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ABSTRACT

Plants are indispensable for human life and have a significant impact on the economy. Their growth and
survival are linked to their metabolism, and its study is important to understand certain mechanisms
and responses to different environmental stresses. To enhance plant Genome-Scale Metabolic models,
that are used in systems biology to study metabolism, several methods were created to integrate gene
expression within the models, resulting in more realistic flux predictions. Therefore, the integration
of multiple omics is essential to identify complex biological relationships that may become evident
only through the combination of multiple omics data. However, the different sizes, formats and scales
of the data being integrated, as well as the different complexities, noisiness, contents, and levels of
agreement hinder this task.

Hence, in this work, a pipeline was developed, including Machine Learning (ML) methods to
integrate different omics data and extract knowledge on plant behaviour under different environmental
conditions. Three different multiomics integration approaches were studied: concatenation-based
integration (CBI), transformation-based integration (TBI) and model-based integration (MBI). The
models inspected for CBI were DIABLO, SMSPL, Stacked Generalisation, Lasso Regression, Support
Vector Machine, Random Forest and Artificial Neural Networks. For TBI, we analyzed SNFtool,
Graph-Composite Association Network and Kernel-Relevance Vector Machine. Regarding the MBI, we
created an ensemble classifier. All models were tested and cross-validation was executed. The models
were created and validated using two different datasets of Vitis vinifera and Arabidopsis thaliana, for
Case Study | and Il, respectively. CBI was the most studied strategy, with several models available
and easy implementation. DIABLO offered innovative plots to visualize the data correlations, provided
the most relevant features to predict the outcome, had a good performance, but takes a considerable
running time. SMSPL thanks to its novel strategy offered good performance and the most important
features. For the TBI, the SNFtool was the single method capable of identifying the most relevant
features, but all were very efficient models and easy to implement. Lastly, MBI was the approach with
fewer methods available and harder to implement. Soft voting obtained better results compared to

hard voting and obtaining the most relevant features was a difficult task.

The pipeline was successfully created and can be identified in the open-source framework https:
//insilicoplants.pt/, or the GitHub repository https://GitHub.com/InesFaria- UM /Master_Thesis.
git.

Keywords — Multiomics Integration, V. vinifera, Concatenation-Based, Transformation-Based,
Model-Based, Machine Learning.



RESUMO

As plantas s3o indispensdveis a vida humana e t&m um impacto significativo na economia. O
seu crescimento e sobrevivéncia est3o ligados ao seu metabolismo, cujo estudo é importante para
compreender certos mecanismos e respostas metabdlicas a diferentes stresses ambientais. A biologia
de Sistemas dedica-se a este estudo usando modelos metabdlicos a escala genémica (GSM). Para
aprimorar os modelos GSM de plantas, vérios estudos foram criados para integrar expressdo genética
nos modelos metabdlicos, de modo a obter previsdes mais realistas. Desta forma, é fundamental
integrar mdltiplos dados édmicos para identificar relacdes biolégicas complexas que, até ao momento,
nao sio evidentes. Contudo, os diferentes tamanhos, formatos e escalas dos dados a ser integrados,
bem como as diferentes complexidades, barulhos, contetidos e niveis de concordancia dificultam esta
tarefa.

Assim, neste trabalho, foi concebida uma pipeline usando métodos de aprendizagem maquina, a
fim de integrar diferentes dados 6micos e extrair conhecimento em relagdo ao comportamento da
planta sob diferentes condi¢cSes ambientais. Trés diferentes abordagens de integracdao multiémica
foram estudadas: integracdo baseada em concatenacdo (CBI), integragdo baseada em transformacio
(TBI) e integracdo baseada em modelos (MBI). Os métodos discutidos para CBI foram DIABLO,
SMSPL, Stack Generalisation, Lasso Regression, Support Vector Machine, Random Forest e Artificial
Neural Networks. Em relacdo a TBI, analisamos o SNFtool, Graph-Composite Association Network e
Kernel-Relevance Vector Machine, e para o MBI, criamos um ensemble classifier. Todos os modelos
foram testados e submetidos a valida¢do cruzada. Os modelos foram validados usando dois conjuntos
de dados diferentes de Vitis vinifera e Arabidopsis thaliana, como caso de estudo | e Il. A CBI foi
a estratégia mais estudada, com diversos modelos disponiveis e de ficil implementacdo. O método
DIABLO, apesar de ter um maior tempo de execuc¢do, ofereceu formas inovadoras de visualizar as
correlagdes dos dados e as varidveis mais relevantes para prever o resultado, garantindo um bom
desempenho. J& o SMSPL obteve um bom desempenho e indicou as features mais importantes. Na
TBI, o SNFtool foi o tinico método capaz de identificar as varidveis mais relevantes. No entanto,
todos os métodos TBI foram eficientes e de facil implementa¢do. Por fim, a MBI foi a abordagem
com menos métodos disponiveis e mais desafiante de implementar. A votac3o soft obteve melhores
resultados em comparacdo com a votacido hard, porém, as varidveis mais relevantes foram dificeis de
obter.

A pipeline foi criada com sucesso e pode ser encontrada na "open-source framework” https:
//insilicoplants.pt/, ou no repositério GitHub https://GitHub.com/InesFaria- UM /Master_Thesis.
git.

Keywords — Integracdo Multiémica, V. vinifera, Integracdo Baseada em Concatenacdo, Integracao

Baseada em Transformacao, Integracdo Baseada em Modelos, Aprendizagem M4aquina.
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INTRODUCTION

1.1 CONTEXT AND MOTIVATION

Plants comprise one of the most prominent groups of living beings. These are multicellular autotrophic
eukaryotes and use photosynthesis to obtain energy and food. Plants have an essential role in
preserving human life and other living beings since they are responsible for the converting carbon
dioxide into oxygen, maintaining the atmospheric balance. Additionally, humans depend on plants as
a source of food, such as vegetables, cereals, pulses, fruits, sugar, coffee, spices or oil, but also for
medicines, energy, fibre, and building materials [1]. Plants have a significant impact on the economy.
A substantial amount of Portugal’s economy is related to wine exportation (12th place), olive oil (19th
place), fruits (45th place), and half of the world’s cork (21st place) [2, 3]. Nonetheless, Portuguese
grapevines, categorised as Vitis vinifera, in 2020 were expected to decrease by 3% in terms of wine
production, mainly due to weather conditions and fungal infections [4].

This way, since survival and growth is virtually connected to metabolism, this area becomes
fundamental for further knowledge on fruit production and metabolic responses to diseases and
different environmental stresses.

A field that focuses on the study of metabolism is System’s Biology, which aims to accomplish a
system-level understanding of living systems in a complex and dynamic way with many interactions [5].
Genome-scale Metabolic (GSM) models reflect biological reality and elucidate the genotype-phenotype
relation [6], allowing to perform simulations that provide a direct measure (fluxome) of the metabolic
phenotype. Additionally, generic databases are also important in systems biology for plant metabolic
data information as these allow users to understand the biological system's functions and utilities, for
example, genes, metabolic pathways, and metabolites. Vitis vinifera genome and metabolic information
is available in various databases such as VitisNet [7] and GrapeCyc [3]. However, knowledge on plant
metabolic pathways is still very scarce due to challenges characteristic of higher organisms.For instance,
lack of comprehensiveness in plant metabolic networks and missing components, as most proteins’
function remains unknown. Secondly, besides photosynthesis and photorespiration that contribute to
the complexity of metabolic networks, plants have several unidentified compartments. Additionally,
there is also a vast diversity of plant cell and tissue types [9].

Therefore, to further extend our insight into plant metabolism and understand underlying mechanisms
leading to an organism phenotype, it is possible to bridge the gap between genotype and phenotype

through the integration of context-specific omics data. Thus, it is essential to integrate multiple omics



1.2. Objectives

to identify complex biological relationships that may become evident only through the combination of
multiple omics data [10, 11].

The rapid development of high-throughput technologies enabled the generation of large-scale omics
data, including plant omics data. Omics data analyse a given biological function, at different levels,
including the molecular gene level (genomics), the protein level (proteomics), and the metabolic
level (metabolomics). However, omics data are often dispersed and lack standardisation and the
different sizes, formats and scales of the data being integrated, and the different complexities, noisiness,
contents, and levels of agreement, hinder this task [12].

Hence, the processing and interpretation of omics data requires appropriated tools, such as ML
algorithms [13]. ML tools can identify patterns, select relevant features from large datasets and make
inferences from the observed data without defining biological assumptions [14, 15]. ML can also be
used to analyse the flux data predicted by the context-specific GSM models with other omics from
high-throughput technologies to improve the predictions [15].

Finally, the existence of a centralised repository is fundamental to incorporate and organise plant
data to ease the study of plant metabolism, develop new bioinformatic tools and integrate information
not only from the plant databases but also all relevant omics data to grant the users the ability to

compare, analyse and integrate information from several contrasting sources.

