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Abstract

In this work we present FELINE, a C++ solver of the Reynolds equation for treat-

ing hydrodynamic lubrication problems. To correctly describe cavitation regions, FE-

LINE implements the inexact Newton iteration (INE) algorithm within a finite ele-

ment method (FEM) framework. The solver was tested and validated against known

cases in literature and industrially relevant cases of dimpled textures. Furthermore, we

provide a benchmark for a complex dimpled texture case to evaluate the performance

and robustness of the implementation. FELINE performs very fast when compared

with existing implementations and shows a great degree of stability, while providing

physically correct solutions thanks to the INE algorithm.
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Solution method: An inexact Newton iteration method implemented within a finite

element method framework that properly ensures that the complementarity conditions

are satisfied by introducing a forcing term.

1. Introduction

The reduction of friction between lubricated parts in contact in mechanical equip-

ment, such as engine pistons and bearings, is fundamental to increase their lifetimes

and reduce friction losses, hence reducing their environmental impact [1]. In this sense,

research on tribology has developed different approaches such as application of surface

coatings [2], research and development of novel lubricants [3] and surface modifica-

tion techniques [4]. As a matter of fact, the latter approach is widely applied thanks to

advances in texturing techniques [5], leading to rapid and efficient pattern generation

processes. Despite this, the search of an optimal surface proceeds as a trial-and-error

process, and it is still not clear what the best texture might be for a specific application.

Numerical simulations offer a natural way to solve this problem, being signific-

antly cheaper and faster with respect to physical experiments requiring pristine laser

textured samples. Because of this, there is a growing effort in numerical simulations

[6] to perform the texture optimization of hydrodynamic lubrication problems. These

are effectively described by the 2D time-independent Reynolds equation [7], which

provides the pressure exerted by the lubricant between two surfaces in relative motion

as a function of the surface’s profile, relative sliding velocity and applied external load,

as well as of the fluid density and viscosity. The main challenge regarding its com-

putational implementation is that cavitation might occur in certain regions: cavitated

regions produce no pressure, therefore it is fundamental to represent them correctly

by properly describing their boundaries. Moreover, the constraints of zero pressure in

cavitated areas and strictly positive pressure in non-cavitated fluid must be imposed to

the solutions of the Reynolds equation, so that they are physically sound.

Many strategies have been proposed to solve Reynolds equation with a correct treat-

ment of cavitation. Early attempts ranged from the Jakobsson-Floberg-Olsson (JFO)

cavitation model (1957-1965) [8] and the Elrod-Adams cavitation model (1975) [9] to

the α − g model [10] which assumed the lubricant film to be a pure liquid phase in

non-cavitation regions and a mixture of liquid/gas phases in regions of cavitation. The

JFO cavitation model was improved by converting the cavitation boundary into a linear

complementarity problem (LCP), named p − θ model. In [11] and [12] it was shown

that the determination of the cavitation region can be cast as a LCP and a method of

effective relaxation to update the solution was proposed.

The inexact Newton (INE) method [13] introduces a perturbation parameter meant

to prevent the stalling of the algorithm due to the enforcement of the non-negativity

condition. The Fischer-Burmeister-Newton-Schur (FBNS) [14] iteration is similar to

the INE iteration, however it accepts negative values p and θ, which means that the

non-negativity condition is not always strictly guaranteed with FBNS, as opposed to

the INE iteration.

From the above discussion it was shown that effective methods have been developed

to solve the Reynolds equation with correct treatment of cavitation regions, however
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their fast and robust implementation is needed to deal with realistic surfaces and prob-

lems of industrial interest. In this work, we present our FELINE solver, which imple-

ments the inexact Newton method within a finite element method framework providing

a more general and efficient way to treat 2D lubrication problems. The use of FEM

allows us to overcome the limitations of the finite differences method, especially in

terms of domain shape and mesh construction, hence providing more flexibility. On

the other hand, the C++ implementation and use of fast linear algebra libraries (Arma-

dillo [15][16]) allows for an efficient solution of the numerical problem.

