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KIRIGAMI À MICRO-ESCALA

RESUMO

Kirigami, a antiga arte oriental da dobra e corte do papel, tem inspirado novas técnicas na fabricação

de microestruturas tridimensionais que se dobram espontaneamente a partir de materiais planos, sem

ser necessária intervenção manual. Estas estruturas oferecem uma larga gama de novas funcionalid-

ades físicas comparativamente com as que são proporcionadas por materiais planos. Entender quais

os mecanismos subjacentes e qual a escala temporal típica destes processos de dobra é então um de-

safio de relevância atual. Neste trabalho consideramos uma pirâmide regular com N faces laterais como

estrutura alvo, obtida através da dobra devido a flutuações térmicas a partir de uma planificação em

forma de estrela com N pontas. Assumiu-se que a base desta planificação estava fixa a uma superfície,

suprimindo a possibilidade de faces laterais se aderirem em lados opostos da base. Para geometrias

simples como esta, o movimento rotacional das faces laterais em torno das arestas que as ligam à base

é consistente com um processo Browniano. O processo de dobra ocorre através de uma sequência de

eventos de ligação entre faces laterais num ângulo específico de fecho. Propomos um modelo de rede

para estudar a dinâmica deste processo, mapeando a posição angular das faces laterais em partículas

difusivas unidimensionais. A evolução temporal do sistema é realizada através de um algoritmo de Monte

Carlo cinético. Através de resultados numéricos independentes, mostramos que o tempo médio de dobra

varia de uma forma não monótona com N , com um valor ótimo que minimiza este tempo. Para um

N elevado e uma configuração inicial plana, a escala temporal típica é governada por uma lei de potên-

cia com o ângulo de fecho. Usando conceitos de processos de primeira passagem e teoria de ordem,

estes resultados numéricos são suplementados com soluções analíticas. Esta escala temporal é também

afetada pela maneira como as faces se aderem. Compararam-se também os tempos de dobra típicos

para várias condições iniciais e concluiu-se que os tempos mais rápidos são obtidos em média quando as

faces começam empilhadas sobre a base. Os tempos mais lentos estão associados a uma configuração

inicial plana ou com faces posicionadas em lados opostos do espaço angular. Por último, estudou-se um

sistema que se dobra em suspensão, onde defeitos são possíveis. Nestas condições, o número ótimo de

faces para um processo rápido é mais elevado quando comparado com o sistema fixado. A eficiência do

processo, definida pela fração de amostras que se dobram sem defeitos, decresce com N , pelo que um

equilíbrio entre o tempo e eficiência tem de ser decidido com base no que é prioritário.

Palavras-chave: física dematéria mole; Monte Carlo cinético; passeios aleatórios; processos de primeira

passagem; self-assembly.
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KIRIGAMI AT THE MICROSCALE

ABSTRACT

Kirigami, the ancient eastern art of folding and cutting paper, has inspired novel techniques for the fabric-

ation of 3D microstructures which self-fold spontaneously from flat templates, without the need of manual

intervention. These folded structures offer a plethora of new physical functionalities compared to flat ma-

terials. Understanding how and how long it takes for the planar templates to fold into the desired 3D shape

is then of growing interest and importance. Here we use a regular pyramid with N lateral faces as the

target structure, which folds due to thermal fluctuations from a N -pointed star template. We assume that

this template is pinned through the base at a substrate, preventing misfolding. For simple geometries,

the rotational motion of the lateral faces is consistent with Brownian movement. Folding occurs through a

sequence of binding events between lateral faces at a specific closing angle. We propose a lattice model to

study the dynamics of self-folding, mapping the angular position of each lateral face into a unidimensional

diffusing particle. The time evolution of the system is studied using a kinetic Monte Carlo approach. From

independent numerical results we show that the average folding time varies non-monotonically with the

number of lateral faces N , leading to the existence of an optimal value of N for fast folding. We also find

that, if the template starts from a planar configuration, this time average is governed by a simple scaling

law with the closing angle when N is large enough. Applying concepts from first passage processes and

order theory, these numerical findings are supplemented with analytical results. The characteristic time

scale of the folding process is also affected by the binding mechanism. We compare the average folding

time of several initial configurations of the net and find that stacking the lateral faces on top of the base

yields the fastest results. The slowest times are associated with either a planar conformation or when

lateral faces are configured in opposite sides of the angular space. Lastly, we additionally study a system

which folds in suspension, which allows for the possibility of defects in the target structure when lateral

faces bind on both sides. Under these conditions, numerical independent results show that the optimal

number of lateral faces for fast folding increases when compared to the case on a substrate. The folding

efficiency, defined as the fraction of samples without defects, decreases with N and a specific balance

between folding time and efficiency needs to be considered depending on the priorities.

Keywords: first passage processes; kinetic Monte Carlo; random walks; self-assembly; soft matter phys-

ics.
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Introduction

Origami is the ancient art of folding a sheet of paper into a hollowed structure, with its most likely origin

rooted in the regions of China, Korea and Japan [1]. Kirigami is a variant of this art which allows cutting

the paper, expanding the range of accessible shapes. The words derive from the Japanese ori (‘to fold’),

kiri (‘to cut’) and kami (paper) [1, 2].

Let us consider, for example, a polyhedron. To obtain this 3D structure from folding a 2D template, one

needs first to identify a 2D structure (net) that can fold into it. A net consists of simple polygons, which

in the folded structure are the faces of the polyhedron, connected through flexible hinges. First uses of

the concept of a net date back to the 15th century with the work of Albrecht Dürer who, for the first time,

represented a polyhedron with a net [3]. It is assumed that all convex polyhedra have at least one net,

since no one has found a convex polyhedron for which there is no net [1]. Nevertheless, a formal proof

that there is always a net is still elusive [1].

Kirigami has inspired novel approaches for the design of new materials across a wide range of length

scales, going from the macroscale to the mesoscopic scale (∼ 10nm to ∼ 100µm) [4, 5]. In mater-

ial science, forming 3D nano- and microstructures is of growing interest due to the new characteristics

and functionalities offered by its extra dimensionality, when compared to its planar counterparts [5]. As

such, methods to obtain these 3D shapes are sought after, but traditional 3D nano- and microfabrication

techniques impose limitations on both the efficiency of the process and the complexity of the accessible

shapes [6]. The appeal of origami/kirigami inspired techniques stems mainly from the ability to obtain 3D

structures ‘solely’ by folding and cutting planar structures, and being able to control the shape of the folded

structures using only a few degrees of freedom [6]. These characteristics, along with the compatibility of

this approach with current established fabrication methods such as compressive buckling or lithography

[7–12], provide many possibilities to the development of new materials.

Applications are found across a wide range of length scales. At the macroscale, the folding pathway is

deterministic [13], and the focus is on 3D functional structures whose actuation is driven by external applied
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forces [4]. Examples include foldable solar trackers [14], shape-shifting smart materials and morphing

components [15, 16] and power wearable technology [17]. Challenges at this length scale are mainly

related to increasing the actuation response speeds and effectively turning the geometrical idealizations

into practical functional platforms [4].

At the submillimeter-scale, stimuli-responsive materials are used to bypass the needs of manual interven-

tion [4]. Planar templates of interconnected rigid panels can be produced through conventional lithographic

tools, and the template self-folds into the desired structure, driven by thermal fluctuations, making the fold-

ing process stochastic [18]. This allows for large scale parallel productions and reduced cost [18, 19].

Applications for self-folding kirigami are varied, and include drug encapsulation and delivery [20–22],

soft-robotics [23], micro-electromechanical systems (MEMSs) [24] and photonic materials [25]. Despite

its advantages, self-folding micro kirigami suffers from being a generally slow method [6] and difficult to

control, with the possibility of 2D structures not folding into the desired 3D shape [18].

To understand folding at the microscale and identify design strategies to optimize the process, several

studies have been developed [18, 19, 26]. One of the challenges is that the same 3D structure can

be obtained from several different nets. For example, in the case of polyhedrons with identical faces

composed of convex regular polygons, the so called platonic solids, the tetrahedron has two nets, the cube

and octahedron have 11, and the dodecahedron and icosahedron have 43,380 nets [18]. We see that, even

for relatively simple shapes, the set of possible nets can be large, and each net exhibits different folding

pathways and different propensity to fold into the desired 3D structure [27]. This raises the question: from

all possible nets of a given polyhedron, which ones are optimal for self-folding, free of defects?

In an attempt to help answering this question, Pandey et al. [18] studied the surface-tension driven

self-folding of several nets, by computing the yield, defined as the fraction of nets that, from the full

sample set, self-folded without defects. They compared two criteria to optimise this fraction: geometrical

compactness, measured by the radius of gyration of the net, and topological compactness, defined from

the number of vertex connections, defined as the vertexes in the net which share two faces but, in turn,

do not share an edge. The authors catalogued a set of nets for the dodecahedron, icosahedron and

truncated octahedron, and selected three for each polyhedron: the most compact, the least compact and

the intermediate value for the compactness criterion. For each net, 50 samples were experimentally self-

folded under similar experimental conditions. The final folded structures were classified into three groups

based on the amount of defects. They found that the amount of defects is minimized when the net has a

maximum number of vertex connections. Thus, topological compactness is a more efficient criterion than

geometrical compactness.
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Dodd et al. [26] have shown that the folded configuration depends not only on the chosen net but also

on the experimental conditions. The authors remarked that, since edge binding is nonspecific, the ground

state is not, in general, unique, andmay not correspond to the desired folded structure, due to the formation

of structural defects. To understand those defects, they classified the contacts into native or nonnative,

i.e. edge bindings that are present in the desired folded structure and those which are not. Using Markov

models to define the folding pathways between the unfolded and folded states, and Langevin molecular

dynamics to simulate the folding dynamics, the authors showed that the folding propensity varies with

temperature, with its efficiency peaking at an optimal value. For low temperatures, the folding pathway

occurs mainly through nonnative contacts, with low values of flux. On the contrary, for higher temperatures,

native contacts pathways are favoured. The authors explained that this preference is due to a balanced

trade-off between entropy and enthalpy, whereby the nets fold locally, one face folding at a time. This

reduces the fewest degrees of freedom per state transition, thereby maximizing its conformational entropy

at each step.

Both these aforementioned works elucidated guiding principles for optimizing the folding efficiency for self-

folding kirigami, but they require an exhaustive search of the entire set of nets of a given polyhedron, and,

as previously mentioned for more complex geometries, this number can get too large to be computable.

To overcome this challenge, random methods have been proposed but they fail to provide a unique and

deterministic solution [19]. In addition, it has been shown that the fraction of nets which have a maximum

number of vertex connections decays exponentially with the number of edges of the polyhedron [19]. This

finding reinforces the need for a deterministic method since chances of randomly picking these nets fastly

decay with the number of faces of the polyhedron.

Araújo et al. [19] proposed a deterministic and systematic method to identify nets with maximum vertex

connections. By using concepts from Graph Theory, the authors mapped the geometry of each respective

kirigami structure into two graphs (a collection of nodes connected by links): a shell graph, where the

vertices and edges of the polyhedron correspond to the shell graph nodes and links, respectively, and a

face graph, where each face of the polyhedron is assigned a node of the face graph, and each link connects

a pair of adjacent faces. Then, the corresponding net can be obtained by cutting along the edges, which

corresponds to removing the associated links in the shell graph, under the constraint that the face graph

remains connected. The set of removed links along with the nodes associated with the vertices define a cut

sub-graph that is a spanning tree (a sub-graph that includes every node of the corresponding super-graph

and has no loops) of the shell graph. The vertex connections are then the nodes of the cut sub-graph

with only one incident link, called leaves. The problem of finding nets with a maximum number of vertex
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connections is then equivalent to finding the so-called maximum leaf spanning tree (MLST) of the shell

graph. With this deterministic method it is possible to obtain a complete list of nets for optimal self-folding

of polyhedra and enables prescription of additional design criteria.

Overall, the study of self-folding microstructures has focused on identifying the nets that minimize the

number of defects. However, for some practical applications, it is important to minimize the folding time,

since, as previously mentioned, one of the current challenges of kirigami at the microscale is to speed

up the folding process. To this end, Melo et al. [13] studied the folding time dependence on the number

of faces of a polyhedron, using as a prototypical geometry a regular pyramid with N lateral faces. By

showing that the motion of each lateral face is consistent with a random (Brownian) process, the authors

derived analytical expressions for the folding time. They found that the time for the first binding event

decreases with the logarithm of N , while the time for the remaining sequential binding events grows

logarithmically with N . Since the folding process evolves through a set of events, the folding time is

a non-monotonous function of N , with a minimum occurring for five lateral faces. The authors tested

and verified the analytical predictions by running independent Langevin molecular dynamics simulations,

using a coarse-grained numerical model to describe the net, starting from a flat template. This work shows

that the geometry of the net can be used to set the time of the folding process, presenting an additional

accessible control strategy in conjugation with previous ones based on manipulation of temperature and

pH of the surrounding medium [28]. It additionally shows that, even for simple geometries like a regular

pyramid, the folding time depends non trivially on the topology of the net. This prompt us into investigating

how this time may depend on other parameters as well, such as the slant angles of the polyhedron or the

initial configuration of the net.

To gain insight into the temporal statistics of self-folding kirigami at the microscale, in this work we present

a lattice model to simulate the stochastic self-folding of a prototypical net of a regular pyramid with N

lateral faces. This new approach is computationally fast compared to previous methods, such as the

Langevin molecular dynamics. In chapter 1 we present the details of the lattice model and its algorithmic

implementation. The results of this work are discussed in two chapters. In chapter 2 we show statistical

results whose outcome could be predicted analytically, to validate the numerical modeling. In chapter

3 results from the statistical analysis using the lattice model are presented and discussed, namely, the

temporal dependency with the geometry of the net, such as the number of lateral faces and slant angle,

and with the net initial configuration, as well as other properties concerning the foldability and interactivity

between the panels. We further investigate the temporal and folding efficiency for cases where defects

might be formed.
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Chapter 1

Model

To study the dynamics of self-folding driven by thermal fluctuations at the microscale, we consider a regular

pyramid. This type of geometry has already been used in experimental research [28, 29]. For most of the

work, we will assume that the lateral faces can only rotate in one side of the plane, to suppress misfolding

and focus on the study of the folding time. This can be realized experimentally, for example, by pinning

the base into a substrate [28, 29].

Below, in section 1.1, we first present a lattice model to characterize the self-folding process of nets into

regular pyramids, and in section 1.2, we discuss the algorithmic implementation of this model.

1.1 A lattice model for self-folding kirigami at the microscale

For a regular pyramid with N lateral faces, due to thermal fluctuations, each lateral face will jiggle, rotating

in a stochastic fashion around the edge that connects the lateral face to the base. The lateral faces move

until they bind pairwise and irreversibly when they touch. We assume that binding can occur between

vertices of the faces and, therefore, two faces can bind together even when they are not adjacent. We will

refer to the outer angles of each lateral face i = {0, 1, ..., N − 1} as θi = π − αi, where αi is the

dihedral angle between the lateral face i and the base (see Fig. 1.1a). Previous numerical simulations

suggest that the time series of θi (t) is consistent with a 1D Brownian process [13]. For a net with its

base pinned to a substrate, the motion of the lateral faces is limited to the domain θi ∈ [0, π]. If the

folding process occurs in suspension, however, the lateral faces can rotate through the whole domain

θi ∈ [−π, π]. We will refer to the former as a pinned system, and the latter as a suspended one. In both

cases, the boundaries are reflective. A system with all faces with θi = 0 corresponds to a planar net,
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with all faces being in the same plane. A face with θi = π touches the base from above, while one with

θi = −π touches the base from below. The outer angle of the lateral faces at which the net is in its folded

state is defined as the closing angle ϕ, corresponding to the outer slant angle of the respective pyramid

(see Fig. 1.1b).

Figure 1.1: (a) Schematic depicting a net for a regular pyramid with three lateral faces, coloured blue, green and red. The
position of face i = {0, 1, 2} is described by its outer angle θi. The state of the folding at each time t is specified by stating the

values of the three outer angles {θ0 (t) , θ1 (t) , θ2 (t)}. (b) The folded structure with all three lateral faces bound together,
with all outer angles equal to the closing angle ϕ.

We propose a lattice model to simulate the spontaneous folding of pyramidal nets at the microscale. One

of the main advantages of a lattice model is its ability to highlight the elementary processes that govern

the dynamics [30]. We consider a one-dimensional lattice composed of L sites, with reflective boundaries.

Since the motion of the lateral faces is diffusive, their dynamics are well-described by a random walk [31].

Each lateral face i is assigned a particle walking randomly on this lattice, to represent its angular position

relative to the base over time t. Each time a particle hops, t is incremented by an amount of ∆t. Since

∆t is inversely proportional to the hopping rate [30], its value should decrease as the number of sites L

increases, so that the time scale is independent of the chosen discretization. An outer angle θ is mapped

into a site n of the lattice according to

n (θ) =
⌊

L − 1
θu − θl

· (θ − θl) + 0.5
⌋

≡
⌊

θ − θl

∆θ
+ 0.5

⌋
, (1.1)

where ⌊⌋ is the floor function, θu and θl are, respectively, the uppermost and lowermost values of the

outer angles, and ∆θ = (θu−θl)/(L−1) is the lattice spacing. For a pinned system, θu = π and θl = 0,

while for a suspended one, θu = π and θl = −π.
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Accordingly, the lattice sites n are mapped back into an outer angle using

θ (n) = n
θu − θl

L − 1
+ θl = n∆θ + θl . (1.2)

For a single particle i, on the lattice and without particle-particle interactions, the probability Pn (t) for a

random walker to be at the lattice site n at some time t obeys the following equation [31]

Pn (t + ∆t) = pPn−1 (t) + qPn+1 (t) , (1.3)

where p (q = 1 − p) is the probability of hopping to the right (left). The first term in the right-hand side

of Eq. (1.3) accounts for the increase in Pn (t) due to a possible hop from n − 1 to n, while the second

term accounts for the increase in Pn (t) due to a possible hop from n + 1 to n.

More generally however, a particle may have a probability 1 − p − q of staying in the site n during the

time interval ∆t, in which case p + q ≤ 1 and

Pn (t + ∆t) = pPn−1 (t) + qPn+1 (t) + (1 − p − q) Pn (t) , (1.4)

where the extra term accounts for the aforementioned possibility.

If ∆θ and ∆t are small enough, which can be achieved by making the number of sites L arbitrarily large,

we can Taylor expand up to first order in time around t on the left-hand side term,

Pn (t) + ∂Pn (t)
∂t

· (t + ∆t − t) + ... = pPn−1 (t) + qPn+1 (t) + (1 − p − q) Pn (t) . (1.5)

Rearranging, dividing all terms by ∆t, and taking the continuum time limit, we get

∂Pn (t)
∂t

= krPn−1 (t) + klPn+1 (t) − kPn (t) , (1.6)

where kr = q/∆t, kl = p/∆t and k = kr + kl = (p+q)/∆t are the hopping rates from n − 1 to n, from

n + 1 to n and the total hopping rate from n to n ± 1, respectively.

To go from discrete to continuous space, we can reinterpret Pn (t) → P (θ, t) as the probability density

of finding a particle at θ (n) at time t, and Taylor expand up to first order around θ the first two terms on
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the right-hand side,

∂P (θ, t)
∂t

= kr ·
[
P (θ, t) + ∂P (θ, t)

∂θ
· (θ − ∆θ − θ) + ...

]

+ kl ·
[
P (θ, t) + ∂P (θ, t)

∂θ
· (θ + ∆θ − θ) + ...

]

− kP (θ, t) . (1.7)

We see that the zeroth term cancels out, and we get the transport equation,

∂P (θ, t)
∂t

+ v
∂P (θ, t)

∂θ
= 0 , (1.8)

where v = (kr − kl) ∆θ = (p − q) · (∆θ/∆t) is the bias velocity.

This first order approximation does not capture the diffusive properties, so we go back to Eq. (1.4), dividing

once again all terms by ∆t, and Taylor expand both in time and space up to second order,

1
∆t

P (θ, t) + ∂P (θ, t)
∂t

+ ∆t

2
∂2P (θ, t)

∂t2 + ... =

= kr ·
[
P (θ, t) − ∆θ

∂P (θ, t)
∂θ

+ ∆θ2

2
∂P 2 (θ, t)

∂θ2 + ...

]

+ kl ·
[
P (θ, t) + ∆θ

∂P (θ, t)
∂θ

+ ∆θ2

2
∂P 2 (θ, t)

∂θ2 + ...

]
+
( 1

∆t
− k

)
P (θ, t) , (1.9)

and again the zeroth term cancels out, so we obtain

∂P (θ, t)
∂t

+ ∆t

2
∂2P (θ, t)

∂t2 = −v
∂P (θ, t)

∂θ
+ k

∆θ2

2
∂2P (θ, t)

∂θ2 . (1.10)

We can recast the second order time derivative term into a second order space derivative using the trans-

port equation (1.8),

∂2P (θ, t)
∂t2 = ∂

∂t

[
−v

∂P (θ, t)
∂θ

]
= −v

∂

∂θ

[
∂P (θ, t)

∂t

]
=

= −v
∂

∂θ

[
−v

∂P (θ, t)
∂θ

]
= v2 ∂2P (θ, t)

∂θ2 , (1.11)

where we made use of Schwarz’s theorem to interchange the order of differentiation in the second step.
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We can use this equality to recast Eq. (1.10) into the form of the convection-diffusion equation,

∂P (θ, t)
∂t

+ v
∂P (θ, t)

∂θ
= D

∂2P (θ, t)
∂θ2 , (1.12)

where D = (∆θ2/2∆t) ·
(
p + q − (p − q)2

)
is the diffusion coefficient. If there is zero probability for

the particle to stay in the same place for a time interval of ∆t, i.e. p + q = 1, then

D = 2pq
∆θ2

∆t
. (1.13)

For an unbiased walk, p = q = 1/2 and v = 0. In this case, Eq. (1.12) simplifies to the diffusion

equation,
∂P (θ, t)

∂t
= D

∂2P (θ, t)
∂θ2 , (1.14)

with D = ∆θ2/2∆t.