1.2 OBJECTIVES

This project’'s main goal is to develop methodologies to integrate multiple omics data and create new
datasets to improve knowledge on plant's metabolic phenotypes and underlying products when facing
environmental stresses and diseases. As a primary case study, will use the grapevine, Vitis vinifera, to
support the procedures development and validation. Neverthless, such methodologies can be used for
other species with economic value for our country, like Quercus suber (cork).

The following objectives will be pursued to accomplish this main goal:

- Review state-of-art methods for analysing, preprocessing and integrating omics data from different
sources and studies employing ML approaches for studying plant metabolism.

- Collect relevant plant omics data that will be organised in an integrated repository.

- Preprocess multi-omics data.

- Develop methods and computational tools based on ML to integrate different omics data and
extract knowledge to understand plant behaviour under different environmental conditions.

-Integrate all the collected data, developed tools and algorithms into an open-source computational
framework.

- Apply and validate the tools using a case study associated with Vitis vinifera metabolism.

- Write dissertation.

1.3 REPORT OUTLINE

This report is structured as follows:



1.3. Report Outline

e Introduction chapter, where the context and motivation for this project are described, and

further objectives and report outlined.

e State Of The Art chapter subdivided in the following sections:

1.
2.
3.

Plant Metabolism section, providing a resume on plant metabolism;
Vitis vinifera section, where we discuss the basics of berry development;

Sources of Plant Metabolic Data section, illustrating the principal resources available for
metabolic data in the subsection " Databases” and the central plant omics databases and
an overview of omics data in the "Omics Data” subsection.

. Machine Learning section, reviewing the importance of ML approaches for the study

of omics data, the basic principles of ML and its application to biological data, in the
subsections " Concepts in Machine Learning”, " Types of Learning”, "Model Evaluation”
and "Model Selection”, also examples of studies using ML for the study of plants in the

"Machine Learning in Plants” subsection.

. Integration of Multiomics Data section, describing in detail the methods and approaches

for multi-omics data integration in the " Dimension Reduction Approaches”, " Network-
based Approaches”, "Bayesian Approach” and "Multiple Kernel Learning Approach”
subsections, and applications to plant omics data in the " Integration of Multiomics Data
in Plants” subsection. The last subsection " Combination of experimental omics and

predicted fluxomics” focuses on this approach and presents corresponding literature.

e Materials and Methods chapter divided in:

1.

N oo~ e

Plant Data Collection, that explains both Case Studies, and where the datasets were

taken from;

Pre-processing, with all the preprocessing steps executed;

Feature Selection, explaining the different filters used in the datasets;
Models used in this project;

Model Evaluation, the error metrics used and other forms of validation
Model Optimization, selection of hyperparameters

Computational Framework, indicating the programs used and where the code is available

online.

e Development, explaining the pipeline developed, and all the scripts created. Divided in:

. Plant Data Assimilation
. Pre-processing

1
2
3.
4
5

Exploratory Analysis

. Individual Omics Analysis

. Multiomics Integration

¢ Results and Discussion, where the results are discussed and explained, by Case Study:
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1. Case Study I,

2. Case Study II;

3. Summary, with a brief explanation of the advantages and disadvantages of the executed
models.

e Conclusions and Future Work

e Supplementary Figures, subdivided in:
1. Case Study I,
2. Case Study Il.

e Supplementary Tables, for each Case Study:
1. Case Study I,
2. Case Study Il.



STATE OF THE ART

2.1 PLANT METABOLISM

Metabolism is the sum of all biochemical reactions taking place in a living organism. These biochemical
reactions are catalysed by enzymes and compose the metabolic pathways, where various intermediates,
named metabolites, are involved. Enzymes connect reactions requiring energy input ( converting
simpler to more complex molecules, anabolism), with reactions that release energy ( transforming
complex substances into simpler molecules, catabolism) to biosynthesise new metabolites. Moreover,
enzymes can regulate the rate of metabolic reactions according to internal signals and the changing
environment [16].

Unlike animals, plants are sessile being exposed to rougher conditions and interacting with various
pathogenic or beneficial organisms. Therefore, to defend themselves, plants evolved very complex
metabolic networks capable of producing several metabolites essential for growth, development,
reproduction and adaptation to the environment [17]. These metabolites differ from plant species
and vary accordingly to the organ, tissue or cell at different developmental stages or under certain
environmental conditions [18]. Another reason that makes plant metabolism even more complex is
their immense compartmentalisation of the interconnected metabolic pathways [19]. Only recently it
has become evident that plant metabolites have significant roles for the plants that produce them,
with several beneficial aspects for the economy, for example, fragrances, stimulants, insecticides,
attractants, antimicrobial, pharmaceutical, dyes, flavours and many more applications [20].

Plant metabolism can be sub-divided into two groups: primary (or central) and secondary (or
specialised) metabolism [21]. Primary metabolites normally perform a physiological function in the
organism, with fundamental roles related to normal growth, development, and plant's reproduction.
This type of metabolite, including ethanol, lactic acid, and particular amino acids [22], is identified in
many organism and cells.

Primary metabolism in plants starts with photosynthesis, converting light energy into chemical energy,
which forms the sugars used to start cellular respiration. These sugars are then disintegrated in glycolysis
and Tricarboxylic Acid Cycle (TCA) pathways, producing energy as Adenosine Triphosphate (ATP)
molecules. Glucose can also be oxidised through the pentose phosphate pathway. Shikimate pathway,
used for biosynthesis of folates and aromatic amino acids, is also included in the plants’ central

metabolism. All the products derived from these pathways will serve as precursors for the biosynthesis
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of more complex compounds, like secondary metabolites, such as amino acids, fatty acids, starch and
structural compounds forming the cell wall and membrane [23, 24].

On the other hand, secondary metabolites (or specialised metabolites) are not directly involved in
the development, normal growth or reproduction of plants [16]. Secondary metabolites are usually
detected in defined species, particularly tissues/organs at given developmental stages, or under certain
environmental conditions, and have essential roles in protecting plants from herbivores and pathogen
infection or to attract pollinators or seed dispersal animals [22]. Therefore, secondary metabolites
are an integral part of species’ interactions in plant and animal communities and their adaptation of
plants to their environment.

Since they have a vast chemical diversity, they are used in a lot of pharmaceutical and biotechnological
applications. These specialised metabolites are derived from the central metabolic pathways, like
the TCA, the isoprenoid pathways, that produces isoprenoids like sterols and the shikimate pathway.
Depending on their provenance, they can be divided, as demonstrated in figure 1, into three groups of
metabolites: terpenoids, phenylpropanoids and alkaloids [21].

Terpenoids Phenylpropanoids
CHa HxC CHa CHi HO N - OH
o 0 0

CH 0 OH CH

HO OH :

Curcumin

HWC Oh CHs HEC™ CH:
Menthol 1:8 Cineole Limonene @1
O o)
Alkaloides Coumarin

CHa

HO [ o I
\Au/j NCH3 - - . h'\.
O oD en
™, /‘J [ﬁx\iﬁ“-\/ o’ N o
,\f:} (Iilla (‘TH:

Codeing Nicotine Caffeing

OH O

Flavonoid

Figure 1: lllustrative compounds of the three groups of secondary metabolites. Terpenoids group: men-
thol, cinede and limonene; Alkaloids group: codeine, nicotine and caffeine; Phenylpropanoids
group: curcumin, coumarin and flavonoid.

Terpenoids are derived from the five-carbon precursor isopentenyl diphosphate from the isoprenoid
pathway and have expanded the range of aromas in the perfume industry and flavours of food
additives. Phenylpropanoids are biosynthesised from amino acids produced in the shikimate pathway,
like phenylalanine and tyrosine. One of the major classes of phenolic natural products are the flavonoids.
These products are important in many aspects, not only being in charge of the colours of flowers and
fruits, which often function to attract pollinators and seed disperses, but they can also protect plants

against ultraviolet-B irradiation. On the other hand, alkaloids are derived from different amino acids
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Figure 2: lllustration depicting primary and secondary metabolism in plants. Primary metabolism
starts when light energy is transformed into chemical energy through photosynthesis and
kept as sugar molecules, that will be used to start cellular respiration. The same molecules
are then broken down during glycolysis and TCA cycle pathways to form ATP molecules.
Furthermore, glucose can also be oxidised during the pentose phosphate pathway to generate
reducing equivalents and the precursors for the biosynthesis of nucleotides and aromatic
amino acids produced in the shikimate pathway. The shikimate pathway will allow the
production of the two groups of secondary metabolites: alkaloids and phenylpropanoids.
Lastly, acetyl-CoA can go into the TCA cycle, the fatty acid biosynthesis pathways or the
isoprenoid pathway to produce terpenoids and other complex metabolites.

and are still used to this day as prescription drugs, including purgatives, antitussives, sedatives and
treatments for a wide range of ailments.

