.

I did not have no one assigned, formally, the role of co-advisor, but definitely there were some people

with whom I ended up collaborating more closely. My thanks for Prof. Mikhail Vasilevskiy for the great

cooperation, and for always being able, and available, to answer all my questions about physics, from

whom I learnt a lot. Also, to professor Alexandru Baltag, for the profound insights on quantum logic and for

the warm welcome during my stay in Amsterdam and to Professor Jamie Vicary, my external advisor, for

his availability and valuable insights about quantum computation and about doing research and being a

researcher.

My time of being student of quantum computation also coincided with the birth of a wide interest on

the study of the discipline in the university across many departments, and due to this I had the privilege of

collaborating with many people from different backgrounds, who definitely influenced me, as well as the

ideas that shape this work. A word of thanks to professors José Espírito Santo, Pedro Patrício, José Nuno

Oliveira, Manuel Martins and Rui Soares Barbosa for helping shape my understanding of computation, logic,

mathematics and physics. Also, my acknowledgements, to prof. Andrei Postnikov and Tomás Veloz, for

providing valuable contributions to my research work. Finally, a word of thanks to prof. Nuno Peres, for

letting me assist to his classes and introducing me, seriously, to quantum mechanics, I could not wish for a

better introduction.

iii



iv

Teaching was one of the greatest experiences of this past few years, and of course I would thank to all

my students, with their young and bright minds, for pushing me forward to learn more about quantum

computation, so that I could teach them. Some of them ended up having a closer cooperation with me, and

here, my special thanks to José Guimarães, Vitor Gonçalves and Marta Sofia Oliveira.

Not only of science is made a doctoral programme, and I would also to thank the people who shared

with me the pains of being a PhD student and have been present in many cheerful events that took place

throughout these years: from conferences in Brasil, to a certain summer school in a convent near Braga,

our hiking trips to the Gerês region, or simply during our lunches at the canteen of University of Minho. My

thanks to my colleagues from the ARCA group: Alexandre, Leandro, Renato, José Proença, Guillermina,

who became my friends. Also, to my colleagues of 2.17 laboratory, for the relaxed environment in the

laboratory and outside of it, in our numerous field trips to settle the most important research question: which

Francesinha is best, Porto or Braga. The quest, despite the extensive field work, the long argumentations

about the historical importance of the former and the innovative character of the latter, apparently fostered

by an excess of eggs and cream in the region of Braga, remains open, i.e. it remains a question of personal

taste. Also, my thanks to the innumerous brilliant people I have met during my stay in HASLAB laboratory,

Ana, Ali, Paolo Masci, Vitor Enes and many others, for all the nice conversations about multiple subjects.

Outside research there should be a life too, although severely conditioned at certain stage, due to the

demands of academic work, but lately, also due to a unfortunate pandemic situation. To my friends and

colleagues who have supported me in this endeavour throughout the years, sometimes without knowing

it, from toy assignments about quantum computation in the early years of college, to cheerful moments

around a table, or simply through kind words in darker days, a big word of thanks.
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unconditional love and truthfully rock-solid support, but mostly, for everything.
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F OUND A T I O N S F O R QU AN TUM A L GO R I T HMS AND COMP L E X I T Y

Recently, quantum computation has been generating a lot of interesting from both industry and academia,

due to the first results on quantum supremacy, i.e. the first time quantum computers were able to perform

efficiently tasks deemed unfeasible to classical computers, made possible by the state-of-art qubit technology.

These achievements, despite the unusefulness of the tasks performed (quantum circuit sampling), provide

evidence that real world quantum computation is not only evolving, but also, that full-scale quantum

computers may be a reality in the mid-term future.

The benefits of quantum computation are well-known to be potentially ground-breaking, from making RSA

cryptography unsecure, to the efficient simulation of quantum systems. On theoretical side, the algorithm

body of knowledge has evolved, and nowadays, there is already a huge number of algorithms and techniques

scattered across a vast realm of applications, from solving certain linear equations to optimization.

Nonetheless, the progress in the development of new algorithms with an exponential advantage, rather

than polynomial, has been quite slow and even the application of the existent quantum computational

techniques to new problems is far from being a trivial task. The main motivation for this work was to

contribute to this problem, and do so by following a foundational approach, i.e. by the understanding of the

structures of the computational advantage of quantum algorithms and the conception of formal methods to

aid in their application to new problems.

Such an approach has to deal with two somewhat orthogonal perspectives of quantum algorithms:

complexity and semantics. The contribution of this work can also be divided in these two perspectives: in

one hand we try to identify and characterize the structures that carry the so-called quantum advantage and

exercise them with new applications, and in the other hand we propose tools to deal with the correction of

quantum algorithms, particularly, we discuss a dynamic logic for a class of quantum programs: the ones

expressible in the quantum assembly programming language (QASM).

Concerning the algorithmic side of the contribution we propose two new applications for quantum al-

gorithms: the first one from quantum biology, concerning the simulation of the non-radiative effects of

electronic transport through a molecular chain in a photosynthesis system; the second one belongs to

the field of quantum chemistry, and concerns the calculation of the ground state of the Hydrogen and

Lithium-Hydride molecules, under the action of a strong electrical field (the stationary Stark effect). Both

applications were implemented and experimented in a real-world quantum computer, the IBM Q.

keywords: biology, chemistry, dynamic logic, quantum computation
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F UND AMEN TO S D E A L GO R I TMO S QU ÂN T I C O S E COMP L E X I D A D E

Recentemente, o interesse em computação quântica tem vindo a aumentar exponencialmente, devido

ao facto da meta da ”supremacia quântica”, momento em que os computadores quânticos são capazes

de realizar tarefas intratáveis para computadores clássicos, ter sido recentemente atingida por equipas

independentes, utilizando arquiteturas de qubits quânticos diferentes. Isto dá evidência da saudável

velocidade de evolução da área, e fortalece a ideia de que os computadores quânticos em grande escala,

podem vir a ser uma realidade no futuro.

Os benefícios, há muito conhecidos, podem ser realmente transformadores em campos como a crip-

tografia, ao tornar a criptografia RSA obsoleta, assim como tornar possível a simulação de muitos sistemas

quânticos, com aplicações em muitas áreas da ciência, como na química, ou na física de partículas. O

campo teórico dos algoritmos, baseando-se nos sucessos dos primórdios da computação quântica, como

foram os algoritmos de Grover e Shor, tem vindo a crescer, sendo que existe um vasto campo de aplicações,

desde a resolução de equações lineares, até variados métodos de resolução de problemas de otimização.

Não obstante, o progresso no desenvolvimento de algoritmos quânticos que consigam tirar completo

proveito da vantagem quântica tem sido lento, e mesmo a aplicação das técnicas existentes a novos

problemas, revela-se complexa. A motivação deste trabalho é contribuir para a mitigação deste problema,

através de uma abordagem ”fundacional” dos algoritmos e da sua complexidade, ou seja, através da análise

e classificação das estruturas que adicionam a vantagem quântica aos programas quânticos e, se possível,

da concepção de técnicas formais que permitam ajudar na engenharia de novos algoritmos.

Esta abordagem oferece o desafio de ter de gerir duas dimensões dos algoritmos quânticos, tradicional-

mente estudadas em separado: complexidade e semântica. Assim, a abordagem deste trabalho baseou-se

também nessas duas dimensões: por um lado, no estudo das estruturas que permitem a vantagem nos

algoritmos quânticos, e por outro na concepção de uma lógica dinâmica para uma classe específica de

programas quânticos: aqueles que são exprimíveis na linguagem QASM.

Relativamente à parte mais algorítmica da contribuição, são propostas duas novas aplicações em dois

campos ciêntificos diferentes: a simulação do transporte electrónico sem recurso a radiação no campo da

biologia quântica; no campo da química quântica, o cálculo do estado fundamental da moléculas 𝐻2 e𝐿𝑖𝐻, sob acção de um campo elétrico forte (efeito de Stark). Ambas as aplicações foram implementadas e

experimentadas num computador quântico real, o IBM Q.

palavras-chave: biologia; computação quântica; química; lógica dinâmica
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1
I N T R ODUC T I O N

Quantum mechanics emerged in the beginning of the twentieth century, as a theoretical solution to the

inconsistencies faced by classical physics at atomic scales. Later, it was extended to all physical regimes,

except to gravity, explaining physical phenomena at small scales with great accuracy. Nowadays, it is

considered the most successful theory in the history of physics.

Fifty years after its conception, with its unique properties still being understood, the first quantum-based

technologies on the fields of communication and information started to appear, giving rise to the new area of

quantum information. In the Eighties, it was introduced the first notion of quantum computing by Feynman

[151] and several others, which has quickly extended to actual computer models and new algorithms,

such as the Deutsch-Jozsa [134], as well as Grover [178] and Shor algorithms [329], all of them with the

potential of significantly boost the performance of many very hard classical computational tasks. These

include, for instance, the breaking of Rivest, Shamir, Adelmant (RSA) cryptographic system [76, 329] (one

of the cornerstones of industrial cryptograhic systems), exponential increase in the simulation of quantum

mechanical systems [249], or the resolution of some types of linear equations [191]. Nowadays, the number

of quantum algorithms and techniques has grown significantly, with many potential applications across

industry and science [167], with an expected huge impact, for instance in chemistry [90].

Quantum computation faces, however, many very hard technical challenges, which has been preventing it

to reach its full potential. The hardest of these challenges is the so-called decoherence, i.e. the hardness of

conserving superposition and entangled quantum states, from the errors caused by environmental interaction,

which so far, remain uncontrollable, despite the many physical architectures, error correction strategies and

even alternative computer models [161, 148, 84] that have been developed. In fact, in terms of hardware,

quantum computing is still at an early stage of development, and impactful implementations of most relevant

quantum algorithms are still beyond reach. However, advancements have been made, mostly due to the

developments in superconducting qubit technology [228, 236], and of optical systems [385]. It is expected

that in the next few years quantum computers start performing tasks deemed hard to classical computers,

reaching the so-called quantum supremacy [297].

By the time of the development of this work, an important milestone was reached in this regard, by

Google claiming a quantum advantage in a circuit sampling task [74, 29], using a 53 super-conducting

1
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qubit processor a claim disputed by IBM [285]. More recently a Chinese team, has also claimed quantum

advantage using a photonic quantum computer, in boson sampling [385]. Furthermore, recently another

important milestone was attained in the field of simulation of quantum chemistry [300].

Current technology, known as the Noisy Intermediate-Scale Quantum (NISQ) [298] era, yields qubits with

a controllable amount of error and it is already expected that high-impactant computational tasks will be

performed by quantum computers, in the field of optimization [91, 88], or even in very relevant problems

such as nitrogen or carbon fixation, using techniques such as quantum annealing or the variational quantum

eigensolver method.

In conclusion, advancements in the theory of quantum algorithms, have led to large number of quantum

algorithms, techniques, and computer models. However, the creation of new algorithms, or even, their

adaptation to new contexts, has shown to be non-trivial. The motivation for this work, is exactly to contribute

to the engineering of new quantum algorithm, following a foundational approach. The word ”foundations”

may have several meanings depending on the context, dealing, in general, with trying to find the most

fundamental components of the object of study. In the context of mathematics and computer science,

the term usually refers to the underlying theory or semantic model, where the object, or objects, of study

can be captured in a sound and complete way. Following such an approach for the construction of new

quantum algorithms is specially challenging, as it has to deal with two, generally orthogonal, dimensions:

their performance (complexity wise) and their correctness.

In quantum computation, the correctness side is already significantly mature, and many useful tools

to reason about quantum processes and programs are available, founded on the consistent work in the

fields of semantics of quantum programming languages and logical systems. The complexity side is not so

mature: while the fundamental components that allow for quantum advantage across all quantum computer

models, techniques and algorithms are common and identified, interference and entanglement, and despite

the multitude of methods to identify and quantify them, to the best our knowledge there is no compositional

theory that formalizes them. Nonetheless, the mathematical theory of quantum advantage is a very active

research area. Hence, in this thesis we follow a more empirical approach: performance-wise we focused in

the characterization of some the efficient quantum algorithms and their primitives, and the conceive new

examples; from the point of view of correctness, we provide a logical formalism for dealing with a specific

class of quantum programs. More precisely the research work was developed along these lines:

• Efficient quantum algorithms - Two classes of problems for which there is a quantum algorithm

with exponential advantage are the soft-simulation of a wide class of Hamiltonians (local to sparse

ones), and the ones that make effective use of the Fourier transform, which range from the Shor to

the HHL algorithm. We studied these algorithms and provided a new application to the soft-simulation

of nonradiative energy in photosynthetic systems;

2
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• Optimization problems - Quantum computers may yield some performance advantage in industrial

problems, particularly when involving some form of optimization. We review the current quantum

computational techniques employed in this kind of problems and, in particular, we explore an example

of application of one of these techniques, to the calculation of the ground-state of the 𝐻2 and 𝐿𝑖𝐻,

under the action of a strong electrical field, the so-called Stark effect, which, to the best of our

knowledge, was not attempted before and whose conception faces non-trivial theoretical and practical

challenges;

• Logic for quantum programs -We define a dynamic logic, to reason about the QASM programming

language, which involves quantum and classical data and measurements.

These lines of research have originated the following publications:

• José Diogo Guimarães, Carlos Tavares, Luís Soares Barbosa, and Mikhail Igorevich Vasilevskiy (2020).

Simulation of nonradiative energy transfer in photosynthetic systems using a quantum

computer. Complexity, 2020 ([179]).

• Carlos Tavares, Sofia Oliveira, Vitor Fernandes, Andrei Posnikov and Mikhail Igorevich Vasilevskiy.

Quantum simulation of the ground-state Stark effect in small molecules: a case study

using IBM Q. Soft Computing 25, 6807–6830 (2021). ([344]).

• Carlos Tavares. A Dynamic Logic for QASM Programs. International Workshop on Dynamic

Logic. Lecture Notes in Computer Science, vol 12005, 209-217 (2019). Springer, Cham. ([343]).

The structure of the thesis reads as follows: in chapter 2 we revisit the relevant mathematical notions

underlying quantum mechanics and provide some background on quantum computation and programming.

Chapter 3 aims at classifying the quantum efficient algorithms, i.e. the ones within the so-called BQP-class,

as well as, the inherent primitives that allow quantum advantage. We also discuss the example of the

simulation of non-radiative energy transfer in photosynthetic systems. Chapter 4, is devoted to analyse

complex computational problems, which remain beyond reach to quantum computers, whereas most of

them have industrial interest, from the perspective of optimization problems. We also discuss a case study

on the calculation of a ground-state Stark effect for small molecules, a problem within the QMA class. Finally,

chapter 5, introduces a specific quantum dynamic logic to reason about quantum programs.

3



2
A B R I E F J OU RN E Y ON QU AN TUM COMPU T A T I O N

I think I can safely say that nobody

understands quantum mechanics.

Richard P. Feynman, The Messenger Lectures,

1964, MIT.

This chapter aims at revisiting the fundamental theoretical notions of quantum computation, as a

background of the following chapters. We explore the fundamental mathematical concepts of quantum

mechanics, the Hilbert space and density operators formalisms, as well as the distinctive characteristics

of quantum mechanics, i.e. interference and entanglement. Arguably, are the main source of the so-

called quantum advantage, playing a vital role in many quantum technologies, from communication and

cryptography, to computation. We also explore the main quantum computation models and programming

languages, including quantum circuits, and we provide a general perspective of the quantum complexity

classes.

2.1 Quantum physics

At the beginning of the 20𝑡ℎ century, physics was thought to be complete, unifying all known physical

forces and regimes, from the small to the very large. This, in despite of some small issues to solve, such

as the divergences verified in the calculation of black-body radiation, and the incomplete understanding

of the photoelectric effect. The solutions to these problems, led to the introduction of the of the concept

of quantum, the smallest amount of a physical quantity, for example, the Planck constant1, which is the

quantum of the orbital angular momentum. This allowed simultaneously the resolution of the divergences of

the radiation of black bodies [290] as well as the full understanding of the photoelectric effect [141], for

which Albert Einstein was awarded the Nobel prize in 1921. The latter, however, also included the radical

idea of discretization of electromagnetic waves, whose quanta were later called photons.

1 A constant ℎ = 6.62607004 × 10−34𝑚2𝑘𝑔/𝑠 introduced by Max Planck, to fit the data of black body radiation experiments

4



2.2. The Hilbert space formulation 5

These findings along with several other ideas and experiments, such as the experimental validation of the

wave-particle duality2 and the new atomic models proposed by Bohr [72], shaped and gave experimental

validation to a radically different theory from classical mechanics: the quantum theory.

This body of ideas required a sound mathematical formulation, and this was initially achieved by two

different and independent formulations: the Erwing Schrödinger’s formulation [319], based on waves, and

the Heisenberg-Jordan formulation [196], based on matrices. Both formulations were, later, shown to

be equivalent by Schrödinger [318], and later, mathematically unified under the Hilbert space formalism

by Von Neuman [276]. Both of such formalisms are canonical examples of a complex Hilbert space :

Schrodinger’s formulation happens in the space 𝑙2, the space of all square summable complex sequences,
and the Heisenberg’s in the 𝐿2(ℝ3) space, the set of all square integrable complex functions of three real
variables [14].

Another important formalism is the one of density matrices, also introduced by Von Neumann in 1927

[361], targeting at the representation of statistical ensembles of quantum states, useful to represent

uncertainty in quantum states, e.g. fuzziness in preparation of quantum states. The Hilbert and density

matrices formalisms, particularly the finite-dimensional ones, are the most commonly used ones in quantum

computation. In the following sections we revisit the main principles of quantum mechanics through them.

2.2 The Hilbert space formulat ion

Despite of the complexity of its consequences, quantum theory is defined by only four postulates, in addition

to the algebraic laws governing a Hilbert space, and can be interpreted as state-based systems, where states

are unity vectors and transitions correspond to unitary transformations between states, preserving energy

conservation laws.

Definition 2.2.1. A vector space 𝑉 over a field 𝔽, is a set such that for every 𝑥, 𝑦 ∈ 𝑉, the
following laws apply:

𝑥 + 𝑦 ∈ 𝑉; 0𝔽𝑥 = 0𝑉;𝑥 + 𝑦 = 𝑦 + 𝑥; 1𝔽𝑥 = 𝑥;0𝑉 + 𝑣 = 𝑥 + 0𝑉 = 𝑥; 𝛼(𝑥 + 𝑦) = 𝛼𝑥 + 𝛼𝑦;𝛼𝑥 ∈ 𝑉; (𝛼 + 𝛽)𝑥 = 𝛼𝑥 + 𝛽𝑥;
Definition 2.2.2. ([109]) A Hilbert space is a vector space 𝐻, over the complex numbers ℂ,
with an internal product of type:

⟨−|−⟩ ∶ 𝐻 × 𝐻 → ℂ . (1)

2 The idea that both waves and particles had similar behaviour, as proposed theoretically by Louie De Broglie [127], and
experimentally demonstrated by Compton [113]

5



2.2. The Hilbert space formulation 6

In this operation, for all 𝜓, 𝜙, 𝜖 ∈ 𝐻 and 𝜆 ∈ ℂ the following algebraic rules apply:

⟨𝜓|𝜆𝜙 + 𝜖⟩ = 𝜆⟨𝜓|𝜙⟩ + ⟨𝜓|𝜖⟩; ⟨𝜆𝜓 + 𝜙|𝜖⟩ = 𝜆∗⟨𝜓|𝜖⟩ + ⟨𝜙|𝜖⟩;⟨𝜓|𝜙⟩ = (⟨𝜙∣𝜓⟩)∗; ⟨𝜓|𝜓⟩ ≥ 0 for all 𝜓 ≠ 0
where (−)∗ is the conjugate of complex numbers. Additionally, Hilbert spaces of infinite
dimensions must be Cauchy complete, i.e. for any (Cauchy) convergent sequence (𝑣𝑖)𝑖 of
vectors in H, there exists 𝑣 ∈ 𝐻, such that ||𝑣𝑖 − 𝑣|| → 0.
2.2.1 The state space

The first postulate, defines the set of possible states in a quantum system:

Postulate 1. The state space of an isolated physical system is the set of unitary vectors of
an Hilbert space.

We denote an Hilbert space by ℋ. In 1939, Paul Dirac proposed a notation to express vectors in the Hilbert

space, the so-called Dirac notation [137]. Following this notation, a vector 𝑣 ∈ ℋ, i.e. a state, is expressed

as |Ψ⟩. Every vector is generated by a basis, a subset of linearly independent vectors ∣𝑣1⟩ ,… , ∣𝑣𝑛⟩. Hence,
in its general form, a vector 𝑣 ∈ 𝑉, can be expressed as a linear combination of elements of a basis,

|Ψ⟩ = ∑𝑖 𝛼𝑖 ∣𝑣𝑖⟩ , (2)

where ∣𝑣𝑖⟩ correspond to vectors of the basis, and 𝛼𝑖 are complex numbers corresponding to their amplitudes.
In the matricial form ∣𝑣𝑖⟩ corresponds to a column vector:

|Ψ⟩ = ⎡⎢⎢⎢⎢⎢⎣
𝛼1𝛼2⋮𝛼3

⎤⎥⎥⎥⎥⎥⎦
. (3)

A basis may be or not be complete, it is complete if the following condition holds,

∑𝑖 𝛼𝑖 ∣𝑣𝑖⟩ = 0 if 𝛼𝑖 = 0, for all i . (4)

The dimension of ℋ is the maximum number of linearly independent vectors in ℋ. A further condition of

valid states is unitarity, which is provided by normalization, i.e. the norm of all valid vectors is equal to 1,|| |𝑣⟩ || = 1, where ||.|| is given as:
|| |Ψ⟩ || = √∑𝑖 𝛼†𝑖 𝛼𝑖 (5)

6



2.2. The Hilbert space formulation 7

where 𝛼𝑖 and 𝛼∗𝑖 are the amplitudes and their conjugates, respectively. Another relevant mathematical

object in quantum mechanics is the bra ⟨Ψ|, which corresponds to the conjugate transpose of a vector
⟨Ψ| = |Ψ∗⟩𝑇 = [𝛼∗1, 𝛼∗2,… , 𝛼∗𝑛] . (6)

Conceptually, kets correspond to the states of a quantum system, and bras to the tests that can be performed

over states. Finally, the internal product provides notion of distance between vectors. In the Dirac notation,

for instance, an internal product is denoted as ⟨Ψ1∣Ψ2⟩ and can be calculated as follows:
⟨Ψ1∣Ψ2⟩ = [𝛼∗1, 𝛼∗2,… , 𝛼∗𝑛].

⎡⎢⎢⎢⎢⎢⎣
𝛼1𝛼2⋮𝛼3

⎤⎥⎥⎥⎥⎥⎦
. (7)

In other words, the internal product provides a measure of the likelihood that a test ⟨Ψ1∣ results
successfully in a state ∣Ψ2⟩. If the internal product ⟨Ψ1∣Ψ2⟩ = 0, then ⟨Ψ1∣ and ∣Ψ2⟩ are independent,
i.e. orthogonal, while if the internal product is one, means they coincide.

It can be easily observed that two kinds of states are possible in an Hilbert space: |Ψ⟩ = ∣𝑣𝑖⟩ corre-
sponding to a single element of the basis, and |Ψ⟩ = ∑𝑖 𝛼𝑖 ∣𝑣𝑖⟩ with 𝛼𝑖 ∈ ℂ, corresponding to linear

combinations of basis elements, both having fundamental differences in terms of physical interpretation.

The former ones are called stationary states and correspond to states where the energy of the system is

well known, i.e. with no uncertainty associated, corresponding to different quantum numbers, and being

perfectly distinguishable. The latter ones correspond to the so-called superposition states,

|Ψ⟩ = 𝜆1|Ψ1⟩ + 𝜆2|Ψ2⟩ + … + 𝜆𝑚|Ψ𝑚⟩ , (8)

where the energy is not well-defined, possessing an uncertainty associated. The proper physical under-

standing of such states is still under debate, due to their unobservability in the classical world. However in

practice, according to the statistical interpretation of Quantum Mechanics originally proposed by M. Born

[315], a measurement of such a quantum state can randomly yield one of the eigenvalues of its energy, 𝐸𝑛,
with the probabilities given by the squared amplitudes of the corresponding basis elements, |𝜆𝑛|2.
2.2.2 Interference

A closer look to the possible state spaces in quantum mechanics, leads to the observation of one of its

distinctive properties: interference. In general, a quantum state, can be written as

𝐴𝑒𝑖𝜃1 |0⟩ + 𝐵𝑒𝑖𝜃2 |1⟩ ≡ 𝜆 |0⟩ + 𝛽 |1⟩ with |𝜆|2 + |𝛽|2 = 1 . (9)

7
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Interference concerns the non-independence of certain pairs of events in quantum mechanics, which can

be verified, for instance, in the so-called double slit experiment [18]. This prevents that the probability of

such events is given by the sum of their probability, i.e. 𝑃(𝐴 ∨ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵), as if they were
independent. Interference requires two or more events to be calculated: considering the state described in

equation (9), and that 𝐴 ⊔ 𝐵 corresponds to the quantum union of the two possible quantum events, i.e.

to obtain 0 or 1 upon measurement, the probability of 𝐴 ⊔ 𝐵 is calculated as follows:

𝑃(𝐴 ⊔ 𝐵) = (𝐴.𝑒𝑖𝜃1 + 𝐵.𝑒𝑖𝜃2)†(𝐴.𝑒𝑖𝜃1 + 𝐵.𝑒𝑖𝜃2) = |𝐴|2 + |𝐵|2 +𝐴.𝐵.𝑐𝑜𝑠(𝜃2 − 𝜃1) . (10)

It is easily observable that the probability depends on the phase difference between the two waves (eigenfunc-

tions) of the stationary states, i.e. by the term 𝑐𝑜𝑠(𝜃2 −𝜃1). Formally, the actual calculation of interference
is given by the difference between the probability of quantum union and the classical union:

𝐼(𝐴, 𝐵) ∶= 𝑃(𝐴 ⊔ 𝐵) − 𝑃(𝐴) − 𝑃(𝐵)∶= (𝐴.𝑒𝑖𝜃1 + 𝐵.𝑒𝑖𝜃2) (𝐴.𝑒𝑖𝜃1 + 𝐵.𝑒𝑖𝜃2)† −𝐴.𝑒𝑖𝜃1. (𝐴.𝑒𝜃1)† − 𝐵.𝑒𝑖𝜃2. (𝐵.𝑒𝜃2)†
∶= 𝐴.𝐵.𝑐𝑜𝑠(𝜃2 − 𝜃1)

It can be easily concluded, that the events can only be treated as independent only when interference𝐼(𝐴, 𝐵) is 0. On the other hand, when the interference factor is not 0, the two waves corresponding to the
events are said to be coherent.

There is always interference in superposition states, i.e. eigenwaves of the system are always in coherence,

and the probability calculations the only depend on the phase differences (local phases) between them.

The common denominator between all phases is the so-called global phase, and while essential to the

composition of quantum systems, does not have any observational relevance, i.e. it is not relevant to

probabilistic calculations. In other words, it can be stated that

𝜆 |Ψ⟩ ≅ |Ψ⟩ , with 𝜆 ∈ ℂ (11)

where 𝜆 is a global phase factor, i.e. it affects the whole system, and ≅ means observational equivalence

and |Ψ⟩ is an arbitrary state.
Interference is well known to happen with waves in classical physics, but in quantum mechanics it is

known to happen with photons, but also with particles, e.g. electrons, i.e. e providing evidence that also

matter can behave as waves, in agreement with the hypothesis wave-particle duality. In fact, interference

has also shown to be existent in much larger bodies at mesoscopic scale, such as in large molecules [168],

but not at macroscopic level.
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2.2. The Hilbert space formulation 9

This was shown in quantum mechanics resorting to different devices and methods, such as slit exper-

iments, observation of electron diffraction or interferometers of many kinds. A paradigmatic example of

interferometers is the so-called Mach-Zender interferometer, depicted in figure 1, initially targeted to photons.

Figure 1: The Mach-Zender interferometer, is a optical device where, upon the application of a
beam splitter, photons can travel through two possible paths, until reaching one of two
detectors. Such paths can be transversed with equal probability. The detection of the
photon in the first detector corresponds to the basis state |0⟩ and in the second detector
as |1⟩. Adapted from [133].

In the experiments with the Mach-Zender interferometer, the end states read as follows:

1√2 (|0⟩ + |1⟩) (12)

with 1/2 probability of obtaining 1 or 0. However, the probability can be controlled by the phase difference,
which establishes the difference between a purely random distribution, where there is no control over the

distribution and it is constant throughout time, and the distributions of quantum mechanics, by-product of

coherence between waves, controllable, and oscillatory throughout the action of Hamiltonian. The loss of

coherence, which can happen through many processes, causes the decay of a quantum superposition state

exhibiting coherence to a classical probabilistic state.

2.2.3 Unitary evolution

The evolution of quantum mechanical systems has to be reversible, due to the laws of energy conservation,

and preserve linearity. Therefore, the evolution in a quantum system is given by a unitary operator 𝑈,

∣Ψ𝑡+𝛿𝑡⟩ = 𝑈 ∣Ψ𝑡⟩ , (13)

which preserves linearity:

9
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𝑈⎛⎜⎝∑𝑖 𝛼 ∣𝑣𝑖⟩⎞⎟⎠ = ∑𝑖 𝛼𝑖𝑈(∣𝑣𝑖⟩) . (14)

Postulate 2. The evolution of a closed system is described by a unitary transformation i.e.
an operator 𝑈 such that 𝑈.𝑈−1 = 𝐼.
A corollary of these postulates is that the temporal evolution of a quantum mechanical system is given by the

Schrödinger equation [318], which is the cornerstone of Schrödinger’s formulation of quantum mechanics.

Postulate 2.1. The time evolution of the state of a closed quantum system is described by
the Schrödinger equation,

𝑖~ 𝜕𝜕𝑡 |Ψ(𝑡)⟩ = 𝐻|Ψ(𝑡)⟩ . (15)

The Schrödinger’s formulation of quantum mechanics, is centred at the action of the Hamiltonian operator

over quantum systems, 𝐻 = 𝑇 + 𝑉, 𝑇 being the kinetic energy of the constituent particles and 𝑉 the

potential energy of all interactions and fields in the system, both internal and external, whose action yields

the total energy of a system if in a stationary state,

𝐻|Ψ⟩ = 𝐸|Ψ⟩ . (16)

Notation |Ψ(𝑡)⟩ denotes the system’s wavefunction (WF), which represents the timed evolution of an

eigenstate |Ψ⟩, resulting from the action of an Hamiltonian operator. The set of WF’s correspond to all

physically meaningful solutions of the Schrödinger equation, which are mutually orthogonal. Usually, there

are several possible solutions to the equation, corresponding to different values of the energy (energy levels

or eigenvalues, 𝐸𝑛), which are discrete for a confined (or bound) physical system. The wavefunction |Ψ⟩,
may also depend on other arguments (such as spatial coordinates and spin components) according to the

representation used. In section 4.3, on chapter 4, this formalism is further explored, when addressing a

problem of simulation of a many-body system for quantum chemistry.

2.2.4 Observables

A quantum state, i.e. a wavefunction, carries information about all the observations that can be made, by

characterizing their probability distribution. In quantum mechanics one may be interested in an infinity

of types of observations, e.g. one can be interested in measuring the position of a particle, or its velocity.

Observables in quantum mechanics, are operators with a special status, known as Hermitian linear operators

which conjugate transpose (𝐴∗) equals itself,
𝐴∗ = 𝐴 . (17)

10
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It can be easily verified that such operators possess real eigenvalues, and indeed correspond to those who

are empirically meaningful, as in the classical world all physical quantities are real values. A difference

between classical and quantum mechanics is that observables, in general, do not commute, i.e. the

commutator given by

[𝐴, 𝐵] = 𝐴𝐵 − 𝐵𝐴 , (18)

is not necessarily 0 for all pairs of observables. The most well-known example of this is the non-commutativity

of position and momentum operators, which constitute the so-called Heisenberg uncertainty principle. The

commutator, basically allows the evaluation of the effect of the order of application of the observations, i.e.

if the commutator is different from zero, i.e.

[𝐴, 𝐵] ≠ 0 , (19)

the observations interfere with each other and it is impossible to estimate with arbitrary accuracy both

observables at the same time, meaning that observables are correlated, and even more, that it is impossible

to find separable distributions for the statistics of both observables and assign definite values to both of

them [73]. On the other hand, if (19) is 0, then observables are independent, and hence, it is possible to
estimate both observables with arbitrary accuracy. Einstein defined this impossibility of assigning a definite

value to every observable of a quantum system in a given instant as some sort of anti-realism, stating that

quantum mechanics should be incomplete. This, however, was proven experimentally several times, and,

is an important ingredient of several quantum technologies. Niels Bohr stated that this is a very powerful

assumption, which invalidates the calculation of joint probabilities for events that do not commute.

2.2.5 Measurements

The postulates enumerated so far, describe the possible states connected by transitions in quantum

mechanics, which include a special kind of states, the superposition states. Such states, cannot be

observed in the classical world, i.e. objects at macroscale can only be observed in a stationary and not in a

superposition of states, although they have been observed at micro and mesoscopic scales. This disparity

between classical and quantum worlds is known as the so-called measurement problem [375], for which

multiple possible theories have been developed, unfortunately, undistinguishable from the experimental

point of view with current technology. However, the process of causing the collapse of a superposition state

to a classical state is known as measurement and measurements have a stochastic nature in quantum

mechanics.

11
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Postulate 3. Measurements cause the collapse of quantum states into classical states.
Mathematically, they correspond to projection operators: ∣𝑀𝑚⟩ ⟨𝑀𝑚∣, where 𝑚 is the
desired outcome.

The calculation of the resulting state after a measurement over |Ψ⟩ is given by
𝑀𝑚 |Ψ⟩√⟨Ψ|𝑀†𝑚𝑀𝑚 |Ψ⟩ , (20)

and the probability of obtaining a specific measurement by

𝑝(𝑚) = √⟨Ψ|𝑀†𝑚𝑀𝑚 |Ψ⟩ . (21)

The set of measurement operators, for all possible outcomes, respects the condition that∑𝑚 𝑀†𝑚𝑀𝑚 =𝐼. Each measurement operator corresponds to only one possible outcome.
Example 2.2.1. Consider state ∣𝜓⟩ = 𝑎 |0⟩+𝑏 |1⟩ and measurements 𝑀0 = |0⟩ ⟨0|, 𝑀1 = |1⟩ ⟨1|;
then,

𝑝(0) = ⟨𝜓∣𝑀†0𝑀0 ∣𝜓⟩ = ⟨𝜓∣𝑀0 ∣𝜓⟩ = |𝑎|2 (22)

𝑀0 ∣𝜓⟩|𝑎| = 𝑎|𝑎| |0⟩ (23)

𝑀1 ∣𝜓⟩|𝑏| = 𝑏|𝑏| |1⟩ (24)

2.2.6 Combining quantum systems

In quantum mechanics there is the possibility of combining smaller quantum systems can be combined to

obtain larger one. The last postulate of quantum mechanics corresponds exactly to this:

Postulate 4. The state space of a composite physical system corresponds to the tensor
product of the state spaces of the component physical systems. A tensor is operator

⊗ ∶ ℂ𝑛1 ×ℂ𝑛2 → ℂ𝑛1+𝑛2 , (25)

and its calculation for two vectors spaces corresponds to the following linear operation:

𝑇 = 𝑛∑𝑖=1
𝑛∑𝑗=1 (𝑣𝑖𝑤𝑗) (𝑒𝑖 ⊗ 𝑓𝑗) (26)

12



2.3. The density matrix formalism 13

⎡⎢⎣𝑎1,1 𝑎1,2𝑎2,1 𝑎2,2⎤⎥⎦ ⊗ ⎡⎢⎣𝑏1,1 𝑏1,2𝑏2,1 𝑏2,2⎤⎥⎦ = ⎡⎢⎢⎢⎢⎢⎣
𝑎1,1 ⎡⎢⎣𝑏1,1 𝑏1,2𝑏2,1 𝑏2,2⎤⎥⎦ 𝑎1,2 ⎡⎢⎣𝑏1,1 𝑏1,2𝑏2,1 𝑏2,2⎤⎥⎦𝑎2,1 ⎡⎢⎣𝑏1,1 𝑏1,2𝑏2,1 𝑏2,2⎤⎥⎦ 𝑎2,2 ⎡⎢⎣𝑏1,1 𝑏1,2𝑏2,1 𝑏2,2⎤⎥⎦

⎤⎥⎥⎥⎥⎥⎦
(27)

= ⎡⎢⎢⎢⎢⎢⎣
𝑎1,1 ∗ 𝑏1,1 𝑎1,1 ∗ 𝑏1,2 𝑎1,2 ∗ 𝑏1,1 𝑎1,2 ∗ 𝑏1,2𝑎1,1 ∗ 𝑏2,1 𝑎1,1 ∗ 𝑏2,2 𝑎1,2 ∗ 𝑏2,1 𝑎1,2 ∗ 𝑏2,2𝑎2,1 ∗ 𝑏1,1 𝑎2,1 ∗ 𝑏1,2 𝑎2,2 ∗ 𝑏1,1 𝑎1,2 ∗ 𝑏1,2𝑎2,1 ∗ 𝑏2,1 𝑎2,1 ∗ 𝑏2,2 𝑎2,2 ∗ 𝑏2,1 𝑎1,2 ∗ 𝑏2,2

⎤⎥⎥⎥⎥⎥⎦
(28)

2.3 The density matr ix formal ism

Density matrices were introduced by Von Neumann in 1927 to represent mixtures of physical systems [360],

i.e. the so-called mixed states, which correspond to stochastic (classical probabilisties) combinations of

quantum systems. This representation is useful in a plethora of situations of quantum mechanics, but the

most obvious example happens there is uncertainty over the preparation of quantum states. The latter is a

common phenomenon in quantum mechanics. Following equation (6), a quantum state can be written as:

|Ψ⟩ = ∑𝑖 𝛼𝑖 ∣Ψ𝑖⟩ (29)

The density operator can be obtained by the projection of a state over itself, which reads as

𝜌 = |Ψ⟩ ⟨Ψ| , (30)

which results in a matrix of the following type:

𝜌 = ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
𝛼1𝛼†1 𝛼2𝛼†1 … 𝛼𝑛𝛼†1𝛼1𝛼†2 𝛼2𝛼†2 … 𝛼𝑛𝛼†2⋮ ⋮ ⋱ ⋮𝛼1𝛼†𝑛 … … 𝛼𝑛𝛼†𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (31)

In this matrix lines correspond to kets, ∣Ψ𝑖⟩ , and columns to bras, ⟨Ψ𝑗∣, and each position of the matrix
contains the correspondent eigenvalue of the projection ∣Ψ𝑖⟩ ⟨Ψ𝑗∣, the multiplication of the 𝛼𝑖 for ∣Ψ𝑖⟩ for
its conjugate 𝛼†𝑖 . Fue to the spectral decomposition theorems, the matrix operator can be written as

∑𝑖 (𝛼†𝑖 ∗ 𝛼𝑖) ∣Ψ𝑖⟩ ⟨Ψ𝑖∣ . (32)
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2.3. The density matrix formalism 14

The elements appearing on the spectral decomposition, (𝛼†𝑖 ∗ 𝛼𝑖), are elements of the diagonal of the
matrix, and correspond to the probabilities of obtaining state ∣Ψ𝑖⟩ ⟨Ψ𝑖∣ upon measurement, hence the

trace3 of the matrix equals to 1, and elements are always positive. Thus,
1. (Trace condition) 𝜌 has trace equal to one;

2. (Positivity condition) 𝜌 is a positive operator.

2.3.1 Pure and mixed states

States in quantum mechanics are of two types: pure, if it is possible to express them as a single ket, or

mixed, when expressed as a stochastic combination of quantum states, i.e. the so-called mixture of quantum

states,

𝜌 = ∑𝑖 𝑝𝑖 ∣Ψ𝑖⟩ ⟨Ψ𝑖∣ , (33)

where 𝑝𝑖 is the probability of obtaining Ψ𝑖 in a measurement. There is a multitude of situations where

this kind of representation may be useful, the most obvious case, being the existence of a dependency

between the observables of two different quantum systems, which imply that, from the perspective of one of

the systems, there is uncertainty about the actual state of the system, i.e. none of the two systems alone

possesses complete information about the state.

In practice the main difference between mixed states and pure states is that the latter states present

coherent effects and the formers do not, being purely random. A very simple example is given by the pure

state

|Ψ⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ ,
which reads, in the density operator formalism, as follows:

⎛⎜⎝𝛼 ∗ 𝛼† 𝛽 ∗ 𝛼†𝛼 ∗ 𝛽† 𝛽 ∗ 𝛽†⎞⎟⎠ ⇔ ⎛⎜⎝ |𝛼|2 𝛽 ∗ 𝛼†𝛼 ∗ 𝛽† |𝛽|2 ⎞⎟⎠ . (34)

The following density operator acting on the same basis, corresponds to a mixed state:

⎛⎜⎝𝐴 00 𝐵⎞⎟⎠ , (35)

where 𝐴, 𝐵 ∈ ℝ and 𝐴 = |𝛼|2, 𝐵 = |𝛽|2. While both states have 1/2 of probability of being in states 0
and 1, they have a very different physical meaning. The former corresponds to a superposition state and

3 The trace of a matrix can be calculated by summing all the elements in the diagonal 𝑇𝑟[𝜌] = ∑𝑖 𝑎𝑖𝑖.
14



2.3. The density matrix formalism 15

possesses interference; the latter corresponds to a plain classical distribution of two stationary states and

does not possess any interference (non-diagonal elements are 0). In the latter is impossible to control the

probabilities of obtaining 0, 1 by the use of phase-shifts, for example. The distinguishability between pure

and mixed states, can be made explicit by the application of the trace operator 𝑇𝑟(𝜌2), where operator 𝜌2
is given by

𝜌2 = 𝜌 ∗ 𝜌 = ∑𝑖 𝑝𝑖 ∣𝜓𝑖⟩ ⟨𝜓𝑖∣∑𝑗 𝑝𝑗 ∣𝜓𝑗⟩ ⟨𝜓𝑗∣ = ∑𝑖 𝑝𝑖𝑝𝑗 ∣𝜓𝑖⟩ ⟨𝜓∣𝜓𝑗⟩ ⟨𝜓𝑗∣ = ∑𝑖 𝑝2𝑖 ∣𝜓𝑖⟩ ⟨𝜓𝑖∣ (36)

and the trace corresponds to the sum of the diagonal elements of 𝜌2
𝑡𝑟(𝜌2) = ∑𝑖 𝑝𝑖2𝑡𝑟(∣Ψ𝑖⟩ ⟨Ψ𝑖∣) = ∑𝑖 𝑝2𝑖 . (37)

In the case of a pure state, the partial trace will be equal to 1, while for mixed states such trace will be < 1.
For instance, if 𝐴 = 𝐵 = 1/2

⎛⎜⎝1/2 00 1/2⎞⎟⎠
2 = ⎛⎜⎝1/4 00 1/4⎞⎟⎠ , (38)

the trace of 𝜌2 corresponds to 1/2 and it is lesser than 1, corresponding to a mixed state. This technique
may also be useful, for instance, in the detection of non-separable states (more on this on section 2.3.3).

Moreover, every mixed state can be transformed onto a pure entangled state of higher dimension, a

process, known as purification, for which there are an infinitude different processes to do it. Simultaneously,

it is always possible to produce mixed states, out of pure states [355].

2.3.2 Evolution

The evolution in the density operator formalism, similarly to what happens in the Hilbert space formulation,

is described by both unitary evolution and measurements. However, density operators have to support both

pure states and mixed states. Hence, the evolution in the formalism is not given by unitary and projection

operators, but rather by completely positive maps (CPM), which are:

• linear operator on positive matrices, preserving positivity;

• trace preserving, or trace non-increasing;

• stable under the addition of qubits, i.e. for 𝐹, 𝐼 CPMs, 𝐹 ⊗ 𝐼 is still a CPM.
15
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Unitary evolution

The unitary evolution is given by action of the unitary operator 𝑈 over each of the kets of the mixed state:

𝜌 = ∑𝑖 𝑝𝑖 ∣𝜓𝑖⟩ ⟨𝜓𝑖∣ 𝑈−→ ∑𝑖 𝑝𝑖𝑈 ∣𝜓𝑖⟩ ⟨𝜓𝑖∣ 𝑈† = 𝑈𝜌𝑈† . (39)

Measurements

The simplest type of measurements are projection measurements, which correspond exactly to projection

operators. Projections have the following characteristics:

• idempotence |𝑖⟩ ⟨𝑖| = (|𝑖⟩ ⟨𝑖|)2;
• orthogonality and ∑𝑖 |𝑖⟩ ⟨𝑖| = 𝐼.

On the other hand, the action of a measurement, over a state, reads as,

∑𝑖 ∣𝜙𝑖⟩ ⟨𝜙𝑖∣𝜓⟩ ⟨𝜓∣𝜙𝑖⟩ ⟨𝜙𝑖∣ = ∑𝑖 | ⟨𝜙𝑖∣𝜓⟩ |2 ∣𝜙𝑖⟩ ⟨𝜙𝑖∣ , (40)

and the probability of the outcome 𝑗, using a measurement 𝑀 over a state |Ψ⟩, is calculated as follows:
𝑃Ψ(𝑀 = 𝑗) = 𝑃Ψ(𝑀|𝑗) = ⟨Ψ|𝑀†𝑀|Ψ⟩ = ⟨Ψ∣𝑗⟩ ⟨𝑗∣Ψ⟩ = 𝑇𝑟(𝜌 ∣𝑗⟩ ⟨𝑗∣) . (41)

Measurements do not necessarily need to be expressed as orthogonal operators, but rather can be more

general, and not correspond to an orthogonal basis. Such is the case of the so called Positive operator

valued measurements (POVM )

∑(𝑀†𝑚𝑀𝑚) = 𝐼 (42)

In both cases the measurement over a density operator is expressed as

𝑀𝑚𝜌𝑀†𝑚 . (43)

2.3.3 Entanglement

Entanglement is perhaps the most distinctive characteristic of quantum mechanics and, arguably, the most

important component of quantum technology. The phenomenon was discussed for the first time in a paper

by Einstein, Podolsky and Rosen in 1935 [142], as a by-product of a thought experiment involving two

spatially separated particles with total spin 0 (singlet state), which interact in a way, such that the outcome

16
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of a measurement of the spin in one the particles defines the outcome of the same measurement made

in the other particle, a direct consequence of the non-commutativity of certain observables (discussed in

previous section 2.2.4). This phenomenon suggests a sort of inseparable behaviour of the two particles,

happening regardless of the distance between them, in what constitutes an apparent violation of special

relativity. In a follow up paper by Schrödinger in 1935 [320], the phenomenon was named ”entanglement”

for the first time and recognized as the most distinguished aspect of quantum mechanics.

The original argument of Einstein et al. [142], had the objective of criticizing in one hand the purely statistic

prediction power of quantum mechanics (indeterminism), and, by finding a case where it is impossible

that every observable has, simultaneously, a definite value, its apparent anti-realism. The main claim

was that the wave-function does not possess all the information to avoid these problems, and therefore,

quantum mechanics must be incomplete. This originated a new field of study on trying to find alternative

theories to quantum theory able to solve these issues, the so-called ”Hidden variable theories”. A particular

important class of candidates of the latter were the ”local hidden variable theories”, where the problem of

entanglement in quantum mechanics was solved resorting to hidden local information, available to each

side of the entanglement parties. However, these theories were ruled out experimentally, as explained in the

following sections.

Bell experiments

The idea of the non-locality, which at first was considered an insufficiency of quantum mechanics, ended up

developing into one of the fundamental principles of quantum mechanics, particularly as a consequence of

the results of Von Neumann [208], and Gleason [174], but mostly of the so-called Bell theorems [51, 52].

The latter allowed the conception of several experiments, which could be performed in laboratory, to validate

non-locality as a core property of quantum mechanics. The Bell theorems are based in an experimental

setting based on a singlet state involving two particles, with global spin 0. Due to the commutativity properties

of spin operators in different axis, it is possible to choose two spin components 𝜎1, 𝜎2 in different axis, such

that if the action, over the state vectors of two separate systems, denoted by ⃗𝑎 and ⃗𝑏, 𝜎1. ⃗𝑎 yields +1, the
subsequent action 𝜎2. ⃗𝑏 yeilds −1. Hence the expected value of the measuring the system in 𝜎1, 𝜎2 is

given as

⟨𝜎 ⃗𝑎∣𝜎 ⃗𝑏⟩ = − ⃗𝑎 ⃗𝑏 . (44)

In the other hand, the calculation of the expectation values of ⃗𝑎 and ⃗𝑏, in a local hidden variables setting,
should read as

𝑃( ⃗𝑎, ⃗𝑏) = ∫𝑑𝜆𝑝(𝜆)𝐴( ⃗𝑎, 𝜆)𝐵( ⃗𝑏, 𝜆) , (45)

17
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where 𝜆 is a tuple of local variables. The Bell theorem in [51], shows that there is no choice of variables𝜆 is possible so that the expectation value of equation (45) matches the expectation value of equation

(44), as this would be a contradiction, ruling out local hidden variable theories. Furthermore, from these

works were also derived a set of inequalities, useful for the distinguishability of non-separable (quantum)

and separable (classical) correlations, the so-called Bell inequalities, which are useful to detect non-locality

in actual experiments, namely:

|𝑎𝑐| − |𝑏𝑎| − |𝑏𝑐| ≤ 1 , (46)

where 𝑎, 𝑏, 𝑐 represent the local components on each experiment. Also, other inequalities of this type are
given by

𝐶ℎ(𝑎, 𝑐) − 𝐶ℎ(𝑏, 𝑎) − 𝐶ℎ(𝑏, 𝑐) ≤ 1 (47)

where 𝐶ℎ, represents an arbitrary classical correlation function. It has been shown multiple times that these
inequalities can be violated in many Bell-like experiments [30]. Moreover, many other arguments of this

type have arised, showing the existence of non-local effects in quantum mechanics. Hence, local hidden

variables are excluded as candidates to a complete theory of quantum mechanics. In despite of this there

are many non-local hidden variable theories candidate to a complete version of quantum mechanics, such

as the ones of De Broglie [127], or Bohm [71] theories.

The behaviour of entangled systems

Entanglement is characterized by the non-separability verified in multi-partite states, witnessed by appearance

of non-separable correlations in the observations in two spatially separate quantum systems. A famous

example of states in such conditions are the so-called Bell states:

∣𝜙⟩ = 1√2 (∣0102⟩ + ∣1112⟩) , (48)

where the indexes 1, 2 correspond to two different two-level 4 quantum systems. In this case the existence

of entanglement is pretty obvious, as one can easily observe that it cannot be written as a tensor product of

two separable states, and it can be straightforwardly confirmed by the evaluation of the partial trace in one

of the systems, upon tracing out the other one. However, the detection of entanglement in general is far

from trivial and the conception of Hermitian operators able to detect entanglement in states, the so-called

entanglement witnesses, is an area of study on its own.

The most important fact about multi-qubit entangled systems, is that they behave as a pure state, i.e.

behaving similarly to a pure state of a single qubit system, exhibiting coherence between the elements of

4 Quantum systems possessing only two stationary states, here denoted as |0⟩ and |1⟩, the so-called qubits
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the orthogonal basis. However, the density matrices for any state involving only subset of qubits in the

entanglement, are mixed, i.e. no coherence is exhibited. This is verified, for instance, in the teleportation

protocol where two qubits are involved in the entanglement, yielding a pure state, however the density matrix

of each of the individual qubit presents itself as mixed state.

Another important fact about entangled and classical states, is that classical states are always convex

(separable) and entanglement states are not [356], i.e. a linear combination of a separable state is also a

separable state, for instance, given two classical states,

∣𝜙𝐴𝐵1 ⟩ = ∑𝑖 𝑝𝑖𝜙𝐴𝑖 ⊗ 𝜙𝐵𝑖 (49)

and

∣𝜎𝐴𝐵1 ⟩ = ∑𝑖 𝑞𝑖𝜎𝐴𝑖 ⊗ 𝜎𝐵𝑖 , (50)

any linear combination of such states yields also a separable state:

𝑝𝜎𝐴𝐵1 + (1 − 𝑝)𝜎𝐴𝐵2 = 𝑝∑𝑖 𝑝𝑖𝜙𝐴𝑖 ⊗ 𝜙𝐵𝑖 + (1 − 𝑝)∑𝑖 𝑞𝑖𝜎𝐴𝑖 ⊗ 𝜎𝐵𝑖 . (51)

A somehow fundamental method to detect entanglement, unfortunately very hard to apply, is exactly by

trying to find such a factorization for a given state, a problem clearly intractable from the computational

point of view, due to the large number of possible factorizations. The conception of efficient entanglement

witnesses is a very broad and active area of research [224].

Quantifying entanglement

Entanglement may manifest in different degrees and hence, a very relevant question becomes the definition

of efficient methods to quantify entanglement in quantum systems. This becomes specially relevant,

for instance, in quantum computation, as it is considered one of its fundamental resources. In a way,

entanglement is a measure of non-classicality of states, i.e. a measure of distance between non-separable

states and separable ones. A basic measure of entanglement is mutual information,

𝐼𝑁(𝜌𝐴 ∶ 𝜌𝐵; 𝜌𝐴𝐵) = 𝒮(𝜌𝐴) + 𝒮(𝜌𝐵) − 𝒮(𝜌𝐴𝐵) , (52)

where 𝜌𝐴 and 𝜌𝐵 are the density matrices of two separate systems, and 𝒮 is their Von Neumann entropy.

𝒮(𝜌𝐴) ∶= −𝑡𝑟(𝜌𝐴 ln 𝜌𝐴) = −𝑡𝑟(𝜌𝐵 ln 𝜌𝐵) . (53)
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Figure 2: Local operations and classical communication operator definition. Adapted from [291]

However, this measure does not behave in mixed-state scenarios, due to the existence of processes able

to transform them in pure states and vice-versa, i.e. processes of purification [356]. Therefore, a more

general definition of measure of entanglement is necessary, which is given, for instance, as

𝐸(𝜎) ∶= min𝑝∈𝒟𝒟(𝜎||𝜌) , (54)

where 𝐷 is a measure of distance between two matrices, 𝜎 is an entangled state subject to purification, 𝜌 is

a classical state and 𝒟 is the set of convex states. Any valid measure of entanglement, shall obey to the

following conditions:

• for separable states 𝐸(𝜎) = 0, i.e. the state is not entangled, and cannot be purified to an

entanglement state;

• any measure of entanglement remains unchanged under the action of locally unitary operations5;

• any measure 𝐸(𝜎) cannot be increased by local operations, classical communication and subselec-
tion (see figure 2) 𝐸(𝜎) ≥ ∑𝑖 𝑝𝑖𝐸(𝜎𝑖) . (55)

There are many measures which respects these conditions, for instance: relative entropy, entanglement

of formation, or entanglement of distillation, or Schmidt rank [143]. Nowadays the quantification of

entanglement is very relevant, specially in many-body systems, which, however, has revealed itself as

challenging [354, 317, 22].

