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ABSTRACT
In this paper, a general setting is presented to study the exponential stability of
discrete-time systems with bounded or unbounded delays. Based on the M-matrix
theory, we establish sufficient conditions to ensure the global exponential stability
of the zero equilibrium of low-order, and high-order, discrete-time Hopfield neural
network models with unbounded delays and delay in the leakage terms. A compar-
ison of the literature shows that our results generalize and improve some in recent
publications.
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1. Introduction

In recent decades, neural network models have attracted the attention of a high number
of scientists due to their many applications in various engineering and scientific areas
such as content-addressable memory, pattern recognition, signal processing, image
processing and optimization (see [8, 9, 29]).

In 1984, Hopfield [17] studied the artificial neural network described by the following
system of ordinary differential equations

x′i(t) = −aixi(t) +

n∑
j=1

bijfj(xj(t)), i = 1, . . . , n. (1)

In order to reproduce the effect of finite transmission speed of signals among neu-
rons, communication time, or process of moving images, Marcus and Westervelt [21]
introduced a discrete delay in (1), making it more realistic. In the same publica-
tion, they observed that the delay can destabilize the system. In fact, the delay can
affect the dynamic behaviour of neural systems [1], therefore the stability of delay
neural network models have been the subject of an intense research activity (see [2–
6, 10, 12, 15, 16, 19, 20, 22, 23, 25–28, 31–37] and the references therein).

Roughly, mathematical neural network models can be classified into two types:
continuous-time models and discrete-time models. In spite of the former being the
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main focus of mathematicians, it is essential to formulate, and study, discrete-time
versions because of computational implementations [23, 24].

In the present work, we consider discrete-time low-order and high-order neural net-
work models with unbounded delay and delay in leakage terms. Using systems with
unbounded delay, it is possible to modulate phenomena where the entire history affects
the present. At this time, the continuous-time neural network model with unbounded
delay is widely studied (see [5, 12, 19, 25, 36] and references therein), while few re-
search works are focus on the discrete-time case [6]. To the best of our knowledge, the
global stability of a discrete-time high-order neural network model with unbounded
delay has not been studied yet. We should say that many authors pay attention to
low-order neural network models, but it is worth studying high-order neural network
models because, compared with low-order systems, they have stronger approximation
properties, fast convergence speed and higher fault tolerance [14, 30, 31, 36].

Since the work of Golpasamy [15], the continuous neural network models with delay
in the leakage terms have been studied by several authors [18, 26, 33] but, as far as
we know, there are few results concerning the stability of discrete-time neural network
models with delay in the leakage terms [6, 27, 28].

The problem of stability of equilibrium of discrete-time Hopfield neural network
models with delays has been studied [6, 10, 16, 22, 23, 27, 28, 31, 35]. However, the
models considered have finite delays [10, 16, 22, 23, 27, 28, 31, 35], or with infinite
delays but just for low-order models with discrete delays independent of the neurons
[6].

In this paper we establish a global exponential stability criterion of zero equilibrium
for a discrete-time general system with unbounded delays and we apply it to low-order
and high-order Hopfield models to get new stability criteria. The classical method of
proof used in the literature [23, 27, 34] consists in constructing a suitable Lyapunov
function that assures the global stability of the equilibrium. Here, as in [2, 10, 16], the
method of proof goes through applying properties of non-singular M-matrix, which
are easier to deal with than Lyapunov functions and, at times, the hypothesis are easy
to verify.

Finally, we describe the contents of the paper. In Section 2, we introduce some
essential notations, define the phase spaces for discrete-time systems with bounded or
unbounded delays in general settings, and establish general global exponential stability
criteria. Section 3 is the core of the paper, where the stability results are established for
discrete-time, low-order and high-order, Hopfield neural network models with bounded
and unbounded delays and delay in the leakage terms. A relevant comparison with
results in the literature are presented. In Section 4, numerical examples are presented
to illustrate the effectiveness of the main results. The paper ends with a short section
of conclusions.

2. Notations and basic stability results

In this paper, we denote by R the set of real numbers, by R+ the set of positive real
numbers, by R− the set of negative real numbers, by Z the set of integer numbers,
and by N the set of positive integer numbers. For a set I ⊆ R, we define IZ = I ∩ Z
and we denote by Z−0 the set of non-positive integer number, i.e. Z−0 = (−∞, 0]Z.

Given n ∈ N, we are going to consider the cartesian product Rn equipped with the
maximal norm, i.e. |d| = max

i∈[1,n]Z
|di|, for d = (d1, . . . , dn)T ∈ Rn.
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For a positive real number α, we consider the space Xα of the functions

ϕ : Z−0 → R

such that supj∈Z−
0
|ϕ(j)| eαj <∞, equipped with the norm

‖ϕ‖α = sup
j∈Z−

0

|ϕ(j)| eαj .

For n ∈ N and α ∈ R+, we denote by Xn
α the space of the functions

ϕ : Z−0 → Rn
j 7→ (ϕ1(j), . . . , ϕn(j))T

such that ϕi ∈ Xα for all i ∈ [1, n]Z, i.e.

Xn
α =

{
ϕ : Z−0 → Rn

j 7→ (ϕ1(j), . . . , ϕn(j))T

∣∣∣∣ max
i∈[1,n]Z

(
sup
j∈Z−

0

|ϕi(j)| eαj
)
<∞

}
,

equipped with the norm

‖ϕ‖α = max
i∈[1,n]Z

‖ϕi‖α = max
i∈[1,n]Z

(
sup
j∈Z−

0

|ϕi(j)| eαj
)
, ∀ϕ = (ϕ1, . . . , ϕn)T ∈ Xn

α .

For d ∈ Rn, we also use d to denote the constant function ϕ(j) = d in Xn
α . A

vector d = (d1, . . . , dn)T ∈ Rn is said to be positive if di > 0 for all i ∈ [1, n]Z, and

in this case we write d > 0. We also denote d
−1

=
(
d−1

1 , . . . , d−1
n

)T
in case of di 6= 0

for all i ∈ [1, n]Z. For d = (d1, . . . , dn)T ∈ Rn and q = (q1, . . . , qn)T ∈ Rn, we write
dq = (d1q1, . . . , dnqn)T ∈ Rn, which is not the inner product.

Given a function x : Z → Rn such that supj∈Z−
0
|x(j)| eαj < ∞, we denote the ith

component by xi, i.e. x = (x1, . . . , xn)T , and, for each m ∈ Z, we define xm ∈ Xn
α by

xm(j) = x(m+ j), j ∈ Z−0 .

The normed space Xn
α is introduced as a possible phase space of difference equations

with unbounded delays, where the longer the delay is, the lesser its influence. A general
system of delay difference equations is defined by

xi(m+ 1) = Fi(m,xm), ∀m ∈ [σ,∞)Z, i ∈ [1, n]Z, (2)

where σ ∈ Z and F : Z × Xn
α → Rn is a function with F(m,ϕ) =

(F1(m,ϕ), . . . ,Fn(m,ϕ))T .
For each σ ∈ Z and ϕ ∈ Xn

α , we denote by x(·, σ, ϕ) the unique solution

x : Z→ Rn

of (2) with initial conditions xσ = ϕ.
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For difference equations with finite delays, we consider the usual phase space Y n
τ ,

where τ ∈ N0 is the delay (there is no delay if τ = 0) and Y n
τ is the cartesian product

with Yτ the normed space of the functions φ : [−τ, 0]Z → R equipped with the norm

‖φ‖ = max
j∈[−τ,0]Z

|φ(j)|.