Higher plants produce many secondary metabolites via complex pathways, which are regulated
in highly sophisticated manners. In most cases, these bioactive natural compounds are located in
particular organs, and their contents in such organs are seasonally regulated. However, they can
also be translocated among various plant organs [25]. Figure 2 shows an overview of the central
metabolism, which produces the precursors for secondary metabolite's biosynthesis.

Therefore, plants are essential beings that produce a vast diversity of bioactive compounds, with
biotechnological and pharmaceutical importance, that promote the country’s economy. Since they
alter their metabolism to face the diverse environmental stresses around them, the study of plant
metabolism is of uttermost importance to understand phenotypes of disease resistance and survival
under extreme environmental conditions and improve the production of fruits or metabolites of interest.
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2.2 Vitis vinifera

Vitis vinifera belongs to Vitaceae, a family of flowering plants and to the genus Vitis, that makes up
the majority of species from Northern hemisphere. The Vitis genus is composed of two sub-genera:
Muscadinia and Euvitis. Vitis vinifera belongs to the Euvitis sub-genera, where most of the cultivated
grapevines belong. More specifically, to the Euroasian group, since it is native to the Mediterranean
region, Central Europe and Southwestern Asia [26]. This plant species has high economic value since
their grapes are used for many aspects: fresh fruit consumption, processed to make wine, vinegar or

juice, or dried, to produce raisins [26].

2.2.1 Berry Development

Grape berries are composed of three distinct types of tissue: skin, flesh and seeds; and during their
growth they suffer modifications mainly in size, content, texture, flavour and pathogen susceptibility.
Berry development exhibits a double sigmoid growth pattern separated by a lag phase. The main
indicators of berry growth start with cell division and then cell enlargement [27]. Literature splits
berry growth into three stages [27] [29]:

e Stage |: The first rapid growth phase. Usually occurs between three to four weeks and
immediately after flowering. In this phase the berry growth results both due to cell division as
well as cell expansion, and the berry assumes a firm texture and green colour due to presence
of chlorophyll. The sugar content is low, however organic acids accumulate, which contributes
in some extent to berry expansion. The most prevalent organic acids that are present in this
phase are tartaric and malic acids. Tartaric acid concentration is highest at the periphery of
the developing berry and malic acid accumulates in the flesh cells. Hydroxycinnamic acids
are also present in the first growth period, being a vital piece in many reactions and also due
to their role as precursors of volatile phenols. Additionally tannins, also increase during this
period and accumulate in the skin and seed tissues and other compounds, such as minerals,
aminoacids, micronutrients, and aroma compounds also accumulate during this phase being
responsible for the quality of the berry.

e Stage Il: The lag phase. The duration depends on the type of cultivar and its end coincides
with the end of the herbaceous phase of fruit (more or less two to three weeks). In this period
berry growth slows down and the concentration of organic acids reaches its maximum level.

The berry texture persists in its firm state but starts losing chlorophyll.

e Stage lll: The second rapid growth phase and fruit ripening. After the lag phase another rapid
growth phase takes place, which corresponds to the beginning of berry ripening. The duration
of this phase is up to six to eight weeks and berry growth is restricted to cell enlargement, where
berries can double size. This period is also known by the french word veraison, meaning berry
softening, which is used to describe the initial stages of colour development, that symbolizes the

start of ripening. In this period many dramatic changes occur in grape composition, including



2.2. Vitis vinifera

the softening of the berry texture, the lose of chlorophyll (if the grape is a colored variety,
red pigments start appearing and accumulating in the skin), the decrease in acidic content
and increase in sugar concentration that is key for the accumulation of aroma and flavour
compounds. During this phase most of the solutes remain, however due to the increase in berry
volume their concentration is reduced, not only by dilution but to produce other compounds. It
is the case of malic acid that is metabolized and used as energy in this phase. Tannins also
decline as well as some aromatic compounds produced in the first rapid growth phase.

Figure 3 demonstrates the distinct berry growth phases as well as the different compounds present

at the time.
Veraison
L
5 i 4 vpvrazi » ; € . Flavour
Tartrate  Ta nnin Methoxypyrazine Glucose Anthocvanin
Hydroxycinnamates Malate  Fructose - Compounds
Q
[ ]
I II P I
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Figure 3: lllustration of berry growth and different compounds present at each stage. From flowering
to harvest, the berry takes different sizes and colours. At stage | (first rapid berry growth
phase), with a duration of 3 to 4 weeks, the berry gets bigger due to cell division and cell
expansion, and it starts with a firm texture and green colour due to chlorophyll. At this
point the main compounds present in the berry are organic acids. In stage Il (the lag phase),
spanning between 2 and 3 weeks, the berry growth slows down and the concentration of
organic acids reaches its pick. Finally, in stage Il (second rapid growth phase and fruit
ripening) , a period of 6 to 8 weeks, it reaches veraison, the ripening phase, where the
berry texture gets softer, and berry growth is restricted to cell enlargement. The berry
also starts losing chlorophyll, and red pigments may appear if the grape is of a colored
variety. Additionally, some organic acids are reduced and the sugar content increases, which
contributes for the aroma and flavour of the grape.
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2.3 SOURCES OF PLANT METABOLIC DATA

Plant metabolic data information can be obtained through generic databases, like the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) [29]. These databases help understand the biological system'’s
high-level functions and utilities, containing descriptions of metabolic pathways, genes, enzymes,
reactions, and metabolites.

On the other hand, perception of plant metabolism can also be inferred by omics data. Omics
technologies are defined as high-throughput biochemical assays, including, for example, transcriptomics,
proteomics, epigenomic, and metabolomics data. These data are crucial to understand metabolism
as they allow the detection and analysis of differential expression patterns in several environmental
conditions, thus explaining the metabolic variations that occur in different phenotypes.

2.3.1 Databases

Large amounts of data relating to metabolic reactions are available in several databases that can
be divided as general or species-specific. Table 1 shows the most pertinent databases for plant
metabolism studies. MetaCyc [30] and KEGG [29] are the most generic to obtain information for
metabolic pathways from the generic databases. Other generic databases used to extract detailed
information on genomes, proteins, transporters, enzymes include the National Center for Biotechnology
Information (NCBI) [31], the Universal Protein Resource (UniProt) [32], the BRaunschweig Enzyme
Database (BRENDA) [33], the Transporter Classification Database (TCDB) [34] and PubChem [35].

On the other hand, for species-specific cases, the PlantCyc [36], Plant Reactome [37] and MetaCrop
[38] are the ones who provide data for most plant species. In turn, SolCyc [39] only covers information
for the Solonaceae family and The Arabidopsis Information Resource (TAIR) [40] only provides
information for Arabidopsis thaliana. More species are available at Plant Metabolic Network (PMN)
[36], which contains manually curated and predicted data from 125 plant species.

Lastly, software can be downloaded containing information and profiling data visualisation for plant
species, like MAPMAN [41].

Table 1: Description of the most pertinent databases for plant metabolism studies.
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Database Description

Ref

MetaCyc An all-inclusive database with the largest curated collection of metabolic pathways,
containing data about chemical compounds, reactions, enzymes and metabolic pathways
from all domains of life.

BioCyc Pathway/Genome Databases (PGDB) collection that describes the genome and
metabolic pathways of a single species. The database includes metabolites, enzyme
activators, inhibitors, and cofactors, and it comprises transport systems and pathway

fillers, as well as various tools for visualisation and comparative analysis.

Continued on next page
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Database

Description

Ref

NCBI

KEGG

UniProt

BRENDA

TCDB

PubChem

PlantCyc
and PMN

Plant Re-
actome

MetaCrop

SolCyc

TAIR

Open source repository of several databases that contain information regarding genomics
and biomedical sciences, and tools that provide data retrieval systems and computational
resources to analyse the structure and function of biologically important molecules.
Database resource for knowledge of functions and applicability’s of biological systems,
dedicated especially for large-scale molecular datasets generated by genome sequencing
and other high-throughput experimental technologies.

Collection of protein sequences and detailed annotations for several organisms.It com-
bines reviewed UniProtKB/Swiss-Prot entries, with unreviewed UniProtKB/TrEMBL
entries.

Website that combines manually curated enzyme data with proteomic and genomic
information. It provides an understanding overview on enzymes and combines versatile
tools, for analysis, visualisation, and data retrieval, to access enzyme information. The
data collection is based on the Enzyme Commission (EC) classification system.

Open source curated database for transport protein research, which provides struc-
tural, functional, mechanistic, evolutionary and disease/medical information about
transporters from several organisms. It is based on the Transporter Classification (TC)
system.

Largest database that serves the biomedical research communities in many areas like
cheminformatics, chemical biology, medicinal chemistry and drug discovery, including
information on molecular structure, physical properties and biological activities of
compounds.

PlantCyc is a repository for manually curated and reviewed information on metabolic
pathways. PMN also provides access to curated and predicted information about
enzymes, pathways, and more for several plant species.