5 Local unitary operations, are operations which can be written in the form 𝑈𝐴 ⊗ 𝑈𝐵 (note that the CNOT gate is not)
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2.3.4 Decoherence

The nature of the wave collapse in quantum mechanics, defined by the so-called measurement problem,

is still an unsolved problem, and subject to intense debate in many areas of knowledge. Decoherence

processes, introduced by Zeh in 1970 [384], while not solving the measurement problem, provide a very

good explanation for the apparent decay of pure (quantum) states to mixed (quantum) states observable at

macroscopic level [387].

As discussed in section 2.3.1, every mixed state can be purified into an entangled pure state, i.e. a

mixed state is always part of a pure state of larger dimension. The process of decoherence is somehow a

purification process, where due to the introduction of entanglement between a closed system ℋ𝑠 and its
environment ℋ𝑒,

ℋ𝑠 ⊗ℋ𝑒 ,
errors are introduced into the state ℋ𝑠, which then decays to a (classical) mixed state. Unfortunately,

this process happens in an unpredictable and uncontrollable way, and the incapacity of controlling such

system-environment interactions, has been the major problem in the conception of quantum computers

(more on this on section 2.4). Nonetheless, this type of systems, interacting with their environments (also

known as baths), constitutes an area of study on their own: open quantum systems. While the methods of

this area are limited, and only able to deal to small systems, very far from physically meaningful systems for

decoherence processes, they provide useful insights in many applications, for instance in biology (see more

on this on section 3.3).

Decoherent processes

The decoherence observed in the large quantum systems, for instance in quantum technology, is an

uncontrollable and unpredictable process, exactly because the number of quantum interactions is completely

intractable for classical computers, and arguably, will still be too hard even for quantum computers. However,

the effects such interactions have in closed systems, due to action of the bath, are well-known, which simplifies

the conception of strategies to compensate them, and can be divided into three categories [83]:

• amplitude damping;

• dephasing;

• depolarization.

Hereby, we further describe each of these processes.
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• Amplitude damping interactions encompass the processes that cause loss of the amplitude of

one or more system’s eigenstates. The spontaneous emission of a photon from the system to the

environment from a two-level atom is an example of this kind of processes, which can cause the

decay of an excited state to its ground state [277].

• Phase damping, or dephasing processes cause the decay of the off-diagonal terms from the

system’s density matrix, over time, down to zero, removing superpositions, i.e. coherences, of the

system state. An example of this process can be observed by the interaction of a two-level system

with its environment, letting the initial state of the latter system be given as ∣𝜓⟩ = 𝑎 |0⟩ + 𝑏 |1⟩.
Coupling this system with an environment, and modelling the environmental effect as a Gaussian

distribution of relative phases 𝜃, with zero mean value and variance 2𝜆, gives raise to the following
mixed state [179]:

𝜌 = ⎛⎜⎝ |𝑎|2 𝑎𝑏∗𝑒−𝜆𝑏𝑎∗𝑒−𝜆 |𝑏|2 ⎞⎟⎠ . (56)

It is easily observable, that the off-diagonal elements decay exponentially to 0 as 𝜆 increases, and

as the variance 𝜆 is proportional to the time variable, the coherence in the initial two-level system

decays over time [277], ultimately, removing any coherence from the system, turning the original

coherent probability distribution, into a non-coherent, classical, one. These processes conserve the

energy of the system, contrary to what happens with amplitude damping.

• The Depolarization changes the system state to a mixed state, with a probability 𝑃 of another

pure state and the probability (1 − 𝑃) of the initial state of the system, and it can be thought as a
combination of the other two types of decoherence [1].
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2.4 Quantum computing

Quantum computation is a scientific discipline born in the eightie’s, following the idea proposed Feynman in

1982 [151] to employ quantum mechanical systems in the simulation of quantum mechanical systems

themselves. This process, nowadays known as quantum simulation, as already foreseen by Feynman, yields

a huge (exponential) computational advantage in some quantum simulations.

This was the first idea leading to quantum computation, which was followed by the first formal com-

putational models introduced by Benioff [53, 54], based on Hamiltonian evolution and being continuous.

Later, in 1985, David Deutsch [130] provided a more general quantum universal computing model, the

so-called quantum Turing machines, as an extension of their classical counterparts. Borrowing notions from

the field of reversible computing, he introduced the notion of a quantum circuit. These are, still today, the

fundamental notions of the quantum computing models, from which originated a flurry of theoretical work,

encompassing possible implementations, programming languages and formal methods to deal with them.

From the implementation point of view the hardest challenge is decoherence [82], the conservation

of superposition and entanglement in quantum states, against the errors caused by the environmental

interaction. To solve this problem, many physical architectures have been developed, as well as alternative

computing models and error correction strategies. However, it cannot be said that this problem has been

overcome and that quantum computing is a reality.

This section is devoted to the discussion of the main concepts underlying quantum computation, as well

as the abstract models for quantum computers, from of a state-based perspective, as seen in by Deutsch

[130].

2.4.1 The state space: finite vs infinite dimension

The state space for a quantum computation is given by the set of unitary vectors (vectors of norm 1) in

a Hilbert space, which can be of finite or infinite dimension. Most of computer models, fall in the former

category, however the latter have also shown to be relevant, for instance, in quantum computing with

continuous variables [288, 368], or for dealing with systems whose number of particles in the system

changes throughout the computational process.

Nonetheless, the most common form of quantum computation resorts to a notion of qubit, 2-dimensional

Hilbert spaces, ℋ2, with {|0⟩ , |1⟩} as basis, i.e. the so-called computational basis, from which spaces of

arbitrary dimension can be built. The state space of a qubit reads as follows:

∣𝜓⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ such that |𝛼|2 + |𝛽|2 = 1; 𝜆 ∣𝜓⟩ = ∣𝜓⟩ , 𝜆 ∈ ℂ (57)
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where 𝜆 is a global phase and does not possess any observational effects. Such state space possesses a

geometric interpretation given by the Bloch sphere [277], mostly useful to understand single-qubit unitary

transformations, where a state is described in polar coordinates by two angles in a three-dimensional space,

as presented in figure 3.

Figure 3: Bloch sphere, adapted from [277].

The state spaces of qubits can be combined with the tensor product ⊗ to larger quantum systems. For a𝑛-qubit system, the set of possible states is
𝑛−1⨂𝑖=0 ℋ2𝑖 . (58)

For instance, the state space of a two-dimensional space, is

∣𝜓⟩ = 𝛼 |00⟩ + 𝛽 |01⟩ + 𝛾 |10⟩ + 𝜆 |11⟩ , (59)

for 𝛼, 𝛽, 𝛾, 𝜆 such that |𝛼|2 + |𝛽|2 + |𝛾|2 + |𝜆|2 = 1. Furthermore, in a purely abstract setting, one can
group a set of qubits into a register:

register with l qubits⏞⏞⏞⏞⏞𝑞1 ⊗⋯⊗ 𝑞𝑙 ⊗ register with m qubits⏞⏞⏞⏞⏞⏞⏞𝑞𝑙+1 ⊗⋯𝑞𝑚+𝑙⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Aggregation with l+m qubits

.
A set of registers defines the quantum computer’s memory, whose semantics is given by the set of all

possible quantum states. An important property of a quantum memory is that it cannot be replicated: as

stated in the no cloning theorem, proven by Wooters and Zurek in 1982 [377], it is not possible to make an

exact copy of a quantum state. This is a simple consequence of linearity, but significantly changes the way

quantum programs are built.

2.4.2 Transitions between states: unitarity and time

In quantum mechanics, transitions preserve unity of states and are unitary, hence, programs are given by

the class of such linear unitary operators (𝑈.𝑈† = 𝐼) in a Hilbert space. For a quantum system with 𝑛
qubits the signature of the transition operators reads as follows:
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𝑈⊗𝑛 ∶ ℋ2⊗𝑛 → ℋ2⊗𝑛

A particular relevant class of unitary operators used in quantum computation is that of Hamiltonian

evolution operators, i.e. operators that characterize the evolution of an Hamiltonian, which possess the form𝑒𝑖𝐻𝑡, where 𝐻 is an Hermitian operator. Many computer models correspond to actual analog quantum

simulators, i.e. quantum systems, which under appropriate preparation processes, are sufficiently similar to

systems to be simulated, and hence suitable to be used as quantum simulators.

Timed evolution

In quantum mechanics, non-relativistic quantum systems, are captured under the Hamiltonian formalism,

where the evolution of a quantum system, along a time 𝑡 is given by the exponentiation of its Hamiltonian
operator, given as:

|Ψ⟩ = 𝑒𝑖𝐻𝑡/~ |0⟩ (60)

The dimension of the Hamiltonian operator is exponential in terms of the size of the basis of the system it

operates, i.e. for a system with 𝑁 qubits, the dimension of the matrix is exponential

2𝑁 × 2𝑁 .
As a result, the dimension of the evolution operator grows very quickly, which makes the calculations

intractable even for systems with a small number of particles: procedures such as matrix multiplication,

or diagonalization, vital in the calculation of the evolution, or estimation of eigenvalues, while efficient in

terms of matrices dimension (complexity ∼ 𝐷3, where 𝐷 is system’s dimension), become 2−exponential

(𝐷2𝑁3
) for 𝑁 particle systems. However, as suggested by Feynman, quantum mechanics yields a huge

advantage, i.e. an exponential one, in the simulation of the evolution operators if the evolution operator can

be efficiently approximated (more on this on chapter 3).

The circuit model

Following to the discovery of quantum Turing machines, and based on the theory of Boolean and reversible

circuits, Deutsch proposed the notion of quantum circuits: acyclic graphs connecting qubits, used as inputs,

and sequences of unitary operators acting as transformations, mapping them into outputs. Quantum circuits

have a specific notation, where qubits are represented by wires, and transformations by boxes, as in the

following example:
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𝑞1
𝑈1

𝑈2𝑞2 ⋯ ⋯⋯⋯⋯ ⋯ ⋯ ⋯𝑞𝑛 𝑈3
,

where 𝑈1, 𝑈2 and 𝑈3 are unitary transformations and 𝑞1 up to 𝑞𝑛 are input qubits. Quantum circuits are

analogous to Boolean circuits: qubits are the quantum counterparts of classical bits, quantum gates are the

counterpart of Boolean gates, and quantum circuits are the counterpart of Boolean circuits. Similarly to

the classical case, Yao [379] has shown that families of quantum circuits can simulate quantum Turing

machines, implying that they provide a complete quantum computational model. Furthermore, it has also

been shown in the so-called Solovay-Kitaev theorem that any unitary operation can be approximated by a set

of universal quantum gates [226].

Nowadays, quantum circuits are the useful components of real world quantum programs. Hence, it

becomes specially important to identify minimal sets of gates from which all possible quantum circuits can

be generated, and to find automatic means to approximate generalized unitary operators by them. In this

area, one can observe that unitary operators, are fundamentally reversible operators, and, hence, some

techniques can be inherited from the fields of low power and adiabatic electronics [129], i.e. subfield of

electronics where electronic circuits have no dissipation of energy (and information) to the environment,

which can be achieved, for instance, by not using electronic resistances. Examples of Boolean universal

reversible gates are the Fredkin and Toffoli gates (presented in table 1), which were shown to be (the first)

universal gates also in quantum computation [131].

Later, it was shown that the set of all single-quantum quantum gates (some of them are presented in

table 2), along with a controlled NOT gate, were universal [46]. Another universal gate set is given in the

case of many individual two-qubit quantum gates, as shown by DiVicenzo in [139]. In fact, this type of

results has been shown to a wide class of sets of unitary quantum gates [248].

A well-known set of universal quantum gates is formed by the single-qubit gates 𝑋, 𝐻, and the two-qubit

gate 𝐶𝑁𝑂𝑇 (presented in table 3), and another set, named standard basis, is given by the set of gates{𝐻, 𝑇, 𝐶𝑁𝑂𝑇}. The latter is particularly important because it is very close to the so-called called Clifford
circuits [264], which replaces 𝑇 by the phase gate, 𝑃 = 𝑇2. The Clifford circuits, are efficiently simulatable
by classical computer, bearing no quantum advantage, according to Gottesman-Knill theorem [7], hence the

presence of the 𝑇 gate is a syntactic indicator of quantum advantage.

However, the base given by the Clifford plus T gate circuits is universal, and there is a wide range

of literature about the exact synthesis of unitaries [169], for instance, efficient classical algorithms to

approximate unitaries with entries in the ℤ[ 1√2 , 𝑖] ring [229]. Nonetheless, not all operators can be

approximated efficiently with these gates and a more accurate description the possible approximations is
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Gate Circuit form Matrix form

Toffoli Gate (CCNOT Gate) ••
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 00 1 0 0 0 0 0 00 0 1 0 0 0 0 00 0 0 1 0 0 0 00 0 0 0 1 0 0 00 0 0 0 0 1 0 00 0 0 0 0 0 0 10 0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fredkin gate •××

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 00 1 0 0 0 0 0 00 0 1 0 0 0 0 00 0 0 1 0 0 0 00 0 0 0 1 0 0 00 0 0 0 0 0 1 00 0 0 0 0 1 0 00 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Table 1: The original three-qubit, Fredkin and Toffoli, gates.

Gate Circuit form Matrix form𝑅(𝜙) 𝑅(𝜙) [1 00 𝑒−𝑖𝜙]
X 𝑋 [0 11 0]
Z 𝑍 [1 00 −1]
H 𝐻 1√2 [1 11 −1]
Y 𝑌 [0 −𝑖𝑖 0 ]
S 𝑆 [1 00 𝑒𝑖 𝜋2 ]
T 𝑇 [1 00 𝑒𝑖 𝜋4 ]

Table 2: Single qubit gates.

given in [23]. More general ways of approximating unitaries, are based on the theory of matrix factorization.

Relevant works on the subject are given, for instance, in [119], or [353, 245].
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Gate Circuit form Matrix form

CNOT • [𝐼 00 𝑋] ≡ ⎡⎢⎢⎢⎣
1 0 0 00 1 0 00 0 0 10 0 1 0

⎤⎥⎥⎥⎦
CU (Controlled unitary) •𝑈 [𝐼 00 𝑈]

SWAP ××
⎡⎢⎢⎢⎣
1 0 0 00 0 1 00 1 0 00 0 0 1

⎤⎥⎥⎥⎦
Table 3: Two-qubit quantum gates.

2.4.3 Acceptance states

In previous sections it were discussed two of the components for a state-based notion of computation, states

and transitions: states are given by Hilbert spaces of qubits involved in the computation and valid transitions

between states correspond to unitary transformations. The third component is the one of acceptance

state, which in the quantum context, corresponds states where the correct output can be obtained upon

measurement, with a probability that allows statistical distinguishability from the wrong one. Measurements

are mathematically captured by projection operators 𝑃𝑟𝑜𝑗𝜑, 𝑜𝑟 ∣𝜑⟩ ⟨𝜑∣, as discussed in section 2.3.2. In
the language of quantum circuits, a measurement is depicted as follows:

.
A very simple example of a circuit including a measurement is given by

|0⟩ 𝐻 ,
which aims at creating a quantum coin, i.e. a qubit in the superposition 1√2 (|0⟩ + |1⟩), which upon

measurement will randomly yield either |0⟩ or |1⟩, with 0.5 of probability (because ( 1√2)2 = 0.5).
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2.4.4 Semantics of quantum programming languages

In the previous sections, quantum computation was introduced from the perspective of a (state-based)

operational semantic model. In this section, we shift attention to programming, focusing on the essentials

of quantum programming languages and denotational semantics, in order to obtain a clearer connection

between the programming instructions, and the corresponding physical processes.

Broadly speaking, a quantum programming language is composed of two main parts: the control

component and the actions. Actions are, in general, measurements or unitary operations. The control

statements, which aim coordinating the execution of actions, are the usual of programming languages:

conditions, loops and recursion. The control component can be of two types, classical or quantum. The

former relies using only on classical variables, i.e. variables in quantum stationary states, in control

instructions. The latter allows variables in quantum (superposition) states, leading to the ”strange” idea of

superposition of fluxes (programs), which under certain conditions becomes unphysical, i.e. transitions may

become non-completely positive, when measurements are involved. Every quantum programming language

fall into one of these schemes.

In this section, we briefly discuss these families of programming languages, their features, associated

physical effects and semantics.

Quantum data with classical control

The main paradigm in real-world quantum computation is the so-called quantum data with classical control,

a term firstly coined by Knill in 1996 [230]. This covers all programming languages involving unitary

operations, to be executed in a quantum device, and classical control instructions, to be executed by a

classical agent that controls the quantum device, as depicted in figure 4.

Figure 4: Quantum data with classical control.

In this setting, the execution processes in the quantum device are only a small part of the whole

computational process. The latter, in the classical setting, can involve:

• creation and destruction of classical and quantum bits;

• generation of circuits (see section 2.4.2) to be executed in the quantum device;

• controlled execution of quantum circuits using classical variables;
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• application of measurements in order to obtain results from the quantum computer.

There is extensive research seeking for proper denotational semantics for programming languages in this

paradigm, as detailed in table 4.

Quantum Data with Classical control Amount of bits/qubits Relevant works
Finite Data types Fixed [324, 260]
Infinite Data types Variable [104]

Higher-order functions Variable [323, 325, 282, 193, 107]

Table 4: Literature on the semantics of programming languages with quantum control

The term ”finite data types” concerns all data structures that originate from a fixed number of bits/qubits

(data + control = data structure), for which a semantics was given by Selinger et al. [324], as partial

superoperators. On the other hand, ”infinite data types” concerns all data structures that originate from a

variable (potentially infinite) bits/qubits, whose semantics for programs is given by infinite Hilbert spaces or

the dual category of W*-algebras [104]. The semantics of quantum programming languages with higher-order

functions has been an open problem for a long time, however a definite answer was provided in the works

of Pagani [282], or Clairambault [107]. None of those mathematical theories leads to unphysicalities,

principles of quantum mechanics such as unitarity and complete positivity are maintained, and they are

embeddable in Hilbert spaces.

Quantum data with quantum control (without measurements)

An alternative notion of control is to use quantum variables instead of classical ones to control the flow of

instructions, coined as ”quantum data with quantum control”. A toy language exhibiting this type of control

was introduced by Ying in 2014 [382], and is characterized by the existence of an if statement which uses a

quantum bit as the control variable, where superposition states are possible:

if (𝑞1) then action1 else action2 ,
where 𝑞1 is a quantum bit and action1 and action2 are the actions to be taken if 𝑞1 is equal to 1 and 0,
respectively. This type of programs has been studied in a variety of works [314, 21].

Another type of programs that fit this paradigm, are expressed in quantum programming languages

that make use of indefinite causal structures. Quantum mechanics allows many kinds of indefinite causal

structures (superposition of causal orders), with the restriction that the resulting transitions still preserve

unitarity and complete positivity [27]. This idea led to a new computer model, the higher-order quantum

computer [189], where an advantage to the circuit model has been identified. Such advantage comes from

the fact that such indefiniteness of causal structures cannot be captured directly by the circuit formalism,

only approximated by it. The superposition of causal orders can be achieved by means of a device, known as
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the quantum switch, as discussed by Chiribella et al. [103]. This mechanism has already been experimented

without resorting to any exotic physics in, for instance, [299], giving strength to the possibility of using

indefinite quantum structures in actual quantum computing, despite the fact that no computer model

implementing this kind of structure is known.

Quantum data with quantum control (with measurements)

The semantics of programming languages with quantum data with quantum control, but where the conditional

actions involve measurements, apparently, cannot be given even by superoperators [37], suggesting that

this programming language is not physically acceptable, i.e. complete positivity is violated.

Figure 5: Quantum data with quantum control with measurements

Nonetheless, an interesting question remains on what the appropriate semantics will be for such a language,

and if it fits in some variation of quantum mechanics and what would its computational power.

2.4.5 Computing models

Arguably, a quantum computer model can be defined by the type of quantum data (qubits, qudits or

continuous information), the type of instructions (timed continuous, circuits, classical instructions), and

the control strategy (how to prepare, execute and measure quantum procedures) and obviously the type

of physical phenomena behind them. These can be diversified as quantum mechanics has shown to be,

somehow, very liberal in terms of the physically sound computational techniques it allows.

Nonetheless, all the valid models can be described using the programming paradigms discussed in

previous section, and the resources leading to quantum advantage are the same, i.e. interference and

entanglement, regardless the technique used. The main aim of the different computer models is exactly to

preserve such resources, against the uncontrollable entanglement actions of the environment, the so-called

decoherence. In this section, we briefly explore the most relevant ones.

The first class of quantum computing models are are the so-called quantum analogues. This class of

models presupposes the existence of two physical systems, one of which takes the role of simulator and the

other one of the simulated. The idea is that with appropriate preparation, the evolution and measurement of
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the simulator systems, allows for an accurate estimation of the simulated one. Hence the simulated system

must be similar enough to the simulator, i.e. the mapping,

𝐻𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 → 𝐻𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑜𝑟 (61)

can be efficiently obtained, and additionally, it must possible to prepare |0⟩𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 in the simulator, i.e. the

state |0⟩𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑜𝑟, and simulation of 𝑒𝐻𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 must be possible using 𝑒𝐻𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑜𝑟 and the measurement
results are compatible. There are many examples of this kind of simulations, for instance using ultra-cold

atoms, to simulate phase transitions [177], or the simulation of many-body physics and certain properties of

cosmological bodies using ultra-cold gases [70, 347]. Good surveys of this kind of simulators, are available

in [87, 167]. However, in most situations, analogue quantum simulators, are not universal, i.e. not all

computations can be executed by them.

Other universal quantum computer models in quantum computation exist, and some of them depicted

in table 5. The most obvious one is the one given by the circuit-based quantum computing discussed in

section 2.4.2.

Model Evolution Dimensions
Circuit-based quantum computing Discrete Finite

Discrete quantum walks Discrete Finite
Measurement based computing Discrete Finite
Topological quantum computing Discrete Finite
Hamiltonian quantum computing Continuous Finite

Continuous quantum walks Continuous Finite
Adiabatic quantum computing Continuous Finite

Table 5: Universal quantum computing models

One of them is measurement-based quantum computation [84, 302], which focus on the construction of

complex entangled states, and evolution is given by measurements. In this model, the idea is to prepare

entangled states in such a way that, along with measurements in a suitable basis, a similar effect to the usual

quantum gates is obtained. Another model proven to be universal is adiabatic computing [148, 17, 20], which

is particularly suited to certain kinds of computational tasks (more on this will be seen on chapter 4). Also,

topological quantum computing worths to mention, due to the resistance of topological states to decoherence

[161, 275]. However, it proposes a different model of represent and operate over quantum information.

Furthermore, quantum walks are another model that provides with universal quantum computing [253], in

some cases more easily implemented, but it is only a particular case of Hamiltonian computing or of the

circuit model. Regarding infinite dimensions, LLoyd [251] raised the idea of a universal computer model,

and the physical implementation is based on optics [266]. In last few years, a line of work that has been

gaining relevance is the one of classical-quantum computational methods, which make heavy use of classical

computation, narrowing the usage of quantum resources to the minimum possible. These methods were
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created mostly to be executed in the current short-term devices and an example of them is the family of

quantum variational methods. While such methods are not computationally universal, they can be used in

a variety of problems. In chapter 4, we further explore discuss these methods and their application to an

actual example.

2.5 Quantum Complexi ty

Computational complexity is the subfield of theoretical computer science dedicated to the study of the

inherent complexity of computational problems, by the characterization of the resources necessary to solve

them, such as time or memory, aiming at their classification and the understanding of their tractability.

Good surveys on the subject are available in [28, 284].

Along with computability, both of these subjects somehow capture a mathematical notion of epistemology

[5], and they actually help in the understanding the hardness of problems surrounding our daily lives, from

economics and finance to the feasibility of preparation of states for certain physical experiments. And even

the problem of determining whether a physical theory can be finitely calculated, or it can expressed by a

finite set of axioms.

This bidirectional relationship between physics and these two fields of theoretical computer science,

became more evident with the advent of quantum computation. Actually, not only it helps understanding

the limits of computation in a certain physical setting, but also the shape of physical theories, given certain

computational requirements.

2.5.1 Quantum complexity classes

In quantum computation there are several resources generally used to study quantum algorithms, which can

be divided in two parts: in one hand the quantum ones, qubits, gates and quantum oracle calls, and in the

other the traditional classical resources used to study the classical parts of quantum algorithms. Associated

to them there are specific notions of complexity as presented in table 6.

According to these different notions of complexity, algorithms can be classified in several classes. Here,

we briefly examine which classes are specific to quantum computation, and how they fit in the traditional

complexity hierarchy. The major relevant ones are presented in figure 6.

Polynomial Time

The polynomial time (P) class, encloses all the problems that are efficiently solvable by a classical computer.

Examples of these are the graph reachability, or the shortest path between nodes in a graph [333].
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Resource Definition
Quantum
Qubit complex-
ity

Number of qubits necessary to perform a quantum com-
putation

Gate complexity Asymptote on the number of gates necessary to approxi-
mate a quantum operator

Oracle complex-
ity

Number of repetitions of a block of quantum circuits

Query complex-
ity

Number of times the function subject of computation
has to be evaluated

Classical
Time complexity Asymptote on the number of steps necessary to conclude

a quantum computation, including circuit generation,
oracle calls, measurement and eventual post-processing

Space complex-
ity

Classical memory used to do the whole computation

Table 6: Most common resources used in quantum computation

Figure 6: Complexity classes for quantum computation

Bounded Quantum Probability

BQP class contains all problems that can be solved in polynomial time, by a quantum computer, with

a bounded error probability. It is an important class in complexity theory, as it is believed to contain all

problems efficiently solvable by a quantum computer, which is known to include factoring and discrete

logarithm algorithms, as well as the simulation of many quantum systems. It can be also understood as the

Polynomial (P) class of quantum computation.
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Non-deterministic polynomial class

The non-deterministic polynomial class, encompasses the problems that can be solved efficiently by the

hypothetical non-deterministic machine (a machine that can explore all possible solutions at the same time),

or as an alternative definition, the class of problems for which the solutions can be verified in polynomial

time. It is one of the most studied complexity classes, encompassing a wide class of well-known problems,

such as the 3-SAT [114], the knapsack problem, or Hamiltonian path problems [333]. A subset of the

problems in NP-class is known to be complete, i.e. all problems in the class can be reduced to them [219].

Factoring and the graph isomorphism problems are believed to be within the NP class.

The relationship between the NP and P classes is not well-understood (the proof that there are no

polynomial solutions to all NP problems, the so-called 𝑃 ≠ 𝑁𝑃 problem [156], is a very famous open

problem), so as the relationship between the classes BQP and P. Regarding this, Bennett et al. [56] provided

evidence that the NP class is not contained in BQP, i.e. quantum computers, most likely, will not be able

to solve NP-complete problems in polynomial time [3]. However, several problems of interest in quantum

mechanics, as well as in industry, are NP-complete, such as finding the ground-state of the Ising Hamiltonian,

i.e. the state corresponding to the lowest energy of a system governed by Ising Hamiltonians [106]. This

connection will be further explored in chapter 4.

Quantum Merlin-Arthur

The Quantum Merlin-Arthur (QMA) complexity class contains the class of problems decidable by Merlin-Arthur

(prover-verifier) protocols, where the Arthur (verifier) has access to a quantum computer, i.e. it is the quantum

version of the MA interactive proof system a computational model based on the interactions between a

prover, who possesses infinite computational power, but provides the wrong proof of a solution of a problem1/3 of the times, and a verifier, which only possesses a computer with PP power. A computation in this

model corresponds to an interaction between the prover and the verifier, with a limited number of messages,

in which the verifier accepts the proof [170].

The major advantage of this kind of computer models is that they are useful to characterize complexity

classes, for instance, the NP class can be seen also as an interactive proof system, where the verifier has

access to a computer with polynomial power, and the prover has infinite computational power, which is

equivalent to non-determinism. The QMA class is a very important one in quantum computation, because it

characterizes the class of hard problems to quantum computers [78], similarly to what problems of the

class NP are to classical computers. Furthermore, as it could be expected, the class QMA contains NP, and

QMA-complete problems are, naturally, NP-HARD [50, 69].

However, many problems of interest both in quantum mechanics and industry are instances of problems

in this class and in section 4, some examples will be reviewed.
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Probabilistic Polynomial time, Quantum Interactive Polynomial Time and PSPACE

The probabilistic polynomial time complexity class encompasses all problems that are solvable probabilisti-

cally, i.e. that the correct answer can be obtained with more than 1/2 of probability, and it is known to

contain the class QMA.

The Quantum Interactive Polynomial (QIP) is the complexity class that contains all problems that can be

solved by a proof-verifier protocol, where the prover has infinite computational power, the verifier has access

to a quantum computer, and both can exchange an unbounded number of messages. The PSPACE class is

defined by all problems that can be solved with polynomial resources except for time and has shown to be

equivalent to QIP [366, 207].

2.5.2 Quantum advantage

The algorithmic resources presented in table 6, do not provide any insight on which the structures of quantum

theory contribute to the quantum advantage, i.e. the structures that make that some problems that fall in

the BQP class being intractable in classical computing, have efficient algorithms in quantum computers.

The analysis of such structures brings insight on how to build new quantum algorithms.

One may think that the main advantage of quantum computers resides in the so-called ”quantum

parallelism”, which is partially true. The actual resources available in quantum theory that provide quantum

advantage are precisely the features of quantum mechanics that are not available in classical mechanics:

entanglement and interference. The former is, as it is well-known, the most distinguishable feature of

quantum mechanics and essential to guarantee the existence of states with n-ary qubits, as otherwise only

single qubit states would be achievable. It is also the hardest resource to obtain in practice, and the current

attempts with short-term devices are basically about obtaining higher degrees of entanglement. However,

while entanglement provides the notion of parallelism, the differentiating factor for quantum algorithms is

interference, as argued, for instance, in the works of Fortnow and Lloyd [155, 250]. Further evidence is also

provided in the studies made in [81], or [336], where interference of quantum algorithms is measured and

compared, and it is concluded that interference is more intense in Shor algorithm [329], than in the Grover

one [178], the former associated with an exponential advantage and the latter with a quadratic advantage.

Hence, interference and entanglement are the essential resources of the quantum advantage, where they

play a complementary role, entanglement being the basic component, and interference the differentiating

component.

An interesting discussion in quantum computation, regards the computational power of variations of

quantum mechanics, which is not a purely philosophical discussion, as the hypothesis that a theory of

quantum gravity fits in some sort of extension of quantum mechanics is real. Two main lines of work shall

be considered in this field. One considers variations on the interference patterns of quantum mechanics,

36



2.6. Summary 37

which yields a hierarchy of different quantum theories [335, 120, 240]. Another one deals with non-linear

quantum theories. The latter were considered to solve the issues of quantum mechanics [375], but that bring

problems on their own [65, 370, 369], and have a strong relationship with the existence of closed timelike

curves, which besides bringing a great computational advantage, pose physical problems under certain

conditions [194]. In 1992 David Deutsch proposed a model for quantum mechanics, which, simultaneously,

allows the action of curved spacetimes possessing closed time-like curves (D-CTC’s), and is free of paradoxes

and superluminal signaling [132]. This model is based on the additional requirement of self-consistency

of the closed time-like curves, namely, only the ones having fixed points are considered. In this model it

is possible to do perfect cloning of quantum states and distinguish efficiently any non-orthogonal states

[85]. Exactly because of this, there is a significant quantum advantage, implying efficient solutions for all

problems in PSPACE [9, 35]. This model is, however, equivalent to a classical theory, and quantum effects

are irrelevant for the computation [8], being no more powerful than a classical computer with access to

the same timelike curves [24]. Following these lines, based on a model of closed timelike curves using

teleportation and post-selection (P-CTC’s) [252], Aaronson has shown that quantum computers could solve

all problems of the class PP, and hence of the class NP [4], less powerful than D-CTC’s.

The calculation of properties such as entanglement and interference are not compositional and may be

as complex as conducting the whole simulation of the quantum process, and hence, very complex from the

computational perspective. The development of easier measurements to detect entanglement and quantum

advantage is now a very wide and fruitful line of research, which ranges from complex metrics to trivial

properties that can be verified at the syntax level, in the definition of quantum circuits. Some measures that

can be applied, are for instance, Schmidt rank [359], factorization into a product state of small subsystem

[214], factorization into Clifford gates [176], existence of matchgates [348], small tree width [213, 262]

or non-negative Wigner representation [357, 261]. Furthermore, it is also worth looking into the field of

descriptive complexity, which aims at defining the characteristic languages of complexity classes, , ultimately

guaranteeing that a well-formed program in the syntax, is automatically within a certain complexity class.

This was, for instance achieved in the work of Dal Lago et al. [121], where a characteristic lambda-calculus

of the BQP class (see section 2.5.1) was obtained.

2.6 Summary

In this chapter it were reviewed the Hilbert space and density matrices formalism for expressing quantum

theory as well as the latter’s distinctive properties, such as interference and entanglement, and how they

are crucial to quantum information and computation. It also introduced the fundamentals of quantum

computation, such as the circuit model, and other well-known quantum computational models, the semantics

of quantum programming languages, and complexity.

Some conclusions can be made in this section:
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• Entanglement and interference are the most distinctive features of quantum mechanics.

• They are also the essential components of quantum advantage, where they do play a complementary

role. There is also a wide range of methods to quantify them.

• The computational processes allowed in quantum mechanics can be soundly captured, composition-

ally, in a wide range of quantum programming languages.

• A multitude of methods has been conceived to preserve quantum advantage against environmental

effects, from quantum simulators, measurement-based computers, or recently, variational methods.

• Variations of quantum mechanics may yield computational advantage but may also raise other issues

from the physics point of view.
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ON E F F I C I E N T QU AN TUM A L GO R I T HMS

The number of existent quantum algorithms is now significantly bigger than in the early days of quantum

computation, following the successes of Grover, Shor, or Simon algorithms. The range of applications has

also extended, from machine learning, or finance, to the simulation of a wide class of physical systems.

However, the progress on the development of efficient quantum algorithms, bearing the so-called expo-

nential advantage to classical ones, has been slower than expected. However, the main structures and

building blocks of the algorithms in this situation are short in number and very well studied, which suggest

that a way of trying to find new quantum algorithms is to characterize these structures and extend them to

new applications.

In this chapter, following this idea, we characterize the main quantum efficient algorithms, that is the

ones within BQP class, and the structures behind them. We also explore a quantum simulation of the energy

transport in a small photosynthetic system, i.e. an example from the biology domain, as an instance of a

system that can be efficiently handled by quantum computers: it is driven by a local-Hamiltonian. The work

was published in co-authorship with Jose Guimarães et al. [179].

3.1 The Bounded Quantum Probabi l i ty class

The Bounded quantum probability (BQP) class is believed to enclose all the problems that possess an

efficient quantum algorithm, i.e. algorithms where the number of classical steps, gates and qubits required

to do the computation is given by a polynomial function. It is believed to contain the classical efficient P

(polynomial) class, and there is evidence of the existence of problems belonging to the class BQP, but not to

the class P1, e.g. the Shor [329] or Simon algorithms [331] are believed to be in the class NP.

Nowadays there is a wide range of efficient quantum algorithms, for which a comprehensive survey

seems completely unfeasible, but good starting points are given for instance in [272, 108, 100, 212]. From

here, one can identify two types of algorithms possessing quantum advantage, which we denote as the

dynamic ones and the static ones. The former ones encompass the simulation of processes, and the latter

1 Only evidence because there is no proof that the class P is not the same as the class NP
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the calculation of algebraic properties of certain mathematical objects. From both, it is possible to identify

algorithmic building blocks, which, presumably, yield the quantum advantage, by maximizing the effects of

interference allowed by sets of entangled qubits.

In one hand, the simulation of quantum processes, i.e. the dynamic algorithms, consists in the efficient

conception of computational processes that are able to mimic, i.e. by being statistically indistinguishable, a

quantum process to be simulated up to an error 𝜖. This type of simulation is also known as weak simulation,
in opposition to strong simulation, where it is expected that both processes produce exactly the same results.

On the other hand, the static problems concern the extraction of generative characteristics of functions,

e.g. the period of a function as it happens in the Shor algorithm [329]. These algorithms seem to resort to

the Fourier transform and Phase estimation algorithms, which possess an exponential advantage (more on

this on section 3.4). The relationship between both types of algorithms is, however yet unclear.

Finally, there is a class of algorithms, which somehow makes use of both types of strategies, and includes

algorithms such as the eigenvalue estimation [10] and the HHL algorithm for the resolution of linear equations

[191].

3.2 Search, sampling and simulat ion algori thms

The Hamiltonian simulation and quantum walks provide universal models for quantum computation, which

imply that not only all quantum algorithms can be put in such forms, but also that they can be reduced to

each other. Both of these conceptual models provide a complementary perspective on quantum algorithms,

allowing the unified study of, among others, search, sampling and simulation problems and provide insight

about the specific structural properties that help in the characterization of their efficiency.

First of all, search and sampling problems are considered to be equivalent [6], i.e. for each problem

of sampling there is an equivalent problem of searching and vice-versa, and both can be captured by

discrete quantum walks. A search problem can be interpreted as sampling problem, where the correct

solution is expected with high probability, as it happens, for instance, in the Grover algorithm [178], i.e. a

generic search algorithm appliable to any search space with known dimension. It yields constant quadratic

advantage, i.e. it takes √𝑁 steps, where 𝑁 is the size of the search space, and it can be efficiently reduced

to a quantum walk, as extensively studied in many works [327, 292].

There are two useful specific measurements of complexity in quantum walks for the of study sampling

and search problems: the hitting time, which concerns the amount of steps a specific marked state is

achieved, useful to characterize search problems and the mixing time, i.e. the time a quantum walk takes

to get to its stationary distribution, characteristic of sampling problems [259].

Moreover, discrete quantum walks can be always be reduced to Hamiltonian simulations, i.e. continuous

quantum walks, where the Hamiltonian corresponds to the diffusion matrix of the discrete quantum walk, as

discussed, for instance, in [96], drawing a common foundation between search, sampling and Hamiltonian
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simulation algorithms. In the setting of Hamiltonian simulation, one can obtain a clearer idea on the

simulation and sampling problems that possess efficient algorithms, due to the extensive work on this regard.

As discussed in sections 3.2.1 and 3.2.2 there are efficient algorithms for a wide range of Hamiltonians, which

encompasses local, sparse and d-sparse ones. Therefore, it can be assumed that the sampling/simulation

problems that can be phrased in a local, sparse, or d-sparse Hamiltonian, or graph, most likely possess an

efficient quantum algorithm.

For searching problems the criteria are less clear, although it can be stated that simulation problems are,

most likely, simpler than a search problems, as one can naturally expect that the mixing time is smaller

than hitting time, as in the latter one is interested in obtaining a specific element, of set elements, rather

than a global distribution. In [97] a translation between a search problem and finding a ground-state of

k-local Hamiltonian is proposed. Finding the ground state of Hamiltonian is known to be very complex, if it

involves components with dimension greater or equal to 2, as it will be discussed in chapter 4. Therefore,

search problems that cannot be mapped into Hamiltonian simulation ones, which do not involve components

with dimension greater or equal to 2, do not possess an efficient algorithm. On the other hand, search

problems who can, possess an efficient quantum algorithm, however, it is unclear if this leads to any

quantum advantage better than a quadratic one.

3.2.1 Local Hamiltonians

The simplest Hamiltonians known to be simulated efficiently with an exponential improvement are local

Hamiltonians, as first conjectured by Feynman and then by LLoyd [249]. Local Hamiltonians can be

decomposed into their local interactions, i.e. physical interactions happening between all subsets of the

particles up to a certain dimension 𝑘, which encompass a wide class of physical systems. Example of

these is the Fermionic Hamiltonians for quantum chemistry, which only involve 2-dimensional Coulomb

interactions and 1-dimensional Kinectic components (in chapter 4 we deal with an Hamiltonian of this type).

Mathematically, this class correspond to the Hamiltonians that can be expressed as a sum of their local

components:

𝐻 = ∑𝑖 𝐻𝑖 (62)

The simulation of such Hamiltonian requires the existence of an efficient classical method to construct

a circuit that approximates the evolution operator 𝑒𝑖𝐻𝑡, up to an error 𝜖. If the Hamiltonians in the sum
commute pairwise [𝐻𝑖, 𝐻𝑗] = 0 (see section 2.2.4), then the order of application of the Hamiltonians is

irrelevant and the evolution of the Hamiltonian operator is simply given by

𝐻 = ∏𝑖 𝑒𝐻𝑖 . (63)
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The simplest case of these type of Hamiltonians happens when the Hamiltonians are diagonal, which can

be trivially approximated by quantum circuits. The problematic cases start when the Hamiltonians do

not commute, for which a multitude of approximation strategies are available. The simplest one, without

diagonalizing the whole operator, is to use the diagonalization matrices in between every Hamiltonian

component that does not commute,

𝑒𝐻1𝐷𝑒𝐻2𝐷−1 (64)

, where 𝐷 is the diagonalization matrix that makes 𝑒𝐻2 diagonal. This approach is quite limited, as the

obtention of the diagonalization matrix is computationally complex, however, it is possible to apply it in

several cases, for instance, in the simulation of the Schrödinger equation, where the basis transformation

matrix (Fourier transform) is efficient and expressed as,

𝑋𝐹𝑃𝐹−1 (65)

, where 𝑋 and 𝑃 constitute the position and momentum operators. Furthermore, beyond these con-

ceptually straightforward techniques, there exist a wide range of approximation techniques. The corner-

stone of many of such approximation methods is the Trotter formula, based in the Lie product formula

lim𝑛→∞ (𝑒𝐴𝑡/𝑛𝑒𝐵𝑡/𝑛)𝑛 = 𝑒𝑖(𝐴+𝐵)𝑡, which reads as
𝑒𝑖𝐻𝑡 ∼ (𝑒𝑖𝐻1𝑡/𝑛 …𝑒𝑖𝐻𝑛𝑡/𝑛)𝑛 +∑𝑖>𝑗[𝐻𝑖, 𝐻𝑗]𝑡2/2𝑛 + ∞∑𝑘=3 𝐸(𝑘) . (66)

This expression states that an Hamiltonian operator, where local components do not commute can be

approximated by the repetition (through 𝑛 steps) sequence of local operators 𝑒𝑖𝐻1𝑡/𝑛 …𝑒𝑖𝐻𝑛𝑡/𝑛 (as if they

would commute), where the time is discretized in steps of size 𝑡/𝑛,, and with the error bounded by the𝐸(𝑘) formula, always being less than ||𝑛(𝑒𝑖𝐻𝑡 − 1 − 𝑖𝐻𝑡/𝑛)|| and the error can be arbitrarily small with
the increase of n.

The computational complexity can be estimated by the number of operations needed for the repetition

of the operators involved. Each 𝐻𝑗 acts on a local Hilbert space, the number of operations needed to

simulate 𝑒𝑖𝐻𝑗𝑡/𝑛 ∼ 𝑚𝑗2. Hence the global simulation time obeys the inequality 𝑛(∑𝑙𝑖 𝑚2𝑖 ) ≤ 𝑛𝑙𝑚2, where𝑚 = 𝑚𝑎𝑥{𝑚𝑖}. The error in each of the operations must be minor than 𝜖/𝑛𝑙𝑚2. Now everything depends

on 𝑙, some number of components of the variable.
3.2.2 Sparse and d-Sparse Hamiltonians

Sparse Hamiltonians are a more general setting than local Hamiltonians, encompassing a wider class of

physical systems, as well as other algorithmic problems with practical interest, such as quantum walks
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with exponential gain [101], or NAND trees approximation [102]. Sparse Hamiltonians are defined as

Hamiltonians with a limited number of non-zero entries per row: 𝑑 = 𝑝𝑜𝑙𝑦(𝑙𝑜𝑔𝑁), where 𝑁 is the

dimension of the Hamiltonian. For a 𝑘−local Hamiltonian with 𝑚 terms, the Hamiltonian is sparse if𝑑 = 2𝑘𝑚.

The first algorithm to deal efficiently with this kind of Hamiltonians was introduced by Aharonov et al. [16],

where both the number of gates and of oracle calls are polynomial. Since then, there has been a significant

amount of work on the subject, striving to reach optimality of such parameters, where the works of [255]

and [61], (almost optimal) and the recent ones of [254, 255] (optimal), shall be highlighted. The methods

employed in these approximations are the recent technique of qubitization [256], and the truncated Taylor

series method [60].

There is also some work on the simulation of non-sparse Hamiltonians, only applied in very limited cases

[98], and for which no general efficient quantum algorithm is known [364]. Furthermore, to the best of our

knowledge it is not clear how interference is used in these algorithms.

3.3 Case study: Simulat ion of non-radiat ive energy transfer in photosynthet ic systems

using a quantum computer

We explore now the experimental simulation of a local Hamiltonian, which can be also interpreted as

discrete quantum walk, that can be built and runned in a quantum computer: the one of transfer energy, by

non-radiative means, existent in first stage of photosynthesis. This process has been shown to be influenced

both by quantum coherent and decoherent effects, aspects also explored in this simulation. This exploration

also helps understanding, besides the quantum aspects of photosynthesis, how the theoretical aspects of

quantum mechanics, particularly the environmental ones introduced in section 2.3.4, work.

Photosynthesis is a vital and pervasive complex physical process in nature, where the radiation of the

Sun is captured by certain living beings, such as plants and bacteria, and transformed into the necessary

carbohydrates needed for their survival [267, 238]. From the physics and chemistry perspective, it is

a complex process occurring through several stages with several kinds of physical phenomena involved,

namely, the light absorption, energy transport, charge separation, photophosphorylation and carbon dioxide

fixation [154]. The understanding of such phenomena has greatly progressed in the past 40 years with

the physical characterization of the structure of many photosynthetic complexes [128, 321, 94]. The

comprehension of such processes would allow for many potential huge-impact industrial breakthroughs in

the field of energy, from the great efficiency improvement in energy capture of solar panels [244] to the

construction of artificial light-harvesting devices and solar fuels [378, 182, 183, 312].

The photosynthesis begins by the absorption of a photon. It occurs via excitation of a pigment molecule,

which acts as a light-harvesting antenna connected to the rest of the photosynthetic apparatus by protein

molecules. Photosynthetic pigment-protein complexes transfer the absorbed sunlight energy, in the form
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of molecular electronic excitation, to the reaction center, where charge separation initiates a series of

biochemical processes [267]. This work is focused on the first stage of photosynthesis, more precisely, on

the transport of the absorbed radiation energy from the antenna to the reaction centre, which proceeds in

the form of the so-called Excitonic Energy Transfer (EET), as schematically shown in Fig.7.

Figure 7: Schematics of the energy transfer process from light-harvesting antenna (the donor)
through a chain of acceptor molecules to the reaction center. The excited states of the
participating molecules, denoted 𝜖𝑚, are broadened and it allows for resonance energy
transfer via irreversible Förster-type resonant process of exciton transfer from donor
to acceptor even if 𝜖𝑚 ≠ 𝜖𝑚+1, which is denoted by the thick arrow labelled FRET.
However, if the coupling between the donor and the acceptor molecules is strong enough,
the process becomes reversible and the exciton can go to and through many times before
it is transferred; this situation is labeled by "reversible EET" and it does not require
matching of the energy levels 𝜖𝑚 and 𝜖𝑚+1. Picture taken from [179].

This transport is known to be very efficient in photosynthesis, as is the whole process, with the overall

quantum efficiency of initiation of charge separation per absorbed photon up to 95% [267]. The absorbed

photon creates an exciton on the antenna molecule, which can eventually transfer it to other molecules. In

this context, it is called donor, while the others are called acceptors and the EET process can be described

by the following reaction equation: 𝐷⋆ +𝐴 → 𝐷+ 𝐴⋆ . (67)

One may be lead to believe that, given the ”size” of the physical components involved, the EET is a fully

classical (i.e. irreversible and unidirectional) process, however experimental results have shown the opposite,

with the verification of coherence between molecules over some period of time, evidenced by long-lived

oscillatory features in the dynamical response of several photosynthetic systems in many experimental

works [144, 241, 199]. However, it is predicted that these processes are still strongly influenced by the

environment [303], as the donor-acceptor pairs are not isolated from the rest of the world, and, hence, the
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appropriate theoretical setting to deal with this kind of systems is the one of quantum open systems. In this

setting, quantum systems are treated as part of a larger system ones, composed by the EET system under

study and the environment. The latter is modeled by a thermal bath, which interacts with the EET quantum

system, introducing relaxation and dephasing into and, therefore, influencing the efficiency of the energy

transport.

The theoretical treatment of such systems is very complex from the computational point view, to which a

myriad of methods is available, grouped by the type of regimes they can be applied, characterized by the

coupling strength between environment and main systems, as well as the presence of memory effects (i.e.

whether the system can be considered as Markovian or not) [267, 209, 308, 152, 339, 340, 205]

This case-study proposes a quantum simulation for the EET quantum transport, and the behaviour of the

system is evaluated on different environment regimes: from the unexistence of environmental effects (pure)

to different system-environment couplings, with the environment being modeled only by the employment of

pure dephasing effects. The experimentally Hamiltonians defined [19], and already used in other quantum

simulations [363], were used and the experimental study was conducted in the commercially available IBM

Q of 5 qubits [116], which makes it a different approach from the existent ones [273, 293, 341, 363].

3.3.1 Modeling the simulation

Our implementation contains a quantum part, aimed at simulating the unitary part of the system’s evolution,

and a classical part that simulates the stochastic interaction with the environment, the latter only being

able to mimic pure dephasing environmental effects.

We aim at exploring the energy transport underlying the photosynthesis, throughout time, under two

regimes: (i) in an isolated system and (ii) under an action of the environment causing decoherence.

Concerning the particular qubit encoding chosen, a chain of 𝑁 = 2𝑞 molecules is encoded by a set of𝑞 qubits, where |𝑚⟩ corresponds to the excitation (exciton) on the 𝑚-th molecule, e.g. for a two-molecule

chain, state |0⟩ represents the exciton on the first molecule and |1⟩ on the second one, and a possible

successful transport of energy would correspond to the transition of the state |0⟩ to the state |1⟩. We denote
this as the site basis. The computational Hamiltonians under this encoding for the cases under study are

discussed in the following sections. From now on, we shall set ~ = 1. Also, it is convenient to measure the
energies/frequencies in cm−1, as it is common in spectroscopy.
3.3.2 No–decoherence Hamiltonian

Considering a small chain of 𝑁 molecules, the system’s Hamiltonian in the site basis reads as follows,
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�̂�𝑆 = 𝑁−1∑𝑚=0 𝜖𝑚 |𝑚⟩ ⟨𝑚| + ∑𝑚≠𝑛 𝐽𝑚𝑛 |𝑚⟩ ⟨𝑛| (68)

where 𝜖𝑚 is the first excited state energy of the molecule 𝑚 and 𝐽𝑛𝑚 is the electronic coupling between the

molecules 𝑛 and 𝑚. The Hamiltonian (68) for just two molecules (1 qubit), in the 2 × 2 matrix form, reads:

�̂�𝑆 = ⎛⎜⎝𝜖0 𝐽𝐽 𝜖1⎞⎟⎠ . (69)

Its evolution operator is given by

|Ψ(𝑡)⟩ = 𝑒−𝑖�̂�𝑆𝑡 |Ψ(0)⟩ ≡ �̂�(𝑡) |Ψ(0)⟩ . (70)

Although the Hamiltonian (69) possesses non-diagonal elements, finding a good approximation in terms
of quantum circuits is relatively straightforward. A possible strategy for this is by finding a diagonalizing

transformation, 𝑇, of the Hamiltonian, such that,
�̂�𝑆 = 𝑇†�̂�𝑆−𝑑𝑖𝑎𝑔𝑇 . (71)

where �̂�𝑆−𝑑𝑖𝑎𝑔 is the diagonal Hamiltonian. Therefore, the evolution operator can be rewritten as follows:

�̂�(𝑡) = 𝑒−𝑖�̂�𝑆𝑡 = 𝑇†𝑒−𝑖�̂�𝑆−𝑑𝑖𝑎𝑔𝑡𝑇 . (72)

The problem now reduces to the approximation of the 𝑇 operator (and its adjoint) and the Hamiltonian�̂�𝑆−𝑑𝑖𝑎𝑔, which can all be efficiently approximated in quantum circuits. The latter operator is diagonal in

the site basis, thus the unitary evolution operator can be expressed as

�̂�(𝑡) = 𝑒−𝑖�̂�𝑆𝑡 = 𝑇† [𝑒−𝑖 ∑1𝑚=0 𝐸𝑚𝑡]𝑇 = 𝑇† ⎡⎢⎣
1∏𝑚=0 𝑒−𝑖𝐸𝑚𝑡⎤⎥⎦𝑇 . (73)

The 𝑇 and 𝑇† matrices can be implemented by simple rotations, 𝑅𝑦(𝜃) and 𝑅𝑦(−𝜃), for a two-molecule
system. However, for a higher number of molecules, a rotational decomposition algorithm together with the

Gray code [277], which decomposes a matrix in the multiplication of a single qubit and CNOT gates, has to

be used. Using this particular algorithm the gate complexity for 𝑁 molecules is 𝒪(𝑁2𝑙𝑜𝑔2[𝑁]) [277].
On the other hand, the diagonalized evolution operator,

�̂�(𝑡) = ⎛⎜⎝𝑒−𝑖𝐸0𝑡 00 𝑒−𝑖𝐸1𝑡⎞⎟⎠ , (74)

translates into trivial phase rotations over each of the energy eigenstates ∣𝐸𝑖⟩ of the system with the respective

energy eigenvalues 𝐸𝑖. This operator can be constructed as a sequence of 𝐶𝑅𝑍(𝜙𝑖) gates applied to an
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ancilla qubit (initialized at |1⟩), where the angle is given by 𝜙𝑖 = −2𝐸𝑖𝑡, 𝑖 = 1, 2. The 𝑋 gates are used to

”select” the eigenvector to which the controlled rotation is to be applied. The circuit implementation of the

operator defined in (74) is illustrated in Figure 8. The gate complexity of this operator, in terms of single
qubit and CNOT gates for 𝑁 molecules, is 𝒪(𝑁 log[𝑁]).