The folding process occurs through a series of irreversible binding events between the lateral faces when

the corresponding particles in the lattice model meet at the closing angle site n (ϕ). Let Nn (t) be the

number of particles in site n at time t. The specific site n (ϕ) acts as a sticky site when Nn(ϕ) (t) > 1,

i.e. it is occupied by more than one particle. We assume that the binding is not point-wise, but can occur

in a small region ϕ ± ∆ϕ/2 of the angular space [13], where ∆ϕ ≡ π/180 is the size of this region. More

generally then, assuming ∆ϕ is a multiple of the lattice spacing ∆θ ≤ ∆ϕ, the trapping region in the

lattice would be a set of sites

{
n

(
ϕ + −∆ϕ + ∆θ

2

)
, n

(
ϕ + −∆ϕ + 2∆θ

2

)
, ..., n (ϕ) , ..., n

(
ϕ + ∆ϕ − 2∆θ

2

)
, n

(
ϕ + ∆ϕ − ∆θ

2

)}
,

(1.15)

in which all of them act as sticky sites if

n(ϕ+ ∆ϕ−∆θ
2 )∑

n=n(ϕ+ −∆ϕ+∆θ
2 )

Nn (t) > 1 , (1.16)

i.e. the sum of all particles currently at sites n ∈ [n (ϕ − ∆ϕ/2 + ∆θ/2) , n (ϕ + ∆ϕ/2 − ∆θ/2)] is larger

than unity. However, for simplicity, we will choose the number of lattices sites L accordingly, so that this

region always corresponds to a singular site. If the lateral faces are only allowed to fold into one side, only

one of such region exists, which is located at n (θ = ϕ). If they can fold to both sides, two sites can act

as sticky sites, one in the upper side, at n (θ = ϕ), and another in the lower side, at n (θ = −ϕ), and
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binding can occur at either side. Thus, given a pyramidal net with more than three lateral faces, defects

are possible in a suspended system, corresponding to some faces binding at at one side and the others

at the opposite side. The time at which the i-th binding event occurs will be denoted as the i-th binding

time ti. For a suspended system there can be at least N − 2 of these binding times, if lateral faces bind

at both lower and upper side (an example of a defective folding), or at most N − 1, if all N lateral faces

bind only at one side. For a pinned system there are always N − 1 binding times.

Considering a pinned system, the physical mechanism governing the first binding event is fundamentally

different from the remaining ones [13]. For the first binding event to occur, two lateral faces need to have

their outer angle equal to the closing angle ϕ±∆ϕ/2 at the same time. Thus, the first binding event can be

mapped into a set of Brownian processes in 2D, each defined by the coordinates (θj, θk) of the outer angles

of lateral faces j and k and a trap at (ϕ ± ∆ϕ/2, ϕ ± ∆ϕ/2). The first binding occurs when one of these

Brownian processes first hits the trap. For the subsequent binding events, the lateral faces can bind one-

by-one when they reach an outer angle of ϕ, therefore consistent with a set of Brownian processes in 1D.

The folding process is complete when the last of these 1D Brownian processes reach ϕ. For a suspended

system, the first binding event is modified by having two traps, one at (−ϕ ± ∆ϕ/2, −ϕ ± ∆ϕ/2) and

another at (ϕ ± ∆ϕ/2, ϕ ± ∆ϕ/2). Because of this, subsequent binding events are no longer equivalent

to 1D Brownian processes, but rather a mixed process where lateral faces can either bind one-by-one by

reaching the closing angle where the first two pair of lateral faces previously met, or another pair can bind

if they reach the other unoccupied closing angle. If the latter case occurs, the remaining binding events

are then again 1D Brownian processes, but with two traps rather than one.

In view of this distinction, we will focus on two particular binding times. The first binding time t1, which

we will redefine as TF , and the folding time T , the moment at which the folding process is completed.

For convenience, we will also define the last binding time TL = T − TF .

For a suspended system, the region between the two critical angles, θ ∈ [−ϕ + ∆ϕ/2, ϕ − ∆ϕ/2], is

a transparent region, in which the lateral faces can rotate freely, so the particles can coexist in a given

site and pass each other without interacting, while the regions θ ∈ [−π, −ϕ − ∆ϕ/2[ ∪ ]ϕ + ∆ϕ/2, π]

are interacting regions, where if two particles are at the same site simultaneously they will interact with

each other, undergoing an elastic collision. For a pinned system, the notion of transparent and interacting

region applies logically only for the domains θ ∈ [0, ϕ − ∆ϕ/2] and θ ∈ ]ϕ + ∆ϕ/2, π], respectively.

These interactions are a first simplified modelling of the interaction between faces during the dynamics.

A schematic illustration of this model for both pinned and suspended systems is presented in Fig. 1.2.

The particular case N = 2 corresponds to a net whose folded state is an open structure, which can be

10



CHAPTER 1. MODEL

obtained for example by removing one of the faces of a tetrahedron or, in general, by removing N − 2

lateral faces from aN lateral faced regular pyramid. Although this case may not have an apparent practical

purpose, it is nonetheless insightful to consider it theoretically, since it is the simplest case where a binding

event between lateral faces can still be defined and can thus be instructive for more complex situations.

Using this model, the main focus of our work will be studying the statistics of the folding time T it takes

for the polyhedron net to fold back into its 3-dimensional shape through stochastic processes, and, in

particular, how the folding time depends on the number of lateral faces N , the closing angle ϕ, the

initial conditions and how the propensity to self-fold without defects varies with the geometrical and initial

configuration of the kirigami structure.
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Figure 1.2: (a) Schematic representation of the folding of a pyramidal structure with three lateral faces and closing angle,
starting from a flat template, using the lattice model for a pinned system (the lateral faces can only fold to one side). Each

lateral face i is assigned a corresponding particle θi. The horizontal axis represents the angle of each face at a certain time t,

in the domain θ ∈ [0, π] with reflective boundaries, and the vertical axis is the time t elapsed since the faces started to move.

The folding process for N = 3 is composed by two binding events. The first binding time TF is the moment at which the first

pair of particles get trapped together at ϕ. The folding time T is when all particles meet at the closing angle ϕ, thus completing

the folding process. The last binding time TL is defined to be the time interval between first binding and the folding time, so

TL = T − TF . The possibility for the particles to undergo elastic collisions at the boundaries or between particles when they

are located at θ ∈ ]ϕ, π] is also depicted. The corresponding pyramid configuration for four time frames (t = 0, 0 < t < TF

, t = TF and t = T ) is also presented. (b) A similar scheme but for a suspended system. In this case, the domain is defined

in θ ∈ [−π, π], elastic collisions may occur at θ ∈ [−π, −ϕ[ ∪ ]ϕ, π], and particles may get trapped either at −ϕ or ϕ. In

the example depicted, particles got trapped at the lower side, at −ϕ.

12



CHAPTER 1. MODEL

1.2 Implementation of the model: the algorithm

The lattice model is implemented using a kinetic Monte Carlo (kMC) approach [30, 32, 33]. Kinetic Monte

Carlo is a Monte Carlo method that allows to consider time explicitly and, therefore, a direct comparison

to the physical time. The parameters are: L, the number of sites which make up the lattice; N , the

number of random walking particles, equal to the number of lateral faces of the regular pyramid whose

folding dynamics we want to simulate; ϕ, the closing angle (to have physical meaning in the context of this

geometry, ϕ has to be larger than π/2, because ϕ = π/2 defines a regular pyramid with infinite height);

D, the angular diffusion coefficient associated with each lateral face; q, the probability of a particle to hop

into a neighbouring right site; p, the probability of a particle to hop into a neighbouring left site, is then

calculated as p = 1 − q.

The algorithm follows the next steps:

1. Distribute the N particles on a lattice with L sites, numbered from 0 to L − 1, according to the

chosen initial condition (IC), initiate the time variable as t = 0, set NF = N , where NF is the

number of free particles that have yet to bind at ϕ, and assign n (ϕ) (or both n (−ϕ) and n (ϕ),

in the case of a suspended system) as the site corresponding to the closing angle, according to Eq.

(1.1),

n (ϕ) =
⌊

L − 1
θu − θl

· (ϕ − θl) + 0.5
⌋

=
⌊

ϕ − θl

∆θ
+ 0.5

⌋
; (1.17)

2. Generate an integer random number rN ∈ [0, NF − 1] to choose one of the NF particles from

the list of active particles, the particles that are still performing the random walk;

3. Generate a uniformly distributed random number rw ∈ ]0, 1] to decide if the randomly chosen

particle hops into a neighbouring right site (if rw < q) or if it hops into a neighbouring left site (if

rw > q, or similarly rw < p);

4. Move the randomly chosen particle presently located at site n to either site n − 1 or n + 1

according to the output of rw, unless one of the following situations arises: (1) the particle is at

site 0 and tries to hop into the left; (2) the particle is at site L − 1 and tries to hop into the

right; (3) the particle tries to hop into a site n (ϕ) < n ≤ L − 1, for a pinned system, or

0 ≤ n < n (−ϕ) ∨ n (ϕ) < n ≤ L − 1, for a suspended system, and that site is already

occupied by another particle; if any of these previous conditions is met, the randomly chosen

particle remains in the site n;

13



CHAPTER 1. MODEL

5. Increment the time variable t by an amount of ∆t to account for the time spent by the hopping (or

at least its attempt) of the randomly chosen particle; when there are still free particles (NF > 0),

the value of ∆t is calculated according to the definition of the diffusion coefficient (1.13) as follows

∆t = 2pq
∆θ2

D

1
NF

, (1.18)

where the additional factor NF is introduced to account for the fact that the algorithm only moves

(or tries to move) one particle per iteration, so the hopping rate of each particle is independent of the

number NF of free particles. For the same physical parameters, the time step value is constant,

since we assume discrete time. Here we see that D is just a rescaling parameter, setting the time

scale;

6. If the new position of the randomly chosen particle is n (ϕ) (or either n (−ϕ) or n (ϕ), for the

case of a suspended system) corresponding to the closing angle, and if Nn(ϕ) (t) > 1 (or either

Nn(−ϕ) (t) > 1 if the particle is at n (−ϕ) or Nn(ϕ) (t) > 1 if it is at n (ϕ), for the suspended

system), the site acts as a sticky site and traps the new-coming particle, as well as any other of

those particles also currently at that site if they are not yet trapped; if it is the first time particles

are getting absorbed at a closing angle, the current value of t corresponds to the first binding time

TF ; update the number of particles that are still free, by subtracting the correct amount from NF

and removing from the list of free particles the ones that just got trapped;

7. Repeat steps 2 through 6 until there are no free particles left (NF = 0); when NF reaches zero,

the current value of t is used to compute the last binding time TL, by subtracting from t the value

of TF ; the current value of t itself corresponds to the folding time T , and the folding process is

concluded.

For the ICs, the most commonly used throughout this work will be a net starting from a flat (2D) template,

which we will refer as a planar IC. Another common IC will be a net starting with its panels at a random

outer angle. We implement these ICs in the following way:

Planar allocate all N particles at the zeroth site of the lattice, for a pinned system, so

Nn (t = 0) = Nδn,0 ; (1.19)

if it is a suspended system, all N particles are placed in the middle of the lattice, calculated as
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am = ⌊L/2⌋, in which case

Nn (t = 0) = Nδn,am ; (1.20)

Random for each of the N particles, an integer random number rL ∈ [0, LF − 1] is generated, where

LF is the number of sites where a particle may still be placed, to choose a site from the list Sn of

available sites where the particle is then allocated; before generating any value of rL, LF = L and

Sn = {0, 1, ..., L − 1}; for each output i of rL, if the randomly selected site ai corresponding

to the list element Sn

(
r

(i)
L

)
is a closing angle site or is in the interacting region (if ai ≥ n (ϕ)

for a pinned system, or ai ≤ n (−ϕ) ∨ ai ≥ n (ϕ), for a suspended one), subtract one unit

from LF , and update the list Sn of available sites by removing the one that just got chosen, Sn →

Sn \ Sn

(
r

(i)
L

)
; with the set of randomly selected sites {a1, a2, ..., aN}, the N particles are

distributed according to

Nn (t = 0) =
N∑

i=1
δn,ai

. (1.21)

All the values of every random variable are generated using the Mersenne Twister pseudo-random number

generator [34], and before they are used to assign a value to any random variable used in the lattice model

algorithm, such as rN or rw, the first 108 pseudo-random numbers generated are always discarded, to

reduce possible correlations due to the seed.

The results of four simulations using this model, for random walks with a planar IC in a pinned and

suspended systems, for several number of particles, are presented in Fig. 1.3.
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Figure 1.3: Simulation results of several random walks with a planar IC using the lattice model and kMC approach, for (a)

two and (b) three particles in a pinned system, as well as (c) three and (d) six particles in a suspended system. For pinned

and suspended systems, the lattice had L = 181 and L = 361 sites, respectively, with corresponding domains θ ∈ [0, π]
and θ ∈ [−π, π]. The value of the closing angle was ϕ = 2π/3 (represented with the horizontal black dashed lines) for all the

random walks. The time is in units of Brownian time, defined as the average time it takes for a diffusive particle to travel over

a region of length π. ti (i = {1, 2, 3, ...}) is the i-th binding time, the time in which there is a particle absorption at a closing

angle (marked with the vertical black dashed lines). The corresponding folded configuration of the pyramid is schematized in the

top right corner of each graph. The folded configuration corresponding to the random walk (c) is symmetrically equivalent to the

one in (b). Random walk (d) corresponds to a folding process where defects are possible, and, in fact, the folded configuration

ends up being a misfolded pyramid, where lateral faces have bound on both sides.

16



Chapter 2

Validation of the model

In this section we present the results to validate and test the numerical model.

In this thesis, unless otherwise specified, the random walk simulations were performed with the following

standard conditions (SC):

• A domain of θ ∈ [0, π] for a pinned system, or θ ∈ [−π, π] for a suspended one;

• A lattice of size L = 181 sites for a pinned system, and L = 361 sites for a suspended one, so

that the lattice spacing always corresponds to ∆θ = π/180, and the closing angle always occupies

one site in the lattice;

• Equal probabilities of hopping either to the right or to the left (i.e. p = q = 1/2);

• A diffusion coefficient of reference D = 1/2 · (π/180)2 ≡ D0, which, considering the SC for ∆θ, p

and q, by virtue of Eq. (1.18), corresponds to a time step interval of ∆t = 1 au (arbitrary units of

time) when NF = 1;

• A closing angle of ϕ = 2π/3 (this corresponds to a square regular pyramid in which the slant height

of the lateral faces is equal to the distance in the base between the opposite lateral faces, which in

turn is equal to twice the in-radius);

We report the results of the mean x of some random variable x, whose outcomes for NS independent

samples were {x1, x2, ..., xNS
}, in the standard way (more details in appendix section A.1)

x = ⟨x⟩ ± δx , (2.1)
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where ⟨x⟩ is the best estimate of x, computed as

⟨x⟩ = 1
NS

NS∑
i=1

xi , (2.2)

and δx is a measure of the uncertainty in our best estimate of x (that is, the uncertainty in the value of

⟨x⟩), calculated as

δx =

√√√√⟨x2⟩ − ⟨x⟩2

NS

, (2.3)

where 〈
x2
〉

= 1
NS

NS∑
i=1

x2
i . (2.4)

All the histograms presented in this work were normalized so that it directly represents the distribution of

the respective random variable. The data sets of the histograms were divided into 10 subsets, each with

10% of the total samples, so that for each bin we have 10 samples from where we can compute the best

estimate of the bin height and its respective uncertainty by means of the standard form (2.1).

2.1 Probability of the first binding event to occur at either the

lower or upper side for an unbiased walk

If the net of the regular pyramid starts self-folding from either a flat template (planar IC) or with the outer

angles of its lateral faces randomly distributed (random IC), we should expect that, for an unbiased walk

where p = q = 1/2, no matter the number of lateral faces N , the first binding event is as likely to happen

either at the lower (at θ = −ϕ) or at the upper (at θ = ϕ) side, since no direction is favoured.

We test this by defining the probability Pupper of the first binding event occurring at the closing angle θ = ϕ

(rather than at θ = −ϕ), and estimate its value through a Bernoulli trial,

Pupper ≃ Bupper

NS

, for large NS , (2.5)

where Bupper is the number of times the first binding event occurred at θ = ϕ out of a total of NS trials. If

we were to measure quantity (2.5) for a large number of trials NS we should expect its value to approach

1/2.

We could just as well have defined the analogous probability Plower of the first binding event occurring at

18



CHAPTER 2. VALIDATION OF THE MODEL

the lower closing angle θ = −ϕ instead, the choice is completely arbitrary, but verifying that just one of

them is close to 1/2 is enough, considering that analysing both quantities does not convey new information

since they are complementary, related by Plower = 1 − Pupper, i.e. for each time we know that a first

binding event occurred at a upper or lower side we know for certain that it did not happen at the opposite

side and vice-versa. A statistical analysis of quantity (2.5) for planar and random ICs for up to N = 30

particles is presented in Fig. 2.1.

Figure 2.1: Simulation results in a suspended system for the probability (2.5) for various numbers of particles (or lateral

faces) N ∈ [2, 30], for a planar IC (circles) and random IC (squares). The simulation was performed under SC. Results are

averages from NS = 104 independent trials.

Results in Fig. 2.1 are as expected for both IC, with Pupper always close to 1/2 independently of the number

of particles N , with no point deviating from this value more than twice its uncertainty, showing that the

algorithm outputs unbiased results when q = p = 1/2.

2.2 Comparison of simulations results with a binomial distri-

bution

To estimate the probability Pn (t) that a random walker in a one-dimensional lattice, which can hop into

the right with probability p and to the left with probability q = 1−p, starting from a site we define without
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loss of generality as the zeroth site, is at some site n after making t hops we could solve Eq. (1.3). Here,

for simplicity, we will consider the probability P (r, t) that after t hops the random walker made r hops

to the right (ending up at site n), and we just have to count the total number of walks that take a total of

r hops to the right [31]. The number of hops l the random walker made to the left is then related to r

through 
r + l = t

r − l = n

. (2.6)

If there is no restriction in the order of the t hops, the total number of walks of any size and orientation is

t!, but if we constrain the random walk to make r hops to the right it implies that of these t! arrangements

of hops, r hops have to be to the right and l to the left. The number of distinct ways of doing this is t!/(r!l!).

Furthermore, since each hop to the right or to the left occurs with probabilities p and q, respectively, we

still have to multiply t!/(r!l!) by pr, the probability that the walk made r hops to the right, and ql, the

probability that the walk made l hops to the left, to get our probability P (r, t) of a walk that made r hops

to the right out of a total of t hops,

P (r, t) = t!
r!l!

prql = t!
r! · (t − r)!

prqt−r =

 t

r

 prqt−r , (2.7)

where
(

t
r

)
= t!/(r!·(t−r)!) is formally known as a Binomial coefficient, and Eq. (2.7) is a Binomial distribu-

tion.

Using relations (2.6), we find that r = (t+n)/2 and l = (t−n)/2, and we can reformulate Eq. (2.7) into our

original probability Pn (t) as a function of n and t,

P (r, t) = Pn (t) = t!(
t+n

2

)
! ·
(

t−n
2

)
!
p

t+n
2 q

t−n
2 . (2.8)

In the limit of large t ≫ n we can use Stirling’s approximation to reduce the factorials in Eq. (2.7) into

analytical functions, and find that the binomial distribution reduces into a normal (or Gaussian) distribution
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in this limit (see appendix B),1

P (r, t) = Pn (t) ≃ 1√
2πtpq

e− (n−t·(p−q))2
8tpq , for large t ≫ n. (2.9)

To test our algorithm using these distributions, we ran NS independent simulations where a single particle

performed an unbiased random walk of precisely t hops, starting at site zero, and performed a Bernoulli

trial, counting the number of times Bn,t that the particle finished at site n. The division Bn,t/NS, for large

NS , should converge to the same results as those predicted by Pn (t), for a given t.

Results from this analysis are presented in Fig. 2.2 for several values of n, for two values of t.

Figure 2.2: Simulation results for the probability that a particle which starts its random walk at site zero is at site n after

a walk with t = 15 hops (circles) and t = 25 hops (squares), along with the respective theoretical values (as indicated by

the same colour) predicted by the binomial distribution function (2.8) (continuous curves) and its normal limit (2.9) (dashed

curves), both equations using p = q = 1/2. Numerical results are averages from NS = 104 independent trials.

As we can see from Fig. 2.2 that the numerical results follow the expected distributions. We also note that

the normal distribution (dashed curves in Fig. 2.2) start to deviate from the true values of the probability

Pn (t) as the approximation becomes less and less valid as n approaches the value of t, as expected.

1More precisely, Pn (t) is only approximately equal to the expression (2.9) if n and t have the same parity, otherwise
Pn (t) ≡ 0 if n and t have opposite parities, since it is impossible to arrive at an even numbered site n after an odd number
of t hops, and vice-versa. The same logic applies to Eq. (2.8). Additionally, Pn (t) ≡ 0 if n > t, since it is also impossible to
reach a site n which is farther than the total number of hops t performed.
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2.3 Diffusion and first passage times

In this section, we test our simulation by considering a single particle diffusing in a 1D line with reflective

lower boundary and an absorbing upper boundary. In our model, this corresponds to a lattice where

ϕ = θu = π, and n (ϕ) is always a trap. This can simulate a ‘toy’ system made up of two triangular

plates attached at one of the edges, with one plate pinned down and the other freely rotating around the

binding edge due to thermal fluctuations. Once the rotating panel hits the other one, they stick. Our

particle simulates the time series of the outer angle θ = π − α, where α is the dihedral angle between

the panels. The diffusion time tD it takes from the moment the rotating panel starts moving from an initial

outer angle θ (t = 0) = a until it first hits the other one is an example of a first passage time (FPT) [35].

We ran several simulations with this lattice configuration to extract the diffusion time tD, from which we

then compute the mean ⟨tD⟩. Before presenting the numerical results, we derive the theoretical prediction

for the average diffusion time ⟨tD⟩. The following derivations can be compared with the numerical results

and serve as a preluding theoretical insight for our analysis of kirigami at the microscale.

We start by noticing that the probability density P (θ, t) of finding the rotating panel with an outer angle

θ at time t obeys the diffusion equation (1.14),

∂P (θ, t)
∂t

= D
∂2P (θ, t)

∂θ2 , (2.10)

where D is the angular diffusion coefficient of the rotating panel.

The IC that the panel starts with an outer angle θ (t = 0) = a corresponds to

P (θ, t = 0) = δ (θ − a) . (2.11)

The boundary conditions at θ = 0 and θ = ϕ are

∂P (θ, t)
∂θ

∣∣∣∣∣
θ=0

= 0 , (2.12)

P (θ = ϕ, t) = 0 , (2.13)

where the first condition is due to the reflective lower boundary, while the second one accounts for the

absorbing upper boundary.

Using separation of variables, P (θ, t) = Θ (θ) T (t), and applying the initial and boundary conditions,
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the solution for P (θ, t) can be found (see appendix C)

P (θ, t) = 2
ϕ

∞∑
m=0

e−Dk2
mt cos (kma) cos (kmθ) , (2.14)

with eigenvalues km = (π/ϕ) · (m + 1/2).