2. Methods

2.1. Definition of the problem
In this work the density ρ and viscosity μ of the lubricating fluid are always treated as

constants. Moreover, any deformation of the sliding surfaces in contact is neglected as

well as any temperature effects. Under these conditions, the problem is defined by the

Reynolds equation, which allows us to calculate the lubricant pressure p:

∇ ·
(
ρh3∇p

)
= 6μU · ∇ (ρh) , (1)

where h is the film thickness and U the relative sliding velocity, as illustrated in figure

1. Without loss of generality, we can assume that the sliding velocity is always directed

along the x axis:

∇ ·
(
ρh3∇p

)
= 6μU

∂(ρh)

∂x
. (2)

h(x)

Possible

Cavitation

x

U

Figure 1: diagram of the film thickness h between sliding surfaces under relative sliding velocity U.

In active regions (no cavitation) the pressure is always non-negative and the density

ρ is equal to that of the fluid ρ0. In inactive regions (with cavitation) the pressure is

zero and the density is no longer equal to that of the lubricant film ρ0, since the fluid is

a mix of liquid/gas and p = 0. In summary:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(ρ0 − ρ)p = 0

ρ0 − ρ ≥ 0

p ≥ 0

(3)
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Defining the void fraction as θ = (ρ0 − ρ)/ρ0 we can rewrite equation (2) as

∇ ·
(
h3∇p

)
+ 6μU

∂(hθ)
∂x

= 6μU
∂h
∂x
. (4)

2.2. Finite elements discretization
To solve equation (4) we seek a discretization of the Reynolds equation and its

domain leading to an algebraic system of the form

Kp p+ Kθθ = c , (5)

subject to the conditions p · θ = 0, p ≥ 0 and θ ≥ 0.

Equation (5) is a LCP and to solve it we implemented a damped inexact Newton it-

eration in the finite element method (FEM) framework considering first order triangular

elements. The weak formulation of our equation reads∫
Ω

h3∇w · ∇p dΩ − 6μU
∫
Ω

w
∂(hθ)
∂x

dΩ + 6μU
∫
Ω

w
∂h
∂x

dΩ −
∫
Γ

wh3 (n · ∇p) dΓ = 0 ,

(6)

where w is the weight or test function, Ω is the domain and Γ is the domain boundary.

The boundary integral vanishes for Dirichlet boundary conditions (DBC).

Substituting the approximate solution for p and θ into the weak form of our equa-

tion and considering the Galerkin Finite Element Method (GFEM) [17] we obtain a set

of equations (5) with coefficients

K p
i j =

∫
Ω

h3
(
∇φ j · ∇φi

)
dΩ (7)

Kθi j = −6μU
∫
Ω

(
hφ j
∂φi

∂x
+
∂h
∂x
φ jφi

)
dΩ (8)

ci = −6μU
∫
Ω

φ j
∂h
∂x

dΩ . (9)

For a triangular first order element (3 local nodes) with local element coordinates

(ξ, η) the basis functions φ are defined as follows:

ξ

η

φ1 φ2

φ3

CCW ordering 1-3

φ1(ξ, η) = ξ

φ2(ξ, η) = η

φ3(ξ, η) = 1 − ξ − η

Figure 2: Triangular first order element in coordinate space (ξ, η) and respective basis functions.
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2.3. Damped inexact Newton iteration
The damped inexact Newton iteration was shown in [13] to be an effective and

efficient way to solve the LCP problem. In the following we briefly report the steps of

the INE iteration. We can rewrite our set of coupled equations and conditions as

Ψ(p, θ) = 0 (10)

p ≥ 0; θ ≥ 0 , (11)

in which

Ψ(p, θ) =
⎛⎜⎜⎜⎜⎝Ψ0(p, θ)

PΘê

⎞⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎝Kp p+ Kθθ − c

PΘê

⎞⎟⎟⎟⎟⎟⎟⎠ (12)

and where diagonal matrices P and Θ have the values of p and θ as their entries, and ê
represents the unit vector.