∣𝑞𝑠𝑦𝑠𝑡𝑒𝑚⟩ 𝑋 • 𝑋 •
|1⟩𝑎𝑛𝑐 𝑅𝑍(−2𝐸′0𝑡) 𝑅𝑍(−2𝐸′1𝑡)

Figure 8: Implementation of the system’s evolution operator. ∣𝑞𝑠𝑦𝑠𝑡𝑒𝑚⟩ is the state vector of the
system’s qubit in the energy eigenbasis.

For the whole circuit, resulting from the sequencing of 𝑇†�̂�𝑆−𝑑𝑖𝑎𝑔𝑇, the number of qubits required to

simulate a molecular chain of 𝑁 elements is 2 log2 𝑁 and the gate count scales with 𝒪(𝑁2
log

22 𝑁) single
qubit and CNOT gates. The transformations 𝑇 and 𝑇†, in the general case, possess a high circuit depth,
which makes the system hard to simulate accurately, with low error rate, in the current available quantum

computers. More efficient methods are available to do this task, as discussed in section 3.2.1, as the

Hamiltonian is clearly local. However, for a matter of simplicity, the option of using the diagonalization

method on the operator was used, which due to the size of the system, was not particularly problematic.

3.3.3 Introducing decoherence into the system

We shall implement artificial decoherence as pure-dephasing by adding Markovian fluctuations to the

Hamiltonian. This approach is considered a good approximation in the high-temperature regime for the bath

[242, 303, 83]. The actual algorithm to be used is the one of [365], which is used to simulate open quantum

systems, with pure dephasing, modeling the action of the decoherence as classical random fluctuations (a

telegraph-type classical noise affecting the system). The actual Hamiltonian for this system reads as

�̂� = �̂�𝑆 + �̂�𝐹 (75)

and it consists of the system Hamiltonian, �̂�𝑆, of the previous section and the perturbation of a bi-stable
fluctuator environment, �̂�𝐹. The latter simply shifts the energy by a constant value for each molecule,±𝑔𝑚/2, as illustrated in Fig. 9. Explicitly,

�̂�𝐹 = 1∑𝑚=0 𝜒𝑚(𝑡) ̂𝐴𝑚 (76)
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where ̂𝐴𝑚 |𝑚⟩ ⟨𝑚| is the projection operator and considering one fluctuator interacting with each molecule𝑚, 𝜒𝑚(𝑡) = 𝑔𝑚𝜉𝑚(𝑡) . (77)

The function 𝜉𝑚(𝑡) switches the fluctuator between the positive and negative values (appearing randomly) at
a given fixed rate 𝛾 and 𝑔𝑚 is the fluctuation strength (or the coupling strength to a molecule 𝑚). Physically,

the action of the fluctuations is typically stronger for the excited states [242, 13] and 𝑔 can be larger than

the donor-acceptor coupling 𝐽.

Figure 9: Uncorrelated random fluctuations applied to donor and aceptor’s excited state energies,𝜖0 and 𝜖1. Each molecule is affected by one fluctuator, which generates a telegraph-type
classical noise. The fluctuators switch randomly between the positive and negative value
at a given fixed rate, so that the periods of time when the molecule energy is constant,𝜖𝑚 + 𝑔𝑚/2 or 𝜖𝑚 − 𝑔𝑚/2, are random. 𝐽 is the coupling strength between the molecules
that can be seen as the rate of hoppings between these fluctuating energy levels.

The implementation of such random bi-valued function 𝜉𝑚(𝑡), can be done in a straightforward way by a
classical pseudo-random numbers generator with a probability of 50% of the values −1/2 and 1/2. For
circuit generation purposes, the values resulting from the random sampling have to be provided in advance

of the quantum simulation.

The fluctuator interaction Hamiltonian and the system Hamiltonian do not commute, so, in order to

generate an appropriate quantum circuit, one needs to apply an approximation technique such as the Trotter

product formula [372]. Under this approximation, the unitary evolution operator of the Hamiltonian, for a

time 𝑡 = 𝑁𝑖Δ𝑡, where 𝑁𝑖 is the number of iterations and Δ𝑡 is the iteration time-step, becomes
𝑈(𝑁𝑖Δ𝑡) = (𝑒−𝑖�̂�Δ𝑡)𝑁𝑖 = (𝑒−𝑖�̂�𝐹Δ𝑡𝑇†𝑒−𝑖�̂�𝑆Δ𝑡𝑇)𝑁𝑖 = ⎛⎜⎝⎡⎢⎣

1∏𝑚=0 𝑒±𝑖 𝑔𝑚2 Δ𝑡⎤⎥⎦𝑇† ⎡⎢⎣
1∏𝑚=0 𝑒−𝑖𝐸𝑚Δ𝑡⎤⎥⎦𝑇⎞⎟⎠

𝑁𝑖 ,
(78)

where 𝐸𝑚 denote the eigenvalues of the system Hamiltonian. The whole circuit is presented in Fig. 10 for

one iteration.
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∣𝑞𝑠𝑦𝑠𝑡𝑒𝑚⟩ 𝑅𝑦(𝜃) 𝑋 • 𝑋 • 𝑅𝑦(−𝜃) 𝑋 • 𝑋 •
|1⟩𝑎𝑛𝑐 𝑅𝑍(−2𝐸′0Δ𝑡) 𝑅𝑍(−2𝐸′1Δ𝑡) 𝑅𝑍(±𝑔′Δ𝑡) 𝑅𝑍(±𝑔′Δ𝑡)

Figure 10: Implementation of one iteration of the system with decoherence algorithm. Here∣𝑞𝑠𝑦𝑠𝑡𝑒𝑚⟩ represents the system’s qubit state vector in the site basis.

The fluctuator interaction evolution operator 𝑒±𝑖 𝑔𝑚2 Δ𝑡 is a selective rotational gate over a molecule 𝑚
(|𝑚⟩). The fluctuator waiting time (interval of time between switches), i.e. 1𝛾 , can only be equal or higher
than the iteration time-step, Δ𝑡. The switching in the fluctuator-molecule coupling strength is performed at
every 1𝛾Δ𝑡 iterations, where 𝑎Δ𝑡 = 1𝛾 , 𝑎 ∈ ℕ.

For a time 𝑡, and iteration time step Δ𝑡, and the gate resource complexity, including single qubit and
CNOT gates, , reads, for a single run, as 𝒪( 𝑡Δ𝑡[𝑁(log2 𝑁 + 𝐹)]) , where 𝑁 is the number of molecules

and 𝐹 is the number of fluctuators interacting with each one.

In the implementation of the system with decoherence, the algorithm gate resources complexity is𝒪( 𝑡Δ𝑡[𝑁2 × log
22 𝑁 +𝑁𝐹]) for a single run. This simulation, yet again, possess a very high circuit depth

which makes its application unfeasible in quantum computers. The number of necessary qubits is the same

as in the no decoherence simulation (2 log2 𝑁).

It also requires 𝒪(𝑁𝑅∑𝐹𝑗=0 𝑡𝛾𝑗) random numbers to be classically generated, where 𝑅 is the number

of runs of the algorithm and 𝛾𝑗 is the switching rate of the fluctuator 𝑗 interacting with the molecule. The
number of required simulation runs to average the results and obtain an error 𝜖 > 0, is predicted to scale
as 𝒪([𝐹 𝑡Δ𝑡]2/𝜖2). This complexity is calculated based on the possible non-degenerate energy state

outcomes of the entire chain in the simulation for a time 𝑡.
3.3.4 Results

We conducted simulation experiments for the quantum transport in a molecular chain using the algorithm

described in the previous section. We executed the simulation for the coherent system on a real quantum

computer, the IBM Q of 5 qubits, while the pure dephasing scenario was simulated on the QASM quantum

simulator, both in the near-resonant and non-resonant regimes. For the validation purposes, we compared

the results for the coherent system with the theoretical predictions obtained by solving the Schrödinger

equation (see Supplementary Information A.2).

As for the decoherent regime, we used a classical computation of the stochastic Haken-Ströbl model

[184, 303]. The simulations and circuits involved, encoded in the Qiskit platform [116], can be tested in

the following url: https://github.com/jakumin/Photosynthesis-quantum-simulation.
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3.3.5 Coherent regime

The scenario for this regime was simulated with a simple chain of two molecules. As discussed in section

Materials and Methods and using the parameters as proposed in [363], we define the system’s Hamiltonian

as follows:

(Near-resonant regime) 𝐻𝑆 = ⎛⎜⎝13000 126126 12900⎞⎟⎠ 𝑐𝑚−1 ; (79)

(Non-resonant regime) 𝐻𝑆 = ⎛⎜⎝12900 132132 12300⎞⎟⎠ 𝑐𝑚−1 . (80)

The results for both regimes were obtained using an actual quantum device (the IBMQ london of 5 qubits)

and can be seen in Figs. 11 and 12, respectively. Due to the stochastic nature of quantum computers, the

experiments were conducted with 2048 shots for each time value. In the following results, the probability

of the donor and acceptor molecules being excited is denoted by 𝑃(0) = ⟨0| 𝜌𝑆(𝑡) |0⟩ and 𝑃(1) =⟨1| 𝜌𝑆(𝑡) |1⟩, respectively.

Figure 11: Evolution dynamics of the isolated system obtained by employing the quantum algo-
rithm for the near-resonant system: simulation results (points) and theory (lines).
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Figure 12: Evolution dynamics of the isolated system obtained by employing the quantum algo-
rithm for the non-resonant system: simulation results (points) and theory (lines).

Taking the fluctuator’s switching rate to be 𝛾 = 0 or the fluctuator-molecule coupling strength to be𝑔 = 0, one has the coherent regime. These simulations show the limiting case of the Redfield regime, i.e.

the very weak system-environment coupling, 𝑔 ≪ 𝐽. The quantum beatings, observed in the simulation

results, can be thought of as a reversible transfer of energy between the molecules, where the excitation

goes back and forth across the molecules [95].

In the performed simulations, the near-resonant and non-resonant regimes have a maximum probability

of ∼ 90% and ∼ 20%, respectively, of the energy being transferred to the acceptor molecule. Using

the quantum Liouville equation [267] (see Supplementary information A.2), the period of the quantum

beating is 𝑇𝑛𝑒𝑎𝑟−𝑟𝑒𝑠 ≈ 123 𝑓 𝑠 for the near-resonant regime and 𝑇𝑛𝑜𝑛−𝑟𝑒𝑠 ≈ 51 𝑓 𝑠 for the non-resonant
regime. These periods are in the femtosecond timescale of the experimentally observable quantum beatings

[144, 112, 283]. The simulation results show a similar behaviour as those predicted by the Schrödinger

and quantum Liouville equations, where the off-curve points are predominantly originated by errors in the

quantum hardware.

3.3.6 Decoherent regime

The scenario for the regime with decoherence introduced is, in some respect, similar to the one presented

for the coherent regime for a chain of two molecules. No further changes are made to the Hamiltonian

discussed in the section Introduction of decoherence in the system. The quantum simulation results are

compared with a theoretical evolution based on the stochastic Haken-Ströbl model, in the form of the

Lindbland master equation [184, 303]. The Lindbland equations were solved in a classical computer using

Qutip [211], a quantum open systems software framework. The set of Lindbland equations, correspondent
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to the model in this setting, had one free parameter regarding the environment, the dephasing rate, 𝛾𝑑𝑒𝑝ℎ.
The Lindbland equation in the Haken-Ströbl model reads:

𝑑𝜌𝑑𝑡 = ℒ[𝜌] = −𝑖[𝐻𝑆, 𝜌] + 𝛾𝑑𝑒𝑝ℎ ∑𝑚 (𝐿𝑚𝜌(𝑡)𝐿†𝑚 − 12𝜌(𝑡)𝐿†𝑚𝐿𝑚 − 12𝐿†𝑚𝐿𝑚𝜌(𝑡)) (81)

where 𝐿𝑚 = |𝑚⟩ ⟨𝑚| are the Lindbland operators, responsible for the system-environment interaction. The
system Hamiltonian, 𝐻𝑆, is given by the matrix (79) for the near-resonant system and the matrix (80) for
the non-resonant system.

The environment contains only one fluctuator interacting with each molecule with switching rate 𝛾 = 125
THz. As mentioned above, the dephasing rate, 𝛾𝑑𝑒𝑝ℎ, for the Lindbland equation is adjusted to the behaviour
of the system under the action of a fluctuation strength 𝑔. For a range of fluctuation strengths of [100, 1000]𝑐𝑚−1, in the quantum algorithm, and the corresponding dephasing rate of the Haken-Ströbl model lies in

the ∼ [2.3, 70] THz range. Due to the existence of random fluctuations, large number of samples had

to be generated. The algorithm was implemented with 250 runs, where 5000 shots were performed for

each time 𝑡. Figures 13 and 14 present the simulation results for different values of the fluctuation strength,

along with the theoretical evolution dynamics, for the near-resonant and non-resonant systems, respectively.

It is seen in Figures 13 and 14 that oscillation amplitudes decay over time, as expected, due to the loss of

relative phase coherence between the excited states of the two molecules, evidenced by the disappearance

of the quantum beatings. This is associated with the irreversible evolution when the system loses its capacity

of performing coherent transport. Additionally, it is clear that the system is led to a classical distribution of

the populations in the site eigenbasis.

In the regime under the study, where the environment is assumed to be at thermal equilibrium, the

final probability distribution is calculated in the limit of the classical Boltzmann distribution ⟨𝑚| 𝜌𝑆(𝑡 →∞) |𝑚⟩ = 𝑐𝑜𝑛𝑠𝑡 × 𝑒− 𝜖𝑚𝑘𝐵𝑇 . Here 𝑘𝐵 is the Boltzmann constant, 𝑇 is the temperature of the bath and 𝑐𝑜𝑛𝑠𝑡
is a normalization constant [83]. Taking the limit of very high temperatures, the population terms approach

the Boltzmann distribution ⟨0| 𝜌𝑆(𝑡 → ∞) |0⟩ ≈ ⟨1| 𝜌𝑆(𝑡 → ∞) |1⟩ ≈ 12 , which is compatible with the
results obtained. The relaxation can not be fully observed in Figs. 13a, 14a and 14b because a very large

number of iterations would be required for this.
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(a) 𝑔 = 100 𝑐𝑚−1, 𝛾𝑑𝑒𝑝ℎ = 2.3 𝑇𝐻𝑧. (b) 𝑔 = 300 𝑐𝑚−1, 𝛾𝑑𝑒𝑝ℎ = 10 𝑇𝐻𝑧.

(c) 𝑔 = 700 𝑐𝑚−1, 𝛾𝑑𝑒𝑝ℎ = 41 𝑇𝐻𝑧. (d) 𝑔 = 1000 𝑐𝑚−1, 𝛾𝑑𝑒𝑝ℎ = 70 𝑇𝐻𝑧.

Figure 13: Evolution dynamics of the system with decoherence obtained by employing the quantum
algorithm for the near-resonant system: simulation results (points) and theory (lines).

The switching rate must be high enough to observe the dephasing effects. Here we used a value ≈ 33
times larger than the transfer rate, 𝐽 (that is, the fluctuator waiting time must be shorter than 𝐽−1). As
observed in the simulations, it is a suitable value for observing the relevant effects of random fluctuations

in the system. At very low rates, it leads the system’s evolution to a behaviour similar to the previously

observed in the no-decoherence regime, Figs. 11 and 12.

The time that coherence lasts in the system is essentially defined by the fluctuation strength, 𝑔: in Figs.
13a, 13b, 14a and 14b (lower 𝑔) the coherence is maintained for some time, while in Figures 13c, 13d, 14c
and 14d (higher 𝑔) it is quickly suppressed. In the latter regime, an approximated diffusive motion drives the
system’s evolution, where quantum beating is practically absent. The time that the quantum beating lasts

in these simulations (until it reaches an approximate non-oscillating behaviour), is about 350 𝑓 𝑠 in Figure
13b (near-resonant system) and 200 𝑓 𝑠 in Figure 14b (non-resonant system), with a fluctuation strength𝑔 = 300 𝑐𝑚−1. At a longer time, it has been experimentally observed to persist (𝑡 > 660 𝑓 𝑠 [283]), a
timescale which could be modeled in the present simulation by changing the environment parameters, i.e.

lowering the fluctuation strength 𝑔 as can be observed in Figures 13a and 14a.
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(a) 𝑔 = 100 𝑐𝑚−1, 𝛾𝑑𝑒𝑝ℎ = 2.3 𝑇𝐻𝑧. (b) 𝑔 = 300 𝑐𝑚−1, 𝛾𝑑𝑒𝑝ℎ = 10 𝑇𝐻𝑧.

(c) 𝑔 = 700 𝑐𝑚−1, 𝛾𝑑𝑒𝑝ℎ = 41 𝑇𝐻𝑧. (d) 𝑔 = 1000 𝑐𝑚−1, 𝛾𝑑𝑒𝑝ℎ = 70 𝑇𝐻𝑧.

Figure 14: Evolution dynamics of the system with decoherence obtained by employing the quantum
algorithm for the non-resonant system: simulation results (points) and theory (lines).

For each quantum simulation performed, a fitting process has been employed by adjusting the dephasing

rate of the Haken-Ströbl model, so that the system’s evolution in both classical and quantum algorithms

have similar behaviours. This enables one to perform a direct comparison between both theories and to find

the actual dephasing rate of the modeled environment over the various regimes considered in this work.

The results reflect a good agreement between the data obtained and the theoretical predictions both

for the coherent case (vs Schrödinger equation) and the decoherent case (vs Haken-Ströbl model), for the

different regimes definable by the coupling strength [303]. Similar to Ref. [363], this setting revealed itself

as an interesting platform for the study the quantum and environmental effects in a small photosynthetic

system, and therefore we consider, that the use of quantum simulations may be a feasible alternative in

systems with medium-strong coupling and non-Markovian systems, in the future, whose main advantage

when compared to similar works Ref. [363], is the flexibility on the implementation brought the quantum

computer used.

However, the algorithm obtained, possess high requirements in terms of gates and qubits, and, hence, it

is feasible to implement to realistic since a realistic quantum simulation of a photosynthetic system would

have to involve hundreds of light-harvesting molecules, which is beyond the current quantum technology,

and simultaneously the complexity of circuit generation is still 𝑂(𝑁3)) and it only involves pure-dephasing
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baths. For future work, we aim at extending it to new types of bath, e.g. those allowing for higher exciton

recombination rates and non-Markovian effects as well as to new geometries of photosynthetic systems, in

particular, to the Fenna-Matthews-Olson complex [267].

In conclusion the coherent case is clearly described by a local Hamiltonian and hence it is efficiently

simulatable, although not the best choice of circuit approximation was used in this work. The addition of

environmental noise, to simulate decoherence, quickly raises the complexity of the algorithm, making a

realistic simulation of a photosynthetic system unfeasible in current quantum computers. Nonetheless, a

very good picture of how the environmental noise interacts with a closed system, destroying coherence, was

obtained, complementing the discussion of chapter 2.

3.4 Algori thms based in the quantum Fourier transform

The Fourier transform is exponentially faster in quantum computers than it is on classical ones, and it

is a cornerstone of several of the most relevant and efficient quantum algorithms, such as the ones of

Deutsch-Jozsa [134], Simon [331] and Shor [329]. It seems to be the main cause of quantum advantage in

quantum algorithmics, making extensive use of quantum interference. Its mathematical foundation can be

given in terms of group and representation theory, which allows its generalization to other algorithms, and to

obtain further characterization insights about them. So far, only algorithms based on the Fourier transform

over functions subject to the action Abelian groups are efficient, i.e. the only ones in which irreducible

representations are in a one to one relationship with the elements of the group.

From this perspective, efficient algorithms for a wide range of problems have been obtained, however, the

attempts to generalize it to non-Abelian groups felt short, and no generalized algorithm for these problems

exist, leaving out problems with high industrial impact such as the graph-isomorphism. In this section we

explore these issues.

3.4.1 The Quantum Fourier transform algorithm

The Fourier transform is a vital tool in modern mathematics, physics and engineering with a wide range

of applications from quantum mechanics to signal processing. In quantum computation, it also plays a

central and vital role, as it is the most important building block of the most well-known efficient quantum

algorithms and, definitely, a source of quantum advantage: the fastest classical Fourier transform has a time

complexity of order 𝑁𝑙𝑜𝑔(𝑁), while the quantum one, has only (𝑙𝑜𝑔𝑁)𝑙𝑜𝑔(𝑙𝑜𝑔𝑁), i.e. an exponential
advantage. This makes the application of the quantum Fourier transform feasible, to problems where the

classical Fourier transform is not, as, for example, to find the period of a function as in Shor algorithm. The

most common form of the Fourier transform, used in fields such as signal processing, reads as follows:
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̂𝑓 (𝑥) = ∫ 𝑒−2𝜋𝑖𝑘𝑥𝑓 (𝑥) 𝑑𝑥, 𝑘 ∈ ℝ (82)

In this field of application, the Fourier transform, can be interpreted as a function between the domain of

times and the domain of frequencies, where 𝑒−2𝜋𝑖𝑘𝑥, corresponds to a sinusoidal function characteristic
of a frequency 𝑘, and ̂𝑓 (𝑥) corresponds to the frequency response of the timed function at a given point,
decomposing the timed signal in its frequencies. The same intuitions are valid, for instance in quantum

mechanics: the Fourier transform is a function from the position domain to the momentum domain. A more

abstract treatment of the Fourier transform, phrases it in terms of group theory, where it is interpreted as a

function between two groups, the group of the original function 𝑓 (𝑥), 𝐺, and the group of unitary linear
operators 𝐺𝐿(𝑉), which is given by the following expression:

̂𝑓 (𝑝) = 𝑛−1∑𝑥∈𝐺 𝑓 (𝑥)𝑝(𝑥), 𝑝 ∈ 𝐺𝐿(𝑉) , (83)

where 𝑓 (𝑥) is function over 𝑥, where 𝑥 ∈ 𝐺, and 𝑝(𝑥) the irreducible representation at point 𝑥. The first
efficient algorithm for the Fourier transform, the fast Fourier algorithm (FFT) was discovered by Cooley and

Tuckey [115], and its translation and application to the quantum realm was firstly made by Simon [331]

and Shor [328]. The QFT algorithm starts by creating a superposition state, in which the amplitudes of the

states are the actual values of 𝑓 (𝑥), as follows:
|Ψ⟩ = 2𝑛−1∑𝑥=0 𝑓 (𝑥) |𝑥⟩ . (84)

Upon the application of the quantum Fourier transform, the resultant state is given by:

|Ψ⟩ = ∑𝑦 𝑔(𝑦) ∣𝑦⟩ (85)

where function g(y), corresponds to the amplitude of each of the elements of the 𝑦 basis, and corresponds

to the actual Fourier transform formula

𝑔(𝑦) = 𝑎(Φ → 𝑦) = ⟨𝑦∣Φ⟩ = 12𝑛/2
2𝑛−1∑𝑥=0 𝑒2𝑖𝜋𝑥𝑦/2𝑓 (𝑥) . (86)

The statistics of the quantum Fourier transform, is invariant to constant shifts affecting the function 𝑓 (𝑥),
i.e. for functions whose resultant Fourier transform form

12𝑛/2 1√𝐾
𝐾−1∑𝑘=0 𝑒2𝑖𝜋𝑦(𝑐+𝑘𝑟)/2𝑛 ∣𝑦⟩ , (87)

the statistics of of the Fourier transform, reads as
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𝑝(𝑦) = 12𝑛 1√𝐾∣∣∣∣
𝐾−1∑𝑘=0 𝑒2𝑖𝜋𝑘𝑦𝑟/2𝑛 ∣∣∣∣

2 , (88)

i.e. it is not affected by 𝑐. The reason for this is that 𝑐 only affects the global phase, and, hence, does
not affect the statistics of the measurements. By reasoning about these statistics it is possible to retrieve

important properties of the original function 𝑓 (𝑥), such as its period as done in the Shor algorithm of the

following section.

3.4.2 The Shor algorithm and the hidden subgroup problem (HSP)

The Shor algorithm [330] is the most important in quantum computation, due to its industrial impact, as

it can break RSA cryptography [76]. In practice, what the algorithm does is finding the (large) period of a

function, from which an attack on the cryptographic scheme can be built. The algorithm of Shor is based

on Simon algorithm for the calculation of discrete logarithms [331], and in fact, these algorithms can be

phrased in a more generic way as instances of the Hidden subgroup problem [75, 225], a problem from

the domain of group theory. Later, other instances of this problem were found, as depicted in table 7. The

formal definition of the Hidden subgroup problem goes as follows:

Definition 3.4.1. Given a function 𝑓 ∶ 𝐺 → 𝑅, where 𝐺 is a finite group and 𝑅 an arbitrary
finite range, and the assumption that there exists a subgroup 𝐻 ≤ 𝐺, where 𝑓 is constant
and distinct on the left cosets of H, find the generating set of H.

The definition may sound somewhat puzzling for non-mathematicians, so the easiest way is to look into an

example, which goes as follows:

Example 3.4.1. Consider a periodic function 𝑓 on a group 𝐺 presented in the following table:

x 0 1 2 3 4 5 6 7 8 9
f (x) 0 1 2 0 1 2 0 1 2 0

assumed to be of type 𝑓 ∶ 𝐺 → ℝ, where + is the operation of 𝐺. The structure of the group,
i.e. including its actual number of elements is not known, but according to the definition
3.4.1, 𝑓 (𝑥) is constant in the cosets of the group. Hence, from the simple observation of the
function, one concludes the cosets must correspond to the following sets:

{0, 3, 6, 9, ...}, {1, 4, 7, ...}, {2, 5, 8, ...} . (89)

Each coset corresponds to an equivalency class, resulting from the action of an element of
group, over the hidden subgroup. From group theory, it is well known that any element of
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a group generates a subgroup. Hence, from the information available about the function
(elements and operation), the possible subgroups read as follows:

⟨0⟩ = {0} ⟨1⟩ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...}⟨2⟩ = {0, 2, 4, 6, 8, ...} ⟨3⟩ = {0, 3, 6, 9, ...}
So, having calculated all the subgroups, is trivial to see what is the one that fits the coset

structure presented in equation (89), is the subgroup generated by element 3, ⟨3⟩, which
can be confirmed by operating a arbitrary element of each of the cosets with the subgroup
determined, allowing to retrieve the cosets back again:

0 ⋅ {0, 3, 6, 9, ...} = {0, 3, 6, 9, ...} 1 = {1, 4, 7, ...}2 ⋅ {0, 3, 6, 9, ...} = {2, 5, 8, ...} ....
Hence the so-called hidden subgroup is {0, 3, 6, 9, ...} and its generator is 3, which also
corresponds to the period of the function, which can be trivially verified. It is also the
number needed to perform the attack on RSA encryption scheme.

In the RSA cryptographic scheme, the modular exponentiation is used, instead of the modular summing

operation, as explored in example 3.4.1, and the computational solution explored in such example is clearly

computationally inefficient, as it requires the calculation of all possible subgroups, being only a toy example.

The Shor algorithm is able to determine the right coset structure and the generator of the correct subgroup

with high probability in a very efficient way, with an exponential advantage to the best classical algorithms.

The same quantum algorithm used in Shor is common and efficient for all Abelian groups with many

applications [186, 185, 271]. It has also been shown that the algorithm works efficiently for all groups,

which even not Abelian, if they possess normal subgroups [187], only.

Problem Query Complexity Main Technique
Abelian Stabilizer Problem Polynomial Fourier Sampling/Transform [225]

Shor algorithm for factoring and discrete logarithm Polynomial Fourier Sampling/Transform [329]
Simon’s XOR-mask finding a Polynomial Fourier Sampling/Transform [331]

Pell’s equation and Principal Ideal Polynomial Fourier Sampling/Transform [186]
Unit Group and Class group Polynomial Fourier Sampling/Transform [185]

Table 7: Some problems with efficient quantum algorithms using the Fourier transform

The algorithm starts with the state preparation, where two logical registers are used, to encode the

domain and codomain of a homomorphic function between Abelian groups. The first step corresponds to

the preparation of the domain of the function in the first register, building a homogeneous superposition of

values of the domain:

|Φ⟩ = 12𝑛/2 ⎛⎜⎝
2𝑛−1∑𝑥=0 |𝑥⟩⎞⎟⎠ ⊗ |0…0⟩ (90)
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The second step corresponds to the application of an oracle 𝑓, which is based on the domain elements of
the first register, constructs the codomain elements in the second register:

∣Ψ𝑓⟩ = 𝑈𝑓 |Φ⟩ = 12𝑛/2 ⎛⎜⎝
2𝑛−1∑𝑥=0 ∣𝑥 ⊗ 𝑓 (𝑥)⟩⎞⎟⎠ . (91)

At this stage, due to the requirement of being constant on the cosets, for each 𝑓 (𝑥) is associated a coset of
the function, i.e. a potential measurement of the second register will yield the corresponding coset in the

first register:

∣Ψ0⟩ = 1√𝐾
𝐾−1∑𝑘=0 ∣𝑥0 + 𝑘𝑟⟩ . (92)

In equation (92), 𝑘𝑟, corresponds to the exponentiation of the generator of the hidden subgroup, 𝑟𝑘, and𝑥0 is the coset representative, which is unknown, and thus, prevents direct measurement of the generator.

However, its effect can be discarded, if one goes instead onto the phase domain, which can be done

systematically by the use of the Fourier transform. The application of the Fourier transform to the coset

state yields the following state:

12𝑛/2 1√𝐾
𝐾−1∑𝑘=0 𝑒2𝑖𝜋𝑦(𝑥0+𝑘𝑟)/2𝑛 ∣𝑦⟩ (93)

While it can be observed that the coset representative 𝑥0 is still part of the amplitude of the basis elements∣𝑦⟩, i.e. by looking to the amplitude of an element of the basis 𝑦 given by

𝑎(Φ ↦ 𝑦) = 12𝑛/2 1√𝐾
𝐾−1∑𝑘=0 𝑒2𝑖𝜋𝑦(𝑥0+𝑘𝑟)/2𝑛 , (94)

it is also observable that the element 𝑥0 does not have any statistical effect on the measurement of elements,

as it only affects the global phase of the state, disappearing when the amplitude is squared:

𝑝(𝑦) = 12𝑛 1√𝐾∣∣∣∣
𝐾−1∑𝑘=0 𝑒2𝑖𝜋𝑘𝑦𝑟/2𝑛 ∣∣∣∣

2 . (95)

Hence, the generator 𝑟 can be retrieved, by the use of a statistical inference technique named Fourier

sampling. The equation above is equal to the geometric series,

𝑝(𝑦) = 𝑠𝑖𝑛2 (2𝜋.𝑐𝑠.𝑟.𝑀2𝑛 )
𝑠𝑖𝑛2(2𝜋.𝑐𝑠.𝑟2𝑛 ) (96)

, if 𝑦 = 𝑗𝐾, and 0 in the other case
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𝑝(𝑦) = 12𝑛𝐾 𝑠𝑖𝑛2(𝜋𝑦)𝑠𝑖𝑛2(𝜋𝑦/𝐾) = 1𝑟 . (97)

It can be concluded that 𝑗/𝑟 = 𝑦/2𝑛, and one can obtain j and r from the irreducible form of 𝑦/2𝑛,
which can be obtained by measuring 𝑦 and expanding the result towards an irreducible fraction using the

Newton algorithm. The algorithm is probabilistic and the period obtained must be validated by testing it:𝑓 (𝑥) = 𝑓 (𝑥 + 𝑟), and the execution of the algorithm repeated, if necessary. The probability of obtaining a

stated reducible to 𝑗/𝑟 is high, when compared to the demanded precision, which means the algorithm in

sound. The algorithm corresponds to finding the Abelian group generator.

3.4.3 Non-Abelian Hidden subgroup problem

After the success of the hidden subgroup problem algorithm for Abelian groups, there has been an extensive

research effort in extending the algorithm to non-Abelian groups. Examples of relevant groups in these

conditions are the dihedral and symmetry group, for which efficient algorithms for their hidden subgroup

problem will have an important impact, yielding efficient solutions to lattice-based cryptography [307] and

graph isomorphism [49, 145]. However, despite of some successes on this side, e.g. [203, 206], the

hidden subgroup problem for the most relevant groups is still beyond reach, even, as demonstrated, with

the query complexity always being 𝑙𝑜𝑔(|𝐺|) (|𝐺| is the size of the group involved) for these algorithms [146].
However, for some groups the information within cosets is not enough to capture the hidden subgroup and

further processing may be required, which is generally timewise inefficient. For some groups it may be

sufficient to enhance the HSP with the application of a proper measurement strategies [36], however it

has also been shown that the application of the technique is bounded by physical limitations [188]. Such

information shall then be filtered classically in order to retrieve the hidden subgroup, which may include

solving linear equations [311] or other alternative techniques [237]. Moreover, an effective pretty good

measurement able to distinguish such states will also need to involve an almost unfeasible amount of states.

Due to impossibility of reaching an efficient algorithm for relevant groups with potential impact in industry,

it was also attempted to explore different algorithms, such as hidden-shifts [99, 352], hidden-polynomials,

hidden translations [162], hidden cosets [162] and the generalized study of symmetry groups ,which may

have many different applications.

3.5 Hybrid algori thms

There is another class of quantum algorithm, which makes use of quantum simulation and of the exponential

advantage of the Fourier transform, as it is the example of the estimation of eigenvalues of Abrams and

LLoyd [10] and the HHL algorithm for the resolution of linear equations, proposed by Harrow, Hassidim
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and LLoyd [191]. The former consists of two steps, namely, the simulation of the Hamiltonian and the

application of phase estimation [125] (an algorithm relying on the Fourier transform) to obtain the eigenvalues

corresponding to a given eigenvector, i.e. the composition

Phase estimation ∘ Hamiltonian simulation (98)

Therefore, the efficiency of the algorithm is directly dependent on the efficiency of the Hamiltonian simulation,

given that the phase estimation step is known to be efficient. The latter algorithm, the HHL one, can be seen

as a more generalized form of finding a particular eingenvalue, and also depends on the efficient simulation

of the exponential of an Hermitian operator. Briefly, the algorithm is able to solve systems of equations of

the sort:

𝐴 ⃗𝑥 = ⃗𝑏 (99)

where 𝐴 and 𝑏 define a set of linear equations. The algorithm requires the simulation of 𝑒𝑖𝐴𝑡 for different
values of 𝑡, which possess a potential exponential advantage, as explored in section 3.2.1. The matrix 𝐴,
may not always be a Hermitian operator, but it can be translated into one, by the following construction,

⎛⎜⎝ 0 𝐴𝐴𝑡 0⎞⎟⎠ (100)

and whenever 𝐴𝑡 is an Hermitian operator, 𝑒𝑖𝐴𝑡 is an unitary operator. Technically, the algorithm prepares∑𝑁𝑖=1 𝑏𝑖 |𝑖⟩, and then using quantum simulation, calculates 𝑒𝑖𝐴𝑡 for a superposition of different times t,
and further, with the help of the phase estimation algorithm, is able to decompose ∣𝑏⟩ in the eigenbasis of A
and find the corresponding eigenvalues 𝜆𝑗. The result of these operations reads as:

𝑁∑𝑗=1 𝛽𝑗 ∣𝑢𝑗⟩ ∣𝜆𝑗⟩ (101)

where {∣𝑢𝑗⟩ |𝑗 ∈ 1…𝑁 N is the dimension of system} is the eigenvector basis of A, and ∣𝑏⟩ = ∑𝑗1 𝛽𝑗 ∣𝑢𝑗⟩.
The only thing required right now is to find the inverse of each of the eigenvectors, producing the state𝐶𝜆−1𝑗 ∣𝜆𝑗⟩. Finally, one obtains the state

𝑁∑𝑗=1 𝛽𝑗𝜆−1𝑗 ∣𝑢𝑗⟩ = 𝐴−1 ∣𝑏⟩ = |𝑥⟩ . (102)

Besides the possibility of the efficient simulation the Hamiltonian, the performance of the algorithm also

depends of the differences of eigenvalues, captured by a parameter 𝑘. The actual elements |𝑥⟩, can be
obtained individually in a single execution, which requires 𝑁 repetitions of the algorithm, if one is interested
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in every value. Nonetheless, one can also obtain the expected eigenvalues ⟨ ⃗𝑥∣𝐴 ⃗𝑥⟩ efficiently, which useful
in many applications.

The applications of the algorithm are limited, due exactly to the caveats of the dependency of the

Hamiltonian simulation, to which, as previously discussed, are only efficient for sparse or local Hamiltonians.

Unfortunately, dense matrices are very relevant to specific problems in machine learning, from kernel

methods to convolutional neural networks. However, there exist alternative approaches for the algorithm,

which replace the condition on the sparsity on the matrix, to being approximable by low-rank matrices [322].

This algorithm exponentiates a matrix no sparse, positive definite low-rank [305].

There are many solvable systems of equations, that can be handled by this family of quantum algorithms:

[59, 62]. The case of Hamiltonian simulation is simply a special case of ODE, where 𝐴 is anti-Hermitian

(𝐴 ≠ 𝐴†) and f is zero, in the following equation.
𝑑𝑥(𝑡)𝑑𝑡 = 𝐴(𝑡)𝑥(𝑡) + 𝑓 (𝑡) (103)

Besides solving systems of equations, the algorithm has many applications particularly in the field of

machine learning, from data fitting, such as in [373, 322], or support vector machines algorithm [304].

3.6 Summary

In this chapter two main types of efficient quantum algorithms were studied: the dynamic ones, which rely

on the ability of quantum computers to approximate efficiently a wide class of Hamiltonians, i.e. from local

Hamiltonians to d-sparse ones, as well a wide class of search and sampling problems which may be reduced

to them. Furthermore, another important branch of efficient algorithms is given by the Fourier transform

and its derivates, which encompass, for instance, the Shor algorithm and HHL, which were briefly discussed

in this chapter. From the analysis we concluded that:

• All sampling problems that can be reduced to the simulation of local, sparse or d-sparse Hamiltonian

possess efficient quantum algorithms;

• All search problems that cannot be reduced to finding a ground-state, involving only local components

with less than dimension 2, does not have an efficient quantum algorithm.

We applied this finding in a conception of a case study for the simulation of a local Hamiltonian: the

simulation of non-radiative electronic transfer existing in the preliminary state of photosynthesis. It was also

studied the impact of the environment in the quantum process of photosynthesis„ where it was concluded

that it may, indeed, play an important role in the process, by enforcing the non-reversibility of the process,

by killing interference. The results also bring insight about the quantum mechanical concepts introduced in

chapter 2.
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4
QU AN TUM OP T I M I Z A T I O N AND QU AN TUM CHEM I S T R Y

“What we know is a drop, what we don’t know

is an ocean.”

Sir Isaac Newton.

The human understanding of reality is limited by intractable problems from all perspectives: from down

below, by the daunting complexity of many-body problems in physics, the intractability of molecular problems,

arising in medicine and biology and the unpredictability of geological events, such as earthquakes; from

the upper side by the inability of predict the emergent behaviour of the individual actions taken by a large

number of individuals, either in cooperation, or in competition, vital in areas such as economics, finance, or

sociology.

Many of such problems are computable, but completely inaccessible to classical computers, which

despite the advancements of science, have fallen (very) short to solve many of them. With the upcoming

era of quantum computation, one might ask if quantum computers can make a definite contribution to

any of those issues, help shedding light to some of the hardest questions in human understanding. The

answer to this question seems to be that it is not that so: quantum computers cannot solve efficiently most

of the problems already inaccessible to classical computers. However, some advantage, which can be

quite significant in some of them, may be expected, as shown by recent results in complexity theory. A

particular example of this is quantum chemistry, which rephrases chemistry in purely quantum mechanical

terms, allowing a better understanding of the role of quantum effects at chemical level [243]. Here, a

huge advantage of quantum computation methods, in comparison with classical ab-initio ones, is expected.

The application of nowadays short-term devices to these kinds of problems, particularly in problems with

high-societal impact, as in industry, finance, and quantum science, have raised a lot of interest from the

research and industrial communities, and in this chapter, we discuss some of the techniques employed.

The calculation of ground-state of quantum physical systems, i.e. more generally the calculation of their

points of equilibrium, can be understood as very complex optimization problems (QMA class), for which
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many optimization simpler problems can be reduced to. Due to this fact, in this chapter, we discuss complex

computational, from an optimization perspective, and the possible quantum techniques to tackle them.

The main contribution lies in the field of quantum chemistry, and consists in the conception of the

calculation of the ground-state of small molecules, hydrogen 𝐻2 and lithium-hydride 𝐿𝑖𝐻, under the action

of stationary electrical field using variational methods, which, to the best of our knowledge, was not directly

addressed in the literature before. The work done in the sequel involved the application of the VQE method in

the IBM Q experiment and was published in [344]. A relevant part of the contribution were the calculations

made for the matrix elements of the Fermionic operators, available in appendix A.

4.1 Search, constraint sat isfact ion and optimizat ion

Search problems, i.e. problems concerned with finding a solution that matches a certain criteria from a

wide set of possible solutions, are pervasive in computer science, and span all the complexity hierarchy, i.e.

some of them are computationally easy to solve, while some others are really hard, for which no efficient

solution is likely to appear in the near future, even with quantum computers. Arguably, every computational

problem can be phrased as some sort of search problem, i.e. reducible to the extensive evaluation of all the

possible cases that compose it.

Particular examples of search problems, that are found very frequently in practice and are, in general,

hard, are the ones of constraint satisfaction and optimization. The latter reads as in definition 4.1.1.

Definition 4.1.1. (Optimization Problem)

minimize: 𝑓𝑜(𝑥)
subject to: 𝑓𝑖(𝑥) ≤ 𝑏𝑖, 𝑖 = 1,… ,𝑚.

where 𝑥 is a vector of variables, 𝑓𝑜 is a valuation function and 𝑓𝑖(𝑥) ≤ 𝑏𝑖 are restrictions over
variables.

In fact, optimization problems can be seen as generalization of constrain satisfaction ones, i.e. in the

latter, all solutions that respect the constraints are equally valid, while in the former, the idea is to find the

solutions that minimize/maximize a cost function, among those which respect the constraints. Examples of

constraint satisfaction problems are the SAT problems, regarding the satisfactions of logical propositions by

Boolean variables.

There is a very rich relationship between constraint satisfaction problems and physical problems, laid,

for instance, by Barahona et al. in 1982 [45], where it was discovered that finding the minimum level

of energy (ground-state) of an Ising system, was NP-complete. By this way, it was possible to assign a

physical meaning to NP-completeness, i.e. the costs of the physical processes that could be used for that
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calculation. With the advent of quantum computation, it supplied the foundations for the reduction the

classical NP-complete problems to the ground state of the Ising Hamiltonians [258], in which a computational

advantage is expected. However, this advantage is not expected to make the resolution of such problems

efficient [56].

This connection between theoretical physics and computation, falls now under the field of Hamiltonian

complexity, has progressed, and Kitaev introduced the k-local Hamiltonian problem, as the quantum

generalization of classical constraint satisfaction problems [227], to which many optimization problems

can be reduced. The problem consists of finding the ground-state under the action of a local-Hamiltonian

which is in generally known to be very hard [118], i.e. while the soft simulation of systems governed by

local Hamiltonians, which includes the sampling, calculation of expected eigenvalues and etc., is efficient

(see section 3.2.1), calculating the ground-state of such systems is not.

In fact, this problem is known to be characteristic of the Quantum Merlin-Arthur class [77, 223], which is

the analogue of the classical NP-class, containing problems believed to be hard even for quantum computers,

i.e. just as the NP class contains problem hard for classical computers. However, the k-local Hamiltonian is

also an optimization problem, i.e. finding the ground-state of a quantum system is to find the wave function

that minimizes the energy of a system and a possible strategy of resolution of classical optimization problems

is exactly to reduce them to a k-local Hamiltonian problem.

The most natural form under which hard computational problems appear in industry and science is as

optimization problems. Hence in order to have a better understanding of how quantum computational

techniques apply to these problems, in this section we briefly review the background of the field (further

information can be obtained in the following references: [180, 63]).

Figure 15: Hierarchy of continuous optimization problems.
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A first division between optimization problems regards the type of variables, which define the type of

program, e.g. if 𝑥 is a vector of variables, and 𝑛 an integer denoting the number of variables, the following

classes popup:

• Continuous: 𝑥 ∈ ℝ𝑛
• Mixed integer: 𝑥 ∈ ℝ𝑛 × ℤ𝑛;
• Binary optimization: 𝑥 ∈ {0, 1}𝑛;
• Integer programming: 𝑥 ∈ ℤ+0 .
A further division of optimization problems concerns the type of functions and restrictions to optimize,

which can be hierarchically organized, in terms of expressiveness, as follows (also presented in in figure 15):

least-squares, linear, semi-definite, convex and non-linear.

Linear programs are the most common form of optimization problems found in practice, and for continuous

variables, there are efficient algorithms that can find the optimal solution. On the other hand, for the discrete

cases, i.e. binary, or integer variables, the worst-case is NP-HARD. In quantum computing a relevant class

of optimization problems is the one of semi-definite programs (SDP’s), which correspond to a generalization

of linear programs, where restrictions can be expressed as matrices.

Definition 4.1.2. (Semi-definite program)

minimize 𝑇𝑟(𝐶𝑋)
subject to 𝑇𝑟(𝐴𝑖𝑋) ≤ 𝑏𝑖, 𝑖 = 1,…𝑚.

where 𝑋 is a 𝑛×𝑛 Hermitian matrix defining the variables, so as 𝐶, which defines the objective
function. The 𝐴𝑖’s are also 𝑛 × 𝑛 Hermitian matrices and define program restrictions.

Linear programs correspond to a particular case of an SDP, where all matrices involved are diagonal. A

convex program is even a more general than linear program, or an SDP program, where both the cost

function and the restrictions are convex.

Definition 4.1.3. (Convex Program)
Is an optimization program where the function 𝑓0 specifies the objective function, and 𝑓𝑖
and 𝑏𝑖 specify the restrictions, all of them being convex functions, i.e. satisfying

𝑓𝑖(𝛼𝑥 + 𝛽𝑦) ≤ 𝛼𝑓𝑖(𝑥) + 𝛽𝑓𝑖(𝑦) (104)
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Convex problems have the important property that every local minimum, corresponds to the global minima,

and for this reason, there are polynomial solutions for these problems, at least for the continuous form,

based, for instance, in gradient descent methods [79].

Optimization programs involving discrete variables are, in general, harder than continuous ones, and

actually, the latter ones usually correspond to relaxations of the former. An important sub-type of discrete

optimization problems is combinatory optimization, where the solution space is given by the powerset of

the set of possible components of a solution, e.g. all possible sets of edges in a graph, induced by the set

of all possible assignments of binary variables 𝑥 ∈ {0, 1}𝑛, e.g. taking the example of edges in a graph,0 determines an edge is not present, 1 determines its presence and a string is a possible solution of the

problems.

Definition 4.1.4. (Combinatory Optimization)

minimize 𝑆⊆𝑁{∑𝑗∈𝑆 𝑐𝑗 ∶ 𝑆 ∈ 𝒫}
where 𝒫 is the set of possible solutions, 𝑆 is a solution, 𝑗 a component of the solution and𝑐𝑗 its cost.

Moreover, a particular important class of binary optimization programs, is the quadratic unconstrained

binary optimization (QUBO) one, particularly important, due to its proximity with finding the ground-state of

the Ising Hamiltonian:

Definition 4.1.5. (Quadratic unconstrained binary optimization (QUBO))

minimize 𝑐⊤𝑥 + 𝑥⊤𝑄𝑥
subject to 𝑥 ∈ {0, 1}𝑛, with 𝑐 ∈ ℝ𝑛, 𝑄 ∈ ℝ𝑛×𝑛

A nice survey about QUBO problems can be found in the work of [233]. Furthermore, a relevant reference

about integer programming is given in [197].

4.2 Optimizat ion using quantum computers

The seek for optimization algorithms has been very active in the last few years, and there exist many

different approaches to tackle optimization problems using quantum computers. As presented in figure

16, such techniques can be organized in three main families of techniques: universal algorithms, i.e.

circuit-based algorithms designed for universal computers, which exhibit polynomial quantum advantages

to their classical counterparts; quantum annealers, i.e. techniques based in the annealing and adiabatic
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computing models; Variational methods, which are targeted to short-time devices, and mostly are classical

optimization algorithms taking advantage of the exponential gain in Hamiltonian sampling. Throughout the

following sections these notions are discussed with more detail.

Figure 16: Types of approaches to optimization problems

4.2.1 Universal quantum algorithms

There are efficient quantum algorithms to solve least-squares, linear and semi-definite programs, up to

convex programs, with at least polynomial advantage. The algorithm for the least-squares problem is based

on the HHL algorithm [373], where an exponential advantage to classical approaches can be obtained,

despite the existence of polynomial classical algorithms to this kind of problems. Another very relevant line

of work is the one started by Brandao and Svore [80] providing an algorithm for Semi-definite programs,

yielding a polynomial advantage to linear programs, based on several geometrical parameters. This line of

work was also pursued in [350, 216, 349]. There are also some results within this field, concerning more

general convex optimization problems, which contrary to least-squares and SDP problems, have no natural

quantum structure associated. However, an algorithm with a quadratic improvement to the classical state

of the art algorithm is available [351, 93]. In an even more general setting, shall be considered the work

on quantum gradient descent algorithms [172, 306], which can be applied to any optimization problem,

including non-convex and non-linear optimization [93], in some cases with polynomial quantum advantage.

In a recent line of work, it has also started to be explored the application of the Grover Adaptive algorithm in

optimization problems [171, 47].

4.2.2 Quantum adiabatic computing and quantum annealing

The quantum computational technique of quantum annealing was firstly introduced in 1989 by Apolloni et

al. [26], being one of the first quantum computational techniques conceived. In this work it was established

a correspondence between the Schrödinger operator, 𝑑2𝑑𝑥2 + 𝑉(𝑥) on a semi-classical regime, and a
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function to be minimized, corresponding to a combinatorial optimization problem, by modeling the latter

on the p-otential 𝑉(𝑥) of the former. In this setting, the local minima correspond to the points of lower
potential, and, physically, the wave function will yield greater probabilities at such points. However due to

the, exclusively quantum, tunneling effects, it also becomes possible that particles break potential barriers

and jump to the region of other local minima, eventually finding global minima. In such work, this is clearly

shown by the analysis of the semi-classical dynamics of the ground-state of the system: in one hand it is

verified that the equilibrium points (points to which the dynamics tends to) of the dynamics correspond

to local minima (zeros of the derivate function), and that quantum tunneling allows the jump between

equilibrium points. It can also be shown that if enough time passes the dynamics tends to go to the global

minima. Hence, quantum annealing can be understood as the quantum counterpart of the classical method

of simulating annealing, where thermodynamical oscillations guarantee the escape from local minima, and

if enough time passes the system will converge to the global minimum.

However, it is believed that this method produces a quantum advantage, by converging more quickly

than simulate annealing to global minimum, but most importantly, by doing so in semi-classical regimes,

i.e. being more tolerant to environmental noise. The idea has already yielded several short-term devices as

documented in [153, 215, 126].

Moreover, adiabatic quantum computing, was firstly proposed by [148], and can be understood as a

particular case of quantum annealing, applicable when the environmental conditions (i.e. temperature and

dissipative conditions), are compatible with the adiabatic theorem, i.e. allow for an adiabatic transition

where no exchange of information with the environment happens [222].

The main idea of the technique is to prepare the system in the ground state of an easy to prepare

Hamiltonian (𝐻𝐼), and then, slowly introduce the action of a second Hamiltonian (problem Hamiltonian), in

a perturbative way, in the system, so that in the end the system is encountered in the ground state of the

sum of Hamiltonians. The total Hamiltonian of the system shall read as:

𝐻 = 𝐻𝐼(𝑡𝑇) + 𝐻𝑃(1 − 𝑡/𝑇) (105)

If the transition occurs slowly enough (large 𝑇), the global system will stay in the ground-state, which will be

equal, in the end of the transition, to the ground state of Hamiltonian 𝐻𝑃. Hence, all that is necessary is
that the solution of the problem P, coincides with the global ground state of Hamiltonian 𝐻𝑃. There are
many methods of doing this mapping, and adiabatic computing, despite being a universal computational

method [17], is particularly suited for solving optimization problems [149].

These techniques find many fields of application, such as in traditional computer science, e.g. search

engines [165], or even board games [345], or in a large spectrum of industrial applications. The latter

includes pharmaceutics [286]), or a multitude of problems in finance, e.g. portfolio optimization [313], risk

analysis [376], or the prediction of financial crisis [279]. A good review on the applications of quantum

computers in finance is available in reference [280]. Finally, the spectra of applications encompass traditional
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areas of optimization, such as planning and scheduling problems [310, 358], instantiated in fields such as

health [202] or logistics [136]. The quantum advantage of quantum annealers is yet under discussion, as

while it may not be possible to obtain an exponential advantage in exact solutions of optimization problems,

it may be possible to obtain advantages in approximate versions [316].

4.2.3 Variational methods

Quantum variational methods are hybrid quantum-classical approximation algorithms, targeted at optimization

problems [269], which can be applied in traditional optimization fields, such as combinatorial optimization,

as well as in quantum physical problems, such as finding the ground-state of quantum physical systems

[150, 147]. The former ones are, however, particular cases of the latter, i.e. the variational methods can be

applied to classical optimization problems, by finding a QUBO formulation for them, which can be trivially

mapped onto an Ising Hamiltonian (there are many software tools to aid in this translation available, for

instance, in the qiskit platform [116]), over which the variational method is used, to obtain its ground-state.

As expected, there is evidence that the computational processes of variational methods are as complex

as ground-state problems [67]. Recently, these methods have started to be used, also, in mixed-integer

optimization problems, by the use of decomposition techniques [164].

Moreover, variational methods have also been used to obtain short-term versions of the most popular

quantum algorithms, such as the Grover [270], or Factoring [25], although the quantum advantage is less

clear in these settings. This class of methods became a cornerstone of nowadays quantum computation, due

to relationship between the amount of quantum resources required and the quantum advantage obtained

(more on this in section 4.2.5), i.e. low resources are required to obtain quantum advantage, turning devices

based on this technique, good candidates to quantum supremacy and proof-of-concept for industrial and

quantum physics optimization problems.

4.2.4 The Variational Quantum Eigensolver

The Variational Quantum Eigensolver (VQE) method, is a variational method, used to estimate the lowest

eigenvalue (the ground state energy) of a Hamiltonian, introduced by [287], which has been gaining relevance

in recent literature on quantum computation, through its application to Hamiltonian ground-states search,

and general optimization tasks – see, e.g., [268].
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Figure 17: Application of the variational method to fermionic problems, adapted from [268].

The method is a quantum version of the variational method for the calculation of the ground state energy,

extensively used in Physics (also known as the Rayleigh-Ritz method) and has also been widely used for a

long time in Quantum Chemistry – see, e.g., [243].