Since the IC (2.11) is normalized, the integral of the probability density function (PDF) (2.14) over the whole

angular domain corresponds to what is known as the survival probability S (t) [35], corresponding in this

specific situation to the probability that the outer angle θ has not yet reached the absorbing boundary at

ϕ by time t,

S (t) =
∫ ϕ

0
P (θ, t) dθ . (2.15)

The probability (2.15) is related to the PDF f (t | a) of obtaining a diffusion time tD = t, for an initial

outer angle θ = a, by

S (t) =
∫ ∞

t
f (t′ | a) dt′ . (2.16)

From the fundamental theorem of Calculus we know that

∫ ∞

t
f (t′ | a) dt′ = F (∞ | a) − F (t | a) , (2.17)

where F (t | a) is the antiderivative of f (t | a). Furthermore, F (∞ | a) = 0 since f (t | a) is a PDF

and thus must be normalized. Joining Eqs. (2.16) and (2.17) and differentiating both sides in time (using

∂F (t|a)/∂t = f (t | a), by definition), we have the fundamental relation between the distribution of a FPT

and the associated survival probability function,

f (t | a) = −∂S (t)
∂t

. (2.18)

From Eq. (2.15) we see that the only way for the survival probability S (t) to change over time is if the

probability density P (θ, t) is ’draining out’ through the absorbing boundary. Thus the change over time of

the survival probability must be equivalent to the outgoing flux of the angular probability density at θ = ϕ,

∂S (t)
∂t

= D
∂P (θ, t)

∂θ

∣∣∣∣∣
θ=ϕ

. (2.19)
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Using Eqs. (2.18) and (2.19), the PDF f (t | a) is then given by

f (t | a) = − D
∂P (θ, t)

∂θ

∣∣∣∣∣
θ=ϕ

= 2D

ϕ

∞∑
m=0

(−1)m kme−Dk2
mt cos (kma) , (2.20)

where we used sin (π · (m + 1/2)) = (−1)m, since m ∈ N0.

If the value of a is random, characterized by some PDF f0 (a), the PDF for the diffusion time is modified

into fR (t), calculated by

fR (t) =
∫ ϕ

0
f (t | a) f0 (a) da . (2.21)

For a random initial outer angle with a uniform distribution over the whole domain a ∈ [0, ϕ], the PDF

f0 (a) is

f0 (a) = 1
ϕ

, (2.22)

and Eq. (2.21) acquires the form

fR (t) =
∫ ϕ

0
f (t | a) 1

ϕ
da = 2D

ϕ2

∞∑
m=0

e−Dk2
mt , (2.23)

where we used the following result for the integral

∫ ϕ

0
cos (kma) da = sin (kmϕ)

km

=
sin

(
π ·
(
m + 1

2

))
km

= (−1)m

km

, (2.24)

and the fact that (−1)2m = 1, since 2m is always an even number.

The average diffusion time ⟨tD⟩ for a given IC is then found by integrating the product of t with the

respective PDF over the whole positive time domain,

⟨tD⟩a =
∫ ∞

0
tf (t | a) dt , (2.25)

⟨tD⟩R =
∫ ∞

0
tfR (t) dt , (2.26)

where the first equation is for a defined initial outer angle θ (t = 0) = a, so P (θ, t = 0) = δ (θ − a),

while the second gives the expected value when the possible initial outer angle is uniformly distributed

over the whole angular space, in which case P (θ, t = 0) = 1/ϕ.

We proceed now to derive the expression for the average diffusion time ⟨tD⟩ for three cases: one starting

at an initial position a = 0, at a uniformly distributed random initial position, and at a general defined

initial position a.
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Defined initial position a = 0

We start by computing Eq. (2.25) with a = 0

⟨tD⟩0 =
∫ ∞

0
tf (t | 0) dt = 2D

ϕ

∞∑
m=0

(−1)m km

∫ ∞

0
te−Dk2

mtdt , (2.27)

where the 0 subscript in ⟨tD⟩0 indicates that the rotating panel starts at θ (t = 0) = 0.

The integral in (2.27) is of the form

∫ ∞

0
te−stdt = 1

s2 , for s > 0 , (2.28)

whose result can be proved using integration by parts. In this case s = Dk2
m, and so

⟨tD⟩0 = 2
ϕD

∞∑
m=0

(−1)m

k3
m

= 2ϕ2

π3D

∞∑
m=0

(−1)m(
m + 1

2

)3 . (2.29)

Looking now only at the summation, making the change of variable m + 1/2 → M (so m →

M − 1/2)

∞∑
m=0

(−1)m(
m + 1

2

)3 =
∞∑

M= 1
2

(−1)M− 1
2

M3 = (−1)− 1
2

1
2−3

∞∑
2M=1;2

(−1)
1
2 2M

(2M)3 , (2.30)

where
∑∞

M=i;∆M means a summation over the index M starting at i in steps of size ∆M (if the

step size ∆M = 1, this index is omitted). Making another change of variable, 2M → N ,

(−1)− 1
2

1
2−3

∞∑
2M=1;2

(−1)
1
2 2M

(2M)3 = −8i
∞∑

N=1;2

(−1)
1
2 N

N3 = −8i
∞∑

N=1;2

iN

N3 = −8i
∞∑

N=1;2

(εi)N

N3 ,

(2.31)

where in the last step a real number ε was introduced, such that 1 − ε = 0+. The motivation for

the insertion of ε will become clear right away. First notice that

Li3 (εi) =
∞∑

n=1

(εi)n

n3 = ε ·
(

i

1
− 1

8
− i

27
+ 1

64
+ i

125
− 1

216
− i

343
+ 1

512
+ ...

)
,

(2.32)

Li3 (−εi) =
∞∑

n=1

(−εi)n

n3 = ε·
(

− i

1
− 1

8
+ i

27
+ 1

64
− i

125
− 1

216
+ i

343
+ 1

512
+ ...

)
,

(2.33)

where Lis (z) is the polylogarithm of order s and argument z [36], which has a non-integral rep-

resentation when |z| < 1 (and it was because of this condition that ε was introduced in (2.31)), in
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which case it is also referred as Jonquière’s function, Lis (z) = ∑∞
n=1

zn/ns. In Eqs. (2.32) and

(2.33), the fact that εn = ε (since ε = 1−) was used to factor the constant out of the summation.

Second, we have

Li3 (εi)−Li3 (−εi) = ε·
(

2 i

1
+ 0 − 2 i

27
+ 0 + 2 i

125
+ 0 − 2 i

343
+ 0 + ...

)
= 2

∞∑
N=1;2

(εi)N

N3 ,

(2.34)

so we reach the conclusion that

∞∑
N=1;2

(εi)N

N3 = 1
2

· (Li3 (εi) − Li3 (−εi)) . (2.35)

Plugging the equality (2.35) in (2.31)

∞∑
m=0

(−1)m(
m + 1

2

)3 = −8i
∞∑

N=1;2

(εi)N

N3 = −8i
1
2

·(Li3 (εi) − Li3 (−εi)) = 4i·(Li3 (−εi) − Li3 (εi)) ,

(2.36)

and going back to (2.29) with the result (2.36) we arrive at

⟨tD⟩ = 8 (θ∗)2

π3D
i · (Li3 (−εi) − Li3 (εi)) . (2.37)

We can use the following identity of the polylogarithm

Li3 (−z) − Li3
(
−z−1

)
= −1

6
ln3 (z) − 1

6
π2 ln (z) , (2.38)

with z = εi to simplify the expression (2.37). Knowing −i−1 = i and ln (i) = iπ/2, Eq. (2.38)

becomes (applying the limit value 1− to ε in the last step)

Li3 (−z) − Li3
(
−z−1

)
= Li3 (−εi) − Li3 (εi) = −1

6
ln3 (i) − 1

6
π2 ln (i) , (2.39)

which simplifies to

Li3 (−εi) − Li3 (εi) = −π3

16
i . (2.40)

Substituting this last result in Eq. (2.37) allows us to express ⟨tD⟩0 in the following simpler form

⟨tD⟩0 = ϕ2

2D
. (2.41)
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We see that, if the rotating panel starts with a zero outer angle, the average diffusion time for the

rotating panel to hit the pinned one is ⟨tD⟩0 = π2/2D, since ϕ = π. More generally, Eq. (2.41)

tells us that, in the line, the average time ⟨t⟩ to travel a distance ϕ for a diffusing particle with

diffusivity D follows a power law,

⟨t (ϕ)⟩ = Aϕk , (2.42)

with parameters A = 1/2D and k = 2.

All time quantities in this work are reported in units of Brownian time, given by Eq. (2.41) with

ϕ = π and D = D0.

Random initial position

This time we use Eq. (2.26)

⟨tD⟩R =
∫ ∞

0
tfR (t) dt = 2D

ϕ2

∞∑
m=0

∫ ∞

0
te−Dk2

mtdt , (2.43)

and using the result of the same integral as in the previous case,

⟨tD⟩R = 2
ϕ2D

∞∑
m=0

1
k4

m

= 2ϕ2

π4D

∞∑
m=0

1(
m + 1

2

)4 . (2.44)

Making the same change of variables in the summation as in the last case, m + 1/2 → M and

then 2M → N ,

∞∑
m=0

1(
m + 1

2

)4 =
∞∑

M= 1
2

1
M4 = 1

2−4

∞∑
2M=1;2

1
(2M)4 = 16

∞∑
N=1;2

1
N4 , (2.45)

and noticing that

16
∞∑

N=1;2

1
N4 = 16

 ∞∑
n=1

1
n4 −

∞∑
N=2;2

1
N4

 = 16

 ∞∑
n=1

1
n4 − 1

16

∞∑
N
2 =1

1(
N
2

)4

 . (2.46)

We make one more change of variable N/2 → n in the second summation term

∞∑
m=0

1(
m + 1

2

)4 = 16
( ∞∑

n=1

1
n4 − 1

16

∞∑
n=1

1
n4

)
= 15

∞∑
n=1

1
n4 = 15ζ (4) , (2.47)

where ζ (s) = ∑∞
n=1

1/ns is the Riemann Zeta function of a (generally complex) variable s. Knowing

that ζ (4) = π4/90 [37] and plugging the result (2.47) in (2.44) we arrive at the simplified expression
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for ⟨tD⟩ in the case of a uniformly distributed random initial position

⟨tD⟩R = ϕ2

3D
= 2

3
⟨tD⟩0 . (2.48)

This result shows that, on average, the time it takes for the rotating panel to hit the pinned one

should be 3/2 faster if it starts at a random outer angle, rather than from a flat template.

General initial position a

We start again by Eq. (2.25), this time with a general value a,

⟨tD⟩a =
∫ ∞

0
tf (t | a) dt = 2D

ϕ

∞∑
m=0

(−1)m km cos (kma)
∫ ∞

0
te−Dk2

mtdt , (2.49)

and, plugging in the result of the usual integral,

⟨tD⟩a = 2ϕ2

π3D

∞∑
m=0

(−1)m(
m + 1

2

)3 cos
(

aπ

ϕ
·
(

m + 1
2

))
. (2.50)

Using the exponential representation of the cosine function, cos (x) = 1/2 · (eix + e−ix), Eq.

(2.50) can be redefined as

⟨tD⟩a = 2ϕ2

π3D

∞∑
m=0

(−1)m(
m + 1

2

)3
1
2

·
(
ei π

2ϕ
aei π

ϕ
am + e−i π

2ϕ
ae−i π

ϕ
am
)

. (2.51)

Performing some manipulations, we can express Eq. (2.51) in the following form

⟨tD⟩a = ϕ2

π3D
·

ei π
2ϕ

a
∞∑

m=0

(
−ei π

ϕ
a
)m

(
m + 1

2

)3 + e−i π
2ϕ

a
∞∑

m=0

(
−e−i π

ϕ
a
)m

(
m + 1

2

)3

 , (2.52)

which is equivalent to

⟨tD⟩a = ϕ2

π3D
·
[
ei π

2ϕ
aΦ
(

−ei π
ϕ

a, 3,
1
2

)
+ e−i π

2ϕ
aΦ
(

−e−i π
ϕ

a, 3,
1
2

)]
, (2.53)

where Φ (z, s, α) = ∑∞
m=0

zm/(m+α)s is the Lerch transcendent function [36]. Note that for
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a = 0, recalling relations (2.31) and (2.40), we have

⟨tD⟩a=0 = ϕ2

π3D
·
[
Φ
(

−1, 3,
1
2

)
+ Φ

(
−1, 3,

1
2

)]
=

= 2ϕ2

π3D
Φ
(

−1, 3,
1
2

)
= 2ϕ2

π3D

∞∑
m=0

(−1)m(
m + 1

2

)3 = ϕ2

2D
, (2.54)

which gives the expected result for the case starting at zero, as supposed.

A plot of Eq. (2.53) is shown in Fig. 2.3 with a ∈ [0, ϕ].

Figure 2.3: Plot of Eq. (2.53) in units of Brownian time in the domain a ∈ [0, ϕ].

With this set of equations, we can compare to numerical results. We present in Fig. 2.4 the histograms of

the diffusion time distribution for a random walk with one particle in a pinned system, for both planar and

random ICs, in a lattice of size L = 181 sites and closing angle ϕ = θu = π. For these simulations,

we redefine step 6 of the algorithm presented in section 1.2, so that the minimum number of particles

needed at a closing angle site in order for it to act as a sticky site is now zero. In other words, the closing

angle site n (ϕ) was always active.

We compare the numerical results with the respective PDFs f (t | a) and fR (t) for each IC. To calculate

the theoretical points for each histogram bin, we integrate the appropriate PDF (Eq. (2.20) for the planar

IC and Eq. (2.23) for the random IC) between the lower and upper edge values of the respective bin.

A table with the average values of the diffusion time ⟨tD⟩ computed from the histograms is also presented

in 2.1, along with the values predicted by Eqs. (2.41) and (2.48). In the last column we list the values of
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the relative error ∆X , calculated using the following equation

∆X = XE

XT

− 1 , (2.55)

with XE and XT being the experimental (or numerical) value and theoretical value, respectively.

Figure 2.4: Normalized histograms with 100 bins each made from NS = 105 independent samples obtained for the

diffusion time tD for a planar (a) and random (c) IC. Histograms (b) and (d) show the same results as (a) and (c), respectively,

but with logarithmic binning. Times are in units of Brownian time. Simulations were performed with one particle in a pinned

system with SC, except the sticky site was now positioned at the upper boundary, at ϕ = π, and was always active. The

theoretical points (in red) are the expected PDFs of the diffusion time for a planar and random IC, as given by Eqs. (2.20) with

a = 0 and (2.23), respectively.

Table 2.1: Table with the simulated average values of the diffusion times ⟨tD⟩ in Brownian time units, for a planar and

random IC computed from the histograms of Fig. 2.4. The theoretical values of these time averages predicted by Eqs. (2.41)

and (2.48), as well as the respective relative error, are also presented.

Initial condition Simulated ⟨tD⟩ Theoretical ⟨tD⟩ Relative error ∆X (%)

Planar - Eq.(2.41) 1.011±0.003 1 1.10

Random - Eq.(2.48) 0.675±0.003 2/3=0.666... 1.25

From Fig. 2.4 we see that the histograms are well described by the respective expressions for the PDFs
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(2.20) with a = 0 and (2.23). The numerical values for the averages ⟨tD⟩0 and ⟨tD⟩R also show good

agreement with theoretical predictions, considering their relative error ∆X , presented in the last column

of table 2.1, is close to 1% for both ICs.

2.4 Convergence of the relative error for increasing lattice

size and number of simulations

In this section we analyse how the relative error ∆X , as defined in Eq. (2.55), for the planar IC, behaves

as we increase the number of sites L and the sample size NS .

Equations (2.41) and (2.48) were derived assuming a system with continuous time and space, so they

should only predict the values with good accuracy if the number of lattice sites L is large enough. We

should expect that the relative error ∆X between the numerical and theoretical values of the average

diffusion time ⟨tD⟩ should converge to a small value, ideally zero. We choose the planar IC average

diffusion time ⟨tD⟩0, with a expected value given by Eq. (2.41), as our test case.

The results for the absolute value of ∆X as a function of L are presented in Fig. 2.5. Given an uncertainty

σE in the numerical value XE , the uncertainty σ∆X in ∆X is then calculated by error propagation,

σ∆X = σE

∣∣∣∣∣∂∆X

∂XE

∣∣∣∣∣ = σE

|XT |
= 1

|XT |

√√√√⟨X2
E⟩ − ⟨XE⟩2

NS

. (2.56)
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Figure 2.5: Absolute value of the relative error ∆X , Eq. (2.55), between the simulated ⟨tD⟩0 and the value predicted by

Eq. (2.41) as a function of the number of lattice sites L ∈ [5, 500]. The uncertainty σ∆X in the values of ∆X was computed

by propagating the uncertainty σE associated with the numerical value for the average diffusion time, using Eq. (2.56). Apart

from L, the remaining parameters were identical to the ones used in the numerical analysis of section 2.3. The averages for

the diffusion times, from which we then compute ∆X and σ∆X , were calculated from NS = 105 independent samples.

From Fig. (2.5) we see that the absolute value of the relative error ∆X converges rather quickly, at about

L = 100, oscillating around 0.5% for larger values of L. This seems to indicate that, for a sample size

of NS = 105, the systematic error introduced by the discretization of the space is reduced to a minimum

starting at these values of L. The remaining discrepancy may be due to random error sources, such as

the pseudo randomness associated with the random number generator.

Next we test if our statistical averages converges for an increasing number of independent samples NS .

In Fig. 2.6 we plot the absolute value of relative error ∆X , again for a planar IC, as function of the sample

size NS , for several values of L.
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Figure 2.6: Absolute value of the relative error ∆X , Eq. (2.55), between the simulated ⟨tD⟩0 and the value predicted by

Eq. (2.41) as a function of the number of independent samples NS ∈
[
102, 105], for several values of the number of lattice

sites L. The uncertainty σ∆X in the values of ∆X was computed, as in the case of Fig. 2.5, using Eq. (2.56). For each L,

all simulations were performed under conditions identical to the ones used in the analysis presented in Fig. 2.5.

For better readability, we plot the absolute value of the best estimate of ∆X and its uncertainty σ∆X in

separate graphs in Fig. 2.7.

Figure 2.7: Same results of Fig. 2.6 but with the absolute value of the best estimate of ∆X (a) and its uncertainty σ∆X

(b) plotted in separate graphs. The black line with slope −1/2 in (b) is a visual aid to indicate that the data varies as expected

from Eq. (2.56) as the sample size grows.

These results indicate that, as we increase the number of samples NS , the averages of our statistical

quantity do converge to a defined value, as we can infer from the decreasing uncertainty σ∆X as NS

grows. In Fig. 2.7.b, we clearly see that our uncertainty in our best estimate for the average of our

statistical quantity varies with NS as σ∆X ∝ 1/
√

NS, in accordance with Eq. (2.56) for the standard error.

In general, the analysis of this section shows that, indeed, by increasing the number of lattice sites L we

can improve the accuracy of our results, by reducing the error due to the discretization, while our precision
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improves as we increase the number of samples NS and the effect of the law of large numbers gets

progressively more preponderant.
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Chapter 3

Folding statistics

In this chapter we study the folding statistics of regular pyramid nets. In section 3.1 we analyse the binding

times as a function of the number of lateral faces N . We derive a set of equations and compare them

with numerical results. In section 3.2 we analyse the binding times as a function of the closing angle ϕ.

In section 3.3 we quantify the effect of the particle-particle interactions present in the interacting region.

Additionally, we study how the functional dependence of the binding times on N changes if binding can

only occur between neighbouring lateral faces. In section 3.4 we study how the binding times behave for

different ICs. In section 3.5 we quantify the propensity for the nets to fold into the target structure, by

numerically computing the fraction of samples that self-fold free of defects.

3.1 Dependence of the binding times on the number of faces

In this section we study the functional dependence of the average folding time ⟨T ⟩ with the number of

lateral faces N . As previously stated, the dynamics of the folding can be decomposed into two distin-

guishable sets of Brownian processes. The first binding event, occurring at the first binding time TF , is

well described by a set of competing 2D Brownian processes. In turn, the subsequent binding events are

each described by a 1D Brownian process. The last binding event concludes at the folding time T . The

time interval between the first and last binding event is defined as the last binding time TL = T − TF .

We now proceed to study the functional dependency on N of each one of these times separately. We

consider only a pinned system to focus on the folding time.

35



CHAPTER 3. FOLDING STATISTICS

Figure 3.1: (a) Configuration of the 2D Brownian process for the first binding event in a pinned system (for a planar IC).

A pair of particles i and j, ∀i, j, diffuse with coordinates (θi, θj) in a square domain of size π × π until they hit the trap

at (ϕ ± ∆ϕ/2, ϕ ± ∆ϕ/2). The trapping region (coloured red) is a square domain with side length equal to the closing angle
region size ∆ϕ. The trajectory of the pair is projected onto the plane θiθj (coloured grey). (b) After the first binding event, the

subsequent ones can be mapped to a 1D Brownian process. The remaining particles k, ∀k\ {i, j}, diffuse with coordinates
θk, starting at θk (t = TF ), in a line of length π until they reach the trap at ϕ ± ∆ϕ/2. The regions at the right of the trapping

region are the interacting region (light blue), where particle-particle interactions may occur.

3.1.1 First binding time as a function of N

The first binding event is defined by a set of competing 2D Brownian processes, each with angular co-

ordinates (θi, θj) of the pair of lateral faces i and j and a trap at (ϕ ± ∆ϕ/2, ϕ ± ∆ϕ/2) (Fig. 3.1a). The

number of 2D Brownian processes is equal to the number of possible pairs of lateral faces. For N lateral

faces, since we assume that binding can occur between any pair of faces, independently of whether they

are adjacent or not, this number is given by the binomial coefficient
(

N
2

)
= N ·(N−1)/2. Associated with

the 2D Brownian processes we have a set
{
t
(1)
F , t

(2)
F , ..., t

(N·(N−1)/2)
F

}
of FPTs for reaching the trap. These

times are a set of random variables, characterized by some PDF fF (t). The first binding time is set by

the fastest of the N ·(N−1)/2 FPTs, so

TF = min
{
t
(1)
F , t

(2)
F , ..., t

(N·(N−1)/2)
F

}
. (3.1)
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The probability SF (t) that some particular measurement drawn from fF (t) yields a value larger than t

is

SF (t) =
∫ ∞

t
fF (t′) dt′ . (3.2)

From the theory of order statistics [38], we can estimate the PDF FF (t) that some measurement t
(i)
F

picked from the set of the N ·(N−1)/2 FPTs has a value of t, and is no larger than the remaining N ·(N−1)/2−1

times,

FF (t) = N · (N − 1)
2

fF (t) · [SF (t)]
N·(N−1)

2 −1 . (3.3)

The PDF (3.3) is the distribution for the first binding time TF . Provided that t
(i)
F = t, the term with square

brackets is the probability that t
(i)
F is the fastest of the N ·(N−1)/2 FPTs, thus t

(i)
F = TF by definition, while

the coefficient N ·(N−1)/2 accounts for the fact that any of those times may be the fastest one.