The norm considered in Y n
τ is the supremum norm, i.e. for φ = (φ1, . . . , φn)T ∈ Y n

τ we
have

‖φ‖ = max
i∈[1,n]Z

‖φi‖.

For each α > 0 and τ ∈ N0, the operator Φτ,α = Φ : Y n
τ → Xn

α , defined by

Φ(φ) : Z−0 → Rn

j 7→
{
φ(j), j ∈ [−τ, 0]Z
0, j ∈ (−∞,−τ)Z

, (3)

is one-one, thus we can regard Y n
τ as a subset of Xn

α , i.e.

Y n
τ ≡ Φ(Y n

τ ) ⊆ Xn
α .

We note that

‖φ‖ ≥ ‖Φ(φ)‖α, ∀φ ∈ Y n
τ .

We now state a global stability result for the general system of difference equations
(2).

Theorem 2.1. Let α > 0 and F : Z × Xn
α → Rn, with F(m,ϕ) =

(F1(m,ϕ), . . . ,Fn(m,ϕ))T , the function in system (2).
If

|Fi(m,ϕ)| ≤ e−α ‖ϕ‖α, ∀ϕ ∈ Xn
α ,∀m ∈ Z,∀i ∈ [1, n]Z, (4)

then the zero solution of (2) is globally exponentially stable, i.e.

‖xm(·, σ, ϕ)‖α ≤ e−α(m−σ) ‖ϕ‖α, ∀σ ∈ Z, ∀ϕ ∈ Xn
α , ∀m ∈ [σ,∞)Z.

Proof. Considering σ ∈ Z and ϕ = (ϕ1, . . . , ϕn)T ∈ Xn
α , we define

V : [σ,∞)Z → R
m 7→ e−α(m−σ) ‖ϕ‖α

and we denote x(m) = x(m,σ, ϕ) the solution of (2) with initial condition xσ = ϕ.
By induction on m ∈ [σ,∞)Z, we prove that

‖xm‖α ≤ V (m). (5)
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For m = σ, trivially we have

‖xσ‖α = ‖xσ(·, σ, ϕ)‖α = ‖ϕ‖α = V (σ).

Now, we assume that, for some m ∈ [σ,∞)Z, we have

‖xr‖α ≤ V (r), ∀r ∈ [σ,m]Z. (6)

From equation (2), induction hypothesis (6), and (4), for each i ∈ [1, n]Z, we have

|xi(m+ 1)| = |Fi(m,xm)| ≤ e−α ‖xm‖α ≤ e−α V (m) = e−α(m+1−σ) ‖ϕ‖α = V (m+ 1).

From (6), we also have |xi(r)| ≤ V (r) for all r ∈ [σ,m]Z and i ∈ [1, n]Z, thus

|xi(r)| ≤ V (r), ∀r ∈ [σ,m+ 1]Z, ∀i ∈ [1, n]Z.

Consequently,

‖xm+1‖α = max
i∈[1,n]Z

(
sup
j∈Z−

0

|xi(m+ 1 + j)| eαj
)

= max
i∈[1,n]Z

{
sup

j∈(−∞,σ−m−1]Z

|xi(m+ 1 + j)| eαj , max
j∈(σ−m−1,0]Z

|xi(m+ 1 + j)| eαj
}

≤ max
i∈[1,n]Z

{
sup

j∈(−∞,σ−m−1]Z

|ϕi(j +m+ 1− σ)| eαj , max
j∈(σ−m−1,0]Z

V (m+ 1 + j) eαj

}

= max
i∈[1,n]Z

{
sup

j∈(−∞,0]Z

|ϕi(j)| eα(j+σ−m−1), max
j∈(σ−m−1,0]Z

e−α(m+1+j−σ) ‖ϕ‖α eαj

}

= max
i∈[1,n]Z

{
sup

j∈(−∞,0]Z

|ϕi(j)| eαj e−α(m+1−σ), e−α(m+1−σ) ‖ϕ‖α

}
= e−α(m+1−σ) ‖ϕ‖α = V (m+ 1).

Thus (5) holds and, by definition of V , we obtain

‖xm(·, σ, ϕ)‖α ≤ e−α(m−σ) ‖ϕ‖α,

and the proof is concluded.

The exponential stability result given in Theorem 2.1, can also be applied to differ-
ence equations with finite delays, i.e. to models which can be written in the form

yi(m+ 1) = Gi(m, ym), ∀m ∈ [σ,∞)Z, i ∈ [1, n]Z, (7)

where σ ∈ Z, G : Z× Y n
τ → Rn a function with G(m,φ) = (G1(m,φ), . . . ,Gn(m,φ))T ,

and ym ∈ Y n
τ defined by ym(j) = y(m+ j) for j ∈ [−τ, 0]Z.

Corollary 2.2. Let τ ∈ N0, ξ > 0, and G : Z × Y n
τ → Rn, with G(m,φ) =

(G1(m,φ), . . . ,Gn(m,φ))T , the function in system (7).
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If

|Gi(m,φ)| ≤ e−ξ ‖φ‖, ∀φ ∈ Y n
τ , ∀m ∈ Z,∀i ∈ [1, n]Z, (8)

then the zero solution of (7) is globally exponentially stable, i.e. there are C ≥ 1 and
α > 0 such that

‖ym(·, σ, φ)‖ ≤ C e−α(m−σ) ‖φ‖, ∀σ ∈ Z,∀φ ∈ Y n
τ ,∀m ∈ [σ,∞)Z.

Proof. Let σ ∈ Z, φ ∈ Y n
τ , and denote y(m,σ, φ) = y(m) = (y1(m), . . . , yn(m))T the

solution of (7) such that yσ = φ.
Fix α > 0 such that ξ > α(1 + τ). For m ∈ [σ,∞)Z and i ∈ [1, n]Z, we have

yi(m+ 1) = Gi(m, ym) = Fi(m,Φ(ym)),

where Φ is defined by (3) and

Fi : Z×Xn
α → R

(m,ϕ) 7→ Gi
(
m,ϕ|[−τ,0]Z

)
.

This means that y is the solution of

xi(m+ 1) = Fi(m,xm), i ∈ [1, n]Z,

with initial conditions xσ = Φ(φ), i.e. y(m) = x(m,σ,Φ(φ)).
By (8), for each ϕ = (ϕ1, . . . , ϕn)T ∈ Xn

α and i ∈ [1, n]Z, we have

|Fi(m,ϕ)| =
∣∣∣Gi (m,ϕ|[−τ,0]Z)∣∣∣ ≤ e−ξ

∥∥∥ϕ|[−τ,0]Z∥∥∥
≤ e−ξ max

i∈[1,n]Z

(
max

j∈[−τ,0]Z
|ϕi(j)| eα(j+τ)

)
≤ eατ−ξ max

i∈[1,n]Z

(
sup
j∈Z−

0

|ϕi(j)| eαj
)

= e−(ξ−ατ) ‖ϕ‖α.

As ξ − ατ > α, we conclude that

|Fi(m,ϕ)| ≤ e−α ‖ϕ‖α, ∀ϕ ∈ Xn
α , ∀i ∈ [1, n]Z.

From Theorem 2.1, we obtain

‖xm(·, σ,Φ(φ))‖α ≤ e−α(m−σ) ‖Φ(φ)‖α, ∀m ∈ [σ,∞)Z.