𝐸[Ψ( ⃗𝜃)] = ⟨Ψ( ⃗𝜃)|𝐻|Ψ( ⃗𝜃)⟩⟨Ψ( ⃗𝜃)|Ψ( ⃗𝜃)⟩ . (106)

The optimization consists of the determination of the set of parameters ⃗𝜃 that minimize the function𝐸[Ψ( ⃗𝜃)] function, defined by equation (106), consisting of the expectation value of the action of the

Hamiltonian operator. The VQE method is an iterative method, wherein each iteration a quantum state,

corresponding to a parameterized trial function Ψ( ⃗𝜃) (see section 4.3.5 for an example), is prepared and

the expected eigenvalue with respect to the system’s Hamiltonian is calculated.

Then a classically implemented algorithm updates the parameters ⃗𝜃 ∈ ℝ𝑛 of the quantum state using a

classical optimization routine. The previous step is repeated until some convergence criteria (e.g., in energy

and/or iteration number) are satisfied. Any optimization method able to perform this task can, in principle,

be used. On IBM Q [116], a few methods are available for this purpose. For instance, the Simultaneous

Perturbation Stochastic Approximation Algorithm [SPSA, see 64], which is characterized by a very good

performance under noise, or the Cobyla method [295].

The scheme of the method is depicted in Fig. 17, adapted from the latter work. Even if the optimization

part is mostly classical a quantum advantage is, still, obtained, as further discussed in section, 4.2.5. A

good additional discussion of this method can be found in [265].
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4.2.5 The quantum advantage of the VQE method

Each iteration in the VQE method, requires the evaluation of the action of the Hamiltonian over the ansatz,

i.e. the estimation of the eigenvalue for the current ansatz, which corresponds to the cost function. As it is

well-known, this can be done, with an exponential advantage, by the use of the quantum phase estimation

(QPE) algorithm [10], which has also several other applications, such as in the resolution of linear equations

[191].

The QPE method requires an approximation of the evolution operator, �̂� = exp{(−𝑖𝐻𝑡}) (𝑡 is time),
and its application to the initial state an appropriate number of times. For an eigenstate, the application of �̂�
results in adding a phase (−𝐸𝑡), so that the energy eigenvalue 𝐸 can be estimated. Unfortunately, despite

its theoretical attractivity and a broad scope of possible applications, it poses serious technical difficulties,

which makes its practical realization unlikely at the present level of maturity of quantum computers: it

requires a very large number of entangled qubits and quantum gates to be effective.

Alternatively, one can adopt a strategy of applying the Hamiltonian over a state several times, measuring

the result (i.e., performing the quantum sampling), to obtain an estimation of the expected eigenvalue,

for which effective algorithms are available, particularly the Quantum Expected Eigenvalue Estimation

(QEE) method. The method requires that the Hamiltonian operator can be decomposed into polynomial

(𝑀) independent 𝑛-qubit operators and consists of the “measurement” of the expectation values of such
operators for a trial state |Ψ⟩ (also known as the ansatz):

⟨𝐻|𝐻⟩ = ⟨Ψ|𝐻|Ψ⟩= ∑𝑖; 𝑞 ℎ𝑖𝑞 ⟨𝜎(𝑞)𝑖 ∣𝜎(𝑞)𝑖 ⟩ +∑𝑖1,𝑖2;𝑞1,𝑞2
ℎ𝑖1,𝑖2𝑞1,𝑞2 ⟨𝜎(𝑞1)𝑖1 ⊗ 𝜎(𝑞2)𝑖2 ∣𝜎(𝑞1)𝑖1 ⊗ 𝜎(𝑞2)𝑖2 ⟩ +⋯ (107)

The estimation of the expectation values, ⟨⋯⟩, requires repeated measurements on the polynomial number
of independent terms. An objective comparison of the QPE and QEE methods is presented by [265] and

summarized in Table 8.

Table 8: Comparison of resources needed for two methods, QPE and QEE. 𝑀: the number of
independent terms of the Hamiltonian approximation, 𝑝: the precision chosen, 𝑂(...):
asymptotic lower bound of the associated resource function. See text for details.

Method
Number of
state preparations

Coherence
time

Number
of steps

QEE 𝑂(𝑀) 𝑂(1) 𝑂(|ℎ𝑚𝑎𝑥|2𝑀𝑝−2)
QPE 𝑂(1) 𝑂(𝑝−1) 𝑂(𝑝−1)
A main advantage of the QEE, when compared with QPE, is that it largely reduces the need for gates,

but, more important, the amount of time the entanglement over sets of qubits has to be maintained, i.e.
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the coherence time, is 𝑂(1) (independent of precision, 𝑝), which is within the grasp of existing quantum
computers, while it grows linearly with 𝑝, 𝑂(𝑝−1), for QPE. However, QEE introduces the need to prepare
more copies of the ansatz to maintain the independence of the terms in Eq. (107) – 𝑂(𝑀) against 𝑂(1)
for QPE – requiring polynomially more memory, i.e. qubits. Furthermore, for the desired precision 𝑝, the
number of necessary sampling steps is 𝑂(|ℎ𝑚𝑎𝑥|2𝑀𝑝−2), where ℎ𝑚𝑎𝑥 is the term with the maximum

norm in the decomposition of the Hamiltonian. In summary, the QEE method reduces the required minimum

coherence in the QPE, while preserving the significant quantum advantage in comparison to classical

methods, introducing however a polynomial penalty, both in time and memory, i.e. number of qubits.

4.3 Case study: Calculat ion of the ground–state Stark effect in small molecules

The work of LLoyd et al. [249] on the simulation of local Hamiltonians, initiated the modern era of quantum

simulation research, by providing a realizable quantum process to the idea introduced by Feynman in 1982

[151]. The path from that point to the one in which it will be possible to simulate quantum chemistry

systems, includes the independent works of Wiesner et al. [374], and Zalka et al. [383], and the work of

Ortiz et al. [278], on the simulation of Fermionic Hamiltonians. Jointly, they provide the foundation for the

simulation of quantum chemistry.

Since then the number of quantum algorithms in quantum chemistry has grown exponentially, making

it one of the disciplines where quantum computation can have more impact. From the technical point of

view, a very relevant issue to the simulation of quantum chemistry systems, as seen in section 3.2, is to be

able to efficiently approximate Hamiltonians for quantum chemistry using quantum gates and circuits. The

processes for doing this have greatly improved throughout the years both in terms of the resources required

[367, 192, 294, 32] and of the Hamiltonian representation chosen [34, 33, 257], with an exponential

advantage in many cases.

The process of quantum simulation aims at the calculation of relevant properties, as for instance what

was achieved in the seminal works of Lidar [246], on the calculation of thermal rates in chemical reactions,

and Aspuru-Guzik et al. [31] on the calculation of ground states of simple molecules. These two works are

also characteristic examples of the two types of properties of interest in quantum chemistry, the dynamic

ones, which concern aspects of the evolution of the system, e.g. chemical reactions, and the static ones,

which concern properties about the eigenvalues. Examples of the former can be found, for instance, in

works on the process of nitrogen fixation [221, 309], and of the latter in the characterization of molecular

energy spectra [371], useful, for instance, to the optimization of molecular geometries [220]. A particular

important static property is the calculation of the minimum eigenvalues, which can be calculated in many

ways, including modified versions of phase estimation, the so-called iterative phase estimation [281, 239].

More recently, the so-called short-term devices started to appear, and quickly gained relevance in the

landscape of quantum simulation of chemistry research, namely the development of specific methods
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targeted to this kind of devices, e.g. based on the VQE method. On the field, these methods are already

extensively studied, both from the theoretical and experimental points of view (see [90] for an excellent

review on the subject). The state of the art on this particular subject encompasses the calculation of the

ground state of small molecules, namely, 𝐻2, 𝐿𝑖𝐻, 𝐵𝑒𝐻2 [218], or the charged 𝐻𝑒𝐻+ [326, 287], in

physical systems possessing 2 to 6 physical qubits. Still on this field with small quantum devices, one shall

also highlight the very recent breakthrough of [300], on the simulation of the isomerization of diazene, using

chains of 𝐻2 molecules, on physical devices with 12 physical qubits.

The hydrogen molecule is the simplest one existing in nature, and the LiH molecule is just a bit more

complex than H2, lacking its mirror symmetry, which makes the calculation slightly more complicated.

Both have been the natural test case for experimental and theoretical research, particularly concerned

by the calculation of their ground state properties and the dissociation curves, which have recently been

recalculated using advanced classical [362] and quantum [111] algorithms (the latter with extension to

excited states).

The following sections are focused on the exploration of the simulations of such two molecules hydrogen

(H2) and lithium hydride (LiH), under the action of strong stationary electric fields (Stark effect) [181], using

the commercially available quantum computer, the IBM Q, accessed through the QuantaLab UMinho

Academic Q Hub, and programmed using the QISKit platform [116]. To the best of our knowledge, it has

not been studied directly in a NISQ machine and constitutes the main contribution of this work.

We aim also at revisiting the necessary steps, as well as the relevant theory, for the construction of a

quantum simulation for a small molecule using the VQE method, explored in section 4.2.4, as it poses many

conceptual and practical challenges, far from trivial [371]. The VQE method, is in some sort, an algorithmic

framework, requiring the following input:

• A qubit Hamiltonian, which requires the calculation of the matrix elements of the fermionic Hamiltonian,

and an appropriate mapping of the resultant matrix onto qubit Hamiltonians;

• The choice of an appropriate ansatz and its implementation on quantum circuits;

• The choice of a classical optimization method and the application of the VQE routine.

Hence, over the next sections, we will discuss the relevant theory for these quantum simulations, namely,

the Quantum Hamiltonian formalism for many-body systems, the Hartree-Fock approximation and the second

quantization representation. A good introduction to the subject is offered, for instance, by [243] and [338].

The necessary items to the application of the VQE method are also reviewed, bearing in mind that the

VQE method itself was already explored with detail in 4.2.4. The actual calculation of the specific matrix

elements is extensive, but it is available in the associated publication [344] and in appendix A. We will also

explain the mapping onto a system of qubits and the design of the quantum circuit corresponding to the

initial Hamiltonian, and the execution of the VQE method to this case study, so as the correspondent results

obtained.
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4.3.1 Many-particle systems

The Schrödinger’s equation for a system of non-interacting particles can be decomposed into a set of

uncoupled equations for each particle and the system’s WF suitably factorized. A combination of two

non-interacting and non-entangled systems can be described by applying the tensor product to the two

vector spaces,1 with resultant basis given as follows:

|Ψ(1)⟩ ⊗ |Ψ(2)⟩ = 𝑀1∑𝛼
𝑀2∑𝛽 𝜆𝛼𝜇𝛽|Ψ(1)𝛼 ⟩ ⊗ |Ψ(2)𝛽 ⟩

= 𝑀1∑𝛼
𝑀2∑𝛽 𝜆𝛼𝜇𝛽|Ψ(1)𝛼 Ψ(2)𝛽 ⟩ . (108)

In Eq. (108), Ψ(𝑠)𝛼 denotes an eigenfunction of a state 𝛼 = 1,… ,𝑀𝑠 of the system Ψ(𝑠) (𝑠 = 1, 2). The
dimension of the product vector is dim(Ψ(1)) ∗ dim(Ψ(2)) = 𝑀1 ⋅ 𝑀2.
When the particles constituting the system are identical, their spin becomes highly relevant. The spin,

which is an intrinsic angular momentum of the particle, distinguishes between two different types of particles,

bosons (e.g. photons) and fermions (e.g. electrons and protons). For fermions, the Pauli exclusion
principle states that the system’s WF must be antisymmetric with respect to the permutation of any two
particles. This entails an important restriction upon the WF, namely that the product vector (108), if applied
to a pair of non-interacting electrons, is not compatible with the Pauli principle.

In Quantum Chemistry, a single-electron WF is called orbital [338]. One can distinguish spatial orbitals𝜙(r), where 𝑟 corresponds to spatial coordinates, and spin orbitals 𝜒(x), where x = (r; 𝑠) and 𝑠 ∈ {↑, ↓}
stands for two possible orientations of electron’s spin. For two electrons, the Pauli principle means that

𝜒(x1, x2) = −𝜒(x2, x1) (109)

or, equivalently, 𝜙(r1, r2) = ∓𝜙(r2, r1) , (110)

where the upper (lower) sign corresponds to parallel (antiparallel) spins of the two electrons. If the electron-

electron interaction is neglected, the correct (i.e. compatible with the Pauli principle) two-electron WF is

written in the form of the so-called Slater determinant,

|𝜒(1)𝛼 𝜒(2)𝛽 ⟩ = 1√2 ∣∣∣∣ 𝜒𝛼(x1) 𝜒𝛽(x1)𝜒𝛼(x2) 𝜒𝛽(x2) ∣∣∣∣ , (111)

1 For interacting or entangled systems, the total WF cannot be written as a product ofits parts. Entangled parts of a system,
even if they do not interact physically, may not be described by a wave function, only represented by a density matrix.
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where 𝜒𝛼(x) and 𝜒𝛽(x) designate different spin orbitals. A Slater determinant can be straightforwardly

generalized towards the case of 𝑁 identical non-interacting particles. It vanishes when any two electrons

“occupy” the same spin orbital, as required by the Pauli exclusion principle.

The Slater determinant is a simple way of constructing a many-electron WF from spin orbitals representing

non-interacting electrons. Complete neglection of the Coulomb interaction between the electrons would be

too crude an approximation, while solving directly the many-electron Schrödinger equation is an intractable

problem. A compromise is achieved by a self-consistent field method also called Hartree-Fock (HF)

approximation. An effective one-electron operator is introduced, 𝑣𝐻𝐹(x), called the Fock operator,
which includes, as a part of the single electron potential energy, the electron’s interaction with all other

electrons whose positions are averaged under an assumption that the WF representing the system of 𝑁
electrons is a single Slater determinant. An explicit expression for 𝑣𝐻𝐹(x) will be presented below.
4.3.2 Molecular Hamiltonian and Hartree-Fock approximation

The general form of a molecular Hamiltonian is (in atomic units):

𝐻mol = − 𝑁∑𝑖=1
12∇2𝑖 − 𝑀∑𝐴=1

12𝑀𝐴∇2𝐴 − 𝑁∑𝑖=1
𝑀∑𝐴=1

𝑍𝐴𝑟𝑖𝐴
+ 𝑁∑𝑖=1

𝑁∑𝑗>𝑖
1𝑟𝑖𝑗 + 𝑀∑𝐴=1

𝑀∑𝐵>𝐴
𝑍𝐴𝑍𝐵𝑟𝐵𝐴 . (112)

The first and second terms of (112) correspond to the kinetic energy of the electrons (numbered by 𝑖 and𝑗 = 1,… ,𝑁) and nuclei (numbered by𝐴 = 1,… ,𝑀), respectively. The third one represents the Coulomb

attraction of each electron to each nucleus with 𝑟𝑖𝐴 being the electron-nucleus distance and 𝑍𝐴 the nucleus

charge. Finally, the fourth and fifth terms correspond to the repulsion among the electrons and the nuclei,

respectively. It is common and well justified to use the Born-Oppenheimer approximation, which
neglects the motion of the nuclei because they are much heavier than electrons, whereby the potential

energy of the nucleus-nucleus interactions becomes a constant (for fixed placement of the nuclei) hence a

parameter for the electron problem. With this, the electron Hamiltonian (112) reduces to:

𝐻𝑒𝑙 = − 𝑁∑𝑖=1
12∇2𝑖 − 𝑁∑𝑖=1

𝑍𝐴𝑟𝑖𝐴 + 𝑁∑𝑖=1
𝑁∑𝑗>𝑖

1𝑟𝑖𝑗 . (113)

For the H2 molecule, the Hamiltonian (113) depends on a single parameter, the distance between the
protons 𝑑. If the lowest eigenvalue of (113), 𝐸0(𝑑) < 0, is larger in absolute value than the proton-proton
repulsion energy, 𝐸𝑟𝑒𝑝(𝑑) = 𝑑−1, the molecule is bound, as illustrated in Fig. 18.
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Figure 18: Left: the hydrogen atom consists of a single electron and a proton and has the energy−0.5 a.u. in the ground state. Right: in the hydrogen molecule H2, made of two
nuclei and two electrons, the total energy can be lower than −1 a.u., which makes the
molecule stable.

The Hamiltonian (113) has to be reduced to a single-electron one in order to proceed with the determi-
nation of its eigenvalues, which is achieved by means of the HF approximation, where one takes an average

over the positions and spins of all but one (to be labelled by 𝑖 = 1) electron. This is done by multiplying
equation (113) by |𝜒(1)𝛼 𝜒(2)𝛽 …𝜒(𝑁)𝛾 ⟩ and the corresponding “bra”, both in the form of Slater determinants

of dimension 𝑁 (the number of electrons in the system), and integrating over x2, x3, … , x𝑁, which leads

to ⎛⎜⎝−12∇21 − 𝑀∑𝐴=1
𝑍𝐴𝑟1𝐴 + 𝑣𝐻𝐹1 ⎞⎟⎠𝜒𝛼(x1) = 𝜖𝛼𝜒𝛼(x1) , (114)

where 𝑣𝐻𝐹1 is the average potential experienced by the “chosen” electron, and 𝜖𝛼 is the single-electron

energy. The HF potential can be written in the form:

𝑣𝐻𝐹1 = ∑𝛽 ∫|𝜒𝛽(x2)|2 1|𝑟12| 𝑑x2

− ∑𝛽 ∫𝜒∗𝛼(x1)𝜒∗𝛽(x2) 1|𝑟12|𝜒𝛽(x1)𝜒𝛼(x2) 𝑑x2
|𝜒𝛼(x1)|2 . (115)

The two terms in Eq. (115) are called Coulomb and exchange energies, respectively. The latter poses the
main difficulty in solving Eq. (114); however, its neglection (known as the Hartree approximation) results
in an unsustainable error. Due to the nonlinearity of the HF approximation, the equations are solved in

practice by self-consistent (iterative) methods, using a finite set of spatial basis functions, 𝜙𝜇(r) (𝜇 = 1, 2,… , 𝐾) – see, e.g., [338]. The solution yields a set HF spin orbitals {𝜒𝛼} with corresponding energies {𝜖𝛼},𝛼 = 1, 2,… , 2𝐾. The number of electrons in the system must be 2𝐾 ≥ 𝑁. The possibilities to place 𝑁
electrons over 2𝐾 spin orbitals gives rise to (2𝐾)!/(𝑁!(2𝐾 − 𝑁)!) Slater determinants, one of which
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represents the ground state of the system and the others correspond to excited states. The HF approximation

takes into account the Quantum Mechanical correlation caused by the Pauli principle, however, only of

electrons with parallel spins. The difference between the approximate HF energy and the exact energy of

the system is known as the correlation correction (or energy).

It is common to use, as initial approximation basis sets to represent molecular orbitals (MO) in the HF

equations, the linear combinations of atomic orbitals (LCAO). Since the exact atomic orbitals for a given

many-electron atom are difficult to construct, the so-called Slater-type orbitals (STO) are sometimes used,

which are inspired by the (exactly known) radial asymptotics of spatial orbitals of the hydrogen atom,2

𝜙(r)∼𝑟𝑛−1𝑒−𝜁𝑟𝑌𝑙,𝑚(𝜃, 𝜑)
(here 𝑌𝑙,𝑚 is a spherical harmonic). For instance, one can use

𝜙STO1𝑠 (𝜁 , r− RA) = (𝜁3𝜋)12𝑒−𝜁|r−RA|
for 𝑠-states, where 𝜁 is the Slater orbital exponent. As the STO functions are difficult to handle in many-center

integrals, one practical resort consists of approximating these functions with linear combinations of Gaussian

functions, known as STO-LG functions. The calculation of the necessary matrix elements is then greatly

facilitated, because the multi-center integrals with Gaussian functions can be evaluated analytically as

discussed in appendix A. In this work, a set of such functions with 𝑛 = 3 Gaussians mimicking each STO

function, named STO-3G basis, is used. For the 1𝑠 state, such a function is
𝜙STO−3G1𝑠 (𝜁 , r) = 𝑐1(2𝛼1𝜋 )34𝑒−𝛼1𝑟2

+ 𝑐2(2𝛼2𝜋 )34𝑒−𝛼2𝑟2 + 𝑐3(2𝛼3𝜋 )34𝑒−𝛼3𝑟2 , (116)

where 𝛼𝑖 are the Gaussian orbital exponents that have been optimized for the best possible approximation
of 𝜙STO1𝑠 (𝜁 , r) for a given 𝜁 [195]. The corresponding spin orbitals, 𝜒𝛼(𝑥), are obtained from 𝜙STO−3G𝜇 by

multiplying them with a spinor 𝜓(𝑠), 𝑠 ∈ {↑, ↓}.
4.3.3 Second quantization

In the quantum mechanics of systems consisting of a number of identical particles (electrons, in our case),

it is common to use the formalism called second quantization, originally introduced by P. Dirac – see, e.g.,

2 The STO includes a simple power function of the radius instead of a polynomial, and hence do not possess radial nodes.
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[138]. This formalism deals with the whole system of particles, instead of with each particle individually, by

introducing a new way of describing states, by the latter’s occupation numbers. Let {𝜒𝛼(x)} be a complete
set of one-electron (atomic or molecular) spin orbitals that constitutes the Hilbert space of a single particle.

If the particles were non-interacting bosons, a state of the whole system could be entirely specified by

indicating the numbers of particles, 𝑛𝛼, occupying each of these orbitals. Such an occupation number state
can be designated by a state vector |𝑛1, 𝑛2, ...⟩. If the particles interact with an external field or with each
other (but still assuming that they are bosons and no restrictions are imposed by the particle’s spin), the

state vector in the occupation number representation will evolve with time, obeying the time-dependent

Schrödinger equation (15) with the Hamiltonian written in terms of the occupation numbers

𝐻 = 𝐻1 +𝐻2 = ∑𝛼,𝛽 𝜏𝛼𝛽𝑎†𝛼𝑎𝛽 + 12∑𝛼,𝛽,𝛾,𝛿
𝜇𝛼𝛽𝛾𝛿𝑎†𝛼𝑎†𝛾𝑎𝛿𝑎𝛽 . (117)

The sum is made over states in the single-particle Hilbert space, e.g., 1𝑠-, 2𝑝-like, etc., 𝜏𝛼𝛽 being a matrix

element of the single-electron energy,

𝜏𝛼𝛽 = ∫𝑑x1𝜒∗𝛼(x1) ⎛⎜⎝−∇22 +∑𝐴 𝑍𝐴|𝑟𝐴1|⎞⎟⎠𝜒𝛽(x1) . (118)

The second term in (117) represents the Coulomb interactions between the particles, with the matrix

element given, according to the convention used in Quantum Chemistry [338], by:

𝜇𝛼𝛽𝛾𝛿 = ∫𝑑x1𝑑x2𝜒∗𝛼(x1)𝜒𝛽(x1) ( 1|𝑟12|) 𝜒∗𝛾(x2)𝜒𝛿(x2) . (119)

The integration in Eqs. (118) and (119) is over coordinates (and sum over spins) of one or two electrons

labelled 1, 2.

The Hamiltonian (117) is written in terms of so-called creation, 𝑎†, and annihilation, 𝑎, operators, which
add one particle to (or, remove from) an orbital 𝛼, respectively:

𝑎†𝛼 |𝑛1, 𝑛2,…⟩ = √𝑛𝛼+1 |𝑛1, 𝑛2,…⟩ ;𝑎𝛼 |𝑛1, 𝑛2,…⟩ = √𝑛𝛼 |𝑛1, 𝑛2,…⟩ . (120)

The product 𝑎†𝛼𝑎𝛼 is the occupation number operator for the orbital 𝛼. In the case of bosons, the creation
and annihilation operators for different 𝛼 and 𝛽 commute, because different orbitals are filled independently.

This is not the case of fermions, because of the Pauli exclusion principle. By virtue of this, the following

(anti-commutation) relations hold for the electron operators:

𝑎𝛼 𝑎†𝛽 + 𝑎†𝛼 𝑎𝛽 = 𝛿𝛼𝛽 . (121)
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It can be shown that (121) guarantees that the occupation numbers can take only values 0 and 1 in

accordance with the Pauli principle [138]. Therefore, the Hamiltonian (117) has the same form for bosons

and fermions, the only difference being in the (anti-)commutation relations of the creation and annihilation

operators. For fermions, each state |𝑛1, 𝑛2, ...⟩ of this Hamiltonian corresponds to a Slater determinant in
the Fock space (of dimension 2𝐾), with the number of columns and rows equal to the number of electrons
in the system, 𝑁 = ∑2𝐾𝛼=1 𝑛𝛼.
The choice of single-electron basis functions 𝜒∗𝛼(x) is, in principle, arbitrary, but if we “guess” their

form close to the “true” WFs of the system (which actually are not well-defined in the single-electron form!),

the non-diagonal elements of the matrices 𝜏𝛼𝛽 and 𝜇𝛼𝛽𝛾𝛿 will be much smaller than the diagonal ones.
For practical calculations of these integrals, the basis functions are expressed in terms of the STO-3G sets

explained in the previous section. The choice of molecular orbitals is based on the MO-LCAO approximation.

One can improve this initial approximation by solving first the HF equation (114) and using its solutions
to calculate the matrix elements. Then the diagonalization of Eq. (117) amounts to the evaluation of the
correlation energy.

In the sequel we also consider the stationary Stark effect described by the following (single-electron)

Hamiltonian: 𝐻𝑆 = −E ⋅ r , (122)

where E is the electric field intensity. Its second-quantization representation is identical to 𝐻1 in (117), and
the corresponding matrix element is written as

𝜏𝑆𝛼𝛽 = ∫𝑑x1𝜒∗𝛼(x1) (−𝑒𝔼 𝑟 cos 𝜃) 𝜒𝛽(x1) , (123)

where 𝔼 = |E|, and the 𝑧-axis is assumed to be directed along E. The use of the second quantization

formalism is facilitated, for instance, by the PyQuante [274] and the PyScf [337] tools, two Python

libraries targeted to quantum chemistry calculations. We present the matrix elements (118), (119) and
(123) calculated for 1𝑠, 2𝑠 and 2𝑝𝑧 atomic orbitals in appendix A.
4.3.4 Mapping the fermion Hamiltonian onto a qubit representation

In order to perform quantum computations, one needs to map the second-quantization Hamiltonian onto

a qubit (spin) representation and then design the corresponding quantum circuit that implements it. The

basic idea is to replace the fermionic operators 𝑎 and 𝑎† by tensor products of the Pauli matrices,
𝜎𝑥 = ⎡⎢⎣ 0 11 0 ⎤⎥⎦ , 𝜎𝑦 = ⎡⎢⎣ 0 −𝑖𝑖 0 ⎤⎥⎦ , 𝜎𝑧 = ⎡⎢⎣ 1 00 −1 ⎤⎥⎦ ,
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which can be done in a number of ways, such as the Jordan-Wigner or Bravyi-Kitaev transformations [89].

The former, addressed in this section, is a specific method based on the isomorphism between the creation

and annihilation operators and the algebra of the Pauli matrices [371].

In the case of a single (one-electron) state, the Jordan – Wigner (JW) mapping is simple. Following the

convention of Fig. 19, common in Physics,

𝑎† ⇔ 𝜎+ ≡12 (𝜎𝑥 + 𝑖𝜎𝑦) = ⎡⎢⎣ 0 10 0 ⎤⎥⎦ ; (124)

𝑎 ⇔ 𝜎− ≡12 (𝜎𝑥 − 𝑖𝜎𝑦) = ⎡⎢⎣ 0 01 0 ⎤⎥⎦ ; (125)

𝑎†𝑎 − 12 ⇔ 12𝜎𝑧 = ⎡⎢⎣
12 00 −12

⎤⎥⎦ . (126)

The matrices 𝜎± represent the spin-raising and spin-lowering operators, respectively, while 𝜎𝑧 is related to

the occupation number operator.

However, usually another convention is used in quantum information, as the computational basis is

defined as follows:

|0⟩ = ⎛⎜⎝10⎞⎟⎠ ; |1⟩ = ⎛⎜⎝01⎞⎟⎠ .

s =
1

2

|↑〉

|↓〉

|1〉 ≡ a
†|0〉

|0〉 ≡ a |1〉

Figure 19: A scheme illustrating the mapping of a fermion onto a qubit. The arrows indicate
two spin projections. The two states of the Hamiltonian �̂� = 𝐶�̂�𝑧 (𝐶 is a positive real
constant) are usually denoted by |0⟩ (lower energy state) and |1⟩.They are connected by

the operators 𝑎 and 𝑎†. Considered as spin states, they may be denoted as (01) = |0⟩
and (10) = |1⟩, which leads to the correspondence between the 𝑎 and 𝑎† operators and

the Pauli matrices given by Eqs. (124) - (126).
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Accordingly, 𝑎† ⇔ �̂�− and 𝑎 ⇔ �̂�+ . (127)

In case of 𝑁 >1 fermions, the mapping becomes slightly more complex. In order to satisfy the anti-

commutation relations (121) between any pair of fermionic operators, one indexes the states by a single
index (𝛼) and adds the string, i.e. [spin]=[fermion]×[string], taking into account the occupation numbers,𝑛𝛼, of states with 𝛽 < 𝛼, for a given 𝛼:

𝜎+𝛼 ⇔ 𝑎𝛼𝑒𝑖𝜋 ∑𝛽<𝛼 𝑛𝛽 , 𝜎−𝛼 ⇔ 𝑎†𝛼𝑒−𝑖𝜋 ∑𝛽<𝛼 𝑛𝛽 . (128)

The relation (128) holds for multiple fermions and the phase factors (compare to (127)) can be represented
by the Pauli matrices, (𝜎𝑧)𝛽, acting on the corresponding fermionic states. Therefore, the fermionic

operators are mapped onto direct products of Pauli matrices as follows:

𝑎𝛼 ⇔ 1⊗(𝛼−1)⊗(𝜎+)𝛼⊗(𝜎𝑧)⊗(𝑁−𝛼)
= ⎡⎢⎣1 00 1⎤⎥⎦

⊗(𝛼−1)⊗⎡⎢⎣0 10 0⎤⎥⎦𝛼⊗⎡⎢⎣1 00 −1⎤⎥⎦
⊗(𝑁−𝛼) ; (129)

𝑎†𝛼 ⇔ 1⊗(𝛼−1)⊗(𝜎−)𝛼⊗(𝜎𝑧)⊗(𝑁−𝛼)
= ⎡⎢⎣1 00 1⎤⎥⎦

⊗(𝛼−1)⊗⎡⎢⎣0 01 0⎤⎥⎦𝛼⊗⎡⎢⎣1 00 −1⎤⎥⎦
⊗(𝑁−𝛼) . (130)

Thus, any Hamiltonian operator written in the second quantization representation can be rewritten in terms

of the raising and lowering spin operators and the Pauli matrix 𝜎𝑧. A catalogue of such translations can be
found in Table A2 of the work [371]. For a Hilbert space of 2𝐾 spin orbitals, a system of 2𝐾 fermions (i.e.

qubits) is required for the JW mapping. The resulting qubit Hamiltonian has the following generic form:

𝐻 = ∑𝑖; 𝑞 ℎ𝑖𝑞𝜎(𝑞)𝑖 + ∑𝑖1,𝑖2; 𝑞1,𝑞2
ℎ𝑖1,𝑖2𝑞1,𝑞2𝜎(𝑞1)𝑖1 ⊗ 𝜎(𝑞2)𝑖2 +⋯ (131)

where the indices 𝑖 refer to the type of the Pauli matrix (𝑥, 𝑦 or 𝑧), the indices 𝑞 run over qubits and each ℎ
in coefficients. The resultant is amenable to the treatment with the VQE method, explored in section 4.2.4.
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4.3.5 Trial wave functions (ansätze)

The ground state energy estimation requires an appropriate ansatz. If the number of electrons in the system,𝑁, is fixed, one may use the Slater determinant solution of the HF problem for the molecule at hands,

corresponding to its ground state. We shall denote it by |Ψ0⟩ and write as
|Ψ0⟩ = 𝑁∏𝛼 𝑎†𝛼|vac⟩ ,

where 𝛼 runs over the occupied orbitals and |vac⟩ denotes the vacuum (absence of particles). Alternatively,

one may start by defining a new “vacuum” state in the 𝑁-particle sector of the Fock space, which can be

chosen as |Ψ0⟩ and used to prepare the parametrized trial quantum state [48]. This can be done by a

quantum circuit implementing a unitary operator, �̂�, representing a set of perturbations to state |Ψ0⟩:
|Ψ( ⃗𝜃)⟩ = �̂�( ⃗𝜃)|Ψ0⟩ . (132)

The parametrized ansatz will be used to estimate the energy with respect to the Hamiltonian. Note that ⃗𝜃
stands for the whole set of parameters (also called “gate angles” in this context) that can be adjusted and

used in the optimization procedure (see Sec. 4.2.4 below).

There are several possible choices for constructing this operator, leading e.g. to the so-called Unitary

Coupled Cluster (UCC) and heuristic approaches that are discussed in by [89] and [48]. There are several

options for choosing different ansätze implemented in the QISKit package. Let us briefly consider the
UCC approach, which has mainly been used in this work.

A flexible way to generate multideterminantal (hence overcoming the HF approximation) reference states

within the Coupled-cluster (CC) method, suggested by [210], has been translated by [48] (specifically under

an angle of quantum algorithms for electronic structure calculations) into the unitary version of the CC

approach (UCC). The operator acting on the “vacuum state” according to Eq. (132) is chosen as follows:

∣Ψ( ⃗𝜃)⟩ = 𝑒�̂�( ⃗𝜃)−�̂�†( ⃗𝜃) ∣Ψ0⟩ . (133)

Here �̂� is an operator representing excitations from occupied to unoccupied states (labelled below by Greek

and Latin indices, respectively), composed of hierarchical (given by the dimension of the interaction operator,

which corresponds to the 𝑖 in �̂�𝑖) terms,
�̂� = �̂�1 + �̂�2 +… ,
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corresponding to 𝑛-particle excitations, namely,
�̂�1( ⃗𝜃) = ∑𝛼,𝑎 𝜃𝑎𝛼𝑎†𝑎 𝑎𝛼 , (134)

�̂�2( ⃗𝜃) = 12 ∑𝛼,𝛽; 𝑎,𝑏 𝜃𝑎 𝑏𝛼 𝛽𝑎†𝑎 𝑎†𝑏 𝑎𝛼 𝑎𝛽 , (135)⋯
The UCC ansatz usually retains only the two first terms in the expansion of �̂�, i.e. if neglects 3-particle and
higher-order excitations. The expansion coefficients in (134), (135) can be interpreted as matrix elements
of a certain excitation operator between occupied and unoccupied orbitals. They can be assumed to be real,

i.e., {𝜃𝑎𝛼, 𝜃𝑎 𝑏𝛼 𝛽,…} ∈ ℝ.

The anti-Hermitian combination �̂� − �̂�† in (133) makes the exponential operator unitary. Unitary opera-
tions are natural on quantum computers, yet the implementation into quantum circuits is not straightforward

because of the non-commutation of different parts of the Hamiltonian. So, the order in which the different

terms are written in the exponent is indeed important. This difficulty is bypassed by using the Trotter identity:

𝑒(�̂�+�̂�) = lim𝑛→∞ [𝑒�̂�/𝑛⊗𝑒�̂�/𝑛]𝑛 , (136)

where ̂𝐴 and �̂� are two non-commuting operators, e.g. ̂𝐴 = �̂�1 − �̂�†1 and �̂� = �̂�2 − �̂�†2. This is exact in
the limit 𝑛→∞, it is an approximation for finite 𝑛. Different Trotter approximations of the operator (133)
can be implemented on a quantum computer by transforming it into the qubit representation and using

standard circuit compilation techniques for the “exponentiation” of the Pauli matrices [89]. Some examples

of such circuits and comparison of results obtained for different orders (𝑛) of the Trotter approximation can
be found in the work by [48].

4.3.6 Results and Discussion

We used the procedure outlined in previous sections to calculate the ground state energy (which can

be straightforwardly converted into the dissociation energy) of two molecules, hydrogen (H2) and lithium
hydride (LiH). This has also been addressed, in which is presumably a novel result, under the action

of stationary electric fields of four different magnitudes (𝔼 = 0.0001, 0.001, 0.01, 0.1 atomic units;

1 a.u. ≈ 5 ⋅ 1011 V/m). These calculations were performed for the interatomic distances, 𝑑, from 0.2 to

4 Å with the step 0.1 Å.

The actual computational environment, where these experiments were conducted, was the IBM Q. Such

computational environment is available remotely through the internet and can be accessed and programmed

using the QISKit framework, written in the Python language. The actual code developed in this thesis is
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available from the following github repository: https://github.com/arcalab/experiments_quantum_chemistry/

tree/master/Qiskit_Programmatic_version_src (contents available upon request). It makes use notably of the

QISkit and the PySCF python framework.

The PySCF tool was used to specify the molecules and calculate the respective one-body and two-body

integrals, encompassing already the action of electric fields, using the theory developed throughout appendix

A. Both molecules were assumed to have zero global charge and spin zero; the STO-3G basis (116) was
used to calculate the integrals.

The evaluation of the corresponding integrals can then be reformulated into an assembling of quantum

circuits, to be executed using the set of software packages available e.g. in the QISkit framework: Terra,
Aer, Aqua and Ignis. The calculation of the dissociation curves requires the calculation of the ground
state energies (discussed in section 4.2.4) over a range of distances, to be able to identify the minimum

(bound molecule) and the asymptotics (separated atoms) ones. For this purpose, we used two methods:

the Exact Eigensolver (classical matrix-multiplication method, as a benchmark) and the VQE.

We used the UCC (discussed in section 4.2.5) as the variational method, i.e. as the technique to build

the ansätze for the molecules under study, and the HF approximation to obtain the initial solution for the

VQE method. In this relation, several parameters had to be considered: the maximum number of iterations

with the Cobyla method,3 the optimization level (an IBM Q -specific parameter determining the degree

of optimization of the circuits generated), the mapping method to use, such as the Jordan-Wigner (130),
Bravyi-Kitaev, or parity methods (see [89] for more information on these methods), each offering different

(precision) / (circuit size) relationships. The technical parameters of calculation, selected after a course of

trial and error, are summarized in Table 9.

The use of quantum or hybrid (such as VQE) procedures in the IBM Q require that a backend is

specified, i.e. an actual processing node able to execute the quantum circuits, which can be either a

classical computer able to perform a simulation, with or without simulated quantum noise, or a real quantum

device, with a number of qubits from 2 to 53. The results of this work were obtained using a simulator, the

qasm_simulator.

4.3.7 Results: H2 molecule

The total energy as a function of the interatomic distance, hence the molecule’s dissociation curve for

different values of the electric field, is depicted in Figure 20. The effect of the electric field on the shape of

the dissociation curve remains negligible at small values of the field inspected yet results in a drastic change

of the 𝑑→∞ asymptotic (slope) and in a noticeable shift of the equilibrium position for 𝔼 = 0.1 a.u. The

abrupt change in the 𝐸(𝑑) dependence slope at large distances, for very large electric field 𝔼 = 0.1 a.u.,

3 In this quantum computation setting, an iteration in the Cobyla method is an expensive operation in terms of computation
time, and therefore one may be interested in limiting the number of iterations. However, the method stops if convergence is
achieved and in our particular case, the method always converged before 15000 iterations.
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Table 9: The set of technical parameters used for the quantum calculations.

parameter value
shots𝑎 4096
Max. number of iterations
of Cobyla

15000

Max. number of iterations
of PySCF

5000

optimization level 3
mapping method Jordan-Wigner
QISkit version 0.13.0
backend qasm_simulator

(noisy simulator)𝑎number of times the execution of circuits is to be performed due to the stochastic nature
of quantum computers

Figure 20: Dissociation curve of the H2 molecule, as calculated with a classical solver (full lines)
and with the VQE (symbols connected by lines), for several values of the external
electric field 𝔼 marked by color. The Stark effect (i.e. the shift of the minimum
energy with electric field) is shown in the inset. Converged in an average of 40 Cobyla
iterations for each point.

can be related to the onset of the molecule’s dissociation, which becomes possible via tunneling through

the energy barrier (blue curves in Fig. 20).
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The inspection of the VQE results, represented by symbols connected by lines in Fig. 20, reveals a

numerical noise that apparently increases with the electric field magnitude. Possibly, the HF approximation

used as input for the quantum calculation becomes unstable under the action of a strong electric field.

The inset of Figure 20 shows the Stark effect for the molecule under study, that is, the shift between the

ground-state energy calculated under the action of the electric field and at 𝔼 = 0. The distance at which
the respective energies have been extracted was the energy minimum position yielded by the classical solver

at 𝔼 = 0, 𝑑𝑒𝑞 = 0.7 Å. We took this option because of the fluctuations of 𝐸(𝑑) obtained with the quantum
solver.

For a non-polar molecule without intrinsic dipole moment, as is the case of the H2, the stationary electronic
Stark effect should be quadratic in the electric field. However, with the limited minimal basis used, it looks

even weaker and becomes noticeable only for very strong fields.

4.3.8 Results: LiH molecule

Figure 21: Same as in Fig. 20 for the LiH molecule. Converged in an average of 70 Cobyla
iterations for each point.

The results for the lithium hydride molecule are shown in Fig. 21, where the effect of the applied electric

field is quite noticeable. The displacement of the 𝐸(𝑑) curve increases with the electric field: already

for 0.01 a.u. the shift of the dissociation curve becomes appreciable. The Stark effect (inset in Fig. 21)

increases with the field magnitude much faster then for the case of the H2 molecule. This is due to the
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intrinsic dipole moment the LiH molecule already possesses in the ground state. The Stark effect is linear in𝔼 for small fields but than starts growing much faster because of the additional polarization of the ground

state induced by the external field.

Similar to what happens in the case of the H2 molecule, the numerical noise is visible in the results and

becomes more pronounced in stronger electrical fields. Also, the ground state energy obtained with the

different solvers results in different values for the equilibrium distance, 𝑑𝑒𝑞, obtained for the quantum and

classical solver, – 1.5 Å and 1.6 Å, respectively, at 𝔼 = 0. Again, the latter was taken as the reference
value for the Stark effect evaluation.

4.4 Summary

In this chapter, the landscape of the application of quantum computers to very hard computational problems,

was explored. The focus were on the optimization ones, which are pervasive in industry and can be divided

in many types, from linear to convex and non-convex. It were also reviewed the quantum computational

techniques and algorithms employed for these types of problems.

The main contribution of this chapter was the calculation of the ground-state of two small molecules 𝐻2
and 𝐿𝑖𝐻 under the action of a strong electric field, which configures the so-called Stark effect. The study

of the ground-state of such molecules was extensively studied in literature, including by using quantum

computers, however, the inclusion of the electric field in the calculation of the ground-state on a quantum

computer, poses many non-trivial challenges, in theory and in practice, which were not addressed directly in

existent literature, but are addressed in the sequel. Hence, it was attempted to outline, in a concise way

yet indicating the essential elements and the underlying theory, a representative practical resolution of this

problem on the commercially available (since recently) quantum computer, IBM Q, involving:

• The fermionic formulation of quantum chemistry systems;

• The connection between fermionic Hamiltonians and the quantum circuits;

• The state preparation, running of the algorithm and the evaluation of the results.

The calculated results were obtained the quantum device simulator and comprise the total energy as

a function of bond length (i.e. the dissociation curve), also under an applied stationary electric field. We

also evaluated the shift of the molecule’s energy at a fixed 𝑑 (equal to the equilibrium interatomic distance)

with the electric field, i.e. the stationary electronic Stark effect, supposedly quadratic in 𝔼 and small for

the non-polar H2 molecule but containing the linear term, and the much stronger in case of the polar LiH

molecule. Summing up, our case study seems to provide evidence for the feasibility of the use of this

quantum computer for small molecules, with a reasonable number of iterations performed.
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A L OG I C F O R TH E Q A SM P ROG R AMM I N G L ANGU AG E

I would like to make a confession which may

seem immoral: I do not believe absolutely in

Hilbert space anymore.

John von Neumann, letter to Garrett Birkhoff,

1935.

In the beginning of the twentieth century, there was a line of thought on the derivation of a comprehensive

theory, able to serve as a foundation for mathematics, out of logical principles and in a formal way: the

so-called logicism. This endeavour aimed at replacing ad-hoc theories of mathematics, as it is the case of

the Zermelo-Frankel set theory.

Eventually, this endeavour lost interest, due mainly to Gödel incompleteness theorems, however, under-

standing logical structures behind scientific theories in order to have a deeper understanding of them is, still

today, a widely used approach across many fields of science. In this regard, quantum theory is a very good

example, as it possesses a very specific and insightful notion of logic, as firstly discussed by Von Neumman

and Birkhoff in their seminal work of 1936 [66], where quantum logic was introduced for the first time.

This logic is centred around the notion of observable properties, which organize themselves into an

algebraic structure which is clearly not a Boolean algebra, due to the non-commutativity of some of them.

The proper understanding of these notions originated an extensive research work, and it was particularly

important in the understanding of quantum theory itself, for instance, by helping in the axiomatization of

quantum theory in the formalism of Hilbert spaces. Furthermore, several approaches to the obtention of a

quantum theory of gravity follow a somewhat logicist approach to physics, by attempting on defining the

axiomatics for a potential unified theory, where, of course, the insights of quantum logic have played an

important role.

Nowadays, the establishment of proper logical structures for quantum theory is also driven by the interest

in automated reasoning methods and tools to deal with quantum protocols and algorithms, which has

become particularly relevant in the recent years. In this regard many logical frameworks have been proposed
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coming from different origins, from purely algebraic terms and category theory, to modal and linear logic.

In this chapter we revisit the relevant background to understand quantum logic, in sections 5.1 and 5.2,

and propose a logic able to deal with the QASM programming language, a quantum programming language

involving quantum and classical procedures. An early version of this work, presented in sections 5.3, 5.4

and 5.5, appeared in the Dali 2019 workshop [343].

5.1 Standard quantum logics

In 1936 Von Neumman and Birkhoff, published the seminal paper [66] on what would become quantum

logic, focusing on the study the algebraic properties of quantum propositions. They consider that the

latter correspond to the tests that can be performed experimentally, i.e. the so-called testable properties.

Mathematically, such properties are closed linear subspaces of Hilbert spaces, which can be defined as

follows:

Definition 5.1.1. (Orthogonality and Orthocomplement). Let ℋ be a complex Hilbert space.
Two vectors 𝑥, 𝑦 ∈ ℋ are said to be orthogonal, denoted 𝑥⊥𝑦, iff ⟨𝑥∣𝑦⟩ = 0. Given a subset𝑋 ⊆ ℋ, the orthocomplement of X, denoted by ∼ 𝑋, is given as:

∼ 𝑋 = {𝑦 ∈ ℋ| 𝑦⊥𝑥 for all 𝑥 ∈ 𝑋} .
Definition 5.1.2. (Closed Linear Space) Let 𝑃 be a subspace of a complex Hilbert space ℋ.
P is a closed linear subspace if ∼∼ 𝑃 = 𝑃.
Taking testable properties as propositions, the logic develops as expected. Negation is given by the

orthocomplement of a proposition, denoted∼ 𝜙, where 𝜙 is a proposition, and conjunction, denoted 𝜙∧𝜓,
is given by the intersection of the two closed linear subspaces. The definition of disjunction, slightly different

from the classical one, is given by the quantum join: the closed linear subspace defined by the classical

union of two propositions.

Definition 5.1.3. (Quantum Join) Let ℋ be a complex Hilbert space and let 𝐾, 𝐿 ⊆ ℋ be
two subsets. The quantum join of 𝐾 and 𝐿, denoted 𝑘 ⊔ 𝐿 is given by

𝐾 ⊔ 𝐿 =∼∼ (𝐾 ∪ 𝐿) . (137)

A minimalistic quantum logic builds on these operations, according to the following syntax:

𝜙 ∶∶= ⊥| ∼ 𝜙|𝜙 ∧ 𝜙|𝜙 ⊔ 𝜙 ,
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where ⊥ is the property false, corresponding to the empty closed Hilbert space. Valid propositions, as usual

in logic, possess an order relationship, based on the fact that some propositions can be embedded on

each other. For instance, if 𝐴∧ 𝐵 is true, one necessarily concludes that 𝐴 is true, and hence one states

that 𝐴 ∧ 𝐵 ≤ 𝐴, i.e. 𝐴 is more general and less restrictive. In fact, the whole set of propositions can be

arranged in a bounded pre-order structure, denominated lattice (see definition 5.1.4). The most distinctive

property of quantum lattices of propositions, is that the distributivity law, one of the cornerstones of classical

logic, does not hold,

𝑃 ∧ (𝑄 ⊔ 𝑅) ≠ (𝑃 ∧ 𝑄) ⊔ (𝑃 ∧ 𝑅) ,
due to the non-commutative nature of observable properties of quantum mechanics, i.e. the order in which

observation are made matters, as presented in example 5.1.1.

Example 5.1.1. Due to the Heinsenberg’s uncertainty principle it is well known that it not
possible to have, simultaneously, definite values for momentum and position. From this, it
is possible to build an example where the distributivity law fails. Consider the following
propositions,

• P - |𝑝| ≤ 1 (units are irrelevant),

• Q - 𝑥 ≤ 0 and

• R - 𝑥 ≥ 0
where 𝑥 regards the position of a particle and 𝑝 its momentum. From quantum mechanics,
it can be stated that if 𝑃 is true then

(𝑃 ∧ 𝑄) is false, (𝑃 ∧ 𝑅) is false, (𝑃 ∧ 𝑄) ⊔ (𝑃 ∧ 𝑅) is also false,(𝑄 ⊔ 𝑅) is true, and 𝑃 ∧ (𝑄 ⊔ 𝑅) is also true.

Hence, 𝑃 ∧ (𝑄 ⊔ 𝑅) ≠ (𝑃 ∧ 𝑄) ⊔ (𝑃 ∧ 𝑅) and in this particular case the distributivity law
does not hold.

This fact has important implications in the way one can build inference rules for this logic, i.e. the

traditional modus ponens is not valid for the most generalized version in infinite dimensions of quantum

logic, however weaker forms of the distributive law are possible in certain situations. In particular, the

modular law, has been shown to hold for finite dimensional Hilbert spaces

If 𝐴 ≤ 𝐵 then 𝐴∨ (𝐵 ∧ 𝐶) = (𝐴 ∨ 𝐵) ∧ (𝐴 ∨ 𝐶) , (138)
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so as the orthodomular law for Hilbert spaces of arbitrary dimension, as shown by Husimi [201],

If 𝐴 ≤ 𝐵 and ∼ 𝐴 ≤ 𝐶 then ∼ 𝐴 ∨ (𝐵 ∧ 𝐶) = (𝐴 ∨ 𝐵) ∧ (𝐴 ∨ 𝐶) . (139)

These observations suggest that quantum logic is substantially harder for infinite dimensions. From the

algebraic perspective, quantum logic presents itself in a ortholattice structure (see definitions 5.1.4 and

5.1.5), where the commutative law does dot hold, which prevents the distributive law to hold, as it would do

in a Boolean algebra (definition 5.1.6).

Definition 5.1.4. (Lattice)
A lattice is a structure ℒ = (∧,∨) where the following laws hold:

1. 𝐴∧ 𝐴 = 𝐴;𝐴 ∨ 𝐴 = 𝐴 (idempotence)

2. 𝐴∧ 𝐵 = 𝐵 ∧ 𝐴;𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐴 (commutativity)

3. 𝐴∧ (𝐵 ∧ 𝐶) = (𝐴 ∧ 𝐵) ∧ 𝐶;𝐴 ∨ (𝐵 ∨ 𝐶) = (𝐴 ∨ 𝐵) ∨ 𝐶 (associativity)

4. 𝐴∧ (𝐴 ∨ 𝐵) = 𝐴;𝐴 ∨ (𝐴 ∧ 𝐵) = 𝐴 (absorption)

Definition 5.1.5. (Ortholattice)
An ortholattice is a lattice ℒ = (∼,∧,∨, 0, 1) where the following laws hold:

1. Has a least element (0) and greatest element (1), thus called bounded;

2. Complemented, every element A has a orthocomplement ∼ 𝐴, (𝐴∨ ∼ 𝐴 = 1),
(𝐴∧ ∼ 𝐴 = 0),

3. which is an involution (∼∼ 𝐴 = 𝐴).

Definition 5.1.6. (Boolean algebra)
A Boolean algebra is an ortholattice ℒ = (∼,∧,∨, 0, 1), where the distributivity laws hold:

1. 𝐴∧ (𝐵 ∨ 𝐶) = (𝐴 ∧ 𝐵) ∨ (𝐴 ∧ 𝐶);
2. 𝐴∨ (𝐵 ∧ 𝐶) = (𝐴 ∨ 𝐵) ∧ (𝐴 ∨ 𝐶)

Given this, ortholattices seem to cope with what needs quantum logic, however, the fact that a weaker form

of the modular law hold in general, leads to a more appropriate algebraic structure - that of a orthomodular

lattices (definition 5.1.7) - which, arguably, seems to be the right structure for quantum propositions [217].
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Definition 5.1.7. (Orthomodular lattice)
An orthomodular lattice is an ortholattice ℒ = (∼,∧,∨, 0, 1), where the orthomodular law
(eq (139)) holds:

If 𝐴 ≤ 𝐵 then 𝐴∨ (𝐴∧ ∼ 𝐴) (Weak modularity) . (140)

Yet, while orthomodular lattices capture accurately the structure of quantum tests represented in Hilbert

spaces, there is still a major issue preventing them to be equivalent to Hilbert spaces as a foundational

structure of quantum mechanics: the inexistence of a tensor product [301]. This led to extensive research

work to find the ”right” logical structure of quantum mechanics, from which relevant lines of work have

arisen, as for instance orthoalgebras, introduced by Randall and Foulis [159], for which a tensor structure

exists [160], which, however, possess other issues [173]. Relevant lines of work are given, for instance, by

effect algebras [158, 123], and partial Boolean algebras, introduced by Kochen-Speckter [232, 231].

Excellent reviews of these developments are available, for instance, in [157, 124], but so far no algebraic

structure, based on the algebraic properties of quantum propositions, is able to cope completely with all the

features of quantum mechanics, obtained, for instance, in Hilbert spaces.

One of the applications of quantum logic was on the axiomatization of quantum mechanics, from which

a better characterization of the Hilbert spaces suitable for quantum mechanics was obtained. The work

started by Piron in 1964 [289], where five axioms of quantum mechanics in Hilbert spaces were established

and was completed many years later thanks to the work of Mayan and Soler [334, 15].

Further, there is also some work attempting to follow a similar approach to find the quantum theory of

gravity out of logical principles see, in particular, work reported by Isham [204], or Hartle [166].