Open-source, manually curated and comparative plant pathway database of the Gramene
project. It uses O. sativa as a reference species for manual curation of metabolic and
regulatory pathways and extends to another 82 plant species, also providing a suite of
tools for analysis of large-scale omics datasets.

Database that outlines information about metabolic pathways in crop plants and grants
easy export of information for creation of accurate metabolic models.

Collection of PGDB for Solanaceae species generated using Pathway Tools software
from SRI International. Databases generated from the respective genome annotations
of tomato, potato, and pepper are available, some of them are curated.

Database of genetic and molecular biology of A. thaliana. Data available includes
complete genome sequence along with gene structure, gene product information,
expression datasets, also including tools for visualisation and analysis of data.

Continued on next page
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Database Description

Ref

MAPMAN User-driven tool that displays large datasets onto diagrams of metabolic pathways or
other processes providing visualisation of profiling datasets in the context of existing
knowledge.

]

2.3.2 Omics Data

The word omics in cellular and molecular biology designates all constituents considered collectively
[43]. Given the development of high-throughput technologies, it was possible to generate larger omics
datasets. Therefore, omics technologies, referred to as high-throughput biochemical assays, measure
thoroughly and simultaneously all molecules of the same type from a sample.

These data help investigate the central dogma of molecular biology through the detection and
quantification of DNA, RNA, protein, and metabolites. However, such massive data generation
requires bioinformatics to analyse and integrate them, presenting many hurdles, including differences
in data cleaning, normalisation, biomolecule identification, data dimensionality reduction, biological
contextualisation, statistical validation, data storage, handling, sharing and archiving. Nevertheless,
researchers are surpassing this challenge, increasing our understanding of fundamental biological
questions ultimately leading to the identifiedation of systems and synthetic biology [13, 44, 45].

The interpretation of molecular intricacy and variations at several levels, including genome,
epigenome, transcriptome, proteome, and metabolome, has enabled the use of omics data in many
applications, such as the developing a comprehensive understanding of human health and diseases,
biological processes and different metabolic phenotypes. Furthermore, it helped transform medicine
and biology, creating pathways for integrated system-level approaches [46]. Although many omics
exist, genomics, transcriptomics, proteomics, and metabolomics are the main identifiedations of the
systems biology field due to their connection with the central dogma.

Genomics is the study of the entire genome sequence and its information, including identification
of single nucleotide polymorphisms, copy number, and loss of heterozygosity variants. The primary
technique to obtain this data is whole genome sequencing (DNA-seq), used to confirm the oligonu-
cleotide sequence of the DNA template and the resulting protein's chemical composition. The online
repositories for genomic datasets are Sequence Read Archive (SRA) [47], which stores raw sequence
data, Gene Expression Omnibus (GEO) [48], which deposits processed genomics data and NCBI's The
Database of Genotypes and Phenotypes (dbGaP) [49], a public repository with controlled access for
genotype and phenotype sequence data [50].

Transcriptomics provides information about the relative abundance of RNA transcripts, demonstrat-
ing the active compounds within the cell. The most used high-throughput techniques for transcriptional
profiling are RNA-Seq, Microarrays and Serial Analysis of Gene Expression (SAGE). Public databases
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for this type of datasets are GEO, SRA and ArrayExpress [51]. Other databases for genomics and
transcriptomics datasets are depicted in table 2.

Proteomics identifies and quantifies all proteins expressed by a cell. The more frequently used

strategies for proteomic profiling are two-dimensional gel-eletrophoresis and mass spectrometry (MS).

MS allows the quantification of proteins and post-translational modifications, as well as identifying
novel proteins. However, not all proteins can be detected by this method. Well-known public
repositories for proteomics profiling are PRIDE [52], ProteomeXChange [53], ProteomicsDB [54],
PeptideAtlas [55], GPMDB [56], PAXDB [57] and JPOST repository [58].

Metabolomics identifies all the metabolites present in the cell, resulting in the interaction of the
transcriptome, proteome, and more, which gives information about not only the metabolite compounds
produced but also the state of the cell. The most used strategies to acquire metabolic profiling are
MS, NMR spectroscopy, and vibrational spectroscopy. MS output is used for the quantification of
metabolites and new metabolite discovery. Public databases available for metabolic profiling are
Metabolights [59], MetabolomeExpress [60], GNPS [61] and Metabolome Workbench [62].

Concerning plant databases for genomics, the most relevant is Plant Omics Data Center (PODC)
[63], which includes core gene expression information regarding gene networks and knowledge-based
functional annotations for plants and crops. PlantExpress [64] is a public web repository used for gene
expression network analysis and microarray data on plants for transcriptomics. Relative to proteomics,
the most well-known plant database is Plant Proteomics Database (PPDB) [65], storing curated data
from mass spectrometry and proteome about protein functions, properties, and subcellular localisation.
Lastly, plant metabolomics also has a public database, namely Plant Metabolome Database (PMDB)
[66], which is a database of secondary metabolites of plants in the three-dimensional structures
available in the biological data banks and databases.

As demonstrated, omics data are relevant for the study of systems biology. Nevertheless, the
different types of omics are processed and analysed in different manners as they differ in terms of
scales and structure. Therefore, there is no standard workflow pipeline able to analyze and process all
these contrasting omics data, rather only specific workflows to process and analyse a particular omics
data type [13]. In that way, many studies, like [12], [14] and [46], have emphasised the importance of
integrating different omics data to have a more comprehensive view of a biological system.

Table 2: Description of the most pertinent databases for plant omics data.
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Database Description

SRA International public archival resource for next-generation sequence data.

GEO International public repository that archives and freely distributes raw and processed
genomics data, including metadata.

dbGaP Public repository for individual-level phenotype, exposure, genotype, and sequence
data, and the associations between them.

ArrayExpress Public repository for functional genomics datasets and corresponding metadata.

[

]

Continued on next page
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Table 2: Description of the most pertinent databases for plant omics data.
Database Description Ref.
GenBank Public repository for collections of annotated nucleotide sequences and their  [67]
protein translations.
RefSeq Open-access database of annotated, curated and publicly available nucleotide  [68]
sequences (DNA, RNA) and their protein products.
DDBJ Biological database that collects DNA sequences at National Institute of Genetics.  [69]
ENA Repository that provides free and unrestricted access to annotated DNA and RNA  [70]

Expression At-

las

EVA

MassIVE
NODE

PRIDE
ProteomeX
Change
Proteomics DB
PeptideAtlas

GPMDB

PAXDB

JPOST reposi-
tory

Metabolights

Metabolome

Express

sequences and respective metadata.

Public archive that provides curated information on gene expression patterns from
RNA-Seq and Microarray studies, and protein expression from Proteomics studies,
and respective metadata.

Open-access database of all types of genetic variation data from all species.
Community resource to promote the global, free exchange of raw MS datasets.
Resource platform that supports flexible genomics, proteomics, metabolomics and
fluorescence imaging data management and effective data release.

Public data repository of MS based proteomics data, maintained by the European
Bioinformatics Institute.

Consortium established to provide globally coordinated standard data submission
and dissemination pipelines involving the main proteomics repositories.
Database for quantitative MS-based proteomics data, RNASeq expression datasets,
drug-target interactions and protein turnover data.

Publicly accessible compendium of peptides identified in MS proteomics experi-
ments, providing tools for processing and analysing raw data.

Large Proteomics database that helps validate peptide MS/MS spectra as well as
protein coverage patterns.

Public repository that contains genomic and proteomic information from various
organisms and tissues. The datasets are scored and ranked by importing the
protein network information.

Database of integrated proteome datasets, where raw MS data is re-processed
and automatically generates high-quality databases for data comparison and
integration.

Repository for metabolic studies that provides research data and metadata as
well as metabolite structures, their reference spectra, biological role, location,
concentration, and experimental data.

Online server for processing, interpreting, and storing MS metabolomics data.

Continued on next page
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Database Description Ref.
GNPS Public database of raw, processed, and annotated fragmentation of MS data, [6]]
assisting in the identification and discovery.
Metabolome Repository for metabolomics data and metadata, including tools for analyses [67]
Workbench access to information on protocols , standard metabolites, tutorials, and more.
PODC Public database providing gene expression networks, functional annotations, and  [63]

additional comprehensive omics resources.

PlantExpress Database for GEN analysis, providing functionalities specialised for OryzaExpress
and ArthaExpress for Oryza sativa and Arabidopsis thaliana.

PPDB Database for integration of MS-based proteomics data for the species Z. mays
and A. thaliana.

PMDB Public repository that collects three-dimensional protein models obtained by
structure prediction methods.