Consequently,

eτα ‖xm(·, σ,Φ(φ))‖α ≤ eτα e−α(m−σ) ‖Φ(φ)‖α ≤ eτα e−α(m−σ) ‖φ‖,

6



and as

‖ym‖ = sup
j∈[−τ,0]Z

∣∣x(m+ j, σ,Φ(φ))
∣∣ ≤ sup

j∈[−τ,0]Z

∣∣x(m+ j, σ,Φ(φ))
∣∣ eα(τ+j)

≤ eτα ‖xm(·, σ,Φ(φ))‖α,

finally we have

‖ym(·, ϕ, φ)‖ ≤ C e−α(m−σ) ‖φ‖,

with C = eτα.

The stability results in the next section involve the concept of non-singular M-
matrix. Thus we recall the definition here.

Definition 2.3. Let M = [mij ] a square real matrix with non-positive off-diagonal
entries, i.e. mij ≤ 0 for all i 6= j.

The matrix M is called non-singular M-matrix if all the eigenvalues have positive
real part.

The matrixM is called M-matrix if all the eigenvalues have non-negative real part.

There is a large number of equivalent properties to identify a non-singular M-matrix
and we refer to Chapter 5 of [13] to see them and to study further properties.

3. Main results

In this section, by a non-singular M-matrix method, we establish global exponential
stability criteria of zero equilibrium of discrete-time Hopfield neural network models,
of low-order and high-order, with unbounded delays and delay in the leakage terms.

3.1. Low-order Hopfield model

First, we consider the following discrete-time low-order Hopfield neural network model

xi(m+ 1) = aixi(m− δi(m)) +

n∑
j=1

bijfj(xj(m)) +

n∑
j=1

cijfj(xj(m− τij(m)))

+

n∑
j=1

dij

∞∑
l=1

ρijlfj(xj(m− l)), i ∈ [1, n]Z, (9)

where n ∈ N is the number of neurons, xi(m) is the state of i-th neuron at moment
m ∈ Z, A = diag(a1, . . . , an) is the self-feedback connection weight matrix with ai ∈
(−1, 1), B = [bij ], C = [cij ], and D = [dij ] ∈ Rn×n are, respectively, the connection
weight matrix, the discrete delay connection weight matrix and distributive delay
connection weight matrix, fj : R→ R are the neuron activation functions, δi : Z→ N0

are the delays in leakage terms, τij : Z→ N0 are the discrete time delays, and (ρijl)l∈N
are non-negative sequences in the infinitely distributed delay terms.

Under different setting, the stability of (9) was studied by X. Chen et. al. [6] in the
complex field.
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Remark 1. As is refereed in [6], the so-called infinitely distributed delay terms in (9),

∞∑
l=1

ρijlfj(xj(m− l)),

can be regarded as the discretization of infinite integral form∫ ∞
0

kij(s)fj(xj(t− s))ds

for the continuous-time Hopfield neural network models (see for example [7, 12, 20]).

To deal with the model (9), we assume the following hypotheses set:

(H1) for each j ∈ [1, n]Z, there exists Fj > 0 such that

|fj(u)| ≤ Fj |u|, ∀u ∈ R;

(H2) for each i, j ∈ [1, n]Z, there exist δ, τ ≥ 0 such that

δi(m) ≤ δ and τij(m) ≤ τ, ∀m ∈ Z;

(H3) for each i, j ∈ [1, n]Z, the sequence (ρijl)l∈N, with ρijl ≥ 0, satisfies the conver-
gence conditions

∞∑
l=1

ρijl = 1 and

∞∑
l=1

eξl ρijl <∞,

for some ξ > 0;

Remark 2. The hypothesis (H1) implies that x(t) = 0 is an equilibrium of (9).

Remark 3. In the studies about global stability of neural networks models, discrete
and continuous, it is usually assumed that the activation functions, fj , are Lipschitz
[2, 6, 7, 10, 12, 25, 37]. Here we do not assume that fj are Lipschitz and hypothesis
(H1) only implies the continuity of fj at u = 0. Condition (H1) is assumed in [10] for
discrete-time models and in [32] for continuous-time models.

The most famous activation functions used in neural networks, such as linear ReLu
(rectified linear unit), leaky ReLu, sigmoid, and tanh (hyperbolic tangent), verify
hypothesis (H1).

Remark 4. The hypothesis (H3) can be regard as the discretization of the integral
conditions ∫ ∞

0
kij(s)ds = 1 and

∫ ∞
0

kij(s) eξs ds <∞,

usual in several studies about global exponential stability of continuous neural network
models with unbounded distributed delays (see for example [19, 25]).

To define a convenient phase space for system (9), we need to prove the following
lemma.
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Lemma 3.1. Assume hypothesis (H3).
If γ > 0, then there is η > 0 such that

∞∑
l=1

etl ρijl < 1 + γ, ∀t ∈ [0, η], ∀i, j ∈ [1, n]Z. (10)

Proof. Let γ > 0.

Fix i, j ∈ [1, n]Z and consider the function G(t) := Gij(t) =

∞∑
l=1

etl ρijl, for t ∈ [0, ξ].

As ρijl ≥ 0, for all l ∈ N, G(t) is a non-decreasing function and, from (H3), we have

G(0) =

∞∑
l=1

ρijl = 1 and G(ξ) =

∞∑
l=1

eξl ρijl <∞.

We now claim that G is continuous on [0, ξ].

Fix ε > 0. From (H3), there is N ∈ N such that

∞∑
l=N

eξl ρijl <
ε

3
and consequently

∞∑
l=N

etl ρijl <
ε

3
, ∀t ∈ [0, ξ].

Since g(t, l) = etl is uniformly continuous on [0, ξ] × ([1, N ]Z), there is β > 0 such
that

∀t, s ∈ [0, ξ],∀l ∈ [1, N ]Z : |t− s| < β ⇒
∣∣∣etl− esl

∣∣∣ < ε

3
.

Thus, for t, s ∈ [0, ξ] with |t− s| < β, we have

|G(t)−G(s)| =

∣∣∣∣∣
∞∑
l=1

etl ρijl −
∞∑
l=1

esl ρijl

∣∣∣∣∣
≤

∣∣∣∣∣
N−1∑
l=1

(
etl− esl

)
ρijl

∣∣∣∣∣+

∣∣∣∣∣
∞∑
l=N

etl ρijl −
∞∑
l=N

esl ρijl

∣∣∣∣∣
≤

(
N−1∑
l=1

∣∣∣etl− esl
∣∣∣ ρijl

)
+

∞∑
l=N

etl ρijl +

∞∑
l=N

esl ρijl

<
ε

3

( ∞∑
l=1

ρijl

)
+
ε

3
+
ε

3
= ε.

Consequently G is continuous on [0, ξ]. From Intermediate Value Theorem, we conclude

that there is ηij ∈ (0, ξ) such that G(ηij) = Gij(ηij) =

∞∑
l=1

eηij l ρijl < 1 + γ. As Gij are

non-decreasing, condition (10) holds taking

η = min
ij

ηij .
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Now, we state our result on the global exponential stability of zero equilibrium of
(9).

Theorem 3.2. Assume (H1)-(H3).
If

M = diag(1− |a1|, . . . , 1− |an|)−
[
Fj(|bij |+ |cij |+ |dij |)

]
is a non-singular M-matrix, then the zero equilibrium of (9) is globally exponentially
stable, i.e. there are C ≥ 1 and α > 0 such that

‖xm(·, σ, ϕ)‖α ≤ C e−α(m−σ) ‖ϕ‖α, ∀(σ, ϕ) ∈ Z×Xn
α , ∀m ∈ [σ,∞)Z.