The average first binding time is then computed by multiplying the PDF (3.3) by t and integrating over the

whole positive time domain,

⟨TF (N)⟩ = N · (N − 1)
2

∫ ∞

0
tfF (t) ·

[∫ ∞

t
fF (t′) dt′

]N·(N−1)
2 −1

dt . (3.4)

For a planar IC, calculations in previous works [39] suggest that Eq. (3.4) should be inversely proportional

to the logarithm of the number of 2D Brownian processes,

⟨TF (N)⟩ ∝ 1
ln
(

N ·(N−1)
2

) . (3.5)

We expect the average first binding time to decrease logarithmically with the number of lateral faces, when

the folding starts from a flat template. It is noteworthy that we assumed that the 2D Brownian processes

are completely uncorrelated. For example, for three lateral faces, the three 2D Brownian processes with

coordinates (θ0, θ1), (θ0, θ2) and (θ1, θ2) are seemingly correlated by the coordinates shared between

them. Despite this, it has been shown that the dynamics are still consistent with Brownian behaviour [13],

and correlations can therefore be neglected. Furthermore, this approach also ignores the particle-particle

interactions that may occur in the interacting region. We will see in the later section 3.3, however, that

these interactions have little influence on the results.

We present in Fig. 3.2 the numerical results for ⟨TF ⟩ as a function of N for a planar IC. We also fit the

data to the following equation

y (x) = τF0 + τF x , (3.6)
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with x = 1/ln(N·(N−1)/2), where τF and τF0 are fitting parameters. The point N = 2 was excluded from

the fitting since the function is undefined for that value.

To fit the data we use the method of least squares (more details can be found in appendix section A.2).

For a set of NP data points {(x1, y1) , (x2, y2) , ..., (xNP
, yNP

)} where the values xi are known exactly

and yi each have an associated uncertainty σi, we estimate the fitting parameters a0 and a1 that give the

straight line that best fits the data,

yi = a0 + a1xi , (3.7)

by computing

a0 =

∑NP
i=1

(
x2

i

σ2
i

)∑NP
i=1

(
yi

σ2
i

)
−∑NP

i=1

(
xi

σ2
i

)∑NP
i=1

(
xiyi

σ2
i

)
∆

, (3.8)

a1 =
−∑NP

i=1

(
xi

σ2
i

)∑NP
i=1

(
yi

σ2
i

)
+∑NP

i=1

(
1

σ2
i

)∑NP
i=1

(
xiyi

σ2
i

)
∆

, (3.9)

where

∆ =
NP∑
i=1

(
1
σ2

i

)
NP∑
i=1

(
x2

i

σ2
i

)
−

NP∑
i=1

xi

σ2
i

2

. (3.10)

The uncertainties σa0 and σa1 of a0 and a1, respectively, are calculated by error propagation from the

uncertainties σi of the corresponding yi values, so

σa0 =

√√√√∑NP
i=1

x2
i

σ2
i

∆
, (3.11)

σa1 =

√√√√∑NP
i=1

1
σ2

i

∆
. (3.12)
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Figure 3.2: Numerical results for the average first binding time ⟨TF ⟩ as a function of the number of lateral faces N ∈
[2, 100] for a planar IC. The solid line is given by Eq. (3.6) with fitting parameters τF0 = −0.0636 ± 0.0003 and τF =
1.203 ± 0.002, obtained from a least square fit of the simulation data. The simulations were performed with SC. Results are

averages from NS = 104 independent samples.

These results show that the average first binding time decays logarithmically with the number of lateral

faces for a planar IC, as predicted from Eq. (3.5).

3.1.2 Last binding time as a function of N

After the first binding, the remaining N − 2 lateral faces only have to reach the closing angle ϕ one

by one to attach. Thus, we have a set of N − 2 1D Brownian processes, with an associated set{
t
(1)
L , t

(2)
L , ..., t

(N−2)
L

}
of FPTs for reaching ϕ ± ∆ϕ/2 (Fig. 3.1b). These times are again a set of random

variables, drawn from some PDF fL (t). The set in non-decreasing order of these FPTs, added by the first

binding time TF , is the set of binding times {t2, t3, ..., tN−2} excluding t1. The last binding time is set

by the longest of these N − 2 FPTs,

TL = max
{
t
(1)
L , t

(2)
L , ..., t

(N−2)
L

}
. (3.13)

As before, the probability SL (t) that a measurement drawn from fL (t) yields a value larger than t is

SL (t) =
∫ ∞

t
fL (t′) dt′ . (3.14)

Naturally, the probability that the value is not larger than t is 1 − SL (t).
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Proceeding in a similar way to the first binding time, from the theory of order statistics, we estimate the

distribution FL (t) of the last binding time to be

FL (t) = (N − 2) fL (t) · [1 − SL (t)](N−2)−1 , (3.15)

where now, provided that some measurement t
(i)
L picked from the set of FPTs has a value of t, the term

with square brackets is the probability that t
(i)
L is the slowest of the N − 2 FPTs, thus t

(i)
L = TL by

definition.

The average last binding time ⟨TL⟩ is then computed by

⟨TL (N)⟩ = (N − 2)
∫ ∞

0
tfL (t) ·

[
1 −

∫ ∞

t
fL (t′) dt′

](N−2)−1
dt . (3.16)

If we assume that the N − 2 lateral faces all have an outer angle θi < ϕ at the first binding moment, the

PDF fL (t) would be the distribution of a first-passage time as discussed in section 2.3. Its specific form

depends on the distribution of the angles θi at t = TF . For a planar IC, if the first two lateral faces attach

quickly, we expect that the remaining N − 2 still have an outer angle close to θi = 0. In this case, fL (t)

would be approximately given by Eq. (2.20) with a = 0. If the first binding event takes too long, however,

we assume that the distribution of the outer angles of the remaining N − 2 lateral faces is close to a

uniform one, in which case fL (t) could be approximated by Eq. (2.23). In both cases, the eigenmodes of

the PDFs decay exponentially with time, and in the long-time limit the eigenmode with m = 0 dominates

[35]. Thus we approximate the PDF fL (t) to an exponential distribution,

fL (t) ≃ 1
τL

e
− t

τL , (3.17)

where τL = 4ϕ2/π2D is the characteristic decay time of the eigenmode m = 0.

Plugging PDF (3.17) in (3.16) and computing the integral inside the square brackets we get

⟨TL (N)⟩ ≃ N − 2
τL

∫ ∞

0
te

− t
τL ·

[
1 − e

− t
τL

](N−2)−1
dt . (3.18)

Making the change of variable u = 1 − e
− t

τL we have

⟨TL (N)⟩ ≃ − (N − 2) τL

∫ 1

0
ln (1 − u) u(N−2)−1du . (3.19)
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We can use the Mercator series,

ln (1 + x) =
∞∑

m=1

(−1)m+1

m
xm , for x ∈ ]−1, 1], (3.20)

with x = −u, to perform the integration,

⟨TL (N)⟩ ≃ (N − 2) τL

∞∑
m=1

1
m

∫ 1

0
u(N−2)−1+mdu = τL

∞∑
m=1

N − 2
m · (N − 2 + m)

. (3.21)

Notice that
N − 2

m · (N − 2 + m)
= N − 2 + m − m

m · (N − 2 + m)
= 1

m
− 1

N − 2 + m
, (3.22)

and so

⟨TL (N)⟩ ≃ τL

∞∑
m=1

( 1
m

− 1
N − 2 + m

)
. (3.23)

Expanding the summation, defining N ≡ N − 2,

∞∑
m=1

( 1
m

− 1
N + m

)
= 1 − 1

N + 1
+ 1

2
− 1

N + 2
+ 1

3
− 1

N + 3
+ 1

4
− 1

N + 4
+ ... , (3.24)

one can check that, for a given N , this series is equivalent to summing the term 1/m up to that N , as all

other terms cancel out. Therefore,

⟨TL (N)⟩ ≃ τL

∞∑
m=1

( 1
m

− 1
N − 2 + m

)
= τL

N−2∑
m=1

1
m

. (3.25)

Using the definition of the Euler-Mascheroni constant γ,

γ = lim
N→∞

[
− ln (N − 2) +

N−2∑
m=1

1
m

]
, (3.26)

we can reformulate Eq. (3.25) into

⟨TL (N)⟩ ≃ τL · [ln (N − 2) + γ] , for large N . (3.27)

From this equation we expect that, for a large number of lateral faces, the average last binding time should

grow logarithmically as N increases. We present the numerical results of ⟨TL⟩ as a function of N in Fig.

3.3. Alongside the numerical data we also plot Eq. (3.27).
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Figure 3.3: Numerical results for the average last binding time ⟨TL⟩ as a function of the number of lateral faces N ∈
[3, 100] for a planar IC. The solid line is given by Eq. (3.27) in units of Brownian time, where τL = 4ϕ2

/π2D, with ϕ = 2π/3

and D = D0. The simulations were performed with SC. Results are averages from NS = 104 independent samples.

Numerical results seem to agree with the theoretical predictions, with the data following the line given by

Eq. (3.27).

3.1.3 Folding time as a function of N

The folding time T is the time it takes for all lateral faces to bind. By definition, it is the sum of the first

and last binding times. Here we present the numerical results of its average ⟨T ⟩ as a function of N in

Fig. 3.4. Since ⟨T ⟩ = ⟨TF ⟩ + ⟨TL⟩, we expect that the functional dependence of ⟨T ⟩ with N is given

by the sum of Eqs. (3.6) and (3.27),

⟨T (N)⟩ ≃ τF

ln
(

N ·(N−1)
2

) + τL ln (N − 2) + τ0 , (3.28)

where τ0 = τF0 + γτL, and τF , τF0 and τL are the same parameters as those introduced in the previous

subsections 3.1.1 and 3.1.2. We plot Eq. (3.28) alongside the data in Fig. 3.4.
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Figure 3.4: Numerical results for the average binding times ⟨TF ⟩, ⟨TL⟩ and average folding time ⟨T ⟩ as a function of

the number of lateral faces N ∈ [2, 100] for a planar IC. The results for ⟨TF ⟩ and ⟨TL⟩ are the same as those presented in
Figs. (3.2) and (3.3), respectively. The solid line is given by Eq. (3.28) in units of Brownian time, where the parameters τF ,

τF0 and τL have the same values as those used in Figs. (3.2) and (3.3). The simulations were performed with SC. Results

are averages from NS = 104 independent samples.

From Fig. (3.4) we see that the contrasting limiting behaviour of the first and last binding times lead to a

minimum around N = 5 and N = 6. This shows that there is an optimal number of lateral faces for

fast self-folding. While the theoretical formula is too simplified to accurately predict the minimum, it does

however describe well the data for larger values of N . The numerical results are consistent with previous

works based on Langevin molecular dynamics simulations [13].

3.1.4 Folding time for a random IC

In this subsection we compare the average first and last binding times, as well as the total folding time,

between a planar and random IC. We plot the numerical results for these three mean times for a random

IC in Fig. 3.5, alongside the results for the planar case, the same data presented in Fig. 3.4.

For the average first binding time ⟨TF (N)⟩R with a random IC, we assume that the FPT distribution

fF (t) in 2D is approximately exponential,

fF (t) ≃ 1
τF,R

e
− t

τF,R , (3.29)

with a characteristic decay time τF,R.

With this distribution, Eq. (3.4) reads, after computing the integral inside the square brackets, which
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evaluates to e−t/τF,R ,

⟨TF (N)⟩R ≃ N · (N − 1)
2τF,R

∫ ∞

0
te

−t
N·(N−1)

2τF,R dt . (3.30)

The integral in Eq. (3.30) is of the form (2.28) with s = N ·(N−1)/2τF,R, and so the average first binding

time for a random IC should depend on the number of lateral faces as

⟨TF (N)⟩R ≃ 2τF,R

N · (N − 1)
, (3.31)

decaying as N−2 for a large number of lateral faces.

To corroborate this, we use the linear least squares method to fit the data for the average first binding time

with a random IC presented in Fig. 3.5a to the following model,

y (x) = τF0,R + τF,Rx , (3.32)

with x = 2/N ·(N−1) and linear fitting parameters τF0,R and τF,R.
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Figure 3.5: Numerical results for the average binding times ⟨TF ⟩ (a), ⟨TL⟩ (b) and average folding time ⟨T ⟩ (c) as a

function of the number of lateral faces N ∈ [2, 100] for a random IC (square points), alongside the respective counterpart for

the planar IC (circle points, the same data plotted in Fig. 3.4). The solid line in (a) is given by Eq. (3.32) in units of Brownian

time, with fitted parameters τF0,R = − (92 ± 4) · 10−6 and τF,R = 2.835 ± 0.007 obtained from a least square fit of the

numerical data. The simulations were performed with SC. Results are averages from NS = 104 independent samples.

We see from Fig. 3.5a that the average first binding time varies with N as expected from Eq. (3.31),

decaying with the square of N for a large number of lateral faces, in contrast with the slower logarithmic

decay for the planar IC. The average last binding time is also slightly faster for all N for a random IC when

compared with the planar one. Despite these functional differences of the average binding times between

the two ICs, the distinction of the total average folding time ⟨T ⟩ between those same ICs seems to be only

quantitative, with overall faster times for the random IC, while the minimum remains unshifted.
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3.2 Dependence of the binding times on the closing angle

In this section we study how the closing angle ϕ influences the average folding time. Changing the value of

these parameter could be achieved in practice, for example, by varying the slant height of the lateral faces.

We assume however that the angular diffusion coefficient of these faces remains independent of ϕ. In Fig.

3.6a we plot the numerical results for the average folding time ⟨T ⟩ as a function of N for three different

values of ϕ. As we have seen in section 3.1, as N grows, the contribution of the last binding time ⟨TL⟩

for the total folding time ⟨T ⟩ dominates over the first binding time ⟨TF ⟩. In this regime, if we assume

that, after the first binding, all N − 2 particles are at the left of the trapping region, so θi (t = TF ) < ϕ

(considering ∆ϕ ≃ 0), and distributed approximately uniformly over the domain θ ∈ [0, ϕ[, we should

expect ⟨T ⟩ to scale with ϕ2, in accordance with result (2.48) for the average time a diffusing particle in a

line with domain θ ∈ [0, ϕ] takes to reach ϕ, starting with a uniform spatial distribution. In Fig. 3.6b, we

rescale the data of Fig. 3.6a by the square of the closing angle, ϕ2.

Figure 3.6: (a) Numerical results for a planar IC of the average folding time ⟨T ⟩ as a function of the number of lateral

faces N ∈ [2, 100] for three values of the closing angle ϕ = {5π/9, 2π/3, 7π/9}. (b) The same data as in (a) but rescaled

by the square of the closing angle ϕ2. A data collapse is observed for larger values of N indicating that ⟨T ⟩ scales as ϕ2

in this regime. Apart from the closing angle, the simulations were performed with SC. Results are averages from NS = 104

independent samples.

From Fig. 3.6b we see that, for sufficiently large N ? 10, all three curves with different ϕ overlap,

indicating that the average folding time ⟨T ⟩ has the expected scaling with this parameter in this regime.

The case is different for a low value of N , where overlapping is no longer observed, therefore the power

law relation of ⟨T ⟩ with ϕ2 is no longer valid.

To better understand these functional relationships, we plot in Fig. 3.7 the numerical results for the average
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first (a) and last (b) binding times, as well as the folding time (c), as a function of ϕ, for several values of

N . We additionally fit the data sets {ϕi, yi} of Figs. 3.7a and 3.7b (where yi are the numerical values of

the respective average binding time) to a power law,

yi = Aϕk
i , (3.33)

with parameters A and k. To estimate these parameters, we use again the method of least squares, by

finding the linear regression that best fits the data sets {xi, y′
i},

y′
i = a0 + a1xi , (3.34)

with y′
i = ln (yi), xi = ln (ϕi), and where a0 = ln (A) and a1 = k are the fitting parameters, given

by Eq. (3.8) and (3.9), respectively. The uncertainties σi of the values yi propagate to the uncertainties

σ′
i of y′

i as

σ′
i = σi

∣∣∣∣∣∂y′
i

∂yi

∣∣∣∣∣ = σi

yi

. (3.35)

The uncertainty σA of the parameter A is then calculated from σa0 using

σA = σa0

∣∣∣∣∣ ∂A

∂a0

∣∣∣∣∣ = σa0ea0 . (3.36)

The obtained values for the parameters A and k are gathered in Table 3.1.
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Figure 3.7: Numerical results for a planar IC of the average first (a) and last (b) binding times, as well as (c) the folding

time, as a function of the closing angle ϕ ∈ [19π/36, 35π/36], for four different values of N = {2, 3, 30, 100}. The graph in
(b) does not have data for N = 2 since there is only one binding time (the first one, TF ) in a system with just two lateral faces.

The solid and dashed blue lines in (a) and (b) are given by Eq. (3.33) with parameters A and k, whose values are presented

in Table 3.1, obtained by a least square fit of the data. The black line segment with slope two in (a) and (b) is a visual aid to

indicate how the data would vary should it follow a power law of the form (3.33) with k = 2. The data in (a) and (b) is plotted
in a log-log scale, while in (c) it is linear. Apart from the closing angle, the simulations were performed with SC. Results are

averages from NS = 104 independent samples.
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Table 3.1: Values of the parameters of the power law (3.33) that best predict the data from Figs. 3.7a and 3.7b, obtained

from a least square fit. The values of A are in Brownian time units.

Binding time A k

⟨TF (N = 2)⟩ 1.00±0.01 1.16±0.01

⟨TF (N = 3)⟩ 0.416±0.004 1.26±0.01

⟨TF (N = 30)⟩ 0.0335±0.0001 1.817±0.004

⟨TF (N = 100)⟩ (1937±4)×10-5 1.912±0.003

⟨TL (N = 3)⟩ 0.0539±0.0005 2.30±0.01

⟨TL (N = 30)⟩ 0.324±0.001 1.997±0.004

⟨TL (N = 100)⟩ 0.436±0.001 1.991±0.003

From Fig. 3.7a we see that, for low N , the average first binding time ⟨TF ⟩ does not exhibit a power law

relation with the closing angle ϕ. As we increase N , this relationship seems to tend to linearity (in a log-log

scale), with the parameter k also approaching a value close to two, as seen in Table 3.1. In Fig. 3.7b

the results show that, for low N , the average last binding time ⟨TL⟩ also does not follow a power law

relation with ϕ, indicating that, after the first binding, the mean first passage time (MFPT) for the N − 2

remaining particles of the lattice model does not follow the functional prediction of the average diffusion

time in a line, as given by Eq. (2.41). This implies that the assumption θi (t = TF ) < ϕ may not be

applicable when N is low. Thus the 1D Brownian processes are not well described by a singular domain

ranging from θ ∈ [0, ϕ] in this regime, and the probability of particles being found at θi (t ≥ TF ) > ϕ

must also be considered. On the other hand, for high values of N , the aforementioned assumption does

seem to be valid, with the data displaying linearity (in a log-log scale), characteristic of the power law

relation. Furthermore, the value of the parameter k is also consistent with Eq. (2.41). For N = 100, the

deviation of k from the exact value two may be due to a greater probability for particles to reach values

of θi (t ≤ TF ) > ϕ, since there is a greater number of lateral faces. This would imply an optimal value

in the range 3 < N < 100 where the assumption θi (t = TF ) < ϕ is most valid, and where the 1D

Brownian processes are therefore well described by Eq. (2.41). For the average folding time ⟨T ⟩, we see

in Fig. 3.7c that by varying ϕ we can further control the average time it takes for the folding process to

complete. Namely, while in Fig. 3.4 the results seemed to indicate that the folding time for N = 2 was

the longest for all the data points obtained, even considering up to N = 100, here the results in Fig. 3.7c

show a crossover value for ϕ between the cases N = 2 and N = 100, in which ⟨T (N = 2)⟩ is faster

than ⟨T (N = 100)⟩.

In the following two subsections we try to elucidate the functional dependence of the average first and last
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binding times with the closing angle for low values of N .

3.2.1 First binding time as a function of ϕ

As we have seen, the average first binding time for two lateral faces with outer angles θ0 and θ1 is a MFPT

associated with a 2D Brownian process. The dynamics of this process can be approximated by a 2D ran-

domwalk in a lattice ofL×L sites and reflective boundaries [40, 41]. The position (n (θ0 (t)) , n (θ1 (t)))

of the random walk in this lattice is defined by the values of the outer angles θ0 (t) and θ1 (t). For a large

enough number of sites L, the average first binding time ⟨TF (ϕ, N = 2)⟩ for a given ϕ should be given

by the MFPT to reach the target (n (ϕ) , n (ϕ)). An exact spatiotemporal analytical solution for this MFPT

in this domain configuration has already been obtained by Giuggioli [41]. To derive it the author first

obtained the occupation probability Pa⃗ (n⃗, t) for a 2D domain with reflective boundaries of finding the

random walk at site n⃗ = (n1, n2) at time t, provided it started at a⃗ = (a1, a2). n1, n2 are integers

which represent a lattice site, while a1, a2 are integers which identify the starting one. This probability can

then be linked to the first passage probability Fa⃗ (n⃗, t) for the random walk, which started at a⃗, to reach

n⃗ for the first time at time t, by means of the renewal equation [31, 35],

Pa⃗ (n⃗, t) = δt,0δn⃗,⃗a +
t∑

t′=0
Fa⃗ (n⃗, t′) Pn⃗ (n⃗, t − t′) . (3.37)

The term with the Kronecker delta functions account for the initial condition that the walk starts at a⃗ while

the convolution term takes into account the possibility for the walk to first reach n⃗ at a time t′ ≤ t with

probability Fa⃗ (n⃗, t′), and to return to n⃗ after the time interval t − t′ with probability Pn⃗ (n⃗, t − t′). If

we multiply Eq. (3.37) on both sides by zt, with z being a (generally complex) variable, and sum over

all values of t we can turn the equation into an algebraic one by making use of the following generating

functions,

P̃a⃗ (n⃗, z) =
∞∑

t=0
Pa⃗ (n⃗, t) zt , (3.38)

F̃a⃗ (n⃗, z) =
∞∑

t=0
Fa⃗ (n⃗, t) zt , (3.39)

which gives

P̃a⃗ (n⃗, z) = δn⃗,⃗a + P̃n⃗ (n⃗, z) F̃a⃗ (n⃗, z) . (3.40)
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Rearranging in order of F̃a⃗ (n⃗, z) gives the fundamental relation between the generating functions of the

occupation probability and the first passage probability,

F̃a⃗ (n⃗, z) = P̃a⃗ (n⃗, z) − δn⃗,⃗a

P̃n⃗ (n⃗, z)
. (3.41)

Finally, the MFPT ⟨ta⃗→n⃗⟩ for the random walk to first reach n⃗, provided it started at a⃗, can be obtained

using Eq. (3.41) and the following known relation between the generating function of the first passage

probability and the MFPT [42],

⟨ta⃗→n⃗⟩ = dF̃a⃗ (n⃗, z)
dz

∣∣∣∣∣
z=1

. (3.42)

Thus, for our lattice model with L sites, for two lateral faces with an identical starting outer angle of

θi (t = 0) = a, we approximate the average first binding time ⟨TF (ϕ, N = 2)⟩ by the MFPT (3.42)

with a⃗ = (n (a) , n (a)) and n⃗ = (n (ϕ) , n (ϕ)). The expression for ⟨TF (ϕ, N = 2)⟩ then consists

in a nested sum

⟨TF (ϕ, N = 2)⟩ ≃ 8∆t ·

 L−1∑
k1=1,k2=1

Kk1,k2 (ϕ) +
L−1∑
k=1

Kk,0 (ϕ)

 , (3.43)

where

Kk1,k2 (ϕ) =
{

cos2
((

n (ϕ) + 1
2

)
πk1

L

)
cos2

((
n (ϕ) + 1

2

)
πk2

L

)

− cos
((

n (a) + 1
2

)
πk1

L

)
cos

((
n (a) + 1

2

)
πk2

L

)
×

× cos
((

n (ϕ) + 1
2

)
πk1

L

)
cos

((
n (ϕ) + 1

2

)
πk2

L

)}
·
[
2 − cos

(
πk1

L

)
− cos

(
πk2

L

)]−1

.