2.4 MACHINE LEARNING

2.4.1 Overview

The development of high-throughput technologies led to the generation of vast large-scale omics
datasets. Omics data are essential because they provide insights on genetic and molecular profiles,
providing a more holistic perception of the organism’s metabolism and the fundamental mechanisms
that lead to different phenotypes. Nowadays, omics have been applied in numerous areas, such as
developing and comprehensive understanding of human health and diseases, biological processes, and
characterisation of complex biochemical systems. However, the different types of omics differ in terms
of scale and structure; they are very complex and heterogeneous, so to process and interpret this data
we need suitable tools. ML algorithms are the most used for this task since they can learn structures
and associations, select relevant features from large datasets and make deductions by using example

data or past experience without biological assumptions [75, 14].

2.4.2  Concepts in Machine Learning

ML is a subset of artificial intelligence and it focuses on the study of algorithms, where a computer

uses experimental data to learn and make future predictions without being explicitly programmed.

Hence, it can learn and readjust as from experience. For a better comprehension of ML algorithms, a
few concepts should be reviewed [76].
An algorithm is a procedure that runs on the input data to create the best ML model, based on a

given representation structure, that will be further explained in this section [77].The model results
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from an algorithm that predicts the output values from input variables and generalises from current
data.

Regarding the data structure, the processed data is usually represented in a matrix form, also
named dataset, that is, a table schema, where the rows correspond to instances and the columns to
attributes.

Instances, or objects, are a set of observations that we are interested in, from which the model
will learn, or how a model will be used, for example, for predictions.

On the other hand, attributes, or features, describe an instance. The attribute type can be
categorical or continuous. A categorical attribute is a finite number of discrete values that can be
divided into two types: nominal, where there is no ordering between the values (e.g. names and
colours), and ordinal, where there is an ordering (e.g. the attribute takes on the values low, medium,
or high). Regarding continuous or quantitative attributes, they are described as a subset of real
numbers, where there is a measurable difference between the values. They can be, for example, weight
or temperature [76].

In some methods, datasets are divided into two sets to evaluate rationally the performance of
algorithms: the training set, a subset to train and build the best model, and the test set, a subset to
test the trained model and evaluate its effectiveness. Therefore, by using similar data for training and
testing, the effects of data discrepancies can be reduced, and we can have a better understanding of
the model's characteristics. A third set, named validation set, smaller than the training set, is often
used to evaluate models’ performance with different hyperparameter values and detect overfitting
during the training stages [78].

2.4.3 Types of Learning

ML algorithms can be divided into three major categories: supervised, unsupervised and reinforcement
learning.

Supervised learning uses previously labelled data, a training dataset, to classify and make predictions
on new data. The labels allow the algorithm to correlate the features. The tasks of this type of
learning can be classification or regression problems. A classification problem is a process where the
predicted output is a discrete variable, e.g. a label. The quality of the model is usually measured
using sensitivity and specificity as accuracy measure.

On the other hand, a regression problem is when the predicted output is a continuous variable,
like a quantity or size. For this type of problem, the quality of the model is commonly measured by
root mean squared error. In contrast, in unsupervised learning, no external indication is provided, and
learning is carried out by finding regularities in the input data. Common tasks for this type of problem
are clustering and PCA [79, 80].

Lastly, in reinforcement learning, the machine is not told which actions to take. Instead, it discovers

which actions yield the most reward by trying them. In some cases, actions may affect not only the

immediate reward but the following. In sum, it learns from the consequences of its past actions [81].

From the three categories, supervised learning is the most used and, in every application, there are

16



2.4. Machine Learning

specific steps to develop supervised ML models, as shown in figure 4. The first step is data collection,
where the quantity and quality of the data will determine our model's accuracy. The second step
is pre-processing and feature selection, a critical step that will also help with our model’s accuracy.
The next step is splitting data into train and test datasets, following by selection and optimisation of

learning models. The final step is the evaluation of the model performance.

Pre- Construction
Data Collection -| processing and feature > of training and
selection test sets
Selection "
A Evaluation
and optimisation >
of learning models of model performance

Figure 4: Necessary steps to develop a supervised ML model.

2.4.4 Model Evaluation

Evaluating the quality of a model for a given task involves calculating error measures on the test set.
As mentioned before, these measures depend on the type of problem: classification or regression.

The confusion matrix that maps the values predicted by a model to real values is usually calculated
for a classification problem. In a confusion matrix, the correct and incorrect predictions are compiled
with count values arranged by each class. In other words, it shows where the classifier is making wrong
predictions. There are two possible classes in a 2x2 matrix: Positive and Negative. The rows represent
the real values, while the columns represent the predicted values, as illustrated in figure 5. There are
four outcomes. If both the real and predicted values are positive, we have a True Positive (TP);
however, if the real value is positive but the predicted is negative then we have a False Negative (FN).
On the other hand, if the real value is negative but the predicted value is positive, we have a False
Positive (FP), but if both the predicted and real values are negative, we have a True Negative (TN).
For problems with more than two classes, a confusion matrix is calculated for each class, in which
positive values represent one class and negative values represent the others.

Using the confusion matrix, we can calculate the accuracy of the model, also known as Percentage
of Examples Correctly Classified (PECC), by dividing the sum of TN and TP values by the sum of
all the other results, as shown in equation (a) of figure 6. Moreover, we can also calculate other
error measures. Recall, for instance, is the division of TP values by the sum of all real positive values
(TP+FN); as seen in equation (b), it measures the proportion of positive cases correctly identified.
Specificity, represented in formula (c), on the contrary, is the proportion of negative cases that are
correctly identified, calculated by the division of TN values by the sum of all real negative values
(TN+FP). The Precision or Positive Predictive Value (PPV) (equation d) is calculated by dividing
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Predicted Values

Pasitive Negative

Positive FN
Desired Values

Negative FP

Figure 5: Example of a confusion matrix.

the TP values by the sum of all positive predicted values (TP+FP) and represents the proportion
of positive predictive values. Likewise, Negative Predictive Value (NPV) (equation e) represents the
negative predictive values and is therefore calculated by the dividing TN values by all the negative
predicted values (TN+FN). Finally, the F-score measures the model’s accuracy considering both
sensitivity and precision and is calculated as shown in equation f).

(TN + TP) i .. (TP)
a) PECC = . - d)  PPV(Precision) = ——————
(TN + TP + FP + FN) (TP + FP)
TP (TN)
b Recall = —— = 7
Vo Recall= oo E N o NPV= G

TN (Precision * Recall)

Specificity = ———— f F1=2
) Al b (TN + FP) ) ' (Precision + Recall)

Figure 6: Error measures used in classification problems. a) Accuracy. b) recall. ¢) Specificity. d)
Precision or Positive Predictive Value. ) Negative Predictive Value. f) F-score.

For regression problems, measures are calculated based on the error made for each example. This is
the difference between the predicted value (§) and the real value (y). There are several error metrics,
depicted in figure 7, such as Sum of the Square Errors (SSE) that is calculated by summing the square
differences of the predicted values (¥) and the real values (y), as shown in equation g) and Root
Mean Square Error (RMSE), that is measured by the square root of the SSE divided by the number
of instances (N) (equation h). Moreover, there is also Mean of Absolute Deviation (MAD) that is
obtained by the equation i).

As mentioned before, the original dataset should be divided into two datasets, training set and test
set, to evaluate the model performance correctly. Since the model’s training requires more examples,
the training set usually is larger (80%) and the test set is smaller (20%).

A method generally used for model validation is Cross-Validation (CV) that allows the use of all
data observations. In k-fold CV, the entire data is split into k-folds, the model is trained using the k-1

folds and, in each iteration, is tested with the remaining kth fold until all the k-folds serve as test set
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Figure 7: Error measures used in regression problems. g) Sum of the Square Errors (SSE). h) Root
Mean Square Error (RMSE). i) Mean of Absolute Deviation (MAD).

[82]. The error is measured by the mean of the errors in each iteration. With this method, we can
estimate the variability and reliability of every model that uses that data [33].

However, it may be necessary to maintain the relative proportions of each class in the different sets,
so a sample stratification process should guarantee the best possible effort for this result. A particular
case of stratified cross-validation is the Leave-one-out method, where k is equal to the number of
instances and in each iteration, the model is created using all instances except one, which will be
used to test the model. Despite requiring more computational time, this method presents more viable
results [34].

Additionally, the bootstrap method can be used to divide the data. This method is inspired by
sampling with replacement [85]. Given a set of N original instances, N training instances are selected
by resampling. The test examples, on the other hand, will be all those not selected for the training.
This process is repeated often to have statistical significance [36], using appropriate statistical tests,
such as t-test or ANOVA.

Evaluating the model’s performance is a good practice as overfitting problems are often encountered.
Overfitting is when the model learns examples too well and loses the ability to generalise, mainly
due to the high variance of the model, caused by noise and peculiarities of the memorised training
data. This can be addressed by removing redundant data features, increasing the number of data,
since small datasets are more prone to overfitting than large datasets, using penalty methods or early
stopping methods, and avoiding too complex models compared to the available data.

In practice, the problem is challenging to solve because having simpler models can lead to underfitting.
This type of problem is the opposite of overfitting, as the model has low complexity in terms of
features or the type of model; therefore, it is incapable of capturing the variability of the data [37].