Proof. If M is a non-singular M-matrix, then (see Fiedler [13, Theorem 5.1]) there
is p = (p1, . . . , pn)T > 0 such that Mp > 0, i.e.

pi − pi|ai| −
n∑
j=1

pjFj(|bij |+ |cij |+ |dij |) > 0, ∀i ∈ [1, n]Z.

Consequently, there is γ > 0 such that

pi e−γ −pi|ai| eγδ −
n∑
j=1

pjFj
(
|bij |+ |cij | eγτ +|dij |(1 + γ)

)
> 0, ∀i ∈ [1, n]Z. (11)

From Lemma 3.1, we conclude that there is α ∈ (0, γ) such that

∞∑
l=1

eαl ρijl < 1 + γ, ∀i, j ∈ [1, n]Z, (12)

and, as 0 < α < γ, from (11) we obtain

pi e−α−pi|ai| eαδ −
n∑
j=1

pjFj
(
|bij |+ |cij | eατ +|dij |(1 + γ)

)
> 0, ∀i ∈ [1, n]Z

and consequently

e−α > |ai| eαδ +

n∑
j=1

pj
pi
Fj
(
|bij |+ |cij | eατ +|dij |(1 + γ)

)
, ∀i ∈ [1, n]Z. (13)

The change of variables yi(m) = p−1
i xi(m) transforms the model (9) into

yi(m+ 1) = aiyi(m− δi(m))+

n∑
j=1

bij
pi
fj(pjyj(m)) +

n∑
j=1

cij
pi
fj(pjyj(m− τij(m)))

+

n∑
j=1

dij
pi

∞∑
l=1

ρijlfj(pjyj(m− l)), i ∈ [1, n]Z. (14)
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Considering Xn
α as the phase space of model (14), then it assumes the form

yi(m+ 1) = Fi(m, ym), i ∈ [1, n]Z,

where

Fi(m,ϕ) = aiϕi(−δi(m)) +

n∑
j=1

bij
pi
fj(pjϕj(0)) +

n∑
j=1

cij
pi
fj(pjϕj(−τij(m)))

+

n∑
j=1

dij
pi

∞∑
l=1

ρijlfj(pjϕj(−l)), i ∈ [1, n]Z,

for all ϕ = (ϕ1, . . . , ϕn)T ∈ Xn
α and m ∈ Z.

Now, for i ∈ [1, n]Z, ϕ = (ϕ1, . . . , ϕn)T ∈ Xn
α , and m ∈ Z, from (H1) and (H2) we

have

|Fi(m,ϕ)| ≤ |aiϕi(−δi(m))|+
n∑
j=1

|bij |
pi
|fj(pjϕj(0))|+

n∑
j=1

|cij |
pi
|fj(pjϕj(−τij(m)))|

+

n∑
j=1

|dij |
pi

∞∑
l=1

ρijl|fj(pjϕj(−l))|

≤ |ai|
|ϕi(−δi(m))| e−αδi(m)

e−αδi(m)
+

n∑
j=1

|bij |
pi

Fjpj |ϕj(0)|

+

n∑
j=1

|cij |
pi

Fjpj
|ϕj(−τij(m))| e−ατij(m)

e−ατij(m)

+

n∑
j=1

|dij |
pi

∞∑
l=1

ρijlFjpj
|ϕj(−l)| e−αl

e−αl

≤ |ai|
‖ϕ‖α

e−αδi(m)
+

n∑
j=1

|bij |
pi

Fjpj‖ϕ‖α +

n∑
j=1

|cij |
pi

Fjpj
‖ϕ‖α

e−ατij(m)

+

n∑
j=1

|dij |
pi

∞∑
l=1

ρijlFjpj
‖ϕ‖α
e−αl

≤ |ai| eαδ ‖ϕ‖α +

n∑
j=1

pj
pi
Fj |bij |‖ϕ‖α +

n∑
j=1

pj
pi
Fj |cij | eατ ‖ϕ‖α

+

n∑
j=1

pj
pi
Fj |dij |

∞∑
l=1

eαl ρijl‖ϕ‖α

=

|ai| eαδ +

n∑
j=1

pj
pi
Fj

(
|bij |+ |cij | eατ +|dij |

∞∑
l=1

eαl ρijl

) ‖ϕ‖α,
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and from (12) and (13), we obtain

|Fi(m,ϕ)| ≤

|ai| eαδ +

n∑
j=1

pj
pi
Fj (|bij |+ |cij | eατ +|dij |(1 + γ))

 ‖ϕ‖α ≤ e−α ‖ϕ‖α.

From Theorem 2.1, we conclude that

‖ym(·, σ, p−1ϕ)‖α ≤ e−α(m−σ) ‖p−1ϕ‖α, ∀σ ∈ Z, ∀ϕ ∈ Xn
α , ∀m ∈ [σ,∞)Z,

which implies that

min
i

{
p−1
i

}
‖xm(·, σ, ϕ)‖α ≤ e−α(m−σ) ‖ϕ‖α max

i
{p−1
i }, ∀σ ∈ Z, ∀ϕ ∈ Xn

α , ∀m ∈ [σ,∞)Z,

where x(·, σ, ϕ) is the solution of (9) with xσ = ϕ. Finally we obtain

‖xm(·, σ, ϕ)‖α ≤
maxi{pi}
mini{pi}

e−α(m−σ) ‖ϕ‖α, ∀σ ∈ Z,∀ϕ ∈ Xn
α ,∀m ∈ [σ,∞)Z.

As a particular situation of model (9), we have the discrete-time Hopfield neural
network model with finite delays and delay in the leakage terms

xi(m+ 1) = aixi(m− δi(m)) +

n∑
j=1

bijfj(xj(m))

+

n∑
j=1

cijfj(xj(m− τij(m))), i ∈ [1, n]Z. (15)

From Corollary 2.2, we obtain the following criterion for the global exponential stability
of the zero equilibrium of (15).

Proposition 3.3. Assume (H1) and (H2).
If

N = diag(1− |a1|, . . . , 1− |an|)−
[
Fj(|bij |+ |cij |)

]
(16)

is a non-singular M-matrix, then the zero equilibrium of (15) is globally exponentially
stable, i.e. there are C ≥ 1 and α > 0 such that

‖xm(·, σ, φ)‖ ≤ C e−α(m−σ) ‖φ‖, ∀(σ, φ) ∈ Z× Y n
ω , ∀m ∈ [σ,∞)Z,

where ω = max{δ, τ}.

Proof. Consider ω = max{δ, τ}, where δ and τ are defined in (H2).
As N is a non-singular M-matrix, then (by Fiedler [13, Theorem 5.1] again) there

12



is p = (p1, . . . , pn)T > 0 such that

pi − pi|ai| −
n∑
j=1

pjFj(|bij |+ |cij |) > 0, ∀i ∈ [1, n]Z.

Consequently, there is ξ > 0 such that

pi e−ξ > pi|ai|+
n∑
j=1

pjFj
(
|bij |+ |cij |

)
, ∀i ∈ [1, n]Z. (17)

The change of variables yi(m) = p−1
i xi(m) transforms the model (15) into

yi(m+ 1) = aiyi(m− δi(m)) +

n∑
j=1

bij
pi
fj(pjyj(m))

+

n∑
j=1

cij
pi
fj(pjyj(m− τij(m))), i ∈ [1, n]Z. (18)

Considering Y n
ω as the phase space of model (18), then it assumes the form

yi(m+ 1) = Gi(m, ym), i ∈ [1, n]Z,

where

Gi(m,φ) = aiφi(−δi(m)) +

n∑
j=1

bij
pi
fj(pjφj(0)) +

n∑
j=1

cij
pi
fj(pjφj(−τij(m))), i ∈ [1, n]Z,

for all φ = (φ1, . . . , φn)T ∈ Y n
ω and m ∈ Z.