(3.44)

To account for the time the particle spends hopping, Eq. (3.43) has been additionally multiplied by ∆t,

as given by Eq. (1.18) with NF = 2, in comparison with the solution presented in [41]. Furthermore the

site variable n has also been added one unit to account for the different site numbering convention, since

in [41] the sites start at n = 1, whereas in our work they start at n = 0. We plot Eq. (3.43) for a planar

IC (a = 0) along with the numerical data of ⟨TF (ϕ, N = 2)⟩ (presented in Fig. 3.7a) in Fig. 3.8a. Eq.

(3.43) clearly predicts the correct functional dependence of ⟨TF (N = 2)⟩ with ϕ, for a planar IC. The

small deviations are due to the possible particle-particle interactions in the interacting region θ ∈ ]ϕ, π].

This is verified by Fig. 3.8b, where we again plot Eq. (3.43) along with the data for ⟨TF (N = 2)⟩, but

now the simulation was performed without the particle-particle interactions. To turn these interactions off,
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we simply ignore condition three of step four in the algorithm presented in section 1.2.

Figure 3.8: (a) Plot of Eq. (3.43) (solid line) in units of Brownian time, with L = 181, a = 0 and D = D0, for

ϕ ∈ [19π/36, 35π/36] along with the numerical data of ⟨TF (ϕ, N = 2)⟩ as presented in Fig. 3.7a (circle points). (b) Plot of the
same Eq. (3.43) (solid line) with the same parameters as in (a), but now compared to the data obtained for ⟨TF (ϕ, N = 2)⟩
where the particle-particle interactions were turned off. Apart from the closing angle, the simulations were performed with SC.

Numerical results are averages from NS = 104 independent samples.

For N = 3, by extension, the dynamics of the first binding should be consistent with a 3D lattice random

walk in a box withL×L×L sites and reflective boundaries. The position (n (θ0 (t)) , n (θ1 (t)) , n (θ2 (t)))

of the random walker in this 3D lattice is now defined by the outer angles θ0 (t), θ1 (t) and θ2 (t) of the

three lateral faces. The average first binding time ⟨TF (N = 3)⟩, for a large L, should then be similar to

the MFPT to reach any of the set of 3L−1 targets (n (θ0 (t)) , n (ϕ) , n (ϕ)), (n (ϕ) , n (θ1 (t)) , n (ϕ))

or (n (ϕ) , n (ϕ) , n (θ2 (t))), where n (θ0 (t)) , n (θ1 (t)) , n (θ2 (t)) ∈ [0, L − 1] \ n (ϕ). Although

the general analogue of Eq. (3.43) was derived in [41] for arbitrary dimensions, it is only applicable when

there is a single target. Therefore the analytical dependence of ⟨TF (N = 3)⟩ with ϕ remains an open

question.

3.2.2 Last binding time as a function of ϕ

Results for N = 3 presented in Fig. 3.7b suggest that the assumption θi (t = TF ) < ϕ, where i is

any of the lateral faces that did not attach at the first binding, fails for a low number of lateral faces. This

prompt us to also account for the probability density function P (θi > ϕ, t) in the region at the right of

ϕ in the calculation of the MFPT distribution for the last binding time. We consider a domain consisting

of a region of size ϕ with a lower reflective boundary and an absorbing upper one, connected at the right

52



CHAPTER 3. FOLDING STATISTICS

border to another region of size θu − ϕ with the boundary types interchanged. Here, for simplicity, we

assume ∆ϕ ≃ 0, and consider the simplest case N = 3. We define Pϕ (θi, t) as the probability density

of finding the outer angle of the remaining particle i with a value θi after an elapsed time t since the first

binding time TF , which should obey the 1D diffusion equation (1.14). Since for N = 3 there is only one

lateral face still free after the first binding, we drop the subscript i, θi ≡ θ. For this domain configuration,

we hypothesize the following general piecewise solution for Pϕ (θ, t),

Pϕ (θ, t) = P<ϕ (θ, t) + P>ϕ (θ, t) = P A
R (θ, t) H (ϕ − θ) + P R

A (θ, t) H (θ − ϕ) , (3.45)

where θ ∈ [0, θu], ϕ ∈ ]0, θu[,P<ϕ (θ, t) = P A
R (θ, t) H (ϕ − θ),P>ϕ (θ, t) = P R

A (θ, t) H (θ − ϕ),

H (x) is the Heaviside step function (with the half-maximum convention),

H (x) =



0 , if x < 0

1
2 , if x = 0

1 , if x > 0

, (3.46)

while P A
R (θ, t) and P R

A (θ, t) are the solutions of the 1D diffusion equation for a system that ranges from

0 to ϕ with a reflective lower boundary and absorbing upper one, and another that ranges from 0 to θu −ϕ

with an absorbing lower boundary and a reflective upper one, respectively,


P A

R (θ, t) = ∑∞
m=0 Ame−k2

mDt cos (kmθ)

P R
A (θ, t) = ∑∞

m=0 Bme−k′
m

2Dt sin (k′
m · (θ − ϕ))

, (3.47)

with eigenvalues km = π/ϕ·(1/2 + m) and k′
m = (π/(θu−ϕ))·(1/2 + m), whileAm andBm are constants

to be defined from the distribution of this outer angle at the moment of the first binding, Pϕ (θ, t = 0).

Since the first binding time TF is a random variable, so is the distribution Pϕ (θ, t = 0), since it depends

on TF . As we are trying to compute the mean of a random variable, we bypass this intricacy by considering

instead the average of this distribution,

PF (θ, ϕ) ≡ ⟨Pϕ (θ, t = 0)⟩ =
∫ ∞

0
P (θ, tF | free) fF (tF ) dtF , (3.48)

where fF (t′) is the PDF for the MFPT associated with the 2D Brownian processes, as introduced in
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subsection 3.1.1, while P (θ, t′ | free) is the probability density of the outer angle θi having a value of

θ at the first binding time TF = tF , provided that i is the lateral face that does not attach at the first

binding. Thus, P (θ, t′ | free), and by extension PF (θ, ϕ), is a conditional probability density. We set ϕ

as an argument in PF (θ, ϕ) as we expect in advance that this average conditional distribution should in

general depend on the closing angle. The IC then reads


P<ϕ (θ, t = 0) = PF (θ, ϕ) H (ϕ − θ)

P>ϕ (θ, t = 0) = PF (θ, ϕ) H (θ − ϕ)

, (3.49)

From these ICs we have


H (ϕ − θ)∑∞

m=0 Am cos (kmθ) = PF (θ, ϕ) H (ϕ − θ)

H (θ − ϕ)∑∞
m=0 Bm sin (k′

m · (θ − ϕ)) = PF (θ, ϕ) H (θ − ϕ)

. (3.50)

Multiplying the first equation by cos (knθ) and the second by sin (k′
n · (θ − ϕ)), with n ∈ N0, and

integrating both equations in θ over the whole angular domain (while also making the change of variable

θ − ϕ → x in the second equation) we get


∑∞

m=0 Am

∫ ϕ
0 cos (knθ) cos (kmθ) dθ =

∫ ϕ
0 cos (knθ) PF (θ, ϕ) dθ

∑∞
m=0 Bm

∫ θu−ϕ
0 sin (k′

nx) sin (k′
mx) dx =

∫ θu−ϕ
0 sin (k′

nx) PF (x + ϕ, ϕ) dx

. (3.51)

We can make use of the orthogonality of the trigonometric functions (see appendix D),


∫ ϕ

0 cos (knθ) cos (kmθ) dθ = ϕ
2 δm,n

∫ θu−ϕ
0 sin (k′

nx) sin (k′
mx) dx = θu−ϕ

2 δm,n

, (3.52)

to redefine the values of Am and Bm in Eqs. (3.51) in terms of the integral involving PF (θ, ϕ),


Am = 2

ϕ

∫ ϕ
0 cos (kmθ) PF (θ, ϕ) dθ ≡ 2

ϕ
C(1)

m (ϕ)

Bm = 2
θu−ϕ

∫ θu−ϕ
0 sin (k′

mx) PF (x + ϕ, ϕ) dx ≡ 2
θu−ϕ

C(2)
m (ϕ)

. (3.53)
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Eq. (3.45) is then cast in the following form

Pϕ (θ, t) = H (ϕ − θ) 2
ϕ

∞∑
m=0

C(1)
m (ϕ) e−k2

mDt cos (kmθ) + (3.54)

+ H (θ − ϕ) 2
l − ϕ

∞∑
m=0

C(2)
m (ϕ) e−k′

m
2Dt sin (k′

m · (θ − ϕ)) . (3.55)

The PDF fϕ (t) of the last binding time TL for N = 3 is, as before, given by the flux at the closing angle

ϕ, but we need to be aware of a little nuance, which is the fact that the probability concentration ‘exits’ the

left region at ϕ by going from left to right, while it ‘exits’ the right one at ϕ by going from right to left, so

their fluxes must have opposite signs. Instead of computing the derivatives exactly at θ = ϕ (remembering

that ∂H(x)/∂x = δ (x)), we introduce a small real number ε > 0, and immediately take the limit ε → 0,

so that we can unambiguously attribute the value one to the Heaviside step functions after the derivation,

fϕ (t) = lim
ε→0

−D
∂Pθ<ϕ (θ, t)

∂θ

∣∣∣∣∣
θ=ϕ−ε

+ D
∂Pθ>ϕ (θ, t)

∂θ

∣∣∣∣∣
θ=ϕ+ε

 =

= D ·

−P A
R (ϕ, t) − ∂P A

R (θ, t)
∂θ

∣∣∣∣∣
θ=ϕ

+ P R
A (ϕ, t) + ∂P R

A (θ, t)
∂θ

∣∣∣∣∣
θ=ϕ

 . (3.56)

Knowing that 

P A
R (ϕ, t) = 0

∂P A
R (θ,t)
∂θ

∣∣∣∣
θ=ϕ

= − 2
ϕ

∑∞
m=0 (−1)m kme−k2

mDtC(1)
m (ϕ)

P R
A (ϕ, t) = 0

∂P R
A (θ,t)
∂θ

∣∣∣∣
θ=ϕ

= 2
θu−ϕ

∑∞
m=0 k′

me−k′
m

2DtC(2)
m (ϕ)

, (3.57)

we have

fϕ (t) = 2D ·
[

1
ϕ

∞∑
m=0

(−1)m kme−k2
mDtC(1)

m (ϕ) + 1
θu − ϕ

∞∑
m=0

k′
me−k′

m
2DtC(2)

m (ϕ)
]

. (3.58)

The average of the last binding time ⟨TL (ϕ, N = 3)⟩ for three lateral faces is then given by

⟨TL (ϕ, N = 3)⟩ =
∫ ∞

0
tfϕ (t) dt . (3.59)

The integrals in Eq. (3.59) are of the form (2.28), and after computing them we arrive at the expression

for the average last binding time, for N = 3, which takes into account the region at the right of the closing
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angle ϕ,

⟨TL (ϕ, N = 3)⟩ = 2
D

·
[

1
ϕ

∞∑
m=0

(−1)m

k3
m

C(1)
m (ϕ) + 1

θu − ϕ

∞∑
m=0

1
k′

m
3 C(2)

m (ϕ)
]

, (3.60)

with parameters 

km = π
ϕ

·
(

1
2 + m

)
k′

m = π
θu−ϕ

·
(

1
2 + m

)
C(1)

m (ϕ) =
∫ ϕ

0 cos (kmθ) PF (θ, ϕ) dθ

C(2)
m (ϕ) =

∫ θu
ϕ sin (k′

m · (θ − ϕ)) PF (θ, ϕ) dθ

. (3.61)

If we were to assume that θ < ϕ at the first binding moment was always true, and that its distribution is,

on average, uniform over the subdomain θ ∈ [0, ϕ[, then PF (θ, ϕ) = (1/ϕ) H (ϕ − θ), and so


C(1)

m = 1
ϕ

∫ ϕ
0 cos (kmθ) dθ = (−1)m

ϕkm

C(2)
m = 0

. (3.62)

Plugging these coefficients into Eq. (3.60) would give

⟨TL (ϕ, N = 3)⟩ = 2
ϕ2D

∞∑
m=0

1
k4

m

, (3.63)

which is equal to Eq. (2.44), and so the solution of ⟨TL (ϕ, N = 3)⟩ with these assumptions would be

equivalent to Eq. (2.48), the average time it takes for a diffusing particle in a line of length ϕ with a

reflective and absorbing boundary, starting with a uniform distribution, to reach the absorbing boundary,

⟨TL (ϕ, N = 3)⟩ = ⟨tD⟩R = ϕ2

3D
, for PF (θ, ϕ) = (1/ϕ) H (ϕ − θ). (3.64)

On the other hand, if, on average, the angular distribution of the free lateral face at the moment of the first

binding were uniform over the whole domain θ ∈ [0, θu], so PF (θ, ϕ) = 1/θu, we would have


C(1)

m = 1
θu

∫ ϕ
0 cos (kmθ) dθ = (−1)m

θukm

C(2)
m = 1

θu

∫ θu
ϕ sin (k′

m · (θ − ϕ)) dθ = 1
θuk′

m

. (3.65)
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Plugging these results in Eq. (3.60) we get

⟨TL (ϕ, N = 3)⟩ = 2
θuD

·
[

1
ϕ

∞∑
m=0

1
k4

m

+ 1
θu − ϕ

∞∑
m=0

1
k′

m
4

]
=

2 ·
[
ϕ3 + (θu − ϕ)3

]
π4θuD

∞∑
m=0

1(
1
2 + m

)4 .

(3.66)

From Eq. (2.47) we see that the series in the rightmost hand-side of Eq. (3.66) is equal to π4/6. Thus,

using the value θu = π for a pinned system, we get the following result for the average last binding

⟨TL (ϕ, N = 3)⟩ for three lateral faces, in which the outer angle of the free one has, on average, a

uniform angular distribution at the moment of the first binding,

⟨TL (ϕ, N = 3)⟩ = 1
3πD

·
[
ϕ3 + (π − ϕ)3

]
=

= ϕ

π

ϕ2

3D
+ π − ϕ

π

(π − ϕ)2

3D
, for PF (θ, ϕ) = 1/π. (3.67)

By comparing this result with Eq. (2.48) we notice that this average is just the weighted sum of the two

individual MFPTs for a diffusing particle, starting with a uniform distribution in the respective subdomains

of length ϕ and π − ϕ, to reach the absorbing boundary. However, the following numerical results will

show that the average angular distribution of the free lateral face is not uniform at the moment of the first

binding.

Considering the lattice model, we define now εϕ (n) as the average conditional occupation probability of

finding the free particle at site n at the moment the other two get trapped at n (ϕ),

εϕ (n) =
∫ ∞

0
Pn (tF | free) fF (tF ) dtF , (3.68)

where Pn (tF | free) is the probability of finding the random walk i at site n at time tF = TF , which

should satisfy Eq. (1.6), provided that i is the particle not yet trapped after the first binding.

If we divide εϕ (n) by the lattice spacing ∆θ, and take the limit L → ∞, this fraction should converge to

PF (θ, ϕ),

PF (θ, ϕ) = lim
L→∞

εϕ (n)
∆θ

. (3.69)

We ran NS independent simulations with N = 3 to estimate εϕ (n) numerically by performing a Bernoulli

trial,

εϕ (n) ≃ Bn

NS

, for large NS , (3.70)

where Bn is the number of times out of a total of NS that the free particle was at site n at the moment
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the other two particles met at n (ϕ). The results of these simulations for a planar IC, for two values of

ϕ = {5π/9, 2π/3} are presented in Figs. 3.9a and 3.9b. As we can see, the distribution PF (θ, ϕ) is

far from uniform. We also present independent simulation results for a random IC in Figs. 3.9c and

3.9d to show that for this case PF (θ, ϕ) is also not uniform. This means that lateral faces starting the

folding process with a uniform angular distribution do not ensure that the average distribution of the one

still free is also uniform when the first binding occurs. We believe this is due to the conditional nature

of this probability density. For N = 3, before the first binding, we have three trajectories in the angular

space associated with the three outer angles θi, i = {0, 1, 2}. From these three, only the one associated

with the lateral face that does not attach at the first binding will contribute to PF (θ, ϕ). Trajectories in

the angular space that have the outer angle θi far from ϕ when the first binding is imminent have higher

weight in PF (θ, ϕ) compared to the ones that are closer since intuitively there is a higher probability that

i is not the lateral face out of the three that will attach at the first binding.

Figure 3.9: (a,b) Histograms with 181 bins each made from NS = 106 independent samples of the average conditional

occupation probability εϕ (n) of finding the free particle at site n at the moment the other two get trapped at n (ϕ), as estimated
from Eq. (3.70), for a planar IC, for two values of the closing angle ϕ = {5π/9, 2π/3}. (c,d) The results for the same probability
with the same two values of ϕ, but with a random IC. Apart from the closing angle, the simulations were performed with SC.

The average probability ⟨P (θ < ϕ, TF )⟩ of finding the free particle at the left subdomain θ ∈ [0, ϕ[
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when the first binding occurs is related to PF (θ, ϕ) by

⟨P (θ < ϕ, TF )⟩ =
∫ ϕ

0
PF (θ, ϕ) dθ . (3.71)

We estimate this probability numerically by again performing a Bernoulli trial,

⟨P (θ < ϕ, TF )⟩ ≃ B<ϕ

NS

, for large NS , (3.72)

where B<ϕ is the number of times out of a total of NS that the free particle was at a site n < n (ϕ) at

the moment the other two particles met at n (ϕ). From the results presented in Fig. 3.10 we see that the

conditional nature ofPF (θ, ϕ) and the planar IC lead to a non-linear average probability ⟨P (θ < ϕ, TF )⟩

as a function of ϕ.

Figure 3.10: Numerical results of the average probability ⟨P (θ < ϕ, TF )⟩ of finding the free particle at the left subdo-
main θ ∈ [0, ϕ[ when the first binding occurs, as a function of ϕ (with ϕ ∈ [π/180, π] in (a), and ϕ ∈ [0, π] in (b)), as

estimated from Eq. (3.72), for a (a) planar and (b) random ICs. The solid line corresponds to the hypothetical case where the

probability density of the free particle at the moment of the first binding is, on average, uniform, so PF (θ, ϕ) = 1/π, and

thus ⟨P (θ < ϕ, TF )⟩ = ϕ/π. Points inside the greyed-out region are geometrically forbidden in the context of this kirigami

structure, and are only plotted for theoretical insight. The points half inside this region, ϕ = π/2 and ϕ = π, have geometrical

meaning only if they are interpreted as limiting values, approached from the right and the left, respectively. Apart from the

closing angle, the simulations were performed with SC. Numerical results are averages from NS = 104 independent trials.

We now compare in Table 3.2 the theoretical value predicted by Eq. (3.60) for the average last binding time

with N = 3 and ϕ = {5π/9, 2π/3}, for a planar IC, with the respective numerical results presented in Fig.

3.7b. To estimate the coefficients C(1)
m (ϕ) and C(2)

m (ϕ) in Eq. (3.60) we approximate the integration to
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a sum using the trapezoid rule,


C(1)

m (ϕ) ≃ ∆θ
2
∑n(ϕ)

i=1

[
cos (kmθ (i − 1)) εϕ(i)

∆θ
+ cos (kmθ (i)) εϕ(i+1)

∆θ

]
C(2)

m (ϕ) ≃ ∆θ
2
∑L−1

i=n(ϕ)+1

[
sin (k′

m · (θ (i − 1) − ϕ)) εϕ(i)
∆θ

+ sin (k′
m · (θ (i) − ϕ)) εϕ(i+1)

∆θ

] ,

(3.73)

where θ (i) is calculated according to Eq. (1.2), εϕ (i) is the value of the i-th bin of the respective

histogram in Fig. 3.9, ∆θ is the usual lattice spacing, n (ϕ) + 1 is the number of the bin associated with

the trapping site, and L is the usual number of lattice sites, equal to the number of bins used in each of

the histograms of Fig. 3.9. To compute the series, since the first eigenmode m = 0 dominates over the

others [35], we consider only a few terms in the summation, truncating at m = 15. We also compare

with the case in which we assume θ < ϕ at the first binding, in which case the average last binding time

for N = 3 should vary with ϕ according to Eq. (3.64). We also present the absolute value of the relative

error ∆X between the semi-analytical and numerical values, calculated as before using Eq. (2.55).

Table 3.2: Table with the numerical values of the average last binding time ⟨TL (ϕ, N = 3)⟩ for three lateral faces, for
two values of ϕ = {5π/9, 2π/3} (second and sixth circle points, respectively, of Fig. 3.7b), for a planar IC, compared with the

semi-analytical prediction of Eq. (3.60) (third column) and the average diffusion time ⟨tD⟩R for a uniform random IC (fourth

column), given by Eq. (3.64). The series of Eq. (3.60) were truncated at m = 15, and the coefficients C
(1)
m (ϕ) and C

(2)
m (ϕ)

were calculated by means of the trapezoid rule, Eqs. (3.73), using the values of the histogram in Fig. 3.9a for ϕ = 2π/3, and

the values from the one in Fig. 3.9b for ϕ = 5π/9. The absolute value of the relative error ∆X , as calculated from Eq. (2.55),

between the numerical value and the predictions of Eqs. (3.60) and (3.64) is also presented in the fifth and sixth column,

respectively. The parameters used in the equations were D = D0, θu = π and L = 181. All time averages are presented
in Brownian time units.