2.4.5 Model Selection

The model selection (or selection of the best hyperparameters) is required for the optimisation process.

Which aims to minimise the error over a set of validation instances (not used for the training process),
and the error estimation techniques often used are resampling methods, such as cross-validation,
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among others. The objective is to look for models that minimise overfitting and underfitting, that is,
return models with the right balance between error and complexity.

There are several advantages in reducing the number of input attributes of a model since the model’s
complexity increases with the number of input attributes, which can cause overfitting. Moreover, data
and models can be easily analysed and understood, and the elimination of redundant or contradictory
attributes can improve the learning process by reducing noise. A simple technique is to extract the
features from the dataset that are not relevant, getting only the ones that will grant our model the
best results.

However, feature selection, defined as an optimisation problem that can become complex, given
the wide search space can also accomplish this task. Algorithms for feature selection are divided into
three groups: filter, wrapper and embedded methods. Filter algorithms select the features before the

learning process, regardless of the model, and its evaluation is performed with statistical measures.

Wrapper methods perform attribute selection in parallel with the model construction, they create
different subsets of attributes, and the error is estimated by training a model and using the previously
mentioned error measures. Forward and backward selection are examples of this type of wrapper
heuristic algorithms. Forward selection starts with few attributes and adds attributes until it reaches a
satisfactory behaviour. On the other hand, backward selection starts with a large number of attributes
and removes one in each iteration. Lastly, embedded algorithms perform feature selection, model
creation and evaluation at the same time [38].

Additionally, ensemble methods can improve learning performance, provide more accurate solutions,
reduce overfitting and improve robustness over a single estimator. The result is calculated by
a combination function, that given the output of all models, returns a single output value. In
classification problems, the combination models return the output that gathers more "votes” and
presents greater confidence associated with the class it proposes (winner-takes-all function). Contrarily,
in regression problems, the returned output can be the mean of the individual results, a mean function,
or a weighted mean, based on prior error estimation processes.

Nevertheless, diverse individual models are necessary to achieve accurate results. There are two
approaches to build ensemble methods. The first approach manipulates training examples in different
ways to create different models and introduce randomness. Three popular algorithms are:

e Bagging (Bootstrap aggregation), is based on bootstrap, in which each sample is created using

a different bootstrap process.
e Cross-Validation

e Boosting, also based on bootstrap, takes into consideration the probability of each example
being elected, and after creating each training set, the probabilities are updated by decreasing

the probabilities of the correctly classified examples and increasing the rest.

The second approach consists of varying the initial parameters of the model to inject randomness
into the algorithm. Random Forests are an example of this kind of approach as they are an ensemble
of decision trees in which a random subset of attributes is selected to be tested, injecting this way
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even more randomness. Additionally, this method also uses bagging to choose the training dataset,
and as a way to avoid overfitting, the out-of-bag error is used in the instances not selected [39].

A simple ensemble learning technique is called majority voting and allows the combination of multiple
classification models' predictions, turning it into a stronger meta-classifier. This technique balances
out the weaknesses of the individual classifiers on a particular dataset as well as gives confident results
thanks to the the associated individual weights [90]. The two main approaches in order to incorporate
multiple predictions with voting are hard voting and soft voting. When hard voting is taken based on
equal weights the predicted label becomes the mode of all the predictions. Otherwise, if the voting is
based on different weights, the weights are applied to the prediction and the final label is computed
accordingly. On the other hand, the soft voting approach, classifies the input data based on the
probabilities of all the predictions from the different classifiers weights [90].

2.4.6 Machine Learning Algorithms

ML methods are often grouped by algorithm similarity, being the most recognised groups the succeeding
ones [79, 91]:

e In each iteration, regression algorithms improve the model of the functional relationship
between the numerical input features (independent variables) and the numerical output feature
( dependent variable) using the error calculated in the model predictions. Three of the most
popular algorithms are ordinary least square regression, linear regression, and logistic regression.
These algorithms can be further modified to prevent overfitting problems, using regularisation
methods like Ridge Regression, Lasso regression and Elastic nets, that maintain all attributes

but reduce the magnitude of parameter values by penalisation.

e Instance-Based Algorithms do not explicitly create a model that generalises training data,
but the data is stored. Stored data is only used when sorting a new example; hence it is called
lazy learning. This type of algorithms, such as K-Nearest Neighbour, compare new examples
with the training data to make predictions.

e SVM gained popularity in biology as tools for classification and regression. They use only the
important examples (support vectors) and a nonlinear transformation of the inputs to a space
of linear characteristics, via a kernel function. SVM ensures that an optimal class separation
hyperplane is always achieved, which is also responsible for maximising the distance between

both classes’ data points.

e Decision Tree Algorithms are a favourite in ML due to their speed and accuracy. They build
a model similar to a tree, where each node represents a given input attribute, each branch that
exits this node corresponds to a possible value for this attribute, and the tree leaves designate a
solution, that is, a value for the output attribute. The pathway from root to a leaf corresponds
to classification rules. Examples of this type of algorithms are ID3, C4.5, C5.0 and J48 and
Classification And Regression Tree (CART) algorithms.
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e Bayesian Algorithms apply Bayes theorem to calculate probabilities of classification and
regression, associated with an example belonging to each of the possible classes and use the
class values' co-occurrence frequencies and the input attribute's values. The most popular

Bayesian algorithms are Naive Bayes and Bayesian Networks.

e ANN and Deep Learning algorithms build neural networks, which simplify the human brain's
models. ANN, is trained using Backpropagation and Stochastic Gradient Descent algorithms,
and result in a parallel processor composed of simple processing units called neurons, that
receive a set of inputs (data or connections) with a weight associated with each connection.
The neurons then do a weighted sum of all these inputs and calculate, based on the activation

function that filters the inputs, the signal that will be passed to the output.

Thanks to technology evolution, more powerful computers were created, enabling more complex
and much larger ANN, capable of higher accuracy, and dealing with very large datasets of
analogue labelled data, such as image, text, audio, and video. Examples of deep learning

algorithms are Stacked Auto-Encoders, Convolutional and Recurrent Neural Networks.

e Ensemble algorithms are composed of several weaker models trained independently to provide
a better prediction achieved by the combining all the other predictions. Popular examples of
this type of algorithms are boosting, bagging and random forests.

e Clustering Algorithms aim to separate groups with similar traits and assign them into clusters.
Therefore, same groups' data points are more similar to other data points in the same group than
those in different groups. Popular examples of clustering algorithms are K-means, K-medians
and Hierarchical Clustering.

e Dimensionality Reduction Algorithms seek and exploit the data’s inherent structure, selecting
relevant features to summarise data and facilitate its interpretation. PCA is a popular example
of this type of algorithms.

Thus, ML is of extreme importance in many biology areas due to its capability to store and manage
information efficiently and extract useful information from large and heterogeneous datasets. The use
of methods to transform heterogeneous data into biological knowledge and the underlying mechanisms
is a well-known characteristic of ML, and it allows the creation of predictive models. There are
several applications for ML tools, such as identification of regulatory elements (transcription factors,
promoters), non-coding RNA genes, metabolites from MS metabolomics datasets, and expression
patterns of genetic networks; prediction of the location, structure, and function of genes, RNA and
proteins; and enable classification, modelling, and induction of genetic networks.

Finally, it also has an important role in evolution for the reconstructing phylogenetic trees through
comparisons between different genomes [92].
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2.4.7 Machine Learning in Plants

Concerning plant studies, ML has been applied in the interpretation of data acquired from high-
throughput techniques in all levels of studies: genomics, transcriptomics, proteomics, and metabolomics
[93]. Some of those applications are classification of functional proteins, especially ribosomal proteins
of plants [94], functional protein classification in a virus family infecting plants [95], image processing
to assess salt stress tolerance in wheat [96], classification of grapevine varieties [97] and detection of
bacterial infection in melon plants [98], as demonstrated in table 3.

The use of ML algorithms, such as ANN, has been proved to surpass the traditional statistics
methods used frequently for the study of omics in plants [93]. In genomics and transcriptomics, ML
focuses mostly on the annotating a large number of sequence elements, identifying different gene
expressions, and identifying resistance genes and pathogen effector genes. Sequence elements play a
crucial role in gene expression, which is the case of micro RNA (miRNA), promoters, and transcription
factors targets that ML tools have been successfully identified through genomics and transcriptomics
data.

ML tools have been developed regarding miRNA focusing on plant system immunity and are efficient
in discovering miRNA. Some examples include PlantMiRNAPred [99], which uses SVM algorithm to
perform classification and predict plant pre-miRNA, miRPara [100], MaturePred [101], MiRduplexSVM
[102] and miTarget [103], which also use the SVM algorithm to train the classification models and
mirLocator [104] that implements the random forest algorithm.