Now, for i ∈ [1, n]Z, φ = (φ1, . . . , φn)T ∈ Y n
ω , and m ∈ Z, from (H1) and (H2) we

have

|Gi(m,φ)| ≤ |aiφi(−δi(m))|+
n∑
j=1

|bij |
pi
|fj(pjφj(0))|+

n∑
j=1

|cij |
pi
|fj(pjφj(−τij(m)))|

≤ |ai|‖φ‖+

n∑
j=1

|bij |
pi

Fjpj‖φ‖+

n∑
j=1

|cij |
pi

Fjpj‖φ‖

and from (17) we obtain

|Gi(m,φ)| ≤

|ai|+ n∑
j=1

pj
pi
Fj (|bij |+ |cij |)

 ‖φ‖ ≤ e−ξ ‖φ‖.

From Corollary 2.2, there are C∗ ≥ 1 and α > 0 such that

‖ym(·, σ, p−1φ)‖ ≤ C∗ e−α(m−σ) ‖p−1φ‖, ∀σ ∈ Z, ∀φ ∈ Y n
ω , ∀m ∈ [σ,∞)Z,

13



and finally we conclude that

‖xm(·, σ, φ)‖ ≤ C e−α(m−σ) ‖φ‖, ∀σ ∈ Z,∀φ ∈ Y n
ω , ∀m ∈ [σ,∞)Z,

where C = C∗maxi{pi}
mini{pi} .

Remark 5. For model (15) with bij = 0, with constant delays, and without delay
in the leakage terms, i.e. τij(m) = τij and δi(m) = 0 for all m ∈ Z, i, j ∈ [1, n]Z, Y.
Hong and W. Ma [16, Theorem 3.1] proved the global attractivity of zero equilibrium
assuming that: the matrix N , defined in (16), is an M-matrix and the activation
functions fj , j ∈ [1, n]Z, are differentiable and satisfy

i) fj(0) = 0, |fj(u)| ≤ 1, for all u ∈ R, lim
u→∞

fj(u) = 1, and lim
u→−∞

fj(u) = −1;

ii) f ′j(u) > 0 for all u ∈ R and f ′j(0) = sup
u∈R

f ′j(u) = 1.

In this work, we do not assume differentiable activation functions and conditions i) and
ii) imply (H1) with Fj = 1. However, Proposition 3.3 does not improve [16, Theorem
3.1] because we assume the restrictive condition of N being non-singular M-matrix. In
fact, this restrictive condition is needed since we get the global exponential stability of
the equilibrium while in [16, Theorem 3.1] the authors obtained the global attractivity
of the equilibrium.

3.2. High-order Hopfield model

Now, we consider the following discrete-time high-order Hopfield neural network model
with unbounded delays and delay in the leakage terms,

xi(m+ 1) = aixi(m− δi(m)) +

n∑
j=1

bijfj(xj(m))

+

n∑
j=1

n∑
k=1

cijkgj(xj(m− τijk(m)))gk(xk(m− τijk(m)))

+

n∑
j=1

n∑
k=1

dijk

( ∞∑
l=1

ρijlgj(xj(m− l))

)( ∞∑
l=1

ρiklgk(xk(m− l))

)
(19)

with i ∈ [1, n]Z, where n ∈ N is the number of neurons, xi(m) is the state of i-th neuron
at moment m ∈ Z, A = diag(a1, . . . , an) is the self-feedback connection weight matrix
with ai ∈ (−1, 1), B = [bij ] is the low-order connection weight matrix, cijk ∈ R are the
high-order connection weights to discrete delay terms, and dijk ∈ R are the high-order
connection weights to distributed delay terms, fj , gj : R→ R are the neuron activation
functions, δi : Z → N0 are the delays in leakage terms, τijk : Z → N0 are the discrete
time delays, and (ρijl)l∈N are non-negative sequences in the infinite distributed delay
high-order terms.

To deal with the model (19), we assume the hypotheses (H1) and (H3) from the
model (9) joint with:

(HO1) for each j ∈ [1, n]Z, there exist Gj ,Mj > 0 such that

|gj(u)| ≤ min{Mj , Gj |u|}, ∀u ∈ R;
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(HO2) for each i, j, k ∈ [1, n]Z, there exist δ, τ ≥ 0 such that

δi(m) ≤ δ and τijk(m) ≤ τ, ∀m ∈ Z.

Remark 6. We should remark again that hypotheses (H1) and (HO1) imply that
x(t) = 0 is an equilibrium of (19).

Using similar arguments to those present in the proof of Theorem 3.2, we obtain the
following exponential stability criterion for the zero solution of (19). For convenience
of the reader, we put the proof here.

Theorem 3.4. Assume (H1), (H3), (HO1), and (HO2).
If

Q = diag(1− |a1|, . . . , 1− |an|)−
[
Fj |bij |

]
−

[
Gj

n∑
k=1

(
Mk(|cijk|+ |dijk|)

)]

is a non-singular M-matrix, then the zero equilibrium of (19) is globally exponentially
stable, i.e. there are C ≥ 1 and α > 0 such that

‖xm(·, σ, ϕ)‖α ≤ C e−α(m−σ) ‖ϕ‖α, ∀(σ, ϕ) ∈ Z×Xn
α , ∀m ∈ [σ,∞)Z.

Proof. As Q is a non-singular M-matrix, then (see Fiedler [13, Theorem 5.1]) there
is p = (p1, . . . , pn)T > 0 such that

pi − pi|ai| −
n∑
j=1

pjFj |bij | −
n∑
j=1

pjGj

n∑
k=1

(
Mk(|cijk|+ |dijk|)

)
> 0, ∀i ∈ [1, n]Z.

Consequently, there is γ > 0 such that

pi e−γ −pi|ai| eγδ −
n∑
j=1

pjFj |bij | −
n∑
j=1

pjGj

n∑
k=1

(
Mk(|cijk| eγτ +|dijk|(1 + γ))

)
> 0, (20)

for all i ∈ [1, n]Z. As in the proof of Theorem 3.2, from Lemma 3.1 we conclude that
there is α ∈ (0, γ) such that (12) holds and

e−α > |ai| eαδ +

n∑
j=1

pj
pi
Fj |bij |+

n∑
j=1

pj
pi
Gj

n∑
k=1

(
Mk(|cijk| eατ +|dijk|(1 + γ))

)
, (21)

for all i ∈ [1, n]Z.
Now, consider Xn

α the phase space of (19). Using again the change of variables
yi(m) = p−1

i xi(m), the model (19) assumes the form

yi(m+ 1) = Fi(m, ym), i ∈ [1, n]Z,
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where

Fi(m,ϕ) = aiϕi(−δi(m)) +

n∑
j=1

bij
pi
fj(pjϕj(0))

+

n∑
j=1

n∑
k=1

cijk
pi
gj(pjϕj(−τijk(m)))gk(pkϕk(−τijk(m)))

+

n∑
j=1

n∑
k=1

dijk
pi

( ∞∑
l=1

ρijlgj(pjϕj(−l))

)( ∞∑
l=1

ρiklgk(pkϕk(−l))

)
,

for all ϕ = (ϕ1, . . . , ϕn)T ∈ Xn
α and m ∈ Z.