The Newton iteration is defined as(
pk+1

θk+1

)
=

(
pk

θk

)
+ αk

(
Δpk

Δθk

)
; k = 0, 1, 2, ... (13)

where (Δpk,Δθk) are the updates for each iteration dampened by a factor αk and are

calculated by solving the linear system

Jk(p, θ)
(
Δpk

Δθk

)
= −Ψk(p, θ) , (14)

As described in [13], a common pitfall with this method is a stalling of the iteration

leading to convergence failure. To avoid this, a perturbation term ηkẽ with ẽ =

(
0
1

)
is

included:

Jk(p, θ)
(
Δpk

Δθk

)
= −Ψk(p, θ) + ηkẽ . (15)

The perturbation coefficient ηk is defined as

ηk = σkμk , (16)

where σk ∈ [0, 1] is the forcing parameter and μk is a parameter in the range

pk · θk

N
≤ μk ≤

∥∥∥Ψk(p, θ)
∥∥∥

√
N

. (17)

The choice of relaxation parameter αk is required to enforce the convergence of the

method and this choice is composed of 3 conditions or steps: feasibility, centrality and

backtracking.

The feasibility condition provides the initial value of αk and reads

αk = min

⎛⎜⎜⎜⎜⎝ min
Δpk

i <0

−pk
i

Δpk
i

, min
Δθki <0

−θki
Δθki
, 1

⎞⎟⎟⎟⎟⎠ . (18)
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This guarantees that conditions p ≥ 0 and θ ≥ 0 are both satisfied after each iteration.

The centrality conditions define the coefficient ηk in the forcing term and ensure pk

and θk are bounded away from p = 0 and θ = 0 and are defined as

φk
1(αk) = min

(
pk(αk) ◦ θk(αk)

)
− γkτ1

N
pk(αk) · θk(αk) ≥ 0

φk
2(αk) = pk(αk) · θk(αk) − γkτ2

∥∥∥Ψk
0(p(αk), θ(αk))

∥∥∥ ≥ 0 , (19)

where

τmax
1 = N

min
(
p0 ◦ θ0

)
p0 · θ0

; τmax
2 =

p0 · θ0∥∥∥Ψ0
0
(p, θ)

∥∥∥ (20)

and γk ∈ [0.5, 1.0]. The centrality conditions also impose a lower bound for the forcing

parameter:

σk > max

⎛⎜⎜⎜⎜⎝δk
√

N + τ1γk

1 − τ1γk
, δk

√
N + τ2γk√

N

⎞⎟⎟⎟⎟⎠ . (21)

A recursive reduction of αk can be used to find a value that satisfies both conditions

(19).

The backtracking condition is an additional safeguard that reduces the value of αk

by a factor λt with λ ∈ [0, 1] and t a non-negative integer that increases per iteration

until the following condition is met∥∥∥Ψ(pk + αkΔpk, θk + αkΔθ
k)
∥∥∥ ≤ (1 − βαk(1 − σk − δk))

∥∥∥Ψ(pk, θk)
∥∥∥ , (22)

where β ∈ [0, 1] and σk + δk = 1. These parameters are set as follows

σk = min
(
0.01

∥∥∥Ψk(p, θ)
∥∥∥, 0.9)

δk = min

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
σk

N max (
√

N+τ1+γk
1−τ1γk

,
√

N+τ2γk√
N

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (23)

τ1 τ2 μk β λ γk

min
(
0.5 τmax

2
× 10−7, 0.99

)
τmax

2
× 10−7 μmax

k 10−4 0.5 0.5

Table 1: parameters utilized in the numerical experiments described in [13] for validation of the INE method

implementation.

Finally, the stopping criteria for the DIN iteration is defined as

c1 =
∥∥∥Ψk+1(p, θ)

∥∥∥ ≤ ε1
c2 =

∥∥∥∥∥∥αk

(
Δpk

Δθk

)∥∥∥∥∥∥ ≤ ε2 , (24)

where ε1, ε2 define the convergence threshold of the solver.

The INE solver was implemented in C++17 utilizing the linear algebra library Ar-

madillo [15][16]. The inner solver of choice is SuperLU [18] a sparse direct solver

preceded by an equilibration of the sparse Jacobian matrix to help reduce computation

times.
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3. Results

3.1. Validation

To allow for a direct comparison with the results reported by Mezzadri and Gal-

ligani [13], we used their same algorithm parameters, which are reported in table 1.