Plant promoters, on the other hand, help develop disease-resistant or abiotic stress-tolerant plant
varieties and are predicted using ML tools, such as TSSP-TCM [105], PromMachine [106] and
PromoBot [107] that apply SVMs and also TSSPlant [108] that uses ANNs.

At last, transcription factor target genes are essential for the mechanisms that regulate the global
gene expression, and ML approaches have also been applied to help identify these elements, for
instance, [109], [110], [111] and [112] use SVM algorithms and [113] resorts to a Hidden Markov
model strategy.

Concerning the global analysis of gene expression, ML methods were first used in [114], which
developed a decision tree model. Several others have followed, like studying the stress response in
Loblolly pine using Inductive Logic Programming (ILP) in express microarrays [115], identification
of transcription networks regulated by glucose and ABA in Arabidopsis through relevance vector
machine model [116] and to predict the class of plant varieties using gene expression profile to
elucidate whether they can be distinguished by expression profiles of close-related plant genotypes,
using SVM algorithms [117]. Some ML-based tools were also developed, for example, MLDNA to
predict candidate stress-related genes using random forests [118] and Beacon GNR inference tool to
predict gene regulatory networks in Arabidopsis seed development using SVM algorithm [119].

Furthermore, regarding plant immunity, two tools were developed for the prediction of plant disease
resistance proteins against the pathogens of plants using SVM algorithms, NBSPred [120] and Disease
resistance plant protein predictor (DRPPP) [121]. Additionally, ML tools were created to identify
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effectors secreted by plant-pathogens, it is the case of Localizer [122], which uses the SVM algorithm,
and ApoplastP [123], related to the prediction of localisation in the apoplast, using random forest.
ML techniques have recently, been applied in metabolomics, for instance, [124] combined network
analysis and ML, using Random Forest, AdaBoost, SVM, and Naive Bayes algorithm to predict
metabolic pathways from tomato metabolomics data. Finally, deep learning is, as well, being applied
in plant molecular studies for phenotyping, disease identification, and genomics [125, ]. Despite
the wide range of ML applications in plant molecular biology, the lack of plant scientists with the
required programming skills does not allow the evolution of these types of utilisation. Consequently,
the development of easy-to-use programs for analysing plant omics data is still much necessary to

thoroughly examine the possibilities of ML in plant omics data and processing information.
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2.5. Integration of multiomics data

2.5 INTEGRATION OF MULTIOMICS DATA

The evolution of high-throughput technologies enabled the generation of extensive amounts of
biological data, also known as omics data, concerning different cellular behaviour conditions. However,
the analysis of a single type of omics data restricts the system’s knowledge extraction. Therefore,
integrating multiple omics data is fundamental to have a more holistic understanding of the biological
system. This way, we will identify complex biological interactions and have a better perception of
the genotype-phenotype relationship until then concealed. Nonetheless, this procedure has many
challenges related to the different sizes, formats, and proportions of the data being integrated and the
complexity, noisiness, contents and agreement between datasets [12].

ML has been the main focus of these integration methods, as it can integrate and manage
information from large heterogeneous datasets and is capable of several further analysis, such as
prediction, clustering, dimension reduction and association. ML, when trained with heterogeneous

data (data from multiple sources) is designated as "multi-view” or "multimodal” learning [127].

Data integration is divided into two main approaches: Multi-staged and Meta-dimensional analysis.

Multi-staged, a step-wise or hierarchical analysis based on a linear hypothesis that models the
relationship between two given omics data, aiming to uncover cause-effect links, e.g cis relationships

[128]. On the other hand, Meta-dimensional analysis integrates multiple different data types, combining

them in a simultaneous step, and builds a multivariate model associated with a given outcome [128].

The latter method is the most promising for massive data integration and can be categorised into
concatenation- (or early), transformation- (or intermediate), and model- (or late) based integration,
as depicted in figure 8, and defined below [129, 12]:

e Concatenation-based integration joins the datasets into a single dataset before constructing
a model. Since it requires a transformation of the datasets into a common representation, it

may result in information loss, and it may be hard to identify the approach that best combines

these data - due to the noise and different scales -, which may need a normalisation step.

Moreover, data reduction may be required as this process may inflate high-dimensionality (the
number of samples being smaller than the number of measurements for each sample). However,
if the approach determined is successful, it will be relatively easy to use statistical methods.

e Transformation-based integration creates intermediate forms for each dataset individually,
transforming each data type into an intermediate representation (kernel or graph) that will
then be merged into a more elaborate model. The main disadvantage of this method is that,

since this process transforms the data independently, the interaction effects is difficult to detect.

Nonetheless, it is a good way to integrate several types of data with unifying features, preserve
data-type-specific properties and it is a robust method for different measurement scales.

e Model-based integration generates multiple models using different data types as training sets

and develops a final model from the multiple models created throughout the training stage.

Therefore, this strategy is of great use when dealing with extremely heterogeneous data and
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Figure 8: Methods for multiomics data integration using ML techniques. In the concatenation-based
(early-stage) integration all the datasets are joined into a single dataset before constructing
the model. Transformation-based (intermediate-stage) integration develops intermediate
forms for all the datasets individually and transforms them into a intermediate representation
to merge them into a more complex model. Model-based (late-stage) integration produces
individual ML models for each of the datasets, that are then combined into a final ML

model.

offers more flexibility. However, by transforming the data individually, it disregards the collective

relationships, resulting in reduced in the final model performance.

The increase in multiomics studies led to more strategies and approaches for multiomics data

analysis and integration that have been reviewed for instance in [

Bayesian and Multiple Kernel Methods.

2.5.1 Dimension Reduction Approaches

] and [127]. Although there is not a
clear classification, they can be divided in the following groups: Dimension reduction, Network-based,

Dimension reduction is a multivariate statistical approach that aims to transform the higher dimension

datasets into a smaller dimension, guaranteeing that it provides similar information. The features,

variables or columns in a dataset are known as dimensionality. A higher dimensionality hinders data
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visualisation and predictions. Therefore, this approach helps obtaining a better predictive model while
solving classification and regression problems [130].

PCA [131] is an unsupervised method that converts the original variables (typically correlated),
using covariance analysis, into a set of non-correlated variables (linearly) that are called principal
components (PC). Each PC is generated to explain the maximum variability of the part not yet
explained, needing to be orthogonal to the previous PC. These PCs are ordered by the decreasing
amount of variability that they explain. This way, it can increase interpretability while minimising
information loss. However, this technique is sensitive to the data scaling, so previous normalisation is
recommended.

Canonical Correlation Analysis (CCA) is a multidimensional exploratory statistical method in
which the primary purpose is to explore sample correlations between two sets of quantitative variables
observed in the same experimental units [132]. When this method decomposes each set, it finds
the loading factors (linear combinations of variables), which maximise the correlation between sets
while explaining the variability. Since traditional CCA cannot analyse omics datasets due to their
high dimensionality, penalisation and regularisation terms were added cooperatively to develop more
stable and sparse solutions. It is the case of L1-penalized sparse CCA (sCCA) [133] and elastic net
CCA [134] created to make the results more easily interpretable in biological terms. Furthermore,
structure-constrained CCA (ssCCA) [135] and CCA-sparse group [136] were created [137] to consider
the group effects of features as structures embedded within the datasets.

Partial Least Squares (PLS) is a multivariate method used to identify latent structures of both
predictors and responses by maximizing the covariance between them [138], and it is well-known for
integrated omics studies. This technique can avoid the sensitivity of outliers and finds the fundamental
relationships between two sets of data. Nonetheless, it has some difficulties in high-dimensionality
data, so it is preferable to obtain sparse solutions for better interpretations. Therefore, extensions
of this method were created, for instance, sparse PLS (sPLS) [139] that uses LASSO penalization
for integrated omics, and extended Orthogonal signal correction PLS (OPLS) [140] that filters the
"structured noise” (removes the systematic variation of predictors not correlated to the response) and
enables a better interpretation of the data. Additionally, Sparse Multi-Block PLS (sMBPLS) [141]
was developed to overcome the two datasets limitation and therefore integrate multiple omics data

types, decomposing the datasets into sets of features that are strongly associated with the response.

Furthermore, Sparse Network regularized PLS (SNPLS) [142] specializes in the identification of gene
expression and drug-response relationship through assimilation of interaction network structures.

MixOmics is a R package with a whole range of multivariate methods capable of reducing the
dimension of the data by using components, defined as a combination of all variables able to produce
useful graphical outputs that enable better understanding of the relationships and correlation structure
between the different datasets that are integrated [143].

A method used by this package is DIABLO, based on PLS and extends regularized and sparse
generalized canonical correlation analysis (sGCCA) to a classification or supervised problem. sGCCA is
a multivariate dimension reduction technique, and this method uses singular value decomposition and

selects co-expressed variables from multiple omics datasets. It maximizes the covariance between linear
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combinations of variables (latent component scores) and projects the data into smaller dimensional
dimensional subspace spanned by the components. The data is maximally correlated using a design
matrix that specifies the correlation between datasets. The identification of a multiomics panel is
obtained through I; penalties in the model that shrink the variables coefficients defining the components
to zero [144].