5.2 Dynamic aspects in Quantum Logic

The logical apparatus discussed in the previous sections aims exclusively at reasoning over the static

perspective of quantum systems. However, to reason about quantum evolution, which possess quantum

programming as a subcase, one is mostly interested in the dynamic perspective. To the best of our

knowledge, no dynamical logical system based on the notion of logic given by observable properties, is

able to deal with quantum systems of arbitrary dimension, in a complete way. The reasons for this may

have to do exactly with the issues raised in previous section: the lack of a satisfactory notion of tensor for

orthomodular lattices and the issues existent in the structures that do possess tensors.

However, there are complete reasoning systems, particularly those akin to the formalisms of quantum

mechanics, Hilbert spaces and density operators, where the notions of tensor and compositionality come

naturally, as it happens for instance in the extensive field of categorical quantum mechanics (CQM). Such

formalism is focused on the abstract algebraic properties of such spaces and offer a wide range of tools to

validate quantum programs and protocols [11, 110].
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The notions acquired from standard quantum logics have also influenced a wide range of logical systems

to deal with quantum programs and several associated tools originate in different contexts, including modal,

linear logics and some forms of non-classical logics. Here one shall highlight, for instance, the works of

Mateus et al. [263, 92], Adams et al. [12], based on the so-called effectus theory [105], or the works of

Ying [380], a Floyd-Hoare logic [200] based on the notion of weakest-precondition semantics of D’Hondt

and Panangaden [135]. The latter has originated several model checkers and theorem provers [247, 381].

Still in the Hoare logic line of work, there is the work of Unruh [346], and also several attempts of building

Hoare type systems [332], in order to obtain automatic program validation, right on compile time.

The line of work which mostly influenced the work undertaken in this thesis is the one of quantum dynamic

logic. Dynamic logic is a system often used for program verification introduced by Pratt [296, 190], and is

essentially a modal logic, where modalities are labelled by program components [68]. On the quantum side,

a modal perspective on quantum logic, has been explored, for instance, in the works of Dalla Chiara et al.

[122] or Goldblatt [175], and the first dynamic logic for quantum programming was introduced by Baltag

and Smets [38].

5.2.1 Quantum dynamic logic and its semantics

A dynamic logic for quantum programs was introduced in 2004 by Baltag and Smets [38, 39], and since

then it has been extensively developed, as documented, for instance, in [41, 42], or [43, 40], focusing on

different perspectives, e.g. capturing entanglement in quantum systems, or the probabilistic properties of

quantum programs. More recently, akin to this kind of work, Bergfeld [58] proposed a probabilistic dynamic

logic for quantum systems, focusing on the calculation of probabilities [57], which also influenced our own

work.

There are still however many relevant lines of work to pursue in the field of dynamic logics, for instance,

the design of logics to deal with more realistic quantum programming languages, particularly the ones that

involve classical control instructions and measurements, which as, discussed in section 2.4.4, constitutes a

large family of languages of increasing complexity.

Nonetheless, standard quantum logic can be expressed in dynamic logic, i.e. using a structure akin to

a labelled transition system [198], where the state space is given by the set of valid states in an Hilbert

space. Tests, rather than corresponding a closed linear subspaces, are given by valid transitions in the state

space, in a relational way, such that they correspond to their actual effects. A structure that captures these

premises, and supplies notions compatible with quantum logic, is that of a quantum dynamic frame, which

is defined as follows:

Definition 5.2.1. (Quantum Dynamic Frame) A quantum dynamic frame ℱ is a tuple(Σ,ℒ, { 𝑃?−−→}𝑃∈ℒ) such that Σ is a set, ℒ ⊆ 2Σ, 𝑃?−−→⊆ Σ × Σ for each 𝑃 ∈ ℒ, that satisfies
the following conditions, where →= ⋃𝑃∈ℒ 𝑃?−−→:
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1. ℒ is closed under arbitrary intersection.

2. ℒ is closed under orthocomplement, where the orthocomplement of 𝐴 ⊆ Σ is

∼ 𝐴 ∶= {𝑠 ∈ Σ|𝑠 ↛ 𝑡 for all 𝑡 ∈ 𝐴} (141)

3. Atomicity: For any 𝑠 ∈ Σ, {𝑠} ∈ ℒ.

4. Adequacy: For any 𝑠 ∈ Σ and 𝑃 ∈ ℒ, if 𝑠 → 𝑡, then 𝑠 𝑃?−−→ 𝑠.
5. Repeatability: For any 𝑠, 𝑡 ∈ Σ and 𝑃 ∈ ℒ if 𝑠 𝑃?−−→ then 𝑡 ∈ 𝑃
6. Self-Adjointness: For any 𝑠, 𝑡, 𝑢 ∈ Σ and 𝑃 ∈ ℒ, if 𝑠 𝑃?−−→ 𝑡 → 𝑢, then there is a 𝑣 ∈ Σ

such that 𝑢 𝑃?−−→ 𝑣 → 𝑠, for all 𝑣 ∈ 𝑃.

7. Covering Property: Suppose 𝑠 𝑃?−−→ 𝑡, for 𝑠, 𝑡 ∈ Σ and 𝑃 ∈ ℒ, then for any 𝑢 ∈ 𝑃, if𝑢 ≠ 𝑡, then 𝑢 → 𝑣↛𝑠 for some 𝑣 ∈ 𝑃; or, contrapositively, 𝑢 = 𝑡 if 𝑢 → 𝑣 implies𝑣 → 𝑠 for all 𝑣 ∈ 𝑃.

8. Proper superposition: For any 𝑠, 𝑡 ∈ Σ, there is a 𝑢 ∈ Σ such that 𝑠 → 𝑢 → 𝑡.
There are other structures that have been shown to be equivalent to this one, such as, along these lines,

quantum Kripke frames introduced by Zhong [386]. An interesting slightly different approach to the semantics

of quantum logics, is the one intruduced by Bergfeld [57], where quantum systems consist of a series

of independent systems, represented by ordered basis, the N-PQM model. In this approach, the notion

of entanglement is a free connective, part of the syntax of the logic, which greatly simplifies some of the

probabilistic calculations.

One advantage of using dynamic structures to represent quantum logic is that the corresponding logic

can easily be transformed into a logic of programs, as done by Smet and Baltag’s in [38]. The semantics is

given by quantum frames, which is just an extension of quantum dynamic frames allowing unitary transitions,

which can be typed as a tuple reading as:

Σ(ℋ) ∶= (Σ, { 𝑃?−−→}𝑃∈ℒ, { 𝑈−→}𝑈∈𝒰)) (142)

where, similarly to quantum dynamic frames, Σ corresponds to the set of possible states of an Hilbert

space of finite dimension, 𝑃 ∈ ℒ are testable properties (i.e. the closed linear subspaces), 𝑃? the actual
experimental processes of measuring testable properties, and 𝑈 ∈ 𝒰 to unitary transitions. Naturally,

quantum frames support all rules presented in in definition 5.2.1, and in addition the theorems 5.2.1 and

5.2.2, which concern the reversibility and adjointness of unitary operators, respectively.
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Theorem 5.2.1. ([38]) In every quantum frame Σ(ℋ) the following properties for unitary
transformations (stated for all 𝑈,𝑈† ∈ 𝒰) hold:

1. Functionality: For every state 𝑠 ∈ Σ we have ∃𝑡 ∶ 𝑠 𝑈−→ 𝑡
2. Inverse-adjoint (bijectivity): 𝑠 𝑈−→ 𝑡 𝑈†−−→ 𝑤 implies 𝑠 = 𝑤. Similarly, 𝑠 𝑈†−−→ 𝑡 𝑈−→ 𝑤

Theorem 5.2.2. (Adjointness [38]) Let 𝐹 be a linear transformation and let 𝑠, 𝑤, 𝑡 ∈ Σ be
states: If 𝑠 𝐹−→ 𝑤 → 𝑡 then there exists some state 𝑣 ∈ Σ such that 𝑡 𝐹†−→ 𝑣 → 𝑠.

The quantum frames are used in a logic for quantum programs explored, for instance, in [38, 44]. Such

logic encompasses two layers, the layer of programs, (𝜋) and the layer of propositions, (𝜙), with the following
syntax:

𝜙 ∶∶= 𝑝|𝜙 ∧ 𝜙|¬𝜙|[𝜋]𝜙|𝑃≥𝑟𝜙𝜋 ∶∶= 𝑢|𝜙?|𝜋; 𝜋|𝜋 ∪ 𝜋
On the propositional layer, one founds the usual Boolean connectives, ∧ and ¬, with similar meaning as

they do in classical logic, modal operator [𝜋]𝜙 with the meaning ”if 𝜋 terminates, then 𝜙 is necessarily

true”, the probabilistic operator 𝑃≥𝑟𝜙, meaning that ”𝜙 is true with a probability greater than 𝑟”. The
programs layer 𝜋 contains the atomic programs and the operator for sequential composition of programs,

nondeterministic choice, and tests, which correspond to the quantum tests, with the destructive effects that

characterize them. The main innovation of this logic is to provide a concrete way to reason about quantum

programs.

On the decidability side, the finite dimensional standard quantum logic, has been shown to be decidable

by Dunn et al. [140], using a proof strategy based on a reduction to the first order theory of the reals, known

to be decidable by an important result of Tarski [342]. Following to this result, many other logics, including

the dynamic ones discussed in this section, have shown to be decidable using the same type of strategy, as

shown by Baltag et al. in [44].

Furthermore, it is also shown in Dunn et al. [140], that whenever another qubit is added to the register,

the correspondent logic is different, 𝑄𝐿(ℂ2𝑛) ≠ 𝑄𝐿(ℂ2𝑛+1). Due to the inexistence of tensor operator
defined between two such logics, the latter cannot be built from the former, just by tensoring it with a

single-qubit logic. For infinite dimensions, standard quantum logic is known to be undecidable [163], so as,

presumably, all the logics that handle programs with infinite dimensions that can be reduced to it.
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5.3 A dynamic logic for QASM programming language (LQASM)

The Quantum Assembly Language (QASM language) [117], is the quantum circuit specification language in

use in the commercially available quantum hardware supplied by IBM, the IBM Q platform [2]. The platform

includes a visual editor for quantum circuits (a simple example for a quantum coin is presented in figure 22).

Figure 22: Example of the definition of a circuit in the QASM language. On the right side the
visual definition of the circuit and on the left side the correspondent QASM code.

QASM is not a purely quantum language as it involves some form of classical control, i.e. it encompasses

classical variables, measurements, which possess a probabilistic nature, and classical flow instructions (if

statements), based on the (probabilistic) results of measurements. Therefore, a logic targeted to this kind

of programs must be able to deal with these probabilistic instructions which may affect both propositions

and programs, a challenge we intend to address in this work. More on this on section 5.3.3. Our point of

departure is the extensive line of work on dynamic logics for quantum programs, initiated by Baltag and

Smets [38, 44] and the work of Kozen on the dynamic logics for probabilistic programs [235, 234]. In the

next few sections we discuss both the fragment of QASM to be handled by the logic, as well as the logic, its

syntax and semantics.

5.3.1 The QASM programming language

The QASM language is a circuit specification language, allowing for the construction of a wide range of

circuits, making use of quantum gates, expressed in rotations on up to three axis:

𝑈(𝜙) 𝑈2(𝜙, 𝜃) 𝑈3(𝜙, 𝜃, 𝜆)
where 𝜙, 𝜃, 𝜆 correspond to angles in the 𝑥, 𝑦 and 𝑧 axis. This set of gates is clearly universal, as any
set of gates can interpreted as a multi-angle rotation. Furthermore, the language also allows the definition

of customized quantum gates, based on arbitrary compositions of these rotational gates, and the angles

97



5.3. A dynamic logic for QASM programming language (LQASM) 98

themselves can be derived from a wide set of complex-valued constructible formulas, at compile time.

Moreover, the language also encompasses a set of classical control instructions: creation of classical and

quantum registers, resetting qubits, measurements and conditional statements. However, the language

does not include any while cycles. The complete syntax of the language is available in [117], but in this

thesis we explore only a fragment, as represented in figure 5.1.

⟨𝜋𝑞⟩ ::= x qreg_id [index] | z qreg_id [index] | h qreg_id [index]
| cx qreg_id [index1], qreg_id [index2]
| measure qreg_id [index] → creg_id [index]
| 𝜋𝑞; 𝜋𝑞

⟨𝜋⟩ ::= creg id [size] | qreg id [size]
| if ⟨test⟩ then 𝜋𝑞
| 𝜋;𝜋

Figure 5.1: A fragment of the QASM programming language. n this context, ⟨𝑒𝑥𝑝⟩ denotes the
grammatic constructions generated by the expression 𝑒𝑥𝑝.

The instructions in this fragment have the following meaning:

• Unitary gates

– x qreg_id [index] - Application of the X gate to the qubit 𝑖𝑛𝑑𝑒𝑥 of register qreg_id;

– z qreg_id [index] - Application of the Z gate to the qubit 𝑖𝑛𝑑𝑒𝑥 of register qreg_id;

– h qreg_id [index] - Application of the H gate to the qubit 𝑖𝑛𝑑𝑒𝑥 of register qreg_id;

– cx qreg_id [index1], qreg_id [index2] - Application of the CNOT gate on the qubits index1 and

index2, of register qreg_id.
• Non-unitary instructions:

– creg id [size] - Creation of a register, denominated id, with a number of classical bits given by

size;

– qreg id [size] - Creation of a register, denominated id, with a number of quantum bits given by

size;

– measure qreg_id [index] → creg_id - Measurement of the qubit index of register qreg_id to the

classical register creg_id.

• Flow control instructions;

– if <test> then 𝜋𝑞 - Conditional instruction, on the success of test, program 𝜋𝑞 is executed.

– 𝜋;𝜋 - Composition of programs.
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5.3.2 Syntax for the dynamic logic

As usual in dynamic logic, the syntax, defined in figure 5.2, is divided into two layers: one for programs and

for formulas.

⟨𝜑𝑞?⟩ ::= 𝑖𝑑𝑞𝑖 == a, where 𝑎 ∈ {1, 0}
⟨𝜑𝑐?⟩ ::= 𝑖𝑑𝑐𝑖 == a, where 𝑎 ∈ {1, 0}
⟨𝜑?⟩ ::= 𝜑𝑐? | 𝜑𝑞?
⟨𝜋𝑞⟩ ::= x 𝑖𝑑𝑞𝑖 | z 𝑖𝑑𝑞𝑖 | h 𝑖𝑑𝑞𝑖

| cx 𝑖𝑑𝑞𝑖 , 𝑖𝑑𝑞𝑖
| meas 𝑖𝑑𝑞𝑖 to 𝑖𝑑𝑐𝑖
| 𝜋𝑞; 𝜋𝑞

⟨𝜋⟩ ::= creg id [size] | qreg id [size]
| if 𝜑𝑐? then 𝜋𝑞
| 𝜋;𝜋

⟨𝑝⟩ ::= 𝑖𝑐𝑟𝑖 | 𝑖𝑞𝑟𝑖 with 𝑖 ∈ {0, 1}
⟨𝜑⟩ ::= p | ⊤ | 𝑃≥𝑟𝜑 | 𝒜=𝜆𝜑 with 𝜆 ∈ ℂ | [𝜋] 𝜑 | ¬𝜑 | 𝜑 ∧ 𝜑
Figure 5.2: The formulas layer and programs layer. In this context, ⟨𝑒𝑥𝑝⟩ denotes the grammatic

constructions generated by the expression 𝑒𝑥𝑝.
The program’s layer encompasses a fragment of the QASM language, defined in figure 5.1, however

with a simplified syntax, to make proofs more understandable and shorter. The major changes consist

of the replacement of statements like 𝑖𝑑[𝑖𝑛𝑑𝑒𝑥], by 𝑖𝑑𝑖𝑛𝑑𝑒𝑥, where 𝑖𝑑 is the register identifier and index

the position of the bit/qubit on the vector. Furthermore, the bits and qubits are typed, i.e. qubits are

expressed as 𝑖𝑞𝑟𝑖, and classical bits as 𝑖𝑐𝑟𝑖 with 𝑖 ∈ {0, 1}. The syntax of the measurement instruction was
changed to meas 𝑖𝑑𝑞𝑖 to 𝑖𝑑𝑐𝑖 , where, from left to right, the first 𝑖𝑑𝑖 defines a quantum bit to be measured,

and the second on, the classical bit of destination of the measurement. The if statement, if 𝜑𝑐? then𝜋𝑞, has the same in the QASM language: if the test is true, then the program is executed, otherwise it

is not. On the formula side, atomic propositions correspond to propositions over qubit states: 0, 1 and⊥, the latters referring to propositions where tests 0, 1, result with 1 as probability, and the former ⊤ to

the truth. Expressions 𝑝𝑟𝑖m refer to the narrowing of a proposition range to a specific register and qubit,

as for instance 0𝑞0, which means that qubit 0 of register 𝑞 has value 0. The 𝑃≥𝑟𝜑 modality establishes

restrictions to the probability of propositions for instance 𝑃=0.5𝑝, while the 𝒜=𝜆𝜑 modality, refers to the
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quantum amplitude of a proposition on a state, i.e. the result of the internal product operator in a state, i.e.⟨𝜑|𝑠⟩, where 𝑠 is a state. The [𝜋] has the usual meaning of ”the proposition 𝜑 necessarily holds upon the

execution of program 𝜋, program 𝜋 halts” and the usual minimal set of Boolean connectives is included.

Finally, in table 10 some abbreviations are defined.

⊥ ∶∶= 𝜑 ∧ ¬𝜑 ⊥ ∶= ¬⊤ ⟨𝜋⟩𝜑 ∶= ¬[𝜋]¬𝜑
3𝜑 ∶= ⟨𝜑?⟩⊤ ⇤𝜑 ∶= ¬3¬𝜑 𝐸𝜑 ∶= 33𝜑𝐴𝜑 ∶= ¬𝐸¬𝜑 𝜑 ∨ 𝜓 ∶= ¬(¬𝜑 ∧¬𝜓) 𝜑 → 𝜓 ∶= ¬(𝜑 ∧ ¬𝜓)𝑝<𝑅𝜑 ∶= ¬𝑝≥𝑟𝜑 𝑝≥𝑟𝜑 ∶= ¬𝑝≤𝑅𝜑

Table 10: Allowed abbreviations

5.3.3 Discussion

The logic presented in this chapter (LQASM) targets the QASM language, which to the best of our knowledge,

has not been addressed directly in literature before. The challenge offered by the QASM language revolve

around the need for the coexistence of classical and quantum information, so as of purely unitary programs

and classical ones. More precisely, the challenges of the design of LQASM translate into the following

concrete requirements:

1. Existence of classical and purely unitary operations, which must behave as expected when inciding

over quantum bits;

2. Coexistence of classical and quantum tests of bits and qubits, respectively, where the former ones

conserve the state of the bit being tested, while the latter yield a collapse effect;

3. Existence of quantum measurements, which are interpreted as a classical probabilistic combination

of the effects of two complementary quantum tests, hence preserving the probabilistic nature of the

measurement results;

4. Existence of if statements with probabilistic control variables, as a consequence of requirement 3).

5. More generally, existence of two types of information, classical and quantum, where the latter can

copied, but does not support quantum phenomena such as interference and entanglement, and the

former behaves exactly as opposite.

From a semantic perspective these requirements can naturally be accommodated in a density operator

setting, which supports, by definition, all possible types of physically sound operators, which includes unitary

operators and all sorts of measurements. A Floyd-Hoare logic for quantum programs based on this semantics
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has been already developed (see Ying [380]), however, there is a slight difference between the such logic

and LQASM, which has to do with requirement 2), as non-destructive tests are not directly supported in a

density operator setting, and also, in the logic of Ying [380].

However, the logic under development here is closer to the quantum dynamic logic for quantum programs

developed in Baltag et al. [38, 44]. The semantic models presented in such logics, do not support naturally

the requirements 1) to 5), as both the states and transitions are purely quantum, however as quantum

information can be used to simulate the classical one, it provides an excellent starting point. The contribution

of this chapter goes along these lines, i.e. of extending the model introduced in [38], to support requirements

1) to 5).

In terms of expressibility the advantages of this logic are to preserve the probabilistic nature of quantum

results, which can be useful in a wide range of quantum protocols, such as the leader election, and further

it provides a more flexible model to accommodate logics involving non-trivial classical programs, rather than

simple if statements. Along the next few sections the solutions for these problems are discussed.

5.3.4 Semantics

The semantics of this logic is given in terms of a labelled transition system [198], defined by a tuple:

𝑀 = (𝑆, [[.]]𝑝 ∶ 𝒜𝑝 → 2𝑆, [[.]]𝜋 ∶ 𝒜𝜋 → 2𝑆×𝑆) (143)

where 𝑆 is a set of states and [[.]]𝑝 and [[.]]𝜋 are meaning functions. The former function gives meaning

to propositions, i.e. it is typed as a function from the set of well-formed syntactic expressions of propositions

(𝒜𝑝) to the powerset of states, and the latter one does the same for programs, typing as a function from the

set of well-formed syntactic expressions of programs (𝒜𝜋), to the powerset of the pairs of sets of states.
Hence programs are deterministic. For simplification reasons we omit the identifiers of meaning functions,𝑝 and 𝜋, which shall be infered from context.

5.3.5 The state space

A state of a program in the QASM language is defined by its classical and quantum components. Each such

component is divided into one or many independent registers, each one composed of a set of quantum or

classical bits. The set of possible states for a quantum bit is given, as described in section 2.4, by all the

normalized states in a Hilbert space of dimension 2, denoted here as ℋ2𝑖 where 𝑖 is the qubit index, but the
actual state space of 𝑛 qubits is given by all normalized states of ℋ2𝑛, which encompass, all non-separable
states existent in the 𝑛 qubit space. Normalization of quantum states comes from the Born rule and the

space state can be expressed as:
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ℋ2𝑛 ≡ ∑𝑖∈{0,1}𝑛 𝜆𝑖 |𝑖⟩ where ∑𝑖 𝜆𝑖 ∗ 𝜆†𝑖 = 1 . (144)

Due to the existence of stochastic instructions, i.e. measurements, we provide a classical probabilistic

semantics to classical bits. According to Kozen et al. [235], the semantics of probabilistic programs is

founded in the realm of measurable functions, where, for instance, the states of such programs are given by

a measurable function, on the possible tests1 over the program variables. In the case of a probabilistic bit,

the state 𝑠 is defined by a function typed as
𝜇𝑠 ∶ {0, 1} → [0, 1] .

Here and in an equivalent way, we represent a stochastic bit by an Hilbert space of dimension two over

complex numbers, of basis {0, 1}, where (0) = ⎛⎜⎝10⎞⎟⎠ and (1) = ⎛⎜⎝10⎞⎟⎠. Valid vectors are normalized

linear combinations 𝛼(0) + 𝛽(1) with 𝛼, 𝛽 ∈ ℂ𝟚, i.e. elements of the form ⎛⎜⎝𝛼𝛽⎞⎟⎠, where the condition𝛼2 + 𝛽2 = 1 holds, which we denote as 𝒞2𝑖 . This results in the following global state space, gathering
several quantum and classical registers:

ℋ2𝑛 × ℋ2𝑛⏟⏟⏟⏟⏟
quantum registers

×… × 𝒞2𝑖 ×… × 𝒞2𝑖⏟⏟⏟⏟⏟⏟⏟
classical register

×…⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟𝑆
. (145)

It is pretty straightforward that Cartesian product in classical registers, guarantee that states are always

separable (convex), contrary to what happens in qubits. In conclusion the state space of a QASM program is

given by the Cartesian product of the possible states of the independent quantum and classical registers,

called Registers, where in the former the set of states is given by the tensor product of quantum bits, and in

the latter by the possible distributions definable over the configurations of the classical bits. The number of

qubits and bits available in each register is defined by reg_size. More concretely, the state space can be

written as

𝑆 ≡ ∏
quantum register∈𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑠 ℋ2∗𝑟𝑒𝑔_𝑠𝑖𝑧𝑒 × ∏

classical register∈𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑠 ∏𝑖∈reg_size

𝒞2𝑖
For expressability purposes, the state space is represented by two families of functions 𝜋𝑞𝑟𝑖1,𝑟𝑖2,…,𝑟𝑖𝑛 ∶ 𝑆 →ℋ2𝑛, which yield the current state of the list of qubits given by 𝑟𝑞𝑖1, 𝑟𝑞𝑖2,… , 𝑟𝑞𝑖𝑛 and 𝜋𝑐𝑟𝑖1,𝑟𝑖2,…,𝑟𝑖𝑛 ∶ 𝑆 →

1 Tests correspond to the 𝜎-algebra over the valuation set 𝒞 = {0, 1} of a single classical bit, the set of possible states corresponds
to the distributions definable on the tests. For valuations with a discrete domain, it corresponds to the powerset 2𝒞. Tests
form a Boolean algebra.
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∏𝑛𝑖 𝒞 𝑖2, which behaves similarly for the classical bits. A particular application of this are the functions𝜋𝑞𝑟𝑖 ∶ 𝑆 → ℋ2 and 𝜋𝑐𝑟𝑖 ∶ 𝑆 → 𝐶2, which yield the state of a particular quantum and classical bits.

5.3.6 Propositions

The approach proposed in this work, based on keeping two different types of information, classical and

quantum in the logical system, may be slightly problematic in what concerns the semantics of propositions.

As usual, the semantics of a proposition corresponds to the set of states where it holds, hence

𝑝 ∶ 2𝑆 .
However, the different types of information influence the way propositions are interpreted.

Definition 5.3.1. Semantics for proposition constructors.

The definition of the primitive connectives is similar to the one used in modal logics,
corresponding to set operations as follows:

1. [[𝑝]] ⊆ 2𝑆
2. [[⊤]] = 𝑆
3. [[𝑖𝑞𝑟𝑖]] with 𝑖 ∈ {0, 1}= {𝑠 ∈ 𝑆|𝜋𝑞𝑟𝑖(𝑠) = |𝑖⟩}
4. [[0𝑐𝑟𝑖]] = {𝑠 ∈ 𝑆|𝜋𝑐𝑟𝑖(𝑠) = (0)}, i.e. the classical 0 is a distribution, where 0 has

probability 1.
5. [[1𝑐𝑟𝑖]] = {𝑠 ∈ 𝑆|𝜋𝑐𝑟𝑖(𝑠) = (1)}, i.e. the classical 1 is a distribution, where 1 has

probability 1.
6. [[𝜑1 ∧ 𝜑2]] = [[𝜑1]] ∩ [[𝜑2]]
7. [[¬𝜑]] = {𝑠|𝑠 ∉ [[𝜑]]} = 𝑆 − [[𝜑]]

where 𝑆 − [[𝜑]] stands for 𝑆 except [[𝜑]], i.e. the complement of [[𝜑]] in S.

8. [[[𝜋]𝜑]] = {𝑠|∀𝑢 ∶ (𝑠, 𝑢) ∈ [[𝜋]] ⇒ 𝑢 ∈ [[𝜑]]}
The set of states where the proposition 𝜑 holds upon the execution of program 𝜋
(The semantics of programs 𝜋 is given in section 5.3.7).

9. [[𝑃≥𝑟𝜑]] = {𝑠|⟨𝑠 ∣ 𝜑⟩⟨𝜑 ∣ 𝑠⟩ ≥ 𝑟}.
The set of states where quantum proposition component 𝜑 holds with probability
greater than r.
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10. [[𝒜=𝜆𝜑]] = {𝑠|⟨𝜑 ∣ 𝑠⟩ = 𝜆}. The states where the amplitude of a certain proposition
is equal to a given constant 𝜆.

5.3.7 Program semantics

The semantics of programs is given by a function from the set of well-formed programs to the power set of

pairs of states, which entails the accessibility relation, i.e. the set of valid transitions between pairs of states

(source to target) under the action of programs:

[[.]] ∶ 𝒜𝜋 → 2𝑆×𝑆 . (146)

A particular type of programs of this language are unitary programs, 𝑢, whose meaning reads as
• [[𝑢]] = {(𝑠, 𝑡) ∈ 𝑆 × 𝑆|𝑡 ∈ [[𝑢(𝑠)]] ∧ 𝑠 ∈ [[𝑢−1(𝑡)]]}

where 𝑢(𝑠), is the application of the unitary operator 𝑢 to a state 𝑠, for instance, the Hadamard gate acting
over state |0⟩, i.e. 𝐻. |0⟩. These rules apply to unitary operators ℎ𝑖, 𝑧𝑖,𝑥𝑖 or 𝑐𝑛𝑜𝑡𝑖𝑗 which correspond to
the quantum gates 𝐻, 𝑍, 𝑋, and 𝐶𝑁𝑂𝑇, whose meaning was discussed in section 2.4.2. Indexes 𝑖, 𝑗
correspond to the qubit indexes in the qubit array. It can be assumed that the unitary operator can be

extended to the unaffected qubits by tensoring it with the unity operators, e.g. the semantics of a ℎ0 operator

just affecting the first qubit in a system of two qubits, 0 and 1, reads as: 𝐻 ⊗ 𝐼.
The language also allows the existence of non-unitary operations, such as the creation of registers,

classical and quantum, measurements of qubits, as well as if statements. Consider first the definition of

quantum and classical registers, whose semantics read as follows:

• [[creg r [size]]] = {(𝑠, 𝑡) ∈ 𝑆 × 𝑆|𝑡 ∈ [[⋀𝑖∈size 0𝑐𝑟𝑖]]} (Classical registry creation)
• [[qreg r [size]]] = {(𝑠, 𝑡) ∈ 𝑆 × 𝑆|𝑡 ∈ [[⋀𝑖∈size 0𝑞𝑟𝑖]]} (Quantum registry creation)

Tests, both quantum and classical, possess a significant diference between each other: the former has a

destructive effect on the state (the quantum bit it incides), while the latter conserves the state (the classical

bit it insides). Their semantics reads as follows:

• [[𝑖𝑑𝑞𝑖 == 𝑎]] = {(𝑠, 𝑡) ∈ 𝑆 × 𝑆|𝑡 ∈ ||𝑎𝑞𝑖𝑑𝑖⟩⟨𝑎𝑞𝑖𝑑𝑖 |(𝑠)/⟨𝑠|𝑎𝑞𝑖𝑑𝑖⟩⟨𝑎𝑞𝑖𝑑𝑖 |𝑠⟩} (quantum test)

• [[𝑖𝑑𝑐𝑖 == 𝑎]] = {(𝑠, 𝑡) ∈ 𝑆 × 𝑆|𝑠 ∈ [[𝑃=𝑥𝑎𝑖𝑑𝑐𝑖 ]] ∧ 𝑡 ∈ [[𝑃=𝑥𝑎𝑖𝑑𝑐𝑖 ]]} (classical test)
where 𝑎 ∈ 0, 1. The semantics of the measurement of quantum bit, can be understood as the branching

of state into ”alternative worlds”, one where the test correspoding to 0 succeeded, with the probability of

success of the test stored in the classical bit and the same for 1, which is expressed as a union of two sets
as follows:
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• [[measure 𝑞𝑖 → 𝑐𝑖]] = {(𝑠, 𝑡) ∈ 𝑆 × 𝑆|(𝑠, 𝑡) ∈ [[𝑖𝑑𝑞𝑖 ==0]] ∧ 𝑡 ∈ [[𝑃=𝑒10𝑐𝑐𝑖]] where 𝑒1 =⟨𝑠|0𝑞𝑖𝑑𝑖⟩⟨0𝑞𝑖𝑑𝑖 |𝑠⟩} ∪ {(𝑠, 𝑡) ∈ [[𝑞𝑞𝑖 ==1]] ∧ [[𝑃=𝑒21𝑐𝑐𝑖]] where 𝑒2 = ⟨𝑠|1𝑞𝑖𝑑𝑖⟩⟨1𝑞𝑖𝑑𝑖 |𝑠⟩} (Measure-
ment)

If statements also consist of two alternative programs: one where, simultaneously, the classical test and the

program effect holds, and the one where the classical test does not hold and the state remains unaltered,

as follows:

• [[ if 𝑖𝑑𝑐𝑖 == b 𝜋]] = {(𝑠, 𝑡) ∈ 𝑆 × 𝑆|(𝑠, 𝑡) ∈ [[∣𝑏⟩𝑖𝑑𝑐𝑖 ⟨𝑏∣𝑖𝑑𝑐𝑖 ; 𝜋]] ∧ (𝑠, 𝑡) ∈ [[𝑖𝑑𝑐𝑖 == 𝑏]]} ∪{(𝑠, 𝑡) ∈ [[∣¬𝑏⟩𝑖𝑑𝑐𝑖 ⟨¬𝑏∣𝑖𝑑𝑐𝑖 ; 𝑠𝑘𝑖𝑝]] ∧ (𝑠, 𝑡) ∉ [[𝑖𝑑𝑐𝑖 == 𝑏]]}, where 𝑏 ∈ {0, 1} and skip is the
identity operator.

Finally, the language also allows the sequencing (composition) of programs, for that the accessibility

relationship, reads as follows:

• [[𝜋1; 𝜋2]] = {(𝑠, 𝑢) ∈ 𝑆 × 𝑆|∃𝑡 ∈ 𝑆 ∶ (𝑠, 𝑡) ∈ [[𝜋1]]𝑡 ∧ (𝑡, 𝑢) ∈ [[𝜋2]]}
5.4 Some val id rules and examples

In this section, we illustrate the semantics defined in the previous sections, by the proof of soundness of

several rules and validities, as well as the correctness of both a coin tossing program and the teleportation

protocol, expressed in the fragment of the QASM programming language. The proof strategy of showing the

validity of a formula 𝜑 consists showing it holds in every possible state, in a state-based model as proposed

in previous section, denoted as 𝑀: ∀𝑠 ∈ 𝑆 ∶ 𝑀, 𝑠 ⊧ 𝜑 (⊧ means that property 𝜑 is true in state s), or,

equivalently, [[𝜑]] = [[⊤]].
5.4.1 States, amplitudes and probabilities

States can be defined by the amplitude operator for all elements of the basis of a quantum state, for instance,

for a single qubit,

[[𝒜𝜆10𝑞𝑟𝑖 ∧𝒜𝜆21𝑞𝑟𝑖]] = {𝑠 ∈ 𝑆|𝜋𝑟𝑖(𝑠) = 𝜆1 |0⟩ + 𝜆2 |1⟩} .
The proof of this goes as follows, and makes use of the Born rule:

Proof: [[𝒜𝜆10𝑞𝑟𝑖 ∧𝒜𝜆21𝑞𝑟𝑖]] = {𝑠 ∈ 𝑆|𝜋𝑟𝑖(𝑠) = 𝜆1 |0⟩ + 𝜆2 |1⟩}⇔[[𝒜𝜆10𝑞𝑟𝑖]] ∩ [[𝒜𝜆21𝑞𝑟𝑖]] = {𝑠 ∈ 𝑆|𝜋𝑟𝑖(𝑠) = 𝜆1 |0⟩ + 𝜆2 |1⟩}
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⇔ (by the Born rule, see equation 144){𝑠 ∈ 𝑆|𝜋𝑞𝑟𝑖 ∑𝑖 𝛼𝑖 |𝑛⟩ with ∑𝑖 𝛼𝑖 ∗ 𝛼𝑖† = 1} ∩ {𝑠 ∈ 𝑆|𝜋𝑞𝑟𝑖(𝑠) = 𝜆1 |0⟩} ∩ {𝑠|𝜋𝑞𝑟𝑖(𝑠) = 𝜆2 |1⟩} ={𝑠|𝜋𝑟𝑖(𝑠) = 𝜆1 |0⟩ + 𝜆2 |1⟩}⇔{𝑠 ∈ 𝑆|𝜋𝑟𝑖(𝑠) = 𝜆1 |0⟩ + 𝜆2 |1⟩} = {𝑠 ∈ 𝑆|𝜋𝑟𝑖(𝑠) = 𝜆1 |0⟩ + 𝜆2 |1⟩}
⇤
This fact can also be generalized to systems of arbitrary dimension. Also an interesting observation that can

be, comes from the need of normalization of bits/qubits:

𝑃=𝑥𝑎𝑟𝑖 → 𝑃=1−𝑥¬𝑎𝑟𝑖, where 𝑎 ∈ {0, 1}. (147)

This also leads to the conclusion that

𝑃=𝑥𝑎𝑟𝑖 ∨ 𝑃=1−𝑥¬𝑎𝑟𝑖 = 𝑃=𝑥𝑎𝑟𝑖 ∧ 𝑃=1−𝑥¬𝑎𝑟𝑖 (148)

,and the proof reads as follows:

Proof: 𝑃=𝑥𝑎𝑟𝑖 ∨ 𝑃=𝑥𝑎𝑟𝑖 = 𝑃=𝑥𝑎𝑟𝑖 ∧ 𝑃=1−𝑥¬𝑎𝑟𝑖⇔ (by the condition of equation (147))𝑃=𝑥𝑎𝑟𝑖 ∧ 𝑃=1−𝑥¬𝑎𝑟𝑖 ∨ 𝑃=1−𝑥¬𝑎𝑟𝑖 ∧ 𝑃=𝑥𝑎𝑟𝑖 = 𝑃=𝑥𝑎𝑟𝑖 ∧ 𝑃=1−𝑥¬𝑎𝑟𝑖⇔𝑃=𝑥𝑎𝑟𝑖 ∧ 𝑃=1−𝑥¬𝑎𝑟𝑖 = 𝑃=𝑥𝑎𝑟𝑖 ∧ 𝑃=1−𝑥¬𝑎𝑟𝑖 ⇤
Furthermore, the probability of a test inciding over a classical variable can be applied to the whole state:

(𝑃=𝑥𝑎𝑐𝑟𝑖 ∧ 𝜑) → 𝑃=𝑥(𝑎𝑐𝑟𝑖 ∧ 𝜑) (149)

The veracity of this statement comes from the fact that the tests over a classical variable are always

compatible with any other test that can be made in the system and hence the normal classical probability

laws apply in these cases.

5.4.2 Creation of registers

The creation of registers, quantum or classical, is one of the possible actions of the QASM language, which

sets them immediately to 0 in both cases. Therefore, the following rules hold:

• [creg r [size]] (⋀𝑖∈size 0𝑐𝑟𝑖)
• [qreg r [size]] (⋀𝑖∈size 0𝑞𝑟𝑖)
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In both cases 𝑟 corresponds to an arbitrary register description. We now give the proof of these rules, which

are quite similar from the semantics defined in previous section.

Proof: Proof of rule creg[[[creg r [size]] (⋀𝑖∈size 0𝑐𝑟𝑖)]]= (by the definition of the dynamic operator [𝜋]𝜙){𝑠 ∈ 𝑆|∀𝑡 ∶ (𝑠, 𝑡) ∈ [[creg r [size]]] ⇒ 𝑡 ∈ [[(⋀𝑖∈size 0𝑐𝑟𝑖)]]}= (by the definition of the creation of classical register){𝑠 ∈ 𝑆|∀𝑡 ∶ 𝑡 ∈ [[(⋀𝑖∈size 0𝑐𝑟𝑖)]](1) ⇒ 𝑡 ∈ [[(⋀𝑖∈size 0𝑐𝑟𝑖)]](2)}= (it can be easily verified that sets referred by (1),(2) are non-empty){𝑠 ∈ 𝑆|𝑡𝑟𝑢𝑒} = 𝑆 = [[⊤]]
⇤
Proof of rule qreg is exactly the same of creg, it is just necessary to use the definition of the creation of

quantum register rather than classical register.

5.4.3 Unitary gates

In essence quantum programs are unitary gates, which, however while involving most of the times, one

or two qubits. The proofs for these instructions are made in the semantic setting. More a demonstrative

example we show the following validity 0𝑞0 → [ℎ𝑞0](𝒜 1√20𝑞0 ∧𝒜 1√21𝑞0), which we denote h0.
Proof: Proof of h0[[0𝑞𝑞0 → [ℎ𝑞0](𝒜= 1√20𝑞𝑞0 ∧𝒜= 1√21𝑞𝑞0)]]= (by the definition of implication)[[¬(0𝑞𝑞0 ∧¬([ℎ𝑞0](𝒜 1√20𝑞𝑞0 ∧𝒜 1√21𝑞𝑞0)))]]= (by the modal negation ¬[𝜋]𝜙 = ¬(¬⟨𝜋⟩¬𝜙))[[¬(0𝑞𝑞0 ∧ (⟨ℎ𝑞0⟩¬(𝒜 1√20𝑞𝑞0 ∧𝒜 1√21𝑞𝑞0)))]]= (by the definition of the dynamic operator ⟨𝜋⟩𝜙)𝑆 − ([[0𝑞𝑞0]] ∩ {𝑠 ∈ 𝑆|∃𝑡 ∶ (𝑠, 𝑡) ∈ [[h 𝑞0]] ⇒ 𝑡 ∉ [[(𝒜 1√20𝑞𝑞0 ∧𝒜 1√21𝑞𝑞0)]])=𝑆 − {𝑠 ∈ 𝑆|∃𝑡 ∶ 𝑠 ∈ [[0𝑞𝑞0]] ∧ (𝑠, 𝑡) ∈ [[h 𝑞0]] ⇒ 𝑡 ∉ [[(𝒜 1√20𝑞𝑞0 ∧𝒜 1√21𝑞𝑞0)]]}= (by the definition of the h instruction and the semantics of state s)𝑆 − {𝑠 ∈ 𝑆|∃𝑡 ∶ 𝜋𝑞0(𝑠) = |0⟩ ∧ 𝜋𝑞0(𝑡) = 𝐻 |0⟩ ⇒ 𝑡 ∉ [[(𝒜 1√20𝑞𝑞0 ∧𝒜 1√21𝑞𝑞0)]]}= (the action of the h instruction results in the state |+⟩)
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𝑆 − {𝑠 ∈ 𝑆|∃𝑡 ∶ 𝑠 ∈ 𝜋𝑞0(𝑠) = |0⟩ ∧ 𝜋𝑞0(𝑡) = 𝒜 1√2 (|0⟩ + |1⟩) ⇒ 𝑡 ∉ [[(𝒜 1√20𝑞𝑞0 ∧𝒜 1√21𝑞𝑞0)]]}= (by the definition of the amplitude operator on the |+⟩ state)𝑆 − {𝑠 ∈ 𝑆|∃𝑡 ∶ 𝑠 ∈ [[0𝑞𝑞0]](1) ∧ 𝑡 ∈ [[(𝒜 1√20𝑞𝑞0 ∧𝒜 1√21𝑞𝑞0]](2) ⇒ 𝑡 ∉ [[𝒜 1√20𝑞𝑞0 ∧𝒜 1√21𝑞𝑞0]](2)}= (it can be easily verified that sets referred by (1),(2) are non-empty)[[¬⊥]] = [[⊤]] ⇤

5.4.4 Measurements

Measurements are also an important part, and in this sequel, only single qubit measurements are allowed,

causing the ramification of into two consistent worlds each with the probability of obtaining one and zero,

causing the transference of probability distribution from the qubit to the classical bit. An example of this is

given by the validity (𝒜 1√20𝑞0 ∧𝒜 1√21𝑞0) → [meas 𝑞0 to 𝑐0](𝑃=0.50𝑐0 ∧𝑃=0.51𝑐0), which we denote
m1.

Proof: Proof of validity m1[[(𝒜 1√20𝑞𝑞0 ∧𝒜 1√21𝑞𝑞0) → [meas 𝑞0 to 𝑐0](𝑃=0.50𝑐𝑐0 ∧ 𝑃=0.51𝑐𝑐0)]]= (by the definition of implication)𝑆 − ([[(𝒜 1√20𝑞𝑞0 ∧𝒜 1√21𝑞𝑞0)]] ∩ [[¬[meas 𝑞0 to 𝑐0](𝑃=0.50𝑐𝑐0 ∧ 𝑃=0.51𝑐𝑐0)]])= (by the modal negation ¬[𝜋]𝜙 = ¬(¬⟨𝜋⟩¬𝜙))𝑆 − ([[(𝒜 1√20𝑞𝑞0 ∧𝒜 1√21𝑞𝑞0)]] ∩ [[⟨meas 𝑞0 to 𝑐0⟩¬(𝑃=0.50𝑐𝑐0 ∧ 𝑃=0.51𝑐𝑐0)]])= (by the definition of the dynamic operator ⟨𝜋⟩𝜙)𝑆 − {𝑠 ∈ 𝑆|∃𝑡 ∶ 𝑠 ∈ [[(𝒜 1√20𝑞𝑞0 ∧𝒜 1√21𝑞𝑞0)]] ∧ (𝑠, 𝑡) ∈ [[[meas 𝑞0 to 𝑐0]]] ⇒ 𝑡 ∉ [[(𝑃=0.50𝑐𝑐0 ∧𝑃=0.51𝑐𝑐0)]]}= (by the definition of measurement)𝑆 − ({𝑠 ∈ 𝑆|∃𝑡 ∶ 𝑠 ∈ [[(𝒜 1√20𝑞𝑞0 ∧ 𝒜 1√21𝑞𝑞0)]] ∧ (𝑠, 𝑡) ∈ ({(𝑠, 𝑡)|𝑡 ∈ [[𝑞𝑞0 == 0]] ∧ 𝑡 ∈[[𝑃=0.50𝑐𝑐0]]} ∪ {(𝑠, 𝑡)|𝑡 ∈ [[𝑞𝑞0 == 1]] ∧ 𝑡 ∈ [[𝑃0.51𝑐𝑐0]]}) ⇒ 𝑡 ∉ [[(𝑃=0.50𝑐𝑐0 ∧ 𝑃=0.51𝑐𝑐0)]]})=𝑆−({𝑠 ∈ 𝑆|∃𝑡 ∶ 𝑠 ∈ [[(𝒜 1√20𝑞𝑞0 ∧𝒜 1√21𝑞𝑞0)]]∧𝑡 ∈ [[𝑃=0.50𝑐𝑐0 ∨𝑃=0.51𝑐𝑐0]] ⇒ 𝑡 ∉ [[(𝑃=0.50𝑐𝑐0 ∧𝑃=0.51𝑐𝑐0)]]})= (as exposed in equation (148))𝑆 − ({𝑠 ∈ 𝑆|∃𝑡 ∶ 𝑠 ∈ [[(𝒜 1√20𝑞𝑞0 ∧ 𝒜 1√21𝑞𝑞0)]](1) ∧ 𝑡 ∈ [[𝑃=0.50𝑐𝑐0 ∧ 𝑃=0.51𝑐𝑐0]](2) ⇒ 𝑡 ∉[[(𝑃=0.50𝑐𝑐0 ∧ 𝑃=0.51𝑐𝑐0)]](2)})=(it can be easily verified that sets referred by (1),(2) are non-empty)[[¬⊥]]
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=[[⊤]]
⇤

5.4.5 A Hoare style sequence rule

Hoare logic is a formal system to deal with simple while languages, introduced by Hoare in 1969 [200],

which constitutes an important landmark in computer science. One of the central rules of such logic is the

sequence rule, which reads as

{𝑃}𝜋1{𝐼} {𝐼}𝜋2{𝑅}{𝑃}𝜋1; 𝜋2{𝑅}
where 𝑃 and 𝑅 are pre and post conditions for programs, 𝜋1 and 𝜋2 are programs, and 𝜋1; 𝜋2 is a

sequence of programs 𝜋1 and 𝜋2, i.e. the rule defines how programs compose, given the proofs of the

individual programs. It is also well-known that Hoare logic can be retrieved from dynamic logic: the so-called

Hoare triple {𝑃}𝜋{𝑅}, can expressed as an expression 𝑝 → [𝜋]𝑟, which has the interpretation 𝑝 being

true implies that it is necessary that 𝑟 is true upon the execution of program 𝜋. Given this, the sequence
rule of Hoare can be translated into the following expression:

𝑃 → [𝜋1]𝐼 𝐼 → [𝜋2]𝑅𝑃 → [𝜋1; 𝜋2]𝑅
which also corresponds to the following expression 𝑃 → [𝜋1]𝐼 ∧ 𝐼 → [𝜋2]𝑅 ↔ 𝑃 → [𝜋1; 𝜋2]𝑅. We
show this rule also holds here. Firstly, it can be easily shown that [𝜋1; 𝜋2]𝜙 ↔ [𝜋1][𝜋2]𝜙 holds:

Proof: [𝜋1; 𝜋2]𝜙 ↔ [𝜋1][𝜋2]𝜙≡{𝑠 ∈ 𝑆|∀𝑢 ∶ (𝑠, 𝑢) ∈ [[𝜋1; 𝜋2]] ⇒ 𝑢 ∈ [[𝜙]]} = [[[𝜋1][𝜋2]𝜙]]≡(by definition of composition){𝑠 ∈ 𝑆|∀𝑢 ∶ (𝑠, 𝑢) ∈ {(𝑠, 𝑢)|∃𝑡 ∶ (𝑠, 𝑡) ∈ [[𝜋1]] ∧ (𝑡, 𝑢) ∈ [[𝜋2]]} ⇒ 𝑢 ∈ [[𝜙]]} =[[[𝜋1][[𝜋2]𝜙]]]≡{𝑠 ∈ 𝑆|∀𝑢∀𝑡 ∶ (𝑠, 𝑡) ∈ [[𝜋1]] ∧ (𝑡, 𝑢) ∈ [[𝜋2]] ⇒ 𝑢 ∈ [[𝜙]]} = [[[𝜋1][𝜋2]𝜙]]≡{𝑠 ∈ 𝑆|∀𝑡 ∶ (𝑠, 𝑡) ∈ [[𝜋1]] ⇒ 𝑡 ∈ {𝑡|∀(𝑡, 𝑢) ∈ [[[𝜋2]]] ⇒ 𝑢 ∈ [[𝜙]]}} = [[[𝜋1][𝜋2]𝜙]]≡{𝑠 ∈ 𝑆|∀𝑡 ∶ (𝑠, 𝑡) ∈ [[𝜋1]] ⇒ 𝑡 ∈ [[[𝜋2]𝜙]]} = [[[𝜋1][𝜋2]𝜙]]
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≡[𝜋1][𝜋2]𝜙 ↔ [𝜋1][𝜋2]𝜙 ⇤
Thus,𝑃 → [𝜋1]𝐼 ∧ 𝐼 → [𝜋2]𝑅 ↔ 𝑃 → [𝜋1; 𝜋2]𝑅≡ (by the substitution of 𝐼 for [𝜋2]𝑅)𝑃 → [𝜋1][𝜋2]𝑅 ↔ 𝑃 → [𝜋1; 𝜋2]𝑅≡𝑃 → [𝜋1; 𝜋2]𝑅 ↔ 𝑃 → [𝜋1; 𝜋2]𝑅
5.4.6 Putting it all together: A quantum coin tossing program

In this section, using the validities and rules of previous sections, we illustrate the use of the logic through

the proof of correctness of a simple quantum program for quantum coin tossing (prepare a qubit in a

superposition state and measure it, obtaining 0 or 1 with equal probability), which translates into the following

QASM program:

OPENQASM 2.0;
include ”qelib1.inc”;
qreg q[1];
creg c[1];
h q[0];
measure q[0] -> c[0];

The correctness of such program implies the following post-condition:

[qreg q [1]; creg c [1]; ℎ 𝑞0;meas 𝑞0 to 𝑐0] (𝑃=0.50𝑐0 ∧ 𝑃=0.51𝑐0)
Proof: by making use of sequence rule, as well as creg and qreg validities, the following inference is

true:

[qreg q [1]](0𝑞𝑞0) [creg c[1]](0𝑐𝑐0)
[qreg q[1]; creg c[1]](0𝑞𝑞0 ∧ 0𝑐𝑐0) (1)

The following inference is true, through the application of validity h0 and the sequence rule
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(1) 0𝑞0 → [ℎ 𝑞0](𝒜 1√20𝑞𝑞0 ∧𝒜 1√21𝑞𝑞0)
[qreg q[1]; creg c[1]; ℎ 𝑞0](𝒜 1√20𝑞0 ∧𝒜 1√21𝑞0 ∧ 0𝑐0) (2)

And finally the post-condition is show to be true by validitym1 and the sequence rule, completing the proof

(2) (𝒜 1√20𝑞𝑞0 ∧𝒜 1√21𝑞𝑞0) → [meas 𝑞0 to 𝑐0](𝑃=0.50𝑐𝑐0 ∧ 𝑃=0.51𝑐𝑐0)
[qreg q[1]; creg c[1]; ℎ 𝑞0;meas 𝑞0 to 𝑐0](𝑃=0.50𝑐𝑐0 ∧ 𝑃=0.51𝑐𝑐0) (3)

⇤

5.4.7 The teleporting protocol

The teleportation protocol was introduced by Bennet et al. [55] in 1993, and it is the cornerstone of many

quantum communication protocols. It allows the replication of the state of a qubit onto a second qubit, where

each of the qubits are held by two different parties, physically separated. The protocol works, regardless

of the distance between parties, through the use of a Bell pair shared between both parties. The protocol,

besides its enormous applicability, is also one of the most fundamental and paradigmatic examples of the

employment of quantum entanglement, and it is a natural testbed for any new quantum formal method. In

this section, we show that it is also possible to prove the correctness of the teleportation protocol in the logic

developed in this chapter.

Figure 23: Circuit of the quantum teleportation protocol as proposed in Bennet et al. [55]

The protocol can be expressed by a quantum circuit involving three qubits, as depicted in figure 23, where

the following parts can be identified:

• State preparation, which involves the preparation of the first qubit and the creation of the Bell pair

between the second and the third qubits;
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• Association of the Bell pair with the first qubit;

• Measurement of the first qubits and application of the results for post-correction on the third qubit,

which requires the exchange of classical information between the holders of the first qubit and of the

third one.

In the real-world scenario, qubit 3 is physically separated from qubits 1 and 2, and the former and the

latters are controlled by two distinct parties, which have to possess access to a classical channel to convey

classical information. Such information is obtained from the measurement of qubits 1 and 2 by the first

party, which then conveys the results of the readings to party 2, which uses them to apply post corrections

on qubit 3, hence retrieving the original state of qubit 0, held by party one. This process can be translated

into the following QASM program (qubit 0 can be mapped to the upper line in the circuit of figure 23, qubit1 to the middle line, and qubit 2 to the bottom one):

OPENQASM 2.0;
include ”qelib1.inc”;
qreg q[3];
creg c[2];𝑝0(𝛼) 𝑞0;
h q [1];
cx q[1], q[2];
cx q[0], q[1];
h q [0];
measure q[0] → c[0];
measure q[1] → c[1];
if (c [1] == 1) x q[2];
if (c [0] == 1) z q[2];

The correctness of the teleportation protocol translates into the following statement:

[qreg q[3]; creg c[2]; 𝑝0(𝛼) 𝑞0; h 𝑞𝑞1; cx 𝑞𝑞1, 𝑞𝑞2; cx 𝑞𝑞0, 𝑞𝑞1; h 𝑞𝑞0;
meas 𝑞𝑞0 to 𝑐𝑐0; meas 𝑞𝑞1 to 𝑐𝑐1; if (c [0] == 1) x 𝑞𝑞2; if (c [1] == 1) z 𝑞𝑞2] (𝑃=𝛼10𝑞2 ∧ 𝑃=1−𝛼1𝑞2) ,

where 𝑃=𝛼0𝑞2 ∧ 𝑃=1−𝛼1𝑞2 can be interpreted of the post-condition of the protocol, determining the target

probability distribution on qubit 2: 𝛼 for obtaining 0 upon measurement, and 1 − 𝛼 for 1. Such probability

112



5.4. Some valid rules and examples 113

distribution is the one set up in qubit 0, by operator 𝑝0(𝛼), during the preparation stage. In a real-world
scenario, the preparation stage is the one by two separate and independent parties, i.e. both the state

preparation of qubit 0 and the existence of the Bell pair are pre-conditions of the actual teleportation.