Closing angle
Numerical
value

Eq. (3.60) Eq. (3.64)
|∆X| (%) - Eq.
(3.60)

|∆X| (%) - Eq.
(3.64)

ϕ = 5π/9 0.199±0.002 ≈0.200 50/243≈0.206 0.50 3.27

ϕ = 2π/3 0.277±0.003 ≈0.274 8/27≈0.296 1.09 6.51

As seen in Table 3.2, the numerical values of ⟨TL (ϕ, N = 3)⟩ for ϕ = {5π/9, 2π/3} agree well with

Eq. (3.60), with the semi-analytical predictions within the uncertainty of the simulated values, for both

cases. The higher precision of Eq. (3.60) compared with (3.64) is also significant, consistent with the

respective relative errors presented in the last two columns. Surprisingly, Eq. (3.64), which assumes

θ (TF ) < ϕ, has greater precision estimating ⟨TL (ϕ, N = 3)⟩ for the lower value of ϕ, for which the

average probability ⟨P (θ < ϕ, TF )⟩ of finding the free particle at the left subdomain at the first binding

is also lower, as seen from Fig. 3.10a.

For higher values of N > 3, ⟨TL (ϕ, N)⟩ can in principle be estimated by Eq. (3.16) with the distribution
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fL (t) given by Eq. (3.60). However, the interpretation of the average conditional probability density

PF (θ, ϕ) needs to be slightly modified to account for the number N − 2 > 1 of additional lateral faces

still free after the first binding.

3.3 Effects of the degree of interaction on the average folding

time

In this section we present numerical results to help elucidate how the types of interactions between lateral

faces may affect the average binding times. In subsection 3.3.1 we analyse the effect that the particle-

particle interactions in the interacting region have on these mean times. In subsection 3.3.2 we study how

these times change if binding is only possible between the edges of lateral faces. Again, we consider only

pinned systems.

3.3.1 Effect of the particle-particle interaction on the average binding times

Up until now we have been assuming without great reason that the particle-particle interactions in the sites

n ∈ ]n (ϕ) , L − 1] associated with the interacting region have negligible preponderance in the estima-

tions of the average binding times. Here we show that this assumption is valid by comparing numerical

results between simulations where these particle-particle interactions are possible and simulations where

they are not. As before, to turn off these interactions, we simply ignore condition three of the fourth step

in the algorithm presented in section 1.2.

In Fig. 3.11 we present this comparison for ⟨TF ⟩, ⟨TL⟩ and ⟨T ⟩ obtained for simulations in SC as a

function of N , for a planar IC. We see that the deviations between the average binding times of these two

cases are indeed very small, with only perceptible differences for the lowest values of N = 2 and N = 3.
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Figure 3.11: Comparison of numerical results for the average binding times ⟨TF ⟩ (a), ⟨TL⟩ (b) and average folding time
⟨T ⟩ (c) as a function of the number of lateral faces N ∈ [2, 100] for a planar IC between simulations where particle-particle

interactions are possible in the interacting region (circle points) and simulations where they are not (triangle points). For both

cases, the parameters of the simulations were in SC. Results are averages from NS = 104 independent samples.

To show that these deviations are still small even if the interacting region is larger, we plot in Fig. 3.12b the

results of a similar analysis but for a closing angle of ϕ = π/2, the value for which the interacting region

encompasses the most angular space while ϕ is still geometrically allowed in the context of this kirigami

structure if interpreted as a limiting value, approached from the right. Moreover we also compare in Fig.

3.12c and 3.12d these two cases of degrees of interactions but with a random IC, for the same two values

of ϕ.
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Figure 3.12: Comparison of numerical results for the average first and last binding times, as well as the average folding

time, as a function of the number of lateral faces N ∈ [2, 100], between simulations where particle-particle interactions are
possible in the interacting region (circle points) and simulations where they are not (triangle points), for a planar IC (a,b) and

a random one (c,d), for two values of the closing angle, ϕ = 2π/3 (a,c) and ϕ = π/2 (b,d). The value ϕ = π/2 is to be

interpreted as a limiting value, approached from the right, so that it still retains geometrical meaning for this kirigami structure.

For both cases of degree of interaction, apart from the closing angle, the parameters of the simulations were in SC. Results are

averages from NS = 104 independent samples.

For better readability, we plot in Fig. 3.13 the absolute value of the relative difference ∆ ⟨T ⟩ between the

numerical values of Fig. 3.12 of the average folding time ⟨T ⟩int with particle-particle interactions and the

corresponding average folding time ⟨T ⟩no int without them,

∆ ⟨T ⟩ = ⟨T ⟩int
⟨T ⟩no int

− 1 . (3.74)

The uncertainty σ∆⟨T ⟩ in ∆ ⟨T ⟩ is calculated from the uncertainties σint and σno int of ⟨T ⟩int and ⟨T ⟩no int,

63



CHAPTER 3. FOLDING STATISTICS

respectively, by error propagation,

σ∆⟨T ⟩ =

√√√√(σint
∂∆ ⟨T ⟩
∂ ⟨T ⟩int

)2

+
(

σno int
∂∆ ⟨T ⟩

∂ ⟨T ⟩no int

)2

=

√√√√( σint

⟨T ⟩no int

)2

+
(

σno int ⟨T ⟩int
(⟨T ⟩no int)

2

)2

.

(3.75)

Figure 3.13: Absolute value of the relative difference ∆ ⟨T ⟩, as calculated from Eq. (3.74), between the numerical values

presented in Fig. 3.12 of the average folding time ⟨T ⟩ with and without particle-particle interactions in the interacting region,
for the two values of ϕ = {π/2, 2π/3}, for both planar and random ICs.

From Fig. 3.13 we see that the relative difference between the average times for folding processes with

and without particle-particle interactions in the interacting region are largest for the first few values of N ,

ranging from six to two percent, independently of the IC and the closing angle, and quickly converge to

even smaller values close to zero as N increases. An exception of this converging behaviour is found for

the case of a random IC with ϕ = 2π/3, where this relative difference seems to slightly increase again for

high values of N ? 70. It is noteworthy that this slight increase for the case of ϕ = 2π/3 implies that, for a

random IC, when N ? 70 is large, the particle-particle interactions have a greater preponderance on the

average folding time when compared to the case of ϕ = π/2, in which the interacting region encompasses

a larger portion of the angular space.

3.3.2 Folding times for edge only binding

Here we address the question of how the average binding times and the total folding time changes if the

lateral faces can only bind through their edges to their adjacent face. The indexes jR and jL of the right
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and left adjacent face of some lateral face i, respectively, are defined by

jR =


i + 1 , if i < N − 1

0 , if i = N − 1

, (3.76)

jL =


i − 1 , if i > 0

N − 1 , if i = 0

. (3.77)

We will refer to this type of binding as edge only binding. For the binding where lateral faces may attach

through vertices, we will coin it nonspecific binding. To implement the edge only binding in the simulations,

we change step six of the algorithm presented in subsection 1.2 in the following way

6.* If the new position of the randomly chosen particle i is n (ϕ) (or either n (−ϕ) or n (ϕ), for

the case of a suspended system) corresponding to the closing angle, if Nn(ϕ) (t) > 1 (or either

Nn(−ϕ) (t) > 1 if the particle is at n (−ϕ) or Nn(ϕ) (t) > 1 if it is at n (ϕ), for the suspended

system), and if any other particle at that site is either jR or jL, as given respectively by Eqs. (3.76)

and (3.77), the site acts as a sticky site and traps the new-coming particle, as well as jR and/or jL

if they are not yet trapped; if it is the first time particles are getting absorbed at a closing angle, the

current value of t corresponds to the first binding time TF ; update the number of particles that are

still free, by subtracting the correct amount from NF and removing from the list of free particles

the ones that just got trapped;

For a template with N lateral faces which can only attach through the edges, the number of possible pairs

of faces that can attach at the first binding is now only N . Thus, the number of competing 2D Brownian

processes associated with the first binding event is also just N for a folding process with this type of

binding. The average first binding time as a function of N , as given by Eq. (3.4), should be modified to

reflect this different type of binding,

⟨TF (N)⟩adj = N
∫ ∞

0
tfF (t) ·

[∫ ∞

t
fF (t′) dt′

]N−1
dt , (3.78)

where the subscript in ⟨TF ⟩ indicates that this is the average first binding time for a folding process where

binding occurs only between edges.

As before, we assume that for a planar IC, the asymptotic solution of Eq. (3.78) for large N should be
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proportional to the inverse of the logarithm of the number of competing 2D Brownian processes,

⟨TF (N)⟩adj ∝ 1
ln (N)

. (3.79)

The last binding event for folding with edge only binding is no longer simply defined by a set of 1D Brownian

processes, but rather a mixing of 1D and 2D ones, since the remaining N − 2 lateral faces can still either

bind in pairs or one by one if their adjacent faces have already bound. Estimating the average last binding

time under these conditions then becomes a more intricate task.

In Fig. 3.14 we present a comparison between the numerical results of the average first and last binding

times, as well as the average folding time, of folding processes with edge only and nonspecific binding. In

Fig. 3.14a we also fit the numerical data of the edge only binding case with the following linear model,

y (x) = τF0,adj + τF,adjx , (3.80)

using the method of linear least squares, where x = 1/ln(N), while τF0,adj and τF,adj are the fitting para-

meters.
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Figure 3.14: Comparison of numerical results for the average binding times ⟨TF ⟩ (a), ⟨TL⟩ (b) and average folding time
⟨T ⟩ (c) as a function of the number of lateral faces N ∈ [2, 100] for a planar IC between simulations where binding is

nonspecific (circle points) and simulations where binding can only occur through edges (triangle points). The solid line in (a) is

given by Eq. (3.80), with fitting parameters τF0,adj = −0.1278±0.0009 and τF,adj = 1.387±0.004 obtained from a linear

least square fit of the data, ignoring the first four points N = {2, 3, 4, 5}. For both cases, the parameters of the simulations
were in SC. Results are averages from NS = 104 independent samples.

We can see that average first binding time when binding can only occur through edges has a slower decay,

following the predicted the proportionality (3.79) well for large N .

For a random IC, if we assume again that the distribution fF (t) is approximately exponential,

fF (t) ≃ 1
τF,R,adj

e
− t

τF,R,adj , (3.81)

with a characteristic decay time τF,R,adj, the average first binding time given by Eq. (3.78) reads

⟨TF (N)⟩R,adj ≃ N

τF,R,adj

∫ ∞

0
te

−t N
τF,R,adj dt = τF,R,adj

N
. (3.82)
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We present in Fig. 3.15 the numerical results for the average first and last binding times, as well as the

average folding time, from a folding with edge only binding, with a random IC. In Fig. 3.15a we fit the data

of both binding type cases to the following power law,

y (N) = ANk , (3.83)

with parameters A and k. The fitting is done by the method of linear least squares, by taking the logarithm

of Eq. (3.83).

Figure 3.15: Comparison of numerical results for the average binding times ⟨TF ⟩ (a), ⟨TL⟩ (b) and average folding time
⟨T ⟩ (c) as a function of the number of lateral faces N ∈ [2, 100] for a random IC between simulations where binding is

nonspecific (circle points) and simulations where binding can only occur through edges (triangle points). The solid and dashed

lines in (a) are given by Eq. (3.83), with fitting parameters (A, k) obtained from a linear least square fit of the data, ignoring

the points up to N = 12 (exclusive), the value for which the relative difference N2
/(N ·(N−1)) − 1 is less than 10%. The

values of these parameters are (2.27 ± 0.01, −2.143 ± 0.004) and (0.96 ± 0.01, −1.042 ± 0.003) for the nonspecific
and edge only binding cases, respectively. For both cases, the parameters of the simulations were in SC. Results are averages

from NS = 104 independent samples.
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From Figs. (3.14) and (3.14) we can see that, for a random IC, the average first binding time decays

with N as expected when N is large, for both cases. When binding is nonspecific, we have seen that

in the asymptotic limit this average time should decay as N−2, while for edge only binding it should be

proportional to N−1 instead in this same limit. The fitted parameter k of the power law (3.83) seems to

corroborate this. The small discrepancies from the integer values of two and one, mainly for the nonspecific

binding type, may be due to the fact that the assumed FPT distribution is only an approximation. We also

observe a slight shift to the left of the minimum of ⟨T ⟩ when the faces can only bind between the edges,

whilst this minimum also has a higher value. This is due to a slower decay of ⟨TF ⟩ with N when lateral

faces bind only between edges, as opposed when binding is nonspecific, since ⟨TL⟩ remains similar in

this regime of low N between the two binding types.

3.4 Dependence of the average folding time on the initial con-

ditions

We now study how different initial conditions affect the average folding time. Until now we have performed

analysis for two ICs, the planar and random one. Here we present four additional ones and compare the

average binding and folding times for the six ICs, both in a pinned and suspended system. To prevent

misfolding, we consider only the cases with two and three lateral faces. We list all six ICs below, introducing

again the planar and random ones for convenience. The first paragraph describes the state of the kirigami

structure for that IC, while the second one explains how the IC is implemented in the lattice model. In

this section we rename the usual random IC as ’Random 2’ to distinguish it from two other ICs which will

be introduced here, who also define an initial configuration with lateral faces starting with an outer angle

uniformly distributed in the angular space.

Planar the folding starts from a flat template;

all N particles are allocated at the zeroth site of the lattice, for a pinned system, so

Nn (t = 0) = Nδn,0 ; (3.84)

if it is a suspended system, all N particles are placed in the middle of the lattice, calculated as

am = ⌊L/2⌋, in which case

Nn (t = 0) = Nδn,am ; (3.85)
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Random 1 one lateral face starts with a zero outer angle, coplanar with the base, and the remaining

ones start with an outer angle uniformly distributed over the angular space;

for N particles, the first one is allocated either at the zeroth site, if it is a pinned system, or at

the middle site am, for a suspended one; for the remaining N − 1 particles, an integer random

number rL ∈ [0, LF − 1] is generated, where LF is the number of sites where a particle may still

be placed, to choose a site from the list Sn of available sites where the particle is then allocated;

before generating any value of rL, LF = L and Sn = {0, 1, ..., L − 1}; for each output i of rL, if

the randomly selected site ai corresponding to the list elementSn

(
r

(i)
L

)
is ai ≥ n (ϕ), for a pinned

system, or ai ≤ n (−ϕ) ∨ ai ≥ n (ϕ), for a suspended one, subtract one unit from LF , and

update the list Sn of available sites by removing the one that just got chosen, Sn → Sn\Sn

(
r

(i)
L

)
;

with the set of randomly selected sites {a1, a2, ..., aN−1}, for a pinned system, the N particles

are distributed according to

Nn (t = 0) = δn,0 +
N−1∑
i=1

δn,ai
, (3.86)

while for a suspended one we have

Nn (t = 0) = δn,am +
N−1∑
i=1

δn,ai
; (3.87)

Random 2 each lateral face starts from an outer angle uniformly distributed over the angular space;

each of the N particles are distributed randomly according to the outputs of the integer random

variable rL, as defined in the random 1 IC; with the set of randomly selected sites {a1, a2, ..., aN},

the N particles are distributed according to

Nn (t = 0) =
N∑

i=1
δn,ai

; (3.88)

Random 3 one lateral face starts with an outer angle of π, touching the base from above, and the

remaining ones start with an outer angle uniformly distributed over the angular space;

for N particles, the first one is allocated at L − 1, and the remaining N − 1 are distributed

randomly according to the outputs of the integer random variable rL, as defined in the random IC;

for this IC however, before generating any value of rL, LF = L − 1 and Sn = {0, 1, ..., L − 2}

contains all lattice sites except L − 1; with the set of randomly selected sites {a1, a2, ..., aN−1},

70



CHAPTER 3. FOLDING STATISTICS

the N particles are distributed according to

Nn (t = 0) = δn,L−1 +
N−1∑
i=1

δn,ai
; (3.89)

Stacking all lateral faces are stacked on top of each other at upper side of the base, with an outer angle

difference between each other of ∆θ, chosen to match the lattice spacing for the SC; if the number

of lateral faces is enough for their cumulative outer angle difference to surpass the value of the

closing angle (so N > ⌊(π−ϕ)/∆θ⌋), the remaining N − ⌊(π−ϕ)/∆θ⌋ particles all have an outer

angle of ϕ − ∆θ;

for N particles, from the first ensemble of L − n (ϕ) particles, the i-th one is allocated at site

L − i, while the remaining N − (L − n (ϕ)) ≡ N are all allocated at site n (ϕ) − 1; the initial

distribution then reads

Nn (t = 0) =
N−N ξ∑

i=1
δn,L−i + N δn,n(ϕ)−1ξ , (3.90)

where ξ = H [N ] and H [x] is the discrete Heaviside step function,

H [x] =


0 , if x ≤ 0

1 , if x > 0

, for x ∈ Z; (3.91)

if the number of particles is not larger than the number of sites in n ∈ [n (ϕ) , L − 1] the initial

distribution (3.90) simplifies to

Nn (t = 0) =
N∑

i=1
δn,L−i , for N ≤ L − n (ϕ); (3.92)

Opposite stacking for a pinned system, half the lateral faces are stacked on top of each other at the

upper side of the base, until their cumulative outer angle difference surpasses the value of the

closing angle , at which point the remaining ones of this half all have an outer angle of ϕ − ∆θ,

while the other half of lateral faces all have a zero outer angle; for a suspended system, one half

is stacked at the upper side of the base, while the other half is stacked at the lower side, until the

cumulative outer angle difference of each stack surpasses the value of the closing angle, at which

point the remaining lateral faces of each half all have a respective outer angle of ϕ − ∆θ for the

upper stack, and −ϕ + ∆θ for the lower one; for both systems, the lateral faces stacked on each
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side have an outer angle difference of ∆θ; if the number of lateral faces is odd, the additional

lateral face is always stacked on the upper side;

for N particles, for a pinned system, from the first ⌊(N+1)/2⌋ particles, the i-th particle from

the ensemble of L − n (ϕ) particles is placed at site L − i, while the remaining ⌊(N+1)/2⌋ −

(L − n (ϕ)) ≡ Np are all allocated at site n (ϕ) − 1; the other ⌊N/2⌋ particles are all allocated

at the zeroth site; the initial distribution is then

Nn (t = 0) =
⌊

N

2

⌋
δn,0 +

⌊(N+1)/2⌋−Npξp∑
i=1

δn,L−i + Npδn,n(ϕ)−1ξp , (3.93)

where ξp = H [N − 2 (L − n (ϕ))]; if the number of particles is not larger than twice the number

of sites in n ∈ [n (ϕ) , L − 1] the initial distribution (3.93) simplifies to

Nn (t = 0) =
⌊

N

2

⌋
δn,0 +

⌊(N+1)/2⌋∑
i=1

δn,L−i , for N ≤ 2 (L − n (ϕ)); (3.94)

for a suspended system, from the first ⌊(N+1)/2⌋ particles, the i-th particle from the ensemble of

n (−ϕ)+1 particles is placed at siteL−i, while the remaining ⌊(N+1)/2⌋−(n (−ϕ) + 1) ≡ Nu

are all allocated at site n (ϕ) − 1; from the other ⌊N/2⌋ particles, the j-th particle (with j starting

at ⌊(N+1)/2⌋) from the ensemble n (−ϕ) + 1 is placed at site j − ⌊(N+1)/2⌋, while the remaining

⌊N/2⌋ − (n (−ϕ) + 1) ≡ Nl are all allocated at site n (−ϕ) + 1; the initial distribution is then

Nn (t = 0) =
⌊N/2⌋−Nlξs∑

i=1
δn,i−1 + Nlδn,n(−ϕ)+1ξs

+
⌊(N+1)/2⌋−Nuξs∑

i=1
δn,L−i + Nuδn,n(ϕ)−1ξs , (3.95)

where ξs = H [N − 2 (n (−ϕ) + 1)]; if the number of particles is not larger than twice the

number of sites in n ∈ [n (ϕ) , L − 1] the initial distribution (3.95) simplifies to

Nn (t = 0) =
⌊N/2⌋∑
i=1

δn,i−1 +
⌊(N+1)/2⌋∑

i=1
δn,L−i , for N ≤ 2 (n (−ϕ) + 1); (3.96)

The initial configurations of a pyramid net with N = 3 for these six ICs are schematized in Fig. 3.16.
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Figure 3.16: Schematic representations of the initial configuration of a pyramid net with N = 3 lateral faces and closing

angle ϕ = 2π/3 for the six ICs presented in this section, for both a pinned system (left column) and a suspended one (right

column). The overall transparent lateral faces in ICs (b-d) serve to portray the uniform random distribution of their outer angles.

The two ICs (a,e) are completely identical between the two types of systems. The third lateral face in IC (f) for a suspended

system is not visible since it is touching the base from below.

In Fig. 3.17 we present the average folding times with N = 2 for these six different ICs, both for a pinned

and suspended system, while in Fig. 3.18 we present the results for N = 3. The distributions from which

these averages were computed are presented in Figs. E.1-E.4 of appendix E.
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Figure 3.17: Comparison of the average folding times ⟨T ⟩ for N = 2 between six different ICs, for both a pinned (a)

and suspended (b) system. The bar plot (c) shows the same results of (a) and (b) but with a common axis scale for a better

comparison between the average times of a pinned system and a suspended one. The simulations were performed with SC.

Results are averages from NS = 105 independent samples. The averages in bar plot (a) and (b) are respectively calculated

from the distributions in Figs. E.1 and E.2 of appendix E.

From Fig. 3.17a we see that, for a pinned system with N = 2, the planar IC has the slowest average

folding time, while the stacking IC has the fastest. The random 2 IC has an average folding time between

two other ICs which also have one of the lateral faces starting from an outer angle randomly chosen from a

uniform distribution but the other starts from a definite angle. The random 1 IC is slower than the random

2 one, since one of the lateral faces starts at zero outer angle, slowing down the folding process. On the

other hand, the random 3 IC has one lateral face starting from an outer angle of π, touching the base

from the upper side, and leads to a faster folding when compared to the random 2 IC, speeding up the

process.

For a suspended system with N = 2, we see in Fig. 3.17b that, while the stacking IC remains the fastest,

the slowest average time is now attributed to the opposite stacking IC. This is intuitive since in this type

of system, for this IC, the lateral faces start the folding from complete opposite sides, with the farthest
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possible angular distance of 2π between them. For the other ICs they seem to retain their order as it was

for the pinned system, with slight changes on their relative differences.

Between the pinned and suspended systems, the change on the average folding time is significant. All ICs

for a suspended system have an average folding time at least twice slower as those for the pinned system.
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Figure 3.18: Comparison of the average first ⟨TF ⟩ (a,b) and last ⟨TL⟩ (c,d) binding times for N = 3 between six different

ICs, for both a pinned (a,c) and suspended (b,d) system. The bar plot (e) shows the average folding time ⟨T ⟩ computed from
the sum of the numerical results for ⟨TF ⟩ and ⟨TL⟩ of plots (a,b,c,d), for the respective pinned or suspended system. These
averages are, as supposed, consistent with the expected values of the respective folding time distribution in Figs. E.3 and E.4 of

appendix E. The uncertainty in the values of ⟨T ⟩ were calculated by a sum in quadrature of the uncertainties of the respective

values of ⟨TF ⟩ and ⟨TL⟩. The simulations were performed with SC. Results are averages from NS = 105 independent

samples. The averages in (a) and (c) are calculated from the distributions of Fig. E.3 of appendix E, while the ones in (b) and

(d) are computed from Fig. E.4 of the same appendix.