Now, for i ∈ [1, n]Z, ϕ = (ϕ1, . . . , ϕn)T ∈ Xn
α , and m ∈ Z, from (H1) and (HO1) we

have

|Fi(m,ϕ)| ≤ |aiϕi(−δi(m))|+
n∑
j=1

|bij |
pi
|fj(pjϕj(0))|

+

n∑
j=1

n∑
k=1

|cijk|
pi
|gj(pjϕj(−τijk(m)))||gk(pkϕk(−τijk(m)))|

+

n∑
j=1

n∑
k=1

|dijk|
pi

( ∞∑
l=1

ρijl|gj(pjϕj(−l))|

)( ∞∑
l=1

ρikl|gk(pkϕk(−l))|

)

≤ |ai|
|ϕi(−δi(m))| e−αδi(m)

e−αδi(m)
+

n∑
j=1

|bij |
pi

Fjpj |ϕj(0)|

+

n∑
j=1

n∑
k=1

|cijk|
pi

Gjpj
|ϕj(−τijk(m))| e−ατijk(m)

e−ατijk(m)
Mk

+

n∑
j=1

n∑
k=1

|dijk|
pi

( ∞∑
l=1

ρijlGjpj
|ϕj(−l)| e−αl

e−αl

)( ∞∑
l=1

ρiklMk

)
,
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and consequently, from (HO3) and (H3), we obtain

|Fi(m,ϕ)| ≤ |ai|
‖ϕ‖α

e−αδi(m)
+

n∑
j=1

|bij |
pi

Fjpj‖ϕ‖α +

n∑
j=1

n∑
k=1

|cijk|
pi

Gjpj
‖ϕ‖α

e−ατijk(m)
Mk

+

n∑
j=1

n∑
k=1

|dijk|
pi

( ∞∑
l=1

ρijlGjpj
‖ϕ‖α
e−αl

)
Mk

≤ |ai| eαδ ‖ϕ‖α +

n∑
j=1

pj
pi
Fj |bij |‖ϕ‖α +

n∑
j=1

n∑
k=1

pj
pi
GjMk|cijk| eατ ‖ϕ‖α

+

n∑
j=1

n∑
k=1

pj
pi
GjMk|dijk|

( ∞∑
l=1

eαl ρijl

)
‖ϕ‖α

=

|ai| eαδ +

n∑
j=1

pj
pi
Fj |bij |

+

n∑
j=1

pj
pi
Gj

n∑
k=1

Mk

(
|cijk| eατ +|dijk|

( ∞∑
l=1

eαl ρijl

)) ‖ϕ‖α.
Finally, from (12) and (21), we have

|Fi(m,ϕ)| ≤

|ai| eαδ +

n∑
j=1

pj
pi
Fj |bij |

+

n∑
j=1

pj
pi
Gj

n∑
k=1

(
Mk(|cijk| eατ +|dijk|(1 + γ))

) ‖ϕ‖α ≤ e−α ‖ϕ‖α.

From Theorem 2.1, we conclude that

‖ym(·, σ, p−1ϕ)‖α ≤ e−α(m−σ) ‖p−1ϕ‖α, ∀σ ∈ Z, ∀ϕ ∈ Xn
α , ∀m ∈ [σ,∞)Z,

and consequently

‖xm(·, σ, ϕ)‖α ≤
maxi{pi}
mini{pi}

e−α(m−σ) ‖ϕ‖α, ∀σ ∈ Z,∀ϕ ∈ Xn
α ,∀m ∈ [σ,∞)Z.

As a particular situation of model (19), we have the discrete-time high-order Hop-
field neural network model with finite delays and delay in the leakage terms

xi(m+ 1) = aixi(m− δi(m)) +

n∑
j=1

bijfj(xj(m))

+

n∑
j=1

n∑
k=1

cijkgj(xj(m− τijk(m)))gk(xk(m− τijk(m))), i ∈ [1, n]Z.(22)
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From Corollary 2.2, and following similar arguments to those present in the proof of
Proposition 3.3, we obtain the following criterion for the global exponential stability
of the zero equilibrium of (22). We write the proof for the convenience of the reader.

Proposition 3.5. Assume (H1), (HO1), and (HO2).
If

R = diag(1− |a1|, . . . , 1− |an|)−
[
Fj |bij |

]
−

[
Gj

n∑
k=1

Mk|cijk|

]
(23)

is a non-singular M-matrix, then the zero equilibrium of (22) is globally exponentially
stable, i.e. there are C ≥ 1 and α > 0 such that

‖xm(·, σ, φ)‖ ≤ C e−α(m−σ) ‖φ‖, ∀(σ, φ) ∈ Z× Y n
ω , ∀m ∈ [σ,∞)Z,

where ω = max{δ, τ}.

Proof. Let ω = max{δ, τ}, where δ and τ are in (HO2), and consider Y n
ω the phase

space of (22).
As R is a non-singular M-matrix, then, by [13, Theorem 5.1], there is p =

(p1, . . . , pn)T > 0 such that

pi − pi|ai| −
n∑
j=1

pjFj |bij |+
n∑
j=1

n∑
k=1

pjGjMk|cijk| > 0, ∀i ∈ [1, n]Z.

Consequently, there is ξ > 0 such that

e−ξ > |ai|+
n∑
j=1

pj
pi
Fj |bij |+

n∑
j=1

pj
pi
Gj

(
n∑
k=1

Mk|cijk|

)
, ∀i ∈ [1, n]Z. (24)

Using again the change of variables yi(m) = p−1
i xi(m), the model (22) assumes the

form

yi(m+ 1) = Gi(m, ym), i ∈ [1, n]Z,

where

Gi(m,φ) = aiφi(−δi(m)) +

n∑
j=1

bij
pi
fj(pjφj(0))

+

n∑
j=1

n∑
k=1

cijk
pi
gj(pjφj(−τijk(m)))gk(pkφk(−τijk(m))), i ∈ [1, n]Z,

for all φ = (φ1, . . . , φn)T ∈ Y n
ω and m ∈ Z.

Now, for i ∈ [1, n]Z, φ = (φ1, . . . , φn)T ∈ Y n
ω , and m ∈ Z, from (H1), (HO1), and

18



(HO2) we have

|Gi(m,φ)| ≤ |aiφi(−δi(m))|+
n∑
j=1

|bij |
pi
|fj(pjφj(0))|

+

n∑
j=1

n∑
k=1

|cijk|
pi
|gj(pjφj(−τij(m)))||gk(pkφk(−τijk(m)))|

≤ |ai|‖φ‖+

n∑
j=1

|bij |
pi

Fjpj‖φ‖+

n∑
j=1

n∑
k=1

|cijk|
pi

Gjpj‖φ‖Mk

and from (24) we obtain

|Gi(m,φ)| ≤

|ai|+ n∑
j=1

pj
pi
Fj |bij |+

n∑
j=1

pj
pi
Gj

(
n∑
k=1

Mk|cijk|

) ‖φ‖ ≤ e−ξ ‖φ‖.

From Corollary 2.2, there are C∗ ≥ 1 and α > 0 such that

‖ym(·, σ, p−1φ)‖ ≤ C∗ e−α(m−σ) ‖p−1φ‖, ∀σ ∈ Z, ∀φ ∈ Y n
ω , ∀m ∈ [σ,∞)Z,

and finally we conclude that

‖xm(·, σ, φ)‖ ≤ C e−α(m−σ) ‖φ‖, ∀σ ∈ Z,∀φ ∈ Y n
ω , ∀m ∈ [σ,∞)Z,

where C = C∗maxi{pi}
mini{pi} .