The state preparation stage

The state preparation is the subprogram [qreg q [3];creg c[2]; 𝑝0(𝛼);h 𝑞𝑞1; cx 𝑞𝑞1, 𝑞𝑞2], also denoted PREP,
which includes the declaration of classical and quantum registers and the preparation of the first qubit

according to the desired observational properties, probability 𝛼 for obtention of 0 upon measurement and1 − 𝛼, for 1, as well as the creation of the Bell pair. Making use of sequence rule, as well as creg and
qreg validities, the following inference is true:

[qreg q [3]](0𝑞𝑞0 ∧ 0𝑞𝑞1 ∧ 0𝑞𝑞2) [creg c[2]](0𝑐𝑐0 ∧ 0𝑐𝑐1)
[qreg q [3];creg c[2]](0𝑞𝑞0 ∧ 0𝑞𝑞1 ∧ 0𝑞𝑞2 ∧ 0𝑐𝑐0 ∧ 0𝑐𝑐1) (𝑖)

One can also assume the existence of an operator 𝑝0(𝛼), that can prepare a qubit on the state with the
desired probability distribution, i.e. 𝛼 for 0, and 1 − 𝛼 for 1, through setting up the amplitudes 𝜆1 and 𝜆2,

0𝑞𝑞0 → [𝑝0(𝛼)𝑞0](𝒜=𝜆10𝑞0 ∧𝒜=𝜆21𝑞0) ,
and that

𝒜𝜆10𝑞𝑥𝑥 ∧𝒜𝜆21𝑞𝑥𝑥 → 𝑃=𝛼0𝑞𝑥𝑥 ∧ 𝑃=1−𝛼1𝑞𝑥𝑥 . (150)

Hence, the following inference is true

(𝑖) 0𝑞𝑞0 → [𝑝0(𝛼)]𝒜=𝜆10𝑞0 ∧𝒜=𝜆21𝑞0)
[qreg q [3];creg c[2]; 𝑝0(𝛼) 𝑞0](𝒜=𝜆10𝑞0 ∧𝒜=𝜆21𝑞0) ∧ 0𝑞𝑞1 ∧ 0𝑞𝑞2 ∧ 0𝑐𝑐0 ∧ 0𝑐𝑐1

(𝑖𝑖)
The following steps are the creation of the BELL pair between qubits 1 and 2, which is performed by

program h q [1]; cx q [1], q [2]], which we also denote Bell12. The following inference is true for the
application of the Hadamard operator on qubit 1, i.e. by program h q [1], (see proof h2),

(ii) 0𝑞1 → [h q [1]] (𝒜= 1√2 (0𝑞𝑞1) ∧ 𝒜= 1√2 (0𝑞𝑞1))
[PREP; h 𝑞1](𝒜= 1√20𝑞1 ∧𝒜= 1√2 (1𝑞1) ∧ 0𝑞2 ∧ 0𝑐0 ∧ 0𝑐𝑐1) (𝑖𝑖𝑖) ,

and when composed with the operator CNOT, it is possible to conclude the following (see proof cnot1):
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(iii) (𝒜= 1√2 (0𝑞𝑞1) ∧ 𝒜= 1√2 (1𝑞𝑞1) ∧ 0𝑞𝑞2) → [𝐶𝑁𝑂𝑇12] (𝒜= 1√2 (0𝑞𝑞1 ∧ 0𝑞𝑞2) ∧ 𝒜= 1√2 (1𝑞𝑞1 ∧ 1𝑞𝑞2))
[PREP; h 𝑞𝑞1; cx 𝑞𝑞1, 𝑞𝑞2]((𝒜=𝜆1(0𝑞0) ∧ 𝒜=𝜆2(1𝑞𝑞0)) ∧ (𝒜= 1√2 (0𝑞𝑞1 ∧ 0𝑞𝑞2) ∧ 𝒜= 1√2 (1𝑞𝑞1 ∧ 1𝑞𝑞2))) (𝑖𝑣) .

This defines the state of the system upon system preparation, i.e. of program PREP;Bell12.
Proofs of the state preparation stage

Proof: (h2)[[0𝑞1 → [h q [1]] (𝒜= 1√2 (0𝑞𝑞1) ∧ 𝒜= 1√2 (0𝑞𝑞1))]]= (by the definition of the h instruction and the semantics of state s)𝑆 − {𝑠|∃𝑡 ∶ 𝜋𝑞0(𝑠) = |0⟩ ∧ 𝜋𝑞0(𝑡) = 𝐻 |0⟩ ⇒ 𝑡 ∉ [[(𝒜= 1√2 (0𝑞𝑞1) ∧ 𝒜= 1√2 (0𝑞𝑞1))]]}= (the action of the h instruction results in the state |+⟩)𝑆−{𝑠|∃𝑡 ∶ 𝑠 ∈ 𝜋𝑞0(𝑠) = |0⟩∧𝜋𝑞0(𝑡) = 1√2 (|0⟩ + |1⟩) ⇒ 𝑡 ∉ [[(𝒜= 1√2 (0𝑞𝑞1) ∧ 𝒜= 1√2 (0𝑞𝑞1))]]}= (by the definition of the amplitude operator on the |+⟩ state)𝑆 − {𝑠|∃𝑡 ∶ 𝑠 ∈ [[0𝑞𝑞0]](1) ∧ 𝑡 ∈ [[(𝒜= 1√2 (0𝑞𝑞1) ∧ 𝒜= 1√2 (0𝑞𝑞1))]](2) ⇒
𝑡 ∉ [[(𝒜= 1√2 (0𝑞𝑞1) ∧ 𝒜= 1√2 (0𝑞𝑞1))]](2)}=(it can be easily verified that sets referred by (1),(2) are non-empty)[[⊤]]
⇤

Proof: (cnot1)[[(𝒜= 1√2 (0𝑞𝑞1) ∧ 𝒜= 1√2 (1𝑞𝑞1) ∧ 0𝑞𝑞2) → [cx 𝑞𝑞1, 𝑞𝑞2] (𝒜= 1√2 (0𝑞𝑞1 ∧ 0𝑞𝑞2) ∧ 𝒜= 1√2 (1𝑞𝑞1 ∧ 1𝑞𝑞2))]]= (by the definition of the CNOT instruction and the semantics of state s)𝑆 − {𝑠|∃𝑡 ∶ 𝜋𝑞1,𝑞2(𝑠) = 1√2 (|00⟩ + |10⟩) ∧ 𝜋𝑞1,𝑞2(𝑡) = 𝐶𝑁𝑂𝑇. 1√2 (|00⟩ + |10⟩) ⇒ 𝑡 ∉
[[𝒜= 1√2 (0𝑞𝑞1 ∧ 0𝑞𝑞2) ∧ 𝒜= 1√2 (1𝑞𝑞1 ∧ 1𝑞𝑞2)]]}= (the action of the h instruction results in the state 1√2 (|00⟩ + |11⟩))
𝑆 − {𝑠|∃𝑡 ∶ 𝜋𝑞1,𝑞2(𝑠) = 1√2 (|00⟩ + |10⟩) ∧ 𝜋𝑞1,𝑞2(𝑡) = 1√2 (|00⟩ + |11⟩) ⇒ 𝑡 ∉ [[𝒜= 1√2 (0𝑞𝑞1 ∧
0𝑞𝑞2) ∧ 𝒜= 1√2 (1𝑞𝑞1 ∧ 1𝑞𝑞2)]]}= (by the definition of the amplitude operator one can express the semantics of the state as follows)
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𝑆 − {𝑠|∃𝑡 ∶ 𝑠 ∈ [[(𝒜= 1√2 (0𝑞𝑞1) ∧ 𝒜= 1√2 (1𝑞𝑞1) ∧ 0𝑞𝑞2)]](1)∧
𝑡 ∈ [[(𝒜= 1√2 (0𝑞𝑞1 ∧ 0𝑞𝑞2) ∧ 𝒜= 1√2 (1𝑞𝑞1 ∧ 1𝑞𝑞2))]](2) ⇒
𝑡 ∉ [[(𝒜= 1√2 (0𝑞𝑞1 ∧ 0𝑞𝑞2) ∧ 𝒜= 1√2 (1𝑞𝑞1 ∧ 1𝑞𝑞2)]](2)}= (it can be easily verified that sets referred by (1),(2) are non-empty)[[⊤]]
⇤

The association with the first qubit

The next step of the protocol, and indeed the actual step in the real-world scenario is to associate qubit 0

and the Bell state of qubits 1 and 2, which is made by the CNOT operator, i.e. through the program cx 𝑞𝑞0,𝑞𝑞1, also denoted CNOT01. From the sequence rule and the semantics of the CNOT operator (see proof

cnot2), one can infer the following

(iv)

(𝒜=𝜆1(0𝑞𝑞0) ∧ 𝒜=(𝜆2)(1𝑞𝑞0)) ∧ (𝒜= 1√2 (0𝑞𝑞1 ∧ 0𝑞𝑞2) ∧ 𝒜 1√2 (1𝑞𝑞1 ∧ 1𝑞𝑞2))
→ [CNOT01] ((𝒜=( 1√2 ∗𝜆1)(0𝑞𝑞0 ∧ 0𝑞𝑞1 ∧ 0𝑞𝑞2) ∧ 𝒜=( 1√2 ∗(𝜆2)(1𝑞𝑞0 ∧ 0𝑞𝑞1 ∧ 0𝑞𝑞2)∧𝒜=( 1√2 ∗𝜆1)(0𝑞𝑞0 ∧ 1𝑞𝑞1 ∧ 1𝑞𝑞2) ∧ 𝒜= 1√2 ∗(𝜆2)(1𝑞𝑞0 ∧ 0𝑞𝑞1 ∧ 1𝑞𝑞2))

[PREP; Bell12;CNOT01] (𝒜=( 1√2 ∗𝜆1)(0𝑞𝑞0 ∧ 0𝑞𝑞1 ∧ 0𝑞𝑞2) ∧ 𝒜=( 1√2 ∗(𝜆2)(1𝑞𝑞0 ∧ 0𝑞𝑞1 ∧ 0𝑞𝑞2)∧𝒜=( 1√2 ∗𝜆1)(0𝑞𝑞0 ∧ 1𝑞𝑞1 ∧ 1𝑞𝑞2) ∧ 𝒜= 1√2 ∗(𝜆2)(1𝑞𝑞0 ∧ 0𝑞𝑞1 ∧ 1𝑞𝑞2))
(𝑣)

which characterizes the resultant state of such operations. We denote the program PREP; Bell12;CNOT01
as 𝐸𝑁𝑇, for a matter of syntax simplification.
Proof: (cnot2) Let 𝑝 denote the following expression

𝑝 = ((𝒜=( 1√2 ∗𝜆1)(0𝑞𝑞0 ∧ 0𝑞𝑞1 ∧ 0𝑞𝑞2) ∧ 𝒜=( 1√2 ∗(𝜆2)(1𝑞𝑞0 ∧ 0𝑞𝑞1 ∧ 0𝑞𝑞2)∧𝒜=( 1√2 ∗𝜆1)(0𝑞𝑞0 ∧ 1𝑞𝑞1 ∧ 1𝑞𝑞2) ∧ 𝒜= 1√2 ∗(𝜆2)(1𝑞𝑞0 ∧ 0𝑞𝑞1 ∧ 1𝑞𝑞2)) .
The proof goes as follows:[[(𝒜=𝜆1(0𝑞𝑞0) ∧ 𝒜=(𝜆2)(1𝑞𝑞0)) ∧ (𝒜= 1√2 (0𝑞𝑞1 ∧ 0𝑞𝑞2) ∧ 𝒜 1√2 (1𝑞𝑞1 ∧ 1𝑞𝑞2)) → [CNOT01]𝑝]]= (by the definition of the h instruction and the semantics of state s)𝑆 − {𝑠|∃𝑡 ∶ 𝜋𝑞0,𝑞1,𝑞2(𝑠) = (𝜆1 ∗ 1√2 |000⟩ + 𝜆1 ∗ 1√2 |011⟩ + 𝜆2 ∗ 1√2 |100⟩ + 𝜆2 ∗ 1√2 |111⟩) ∧
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𝜋𝑞0,𝑞1,𝑞2(𝑡) = (𝐶𝑁𝑂𝑇 ⊗ 𝐼).𝜋𝑞0,𝑞1,𝑞2(𝑠) ⇒ 𝑡 ∉ [[𝑝]]}= (the action of the h instruction results in the state |+⟩)𝑆 − {𝑠|∃𝑡 ∶ 𝜋𝑞0,𝑞1,𝑞2(𝑠) = (𝜆1 ∗ 1√2 |000⟩ + 𝜆1 ∗ 1√2 |011⟩ + 𝜆2 ∗ 1√2 |100⟩ + 𝜆2 ∗ 1√2 |111⟩) ∧𝜋𝑞1,𝑞2(𝑡) = (𝜆1 ∗ 1√2 |000⟩ + 𝜆1 ∗ 1√2 |011⟩ + 𝜆2 ∗ 1√2 |110⟩ + 𝜆2 ∗ 1√2 |101⟩) ⇒ 𝑡 ∉ [[𝑝]]}= (by the definition of the probabilistic operator on the |+⟩ state)𝑆− {𝑠|∃𝑡 ∶ 𝑠 ∈ [[(𝒜=𝜆1(0𝑞𝑞0)∧𝒜=(𝜆2)(1𝑞𝑞0))∧ (𝒜= 1√2 (0𝑞𝑞1 ∧0𝑞𝑞2)∧𝒜 1√2 (1𝑞𝑞1 ∧1𝑞𝑞2))]]1 ∧ 𝑡 ∈[[𝑝]]2 ⇒ 𝑡 ∉ [[𝑝]]2}= (it can be easily verified that sets referred by (1),(2) are non-empty)[[⊤]]
⇤

Measuring qubits and classical information

The resulting state of program ENT holds a superposition of all the possible Bell states with the original

amplitudes 𝜆1 and 𝜆2. All that is necessary is to eliminate the Bell states from the global state, in order to

retrieve back the original state on the third qubit. This is done by the program h 𝑞0;meas 𝑞𝑞0 to 𝑐𝑐0; meas𝑞𝑞1 to 𝑐𝑐1; if (c [0] == 1) x 𝑞2; if (c [1] == 1) z 𝑞2, which measures the first two qubits, in two different axis
each (two measures are enough to identify the Bell state) and uses the results of the measurements in two

independent if statements to eliminate the Bell states. The first step of the measurement is the application

is the application of the operator 𝐻 over qubit 0, in order to be able to measure in Hadamard basis, i.e.|+⟩ , |−⟩ rather than |0⟩ , |1⟩ (see proof h3), leading to:

(v)

(𝒜=( 1√2 ∗𝜆1)(0𝑞𝑞0 ∧ 0𝑞𝑞1 ∧ 0𝑞𝑞2) ∧ 𝒜=( 1√2 ∗(𝜆2)(1𝑞𝑞0 ∧ 0𝑞𝑞1 ∧ 0𝑞𝑞2)∧𝒜=( 1√2 ∗𝜆1)(0𝑞𝑞0 ∧ 1𝑞𝑞1 ∧ 1𝑞𝑞2) ∧ 𝒜= 1√2 ∗(𝜆2)(1𝑞𝑞0 ∧ 0𝑞𝑞1 ∧ 1𝑞𝑞2))
→ [ℎ𝑞0]

𝒜=( 12 ∗𝜆1)(0𝑞𝑞0 ∧ 0𝑞𝑞1 ∧ 0𝑞𝑞2) ∧ 𝒜=( 12 ∗𝜆2)(0𝑞𝑞0 ∧ 0𝑞𝑞1 ∧ 1𝑞𝑞2)∧𝒜=( 12 ∗𝜆2)(0𝑞𝑞0 ∧ 1𝑞𝑞1 ∧ 0𝑞𝑞2) ∧ 𝒜=( 12 ∗𝜆1)(0𝑞𝑞0 ∧ 1𝑞𝑞1 ∧ 1𝑞𝑞2)∧𝒜=( 12 ∗𝜆1)(1𝑞𝑞0 ∧ 0𝑞𝑞1 ∧ 0𝑞𝑞2) ∧ 𝒜=(− 12 ∗𝜆2)(1𝑞𝑞0 ∧ 0𝑞𝑞1 ∧ 1𝑞𝑞2)∧𝒜=(− 12 ∗𝜆2)(1𝑞𝑞0 ∧ 1𝑞𝑞1 ∧ 0𝑞𝑞2) ∧ 𝒜=( 12 ∗𝜆1)(1𝑞𝑞0 ∧ 1𝑞𝑞1 ∧ 1𝑞𝑞2)
⊤ → [ENT;h 𝑞0]

𝒜=( 12 ∗𝜆1)(0𝑞𝑞0 ∧ 0𝑞𝑞1 ∧ 0𝑞𝑞2) ∧ 𝒜=( 12 ∗𝜆2)(0𝑞𝑞0 ∧ 0𝑞𝑞1 ∧ 1𝑞𝑞2)∧𝒜=( 12 ∗𝜆2)(0𝑞𝑞0 ∧ 1𝑞𝑞1 ∧ 0𝑞𝑞2) ∧ 𝒜=( 12 ∗𝜆1)(0𝑞𝑞0 ∧ 1𝑞𝑞1 ∧ 1𝑞𝑞2)∧𝒜=( 12 ∗𝜆1)(1𝑞𝑞0 ∧ 0𝑞𝑞1 ∧ 0𝑞𝑞2) ∧ 𝒜=(− 12 ∗𝜆2)(1𝑞𝑞0 ∧ 0𝑞𝑞1 ∧ 1𝑞𝑞2)∧𝒜=(− 12 ∗𝜆2)(1𝑞𝑞0 ∧ 1𝑞𝑞1 ∧ 0𝑞𝑞2) ∧ 𝒜=(− 12 ∗𝜆1)(1𝑞𝑞0 ∧ 1𝑞𝑞1 ∧ 1𝑞𝑞2)

(𝑣𝑖)
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The following step is the actual measurement of qubits 0 and 1, storing the results in the classical

bits. This can be done by programs meas 𝑞𝑞0 to 𝑐𝑐0 and meas 𝑞𝑞1 to 𝑐𝑐1, which we denote as M1 and M2,

respectively. The effect of the measurements gives origin to the following inference (see proof meast):

(vi)

𝒜=( 12 ∗𝜆1)(0𝑞𝑞0 ∧ 0𝑞𝑞1 ∧ 0𝑞𝑞2) ∧ 𝒜=( 12 ∗𝜆2)(0𝑞𝑞0 ∧ 0𝑞𝑞1 ∨ 1𝑞𝑞2)∧𝒜=( 12 ∗𝜆2)(0𝑞𝑞0 ∧ 1𝑞𝑞1 ∧ 0𝑞𝑞2) ∧ 𝒜=( 12 ∗𝜆1)(0𝑞𝑞0 ∧ 1𝑞𝑞1 ∨ 1𝑞𝑞2)∧𝒜=( 12 ∗𝜆1)(1𝑞𝑞0 ∧ 0𝑞𝑞1 ∧ 0𝑞𝑞2) ∧ 𝒜=(− 12 ∗𝜆2)(1𝑞𝑞0 ∧ 0𝑞𝑞1 ∨ 1𝑞𝑞2)∧𝒜=(− 12 ∗𝜆2)(1𝑞𝑞0 ∧ 1𝑞𝑞1 ∧ 0𝑞𝑞2) ∧ 𝒜=(− 12 ∗𝜆1)(1𝑞𝑞0 ∧ 1𝑞𝑞1 ∧ 1𝑞𝑞2)
→ [𝑀1;𝑀2]

𝑃=0.25(0𝑐𝑐0 ∧ 0𝑞𝑞0 ∧ 0𝑐𝑐1 ∧ 0𝑞𝑞1 ∧𝒜=𝜆1(0𝑞𝑞2) ∨ 𝒜=(𝜆2)(1𝑞𝑞2))∨𝑃=0.25(0𝑐𝑐0 ∧ 0𝑞𝑞0 ∧ 1𝑐𝑐1 ∧ 1𝑞𝑞1 ∧𝒜=𝜆2(0𝑞𝑞2) ∨ 𝒜=(𝜆1)(1𝑞𝑞2))∨𝑃=0.25(1𝑐𝑐0 ∧ 1𝑞𝑞0 ∧ 0𝑐𝑐1 ∧ 0𝑞𝑞1 ∧𝒜=𝜆1(0𝑞𝑞2) ∨ 𝒜=(−𝜆2)(1𝑞𝑞2))∨𝑃=0.25(1𝑐𝑐0 ∧ 1𝑞𝑞0 ∧ 1𝑐𝑐1 ∧ 1𝑞𝑞1 ∧𝒜=𝜆2(0𝑞𝑞2) ∨ 𝒜=(−𝜆1)(1𝑞𝑞2))
[ENT;h 𝑞0;M1;M2]

𝑃=0.25(0𝑐𝑐0 ∧ 0𝑞𝑞0 ∧ 0𝑐𝑐1 ∧ 0𝑞𝑞1 ∧𝒜=𝜆1(0𝑞𝑞2) ∧ 𝒜=(𝜆2)(1𝑞𝑞2))∨𝑃=0.25(0𝑐𝑐0 ∧ 0𝑞𝑞0 ∧ 1𝑐𝑐1 ∧ 1𝑞𝑞1 ∧𝒜=𝜆2(0𝑞𝑞2) ∧ 𝒜=(𝜆1)(1𝑞𝑞2))∨𝑃=0.25(1𝑐𝑐0 ∧ 1𝑞𝑞0 ∧ 0𝑐𝑐1 ∧ 0𝑞𝑞1 ∧𝒜=𝜆1(0𝑞𝑞2) ∧ 𝒜=−𝜆2(1𝑞𝑞2))∨𝑃=0.25(1𝑐𝑐0 ∧ 1𝑞𝑞0 ∧ 1𝑐𝑐1 ∧ 1𝑞𝑞1 ∧𝒜=𝜆2(0𝑞𝑞2) ∧ 𝒜=(−𝜆1)(1𝑞𝑞2))

(𝑣𝑖𝑖)

Finally, following the measurements of the first qubits, all that remains is to apply the error corrections,

which come from the programs if (c [0] == 1) z 𝑞2 and if (c [0] == 1) z 𝑞2, which we name as IF1 and IF2,

respectively. The following inference is possible upon the execution of program IF1 (see proof if1),

(vii)

𝑃=0.25(0𝑐𝑐0 ∧ 0𝑞𝑞0 ∧ 0𝑐𝑐1 ∧ 0𝑞𝑞1 ∧𝒜=𝜆1(0𝑞𝑞2) ∨ 𝒜=(𝜆2)(1𝑞𝑞2))∨𝑃=0.25(0𝑐𝑐0 ∧ 0𝑞𝑞0 ∧ 1𝑐𝑐1 ∧ 1𝑞𝑞1 ∧𝒜=𝜆2(0𝑞𝑞2) ∨ 𝒜=(𝜆1)(1𝑞𝑞2))∨𝑃=0.25(1𝑐𝑐0 ∧ 1𝑞𝑞0 ∧ 0𝑐𝑐1 ∧ 0𝑞𝑞1 ∧𝒜=𝜆1(0𝑞𝑞2) ∨ 𝒜=−𝜆2(1𝑞𝑞2))∨𝑃=0.25(1𝑐𝑐0 ∧ 1𝑞𝑞0 ∧ 1𝑐𝑐1 ∧ 1𝑞𝑞1 ∧𝒜=𝜆2(0𝑞𝑞2) ∨ 𝒜=(−𝜆1)(1𝑞𝑞2))→ [𝐼𝐹1] 𝑃=0.5((0𝑐𝑐1 ∧ 0𝑞𝑞1 ∧𝒜=𝜆1(0𝑞𝑞2) ∧ 𝒜=(𝜆2)(1𝑞𝑞2))∨𝑃=0.5(1𝑐𝑐1 ∧ 1𝑞𝑞1 ∧𝒜=𝜆2(0𝑞𝑞2) ∧ 𝒜=(𝜆1)(1𝑞𝑞2))
[ENT;h 𝑞0;M1;M2;IF1] 𝑃=0.5(0𝑐𝑐1 ∧ 0𝑞𝑞1 ∧𝒜=𝜆1(0𝑞𝑞2) ∧ 𝒜=(𝜆2)(1𝑞𝑞2))∨𝑃=0.5(1𝑐𝑐1 ∧ 1𝑞𝑞1 ∧𝒜=𝜆2(0𝑞𝑞2) ∧ 𝒜=(𝜆1)(1𝑞𝑞2))

(𝑣𝑖𝑖𝑖)
and after the program IF2 the following post-condition holds (see proof if2)

(viii)

𝑃=0.5(0𝑐𝑐1 ∧ 0𝑞𝑞1 ∧𝒜=𝜆1(0𝑞𝑞2) ∧ 𝒜=(𝜆2)(1𝑞𝑞2))∨𝑃=0.5(1𝑐𝑐1 ∧ 1𝑞𝑞1 ∧𝒜=𝜆2(0𝑞𝑞2) ∧ 𝒜=(𝜆1)(1𝑞𝑞2))→ [𝐼𝐹2] (𝒜=𝜆1(0𝑞𝑞2) ∧ 𝒜=(𝜆2)(1𝑞𝑞2))
[ENT;h 𝑞0;M1;M2;IF1;IF2] (𝒜=𝜆1(0𝑞𝑞2) ∧ 𝒜=(𝜆2)(1𝑞𝑞2)) (𝑖𝑥)
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.

which due to the assertion of (150), results in [ENT;h 𝑞0;M1;M2;IF1;IF2](𝑃=𝛼(0𝑞𝑞2)∧𝑃=1−𝛼(1𝑞𝑞2)) being
true, completing the proof.

Proofs of the measurement and post-error correction

Proof: (h3)

Let 𝑝, 𝑞 denote the following expressions
𝑝 = ((𝒜=( 1√2 ∗𝜆1)(0𝑞𝑞0 ∧ 0𝑞𝑞1 ∧ 0𝑞𝑞2) ∧ 𝒜=( 1√2 ∗(𝜆2)(1𝑞𝑞0 ∧ 0𝑞𝑞1 ∧ 0𝑞𝑞2)∧𝒜=( 1√2 ∗𝜆1)(0𝑞𝑞0 ∧ 1𝑞𝑞1 ∧ 1𝑞𝑞2) ∧ 𝒜= 1√2 ∗(𝜆2)(1𝑞𝑞0 ∧ 0𝑞𝑞1 ∧ 1𝑞𝑞2)) ,

and

𝑞 = 𝒜=( 12 ∗𝜆1)(0𝑞𝑞0 ∧ 0𝑞𝑞1 ∧ 0𝑞𝑞2) ∧ 𝒜=( 12 ∗𝜆2)(0𝑞𝑞0 ∧ 0𝑞𝑞1 ∧ 1𝑞𝑞2)∧𝒜=( 12 ∗𝜆2)(0𝑞𝑞0 ∧ 1𝑞𝑞1 ∧ 0𝑞𝑞2) ∧ 𝒜=( 12 ∗𝜆1)(0𝑞𝑞0 ∧ 1𝑞𝑞1 ∧ 1𝑞𝑞2)∧𝒜=( 12 ∗𝜆1)(1𝑞𝑞0 ∧ 0𝑞𝑞1 ∧ 0𝑞𝑞2) ∧ 𝒜=(− 12 ∗𝜆2)(1𝑞𝑞0 ∧ 0𝑞𝑞1 ∧ 1𝑞𝑞2)∧𝒜=(− 12 ∗𝜆2)(1𝑞𝑞0 ∧ 1𝑞𝑞1 ∧ 0𝑞𝑞2) ∧ 𝒜=(− 12 ∗𝜆1)(1𝑞𝑞0 ∧ 1𝑞𝑞1 ∧ 1𝑞𝑞2) .
The proof of the expression 𝑝 → [𝐻]𝑞 goes as follows:[[𝑝 → [𝐻]𝑞]]= (by the definition of the h instruction and the semantics of state s)𝑆 − {𝑠|∃𝑡 ∶ 𝜋𝑞0,𝑞1,𝑞2(𝑠) = (𝜆1 ∗ 1√2 |000⟩ + 𝜆1 ∗ 1√2 |011⟩ + 𝜆2 ∗ 1√2 |110⟩ + 𝜆2 ∗ 1√2 |101⟩) ∧𝜋𝑞0,𝑞1,𝑞2(𝑡) = (𝐻 ⊗ 𝐼 ⊗ 𝐼).𝜋𝑞0,𝑞1,𝑞2(𝑠) ⇒ 𝑡 ∉ [[𝑞]]}= (the action of the h instruction results in the state𝑆 − {𝑠|∃𝑡 ∶ 𝜋𝑞0,𝑞1,𝑞2(𝑠) = (𝜆1 ∗ 1√2 |000⟩ + 𝜆1 ∗ 1√2 |011⟩ + 𝜆2 ∗ 1√2 |110⟩ + 𝜆2 ∗ 1√2 |101⟩) ∧𝜋𝑞0,𝑞1,𝑞2(𝑡) = (𝜆1 ∗ 12 |000⟩+𝜆2 ∗ 12 |001⟩+𝜆2 ∗ 12 |010⟩+𝜆1 ∗ 12 |100⟩+−𝜆2 ∗ 12 |101⟩+−𝜆2 ∗12 |110⟩ + 𝜆1 ∗ 12 |111⟩) ⇒ 𝑡 ∉ [[𝑝]]}= (by the definition of the amplitude operator on the state)𝑆−{𝑠|∃𝑡 ∶ 𝑠 ∈ [[(𝒜=𝜆1(0𝑞𝑞0)∧𝒜=(𝜆2)(1𝑞𝑞0))∧(𝒜= 1√2 (0𝑞𝑞1 ∧0𝑞𝑞2)∧𝒜 1√2 (1𝑞𝑞1 ∧1𝑞𝑞2))]](1) ∧𝑡 ∈[[𝑝]](2) ⇒ 𝑡 ∉ [[𝑝]](2)}= (it can be easily verified that sets referred by (1),(2) are non-empty)[[⊤]]
⇤
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Proof: (meast)

Let 𝑝 and 𝑞 denote the following expressions:
𝑝 =𝒜=( 12 ∗𝜆1)(0𝑞𝑞0 ∧ 0𝑞𝑞1 ∧ 0𝑞𝑞2) ∧ 𝒜=( 12 ∗𝜆2)(0𝑞𝑞0 ∧ 0𝑞𝑞1 ∧ 1𝑞𝑞2)∧ 𝒜=( 12 ∗𝜆2)(0𝑞𝑞0 ∧ 1𝑞𝑞1 ∧ 0𝑞𝑞2) ∧ 𝒜=( 12 ∗𝜆1)(0𝑞𝑞0 ∧ 1𝑞𝑞1 ∧ 1𝑞𝑞2)∧ 𝒜=( 12 ∗𝜆1)(1𝑞𝑞0 ∧ 0𝑞𝑞1 ∧ 0𝑞𝑞2) ∧ 𝒜=(− 12 ∗𝜆2)(1𝑞𝑞0 ∧ 0𝑞𝑞1 ∧ 1𝑞𝑞2)∧ 𝒜=(− 12 ∗𝜆2)(1𝑞𝑞0 ∧ 1𝑞𝑞1 ∧ 0𝑞𝑞2) ∧ 𝒜=(− 12 ∗𝜆1)(1𝑞𝑞0 ∧ 1𝑞𝑞1 ∧ 1𝑞𝑞2) ,𝑞 =𝑃=0.25(0𝑐𝑐0 ∧ 0𝑞𝑞0 ∧ 0𝑐𝑐1 ∧ 0𝑞𝑞1 ∧𝒜=𝜆1(0𝑞𝑞2) ∧ 𝒜=(𝜆2)(1𝑞𝑞2))∨𝑃=0.25(0𝑐𝑐0 ∧ 0𝑞𝑞0 ∧ 1𝑐𝑐1 ∧ 1𝑞𝑞1 ∧𝒜=𝜆2(0𝑞𝑞2) ∧ 𝒜=(𝜆1)(1𝑞𝑞2))∨𝑃=0.25(1𝑐𝑐0 ∧ 1𝑞𝑞0 ∧ 0𝑐𝑐1 ∧ 0𝑞𝑞1 ∧𝒜=𝜆1(0𝑞𝑞2) ∧ 𝒜=(−𝜆2)(1𝑞𝑞2))∨𝑃=0.25(1𝑐𝑐0 ∧ 1𝑞𝑞0 ∧ 1𝑐𝑐1 ∧ 1𝑞𝑞1 ∧𝒜=𝜆2(0𝑞𝑞2) ∧ 𝒜=(−𝜆1)(1𝑞𝑞2)) .

The proof of the expression 𝑝 → [𝑀1;𝑀2]𝑞 reads as:[[𝑝 → [𝑀1;𝑀2]𝑞]]= (by the definition of the dynamic operator ⟨𝜋⟩𝜙)𝑆 − {𝑠|∃𝑡 ∶ 𝑠 ∈ [[𝑝]] ∧ (𝑠, 𝑡) ∈ [[[meas 𝑞0 to 𝑐0;meas 𝑞1 to 𝑐1]]] ⇒ 𝑡 ∉ [[𝑞]]}≡ (by the definition of measurement)𝑆 − {𝑠|∃𝑢∃𝑡 ∶ 𝑠 ∈ [[𝑝]] ∧ (𝑠, 𝑢) ∈ ({(𝑠, 𝑢)|𝑢 ∈ [[𝑞𝑞0 == 0]](𝑠) ∧ 𝑢 ∈ [[𝑃𝑒10𝑐𝑐0]] where 𝑒1 =⟨𝑠∣0𝑞𝑞0⟩ ⟨0𝑞𝑞0 ∣𝑠⟩} ∪ {(𝑠, 𝑢)|𝑢 ∈ [[𝑞𝑞0 == 1]] ∧ 𝑢 ∈ [[𝑃𝑒21𝑐𝑐0]] where 𝑒2 = ⟨𝑠∣1𝑞𝑞0⟩ ⟨1𝑞𝑞0 ∣𝑠⟩}) ∧(𝑢, 𝑡) ∈ [[meas 𝑞1 to 𝑐1]] ⇒ 𝑡 ∉ [[𝑞]]}= (by the definItion of measurement and combination)

𝑆−{𝑠|∃𝑡 ∶ 𝑠 ∈ [[𝑝]]∧(𝑠, 𝑡) ∈ ({(𝑠, 𝑡)|𝑡 ∈ [[𝑞𝑞1 == 0]] ∧ 𝑡 ∈ [[0𝑞𝑞0 ∧ 𝑃=𝑒10𝑐𝑐0 ∧ 𝑃=𝑒20𝑐𝑐1]]}∪{(𝑠, 𝑡)|𝑡 ∈ [[𝑞𝑞1 == 1]] ∧ 𝑡 ∈ [[0𝑞𝑞0 ∧ 𝑃=𝑒10𝑐𝑐0 ∧ 𝑃=𝑒31𝑐𝑐1]]}∪{(𝑠, 𝑡)|𝑡 ∈ [[𝑞𝑞1 == 0]] ∧ 𝑡 ∈ [[1𝑞𝑞0 ∧ 𝑃=𝑒41𝑐𝑐0 ∧ 𝑃=𝑒20𝑐𝑐1]]}∪{(𝑠, 𝑡)|𝑡 ∈ [[𝑞𝑞1 == 1]] ∧ 𝑡 ∈ [[1𝑞𝑞0 ∧ 𝑃=𝑒41𝑐𝑐0 ∧ 𝑃=𝑒31𝑐𝑐1]]} ⇒ 𝑡 ∉ [[𝑞]]}
where 𝑒1 = ⟨𝑠∣0𝑞𝑞0⟩ ⟨0𝑞𝑞0 ∣𝑠⟩ , 𝑒2 = ⟨𝑠∣0𝑞𝑞1⟩ ⟨0𝑞𝑞1 ∣𝑠⟩ , 𝑒3 = ⟨𝑠∣1𝑞𝑞1⟩ ⟨1𝑞𝑞1 ∣𝑠⟩ and 𝑒4 = ⟨𝑠∣1𝑞𝑞0⟩ ⟨1𝑞𝑞0 ∣𝑠⟩)
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= (the actual application of quantum tests, lead to the following state)

𝑆−{𝑠|∃𝑡 ∶ 𝑠 ∈ [[𝑝]](1)∧(𝑠, 𝑡) ∈ ({(𝑠, 𝑡)|𝑡 ∈ [[(0𝑞𝑞1 ∧ 0𝑞𝑞0 ∧ 0𝑐𝑐0 ∧ 0𝑐𝑐1 ∧𝒜=𝜆1(0𝑞𝑞2) ∧ 𝒜=(𝜆2)(1𝑞𝑞2))]]}∪{(𝑠, 𝑡)|𝑡 ∈ [[𝑃=0.5∗0.5(1𝑞𝑞1 ∧ 0𝑞𝑞0 ∧ 0𝑐𝑐0 ∧ 1𝑐𝑐1 ∧𝒜=𝜆2(0𝑞𝑞2) ∧ 𝒜=(𝜆1)(1𝑞𝑞2))]]}∪{(𝑠, 𝑡)|𝑡 ∈ [[𝑃=0.5∗0.5(0𝑞𝑞1 ∧ 1𝑞𝑞0 ∧ 1𝑐𝑐0 ∧ 0𝑐𝑐1 ∧𝒜=𝜆1(0𝑞𝑞2) ∧ 𝒜=−𝜆2(1𝑞𝑞2))]]}∪{(𝑠, 𝑡)|𝑡 ∈ [[𝑃=0.5∗0.5(1𝑞𝑞1 ∧ 1𝑞𝑞0 ∧ 1𝑐𝑐0 ∧ 1𝑐𝑐1]] ∧ 𝒜=𝜆2(0𝑞𝑞2) ∧ 𝒜=(−𝜆1)(1𝑞𝑞2))]]})(2) ⇒ 𝑡 ∉ [[𝑞]](2)}
=𝑆 − {𝑠|∃𝑡 ∶ 𝑠 ∈ [[𝑝]](1) ∧ 𝑡 ∈ [[𝑞]](2) ⇒𝑡 ∉ [[𝑞]](2)}= (it can be easily verified that sets referred by (1),(2) are non-empty)[[¬⊥]]=[[⊤]] ⇤

Proof: (if1) Let 𝑝, 𝑞 denote the following expressions:
𝑝 =(𝑃=0.25(0𝑐𝑐0 ∧ 0𝑞𝑞0 ∧ 0𝑐𝑐1 ∧ 0𝑞𝑞1 ∧𝒜=𝜆1(0𝑞𝑞2) ∧ 𝒜=(𝜆2)(1𝑞𝑞2))∨𝑃=0.25(0𝑐𝑐0 ∧ 0𝑞𝑞0 ∧ 1𝑐𝑐1 ∧ 1𝑞𝑞1 ∧𝒜=𝜆2(0𝑞𝑞2) ∧ 𝒜=(𝜆1)(1𝑞𝑞2))∨𝑃=0.25(1𝑐𝑐0 ∧ 1𝑞𝑞0 ∧ 0𝑐𝑐1 ∧ 0𝑞𝑞1 ∧𝒜=𝜆1(0𝑞𝑞2) ∧ 𝒜=−𝜆2(1𝑞𝑞2))∨𝑃=0.25(1𝑐𝑐0 ∧ 1𝑞𝑞0 ∧ 1𝑐𝑐1 ∧ 1𝑞𝑞1 ∧𝒜=𝜆2(0𝑞𝑞2) ∧ 𝒜=(−𝜆1)(1𝑞𝑞2)) ,𝑞 =𝑃=0.5((0𝑐𝑐1 ∧ 0𝑞𝑞1 ∧𝒜=𝜆1(0𝑞𝑞2) ∧ 𝒜=(𝜆2)(1𝑞𝑞2))∧𝑃=0.5(1𝑐𝑐1 ∧ 1𝑞𝑞1 ∧𝒜=𝜆2(0𝑞𝑞2) ∧ 𝒜=(𝜆1)(1𝑞𝑞2)) .

The proof of statement 𝑝 → [𝐼𝐹1]𝑞 reads as:[[𝑝 → [𝐼𝐹1]𝑞]]= (by the definition of the dynamic operator ⟨𝜋⟩𝜙)𝑆 − {𝑠|∃𝑡 ∶ 𝑠 ∈ [[𝑝]] ∧ (𝑠, 𝑡) ∈ {[[[if (𝑐0 == 1) z 𝑞3]]]} ⇒ 𝑡 ∉ [[𝑞]]}= (by the semantics of the if statement)𝑆−{𝑠|∃𝑡 ∶ 𝑠 ∈ [[𝑝]]∧(𝑠, 𝑡) ∈ ([[𝑐0 == 1]]∩[[|1𝑐0⟩⟨1𝑐0 |; z 𝑞3]]}∪{[[𝑐0 == 0]]∩[[|0𝑐0⟩⟨0𝑐0 |; skip]]) ⇒𝑡 ∉ [[𝑞]]}
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= (by the definition of the if statement, only two worlds, the ones where test 𝑐0 == 1 holds, will be affected

by the phase flip operator)

𝑆 − {𝑠|∃𝑡 ∶ 𝑠 ∈ [[𝑝]] ∧ 𝑡 ∈ ([[𝑃=0.25(0𝑐𝑐0 ∧ 0𝑞𝑞0 ∧ 0𝑐𝑐1 ∧ 0𝑞𝑞1 ∧𝒜=𝜆1(0𝑞𝑞2) ∧ 𝒜=(𝜆2)(1𝑞𝑞2))]]∪[[𝑃=0.25(0𝑐𝑐0 ∧ 0𝑞𝑞0 ∧ 1𝑐𝑐1 ∧ 1𝑞𝑞1 ∧𝒜=𝜆2(0𝑞𝑞2) ∧ 𝒜=(𝜆1)(1𝑞𝑞2))]]∪[[𝑃=0.25(1𝑐𝑐0 ∧ 1𝑞𝑞0 ∧ 0𝑐𝑐1 ∧ 0𝑞𝑞1 ∧𝒜=𝜆1(0𝑞𝑞2) ∧ 𝒜=𝜆2(1𝑞𝑞2))]]∪[[𝑃=0.25(1𝑐𝑐0 ∧ 1𝑞𝑞0 ∧ 1𝑐𝑐1 ∧ 1𝑞𝑞1 ∧𝒜=𝜆2(0𝑞𝑞2) ∧ 𝒜=(𝜆1)(1𝑞𝑞2))]]) ⇒ 𝑡 ∉ [[𝑞]]}
= (upon the application of the phase flip correction, the two pairs of possible worlds become equivalent,

hence the possible worlds are narrowed to 2)

𝑆 − {𝑠|∃𝑡 ∶ 𝑠 ∈ [[𝑝]](1) ∧ 𝑡 ∈ ([[𝑃=0.5(1𝑐𝑐0 ∧ 1𝑞𝑞0 ∧ 0𝑐𝑐1 ∧ 0𝑞𝑞1 ∧𝒜=𝜆1(0𝑞𝑞2) ∧ 𝒜=𝜆2(1𝑞𝑞2))]]∪[[𝑃=0.5(1𝑐𝑐0 ∧ 1𝑞𝑞0 ∧ 1𝑐𝑐1 ∧ 1𝑞𝑞1 ∧𝒜=𝜆2(0𝑞𝑞2) ∧ 𝒜=(𝜆1)(1𝑞𝑞2))]])(2)
⇒ 𝑡 ∉ [[𝑞]](2)}

= (it can be easily verified that sets referred by (1),(2) are non-empty)[[¬⊥]]=[[⊤]] ⇤

Proof: (if2) Let 𝑝, 𝑞 denote the following expressions:
𝑝 = 𝑃=0.5(0𝑐𝑐1 ∧ 0𝑞𝑞1 ∧𝒜=𝜆1(0𝑞𝑞2) ∧ 𝒜=(𝜆2)(1𝑞𝑞2)) ∧ 𝑃=0.5(1𝑐𝑐1 ∧ 1𝑞𝑞1 ∧𝒜=𝜆2(0𝑞𝑞2) ∧ 𝒜=(𝜆1)(1𝑞𝑞2)) ,𝑞 = (𝑃=𝛼(0𝑞𝑞2) ∧ 𝑃=1−𝛼(1𝑞𝑞2)) .
The proof of the statement 𝑝 → [𝐼𝐹2]𝑞, read as[[𝑝 → [𝐼𝐹2]𝑞]]= (by the definition of the dynamic operator ⟨𝜋⟩𝜙)𝑆−{𝑠|∃𝑡 ∶ 𝑠 ∈ [[𝑝]]∧(𝑠, 𝑡) ∈ ([[𝑐1 == 1]]∩[[|1𝑐1⟩⟨1𝑐1 |; x 𝑞3]]}∪{[[𝑐1 == 0]]∩[[|1𝑐0⟩⟨1𝑐1 |; skip]]) ⇒𝑡 ∉ [[𝑞]]}= (by the semantics of the if statement, i.e. one possible world is affected by operator X, and the other is

not)𝑆 − {𝑠|∃𝑡 ∶ 𝑠 ∈ [[𝑝]] ∧ 𝑡 ∈ ([[𝑃=0.5(1𝑐𝑐0 ∧ 1𝑞𝑞0 ∧ 0𝑐𝑐1 ∧ 0𝑞𝑞1 ∧𝒜=𝜆1(0𝑞𝑞2) ∧ 𝒜=𝜆2(1𝑞𝑞2))]]∪[[𝑃=0.5(1𝑐𝑐0 ∧ 1𝑞𝑞0 ∧ 1𝑐𝑐1 ∧ 1𝑞𝑞1 ∧𝐴=(𝜆1)(0𝑞𝑞2) ∧ 𝒜=𝜆2(1𝑞𝑞2))]]) ⇒ 𝑡 ∉ [[𝑞]]}= (the two resulting worlds are equivalent and hence, merge into one)𝑆 − {𝑠|∃𝑡 ∶ 𝑠 ∈ [[𝑝]] ∧ 𝑡 ∈ ([[(𝒜=𝜆1(0𝑞𝑞2) ∧ 𝒜=𝜆2(1𝑞𝑞2))]] ⇒ 𝑡 ∉ [[𝑞]]}
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= (by assumption of equation 150)𝑆−{𝑠|∃𝑡 ∶ 𝑠 ∈ [[𝑝]](1)∧𝑡 ∈ ([[𝑃=𝛼0𝑞𝑞2∧𝑃=1−𝛼1𝑞𝑞2]](2) ⇒ 𝑡 ∉ [[(𝑃=𝛼(0𝑞𝑞2)∧𝑃=1−𝛼(1𝑞𝑞2))]](2)}= (it can be easily verified that sets referred by (1),(2) are non-empty)[[¬⊥]] = [[⊤]] ⇤
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5.5 Proof of decidabi l i ty

In this section we show that the logic presented in this chapter is decidable. The method for this is based

on the reduction of the logic to the theory of the first order language of complex numbers, i.e. first order

theory of the algebraically closed fields2, known to be decidable by an important result of Tarski [342].

Definition 5.5.1. The first order theory of complex numbers, denoted by 𝒯ℒℂ, is the theory
of ℂ in the language ℒℂ, which corresponds to (ℂ, ∗,+, ., 0, 1), where ∗ is the conjugate
transpose operation.

This strategy of proving the decidability of quantum logic has been defined for the standard quantum

finite dimensional logic by Dunn et al. [140], and a more general recipe for a wide range of quantum logics,

including modal and dynamic ones, has been discussed in Baltag et al. in [44]. The latter work is the main

inspiration for this section, from which the main ideas and notation were borrowed. We revisit the main

ingredients of the proof recipe through the next sections and the decidability is stated and proved in theorem

5.5.2.

5.5.1 The main idea of the proof

The cornerstone of the proof presented in [140] is based on the equivalence between quantum propositions,

closed linear sub-spaces of an Hilbert space, and kernels of matrices, i.e.

[[𝑝]] ⇔ [[𝑝]] ⇔ {𝑣| ̂𝑝.𝑣 = 0} , (151)

where 𝑝 is a proposition, [[𝑝]] is a closed linear subspace of an Hilbert space, and ̂𝑝 ∈ ℂ𝑛×𝑛 is a matrix

and {𝑣| ̂𝑝.𝑣 = 0} corresponds to its kernel. This equivalence makes possible the entire translation of

standard quantum logic into closed statements of the first order theory of complex numbers, as the kernel

of the matrix ̂𝑝 = (𝑝11,… , 𝑝𝑖𝑗,… , 𝑝𝑛𝑛), can efficiently be reduced to an expression of this theory as
ℂ ⊧ ∀𝑣 ̂𝑝.𝑣 = 0 ⇔ 𝐶 ⊧𝑝11.𝑣1 + 𝑝12.𝑣2 +…+ 𝑝1𝑛.𝑣𝑛 = 0∧𝑝21.𝑣1 + 𝑝22.𝑣2 +…+ 𝑝2𝑛.𝑣𝑛 = 0∧…∧𝑝𝑛1.𝑣1 + 𝑝𝑛2.𝑣2 +…+ 𝑝𝑛𝑛.𝑣𝑛 = 0 .

where 𝑝11 to 𝑝𝑛𝑛 are a set of variables with valuations in ℂ. From here one can extract useful notions of

logic: 𝑣 ∈ [[𝑝]] as ℂ ⊧ ̂𝑝.𝑣 = 0 (152)

2 Theory composed of axioms of algebraically closed fields, equality operators, and first order quantifiers.

123



5.5. Proof of decidability 124

and the notion of satisfaction ℋ ⊧ 𝑝, meaning that 𝑝 is true independently of the matrixial representation,̂𝑝, chosen:
ℋ ⊧ 𝑝 ⇔ ℂ ⊧ ∀ ̂𝑝∀𝑣 ̂𝑝.𝑣 = 0 . (153)

Furthermore, it is also possible to express unitary operators with an additional condition enforcing their

unitarity,

ℋ ⊧ [𝑢]𝑝 ⇔ ℂ ⊧ ∀ ̂𝑢 ̂𝑝 𝑈𝑛( ̂𝑢) → ∀𝑣 ̂𝑝( ̂𝑢𝑣) = 0,where 𝑈𝑛( ̂𝑢) = ̂𝑢. ̂𝑢∗ = 𝐼 ,
completing the necessary machinery to capture the static and dynamic aspects of quantum logic. In a more

general way every quantum dynamic logic expression can be translated into expressions of type

ℋ ⊧ 𝜑 ⇔ ℂ ⊧ ∀ ⃗𝑥(𝜑𝑝( ⃗𝑥) → ∀𝑣.𝜑𝛿(𝑣, ⃗𝑥)) , (154)

where both 𝜑𝛿(𝑣, ⃗𝑥) and 𝜑𝑝( ⃗𝑥) are functions, 𝑣 is a vector space, and ⃗𝑥 are lists of variables, with

valuations in ℂ, which corresponds to the matrixial representation of 𝜑, ̂𝜑. The former function defines[[𝜑]] ∈ ℋ, i.e. by making the ⃗𝑥 correspond to the assignment [[.]], and the latter, 𝜑𝑝( ⃗𝑥), defines the
range of good values for ⃗𝑥. Hence, as all the statements falling into this type of expressions are inherently
well-formed in the first order theory of complex numbers, and hence implicitly decidable, and the proof of

decidability somehow reduces to showing that such functions can be obtained by an effective method.

5.5.2 Application to the Probabilistic logic of quantum programs

These ideas are applicable to the probabilistic logic of quantum programs (PLQP), introduced in [44].

Recalling, its syntax reads as:

𝜙 ∶∶= 𝑝|𝜙 ∧ 𝜙|¬𝜙|[𝜋]𝜙|𝑃≥𝑟𝜙𝜋 ∶∶= 𝑢|𝜙?|𝜋; 𝜋|𝜋 ∪ 𝜋
The first element of the proof of decidability of the logic comes from the fact that all models over a Hilbert

space of this logic, (Σ, [[.]]), are isomorphic to a ℂ𝑛-interpretation (see definition 5.5.2), ℋ ≅ ℂ𝑛, i.e.
an interpretation over the closed subspaces of an Hilbert space.

Definition 5.5.2. Given a language ℒ, by a ℂ𝑛-interpretation we mean a map [[.]], that
assigns to each sentence of ℒ a subspace of ℂ𝑛. Also given any class ℱ of ℂ𝑛 interpretations
of ℒ, we say that a sentence 𝜑 is ℱ-valued and write ℱ ⊧ 𝜑, if [[𝜑]] = ℂ𝑛 for all [[.]] ∈ ℱ
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Based on the equivalence of equation (153) and (154), one can conclude that for each assignment [[.]],
there must be a function 𝛼 ∶ 𝑣𝑎𝑟(ℒℂ) → ℂ, where 𝑣𝑎𝑟(ℒℂ) corresponds to a list of variables ⃗𝑥, i.e.
one that makes 𝜑𝛿(𝑣, ⃗𝑥)) be equivalent to some [[.]]. For instance, In the case of the PLQP language, to

an atomic proposition 𝑝, defined by a tuple ̂𝑥 = (𝑥11,… , 𝑥𝑛𝑛) of 𝑛 × 𝑛 variables, the function 𝛼, given by𝛼( ̂𝑥) = (𝛼(𝑥11),… , 𝛼(𝑥𝑛𝑛)), is such that 𝜑𝛿(𝑣, 𝛼( ⃗𝑥))) is equivalent to [[𝑝]]. There is a wide range of
functions 𝛼 for each assignment [[.]], however not all them are valid. In the case of the PLQP language,

such pairs, i.e. valid pairs, must respect the following conditions (𝒜𝒰 is the set of well-formed unitary

operators):

• for each 𝑢 ∈ 𝒜𝒰, ℂ ⊧ 𝑈𝑛[𝛼( ̂𝑢)], that is 𝛼( ̂𝑢) is an unitary matrix;
• for each 𝑝 ∈ 𝒜ℱ, [[𝑝]] is the kernel of the matrix (𝛼( ̂𝑝) and
• for each 𝑢 ∈ 𝒜𝒰, [[𝑢]] is the unitary transformation, given by the unitary matrix 𝛼( ̂𝑢).
The structure that maps the valid assignments, [[.]] and 𝛼-functions is denominated a ℂ-coding (see

definition 5.5.3), which is nothing more than a relational structure, containing all [[.]] − 𝛼 function pairs.