As seen from Fig. 3.18a and 3.18b for a pinned and suspended system, respectively, with N = 3, the
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average first binding times for the six ICs seem to have similar relative behaviour as the ones for the

analogous case of N = 2, with the fastest average time again belonging to the stacking IC. A notorious

exception is the opposite stacking IC for the suspended system, which is now as fast as the random 3 IC.

This is due to the fact that now we have two lateral faces starting the folding at the upper side, in contrast

with the N = 2 case, where the only two lateral faces were 2π apart in the angular space. This proximity

likely leads to a higher chance of these two faces binding as soon as their respective outer angle each

reach the region of the closing angle. This leaves the planar IC with the slowest average first binding time

for both pinned and suspended systems.

In Fig. 3.18c we see that, for a pinned system with N = 3, the IC with the slowest average last binding

time belongs to either the planar or random 1 IC, while for the suspended system, we see from Fig.

3.18d that the slowest is again the opposite stacking IC. For both types of system, the fastest average last

binding time is yet again the one for the stacking IC. It is also noteworthy that, in the suspended system,

the average of this time varies little between the planar, random 1, random 2 and random 3 ICs.

In Fig. 3.18e we plot the average folding time, the sum of the average first and last binding times, for

the pinned and suspended systems with N = 3. A significant difference is observed for the average of

folding time between these two systems. Partly it is due to the average first binding time, which becomes

slower in the suspended system, but never more than twice the value it has for the pinned one. The major

contribution to this difference comes from the average last binding time, where the times become several

times slower in the suspended system when compared with the pinned one.

3.5 Conditional probabilities of folding in the upper or lower

side

In this section we measure the propensity for the kirigami structure to self-fold without defects as we vary

the number of lateral faces N . We recall the definition of a defective self-folding as a final structure which

is open, i.e. if lateral faces bind at both sides. For this section, all analyses are performed in a suspended

system.

We start by studying the conditional probability P (down | up) that the second binding event occurs at

the lower side (θ = −ϕ ± ∆ϕ/2) provided the first binding occurred at the upper side (θ = ϕ ± ∆ϕ/2),

and the conditional probability P (up | down) that the second binding occurs at the upper side provided

that the first occurred at the lower one. For a diffusion without drift, we expect that these two conditional
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probabilities are equal if the IC is either planar or random. The unconditional probabilities for each of

these two events to occur is then given respectively by PupperP (down | up) and PlowerP (up | down),

where Pupper and Plower are the probabilities for the first binding to occur at the upper and lower side,

respectively. For a diffusion without drift, Pupper = Plower = 1/2 as we have seen from the results in

Fig. 2.1. Therefore the probability for the final folded structure to already become defective as soon as

the second binding occurs is given by 1/2 (P (down | up) + P (up | down)), since we assume that this

process is irreversible. The complementary conditional probabilities P (up | up) and P (down | down) of

both first and second binding events occurring in the upper and lower side, respectively, are given by

P (up | up) = 1 − P (down | up) , (3.97)

P (down | down) = 1 − P (up | down) , (3.98)

and 1/2 (P (up | up) + P (down | down)) is, by an analogous reasoning, the probability for the self-

folding structure to still not have any defects after the second binding.

To estimate the values of P (down | up) and P (up | down) we perform two Bernoulli trials,

P (down | up) ≃
Bdown| up

NS

, for large NS , (3.99)

P (up | down) ≃
Bup| down

NS

, for large NS , (3.100)

where Bdown| up (Bup| down) is the number of times the second binding occurred at the lower (upper) side,

provided that the first binding occurred at the upper (lower) side, out of a total of NS trials. We present the

numerical results of P (down | up) and P (up | down) for several values of N in Fig. 3.19 for a planar

and random IC.
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Figure 3.19: Simulation results in a suspended system for the conditional probabilities (3.99) (circle points) and (3.100)

(square points) as a function of N ∈ [3, 100], for a planar (a) and random (b) ICs. The simulations were performed under

SC. Results are averages from NS = 104 independent trials.

From these results we see that P (down | up) ≃ P (up | down), as expected from an unbiased diffusion.

Therefore P (down | up) and P (up | down) directly represent the probability for the final folded structure

to already become defective as soon as the second binding occurs. We also observe that this probability

remains more or less constant as a function of N for the planar IC, at around 15% for N > 3, while

for a random IC it slowly increases with N , going from approximately 15% at N = 3 to around 20% at

N = 100.

Next we present in Fig. 3.20 the numerical results of the average first and last binding times, as well as the

total total folding time, as a function of N for a suspended system. All samples, with or without defects,

were used in the calculation of these time averages.
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Figure 3.20: Numerical results for the average binding times ⟨TF ⟩, ⟨TL⟩ and average folding time ⟨T ⟩, in Brownian time
units, as a function of the number of lateral faces N ∈ [2, 100] for a planar (a) and random (b) ICs, for a suspended system.

In this type of system defects on the folded structure are possible, and both misfolded and defect free samples were considered

in the calculation of these times averages. The simulations were performed with SC. Results are averages from NS = 104

independent samples.

Results of Fig. 3.20 show that, if the planar structure folds in suspension, the average last binding time is

also a non-monotonically function of the lateral faces N , in addition to the total folding time. We believe

this happens due to the larger size of the angular domain when compared to the pinned system, and to

the additional closing angle at θ = −ϕ ± ∆ϕ/2. For low values of N , up to around N ≃ 5 for the planar

IC and N = 4 for the random one, the first binding takes a comparably long time to occur, allowing for

the angular probability density to disperse over the larger domain θ ∈ [−π, π] for the planar IC. When

the first binding occurs, the remaining lateral faces either bind at the same side of the first two or (if

N > 3) a pair also happens to bind at the opposite side, in which case the remaining lateral faces can

bind one by one at either side. Since N is low it is not very likely for another pairwise binding to occur at

the opposite side, only around 15% for N = 4, as seen from the results of Fig. 3.19. The majorities of

the lateral faces who wandered into the opposite side then need to return to the closing angle where the

first binding occurred, leading to long trajectories in the angular space and a tendency for the average of

the last binding time ⟨TL⟩ to increase with N in this regime. After this local maximum in ⟨TL⟩ this time

average starts to decrease with N , up to around N ≃ 14 for a planar IC and N ≃ 15 for a random

one. In this new regime, the angular probability density at either side of the domain starts to increase, and

bindings at both sides are presumably not as unlikely. Therefore, as N increases, there is less chance for

lateral faces to wander off far from a closing angle where faces have already bound. Finally, ⟨TL⟩ starts

to increase again with N after this regime. Here the number of lateral faces starts to saturate, and the
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first two pairs quickly bind at both sides. Assuming each of the first two binding events happen at opposite

sides, and that all remaining lateral faces have an outer angle −ϕ < θi (t = t2) < ϕ, this leads to a

domain with both boundaries absorbing. At this point increasing N simply increases the number of lateral

faces which have to reach one of these absorbing boundaries and, consequently, the average last binding

time.

This distinct functional dependence with N for a suspended system leads to a minimum for the folding

time shifted to the right, around N ≃ 18 for the planar IC and N ≃ 15 for the random one, when

compared to the analogous results in a pinned system.

Next we analyse the propensity for a given regular pyramid template with N lateral faces to self-fold into

the desired structure, free of defects. We start by introducing the folding efficiency η,

η = Bfree

NS

, (3.101)

defined as the fraction of samples Bfree that self-folded without defects out of a total of NS samples. In Fig.

3.21a we present numerical results for the efficiency η as a function of N , for both planar and random

ICs, for a sample size of NS = 104.

Figure 3.21: (a) Simulation results in a suspended system for the efficiency η, as defined by Eq. (3.101), as a function of

N ∈ [2, 100], for a planar (circle points) and random (square points) ICs, from a sample size of NS = 104. (b) The same

numerical values of the efficiency η as those in (a) but divided by the corresponding numerical value of the average folding time

⟨T ⟩, the data set of black points presented in Fig. 3.20 for the respective IC. The simulations were performed under SC.
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From Fig. 3.21a we see that the efficiency η does not depend on whether we choose a planar or random

IC. For values of N ? 7 the fraction of samples free of defects is already lower than 50%, and for N ≥ 29

not a single sample self-folded without defects out of a total of 104.

In Fig. 3.21b, we divide the numerical values of η of Fig. 3.21a by the average folding time ⟨T ⟩ of the

respective IC of Fig. 3.20, to estimate at which value of N we have an optimal balance between the

folding time and efficiency. The uncertainties of these values are propagated from the ones in η and the

respective ⟨T ⟩ in a way analogous to Eq. (3.75). A maximum appears for N = 3, indicating that, even

though the fastest folding times for suspended systems are achieved, on average, for pyramid templates

with around N ∈ [15, 18] lateral faces (as found in the results of Fig. 3.20) they are undermined by a

less favourable efficiency η > 0.7, for both planar and random ICs. For N > 10, all results of this ratio

for the random IC are larger than the ones for the planar case, since the time ⟨T ⟩ is faster if the IC is

random as opposed to planar (Fig. 3.20). For N > 10, the differences of this ratio between the two ICs

start to become negligible as the efficiency approaches and eventually reaches a value of zero.
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In this work we considered the stochastic folding of templates whose target structure was a regular pyramid

with N lateral faces. We assumed that binding is irreversible and, for most of the work, that the base

panel of the template is pinned to a substrate, so that misfolding is not possible. Taking advantage of

the fact that the rotational motion of these lateral faces around the hinges is consistent with a Brownian

process [13], we introduced a lattice model to simulate the angular position of each face, in order to study

the time evolution of the folding process using the kMC method.

To validate the model, we compared numerical results with well known analytical predictions from random

walks and diffusion theory. We also verified that our lattice model approaches the diffusion limit as we

increase the number of sites, and the standard deviation of numerical averages varies accordingly with

the sample size. Another assumption made was that lateral faces could interact elastically between each

other when their outer angles surpassed the closing angle, the outer angle formed between the lateral

faces and the base of the folded structure. However, in this work it was shown that these interactions

have negligible effect on the folding time when the templates start the folding process either from a planar

configuration or a random one, with its lateral faces uniformly distributed across the angular space. The

most noticeable impact, albeit still small, occurs for a low number of lateral faces N , and quickly gets

negligible as N increases.

With this model, it is possible to show numerically that the folding at the microscale is an intricate process

which depends greatly on the geometry and initial configuration of the net, as well as the binding mech-

anism. Namely, the results showed that, if the template starts from a planar IC, the average first binding

time for the first two lateral faces to bind decays as the inverse of the logarithm of N . If the template starts

from a random IC, this time decays as N−2 instead. On the other hand, the average last binding time for

the last face to bind grows with N for a planar IC. If the IC is random, this growth is slightly slower. These

contrasting tendencies lead to a non-monotonic dependence with N of the average total folding time and,

therefore, to an optimal number of lateral faces for fast folding, N = 5. Between the two ICs, the average
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total folding time as a function of N changes only slightly, being faster for the random IC when compared

to the planar one, with the optimal value of N unchanged.

Further control of the folding time can be achieved by manipulation of the closing angle. If the template

starts from a planar IC, and the number of lateral faces is sufficiently high, most of the lateral faces still

have an outer angle with a smaller value than the closing angle by the time the first two bind. In this

high N regime, the average folding time grows with ϕ2. For low values of N this scaling relation fails. For

N = 2 the average folding time can be approximated by a MFPT to a target in a 2D lattice. For N = 3 the

average first binding time should, in principle, be consistent with a MFPT to one of a multitude of targets in

a 3D lattice, but a practical and elucidative analytical solution remains elusive when the number of targets

is too large [41]. For the same N , a semi-analytical solution was found for the average last binding time

which highlighted the dependency of this time with the conditional angular distribution of the free lateral

face at the moment the first two bind. In turn, we found that this distribution depends non-trivially on the

closing angle and the IC.

The type of binding mechanism also affects the folding time. If lateral faces can only bind adjacently

through their edges, as opposed to a nonspecific vertex enabled binding, the overall average folding time

is considerably longer for all N studied, with the exception of N = {2, 3}, since the folding process is

indistinguishable between a nonspecific or the edge only binding for these two cases. While the shape of

the average folding time as a function of N remains similar, with an optimal number of lateral faces still

around N ≃ 5, the shape of the curve around this minimum is more flattened when compared to the

nonspecific binding type. These remarks are valid independently of whether the template starts from a

planar or random configuration.

Next, we studied how the average folding time depends on the initial configuration of the net. We addition-

ally compared the results between a pinned and a suspended system, while restraining our analysis to the

cases with N = {2, 3} so that misfolding is still not possible even if the folding occurs in suspension.

From the various ICs investigated, the one where all lateral faces start the folding process stacked on top of

each other above the base yielded the fastest folding times on average. The slowest times are associated

with either a planar initial configuration or an IC where each half of the total number of lateral faces are

stacked on opposite sides of the angular space. If folding occurs in suspension, the average folding time

more than doubles if N = 2, and more than triples if N = 3, when compared to the pinned system,

with the particular exception for the stacking IC where this increase is slightly below the pattern for the

respective N .

For the last analysis we focused on a system which folds in suspension, where misfolding was possible.
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CONCLUSION

The results demonstrated that the probability for a sample to already be defective due to misfolding at the

second binding event is independent of N for a planar IC, with only a slight increase with N if the IC is

random. Under these conditions, the average last binding time and the overall average folding time are

also a non-monotonic function of N . An optimal number of lateral faces N for fast folding also exist for a

suspended system, shifted to higher values of N when compared with the pinned system counterpart, at

N ≃ 18 and N ≃ 15 for the planar and random ICs, respectively. While the folding time gets faster as

we approach this minimum, the folding efficiency always decreases as N gets larger, and so a balanced

decision needs to be made when choosing the number of lateral faces, so that an optimal trade-off between

the folding time and the number of defective samples is obtained according to specific needs.

This work showed how a lattice model can be a computationally efficient way to highlight and analyze the

geometrical underpinnings which influence the dynamics of self-folding at the microscale. The possibilities

have not been exhausted, however, as further studies can still be conducted. For example, it may also be

of interest to study how a possible bias on the rotational motion of the lateral faces influences both the

folding time and efficiency.

Existing methods for controlling the folding process rely on external mechanisms. The folding time of

templates with cell coated panels can be controlled through the concentration and culturing time of these

cells [29]. For templates with graphene-based hinges, the folding process can be manipulated by changing

the temperature and pH of the surrounding environment [28]. The findings of this work show how inherent

properties of templates can be exploited to expand the available means of controlling the time and efficiency

of self-folding at the microscale.
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Appendix A

Formulae of error and statistical analysis

In this appendix we present a set of formulae from which we compute the mean and uncertainty of our

results (section A.1) and a method to fit a set of data to a linear model (section A.2). The contents of this

appendix are based on [43, 44].

A.1 Reporting the results

Suppose we are trying to measure the mean value x of some random variable x whose possible outcomes

are governed by some distribution f (x) whose analytical form is, in general, unbeknownst to us a priori.

This distribution f (x) needs to be normalized

∫
f (x) dx = 1 , (A.1)

and is characterized by its so called moments µn, with the n-th moment given by

µn =
∫

xnf (x) dx . (A.2)

The integration runs through the whole domain where f (x) is defined.

If x is discrete, with possible discrete values xi, each with an outcome probability of f (xi), the analogous

form of equations (A.1) and (A.2) are ∑
i

f (xi) = 1 , (A.3)
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and

µn =
∑

i

xn
i f (xi) , (A.4)

respectively, where the sum is over all possible outcomes of x.

Lets suppose we now take NS independent samples, {x1, x2, ..., xNS
}, from our random variable x. We

take as our best estimate of the average x the sample average

⟨x⟩ = 1
NS

NS∑
i=1

xi . (A.5)

To quantify our uncertainty δx in our best estimate of the average x we first note that each sample xi

will deviate from our sample average an amount we call a residue ϵi = xi − ⟨x⟩. A natural first try at

quantifying the deviation δx of each sample xi from our sample mean ⟨x⟩ might be summing all the

residuals ϵi and average them by dividing by the number of samples NS we took, but this method is

faulty, since ϵi might be either positive or negative and may cancel each other through the summation. An

alternative is taking the square of the residues ϵi, averaging them, and taking the square root of the result

δx =

√√√√ 1
NS

NS∑
i=1

ϵ2
i =

√√√√ 1
NS

NS∑
i=1

(xi − ⟨x⟩)2 = σx , (A.6)

which is formally known as the standard deviation σx,1 whose square, σ2
x, is called the (sample) variance.

Before proceeding into finding an equation for δx, we remark that definition (A.6) is rather inconvenient

for computational implementation since it needs to go through all the sample data twice, first to calculate

the sample mean ⟨x⟩ and then to calculate the residuals ϵi. Furthermore, the sample mean is usually not

a whole number, so the deviations from the mean are also not whole numbers, and the computation gets

error-prone. Instead we reformulate Eq. (A.6) by expanding the square of the residual,

σx =

√√√√ 1
NS

NS∑
i=1

(xi − ⟨x⟩)2 =

√√√√ 1
NS

NS∑
i=1

(
x2

i + ⟨x⟩2 − 2 ⟨x⟩ xi

)
= (A.7)

=

√√√√ 1
NS

NS∑
i=1

x2
i + ⟨x⟩2

NS

NS∑
i=1

1 − 2 ⟨x⟩
NS

NS∑
i=1

xi =
√

⟨x2⟩ + ⟨x⟩2 − 2 ⟨x⟩2 =
√

⟨x2⟩ − ⟨x⟩2 ,

1The standard deviation as defined in equation (A.6) is more precisely known as the population standard deviation. In
our case where we calculate σx using a finite number of samples we should be using the sample standard deviation instead,
where the factor NS in the denominator is replaced with NS − 1, with the rationale that there are only NS − 1 independent
residuals since their sum, by definition of residuals and the sample mean, must equate to zero, i.e.

∑NS

i=1 ϵi = 0. However,
the difference between the factor NS and NS − 1 is negligible when NS is of the order of 104 or greater, as is the case in
this work, so we adopt definition (A.6).
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where we defined the squared sample average

〈
x2
〉

= 1
NS

NS∑
i=1

x2
i . (A.8)

If we now treat the outcomes {x1, x2, ..., xNS
} as independent random variables all with the same dis-

tribution, hence the same mean ⟨x⟩ (as given by Eq. (A.5) in the limit NS → ∞) and variance σ2
x (as

given by the square of Eq. (A.7) in the limit NS → ∞), and define a new random quantity X as the sum

of all the NS independent random variables

X =
NS∑
i=1

xi . (A.9)

and compute the variance σ2
X ofX , using ⟨...⟩ as a notation to denote the operation of averaging whatever

random quantity is inside the brackets,

σ2
X =

〈
X2
〉

− ⟨X⟩2 =
NS∑

i,j=1
(⟨xixj⟩ − ⟨xi⟩ ⟨xj⟩) =

=
NS∑
i=1

(⟨xixi⟩ − ⟨xi⟩ ⟨xi⟩) = NS ·
(〈

x2
〉

− ⟨x⟩2
)

= NSσ2
x , (A.10)

where we used the fact that, when i ̸= j, ⟨xixj⟩ = ⟨xi⟩ ⟨xj⟩ since we assume that the data is statistically

independent.

The best estimate of the mean value x of our original random variable x is just (A.9) divided by NS , and

so the variance σ2
x of this mean is

σ2
x =

〈(
X

NS

)2〉
−
〈

X

NS

〉2
= 1

N2
S

·
(〈

X2
〉

− ⟨X⟩2
)

= NSσ2
x

N2
S

= σ2
x

NS

, (A.11)

and by definition of variance, the standard deviation σx of the mean value x is just the square root of

(A.11)

σx = σx√
NS

=

√√√√⟨x2⟩ − ⟨x⟩2

NS

. (A.12)

We take the quantity (A.12) as our uncertainty δx = σx of the best estimate of x and report the results

of our statistical measurement of x as

x = ⟨x⟩ ± δx . (A.13)
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Although the precise meaning of σx, and consequently of σx, is ill-defined unless the distribution f (x)

has the form of a normal (or Gaussian) distribution, we argue that as long as the first (µ1) and second (µ2)

moments of f (x) are convergent, Eq. (A.12) is nevertheless a way to quantify the deviation of ⟨x⟩ from

the true theoretical mean x and access if those two moments are indeed converging by ensuring that the

value of σx is not too large.

A.2 Linear least square fitting

Suppose we have obtained a set of NP data points {(x1, y1) , (x2, y2) , ..., (xNP
, yNP

)}, where the xi

values are either known exactly or with negligible uncertainty while the yi values each have an associated

uncertainty σi. Suppose further we also suspect that this data set should follow a linear relation f (xi) of

the form

yi ≃ f (xi) = a0 + a1xi , (A.14)

where a0 and a1 are the fitting parameters whose values should give the straight line f (xi) that best fits

the data. The question is how can we find the optimal values for these parameters a0 and a1?

A possible way to do this goes by the name of least square fitting, in which we minimize a quantity χ2

(called ’chi-squared’) defined as the sum of the squares of the weighted difference between the obtained

values yi and the expected values of the fitting function f (xi),2

χ2 =
NP∑
i=1

(
yi − a0 − a1xi

σi

)2
. (A.15)

The squaring of this difference serves to avoid the terms cancelling out due to the possibility of them being

either positive or negative, much like how it was for the standard deviation (A.6), while the weighting by the

respective uncertainty σi favours a fitting which is more tightly bound to yi values obtained with greater

precision rather than with less.