Remark 7. For model (22) without delay in the leakage term, i.e. δi(m) = 0 for all
m ∈ Z, i ∈ [1, n]Z, Z. Dong et al. [10] proved the global exponential stability of zero
equilibrium assuming that: the matrix R defined in (23) is a non-singular M-matrix;
there is τ > 0 such that τijk(m) < τ for all i, j, k ∈ [1, n]Z, m ∈ Z; and the assumptions

Assumption 1. [10] “The activation functions fj (j ∈ [1, n]Z) satisfy

fj(0) = 0, |fj(u)− fj(v)| ≤ Fj |u− v|, ∀u, v ∈ R,

where Fj > 0 is a known constant”,
Assumption 2. [10] “The activation functions gj (j ∈ [1, n]Z) satisfy

gj(0) = 0, |gj(u)| ≤Mj , |gj(u)− gj(v)| ≤ Gj |u− v|, ∀u, v ∈ R,

where Mj > 0 and Gj > 0 are known constants”.

Clearly, Assumption 1 implies (H1) and Assumption 2 implies (HO1) but the reverses
do not hold. Thus above Proposition 3.5 improves the main results in [10]. We should
say that Theorem 3.4 extends the results in [10] to discrete-time high-order Hopfield
neural network models with delay in leakage term and unbounded distributed delays.

Now, we consider the following discrete-time high-order Hopfield neural network
model with S-type distributed unbounded delays in the low-order and high-order
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terms,

xi(m+ 1) = aixi(m− δi(m)) +

n∑
j=1

bijfj(xj(m))

+

n∑
j=1

R∑
r=1

c
(r)
ij gj

( ∞∑
l=1

ρ
(r)
ijlxj(m− l)

)

+

n∑
j=1

n∑
k=1

R∑
r=1

d
(r)
ijkgj

( ∞∑
l=1

ρ
(r)
ijlxj(m− l)

)
gk

( ∞∑
l=1

ρ
(r)
iklxk(m− l)

)
,

(25)

with i ∈ [1, n]Z, where n, xi(m), A = diag(a1, . . . , an), B = [bij ], δi : Z → N0,

and fj , gj : R → R have the same meanings as in model (19), R ∈ N, c
(r)
ij ∈ R are

the low-order connection weights to distributed delays terms, d
(r)
ijk ∈ R are the high-

order connection weights to distributed delays terms, and
(
ρ

(r)
ijl

)
l∈N

are non-negative

sequences in the infinite distributed delay terms.
The discrete-time model (25) looks like the discrete version of the continuous-time

high-order Hopfield neural network model with S-type distributed delays studied in
[37].

For model (25), we assume the hypotheses (H1), (HO1), and (HO2) joint with:

(HO3) for each i, j ∈ [1, n]Z and r ∈ [1, R]Z, the sequence
(
ρ

(r)
ijl

)
l∈N

, with ρ
(r)
ijl ≥ 0,

satisfies the convergence conditions

∞∑
l=1

ρ
(r)
ijl = 1 and

∞∑
l=1

eξl ρ
(r)
ijl <∞,

for some ξ > 0.

Using the same arguments to those present in the proof of Theorem 3.4, we obtain
the following exponential stability criterion for the zero solution of (25).

To avoid repetition of arguments, the proof of the next result is omitted.

Theorem 3.6. Assume (H1), (HO1), (HO2), and (HO3).
If

S = diag(1− |a1|, . . . , 1− |an|)−

[
Fj |bij |+Gj

R∑
r=1

(
|c(r)
ij |+

n∑
k=1

Mk|d
(r)
ijk|

)]

is a non-singular M-matrix, then the zero equilibrium of (25) is globally exponentially
stable.

4. Numerical examples

In this section, we give two numerical examples to illustrate the effectiveness of the
results presented in Theorems 3.2 and 3.4.

In the first example, we consider a continuous-time Hopfield neural network with
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unbounded delays and, following the ideas in [22, 23], we obtain a discrete-time model
analogous to the continuous-time model. We should say that the discretization process
present in [22, 23] can not be applied to models with delay in the leakage terms.

Example 4.1. Consider the model
x′1(t) = −10x1(t) + 2 tanh(x2(t− 1)) + 15

∫ 0

−∞
4s tanh(x2(t+ s))ds

x′2(t) = −10x2(t) + tanh(x1(t− 3)) + 2

∫ 0

−∞
2s tanh(x1(t+ s))ds

, t ≥ 0.(26)

Consider also the following approximation of (26)

x′1(t) = −10x1(t) + 2 tanh(x2([t/h]h− 1))

+15

∫ 0

−∞
4[s/h]h tanh(x2([t/h]h+ [s/h]/h))ds

x′2(t) = −10x2(t) + tanh(x1([t/h]h− 3))

+2

∫ 0

−∞
2[s/h]h tanh(x1([t/h]h+ [s/h]h))ds

, (27)

for t ∈ [mh, (m+ 1)h], where h > 0 is the discretization step size and [u] denotes the
integer part of u ∈ R. For t ∈ [mh, (m+ 1)h], we have [t/h] = m and model (27) has
the form 

x′1(t) = −10x1(t) + 2 tanh(x2(mh− 1))

+15

∫ 0

−∞
4[s/h]h tanh(x2(mh+ [s/h]/h))ds

x′2(t) = −10x2(t) + tanh(x1(mh− 3))

+2

∫ 0

−∞
2[s/h]h tanh(x1(mh+ [s/h]h))ds

. (28)

For s ∈ [−lh,−(l − 1)h], with l ∈ N, we have [s/h] = −l and (28) assumes the form
x′1(t) = −10x1(t) + 2 tanh(x2(mh− 1)) + 15

∞∑
l=1

4−lh tanh(x2(mh− lh))

x′2(t) = −10x2(t) + tanh(x1(mh− 3)) + 2

∞∑
l=1

2−lh tanh(x1(mh− lh))

,

and multiplying by e10t, we get


x′1(t) e10t +10 e10t x1(t) = e10t

(
2 tanh(x2(mh− 1)) + 15

∞∑
l=1

4−lh tanh(x2(mh− lh))

)

x′2(t) e10t +10 e10t x2(t) = e10t

(
tanh(x1(mh− 3)) + 2

∞∑
l=1

2−lh tanh(x1(mh− lh))

) .
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Integrating over [mh, t], with t < (m+ 1)h, we obtain

∫ t

mh

(
x1(s) e10s

)′
ds =

e10t− e10mh

10

·

(
2 tanh(x2(mh− 1)) + 15

∞∑
l=1

4−lh tanh(x2(mh− lh))

)
∫ t

mh

(
x2(s) e10s

)′
ds =

e10t− e10mh

10

·

(
tanh(x1(mh− 3)) + 2

∞∑
l=1

2−lh tanh(x1(mh− lh))

)
,

which is equivalent to

x1(t) = e10(mh−t) x1(mh) +
1− e10(mh−t)

10

·

(
2 tanh(x2(mh− 1)) + 15

∞∑
l=1

4−lh tanh(x2(mh− lh))

)

x2(t) = e10(mh−t) x2(mh) +
1− e10(mh−t)

10

·

(
tanh(x1(mh− 3)) + 2

∞∑
l=1

2−lh tanh(x1(mh− lh))

)
.