Definition 5.5.3. Given any class ℱ of ℂ𝑛-interpretations, a ℂ coding of ℱ is a partial
function R from ℂ𝑣𝑎𝑟(ℒℂ) onto ℱ such that, for every finite list of variables ⃗𝑥 = (𝑥1,… , 𝑥𝑚) ⊆𝑣𝑎𝑟(ℒℂ) of ℒℂ there is an 𝑚−ary formula 𝑝 ⃗𝑥( ⃗𝑦) of ℒℂ defining the set {𝛼( ⃗𝑥) ∈ ℂ𝑚|𝑎 ∈𝑑𝑜𝑚(𝑅))}. Moreover, we say that a ℂ-coding is effective if there is an effective procedure
of computing such 𝑝 ⃗𝑥( ⃗𝑦) for any given finite ⃗𝑥.
An effective ℂ−coding is one where the function 𝑝 ⃗𝑥( ⃗𝑦), which determines the valid assignments for the
lists ⃗𝑥, can be determined effectively. There is a close relationship between ℂ-codings and function pairs(𝜑𝑝( ⃗𝑥) and 𝜑𝛿(𝑣, ⃗𝑥)), which translates as follows:

𝑅(𝛼, [[.]]) entails [[𝜑]] = 𝜑𝛿(ℂ, 𝛼( ⃗𝑥)) , 𝜑𝑝(ℂ) = 𝑝 ⃗𝑥(ℂ) . (155)

Hence, the decidability of a logic, which corresponds to the existence of an effective method to the

generation of functions 𝜑𝛿(𝑣, ⃗𝑐) and 𝜑𝑝( ⃗𝑥), can also be reduced to the r-translatability (see definition

5.5.4) of expressions in an effective ℂ-coding, as stated in theorem 5.5.1.

Definition 5.5.4. ([44]) Fix a finite-dimensional Hilbert space ℋ ≅ ℂ𝑛, any class ℱ ofℂ𝑛−interpretation of a language ℒ, and any effective ℂ−coding R of ℱ. Then for any
sentence 𝜑 of ℒ, we say that a formula 𝜑𝛿(𝑣1,… , 𝑣𝑛, ̂𝑥) of ℒℂ (with a specific tuple of
variables ̂𝑥) translates 𝜑 in R, or is an R-translation of 𝜑, if conditions of equation (155)

Theorem 5.5.1. ([44]) Fix a finite-dimensional Hilbert space ℋ ≅ ℂ𝑛, any class ℱ of ℂ𝑛-
interpretations of language ℒ, and any effective ℂ-coding R of ℱ. Suppose a sentence 𝜑 ofℒ has an 𝑅-translation. Then it is decidable whether ℱ ⊧ 𝜑 or not.
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5.5.3 The decidability proof of the QASM logic

We now discuss the actual proof of decidability for the logic developed in this chapter, the logic for the

QASM language (LQASM), essentially by showing that the conditions presented in lemma 5.5.2 also apply

to it. The model proposed for LQASM in section 5.3.4, is quite similar to the PLQP ones, and it can be

straightforwardly verified that the fundamental assumptions to the proof of decidability of latter also hold in

the former:

• The model of LQASM isomorphic to a ℂ𝑛-interpretation;
• Propositions correspond to closed linear subspaces.

The main differences between the LQASM and PLPQ lie on the type of programs allowed, i.e. the former

allows unitary operators and classical control instructions and includes the connective 𝒜=𝜆. The theorem
5.5.1, presented in previous section, establishes the conditions for the general proof recipe of decidability,

presented in lemma 5.5.2.

Lemma 5.5.2. ([44]) For every finite-dimensional Hilbert space ℋ ≅ ℂ𝑛, and any class ℱ ofℂ𝑛-intepretations of a language ℒ, the logic of ℱ is decidable if

1. The theory is recursively enumerable;

2. There is an effective ℂ-coding of R;

3. There is an effective procedure that yields R-translation to a given atomic sentence
of ℒ;

4. Each (n-ary) connective of ℒ, R-translation is preserved.

In theorem 5.5.3, proven and discussed in [44], this recipe is followed to show the decidability of the

PLQP logic by showing that each individual condition holds in it.

Theorem 5.5.3. ([44]) Let ℒ𝑃𝐿𝑄𝑃 be a language of PLQP. For any 𝑛 ∈ ℕ of any Hilbert
space ℋ ≅ ℂ𝑛, the language PLQP (ℋ) = {𝜑 ∈ ℒ𝑃𝐿𝑄𝑃|ℋ ⊧ 𝜑} is decidable.

We also follow this recipe to show the decidability of LQASM. The functions 𝜑𝛿(𝑣, ⃗𝑥) are defined in table
11 and functions 𝑝𝑎𝑟(𝜑) correspond to the set of ℂ-valued variables ̂𝑝 that are part of a proposition 𝜑. We
are ready to show the decidability of LQASM in theorem 5.5.4.
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Static propositions𝑝𝛿(𝑣, 𝑝𝑎𝑟(𝑝)) = ̂𝑝𝑣 = 0(𝜑 ∧ 𝜓)𝛿(𝑣, 𝑝𝑎𝑟(𝜑 ∧ 𝜓)) = 𝜑𝛿(𝑣, 𝑝𝑎𝑟(𝜑)) ∧ 𝜑𝛿(𝑣, 𝑝𝑎𝑟(𝜓))(𝜑 ∨ 𝜓)𝛿(𝑣, 𝑝𝑎𝑟(𝜑 ∨ 𝜓)) = 𝜑𝛿(𝑣, 𝑝𝑎𝑟(𝜑)) ∨ 𝜑𝛿(𝑣, 𝑝𝑎𝑟(𝜓))(¬𝜑)𝛿 (𝑣, 𝑝𝑎𝑟(¬𝜑)) = 𝜑𝛿(𝑣, 𝑝𝑎𝑟(𝜑)) → 𝑣 = 0∼ 𝐹(𝑣, ⃗𝑥) = ∀𝑤(𝐹(𝑤, ⃗𝑥)) → ⟨𝑣, 𝑤⟩ = 0(𝑃≥𝑟𝜑)𝛿(𝑣, 𝑝𝑎𝑟(𝑃≥𝑟)) = ∃𝑤(𝑤 ≠ 0∧ ∼∼ 𝜑𝛿(𝑤, 𝑝𝑎𝑟(𝜑)) ∧|⟨𝑣, 𝑤⟩|2 ≥ 𝑟||𝑣||2||𝑤||2(𝒜=𝜆𝜑)𝛿(𝑣, 𝑝𝑎𝑟(𝒜=𝜆𝜑)) = ∃𝑤(𝑤 ≠ 0∧ ∼∼ 𝜑𝛿(𝑤, 𝑝𝑎𝑟(𝜑)) ∧⟨𝑣, 𝑤⟩ = 𝜆
Programs and unitaries([𝜋]𝜑)𝛿(𝑣, 𝑝𝑎𝑟([𝜋]𝜑)) = ([𝜋]𝜑)𝛿(�̂�𝑣, 𝑝𝑎𝑟(𝜑))([𝜋; 𝜋]𝜑))𝛿(𝑣, 𝑝𝑎𝑟([𝜋; 𝜋]𝜑)) = 𝜑𝛿(�̂�𝑣, [𝜋]𝜑)([u]𝜑)𝛿(𝑣, 𝑝𝑎𝑟([u]𝜑)) = 𝜑𝛿( ̂𝑢𝑣, 𝑝𝑎𝑟(𝜑))
Creation of registers([creg id [size]]𝜑)𝛿(𝑣, [creg id [size]]𝜑) = 𝜑𝛿(creg id [size]v, 𝑝𝑎𝑟(𝜑)) =𝜑𝛿(𝑣, 𝑝𝑎𝑟(𝜑)) ∧ 𝜑𝛿(𝑣, 𝑝𝑎𝑟( ̂0)) wherê0 is the assignment to variables

corresponding to the semantics of
creg (see section 5.3.7)([qreg id [size]]𝜑)𝛿(𝑣, [qreg id [size]]𝜑) = 𝜑𝛿(qreg id [size]v, 𝑝𝑎𝑟(𝜑)) =𝜑𝛿(𝑣, 𝑝𝑎𝑟(𝜑)) ∧ 𝜑𝛿(𝑣, 𝑝𝑎𝑟( ̂0)) wherê0 is the assignment to variables
corresponding to the semantics of
qreg (see section 5.3.7)

Measurements and tests([𝑖𝑑𝑞𝑖 == a]𝜑)𝛿(𝑣, 𝑝𝑎𝑟([𝑖𝑑𝑞𝑖 == a]𝜑)) = 𝜑𝛿(�̂�𝑣, 𝑝𝑎𝑟(𝜑)) where �̂� =∣𝑖𝑑𝑞𝑖 ⟩ ⟨𝑖𝑑𝑞𝑖 ∣ /√𝑣∗ ∣𝑖𝑑𝑞𝑖 ⟩ ⟨𝑖𝑑𝑞𝑖 ∣ 𝑣
For 𝑚 = measure qreg_id [index] → creg_id [index]]([𝑚]𝜑)𝛿(𝑣, 𝑝𝑎𝑟([𝑚]𝜑)) = 𝜑𝛿(𝑣, 𝑝𝑎𝑟([𝑖𝑑𝑞𝑖 == 0]𝜑)) ∧(𝑃=𝑟1(𝑖𝑑𝑞𝑖 == 0))𝛿(𝑣, 𝑝𝑎𝑟(𝑃=𝑟1(1𝑐𝑖 ))∨𝜑𝛿(𝑣, 𝑝𝑎𝑟([𝑖𝑑𝑞𝑖 == 1]𝜑)) ∧(𝑃=𝑟2(𝑖𝑑𝑞𝑖 == 1))𝛿(𝑣, 𝑝𝑎𝑟(𝑃=𝑟2(1𝑐𝑖 ))

where 𝑟1 = 𝑣∗ ∣0𝑞𝑖 ⟩ ⟨0𝑞𝑖 ∣ 𝑣 and𝑟2 = 𝑣∗ ∣1𝑞𝑖 ⟩ ⟨1𝑞𝑖 ∣ 𝑣
Classical tests and if statements([𝑖𝑑𝑐𝑖 == a]𝜑)𝛿(𝑣, 𝑝𝑎𝑟([𝑖𝑑𝑐𝑖 == a]𝜑)) = (𝑃=𝑟11𝑖𝑑𝑐𝑖 )(𝑣, 𝑝𝑎𝑟(𝑃=𝑟11𝑖𝑑𝑐𝑖 )) →𝜑𝛿(𝑤, 𝑝𝑎𝑟(𝜑)) ∧(𝑃=𝑟11𝑖𝑑𝑐𝑖 )(𝑣, 𝑝𝑎𝑟(𝑃=𝑟11𝑖𝑑𝑐𝑖 ))([if 𝜑𝑐? then] 𝜋𝑞]𝜑)𝛿(𝑣, 𝑝𝑎𝑟([if 𝜑𝑐? then] 𝜋𝑞]𝜑))= ([𝑖𝑑𝑐𝑖 == a]𝜑)𝛿(𝑣, 𝑝𝑎𝑟([𝑖𝑑𝑐𝑖 == a]𝜑))∧(𝜋𝑡)𝛿(𝑤, 𝑝𝑎𝑟([𝜋𝑡]𝜑)) ∨(¬[𝑖𝑑𝑐𝑖 == a])𝛿(𝑣, 𝑝𝑎𝑟(¬[𝑖𝑑𝑐𝑖 == a]))∧(𝜋𝑓)𝛿(𝑤, 𝑝𝑎𝑟([𝜋𝑓]𝜑)) where𝑎 ∈ 0, 1, 𝜋𝑡 = |𝑎𝑖𝑑𝑐𝑖 ⟩⟨𝑎𝑖𝑑𝑐𝑖 |; 𝜋

and 𝑝𝑖𝑓 = (¬𝑎)𝑖𝑑𝑐𝑖 ⟩⟨(¬𝑎)𝑖𝑑𝑐𝑖 |; 𝑠𝑘𝑖𝑝 and𝑠𝑘𝑖𝑝 is the identity operator

Table 11: Recursive definition of the 𝜑𝛿(𝑣, 𝑝𝑎𝑟(𝜑)) of 𝜑
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Theorem 5.5.4. Let ℒ𝑄𝐴𝑆𝑀 be a language of the QASM logic. For any 𝑛 ∈ ℕ of any
Hilbert space ℋ ≅ ℂ𝑛, the language QASM (ℋ) = {𝜑 ∈ ℒ𝑄𝐴𝑆𝑀|ℋ ⊧ 𝜑} is decidable.

Proof: The first condition of lemma 5.5.2 is accomplished, since the logic is clearly recursively enumer-

able. The second condition , of having an efficient ℂ-coding, is also accomplished, as the set of 𝜑𝑝(𝑣) is
defined as follows:

• 𝜑𝑝(𝑣) = 𝑢.𝑢∗ = 𝐼, for the case of 𝜑𝛿(𝑣, [𝑢]𝜑);
• 𝜑𝑝(𝑣) = 0 = 0 (tautology), for all other cases.

The next condition necessary to hold in lemma 5.5.2 is that all propositions and connectives are efficiently

r-translatable. The case of all atomic propositions of ℒ𝑄𝐴𝑆𝑀 the fuction 𝑝𝑎𝑟(𝜑) is equal to ̂𝑝 and the

construction 𝜑𝛿(𝑣, ̂𝑝) is equivalent to [[𝑝]], according to equation (151), if the kernel of the matrix 𝛼( ̂𝑝) is
equivalent to [[𝑝]]. There efficient algorithms to solve this algebraic problem of calculating 𝜑𝛿(𝑣, ̂𝑝) given[[𝑝]] and hence:

𝜑𝛿(𝑣, 𝑝) can be efficiently generated for any 𝑝 atomic and is r-translatable. (156)

The ∧ connective also preserves effectiveness. According to the semantics of LQASM, [[𝜑1 ∧ 𝜑2]] =[[𝜑1]] ∩ [[𝜑1]], and, therefore, the r-translatability implies the following equivalence:
(𝜑 ∧ 𝜓)𝛿(𝑣, 𝑝𝑎𝑟(𝜑 ∧ 𝜓)) = 𝜑𝛿(𝑣, 𝑝𝑎𝑟(𝜑)) ∩ 𝜑𝛿(𝑣, 𝑝𝑎𝑟(𝜓)) = [[𝜑]] ∩ [[𝜓]] . (157)

Due to this equivalence, one can conclude that there is an effective method to generate (𝜑∧𝜓)𝛿(𝑣, 𝑝𝑎𝑟(𝜑∧𝜓)) if (𝜑)𝛿(𝑣, 𝑝𝑎𝑟(𝜑)), (𝜓)𝛿(𝑣, 𝑝𝑎𝑟(𝜓)), and the set intersection of two finite sets, the ∩ operation,

are effectively generatable, which clearly are. A similar reasoning can also be taken to the ∨ connective, as[[∪]] is also effective and a similar equivalence exists for this operation:
(𝜑 ∨ 𝜓)𝛿(𝑣, 𝑝𝑎𝑟(𝜑 ∨ 𝜓)) = 𝜑𝛿(𝑣, 𝑝𝑎𝑟(𝜑)) ∪ 𝜑𝛿(𝑣, 𝑝𝑎𝑟(𝜓)) = [[𝜑]] ∪ [[𝜓]] . (158)

The negation operator can also be, clearly, effectively generated, as its corresponding expression in the

first-order theory of complex numbers, can be trivially generated, from 𝜑𝛿(𝑣, 𝑝𝑎𝑟(𝜑)):
(¬𝜑)𝛿 (𝑣, 𝑝𝑎𝑟(¬𝜑)) = 𝜑𝛿(𝑣, 𝑝𝑎𝑟(𝜑)) → 𝑣 = 0 . (159)

The same applies for the construction of the expression in first order theory of the complex numbers for

the complement operator ∼, as it is clearly observable from its definition:
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∼ 𝐹(𝑣, ⃗𝑥) = ∀𝑤(𝐹(𝑤, ⃗𝑥)) → ⟨𝑣, 𝑤⟩ = 0 , (160)

where 𝐹 is a any valid function, where ⟨𝑣, 𝑤⟩ is the first order theory of complex numbers equivalent to the
internal product operation. The fact presented in (160), also makes the construction of the probabilistic
operators effective, as the corresponding expression can be obtained by

(𝑃≥𝑟𝜑)(𝑣, 𝑝𝑎𝑟(𝑃≥𝑟)) = ∃𝑤(𝑤 ≠ 0∧ ∼∼ 𝜑𝛿(𝑤, 𝑝𝑎𝑟(𝜑)) ∧ |⟨𝑣, 𝑤⟩|2 ≥ 𝑟||𝑣||2||𝑤||2 , (161)

and the same applies to the amplitude operator

(𝒜=𝜆𝜑)𝛿(𝑣, 𝑝𝑎𝑟(𝒜=𝜆𝜑)) = ∃𝑤(𝑤 ≠ 0∧ ∼∼ 𝜑𝛿(𝑤, 𝑝𝑎𝑟(𝜑)) ∧ ⟨𝑣, 𝑤⟩ = 𝜆 . (162)

As a result, it can be concluded that the expressions in first order theory of complex numbers, for both

the complement, probabilistic and amplitude operatorss can be effectively generated, and, hence, such

expressions are r-translatable. A wider class of connectives is given by programs, whose definitions

encompass general expressions such as

([𝜋]𝜑)𝛿(𝑣, 𝑝𝑎𝑟([𝜋]𝜑)) = ([𝜋]𝜑)𝛿(�̂�𝑣, 𝑝𝑎𝑟(𝜑)) . (163)

We show that for every possible program 𝜋, function ([𝜋]𝜑)𝛿(𝑣, 𝑝𝑎𝑟([𝜋]𝜑)) is r-translatable. For
unitary operators

([u]𝜑)𝛿(𝑣, [u]𝜑) = 𝜑𝛿( ̂𝑢𝑣, 𝑝𝑎𝑟(𝜑)) (164)

the function can be effectively built, as the operator ̂𝑢.𝑣 corresponds to a set of sums and multiplications,

i.e. it is similar to a matrix multiplication, for which efficient computations exist and it can also be efficiently

expressed in the first order theory of the reals. Furthermore, for the creg program, whose definition reads

as

𝜑𝛿(𝑣, [creg id [size]]𝜑) = 𝜑𝛿(𝑣, 𝜑) ∧ 𝜑𝛿(𝑣, ̂0) ,
one can conclude that it is also computable, because ̂0 is an atomic statement and the connective ∧
preserves R-translatability. The same applies for 𝜑𝛿(𝑣, [qreg id [size]]𝜑). The definition of quantum tests

reads as
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([𝑖𝑑𝑞𝑖 == a]𝜑)𝛿(𝑣, 𝑝𝑎𝑟([𝑖𝑑𝑞𝑖 == a]𝜑)) = 𝜑𝛿(�̂�𝑣, 𝑝𝑎𝑟(𝜑)) where �̂� = ∣𝑖𝑑𝑞𝑖 ⟩ ⟨𝑖𝑑𝑞𝑖 ∣ /√𝑣∗ ∣𝑖𝑑𝑞𝑖 ⟩ ⟨𝑖𝑑𝑞𝑖 ∣ 𝑣 .
(165)

On can easily observe that the expression can be effectively generated as, matrix𝑚 is a well-formed statement

in the first order of complex numbers, i.e. only valid operations in this theory are necessary to generate it.

Given this, one can quickly verify from their definitions that the valid first order theory of reals expressions

for the remaining operations, namely measurements, classical tests and if statements, can be effectively

generated as they rely on constructions that have been shown to be decidable throughout this proof. Finally,

the program sequential composition, defined by

([𝜋; 𝜋]𝜑))𝛿(𝑣, 𝑝𝑎𝑟([𝜋; 𝜋]𝜑)) = 𝜑𝛿(�̂�𝑣, [𝜋]𝜑) , (166)

also preserves R-translatability, due to the fact that all possible programs available preserve it R-translatability.

Hence all possible statements in LQASM preserve R-translatability, which makes it decidable, finishing the

proof.

⇤

5.6 Summary

In this chapter, it were reviewed the main concepts of standard quantum logics and their derivations, namely,

the family of quantum dynamic logics proposed by A. Baltag and S. Smets. Upon these results, we built a

new logic targeted to a fragment of the QASM language, able to deal, explicitly, with probabilistic classical

and quantum information. We provide a semantics for the logic, based on labelled transition systems

proposed to quantum dynamic logics. We exercise the logic with a simple example of a coin toss program,

which involves classical and quantum instructions, as well as with the teleportation protocol, showing it can

deal effectively with entanglement. Furthermore, we show that the logic is decidable.
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6
CONC L U S I O N S AND FU TU R E WORK

The objective of this work was to contribute towards a mathematical framework to aid in the conception

of new algorithms, which is an endeavour that must cope with two historically different fields, the ones of

algorithm performance and algorithm correction. For the former, a more pragmatic approach was followed,

based on the study of the structures behind algorithms that allow for quantum advantage, both for the case

of efficient algorithms that fall under the class BQP, and for the techniques employed in problems with

industrial, but that, most likely will not be efficient even on quantum computers. We also made two case

studies of the techniques studied, for distinct examples in the fields of biology and chemistry, both of them

targeted and executed in a quantum computer, the IBM Q. For the latter, a more formal approach was

followed, based on the conception of a logical system to a more realistic quantum programming language,

the QASM language.

The major aim of chapter 2 was to revisit the theoretical foundations of quantum computation: quantum

mechanics in the formalism of Hilbert spaces and density operators; the most well-known quantum computer

models; the theory of quantum programming languages and how they map into physical features; the main

sources of quantum advantage and a brief study on the most well-known results of quantum complexity.

Chapter 3 was devoted to the exploration of the structures behind efficient quantum algorithms, which

included the weak simulation of local and d-sparse Hamiltonians, as well as the algorithms based on Fourier

transform. The latter includes the Shor algorithm and the hidden subgroup problem. Moreover, the Harrow,

Hassidim and Lloyd algorithm, targeted at solving linear equations, may be considered a composition of an

efficient soft simulation on an Hamiltonian system representing the system of equations, and the execution

of the Fourier transform, hence being dependent on the existence of an efficient algorithm to compute the

former. Furthermore, it was possible to make the following observations:

• All sampling problems that can be reduced to the simulation of local, sparse or d-sparse Hamiltonian

possess efficient quantum algorithms;

• All search problems that cannot be reduced to finding a ground-state, involving only local components

with less than dimension 2, does not have an efficient quantum algorithm.
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From this analysis, it was also proposed a digital simulation of the non-radiative energy transfer taking

place in photosynthesis, which involves the weak simulation of a local Hamiltonian, along with environmental

interaction. This way it was possible to evaluate the importance of the environmental effects in photosynthesis

and obtain further insight about quantum mechanics in an open regime.

Chapter 4 aimed at exploring problems that have no quantum efficient algorithm, but for which a

polynomial advantage is expected, once regarding them as optimization problems. There is a natural

relationship between some processes in physics, such as the convergence to equilibrium of certain physical

systems, and optimization problems, which make the former a good model to the latter. This idea is the

basis of quantum annealing and adiabatic optimization, where a quantum advantage is expected in a wide

range of problems, across a wide range of fields. Furthermore, in the so-called short-term devices method a

mention should be made to the Variational method, an hybrid classical-quantum method, which possess a

lot of applications.

One of those applications is on the field of quantum chemistry, and we explore a case study of the

application of the method to find the total ground-state energy of the 𝐻2 and 𝐿𝑖𝐻 molecules, subject to a

stationary electric field in a quantum computer. This is a non-trivial process, and we particularly explored:

• The fermionic formulation of quantum chemistry systems;

• The connection between fermionic Hamiltonians and the quantum circuits;

• The state preparation, running of the algorithm and the evaluation of the results.

The calculated results comprise the total energy as a function of bond length (i.e. the dissociation curve),

also under an applied stationary electric field. We also evaluated the shift of the molecule’s energy at a

fixed 𝑑 (equal to the equilibrium interatomic distance) with the electric field, i.e. the stationary electronic

Stark effect. In total, our case study seems to provide evidence for the feasibility of the use of this quantum

computer for small molecules, with a reasonable number of iterations performed.

In chapter 5, we briefly explore the logic induced by quantum mechanics in Hilbert spaces, i.e. the

so-called quantum logic, and the path from there to logics able to deal with quantum programs, and the

issues involved, particularly the inexistence of a tensor operator, focusing on the work on quantum dynamic

logics introduced by Baltag and Smets. We proposed a logic able to deal with classical and quantum

information simultaneously, and that, furthermore, involves measurements, to which a stochastic semantics

is provided. We provide some valid rules for the logic, based on such semantics, and provide proof for a

quantum coin toss program.
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6.1 Future work

This work, in its course of the understanding of the sources of quantum advantage and how to use them

to obtain new algorithms and applications of quantum computation, ended touching many different fields

related to quantum computation. Many state-of the-art problems and lines of research to pursue were

identified and explored. On the other hand, some of the ideas explored during the course of this work, were

abandoned.

On the field of efficient algorithms, progress has been slow, with no big advancements in the last few

years, worth of notice. In the early 2000’s a huge research effort has been done on trying to extend the

algorithm for the hidden subgroup problem (HSP), maintaining the exponential advantage, from Abelian

groups to non-Abelian ones, such as the dihedral or the symmetric group. Efficient algorithms for the HSP

in these groups would have important industrial impact, such as breaking lattice-based cryptography, the

cornerstone of post-quantum cryptography, or solving the graph isomorphism problem, however, the efforts

to build efficient algorithms to do so, have fallen short. However, while solving the HSP for non-Abelian

groups seems to be a hard computational task, an interesting line of research is to explore applications

where the exponential advantage of quantum Fourier transforms can be relevant, which may the case, for

instance, in fields such as computer vision, statistics or machine learning. Furthermore, the exploration of

problems that can expressed as simulations of local, or sparse, Hamiltonians can very fruitful in finding new

applications for quantum algorithms.

On the side of quantum optimization, there is an infinitude of possible industrial and academic applications

that can be explored with the current short-term devices. A particular important branch of optimization

problems is the one of mixed-integer, for which the first quantum techniques are starting to appear, mostly,

resorting to interaction between classical and quantum solvers. An example of these problems is the unit

commitment, i.e. the optimization of the production schedule of individual energy stations in power grids, a

problem that usually involves a large set of variables, discrete and continuous, which constitutes a completely

unexplored realm for quantum computation.

On the logical side the major development would be the improvement of the calculus for the logic and the

proof of its completeness. Furthermore, it would be also be useful to explore the formalization of the logic in

a proof system, or alternatively, by the conception of a model checker.

The approach taken in the work, specially in the algorithmic part, was somehow pragmatical, however,

the interest on pursuing a unified mathematical theory to deal with both complexity and correctness remains.

Research paths on this direction can be given by the study of compositional mathematical theories behind

the advantage in quantum algorithms, as well as of characteristic quantum programming languages of

complexity classes. Concerning the former, a particular interesting line of research is one the application of

finite model theory to quantum algorithms, where models are given by combinatory structures, rather than

algebraic ones, and may possess interesting notions of logic.
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A
A P P END I X A - C A L CU L A T I O N O F TH E MA T R I X E L EM EN T S

a.1 STO-LG wavefunct ions

The STO-3G type combinations of Gaussian functions are used to calculate the matrix elements of various

electronic interactions in the molecules under study. As the minimal basis of the H2 molecule includes

the 𝑠-type orbitals only, whereas that for LiH comprises both the 𝑠- and the 𝑝-type orbitals, by throughout
covering the latter molecule we leave a possibility to fall back to the H2 case by removing the factor of 3 (Li

nucleus charge) in those matrix elements where it appears explicitly (namely, in Table 14 below). Also, the

parameters of the STO-3G functions have to be chosen accordingly (see Table 12 below).

d

H

z
d

r

Li

Figure 24: Geometry setting in calculations concerning the LiH molecule.
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A.1. STO-LG wavefunctions 165

The minimal basis will include the following atomic orbitals: 1𝑠 for H; 1𝑠, 2𝑠 and 2𝑝𝑧 for Li. All of them
will be approximated by the STO-3G type combinations of the following Gaussian functions [338]:

𝜓1𝑠(𝜁) = 𝐿∑𝑖=1 𝑑𝑖,1𝑠𝑔1𝑠(𝛼𝑖,1𝑠) ; (167)

𝜓2𝑠(𝜁) = 𝐿∑𝑖=1 𝑑𝑖,2𝑠𝑔1𝑠(𝛼𝑖,2𝑠𝑝) ; (168)

𝜓2𝑝𝑧(𝜁) = 𝐿∑𝑖=1 𝑑𝑖,2𝑝𝑔2𝑝𝑧(𝛼𝑖,2𝑠𝑝) . (169)

Here 𝜁 is a parameter appearing in the Slater-type orbitals (𝜁 = 1.24 for H and 𝜁 = 2.69 as the

“recommended” value for Li1𝑠); the coefficients 𝑑𝑖 and 𝛼𝑖 are fitted parameters and 𝑔 are the normalized

Gaussian functions:

𝑔𝑠(𝛼) = 𝑐(𝑠)𝛼 𝑒−𝛼𝑟2, with 𝑐(𝑠)𝛼 = (2𝛼𝜋)34 ; (170)

𝑔𝑝(𝛽) = 𝑐(𝑝)𝛽 𝑟 cos 𝜃𝑒−𝛽𝑟2, with 𝑐(𝑝)𝛽 = (128𝛽5𝜋3 )14 . (171)

The fitted Gaussian exponents and the corresponding coefficients 𝑑𝑖 depend on the parameter 𝜁 in the

Slater orbital, also called “scaling factor”, which is different for each atomic shell (e.g for 2𝑠 and 2𝑝 states

of Li the recommended value is 𝜁 = 0.75). The exponents for 𝜁 = 1 are given in Table 3.7 of Szabo and

Ostlund [338]; for 𝜁 ≠ 1 they scale as 𝛼(𝜁) = 𝛼(1) ⋅ 𝜁2, whereby the coefficients 𝑑 are the same for

each type of states in different atoms, – e.g 1𝑠 (H) and 1𝑠 (Li), – although 𝛼’s are different. The parameters
used by us are compiled in Table 12.

Table 12: Parameters of STO-3G orbitals for H and Li atoms used in the calculations.
H Li𝛼1𝑠

(𝜁 =1.24) 𝑑1𝑠
𝛼1𝑠

(𝜁 =2.69) 𝑑1𝑠
𝛼2𝑠,𝑝
(𝜁 =0.75) 𝑑2𝑠 𝑑2𝑝

3.425250914 0.1543289673 16.11957475 0.1543289673 0.6362897469 −0.09996722919 0.1559162750
0.6239137298 0.5353281423 2.936200663 0.5353281423 0.1478600533 0.3995128261 0.6076837186
0.1688554040 0.4446345422 0.7946504870 0.4446345422 0.04808867840 0.7001154689 0.3919573931
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A.2. One-electron matrix elements 166

a.2 One-electron matr ix elements

We shall use spherical coordinates with the origin at the Li atom, as shown in Figure 24. From now on, the

Li atom will be denoted “B” and the H atom will be “A”, and, according to the previous section, we shall

consider the matrix elements between the following three functions:

|𝐴⟩ = 𝑐(𝑠)𝛼 𝑒−𝛼( ⃗𝑟− ⃗𝑑)2 ; |𝐵⟩1𝑠 𝑜𝑟 2𝑠 = 𝑐(𝑠)𝛽 𝑒−𝛽𝑟2 ;|𝐵⟩2𝑝 = 𝑐(𝑝)𝛽 𝑟 cos 𝜃𝑒−𝛽𝑟2 . (172)

Nuclear Potential Energy Matrix Elements

To calculate the nuclear potential energy matrix elements, one needs to calculate the following integrals:

𝐼(𝑠(1))𝑎𝑏 = ⟨𝐴|1𝑟 |𝐵⟩𝑠 = 𝑐(𝑠)𝛼 𝑐(𝑠)𝛽 ∫ 𝑒−𝛼( ⃗𝑟− ⃗𝑑)2−𝛽𝑟2 1𝑟 𝑑 ⃗𝑟 ; (173)

𝐼(𝑠(2))𝑎𝑏 = ⟨𝐴∣ 1| ⃗𝑟 − ⃗𝑑| ∣𝐵⟩𝑠 = 𝑐(𝑠)𝛼 𝑐(𝑠)𝛽 ∫ 𝑒−𝛼( ⃗𝑟− ⃗𝑑)2−𝛽𝑟2 1| ⃗𝑟 − ⃗𝑑| 𝑑 ⃗𝑟 . (174)

These integrals are the same as for the H2 molecule, so we can use the result of Equation (A33) from Szabo

and Ostlund [338]:

𝐼(𝑠(1))𝑎𝑏 = 𝑐(𝑠)𝛼 𝑐(𝑠)𝛽 2𝜋𝛼 + 𝛽 exp{(− 𝛼𝛽𝛼 + 𝛽𝑑2)}𝐹𝑜 ( 𝛽2𝛼 + 𝛽𝑑2) ; (175)

𝐼(𝑠(2))𝑎𝑏 = 𝑐(𝑠)𝛼 𝑐(𝑠)𝛽 2𝜋𝛼 + 𝛽 exp{(− 𝛼𝛽𝛼 + 𝛽𝑑2)}𝐹𝑜 ( 𝛼2𝛼 + 𝛽𝑑2) , (176)

Figure 25: Coordinate system and angles used in the calculation of integrals. See text for details.
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where 𝐹𝑜(𝑥) is expressed via the error function, 𝐹𝑜(𝑥) = √ 𝜋4𝑥erf(√𝑥). The matrix elements involving
the 𝑝-orbital are:

𝐼(𝑝(1))𝑎𝑏 = ⟨𝐴∣1𝑟 ∣𝐵⟩𝑝 = 𝑐(𝑝)𝛽 𝑐(𝑠)𝛼 ∫ 𝑒−𝛼( ⃗𝑟− ⃗𝑑)2𝑟 cos 𝜃𝑒−𝛽𝑟2 1𝑟 𝑑 ⃗𝑟 (177)

= 𝑐(𝑝)𝛽 𝑐(𝑠)𝛼 ∫ 𝑒−𝛼( ⃗𝑟− ⃗𝑑)2
cos 𝜃𝑒−𝛽𝑟2 𝑑 ⃗𝑟

= 𝑐(𝑝)𝛽 𝑐(𝑠)𝛼 ∫ 𝑓1( ⃗𝑟)𝑓2( ⃗𝑟)𝑑 ⃗𝑟 ,
where 𝑓1( ⃗𝑟) = 𝑒−𝛼( ⃗𝑟− ⃗𝑑)2

and 𝑓2( ⃗𝑟) = cos 𝜃𝑒−𝛽𝑟2
. It is convenient to use the Fourier transform of these

functions:

𝑓1( ⃗𝑘) = ∫ 𝑓1( ⃗𝑟)𝑒−𝑖�⃗�⋅ ⃗𝑟𝑑 ⃗𝑟
= 𝑒−𝑖�⃗�⋅ ⃗𝑑 ∫ 𝑒−𝛼( ⃗𝑟− ⃗𝑑)2𝑒−𝑖�⃗�( ⃗𝑟− ⃗𝑑) 𝑑( ⃗𝑟 − ⃗𝑑)
= 𝑒−𝑖�⃗�⋅ ⃗𝑑 (𝜋𝛼)

32 𝑒− 𝑘24𝛼 ; (178)

𝑓2( ⃗𝑘) = ∫ cos 𝜃𝑒−𝛽𝑟2𝑒−𝑖�⃗�⋅ ⃗𝑟𝑑 ⃗𝑟 . (179)

For 𝑓2( ⃗𝑘) we need to express cos 𝜃 in terms of cos𝛾, since ⃗𝑘 ⋅ ⃗𝑟 = 𝑘𝑟 cos𝛾. The vectors ⃗𝑘, ⃗𝑒𝑧 and ⃗𝑟, in
general, do not lie in the same plane, so we need to consider the spherical triangle shown in the Figure 25.

We can use the following formula relating the angles 𝜃, 𝜃𝑘 and 𝛾:
cos 𝜃 = cos 𝜃𝑘 cos𝛾 + sin 𝜃𝑘 sin𝛾 cos (𝜙 − 𝜙𝑘) (180)

Using (180), we obtain:

𝑓2( ⃗𝑘) = 2𝜋 ∫∞
0 𝑟2 𝑑𝑟 ∫1

−1 cos 𝜃𝑘 cos𝛾𝑒−𝛽𝑟2−𝑖𝑘𝑟 cos𝛾𝑑𝛾
[notice that the integration over 𝜙 eliminated the second term in (180)]. The integral with respect to cos𝛾
yields:

∫1
−1 𝑧𝑒−𝑖𝑘𝑟𝑧𝑑𝑧 = 2𝑖𝑘𝑟 [cos (𝑘𝑟) − sin (𝑘𝑟)𝑘𝑟 ] = −2𝑖𝑗𝑖(𝑘𝑟) ,
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where 𝑗𝑖(𝑥) is the spherical Bessel function. Then
𝑓2( ⃗𝑘) = 2𝜋 cos 𝜃𝑘 (2𝑖𝑘 )∫∞

0 [cos (𝑘𝑟) − sin (𝑘𝑟)𝑘𝑟 ] 𝑒−𝛽𝑟2𝑟 𝑑𝑟 (181)

= 2𝜋𝑖 cos 𝜃𝑘 1𝑘𝛽 ⎧{⎨{⎩1 − (2𝛽𝑘2 + 1)𝐹𝐷 ⎛⎜⎜⎜⎝
𝑘2√𝛽⎞⎟⎟⎟⎠

⎫}⎬}⎭ , (182)

whereby

𝐹𝐷(𝑡) = √𝜋2 𝑒−𝑡2
erfi(𝑡) , (183)

in which erfi(𝑡) = −𝑖erf(𝑡), is called the Dawson’s function. Then
𝐼(𝑝(1))𝑎𝑏 = 𝑐(𝑝)𝛽 𝑐(𝑠)𝛼 ∫𝑑 ⃗𝑟 ⎧{⎨{⎩∫ 𝑓1( ⃗𝑘1)𝑒𝑖�⃗�1 ⃗𝑟 𝑑 ⃗𝑘1(2𝜋)3 ∫ 𝑓2( ⃗𝑘2)𝑒𝑖�⃗�2 ⃗𝑟 𝑑 ⃗𝑘2(2𝜋)3⎫}⎬}⎭

= 𝑐(𝑝)𝛽 𝑐(𝑠)𝛼 ∫ 𝑑 ⃗𝑘(2𝜋)3 𝑓2( ⃗𝑘)𝑓1(− ⃗𝑘) . (184)

The angular part of the integral in (184) is:

2𝜋 ∫1
−1 𝑒𝑖𝑘𝑑 cos𝜃𝑘 cos 𝜃𝑘 𝑑 cos 𝜃𝑘 = 4𝜋𝑖𝑘𝑑 [cos (𝑘𝑑) − sin (𝑘𝑑)𝑘𝑑 ] ,

and we have:

𝐼(𝑝(1))𝑎𝑏 (𝛼, 𝛽; 𝑑) = 𝑐(𝑝)𝛽 𝑐(𝑠)𝛼 (𝜋𝛼)32
× 1𝜋𝛽𝑑 ∫∞

0 [1 − (2𝛽𝑘2 + 1)𝐹𝐷 ⎛⎜⎜⎜⎝
𝑘2√𝛽⎞⎟⎟⎟⎠]

× exp{(−𝑘24𝛼)}[cos (𝑘𝑑) − sin (𝑘𝑑)𝑘𝑑 ] 𝑑𝑘 . (185)

Another integral of this type, describing electrons interaction with the H atom, is:

𝐼(𝑝(1))𝑎𝑏 = ⟨𝐴∣ 1| ⃗𝑟 − ⃗𝑑| ∣𝐵⟩𝑝 (186)

= 𝑐(𝑝)𝛽 𝑐(𝑠)𝛼 ∫ 𝑟 cos 𝜃𝑒−𝛽𝑟2 1| ⃗𝑟 − ⃗𝑑|𝑒−𝛼( ⃗𝑟− ⃗𝑑)2 𝑑 ⃗𝑟 , (187)
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where 𝑓1( ⃗𝑟) = 𝑟 cos 𝜃𝑒−𝛽𝑟2
and 𝑓2( ⃗𝑟) = 1| ⃗𝑟 − ⃗𝑑|𝑒−𝛼( ⃗𝑟− ⃗𝑑)2

. The Fourier transforms of these functions

are:

𝑓1( ⃗𝑘) = 2𝑖cos 𝜃𝑘𝑘 2𝜋 ∫∞
0 𝑟2 [cos (𝑘𝑟) − sin (𝑘𝑟)𝑘𝑟 ] 𝑒−𝛽𝑟2 𝑑𝑟

= 𝑖 cos 𝜃𝑘𝜋 32 𝑘
2𝛽52 exp{(− 𝑘24𝛽)} ; (188)

𝑓2( ⃗𝑘) = 𝑒−𝑖�⃗�⋅ ⃗𝑑2𝜋 ∫∞
0 ∫1

−1 𝑒−𝛼𝑟2−𝑖𝑘 cos𝛾𝑟 𝑑𝑟 𝑑 cos𝛾
= 4𝜋𝑘 𝑒−𝑖�⃗�⋅ ⃗𝑑 1√𝛼𝐹𝐷 ( 𝑘2√𝛼) . (189)

With this,

𝐼(𝑝(2))𝑎𝑏 (𝛼; 𝛽; 𝑑) = 𝑐(𝑠)𝛼 𝑐(𝑝)𝛽 2𝜋 52
√𝛼𝛽52 𝑖 ∫ 𝑑 ⃗𝑘(2𝜋)3 cos 𝜃𝑘𝑘𝑒−𝑖�⃗�⋅ ⃗𝑑

× exp{(− 𝑘24𝛽)}𝐹𝐷 ( 𝑘2√𝛼)
= 𝑐(𝑠)𝛼 𝑐(𝑝)𝛽 √𝜋

√𝛼𝛽52𝑑 ∫∞
0 exp{(− 𝑘24𝛽)}𝐹𝐷( 𝑘2√𝛼)[cos (𝑘𝑑)− sin (𝑘𝑑)𝑘𝑑 ] 𝑘𝑑𝑘

= 𝑐(𝑠)𝛼 𝑐(𝑝)𝛽 √𝜋
√𝛼𝛽52𝑑3 ∫∞

0 (𝑥 cos 𝑥 − sin 𝑥)𝑒−𝑏′𝑥2 𝐹𝐷(𝑎′𝑥) 𝑑𝑥 , (190)

where 𝑏′ = 14𝛽𝑑2 and 𝑎′ = 12√𝛼𝑑 , 𝐹𝐷 is the Dawson’s function (183). Note that the dimension of the

normalization constants is [𝑐(𝑠)𝛼 ] = 𝐿−32 , [𝑐(𝑝)𝛽 ] = 𝐿−52 , while [𝛼] = [𝛽] = 𝐿2, thus, overall dimension
of (190) is 𝐿−1, as it should be. The integral in (190) couldn’t be evaluated analytically, so it has to be
calculated numerically.

169



A.2. One-electron matrix elements 170

We still need matrix elements of 𝑟−1 diagonal in atomic index, which are as follows:

𝐼(𝑠(1))𝑎𝑎 (𝛼, 𝛽) = 𝑐(𝑠)𝛼 𝑐(𝑝)𝛽 ∫ 1𝑟 𝑒−(𝛼+𝛽)𝑟2𝑑 ⃗𝑟
= 2𝜋(𝑠)𝛼 𝑐(𝑝)𝛽𝛼 + 𝛽 ; (191)

𝐼(𝑠(1))𝑏𝑏 (𝛼, 𝛽) = 𝐼(𝑠(1))𝑎𝑎 (𝛼, 𝛽);
𝐼(𝑝𝑠(1))𝑏𝑏 = 𝑐(𝑠)𝛼 𝑐(𝑝)𝛽 ∫ 1𝑟 𝑟 cos 𝜃𝑒−(𝛼+𝛽)𝑟2𝑑 ⃗𝑟 = 0 ; (192)

𝐼(𝑝(1))𝑏𝑏 (𝛼, 𝛽) = 𝑐(𝑝)𝛼 𝑐(𝑝)𝛽 ∫ 1𝑟 𝑟2
cos

2 𝜃𝑒−(𝛼+𝛽)𝑟2𝑑 ⃗𝑟
= 4𝜋3 𝑐(𝑝)𝛼 𝑐(𝑝)𝛽(𝛼 + 𝛽)2 ; (193)

𝐼(𝑠(2))𝑎𝑎 (𝛼, 𝛽; 𝑑) = 𝑐(𝑠)𝛼 𝑐(𝑠)𝛽 ∫ 1𝑟 𝑒−(𝛼+𝛽)( ⃗𝑟− ⃗𝑑)2𝑑 ⃗𝑟
= 𝑐(𝑠)𝛼 𝑐(𝑠)𝛽 2𝜋 32

(𝛼 + 𝛽)32𝑑2 erf(√𝛼 + 𝛽 𝑑) ; (194)

𝐼(𝑠(2))𝑏𝑏 = 𝐼(𝑠(2))𝑎𝑎 ;
𝐼(𝑝𝑠(2))𝑏𝑏 (𝛼, 𝛽; 𝑑) = 𝑐(𝑠)𝛼 𝑐(𝑝)𝛽 ∫ 1| ⃗𝑟 − ⃗𝑑|𝑒−(𝛼+𝛽)𝑟2𝑟 cos 𝜃 𝑑 ⃗𝑟 . (195)

Here we use the following expansion:

1| ⃗𝑟 − ⃗𝑑| = 1√𝑟2 + 𝑑2 − 2𝑟𝑑 cos 𝜃
= 1𝑑 ∞∑𝑙=0 𝑃𝑙(cos 𝜃) × ⎧{⎨{⎩

𝑥𝑙(𝑥 < 1) ,𝑥−𝑙−1(𝑥 > 1) , (196)
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where 𝑥 = 𝑟𝑑 ; since cos 𝜃 = 𝑃1(cos 𝜃) (𝑃𝑙 are the Legendre polynomials), the angular integration in

(195) eliminates all the terms in the sum over 𝑙 except 𝑙 = 1. Therefore, we have:
𝐼(𝑝𝑠(2))𝑏𝑏 (𝛼, 𝛽; 𝑑) = 𝑐(𝑠)𝛼 𝑐(𝑝)𝛽 { 1𝑑2 ∫𝑑

0 𝑒−(𝛼+𝛽)𝑟2𝑟4 𝑑𝑟
+ 𝑑∫∞

𝑑 𝑒−(𝛼+𝛽)𝑟2𝑟 𝑑𝑟} × 4𝜋3
= 𝜋√𝜋 erf(√𝛼+𝛽 𝑑) − 2√𝛼+𝛽 𝑑 𝑒−(𝛼+𝛽)𝑑2

2(𝛼 + 𝛽)52𝑑2 𝑐(𝑠)𝛼 𝑐(𝑝)𝛽 . (197)

Finally, the last integral of this type is:

𝐼(𝑝(2))𝑏𝑏 (𝛼, 𝛽; 𝑑) = 𝑐(𝑝)𝛼 𝑐(𝑝)𝛽 ∫ 1| ⃗𝑟 − ⃗𝑑|𝑒−(𝛼+𝛽)𝑟2𝑟2
cos

2 𝜃 𝑑 ⃗𝑟 . (198)

Again, we use the formula (196) and the relation

𝑧2 = 23 [𝑃2(𝑧) + 12𝑃0(𝑧)] . (199)

Using (199), the angular integration in (198) yields:

2𝜋 ∫1
−1 cos

2 𝜃 ∞∑𝑙=1 𝑃𝑙(cos 𝜃) ×
⎧{{⎨{{⎩

( 𝑟𝑑)𝑙 (𝑟 < 𝑑)
( 𝑟𝑑)−𝑙−1 (𝑟 > 𝑑)

⎫}}⎬}}⎭ 𝑑 cos 𝜃

= 8𝜋15
⎧{{{⎨{{{⎩
( 𝑟𝑑)2
(𝑑𝑟)3

⎫}}}⎬}}}⎭
+ 4𝜋3

⎧{{⎨{{⎩
1𝑑𝑟
⎫}}⎬}}⎭ .

The result is:

𝐼(𝑝(2))𝑏𝑏 (𝛼, 𝛽; 𝑑) = 𝜋{[1 + (𝛼 + 𝛽)𝑑2]√𝜋 erf(√𝛼+𝛽𝑑)
2(𝛼 + 𝛽)72𝑑3

− [1 + (𝛼 + 𝛽)𝑑2](𝛼 + 𝛽)3𝑑2 𝑒−(𝛼+𝛽)𝑑2} . (200)
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a.3 Kinet ic Energy Matr ix Elements

The calculation of the kinetic energy matrix elements involves the following integrals:

𝐾(𝑠)𝑎𝑏 = ⟨𝐴| − ∇2|𝐵⟩𝑠 = −𝑐𝑠𝛼𝑐𝑠𝛽 ∫ 𝑒−𝛼( ⃗𝑟− ⃗𝑑)2∇2𝑒−𝛽𝑟2𝑑 ⃗𝑟 (201)

= −𝑐𝑠𝛼𝑐𝑠𝛽 ∫ 𝑑 ⃗𝑘(2𝜋)3 𝑓1 ( ⃗𝑘) 𝑓2 (− ⃗𝑘) , (202)

where 𝑓2( ⃗𝑟) = 𝑒−𝛼( ⃗𝑟− ⃗𝑑)2
and 𝑓1( ⃗𝑟) = ∇2𝑒−𝛽𝑟2

. Fourier transforms of these functions are:

𝑓1 ( ⃗𝑘) = ∫𝑑 ⃗𝑟 𝑒−𝑖�⃗�⋅ ⃗𝑟∇2𝑒−𝛽𝑟2 = −𝑘2 (𝜋𝛼)32
exp{(− 𝑘24𝛽)} . (203)

𝑓2 ( ⃗𝑘) = 𝑒−𝑖�⃗�⋅ ⃗𝑑 (𝜋𝛼)32
exp{(−𝑘24𝛼)}; (204)

Then

𝐾(𝑠)𝑎𝑏 = 𝑐𝑠𝛼𝑐𝑠𝛽 (𝜋2𝛼𝛽)32 ∫ 𝑑 ⃗𝑘(2𝜋)3 𝑒−𝑖�⃗�⋅ ⃗𝑑
exp{(−𝛼 + 𝛽4𝛼𝛽 𝑘2)}𝑘2

= 𝑐𝑠𝛼𝑐𝑠𝛽 𝜋
2(𝛼𝛽)32 ∫∞

0 sin 𝑘𝑑𝑘𝑑 exp{(−𝛼 + 𝛽4𝛼𝛽 𝑘2)}𝑘4𝑑𝑘 .
Denoting 𝑥 = 𝑘𝑑, we have the following integral, ∫∞0 sin 𝑥𝑒−𝑏𝑥2𝑥3 𝑑𝑥, where 𝑏 = 𝛼 + 𝛽4𝛼𝛽𝑑2 . The result of
the integration reads:

𝐾(𝑠)𝑎𝑏 = 𝑐𝑠𝛼𝑐𝑠𝛽4𝜋 32 (𝛼𝛽)2𝑑2
(𝛼+𝛽)72 [3(𝛼+𝛽)2𝛼𝛽𝑑2 − 1] exp{(−𝛼+𝛽4𝛼𝛽 𝑑2)} . (205)

172



A.3. Kinetic Energy Matrix Elements 173

The similar integral involving the 𝑠 and 𝑝 states:

𝐾(𝑝)𝑎𝑏 = −𝑐𝑠𝛼𝑐𝑝𝛽 ∫ 𝑟 cos 𝜃𝑒−𝛽𝑟2 ∇2𝑒−𝛼( ⃗𝑟− ⃗𝑑)2 𝑑 ⃗𝑟
= −𝑐𝑠𝛼𝑐𝑝𝛽 ∫ 𝑑 ⃗𝑘(2𝜋)3 𝑓1( ⃗𝑘)𝑓2(− ⃗𝑘) , with (206)

𝑓2( ⃗𝑘) = 𝑒−𝑖�⃗�⋅ ⃗𝑑 ∫𝑑( ⃗𝑟 − ⃗𝑑)𝑒−𝑖�⃗�⋅( ⃗𝑟− ⃗𝑑) ∇2𝑒−𝛼( ⃗𝑟− ⃗𝑑)2

= 𝑒−𝑖�⃗�⋅ ⃗𝑑𝑘2 (𝜋𝛼)32
exp{(−𝑘24𝛼)} and (207)

𝑓1( ⃗𝑘) = 𝑖4𝜋𝑘 cos 𝜃𝑘 ∫∞
0 [cos (𝑘𝑟) − sin (𝑘𝑟)𝑘𝑟 ] 𝑒−𝛽𝑟2𝑟2 𝑑𝑟

= 𝑖 cos 𝜃𝑘𝜋32 𝑘
2𝛽52 exp{(− 𝑘24𝛽)} . (208)

Using (207) and (208),

𝐾(𝑝)𝑎𝑏 = 𝑐𝑠𝛼𝑐𝑝𝛽𝑖 𝜋3
2𝛼32𝛽52 ∫ cos 𝜃𝑘𝑒𝑖(�⃗�⋅ ⃗𝑑)𝑘3

exp{(−𝛼 + 𝛽4𝛼𝛽 𝑘2)} 𝑑 ⃗𝑘(2𝜋)3
= 𝑐𝑠𝛼𝑐𝑝𝛽 𝜋2

2𝛼32𝛽52𝑑6 ∫∞
0 (cos 𝑥 − sin 𝑥𝑥 ) 𝑥4𝑒−𝑏𝑥2𝑑𝑥 .