To minimize the χ2 we differentiate Eq. (A.15) with respect to the parameters a0 and a1 and set the results

2The ’2’ in χ2 is simply a superscript notation and not the square of some quantity χ. This notation is standard.
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to zero,

∂χ2

∂a0
= 2

NP∑
i=1

a0 + a1xi − yi

σ2
i

min= 0 , (A.16)

∂χ2

∂a1
= 2

NP∑
i=1

xi
a0 + a1xi − yi

σ2
i

min= 0 , (A.17)

which can then be rearranged into a set of linear equations,

a0

NP∑
i=1

1
σ2

i

+ a1

NP∑
i=1

xi

σ2
i

=
NP∑
i=1

yi

σ2
i

, (A.18)

a0

NP∑
i=1

xi

σ2
i

+ a1

NP∑
i=1

x2
i

σ2
i

=
NP∑
i=1

xiyi

σ2
i

. (A.19)

To simplify further computations we can introduce the following matrix notation,

U

 a0

a1

 =

 v0

v1

 ,where U =

 U00 U01

U10 U11

 is a symmetric matrix, (A.20)

and 

U00 = ∑NP
i=1

1
σ2

i

U01 = U10 = ∑NP
i=1

xi

σ2
i

U11 = ∑NP
i=1

x2
i

σ2
i

v0 = ∑NP
i=1

yi

σ2
i

v1 = ∑NP
i=1

xiyi

σ2
i

. (A.21)

Solving Eq. (A.20) for a0 and a1 yields the solution for the fitting parameters as a function of the data,

a0 = U11v0 − U01v1

∆
=

∑NP
i=1

(
x2

i

σ2
i

)∑NP
i=1

(
yi

σ2
i

)
−∑NP

i=1

(
xi

σ2
i

)∑NP
i=1

(
xiyi

σ2
i

)
∆

, (A.22)

a1 = −U01v0 + U00v1

∆
=

−∑NP
i=1

(
xi

σ2
i

)∑NP
i=1

(
yi

σ2
i

)
+∑NP

i=1

(
1

σ2
i

)∑NP
i=1

(
xiyi

σ2
i

)
∆

, (A.23)

where

∆ = U00U11 − U2
01 =

NP∑
i=1

(
1
σ2

i

)
NP∑
i=1

(
x2

i

σ2
i

)
−

NP∑
i=1

xi

σ2
i

2

. (A.24)
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To estimate the uncertainties σa0 and σa1 of a0 and a1, respectively, we propagate the uncertainties σi

from the corresponding values yi,

σa0 =

√√√√NP∑
i=1

(
σi

∂a0

∂yi

)2

=

√√√√ 1
∆2

NP∑
i=1

(
σi ·

[
U11

∂v0

∂yi

− U01
∂v1

∂yi

])2

, (A.25)

σa1 =

√√√√NP∑
i=1

(
σi

∂a1

∂yi

)2

=

√√√√ 1
∆2

NP∑
i=1

(
σi ·

[
−U01

∂v0

∂yi

+ U00
∂v1

∂yi

])2

. (A.26)

Knowing the results of the following derivatives,

∂v0

∂yi

=
NP∑
j=1

1
σ2

j

∂yj

∂yi

=
NP∑
j=1

δji

σ2
j

= 1
σ2

i

, (A.27)

∂v1

∂yi

=
NP∑
j=1

xj

σ2
j

∂yj

∂yi

=
NP∑
j=1

xj

σ2
j

δji = xi

σ2
i

, (A.28)

where we used ∂yj/∂yi = δji, Eqs. (A.25) and (A.26) are then given by

σa0 =

√√√√ 1
∆2

NP∑
i=1

(
U11

1
σi

− U01
xi

σi

)2
=

√√√√√ 1
∆2 ·

U2
11

NP∑
i=1

1
σ2

i

+ U2
01

NP∑
i=1

x2
i

σ2
i

− 2U11U01

NP∑
i=1

xi

σ2
i

 ,

(A.29)

σa1 =

√√√√ 1
∆2

NP∑
i=1

(
−U01

1
σi

+ U00
xi

σi

)2
=

√√√√√ 1
∆2 ·

U2
01

NP∑
i=1

1
σ2

i

+ U2
00

NP∑
i=1

x2
i

σ2
i

− 2U01U00

NP∑
i=1

xi

σ2
i

 .

(A.30)

Recalling the definitions (A.21) we can replace the sums in Eqs. (A.29) and (A.30) by the respective

element of the matrixU . We see that, using the definition (A.24), the term in parenthesis in the rightmost

side of Eq. (A.29) gives U11∆, while the one in Eq. (A.30) gives U00∆. Thus we have the uncertainty of

the fitting parameters also as a function of the data,

σa0 =
√

U11

∆
=

√√√√∑NP
i=1

x2
i

σ2
i

∆
, (A.31)

σa1 =
√

U00

∆
=

√√√√∑NP
i=1

1
σ2

i

∆
. (A.32)
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Appendix B

The normal limit of a Binomial distribution

Consider the probability P (r, t) that a random walker in a one-dimensional lattice, which hops to the right

or left with probability p and q, respectively, made r hops to the right (ending up at site n) out of a total

of t hops,

P (r, t) =

 t

r

 prqt−r = t!
r! · (t − r)!

prqt−r . (B.1)

The number of hops to the right r, the number of hops to the left l, the total hops t and the site index n

are all related through 
r = t+n

2

l = t−n
2

, (B.2)

which allow a redefinition of Eq. (B.1) in terms of t and n,

P (r, t) = Pn (t) = t!(
t+n

2

)
! ·
(

t−n
2

)
!
p

t+n
2 q

t−n
2 . (B.3)

Note that Pn (t) ≡ 0 if n and t have different parities, since it is impossible to reach a even numbered

site after an odd number of hops and vice-versa. Furthermore, Pn (t) ≡ 0 if n > t since it is also not

possible to reach a site that is farther than the total number of hops performed. This means that the

domain where Pn (t) is not strictly zero is n ∈ [−t, −t + 2, −t + 4, ..., t − 4, t − 2, t].

The binomial distribution (B.1) can be approximated to a normal distribution in the limit of large t ≫ n

using Stirling’s formula,

x! ≃ xxe−x
√

2πx , for large x, (B.4)
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on the factorials of Eq. (B.1),



t! ≃ tte−t
√

2πt

r! ≃ rre−r
√

2πr

(t − r)! ≃ (t − r)t−re−(t−r)
√

2π · (t − r) ,

(B.5)

so the equation becomes

P (r, t) ≃ tte−t
√

2πt

rre−r
√

2πr · (t − r)t−re−(t−r)
√

2π · (t − r)
prqt−r =

=
(

p

r

)r

·
(

q

t − r

)t−r e−t

e−re−t+r
tt

√
2πt

4π2r · (t − r)
=

=
(

p

r

)r

tr ·
(

q

t − r

)t−r

tt−r

√
t

2πr · (t − r)
=

=
(

tp

r

)r

·
(

tq

t − r

)t−r
√

t

2πr · (t − r)
. (B.6)

Before proceeding we notice that

ln
[(

tp

r

)r

·
(

tq

t − r

)t−r
]

= r ln
[
tp

r

]
+ (t − r) ln

[
tq

t − r

]
, (B.7)

and defining δ ≡ r − tp, so that


r = δ + tp

tp − r = −δ ⇔ t · (1 − q) − r = −δ ⇔ t − r = tq − δ ,

(B.8)

we get the following equivalences


ln
[

tp
r

]
= ln

[
tp

δ+tp

]
= − ln

[
δ+tp

tp

]
= − ln

[
1 + δ

tp

]
ln
[

tq
t−r

]
= ln

[
tq

tq−δ

]
= − ln

[
tq−δ

tq

]
= − ln

[
1 +

(
− δ

tq

)]
,

(B.9)

which can be approximated using the expansion of the natural logarithm,

ln [1 + x] ≃ x − 1
2

x2 , for small x ∈ ]−1, 1], (B.10)
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so equation (B.7) becomes

ln
[(

tp

r

)r

·
(

tq

t − r

)t−r
]

≃ − (δ + tp)·

 δ

tp
− 1

2
·
(

δ

tp

)2
−(tq − δ)·

− δ

tq
− 1

2
·
(

− δ

tq

)2
 .

(B.11)

Manipulating and simplifying (B.11), ignoring terms of the order of 1/N2, we arrive at

ln
[(

tp

r

)r

·
(

tq

t − r

)t−r
]

≃ − δ2

2tpq
. (B.12)

Exponentiating the previous result we get

(
tp

r

)r

·
(

tq

t − r

)t−r

≃ e− δ2
2tpq = e− (r−tp)2

2tpq . (B.13)

On the other hand, the square root factor in (B.6) can also be approximated, making use of the definition

of δ,

√
t

2πr · (t − r)
=
√

t

2π · (δ + tp) · (tq − δ)
= 1√

2πtpq + 2πδ ·
(
q − p − δ

t

) =

= 1√
2πtpq

1√
1 + 1

pq
δ
t

·
(
q − p − δ

t

) , (B.14)

where, from the binomial form 1/
√

1+x = ∑∞
k=0 (−1/4)k ·

(
2k
k

)
xk, we can see that the right term of the

last equivalence of (B.14) can be approximated to unity (the 1 comes from the first term of the expansion,

when k = 0, and the remaining terms k > 0 are all proportional to δ/t), so it simplifies to

√
t

2πr · (t − r)
≃ 1√

2πtpq
. (B.15)

Finally going back to Eq. (B.6), using the approximated results (B.13) and (B.15), we can express P (r, t)

as a normal distribution with standard deviation tpq and mean tp,

P (r, t) ≃ 1√
2πtpq

e− (r−tp)2
2tpq , for large t . (B.16)

Making the change of variable of r to n using relation (B.2) and recalling that p + q = 1, we can show
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that,

(r − tp)2 = 1/4 · (n − t · (p − q))2 , (B.17)

and we can express the normal distribution (B.16) as a function of n instead of r, whose mean has now

changed into t · (p − q),

P (r, t) = Pn (t) ≃ 1√
2πtpq

e− (n−t·(p−q))2
8tpq , for large t ≫ n . (B.18)

As before, the approximation (B.18) is strictly zero if n and t have opposite parities, for the same reasons

as Eq. (B.3).

To get from Eq. (B.18) to the continuous space limit, one can introduce the continuous space variable

x = n∆θ, where ∆θ is the lattice spacing. x always varies by factors of 2∆θ, since n is always either

odd or even. For large enough values of t, the probability Pn (t) varies only slightly, and in this regime,

a small space interval dx contains dx/2∆θ possible values of n. Therefore, the probability of finding the

random walk at the interval [x, x + dx] at some time t, assuming Pn (t) is constant in this interval, is

P (x, t) dx = Pn (t) dx

2∆θ
. (B.19)
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Solution of the 1D diffusion equation

To solve the diffusion equation
∂P (θ, t)

∂t
= D

∂2P (θ, t)
∂θ2 , (C.1)

subject to the IC θ (t = 0) = a,

P (θ, t = 0) = δ (θ − a) , (C.2)

and the following boundary conditions (BCs)

∂P (θ, t)
∂θ

∣∣∣∣∣
θ=0

= P (θ = ϕ, t) = 0 , (C.3)

corresponding to a reflective boundary at θ = 0 and an absorbing one at θ = ϕ, we start by using the

method of separation of variables P (θ, t) = Θ (θ) T (t),

Θ (θ) ∂T (t)
∂t

= DT (t) ∂2Θ (θ)
∂θ2 , (C.4)

and we divide both sides of Eq. (C.4) by Θ (θ) T (t),

1
DT (t)

∂T (t)
∂t

= 1
Θ (θ)

∂2Θ (θ)
∂θ2 . (C.5)

The only way for Eq. (C.5) to hold true for all values of t and θ is if both sides of the equation are equal

to a constant −k2 (the introduction of the minus and the square, instead of just k, is for convenience
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reasons), 
1

DT (t)
∂T (t)

∂t
= −k2 ⇔ ∂T (t)

∂t
= −k2DT (t)

1
Θ(θ)

∂2Θ(θ)
∂θ2 = −k2 ⇔ ∂2Θ(θ)

∂θ2 = −k2Θ (θ)

. (C.6)

The general solutions of the ordinary differential equations (C.6) are


T (t) = e−k2Dt

Θ (θ) = A cos (kθ) + B sin (kθ)

, (C.7)

where A and B are arbitrary constants to be defined using the boundary and initial conditions.

A general solution of P (θ, t) is then

P (θ, t) = T (t) Θ (θ) = e−k2Dt · (A cos (kθ) + B sin (kθ)) (C.8)

From the lower reflecting BC at θ = 0 we have

∂P (θ, t)
∂θ

∣∣∣∣∣
θ=0

= T (t) · [−Ak sin (kθ) + Bk cos (kθ)]θ=0 = T (t) kB
BC= 0 , (C.9)

and since, in general, T (t) ̸= 0 and k ̸= 0 (otherwise we would have a trivial solution), Eq. (C.9) is only

true if B = 0. From the upper absorbing BC at θ = ϕ we get

P (θ = ϕ, t) = T (t) A cos (kϕ) BC= 0 , (C.10)

and since, for the same reason as T (t) and k, A ̸= 0 in general, Eq. (C.10) is only true if cos (kϕ) = 0,

which imposes that

kϕ = π

2
+ πm , with m ∈ N0, (C.11)

which, rearranged permits us to define the constant k

k ≡ km = π

ϕ
·
(1

2
+ m

)
. (C.12)

Due to the linear properties of the operators present in the diffusion equation, its solution can, in general,

be written as an eigeinfunction expansion of all solutions with differentm (each term with its corresponding
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constant A ≡ Am)

P (θ, t) =
∞∑

m=0
Ame−k2

mDt cos (kmθ) . (C.13)

From the initial condition (C.2) we have

∞∑
m=0

Am cos (kmθ) = δ (θ − a) . (C.14)

To find the constant Am we can make use of the orthogonality of the cos function (see appendix D),

∫ ϕ

0
dθ cos (kmθ) cos (knθ) = ϕ

2
δm,n , where m,n ∈ N0, (C.15)

and multiply Eq. (C.14) in both sides by cos (knθ) and integrate it in the whole θ domain,

∞∑
m=0

Am

∫ ϕ

0
dθ cos (kmθ) cos (knθ) =

∫ ϕ

0
dθ cos (knθ) δ (θ − a) , (C.16)

which results in
∞∑

m=0
Am

ϕ

2
δm,n = cos (kna) . (C.17)

The Kronecker delta function in Eq. (C.17) makes all terms zero except for m = n, so

Am = 2
ϕ

cos (kma) . (C.18)

The solution of the 1D diffusion equation is then found

P (θ, t) = 2
ϕ

∞∑
m=0

e−k2
mDt cos (kma) cos (kmθ) . (C.19)

If the BC (C.3) were to be interchanged,

P (θ = 0, t) = ∂P (θ, t)
∂θ

∣∣∣∣∣
θ=ϕ

= 0 , (C.20)

i.e. if we had instead an absorbing boundary at θ = 0 and a reflecting one at θ = ϕ, the general solution

(C.8) would still be valid but the constants A and B would have to be recalculated. At θ = 0 we would

have

P (θ = 0, t) = T (t) A
BC= 0 , (C.21)

and thus A = 0 (since, again, T (t) ̸= 0 in general, otherwise the solution would be a trivial one). At
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θ = ϕ we would get

∂P (θ, t)
∂θ

∣∣∣∣∣
θ=ϕ

= T (t) · [Bk cos (kθ)]θ=ϕ = T (t) kB cos (kϕ) BC= 0 , (C.22)

and since k ̸= 0 and B ̸= 0 in general for the usual reason, Eq. (C.22) is only true if cos (kϕ) = 0,

therefore leading to the same imposition on the value of k as before,

k ≡ km = π

ϕ
·
(1

2
+ m

)
, with m ∈ N0. (C.23)

The eigeinfunction expansion solution would then be (each term with its corresponding constantB ≡ Bm)

P (θ, t) =
∞∑

m=0
Bme−k2

mDt sin (kmθ) , for swapped BCs. (C.24)

To determine the constants Bm we can again make use of the orthogonality of the trigonometric functions,

this time using the sin function (see appendix D),

∫ ϕ

0
dθ sin (kmθ) sin (knθ) = ϕ

2
δm,n , where m,n ∈ N0, (C.25)

and multiply both sides of Eq. (C.24) at t = 0 by sin (knθ) and integrating it in θ over the whole domain.

For the same initial condition as before, Eq. (C.2), this would give

∞∑
m=0

Bm
ϕ

2
δm,n = sin (kna) ⇔ Bm = 2

ϕ
sin (kma) . (C.26)

The solution of the diffusion equation for interchanged BCs with the same initial condition would then be

given by

P (θ, t) = 2
ϕ

∞∑
m=0

e−k2
mDt sin (kma) sin (kmθ) , for swapped BCs. (C.27)
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Calculation of the trigonometric integral

To evaluate the integral

Im,n =
∫ λ

0
dx cos

[
π

λ
·
(1

2
+ m

)
x
]

cos
[
π

λ
·
(1

2
+ n

)
x
]

, (D.1)

where n, m ∈ N0 and λ ∈ R, we start by considering the following trigonometric identity

cos (a) cos (b) = 1
2

· [cos (a − b) + cos (a + b)] , where a, b ∈ R, (D.2)

and use it in the cos functions of the integral

Im,n = 1
2

∫ λ

0
dx ·

[
cos

(
π

λ
· (m − n) x

)
+ cos

(
π

λ
· (1 + m + n) x

)]
. (D.3)

Performing the integration, we have

Im,n = λ

2
·
[

sin [π · (m − n)]
π · (m − n)

+ sin [π · (1 + m + n)]
π · (1 + m + n)

]
, (D.4)

and knowing sin [π · (1 + m + n)] = − sin [π · (m + n)],

Im,n = λ

2
·
[

sin [π · (m − n)]
π · (m − n)

− sin [π · (m + n)]
π · (1 + m + n)

]
. (D.5)

Notice that for m ̸= n both sin functions give zero, so Im,n = 0 for that case. On the other hand, if we

have m = n, sin [π · (m + n)] is always zero, but the first term is an indetermination, and we can use
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L’Hôpital’s rule to evaluate the limit m − n ≡ ∆ → 0,

lim
∆→0

sin (π∆)
π∆

= lim
∆→0

d
d∆ [sin (π∆)]

d
d∆ [π∆]

= lim
∆→0

cos (π∆) = cos (0) = 1 , (D.6)

and so we get Im,n = λ/2 for m = n.

In conclusion, the integral Im,n results in

Im,n = λ

2
δm,n . (D.7)

If the cos functions in the integral (D.1) were to be replaced by sin functions with the same respective argu-

ments the result would be identical. This can be easily verified by considering the following trigonometric

identity

sin (a) sin (b) = 1
2

[cos (a − b) − cos (a + b)] , where a, b ∈ R, (D.8)

where the only difference compared to the right hand side of the identity (D.2) is a change of sign in the

second trigonometric function. Thus, calculations would go unchanged, leading again to Eq. (D.5) save for

a plus sign in the second term, instead of a minus one. Furthermore we have seen that this second term

is always zero no matter the values of m and n, and so this sign change would be irrelevant. Therefore

we also have that

∫ λ

0
dx sin

[
π

λ
·
(1

2
+ m

)
x
]

sin
[
π

λ
·
(1

2
+ n

)
x
]

= Im,n = λ

2
δm,n . (D.9)
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Appendix E

Folding time distributions

In this appendix we group in table E.1 the explicit average values of the binding and folding times of the

results presented in the figures of section 3.4. In Figs. E.1-E.4 we show the histograms with the obtained

distributions for each IC and type of system, from which the aforementioned averages were respectively

computed.
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Table E.1: Average values obtained for the first binding ⟨TF ⟩, last binding ⟨TL⟩ and folding times ⟨T ⟩ for both pinned and
suspended systems, with N = 2 (a) and N = 3 (b) lateral faces for each of the six ICs defined in section 3.4. The first column

specifies the type of system for which the numerical value was obtained, while the second one specifies which time average the

numerical value is referring to. The values reported in sub-table (a) and (b) are the same as those plotted in the Figs. 3.17 and

3.18, respectively. All these time averages were computed from the expectation value of the respective distributions of Figs.

E.1, E.2, E.3 and E.4, with the exception of the average total folding time ⟨T ⟩ for N = 3 (last row of sub-table b), which was

instead calculated by summing the corresponding numerical average values of the first and last binding times. The expected

values of the folding time distributions in Figs. E.3 and E.4 (black histograms) are, as supposed, consistent with this sum. All

values are in units of Brownian time.

(a) N = 2

Planar Random 1 Random 2 Random 3 Stacking Opposite
stacking

Pinned ⟨T ⟩ 2.290±0.006 2.192±0.006 1.970±0.006 1.859±0.006 1.701±0.006 2.108±0.006

Suspended ⟨T ⟩ 4.90±0.01 4.81±0.01 4.59±0.01 4.50±0.01 3.30±0.01 5.37±0.01

(b) N = 3

Planar Random 1 Random 2 Random 3 Stacking Opposite
stacking

Pinned

⟨TF ⟩ 1.041±0.003 0.865±0.002 0.744±0.002 0.687±0.002 0.544±0.002 0.740±0.002

⟨TL⟩ 0.277±0.001 0.281±0.001 0.262±0.001 0.245±0.001 (1905±9)×10-4 0.268±0.001

⟨T ⟩ 1.318±0.003 1.146±0.002 1.006±0.002 0.932±0.002 0.735±0.002 1.008±0.002

Suspended

⟨TF ⟩ 1.799±0.005 1.630±0.005 1.495±0.005 1.440±0.005 0.769±0.004 1.425±0.004

⟨TL⟩ 1.824±0.007 1.816±0.007 1.839±0.007 1.827±0.007 0.833±0.005 2.133±0.007

⟨T ⟩ 3.623±0.009 3.446±0.009 3.334±0.009 3.267±0.009 1.602±0.006 3.558±0.008
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Figure E.1: Numerically obtained distributions of the folding time, in Brownian time units, for the six ICs defined in section
3.4 for N = 2 lateral faces, for a pinned system. Each histogram was made from NS = 105 independent samples,

distributed with logarithmic binning across 100 bins. The simulations were performed under SC for all six ICs. The averages of

these distributions are listed in the second row of Table E.1a and plotted in Fig. 3.17a of section 3.4.
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Figure E.2: Numerically obtained distributions of the folding time, in Brownian time units, for the six ICs defined in section
3.4 for N = 2 lateral faces, for a suspended system. Each histogram was made from NS = 105 independent samples,

distributed with logarithmic binning across 100 bins. The simulations were performed under SC for all six ICs. The averages of

these distributions are listed in the last row of Table E.1a and plotted in Fig. 3.17b of section 3.4.
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Figure E.3: Numerically obtained distributions of the first binding (TF ), last binding (TL) and folding time (T ), in Brownian

time units, for the six ICs defined in section 3.4 for N = 3 lateral faces, for a pinned system. Each histogram was made

from NS = 105 independent samples, distributed with logarithmic binning across 100 bins. The simulations were performed

under SC for all six ICs. The averages of these distributions are listed in the second to fourth rows of Table E.1b and plotted in

Figs. 3.18a, 3.18c and 3.18e (left bar plot) of section 3.4.
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Figure E.4: Numerically obtained distributions of the first binding (TF ), last binding (TL) and folding time (T ), in Brownian

time units, for the six ICs defined in section 3.4 for N = 3 lateral faces, for a suspended system. Each histogram was made

from NS = 105 independent samples, distributed with logarithmic binning across 100 bins. The simulations were performed

under SC for all six ICs. The averages of these distributions are listed in the fifth to last rows of Table E.1b and plotted in Figs.

3.18b, 3.18d and 3.18e (right bar plot) of section 3.4.
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