Letting t→ (m+ 1)h and identifying mh with m and lh with l, we obtain

x1(m+ 1) = e−10h x1(m) +
1− e−10h

10

·

(
2 tanh(x2(m− 1)) + 15

∞∑
l=1

4−l tanh(x2(m− l))

)

x2(m+ 1) = e−10h x2(m) +
1− e−10h

10

·

(
tanh(x1(m− 3)) + 2

∞∑
l=1

2−l tanh(x1(m− l))

)
.
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Choosing the discretization step size h = 1, we obtain the discrete-time model

x1(m+ 1) = e−10 x1(m) +
1− e−10

10

·

(
2 tanh(x2(m− 1)) + 5

∞∑
l=1

3

4l
tanh(x2(m− l))

)

x2(m+ 1) = e−10 x2(m) +
1− e−10

10

·

(
tanh(x1(m− 3)) + 2

∞∑
l=1

1

2l
tanh(x1(m− l))

)
. (29)

Model (29) is a particular situation of (9) with n = 2, a1 = a2 = e−10, δ1(m) =

δ2(m) = 0, b11 = b12 = b21 = b22 = 0, c11 = c22 = 0, c12 = 1−e−10

5 , c21 = 1−e−10

10 ,

τ12(m) = 1, τ21(m) = 3, d11 = d22 = 0, d12 = 1−e−10

2 , d21 = 1−e−10

5 , ρ12l = 3
4l ,

ρ21l = 1
2l , and fj(u) = tanh(u). Thus hypothesis (H1) holds with F1 = F2 = 1, (H2)

holds with δ = 0, τ = 3, and hypothesis (H3) holds with ε ∈ (0, ln 2). In this case, the
matrix M in Theorem 3.2 reads as

M =

[
1− e−10 0

0 1− e−10

]
−
[

0 1−e−10

5 + 1−e−10

2
1−e−10

10 + 1−e−10

5 0

]

=

[
1− e−10 −7(1−e−10)

10

−3(1−e−10)
10 1− e−10

]
.

Since M is a non-singular M-matrix (the eigenvalues are
(
1− e−10

) (
1 +

√
21

10

)
and(

1− e−10
) (

1−
√

21
10

)
), by Theorem 3.2, the zero solution of (29) is globally exponen-

tially stable. In Figure 1, see the numerical simulation of the solution of (29) with
initial condition σ = 0 and

x0(j) =

{
(cos(j), sin(j))T , j ∈ [−9, 0]Z
(0, 0)T , j ∈ (−∞,−10]Z

.

Remark 8. We should say that example model (26) is a particular situation of [25,
model (4.7)] and from [25, Corollary 4.2] we know that zero solution of (26) is globally
exponentially stable.

Remark 9. The stability criterion in [16, Theorem 3.1] can not be applied to the
model (29) because we are dealing with unbounded distributed delays. However, if the
model had finite delays i.e., putting tanh(x2(m − τ12)) and tanh(x1(m − τ21)) with

τ12, τ21 ∈ R+, instead of

∞∑
l=1

3

4l
tanh(x2(m−l)) and

∞∑
l=1

1

2l
tanh(x1(m−l)) respectively,

then [16, Theorem 3.1] would be applicable. The conclusion would be the global attrac-
tivity of the zero solution of the model. This is a weaker conclusion than to conclude
the global exponential stability of the zero solution.

Example 4.2. Letting n = 2, a1 = 1
3 , a2 = −2

9 , b11 = 4
9 , b12 = b21 = 0, b22 = 1

3 ,

c111 = c112 = c122 = c211 = c221 = c222 = 0, c121 = c212 = 1
9 , d111 = d112 =
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Figure 1. Solution (x1(m), x2(m))T of system (29) with initial condition σ = 0 and

x0(j) =

{
(cos(j), sin(j))T , j ∈ [−9, 0]Z
(0, 0)T , j ∈ (−∞,−10]Z

.

d122 = d211 = d221 = d222 = 0, d121 = 2
9 , d212 = 1

9 , ρijl = 1
2l , δ1(m) = δ2(m) = 2,

τijk(m) = 2 + cos(πm), f1(u) = f2(u) = tanh(u), and g1(u) = g2(u) = sin(u2) in the
high-order Hopfield neural network model (19), we have the delay difference system.

x1(m+ 1) =
1

3
x1(m− 2) +

4

9
tanh(x1(m))

+
1

9
sin
(
x2(m− 2− cos(πm))2

)
sin
(
x1(m− 2− cos(πm))2

)
+

2

9

( ∞∑
l=1

1

2l
sin
(
x2(m− l)2

))( ∞∑
l=1

1

2l
sin
(
x1(m− l)2

))
x2(m+ 1) = −2

9
x2(m− 2) +

1

3
tanh(x2(m))

+
1

9
sin
(
x1(m− 2− cos(πm))2

)
sin
(
x2(m− 2− cos(πm))2

)
+

1

9

( ∞∑
l=1

1

2l
sin
(
x1(m− l)2

))( ∞∑
l=1

1

2l
sin
(
x2(m− l)2

))
(30)

It is easy to conclude that hypothesis (H1) holds with F1 = F2 = 1, (H3) holds with
ξ ∈ (0, ln 2), (HO1) holds with M1 = M2 = G1 = G2 = 1, and (HO2) holds with δ = 2
and τ = 3. For system (30), the matrix Q defined in Theorem 3.4 assumes the form

Q =

[
2
3 0
0 7

9

]
−
[

4
9 0
0 1

3

]
−
[

0 1
9 + 2

9
1
9 + 1

9 0

]
=

[
2
9 −3

9
−2

9
4
9

]

Since Q is a non-singular M-matrix (the eigenvalues are 3+
√

7
9 and 3−

√
7

9 ), by Theorem
3.4, the zero solution of (30) is globally exponentially stable. In Figure 2, see the
numerical simulation of the solution of (30) with initial condition σ = 0 and x0(j) ={

(7 cos(j), 7 sin(j))T , j ∈ [−9, 0]Z
(0, 0)T , j ∈ (−∞,−10]Z

.

Remark 10. In comparison with the results in the recent paper of Z. Dong et al.
[10], mainly with [10, Theorem 2], example (30) illustrates the improvements of our
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Figure 2. Solution (x1(m), x2(m))T of system (30) with initial condition σ = 0 and

x0(j) =

{
(7 cos(j), 7 sin(j))T , j ∈ [−9, 0]Z
(0, 0)T , j ∈ (−∞,−10]Z

.

Theorem 3.4. In fact, the main result in [10] can not be applied to the system (30)
because it has delay in the leakage terms (δi(m) = 2), unbounded distributed delays
and the activation function g1(u) = g2(u) = sin(u2), u ∈ R, is not a Lipschitz function.

5. Conclusions

In this paper, we present criteria for global exponential stability of zero equilibrium for
classes of discrete-time, low-order and high-order, Hopfield neural network models with
unbounded delays and delay in the leakage term (Theorems 3.2 and 3.4). A general
stability criterion is first presented for a discrete-time delay system in general settings
which can be applied to other delay models than Hopfield models (Theorem 2.1).

The proof method based on non-singular M-matrix is easier to apply than the usual
Lyapunov method and the hypotheses are normally easy to verify. In comparison with
the literature, the obtained stability results for low-order models have less computa-
tional complexity and the obtained stability results for high-order models generalize
the previous results in [10] for the situation with unbounded delays and delay in leakage
terms.

In the next work, we expect to extend the results here established for impulsive
Hopfield, or Cohen-Grossberg, neural network models [11, 31].
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