The integral is calculated with the help of Mathematica, with the result:

𝐾(𝑝)𝑎𝑏 (𝛼, 𝛽; 𝑑) = 𝑐𝑠𝛼𝑐𝑝𝛽 𝜋2
64𝛼32𝛽52𝑑6 𝑏5 × {1 + 4𝑏(3𝑏 − 4)

− [1 + 6𝑏(4𝑏2 + 6𝑏 − 3)] 1√𝑏𝐹𝐷 ⎛⎜⎝ 12√𝑏⎞⎟⎠} , (209)
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where 𝑏 = 𝛼 + 𝛽4𝛼𝛽𝑑2 and 𝐹𝐷 is the Dawson’s function (183). The matrix elements diagonal in atomic index

are as follows:

𝐾(𝑠)𝑎𝑎 (𝛼, 𝛽) = 𝑐(𝑠)𝛼 𝑐(𝑠)𝛽 (𝜋2𝛼𝛽) 12𝜋2 ∫∞
0 exp{(−𝛼 + 𝛽4𝛼𝛽 𝑘2) 𝑘4 𝑑𝑘}

= 𝑐(𝑠)𝛼 𝑐(𝑠)𝛽 3𝜋 322 𝛼𝛽
(𝛼 + 𝛽)52 ; (210)

𝐾(𝑠)𝑏𝑏 (𝛼, 𝛽) = 𝐾(𝑠)𝑎𝑎 (𝛼, 𝛽) ;𝐾(𝑠𝑝)𝑏𝑏 (𝛼, 𝛽) = 0 by symmetry ;𝐾(𝑝)𝑏𝑏 (𝛼, 𝛽) = ⟨𝐵|𝑝 − ∇2|𝐵⟩𝑝
= −𝑐(𝑝)𝛼 𝑐(𝑝)𝛽 ∫ 𝑑 ⃗𝑘(2𝜋)3 exp{(−𝛼+𝛽4𝛼𝛽) 𝑘2}⎛⎜⎜⎜⎜⎝−𝑘2

cos
2 𝜃𝑘 𝜋3𝑘2

2(𝛼𝛽)52
⎞⎟⎟⎟⎟⎠

= 𝑐(𝑝)𝛼 𝑐(𝑝)𝛽 5𝜋 32𝛼𝛽
2(𝛼 + 𝛽)72 . (211)

Summary of one-electron Hamiltonian (for zero external field):

The one-electron Hamiltonian in the absence of external electric field is as follows:

𝐻1 = −∇2 − 3𝑟 − 1| ⃗𝑟 − ⃗𝑑| .
For convenience, the necessary integrals are presented in Table 14, and Table 13 indicates the reference of

the corresponding equation.
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Table 13: Equations specifying matrix elements of Table 14.
Matrix Matrix

elements Eq. elements Eq.𝐾(𝑠)𝑎𝑎 (𝛼, 𝛽) (210) 𝐼(𝑠(1))𝑎𝑎 (𝛼, 𝛽) (191)𝐾(𝑠)𝑎𝑏 (𝛼, 𝛽; 𝑑) (205) 𝐼(𝑠(2))𝑎𝑎 (𝛼, 𝛽; 𝑑) (194)𝐾(𝑝)𝑎𝑏 (𝛼, 𝛽; 𝑑) (209) 𝐼(𝑠(1))𝑎𝑏 (𝛼, 𝛽; 𝑑) (175)𝐾(𝑠)𝑏𝑏 = 𝐾(𝑠)𝑎𝑎 𝐼(𝑠(2))𝑎𝑏 (𝛼, 𝛽; 𝑑) (176)𝐾(𝑝)𝑏𝑏 (𝛼, 𝛽; 𝑑) (211) 𝐼(𝑝(1))𝑎𝑏 (𝛼, 𝛽; 𝑑) (185)𝐼(𝑝(2))𝑎𝑏 (𝛼, 𝛽; 𝑑) (190) 𝐼(𝑠(1))𝑏𝑏 = 𝐼(𝑠(1))𝑎𝑎𝐼(𝑠(2))𝑏𝑏 = 𝐼(𝑠(2))𝑎𝑎 𝐼(𝑝𝑠(2))𝑏𝑏 (𝛼, 𝛽; 𝑑) (197)𝐼(𝑝(1))𝑏𝑏 (𝛼, 𝛽) (193) 𝐼(𝑝(2))𝑏𝑏 (𝛼, 𝛽; 𝑑) (200)
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Table 14: Matrix elements of one-electron interactions|𝐴1𝑠⟩ |𝐵1𝑠⟩ |𝐵2𝑠⟩ |𝐵2𝑝⟩

⟨𝐴1𝑠|
𝐾(𝑠)𝑎𝑎 (𝛼𝑖,1𝑠, 𝛼𝑗,1𝑠)−𝐼(𝑠(1))𝑎𝑎 (𝛼𝑖,1𝑠, 𝛼𝑗,1𝑠)−3𝐼(𝑠(2))𝑎𝑎 (𝛼𝑖,1𝑠, 𝛼𝑗,1𝑠; 𝑑)

𝐾(𝑠)𝑎𝑏 (𝛼𝑖,1𝑠, 𝛼′𝑗,1𝑠; 𝑑)−3𝐼(𝑠(1))𝑎𝑏 (𝛼𝑖,1𝑠, 𝛼′𝑗,1𝑠; 𝑑)−𝐼(𝑠(2))𝑎𝑏 (𝛼𝑖,1𝑠, 𝛼𝑗,1𝑠; 𝑑)
𝐾(𝑠)𝑎𝑏 (𝛼𝑖,1𝑠, 𝛼′𝑗,2𝑠𝑝; 𝑑)−3𝐼(𝑠(1))𝑎𝑏 (𝛼𝑖,1𝑠, 𝛼′𝑗,2𝑠𝑝; 𝑑)−𝐼(𝑠(2))𝑎𝑏 (𝛼𝑖,1𝑠, 𝛼′𝑗,2𝑠𝑝; 𝑑)

𝐾(𝑝)𝑎𝑏 (𝛼𝑖,1𝑠, 𝛼′𝑗,1𝑠; 𝑑)−3𝐼(𝑝(1))𝑎𝑏 (𝛼𝑖,1𝑠, 𝛼′𝑗,2𝑠𝑝; 𝑑)−𝐼(𝑝(2))𝑎𝑏 (𝛼𝑖,1𝑠, 𝛼′𝑗,2𝑠𝑝; 𝑑)

⟨𝐵1𝑠|
𝐾(𝑠)𝑏𝑏 (𝛼′𝑖,1𝑠, 𝛼′𝑗,1𝑠)−3𝐼(𝑠(1))𝑏𝑏 (𝛼′𝑖,1𝑠, 𝛼′𝑗,1𝑠)−𝐼(𝑠(2))𝑏𝑏 (𝛼′𝑖,1𝑠, 𝛼′𝑗,1𝑠; 𝑑)

𝐾(𝑠)𝑏𝑏 (𝛼′𝑖,1𝑠, 𝛼𝑗,2𝑠𝑝)−3𝐼(𝑠(1))𝑏𝑏 (𝛼′𝑖,1𝑠, 𝛼𝑗,2𝑠𝑝)−𝐼(𝑠(2))𝑏𝑏 (𝛼′𝑖,1𝑠, 𝛼𝑗,2𝑠𝑝; 𝑑) −𝐼(𝑝𝑠(2))𝑏𝑏 (𝛼′𝑖,1𝑠, 𝛼𝑗,2𝑠𝑝; 𝑑)

⟨𝐵2𝑠|
𝐾(𝑠)𝑏𝑏 (𝛼𝑖,2𝑠𝑝, 𝛼𝑗,2𝑠𝑝)−3𝐼(𝑠(1))𝑏𝑏 (𝛼𝑖,2𝑠𝑝, 𝛼𝑗,2𝑠𝑝)−𝐼(𝑠(2))𝑏𝑏 (𝛼𝑖,2𝑠𝑝, 𝛼𝑗,2𝑠𝑝; 𝑑) −𝐼(𝑝𝑠(2))𝑏𝑏 (𝛼𝑖,2𝑠𝑝, 𝛼𝑗,2𝑠𝑝; 𝑑)

⟨𝐵2𝑝|
𝐾(𝑝)𝑏𝑏 (𝛼𝑖,2𝑠𝑝, 𝛼𝑗,2𝑠𝑝)−3𝐼(𝑝(1))𝑏𝑏 (𝛼𝑖,2𝑠𝑝, 𝛼𝑗,2𝑠𝑝)−𝐼(𝑝(2))𝑏𝑏 (𝛼𝑖,2𝑠𝑝, 𝛼𝑗,2𝑠𝑝; 𝑑)
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a.4 Matr ix elements of the interact ion with external electr ic f ie ld

We shall consider the field parallel to the 𝑧 axis, so the interaction Hamiltonian reads:
𝐻𝑆 = −𝔼𝑟 cos 𝜃 .

We shall keep the same notation as for the kinetic energy matrix elements just changing 𝐾 → 𝐽. First, we
have:

𝐽𝑎𝑎 = 𝔼𝑑; 𝐽(𝑝𝑝)𝑏𝑏 = 𝐽(𝑠𝑠)𝑏𝑏 = 0 , (212)

because the diagonal matrix elements for any atom vanish for non-degenerate atomic states and 𝐽𝑎𝑎 is

compensated by the energy of the proton at point ⃗𝑑 (see Fig. 24). For the matrix element between the 𝑠 and𝑝-orbitals of the Li atom we have:

𝐽(𝑝𝑠)𝑏𝑏 = 𝐽(𝑠𝑝)𝑏𝑏 = −𝑐(𝑠)𝛼 𝑐(𝑝)𝛽 𝔼∫ 𝑟2
cos

2 𝜃𝑒−(𝛼+𝛽)𝑟2 𝑑 ⃗𝑟
= 𝑐(𝑠)𝛼 𝑐(𝑝)𝛽 E

𝜋 32
2(𝛼 + 𝛽)52 . (213)

The matrix elements 𝐽(𝑠)𝑎𝑏 are the same as for H2:
𝐽(𝑠)𝑎𝑏 (𝛼, 𝛽; 𝑑) = −𝑐(𝑠)𝛼 𝑐(𝑠)𝛽 ∫( ⃗E ⋅ ⃗𝑟) 𝑒−𝛼( ⃗𝑟− ⃗𝑑)2−𝛽𝑟2𝑑 ⃗𝑟 . (214)

We use the transformation:

𝑒−𝛼( ⃗𝑟− ⃗𝑑)2−𝛽𝑟2 = exp(− 𝛼𝛽𝛼 + 𝛽 𝑑2) 𝑒−𝑝( ⃗𝑟−�⃗�𝑃) , (215)
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A.4. Matrix elements of the interaction with external electric field 178

where 𝑃 = 𝛼 + 𝛽 and �⃗�𝑃 = 1𝑝 (𝛼�⃗�𝐴 + 𝛽�⃗�𝐵) = 𝛼𝑝 ⃗𝑑. Then
𝐽(𝑠)𝑎𝑏 = −𝑐(𝑠)𝛼 𝑐(𝑠)𝛽 exp{(− 𝛼𝛽𝛼 + 𝛽𝑑2)}∫[ ⃗E ⋅ ( ⃗𝑟 − �⃗�𝑃)

+ ⃗E ⋅ �⃗�𝑃]𝑒−𝑝( ⃗𝑟−�⃗�𝑃)2𝑑 ⃗𝑟
= −𝑐(𝑠)𝛼 𝑐(𝑠)𝛽 exp{(− 𝛼𝛽𝛼 + 𝛽𝑑2)} (𝐽1 + 𝐽2) , where

𝐽1 = ∫( ⃗E ⋅ ⃗𝑟′)𝑒−𝑝( ⃗𝑟′)2𝑑 ⃗𝑟′ = 0 , and

𝐽2 = ( ⃗E ⋅ �⃗�𝑃)∫ 𝑒−𝑝𝑟2𝑑 ⃗𝑟 = ( 𝜋𝛼 + 𝛽)32 𝛼𝛼 + 𝛽E 𝑑 .
Thus, we have:

𝐽(𝑠)𝑎𝑏 (𝛼, 𝛽; 𝑑) = −𝑐(𝑠)𝛼 𝑐(𝑠)𝛽 exp{(− 𝛼𝛽𝛼 + 𝛽𝑑2)} 𝜋 32𝛼
(𝛼 + 𝛽)52 E 𝑑 . (216)

Obviously, 𝐽(𝑠)𝑎𝑏 = 𝐽(𝑠)𝑏𝑎 . Now we shall calculate

𝐽(𝑝)𝑎𝑏 = −𝑐(𝑠)𝛼 𝑐(𝑝)𝛽 E ∫ 𝑟2
cos

2 𝜃𝑒−𝛽𝑟2𝑒−𝛼( ⃗𝑟− ⃗𝑑)2𝑑 ⃗𝑟 (217)

= −𝑐(𝑠)𝛼 𝑐(𝑝)𝛽 E ∫ 𝑓1( ⃗𝑟)𝑓2( ⃗𝑟)𝑑 ⃗𝑟 ,
where 𝑓1( ⃗𝑟) = 𝑟2

cos
2 𝜃𝑒−𝛽𝑟2

and 𝑓2( ⃗𝑟) = 𝑒−𝛼( ⃗𝑟− ⃗𝑑)2 .
The Fourier transform of 𝑓1( ⃗𝑟) is:

𝑓1( ⃗𝑘) = ∫ 𝑓1( ⃗𝑟)𝑒−𝑖�⃗�⋅ ⃗𝑟𝑑 ⃗𝑟
= ∫∞

0 𝑑𝑟 ∫1
−1 𝑑 cos𝛾 ∫2𝜋

0 𝑑𝜙 [cos𝛾 cos 𝜃𝑘 + sin𝛾 sin 𝜃𝑘 sin (𝜙 − 𝜙𝑘)]2
× 𝑒−𝛽𝑟2−𝑖𝑘𝑟 cos𝛾 ,
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where we made use of (180). The term linear in sin (𝜙 − 𝜙𝑘) vanishes after integration over 𝜙, while∫2𝜋0 sin
2 (𝜙 − 𝜙𝑘)𝑑𝜙 = 𝜋. Therefore,

∫1
−1𝑑 cos𝛾 [cos2 𝜃𝑘 cos2 𝛾 + 12(1 − cos

2 𝛾) sin2 𝜃𝑘] 𝑒−𝑖𝑘𝑟 cos𝛾
= 2(𝑘𝑟)3{(3 cos

2 𝜃𝑘 − 1)𝑘𝑟 cos 𝑘𝑟
+ [(1 − 3𝑐𝑜𝑠2𝜃𝑘) + (𝑘𝑟)2𝑐𝑜𝑠2(𝜃𝑘)] sin 𝑘𝑟} ≡ 𝑔( ⃗𝑘, 𝑟)

and

𝑓1( ⃗𝑘) = 2𝜋 ∫∞
0 𝑟4𝑒−𝛽𝑟2𝑔( ⃗𝑘, 𝑟)𝑑𝑟

= ( 𝑘22𝛽) 1𝑘2 [2𝛽𝑘2 − cos
2 𝜃𝑘](𝜋𝛽)32

exp{(− 𝑘24𝛽)}; (218)

𝑓2( ⃗𝑘) = ∫ 𝑒−𝛼𝑟2−𝑖�⃗�⋅( ⃗𝑟+ ⃗𝑑)𝑑 ⃗𝑟 = 𝑒𝑖�⃗�⋅ ⃗𝑑 (𝜋𝛼)32
exp{(−𝑘24𝛼 )} , (219)

The integral (217) is given by

𝐽(𝑝)𝑎𝑏 = −𝑐(𝑠)𝛼 𝑐(𝑝)𝛽 E ∫ 𝑓1( ⃗𝑘)𝑓2(− ⃗𝑘) 𝑑 ⃗𝑘(2𝜋)3 . (220)

In (220), the following angular integrals come about:

∫2𝜋
0 𝑑𝜙𝑘 ∫1

−1 𝑒𝑖𝑘𝑑 cos𝜃𝑘𝑑 cos 𝜃𝑘 = 4𝜋sin 𝑘𝑑𝑘𝑑 = 4𝜋𝑗0(𝑘𝑑) (221)

and

∫2𝜋
0 𝑑𝜙𝑘 ∫1

−1cos2 𝜃𝑘𝑒𝑖𝑘𝑑 cos𝜃𝑘𝑑 cos 𝜃𝑘 = 4𝜋2𝑘𝑑 cos 𝑘𝑑 + [(𝑘𝑑)2−2] sin 𝑘𝑑(𝑘𝑑)3
= −4𝜋[𝑗2(𝑘𝑑) + 𝑗1(𝑘𝑑)𝑘𝑑 ] ≡ −4𝜋𝑍(𝑘𝑑) . (222)
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In (221) and (222), 𝑗𝑙(𝑐) are the spherical Bessel functions and 𝑍(𝑥) is just a short-hand notation. With
this, Eq. (220) reduces to:

𝐽(𝑝)𝑎𝑏 (𝛼, 𝛽; 𝑑) = −𝑐(𝑠)𝛼 𝑐(𝑝)𝛽 E
𝜋𝑑𝛽2 ( 14𝛼𝛽𝑑4)

32
× ∫∞

0 [2𝛽𝑑2𝑗0(𝑥) + 𝑥2𝑍(𝑥)]𝑒−𝑏𝑥2𝑑𝑥 , (223)

where 𝑏 = 𝛼 + 𝛽4𝛼𝛽𝑑2 . The calculation of the integral in (223) yields:

√𝜋1 + 4( 𝛼 + 𝛽4𝛼𝛽𝑑2)
4( 𝛼 + 𝛽4𝛼𝛽𝑑2)

32 exp

⎧{{{⎨{{{⎩
⎛⎜⎜⎜⎜⎜⎜⎜⎝
− 1
4( 𝛼 + 𝛽4𝛼𝛽𝑑2)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎫}}}⎬}}}⎭

+ 2𝛽𝑑2 − 22 𝜋 erf

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1

2√ 𝛼 + 𝛽4𝛼𝛽𝑑2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= √𝜋1 + 4𝑏

4𝑏32 exp{(− 14𝑏)} + 𝑎 − 22 𝜋 erf⎛⎜⎝ 12√𝑏⎞⎟⎠ ,
where 𝑎 = 2𝛽𝑑2.
Summary of the perturbation operator

The matrix elements of the perturbation operator due to external electric field, 𝐻𝑆, are summarized in

Table 15 and the corresponding equations are referred to in Table 16. Notice that the proton energy (−𝐸𝑑)
has been added to compensate 𝐽𝑎𝑎 and it is necessary to substitute 𝛼𝑖,1𝑠, 𝛼𝑖,2𝑠𝑝 for 𝛼 and 𝛽, respectively
and 𝛼′𝑖,1𝑠 is for Li in the appropriate relations.
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Table 15: Matrix elements for the perturbation operator|𝐴1𝑠⟩ |𝐵1𝑠⟩ |𝐵2𝑠⟩ |𝐵2𝑝𝑧⟩⟨𝐴1𝑠| 0 𝐽(𝑠)𝑎𝑏 (𝛼𝑖,1𝑠, 𝛼′𝑗,1𝑠; 𝑑) 𝐽(𝑠)𝑎𝑏 (𝛼𝑖,1𝑠, 𝛼𝑗,2𝑠𝑝; 𝑑) 𝐽(𝑝)𝑎𝑏 (𝛼𝑖,1𝑠, 𝛼𝑗,2𝑠𝑝; 𝑑)⟨𝐵1𝑠| 𝐽(𝑠)𝑎𝑏 (𝛼𝑖,1𝑠, 𝛼′𝑗,1𝑠; 𝑑) 0 0 𝐽(𝑝𝑠)𝑏𝑏 (𝛼′𝑖,1𝑠, 𝛼𝑗,2𝑠𝑝; 𝑑)⟨𝐵2𝑠| 𝐽(𝑠)𝑎𝑏 (𝛼𝑖,1𝑠, 𝛼𝑗,2𝑠𝑝; 𝑑) 0 0 𝐽(𝑝𝑠)𝑏𝑏 (𝛼𝑖,2𝑠𝑝, 𝛼𝑗,2𝑠𝑝; 𝑑)⟨𝐵2𝑝𝑧 | 𝐽(𝑝)𝑎𝑏 (𝛼𝑖,1𝑠, 𝛼𝑗,2𝑠𝑝; 𝑑) 𝐽(𝑝𝑠)𝑏𝑏 (𝛼′𝑖,1𝑠, 𝛼𝑗,2𝑠𝑝; 𝑑) 𝐽(𝑝𝑠)𝑏𝑏 (𝛼𝑖,2𝑠𝑝, 𝛼𝑗,2𝑠𝑝; 𝑑) 0

Table 16: Equations specifying matrix elements of Table 15
Matrix Matrix Matrix

elements Eq. elements Eq. elements Eq.𝐽𝑠𝑎𝑏(𝛼, 𝛽; 𝑑) (216) 𝐽𝑝𝑎𝑏(𝛼, 𝛽; 𝑑) (223) 𝐽𝑝𝑠𝑏𝑏(𝛼, 𝛽; 𝑑) (213)

a.5 Two-electron matr ix elements

Matrix elements of the electron–electron interaction, 𝑟−112 = | ⃗𝑟1 − ⃗𝑟2|−1, in the “chemist’s notation” are
written in round brackets [338]:

(𝑖𝑗|𝑟−112 |𝑘𝑙) = ∫𝑑 ⃗𝑟1𝑑 ⃗𝑟2𝜓∗𝑖 ( ⃗𝑟1)𝜓𝑗( ⃗𝑟1)𝑟−112 𝜓∗𝑘( ⃗𝑟2)𝜓𝑙( ⃗𝑟2) ,
which is different from the physicist’s notation for the same thing, ⟨𝑖𝑘|𝑟−112 |𝑗𝑙⟩, which uses angular brackets
and different order of orbitals. Here𝜓𝑖 denotes a molecular spatial orbital constructed as a linear combination
of atomic orbitals, i.e. in our case

|𝜓⟩ = 𝑐1|𝐴⟩ + 𝑐2|𝐵⟩1𝑠 + 𝑐3|𝐵⟩2𝑠 + 𝑐4|𝐵⟩2𝑝 . (224)

The HF energy includes the so called Coulomb and exchange integrals:

𝐽𝑖𝑗 = (𝑖𝑖|𝑟−112 |𝑗𝑗) = ⟨𝑖𝑗|𝑟−112 |𝑖𝑗⟩ (Coulomb) ; (225)𝐾𝑖𝑗 = (𝑖𝑗|𝑟−112 |𝑗𝑖) = ⟨𝑖𝑗|𝑟−112 |𝑗𝑖⟩ (exchange) . (226)

Since |𝑖⟩ and |𝑗⟩ are linear combinations of 𝑔1𝑠( ⃗𝑟 − ⃗𝑑), 𝑔1𝑠( ⃗𝑟) and 𝑔2𝑝( ⃗𝑟) functions with different

coefficients in the exponent, several kinds of integrals occur in (225) and (226), namely: (𝑖) four kinds
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of one-center integrals; (𝑖𝑖) four kinds of two-center integrals. We proceed by elaborating on the first type
(one-center) integrals, (𝑖).

𝐷(𝑠𝑠)𝑎𝑎 (𝛼,𝛽, 𝛾, 𝛿) = ∫𝑑 ⃗𝑟1𝑑 ⃗𝑟2𝑔1𝑠(𝛼, ⃗𝑟1)𝑔1𝑠(𝛽, ⃗𝑟1)𝑟−112 𝑔1𝑠(𝛾, ⃗𝑟2)𝑔1𝑠(𝛿, ⃗𝑟2)= 𝑐(𝑠)𝛼 𝑐(𝑠)𝛽 𝑐(𝑠)𝛾 𝑐(𝑠)𝛿 ∫𝑑 ⃗𝑟1𝑑 ⃗𝑟2 𝑒−(𝛼+𝛽)𝑟21 (𝑟−112 ) 𝑒−(𝛾+𝛿)𝑟22

= 𝑐(𝑠)𝛼 𝑐(𝑠)𝛽 𝑐(𝑠)𝛾 𝑐(𝑠)𝛿 ∫ 𝑑 ⃗𝑘(2𝜋)3 [( 𝜋𝛼 + 𝛽)32
exp{(− 𝑘24(𝛼 + 𝛽))}]

× [4𝜋𝑘2 ][( 𝜋𝛾 + 𝛿)32
exp{(− 𝑘24(𝛾 + 𝛿))}]

= 𝑐(𝑠)𝛼 𝑐(𝑠)𝛽 𝑐(𝑠)𝛾 𝑐(𝑠)𝛿 2𝜋2
[(𝛼 + 𝛽)(𝛾 + 𝛿)]32

√𝜋
2[ 14(𝛼 + 𝛽) + 14(𝛾 + 𝛿)]12 ;

𝐷(𝑠𝑠)𝑎𝑎 (𝛼,𝛽, 𝛾, 𝛿) = 2𝜋 52 𝑐(𝑠)𝛼 𝑐(𝑠)𝛽 𝑐(𝑠)𝛾 𝑐(𝑠)𝛿
(𝛼+𝛽)(𝛾+𝛿)(𝛼+𝛽+𝛾+𝛿)12 . (227)

The same expression applies to 𝐷(𝑠𝑠)𝑏𝑏 (𝛼, 𝛽, 𝛾, 𝛿).
𝐷(𝑝𝑝)𝑏𝑏 (𝛼, 𝛽, 𝛾, 𝛿) =∫𝑑 ⃗𝑟1𝑑 ⃗𝑟2𝑔2𝑝(𝛼, ⃗𝑟1)𝑔2𝑝(𝛽, ⃗𝑟1)𝑟−112 𝑔2𝑝(𝛾, ⃗𝑟2)𝑔2𝑝(𝛿, ⃗𝑟2)= 𝑐(𝑝)𝛼 𝑐(𝑝)𝛽 𝑐(𝑝)𝛾 𝑐(𝑝)𝛿 ∫𝑑 ⃗𝑟1𝑑 ⃗𝑟2 cos

2 𝜃1𝑟21𝑒−(𝛼+𝛽)𝑟21 (𝑟−112 ) cos2 𝜃2𝑟22𝑒−(𝛾+𝛿)𝑟22

= 𝑐(𝑝)𝛼 𝑐(𝑝)𝛽 𝑐(𝑝)𝛾 𝑐(𝑝)𝛿 ∫ 𝑑 ⃗𝑘(2𝜋)3{[ 𝑘2(𝛼+𝛽)]2 [2(𝛼+𝛽)𝑘2 −cos
2 𝜃𝑘]

× ( 𝜋𝛼 + 𝛽)32
exp{(− 𝑘24(𝛼 + 𝛽))}} × [4𝜋𝑘2 ]

× { [ 𝑘2(𝛾 + 𝛿)]2[2(𝛾+𝛿)𝑘2 −cos
2𝜃𝑘]( 𝜋𝛾+𝛿)

32
exp{(− 𝑘24(𝛾+𝛿))}} ,

where we used the Fourier transform result (218). The calculation of such integrals finally yields:

𝐷(𝑝𝑝)𝑏𝑏 (𝛼,𝛽, 𝛾, 𝛿) = 𝑐(𝑝)𝛼 𝑐(𝑝)𝛽 𝑐(𝑝)𝛾 𝑐(𝑝)𝛿 𝜋 52[(𝛼 + 𝛽)(𝛾 + 𝛿)]2 1
(𝛼+𝛽+𝛾+𝛿)12

× {− 112 + 65 (𝛼 + 𝛽)(𝛾 + 𝛿)(𝛼 + 𝛽 + 𝛾 + 𝛿)2} . (228)
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Table 17: Matrix elements of two-electron interactions|𝐴1𝑠⟩ |𝐵1𝑠⟩ |𝐵2𝑠⟩ |𝐵2𝑝⟩
⟨𝐴1𝑠| 𝐷(𝑠𝑠)𝑎𝑎 (𝛼𝑖,1𝑠, 𝛼𝑗,1𝑠, 𝛼𝑘,1𝑠, 𝛼𝑙,1𝑠)𝐷(𝑠𝑠𝐸)𝑎𝑏 (𝛼𝑖,1𝑠, 𝛼′𝑗,1𝑠, 𝛼𝑘,1𝑠, 𝛼′𝑙,1𝑠; 𝑑),𝐷(𝑠𝑠𝐶)𝑎𝑏 (𝛼𝑖,1𝑠, 𝛼𝑗,1𝑠, 𝛼′𝑘,1𝑠, 𝛼′𝑙,1𝑠; 𝑑) 𝐷(𝑠𝑠𝐸)𝑎𝑏 (𝛼𝑖,1𝑠, 𝛼𝑗,2𝑠𝑝, 𝛼𝑘,1𝑠, 𝛼𝑙,2𝑠𝑝; 𝑑),𝐷(𝑠𝑠𝐶)𝑎𝑏 (𝛼𝑖,1𝑠, 𝛼𝑗,1𝑠, 𝛼𝑘,2𝑠𝑝, 𝛼𝑙,1𝑠𝑝; 𝑑)𝐷

(𝑠𝑝𝐸)𝑎𝑏 (𝛼𝑖,1𝑠, 𝛼𝑗,2𝑠𝑝, 𝛼𝑘,1𝑠, 𝛼𝑙,2𝑠𝑝; 𝑑),𝐷(𝑠𝑝𝐶)𝑎𝑏 (𝛼𝑖,1𝑠, 𝛼𝑗,1𝑠, 𝛼′𝑘,2𝑠𝑝, 𝛼𝑙,2𝑠𝑝; 𝑑)
⟨𝐵1𝑠| 𝐷(𝑠𝑠)𝑏𝑏 (𝛼′𝑖,1𝑠, 𝛼′𝑗,1𝑠, 𝛼′𝑘,1𝑠, 𝛼′𝑙,1𝑠) 𝐷(𝑠𝑠)𝑏𝑏 (𝛼′𝑖,1𝑠, 𝛼𝑗,2𝑠𝑝, 𝛼′𝑘,1𝑠, 𝛼𝑙,2𝑠𝑝; 𝑑),𝐷(𝑠𝑠)𝑏𝑏 (𝛼′𝑖,1𝑠, 𝛼′𝑘,1𝑠, 𝛼𝑗,2𝑠𝑝, 𝛼′𝑙,2𝑠𝑝; 𝑑) 𝐷(𝑠𝑝𝐸)𝑏𝑏 (𝛼′𝑖,1𝑠, 𝛼𝑗,2𝑠𝑝, 𝛼′𝑘,1𝑠, 𝛼𝑙,2𝑠𝑝; 𝑑),𝐷(𝑠𝑝𝐶)𝑏𝑏 (𝛼′𝑖,1𝑠, 𝛼′𝑗,1𝑠, 𝛼𝑘,2𝑠𝑝, 𝛼𝑙,2𝑠𝑝; 𝑑)
⟨𝐵2𝑠| 𝐷(𝑠𝑠)𝑏𝑏 (𝛼𝑖,2𝑠𝑝, 𝛼𝑗,2𝑠𝑝, 𝛼𝑘,2𝑠𝑝, 𝛼𝑙,2𝑠𝑝) 𝐷(𝑠𝑝𝐸)𝑏𝑏 (𝛼𝑖,2𝑠𝑝, 𝛼𝑗,2𝑠𝑝, 𝛼𝑘,2𝑠𝑝, 𝛼𝑙,2𝑠𝑝; 𝑑),𝐷(𝑠𝑝𝐶)𝑏𝑏 (𝛼𝑖,2𝑠𝑝, 𝛼𝑗,2𝑠𝑝, 𝛼𝑘,2𝑠𝑝, 𝛼𝑙,2𝑠𝑝; 𝑑)⟨𝐵2𝑝| 𝐷(𝑝𝑝)𝑏𝑏 (𝛼𝑖,2𝑠𝑝, 𝛼𝑗,2𝑠𝑝, 𝛼𝑘,2𝑠𝑝, 𝛼𝑙,2𝑠𝑝)
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In the calculation of exchange-type integrals,

𝐷(𝑠𝑝𝐸)𝑏𝑏 (𝛼, 𝛽, 𝛾, 𝛿) == ∫𝑑 ⃗𝑟1𝑑 ⃗𝑟2𝑔1𝑠(𝛼, ⃗𝑟1)𝑔2𝑝(𝛽, ⃗𝑟1) (𝑟−112 ) 𝑔1𝑠(𝛾, ⃗𝑟2)𝑔2𝑝(𝛿, ⃗𝑟2)
= 𝑐(𝑠)𝛼 𝑐(𝑝)𝛽 𝑐(𝑠)𝛾 𝑐(𝑝)𝛿 ∫𝑑 ⃗𝑟1𝑑 ⃗𝑟2 cos 𝜃1𝑟1𝑒−(𝛼+𝛽)𝑟21 1𝑟12 cos 𝜃2𝑟2𝑒−(𝛾+𝛿)𝑟22

= 𝑐(𝑠)𝛼 𝑐(𝑝)𝛽 𝑐(𝑠)𝛾 𝑐(𝑝)𝛿 ∫ 𝑑 ⃗𝑘(2𝜋)3[𝑖 cos 𝜃𝑘 𝑘𝜋 32
2(𝛾 + 𝛿)52 exp{(− 𝑘24(𝛾 + 𝛿))}]

× [4𝜋𝑘2 ][𝑖 cos 𝜃𝑘 𝑘𝜋32
2(𝛼 + 𝛽)52 exp{(− 𝑘24(𝛼 + 𝛽))}] ,

where we used the Fourier transform (188). The calculation of the integral finally yields:

𝐷(𝑠𝑝𝐸)𝑏𝑏 (𝛼, 𝛽, 𝛾, 𝛿) = 𝜋 52 𝑐(𝑠)𝛼 𝑐(𝑝)𝛽 𝑐(𝑠)𝛾 𝑐(𝑝)𝛿
3(𝛼 + 𝛽)(𝛾 + 𝛿)(𝛼+𝛽+𝛾+𝛿)32 . (229)

For the Coulomb-type integrals,

𝐷(𝑠𝑝𝐶)𝑏𝑏 (𝛼, 𝛽, 𝛾, 𝛿) = ∫𝑑 ⃗𝑟1𝑑 ⃗𝑟2𝑔1𝑠(𝛼, ⃗𝑟1)𝑔1𝑠(𝛽, ⃗𝑟1)𝑟−112×𝑔2𝑝(𝛾, ⃗𝑟2)𝑔2𝑝(𝛿, ⃗𝑟2)
= 𝑐(𝑠)𝛼 𝑐(𝑠)𝛽 𝑐(𝑝)𝛾 𝑐(𝑝)𝛿 𝜋 52

(𝛼 + 𝛽)(𝛾 + 𝛿)2(𝛼 + 𝛽 + 𝛾 + 𝛿)12
×[1 − 23 𝛼 + 𝛽𝛼 + 𝛽 + 𝛾 + 𝛿] . (230)

Passing now to the discussion of two-center integrals, we begin with the exchange-type ones, involving

the 𝑠 functions on both centers:
𝐷(𝑠𝑠𝐸)𝑎𝑏 (𝛼, 𝛽, 𝛾, 𝛿; 𝑑) = ∫𝑑 ⃗𝑟1 𝑑 ⃗𝑟2𝑔1𝑠(𝛼, ⃗𝑟1 − ⃗𝑑)𝑔1𝑠(𝛽, ⃗𝑟1)

× 1| ⃗𝑟1 − ⃗𝑟2|𝑔1𝑠(𝛾, ⃗𝑟2 − ⃗𝑑)𝑔1𝑠(𝛿, ⃗𝑟2) (231)

= ∫𝑑 ⃗𝑟1 𝑑 ⃗𝑟2𝑓1( ⃗𝑟1)𝑓2(𝑟12)𝑓3( ⃗𝑟2) ,

184



A.5. Two-electron matrix elements 185

where

𝑓1( ⃗𝑟1) = 𝑔1𝑠(𝛼, ⃗𝑟1 − ⃗𝑑)𝑔1𝑠(𝛽, ⃗𝑟1) ,𝑓2(𝑟12) = 1| ⃗𝑟1 − ⃗𝑟2| ,𝑓3( ⃗𝑟2) = 𝑔1𝑠(𝛾, ⃗𝑟2 − ⃗𝑑)𝑔1𝑠(𝛿, ⃗𝑟2) .
Following Szabo and Ostlund [338, Appendix A], we first express products of Gaussian functions occurring

in 𝑓1( ⃗𝑟1) and 𝑓3( ⃗𝑟2) as other Gaussian. Normalization constants will be ignored at this step, they will be
introduced in the final results. The integral in (231) becomes:

𝑀∫𝑑 ⃗𝑟1 𝑑 ⃗𝑟2𝑒−𝑝( ⃗𝑟−�⃗�𝑝)2 1𝑟12 𝑒−𝑞( ⃗𝑟−�⃗�𝑞)2 , (232)

where:

�⃗�𝑝 = 𝛼𝑝 ⃗𝑑, �⃗�𝑞 = 𝛾𝑞 ⃗𝑑, 𝑝 = 𝛼 + 𝛽, 𝑞 = 𝛾 + 𝛿 , and
𝑀 = exp{(−[ 𝛼𝛽𝛼 + 𝛽 + 𝛾𝛿𝛾 + 𝛿] 𝑑2)} . (233)

Now we can use Fourier transform for each factor in the integral (232):

𝑓1( ⃗𝑘) = (𝜋𝑝 )32
exp{(−𝑘24𝑝 − 𝑖( ⃗𝑘 ⋅ �⃗�𝑝))}; 𝑓2( ⃗𝑘) = 4𝜋𝑘2 ;

𝑓3( ⃗𝑘) = (𝜋𝑞 )32
exp{(−𝑘24𝑞 − 𝑖( ⃗𝑘 ⋅ �⃗�𝑞))} . (234)
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The integrals over ⃗𝑟1 and ⃗𝑟2 introduce two 𝛿-functions of ⃗𝑘 and remove two integrations over different⃗𝑘-vectors that appear after substituting the Fourier integrals into (232), so we obtain:

𝐷(𝑠𝑠𝐸)𝑎𝑏 (𝛼,𝛽, 𝛾, 𝛿; 𝑑) = 𝑐(𝑠)𝛼 𝑐(𝑠)𝛽 𝑐(𝑠)𝛾 𝑐(𝑠)𝛿 𝜋𝑀
2(𝑝𝑞)32

×∫ 𝑑 ⃗𝑘𝑘2 exp{(−𝑝 + 𝑞4𝑝𝑞 𝑘2 + 𝑖 ⃗𝑘 ⋅ (�⃗�𝑝 − �⃗�𝑞))}
= 𝑐(𝑠)𝛼 𝑐(𝑠)𝛽 𝑐(𝑠)𝛾 𝑐(𝑠)𝛿 𝜋𝑀

2(𝑝𝑞)32 4𝜋 ∞∫0 𝑗0(𝑘𝑅𝑧) exp{(−𝑝 + 𝑞4𝑝𝑞 𝑘2)}𝑑𝑘
= 𝑐(𝑠)𝛼 𝑐(𝑠)𝛽 𝑐(𝑠)𝛾 𝑐(𝑠)𝛿 𝜋3𝑀

(𝑝𝑞)32 erf
⎡⎢⎣√ 𝑝𝑞𝑝 + 𝑞 ⋅ 𝑅𝑧⎤⎥⎦ , (235)

where 𝑅𝑧 = |𝑅𝑝 − 𝑅𝑞|.
The two-center 𝑠-𝑠 Coulomb-type integrals read:

𝐷(𝑠𝑠𝐶)𝑎𝑏 (𝛼, 𝛽, 𝛾, 𝛿;𝑑) = ∫𝑑 ⃗𝑟1𝑑 ⃗𝑟2𝑔1𝑠(𝛼, ⃗𝑟1 − ⃗𝑑)𝑔1𝑠(𝛽, ⃗𝑟1 − ⃗𝑑)
× 1| ⃗𝑟1 − ⃗𝑟2|𝑔1𝑠(𝛾, ⃗𝑟2)𝑔1𝑠(𝛿, ⃗𝑟2) . (236)

We can use here the previous result with �⃗�𝑝 = ⃗𝑑, �⃗�𝑞 = 0
and 𝑀 → exp{(− 𝛼𝛽𝛼 + 𝛽𝑑2)}. Explicitly, we have:

𝐷(𝑠𝑠𝐶)𝑎𝑏 (𝛼, 𝛽, 𝛾, 𝛿; 𝑑) = 𝑐(𝑠)𝛼 𝑐(𝑠)𝛽 𝑐(𝑠)𝛾 𝑐(𝑠)𝛿 𝜋3
[(𝛼 + 𝛽)(𝛾 + 𝛿)]32

× exp{(− 𝛼𝛽𝛼+𝛽𝑑2)} × erf ⎡⎢⎣√(𝛼 + 𝛽)(𝛾 + 𝛿)𝛼+𝛽+𝛾+𝛿 𝑑⎤⎥⎦ . (237)

The two-center exchange-type integrals involving 𝑠 and 𝑝-functions are:
𝐷(𝑠𝑝𝐸)𝑎𝑏 (𝛼, 𝛽, 𝛾, 𝛿; 𝑑) = ∫𝑑 ⃗𝑟1𝑑 ⃗𝑟2𝑔1𝑠(𝛼, ⃗𝑟1 − ⃗𝑑)𝑔2𝑝(𝛽, ⃗𝑟1)

× 1| ⃗𝑟1 − ⃗𝑟2|𝑔1𝑠(𝛾, ⃗𝑟2 − ⃗𝑑)𝑔2𝑝(𝛿, ⃗𝑟2)
= ∫𝑑 ⃗𝑟1𝑑 ⃗𝑟2𝑓1( ⃗𝑟1)𝑓2(𝑟12)𝑓3( ⃗𝑟2) , (238)
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where:

𝑓1( ⃗𝑟1) = 𝑔1𝑠(𝛼, ⃗𝑟1 − ⃗𝑑)𝑔2𝑝(𝛽, ⃗𝑟1),𝑓2(𝑟12) = 1| ⃗𝑟1 − ⃗𝑟2| ,𝑓3( ⃗𝑟2) = 𝑔1𝑠(𝛾, ⃗𝑟2 − ⃗𝑑)𝑔2𝑝(𝛿, ⃗𝑟2) .
Now we shall use Fourier transform in the integral (238):

𝑓1( ⃗𝑘) = ∫ 𝑟1 cos 𝜃1𝑒−𝑝( ⃗𝑟1−�⃗�𝑝)2−𝑖�⃗�⋅ ⃗𝑟1𝑑 ⃗𝑟1
= 1𝑅𝑝 𝑒−𝑖�⃗�⋅�⃗�𝑝[∫[( ⃗𝑟1 − �⃗�𝑝) ⋅ �⃗�𝑝]𝑒−𝑝( ⃗𝑟1−�⃗�𝑝)2−𝑖�⃗�⋅( ⃗𝑟1−�⃗�𝑝)𝑑 ⃗𝑟1

+𝑅2𝑝 ∫ 𝑒−𝑝( ⃗𝑟−�⃗�𝑝)2−𝑖�⃗�⋅( ⃗𝑟1−�⃗�𝑝)𝑑 ⃗𝑟1]
= 𝑒−𝑖�⃗�⋅ ⃗𝑅𝑝[ ∫ 𝑟 cos 𝜃𝑒−𝑝𝑟2−𝑖(�⃗�⋅ ⃗𝑟)𝑑 ⃗𝑟 + 𝑅𝑝 ∫ 𝑒−𝑝𝑟2𝑒−𝑖�⃗�⋅ ⃗𝑟𝑑 ⃗𝑟]
= 𝑒−𝑖�⃗�⋅ ⃗𝑅𝑝[𝑖 cos 𝜃𝑘 𝜋 32 𝑘

2𝑝52 exp{(−𝑘24𝑝)} + 𝑅𝑝𝜋 32
𝑝32 exp{(−𝑘24𝑝)}]

where we have used the result (208)

= 𝑒−𝑖�⃗�⋅ ⃗𝑅𝑝 𝜋 32
𝑝32 [𝑖 cos 𝜃𝑘 ( 𝑘2𝑝) + 𝑅𝑝] exp{(−𝑘24𝑝)} . (239)

As before,

𝑓2( ⃗𝑘) = 4𝜋𝑘2 , and

𝑓3( ⃗𝑘) = 𝑒−𝑖�⃗�⋅�⃗�𝑞 𝜋 32
𝑞32 [−𝑖 cos 𝜃𝑘( 𝑘2𝑞) + 𝑅𝑞] exp{(−𝑘24𝑞)} . (240)
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Substituting this into (238),

𝐷𝑎𝑏(𝑠𝑝𝐸)(𝛼, 𝛽, 𝛾, 𝛿; 𝑑) = 𝑐(𝑠)𝛼 𝑐(𝑝)𝛽 𝑐(𝑠)𝛾 𝑐(𝑝)𝛿 4𝜋 𝑀 𝜋3
(𝑝𝑞)32

× ∫ 𝑑 ⃗𝑘(2𝜋)3{[𝑅𝑝 + 𝑖 cos 𝜃𝑘 ( 𝑘2𝑝)]
× [𝑅𝑞 − 𝑖 cos 𝜃𝑘 ( 𝑘2𝑞)] 1𝑘2 exp{[(− 14𝑞+ 14𝑝)𝑘2]}} (241)

= 𝑐(𝑠)𝛼 𝑐(𝑝)𝛽 𝑐(𝑠)𝛾 𝑐(𝑝)𝛿 𝑀 𝜋
2(𝑝𝑞)32

× ∫ 𝑑 ⃗𝑘𝑘2 [𝑅𝑝𝑅𝑞 + 𝑖(𝑅𝑞𝑝 − 𝑅𝑝𝑞 )𝑘2 cos 𝜃𝑘 + 𝑘24𝑝𝑞 cos
2 𝜃𝑘]

× exp{(−𝑝 + 𝑞4𝑝𝑞 𝑘2 + 𝑖 ⃗𝑘 ⋅ (�⃗�𝑝 − �⃗�𝑞))}
= 𝑐(𝑠)𝛼 𝑐(𝑝)𝛽 𝑐(𝑠)𝛾 𝑐(𝑝)𝛿 𝑀 𝜋

2(𝑝𝑞)32 (𝐼1 + 𝐼2 + 𝐼3) , (242)

where 𝐼1, 𝐼2, 𝐼3 are given by the following expressions:

𝐼1 = 𝑅𝑝𝑅𝑞 ∞∫0 [ 1∫−1 𝑒𝑖𝑘(𝑅𝑝−𝑅𝑞) cos𝜃𝑘𝑑 cos 𝜃𝑘] exp{(−𝑝 + 𝑞4𝑝𝑞 𝑘2)}𝑑𝑘
= 𝑅𝑝𝑅𝑞 ∞∫0 𝑗0(𝑘𝑅𝑧) exp{(−𝑝 + 𝑞4𝑝𝑞 𝑘2)}𝑑𝑘
= 𝑅𝑝𝑅𝑞𝑅𝑧

∞∫0 𝑗0(𝑥)𝑒−𝑠𝑥2𝑑𝑥 = 𝜋2 𝑅𝑝𝑅𝑞𝑅𝑧 erf [ 12√𝑠] , (243)

with 𝑅𝑧 = |𝑅𝑝 − 𝑅𝑞| and 𝑠 = 𝑝 + 𝑞4𝑝𝑞𝑅2𝑧 ;

𝐼2 = 12𝑖 (𝑅𝑝𝑝 − 𝑅𝑞𝑞 ) ∞∫0 [ 1∫−1 𝑑 cos 𝜃𝑘 cos 𝜃𝑘 𝑒𝑖𝑘(𝑅𝑝−𝑅𝑞) cos𝜃𝑘]𝑘
× exp{(−𝑝 + 𝑞4𝑝𝑞 𝑘2)}𝑑𝑘

= 𝑅𝑞𝑞 − 𝑅𝑝𝑝𝑝𝑞𝑅2𝑧
∞∫0 𝑗1(𝑥)𝑥𝑒−𝑠𝑥2𝑑𝑥

= 𝑅𝑞𝑞 − 𝑅𝑝𝑝𝑝𝑞𝑅2𝑧 {√ 𝜋4𝑠 exp{(− 14𝑠)} − 𝜋2 erf( 12√𝑠)} ; (244)
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𝐼3 = 116𝑝𝑞 ∞∫0 [ 1∫−1 𝑑 cos 𝜃𝑘 cos
2𝜃𝑘 𝑒𝑖𝑘(𝑅𝑝−𝑅𝑞) cos𝜃𝑘]𝑘2

× exp{(−𝑝 + 𝑞4𝑝𝑞 𝑘2)}𝑑𝑘
= 18𝑝𝑞𝑅3𝑧

∞∫0 [−𝑗2(𝑥) − 𝑗1(𝑥)𝑥 ] 𝑒−𝑠𝑥2𝑥2𝑑𝑥
= √𝜋8𝑝𝑞𝑅3𝑧

⎡⎢⎢⎣
1 + 4𝑠
4𝑠32 exp{(− 14𝑠)} − √𝜋 erf( 12√𝑠)⎤⎥⎥⎦ . (245)

Thus, 𝐷(𝑠𝑝𝐸)𝑎𝑏 is given by (242) where 𝑀 is given by (233), 𝑝 = 𝛼 + 𝛽, 𝑞 = 𝛾 + 𝛿; 𝐼1, 𝐼2 and 𝐼3 are

given by Eqs (243) – (245), 𝑅𝑧 = |𝑅𝑝 − 𝑅𝑞|, 𝑅𝑝 = 𝛼𝑝𝑑, 𝑅𝑞 = 𝛾𝑞𝑑 and 𝑠 = 𝑝 + 𝑞4𝑝𝑞𝑅2𝑧 .
Finally, the evaluation of the Coulomb-type integrals between 𝑠 and 𝑝 functions at different sites proceeds

as follows:

𝐷(𝑠𝑝𝐶)𝑎𝑏 (𝛼, 𝛽, 𝛾, 𝛿; 𝑑) = ∫𝑑 ⃗𝑟1𝑑 ⃗𝑟2𝑔1𝑠(𝛼, ⃗𝑟1 − ⃗𝑑)𝑔1𝑠(𝛽, ⃗𝑟1 − ⃗𝑑)
× 1| ⃗𝑟1 − ⃗𝑟2|𝑔2𝑝(𝛾, ⃗𝑟2)𝑔2𝑝(𝛿, ⃗𝑟2) (246)

= ∫ ⃗𝑟1𝑑 ⃗𝑟2𝑓1( ⃗𝑟1)𝑓2(𝑟12)𝑓3( ⃗𝑟2) ,
where

𝑓1( ⃗𝑟1) = 𝑔1𝑠(𝛼, ⃗𝑟1 − ⃗𝑑)𝑔1𝑠(𝛽, ⃗𝑟1 − ⃗𝑑) ,
𝑓2(𝑟12) = 1| ⃗𝑟1 − ⃗𝑟2| ,𝑓3( ⃗𝑟2) = 𝑔2𝑝(𝛾, ⃗𝑟2)𝑔2𝑝(𝛿, ⃗𝑟2) .

The Fourier transforms of these functions are:

𝑓1( ⃗𝑘) = exp{(− 𝛼𝛽𝛼 + 𝛽𝑑2)}(𝜋𝑝)32
exp{(−𝑘24𝑝 − 𝑖 ⃗𝑘 ⋅ ⃗𝑑)} ,

𝑓2( ⃗𝑘) as in (50) ,𝑓3( ⃗𝑘) = ∫ 𝑒𝑖�⃗�⋅ ⃗𝑟𝑟2
cos

2 𝜃𝑒−(𝛾+𝛿)𝑟2𝑑 ⃗𝑟
= (𝑘22𝑞)2 1𝑘2 [2𝑞𝑘2 − cos

2 𝜃𝑘](𝜋𝑞 )32
exp{(−𝑘24𝑞)} , (247)
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as it has been calculated before, Eq. (218). Therefore:

𝐷(𝑠𝑝𝐶)𝑎𝑏 = 𝑐(𝑠)𝛼 𝑐(𝑠)𝛽 𝑐(𝑝)𝛾 𝑐(𝑝)𝛿 exp{(− 𝛼𝛽𝛼 + 𝛽𝑑2)}∫ 𝑑 ⃗𝑘(2𝜋)3 𝑒𝑖(�⃗�⋅ ⃗𝑑) (𝜋𝑝)32

× exp{(−𝑘24𝑝)} × 4𝜋𝑘2 (𝜋𝑞 )32
exp{(−𝑘24𝑞)} 12𝑞 [1 − 𝑘22𝑞 cos

2 𝜃𝑘]
= 𝜋3

(𝑝𝑞)32
2𝜋𝑞 1(2𝜋)3 exp{(− 𝛼𝛽𝛼 + 𝛽𝑑2)}[𝑋1 +𝑋2] ,

with

𝑋1 = ∫ 𝑑 ⃗𝑘𝑘2 exp{(𝑖( ⃗𝑘 ⋅ ⃗𝑑) − 𝑘24𝑝 − 𝑘24𝑞)} = 2𝜋2𝑑 erf⎛⎜⎝√ 𝑝𝑞𝑝 + 𝑞𝑑⎞⎟⎠ ,
𝑋2 = −∫ 𝑑 ⃗𝑘𝑘2 𝑒𝑖(�⃗�⋅ ⃗𝑑) 𝑘22𝑞 cos

2 𝜃𝑘 exp{(−𝑝 + 𝑞4𝑝𝑞 𝑘2)}
= 2𝜋𝑞𝑑3[√𝜋1 + 4𝑠

4𝑠32 exp{(− 14𝑠)} − 𝜋 erf( 12√𝑠)] ,
where 𝑠 = 𝑝 + 𝑞4𝑝𝑞𝑑2 . Finally, we obtain:

𝐷(𝑠𝑝𝐶)𝑎𝑏 = 𝑐(𝑠)𝛼 𝑐(𝑠)𝛽 𝑐(𝑝)𝛾 𝑐(𝑝)𝛿 exp{(− 𝛼𝛽𝛼 + 𝛽𝑑2)}
× [ 𝜋3

2𝑝32 𝑞52𝑑 (1 − 1𝑞𝑑2) erf⎛⎜⎝√ 𝑝𝑞𝑝 + 𝑞𝑑2⎞⎟⎠
+ 𝜋 52

(𝑝 + 𝑞)32 𝑞2 (1 + 𝑝 + 𝑞𝑝𝑞𝑑2 ) exp{(− 𝑝𝑞𝑝 + 𝑞𝑑2)}] . (248)

The equations according to which the matrix elements summarized in Table 17 are calculated are reminded

in Table 18.
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Table 18: Equations specifying matrix elements of Table 17.
Matrix Matrix

elements Eq. elements Eq.𝐷(𝑠𝑠)𝑎𝑎 (227) 𝐷(𝑠𝑠𝐸)𝑎𝑏 (235)𝐷(𝑠𝑠𝐶)𝑎𝑏 (237) 𝐷(𝑠𝑝𝐸)𝑎𝑏 (242) – (245)𝐷(𝑠𝑝𝐶)𝑎𝑏 (248) 𝐷(𝑠𝑝𝐸)𝑏𝑏 (229)𝐷(𝑠𝑝𝐶)𝑏𝑏 (230) 𝐷(𝑝𝑝)𝑏𝑏 (228)
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