However, we note that those parameters can, and should, be optimized to achieve faster

convergence times.

To validate our results, we considered a 2D square domain of length L = 100μm,

a lubricant viscosity μ = 0.015 Pa · s and a relative surface sliding velocity U =

5×10−3 m · s−1 and we ran three different test cases matching problems 1-3 of [13]. We

can define a Convergent-Divergent (C-D) profile and a Divergent-Convergent (D-C)

profile according to the following function

h±(x, y) = ±hmax − hmin

2
sin

(
2πx
L

+
π

2

)
+ 2 (hmax − hmin) , (25)

with hmax = 0.025 μm and hmin = 0.015 μm, that, when combined with the different

boundary conditions, allows us to define three test cases according to table 2.

The following solutions were obtained in a 200 × 200 element mesh, with 2D and

sliced pressure and cavitation profiles for problem 1 shown in figures 3 and 4. Our

results are in excellent agreement with profiles of references [13] and [19]. The 2D and

sliced results for problem 2 and 3 are shown in figures (5, 6) and (7, 8) respectively,

closely matching the 1D profiles of [13]. The difference in pressure magnitudes are due

to the fact that, while in [13] these problems are solved in 1D, we are solving them in

2D. We further notice that the cavitation is correctly reproduced where expected, that

is in correspondence of divergent profile region.

Problem Profile pdΩ θdΩ

1 h+(x, y) 0 0

2 h+(x, y) 1 0

3 h−(x, y) 1 0

Table 2: test case definition where C-D ≡ h+(x, y), D-C ≡ h−(x, y) and pdΩ and θdΩ are the values of p and

θ at the domain boundary.

It is also important to highlight that in every solved example the complementar-

ity conditions were obeyed at every iteration, thus providing a robust physical solu-

tion. The feasibility condition was sufficient to fulfill the complementarity conditions

in these 3 cases, although centrality and backtracking might be necessary to ensure con-

vergence in more complex cases. The cavitation model and inexact Newton iteration

method implemented in this work ensure physically realistic solutions.
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Figure 3: Surface plots of h/hmax(x, y), p(x, y) and θ of problem 1 solved in a 200 × 200 element mesh.

Figure 4: Plots of a slice at y = 50 μm of h/hmax(x, y), p(x, y) and θ of problem 1 solved in a 200 × 200

element mesh.
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Figure 5: Surface plots of h/hmax(x, y), p(x, y) and θ(x, y) of problem 2 solved in a 200x200 element mesh.

Figure 6: Plots of a slice at y = 50 μm of h/hmax(x, y), p(x, y) and θ(x, y) of problem 2 solved in a 200 × 200

element mesh.
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Figure 7: Surface plots of h/hmax(x, y), p(x, y) and θ(x, y) of problem 3 solved in a 200 × 200 element mesh.

Figure 8: Plots of a slice at y = 50 μm of h/hmax(x, y), p(x, y) and θ of problem 3 solved in a 200 × 200

element mesh.

3.2. Dimpled texture
The code was also tested for a dimpled texture, which is an example of a texture

of industrial relevance, For this particular case, we consider a set of 9 equally spaced

dimples, with depth Dd = 10 μm and radius Dr = 60 μm, placed on a parabolic profile

h(x, y) = 0.1 + 2 × 10−5 · (x − 500)2 (μm). (26)

Considering a 2D square domain of side L = 1000 μm, lubricant viscosity μ = 0.035 Pa·
s and relative sliding velocity U = 4.3× 10−2 m · s−1 the resulting height, pressure, and

cavitation 2D profiles and 1D slice at y = 500 μm are shown in figures 9 and 10 re-

spectively.

One can observe that the central cavitation region is diminished along with pres-

sure. Notice also that dimples far from the center have a much lower influence on
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pressure as they are relatively far away from the contact region, where the fluid pres-

sure is maximal.

Figure 9: Surface plots of h/hmax(x, y), p/pmax(x, y) in MPa and θ of the dimpled texture solved in a 200×200

element mesh.

Figure 10: Normalized plots of a slice at y = 500 μm of h/hmax(x, y), p/pmax(x, y) and θ of the dimpled

texture solved in a 200 × 200 element mesh.

3.3. Inverted dimpled texture

To further verify the robustness of our implementation, we calculated the pres-

sure/cavitation profiles for a set of 9 equally spaced inverted dimples with depth Dd =

1 μm and radius Dr = 100 μm placed on a parabolic profile

h(x, y) = 1.05 + 0.2 × 10−5 · (x − 500)2. (μm) (27)

Considering a 2D square domain of side L = 1000 μm, lubricant viscosity μ = 0.035 Pa·
s and relative sliding velocity U = 4.3 × 10−1 m · s−1 the resulting normalized height,

pressure and cavitation 2D profiles and 1D slice at y = 500 μm are shown in figures 11

and 12 respectively.
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Figure 11: Surface plots of h/hmax(x, y), p/pmax(x, y) in MPa and θ of the inverted dimpled texture solved

in a 200 × 200 element mesh.

This is typically a hard to solve problem as the inverted dimples introduce very

localized contacts between the surfaces as seen in figure 11, hence extremely high

pressures at the dimple peaks are found. For each of the inverted dimples, a cavitation

region is generated.

Figure 12: Normalized plots of a slice at y = 500 μm of h/hmax(x, y), p/pmax(x, y) and θ of the inverted

dimpled texture solved in a 200 × 200 element mesh.

This demonstrates that FELINE is robust enough to successfully solve complex

cases, with the centrality condition being called twice and taking around the double of

the number of iterations to achieve convergence compared to the previous example in

section 3.2.

3.4. Benchmark

To assess the performance of FELINE, we run the code for a dimpled texture case

and increasing mesh sizes N × N on a single core of a Intel(R) Xeon(R) CPU E5-2697

v2. The number of iterations, total execution time and convergence parameters defined

in equations (24) are shown in 3.
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From the reported times, we can see that the solver is rather fast even if, as expected

the computational times increase exponentially with mesh size since the Jacobian mat-

rix scales as N2. FELINE also shows an impressive 100-fold speedup when compared

with the results of a 100 × 100 mesh reported in [13].

Mesh size Total computation time (s) Iterations C1, C2 defined in (24)

50 1.51 19 5.45 × 10−10, 6.79 × 10−5

100 6.07 24 4.04 × 10−11, 2.76 × 10−5

150 16.8 24 8.36 × 10−12, 2.76 × 10−5

200 49.6 26 1.24 × 10−11, 9.73 × 10−5

250 87.2 29 4.82 × 10−11, 6.91 × 10−5

Table 3: Benchmark of the INE algorithm results utilizing SuperLU for varying levels of mesh coarseness.

The effect of mesh coarseness on the solution correctness was verified. In figure 13

the pressure and cavitation profiles at y = 500 μm is shown for different mesh sizes.

The main difference in the pressure profile is in the region at 400 ≤ x ≤ 600, where

smaller mesh sizes appear to overestimate the pressure within the dimple region, while

severely underestimating the first pressure peak at x = 400.

Concerning cavitation, the region observed at x ≈ 450 is completely absent for

N = 50, while for all the other cases the cavitation region boundaries are matching.

Figure 13: Plots of: (a) a slice at y = 500 μm of h/hmax(x, y), p/pmax(x, y); (b) a slice at y = 500 μm of

h/hmax(x, y), θ(x, y) of the dimpled texture solved in a N × N element mesh.

4. Conclusions

We developed a fast and efficient finite element method solver for the Reynolds

equation with correct treatment of cavitation using the inexact Newton method. It has

been validated against known cases in literature and tested with realistic cases such
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as dimpled and inverse dimpled textures. In all cases, our solver reproduced almost

exactly the results of validation cases and showed a great robustness, capable to provide

a converged solution even for the most difficult cases. In terms of speed, we obtained an

impressive speedup of around 100 times in comparison to other INE implementations

[13].

We clearly demonstrated that our solver can produce fast and accurate results for

hydrodynamic lubrication problems, making it a suitable candidate to treat texture op-

timization problems, where a large number calculations might be needed.
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