SMSPL proposed by , contrary to other dimension reduction techniques, uses
a self-paced learning as training loss method, which instead of prioritising samples with higher training
loss values chooses samples with smaller training loss values as easy samples, since they are more likely
to be high confidence samples. This technique is a more suitable option for heavy noise scenarios and
gives a desirable generalisation capacity.

An important aspect of SMSPL is that it takes into account the interaction between different
modalities to recommend high-confidence samples for training the classifiers, using the advantage of
common knowledge in sharing sample confidence between the several modalities. Additionally, when
updating the training pool besides using the high-confidence samples justified by other modalities,
it can also feed the pool with high confidence samples provided by very small loss values calculated
on the current modality, which makes the proposed method utilize more-reliable high confidence
knowledge from the prediction knowledge of the current classifier. Another aspect is that contrary
to DIABLO and other methods that use majority voting it predicts samples by solving, making this
method more accurate in terms of discriminating equivocal samples. Therefore, this method can
simultaneously identify potentially significant multiomics signatures as well as predict subtypes during
the integration process [145].

MFA is an unsupervised learning algorithm used for the analyse of different groups of variables
related to the same observations. This sets of variables can be of different nature (qualitative or
quantitative) between the groups but of same nature within the group. MFA follows the common
structures present in all or most of these sets. Hence, a important step is to make these groups of
variables comparable. Therefore, MFA starts by performing a PCA on each dataset and normalizes
the data by dividing all its elements by the square root of the first eigenvalue obtained from the
PCA. Then, the normalized datasets are concatenated and combined into an exclusive matrix to be
submitted to a final PCA [146].

2.5.2  Network-based Approaches

Networks are widely used in biological representations, depicting the relations between entities, such
as gene regulation and metabolism. A node represents a network entity, like genes or proteins, and
the link between the nodes describes their relations. They are well-known for their capability to infer
missing relations, and there are several biological networks with different features. In the context
of multiomics data analyses, the multiple layer networks allow to uncover model relations between
biological entities (genotype-phenotype) on a multi-scale. Each layer can represent a type of omics
data, and inter-layer links can represent correlations between omics types. Multiple layers can be
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displayed as networks, and they can be discriminated into multiplex networks and Heterogeneous
Multi-Layered Networks (HMLN) [12, 147].

HMLN considers different kinds of nodes, each type corresponding to a different layer of biological
information. In this type of network, intra-layer and inter-layer connections are treated in the same
way, even if they have different weights. On the other hand, each layer of the Multiplex networks
represents a different characterization of the same nodes. This difference is depicted in figure 9
[148, ]. Network diffusion and other ML algorithms applied in multiomics studies have been

reviewed in [147, 149].
B)
Gene expression: case 1 Transcriptomics
(Gene expression: case 2 ] Proteomics
a—F A
L —
Gene expression: case 1 Metabolomics
Multiplex network Multilayered network

Figure 9: lllustration of Multiplex and Heterogeneous Multilayered Networks. A) In a multiplex network
each layer represents a different characterisation of the same nodes, for example, genes. B)
In a Heterogeneous Multilayered Network each layer represent a different group of nodes,
for instance, genes, proteins and metabolomes.

Similarity Network Fusion (SNF) [150] is a method capable of computing and fusing patient
similarity networks obtained from each omics separately in order to find disease subtypes and predict
phenotypes [148]. SNF creates an individual network for each data type and fuses them into a single
similarity network using a nonlinear fusion approach. It uses a local K -Nearest Neighbour (KNN)
approach combined with ohter layers' global similarity matrices. With each iteration, the networks get
more related to each other. This methods main advantage is that the weak connections, like noise,
disappear with iterations, whereas the strong connections are propagated till convergence [46].This
approach has been proposeed to analyse gene expression, mRNA expression, DNA methylation and
miRNA of cohort cancer patients for tumor subtyping and survival prediction [127].

Graph-Composite Association Network (CAN) is a graph-based algorithm which primary task
is to classify the unlabeled nodes using the network structure related to these nodes. Its objective
function makes use of the Laplacian matrix of the network, that if is not sparse it's computing time can
be very time-consuming and memory intensive. However, it is possible for it to be very sparse therefore,
allowing the graph-based algorithm to be applied in large scaled networks. The CAN approach resolves
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this limitation by using linear regression to obtain the weights of different data sources. Thanks to
only having to solve one linear regression problem it usually performs better than other graph-based
networks in terms of accuracy, F1 score and AUC. Additionally, it assigns weights for each data source
by minimizing the least square error between the target network and composite weight matrix, then
predicting via the combined weight matrix, making its training process less complicated than other
graph-based networks, and therefore being an excellent choice to integrate different data sources when
considering a graph-based approach [151].

NEighborhood based Multi-Omics clustering (NEMO) is an unsupervised multi-omics cluster-
ing method. Its unique characteristic lies in its simplicity and capability of supporting partial data. It
is based and build on prior similarity-based methods, such as SNF and rMKL-LPP (see section 2.5.4).
NEMO performs three tasks. First, it builds an inter-patient similarity matrix for each omics, then
the matrices of the different omics are combined into one matrix and finally the network is clustered.

Distinctively to other approaches, this method does not require iterative optimization and is faster

[152].

2.5.3 Bayesian Approach

The Bayesian approach uses previous knowledge about the data probability distribution to incorporate
this information in predictive or exploratory models through the computation of the updated posterior
probability knowledge, using the Bayes' approach, depending on the dataset measurements [127, ]
This approach’s major advantage in multiomics integration is that it can make assumptions regarding
various types of datasets with different distributions and the correlations between the datasets [137].

Patient-Specific Data Fusion (PSDF) [153] uses a Bayesian non-parametric model for clustering
- Dirichlet Process model-, that integrates Copy Number Variations (CNVs) and gene expression data
checking its concordance, to categorize them into sub-groups. The concordant samples will fuse,
indicating patient-specific fusion models. This method reduces noise from data, selects only the
important features, and estimates the number of disease subtypes from the datasets [137, 46].

iCluster [154] focuses on generating a single cluster assignment using a joint latent variable for
integrative clustering based on simultaneous inference from multiomics data. This unsupervised
method uses an expectation-maximization algorithm to infer. The associations between contrasting
data types and the variance-covariance structures are incorporated flexibly into a framework while
simultaneously reducing the datasets’ dimensionality and then achieving data integration. This way,
iCluster's goal is to identify a set of driving factors that define biologically and clinically relevant
subtypes of disease, for instance, a type of cancer. However, it does not handle both categorical and
numerical data; therefore an enhanced method was created iClusterPlus, which uses generalized linear
regression to create of a joint model with categorical and numeric variables. It handles different types
of omics data, like genomics, epigenomics, and transcriptomics and uses k driving factors to predict
the most relevant variables and capture biological variation. Additionally, it uses the LASSO regression
approach to indicate the subset of features that contribute to the biological variation between the
subtypes [148, 138].
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Bayesian Networks (BN) are part of probabilistic graphical models and model multi-view data
with mixed distributions for classification and feature-interaction identification purposes. A BN is a
directed acyclic graph, where nodes represent random variables and the edges represent Conditional
Probabilities Distributions (CPDs). These CPDs can model conditional dependencies in continuous
data, numerical data or a combination, granting this method the ability to capture noisy conditional
dependence between multiomics data. This method has been applied system'’s biology including
protein signalling pathways and gene function prediction. The search for an optimal BN structure is a
NP-complete problem; thus, a heuristic method to solve this problem is required. An example of a
BN method is the Naive Bayes classifier [127, 12].

PARADIGM (Pathway Recognition Algorithm using Data Integration on Genomic Models) [155]
is a BN method that aims to infer the activity of patient-specific biological pathways from different
types of omics data. It produces a matrix with integrated Pathway Activities which grant a set of
essential profiles that contribute to delineate the subtypes regarding the survival outcomes [148].

Bayesian Consensus Clustering (BCC) is an unsupervised learning algorithm, that uses integrative
statistics to allow a separate clustering of the objects for each data source. This separating clusters
comply roughly to an overall consensus clustering, thus not being independent. BCC is a more flexible
and robust approach than joint clustering of all data sources and it is more powerful than clustering
each data individually. Its advantageous come from the capacity of modelling uncertainty and the
ability to borrow information across sources. Although it is used for biomedical data, its applications
are potentially unlimited [156].

2.5.4 Multiple Kernel Learning Approach

Kernel-based algorithms are a class of statistical ML methods often applied to pattern analysis, such
as clustering, classification, regression, correlation and feature selection. They map, often on a kernel
matrix, the original data to a high-dimensional space, denominated feature space, in which the pattern
analysis is achieved. A popular kernel-based algorithm often used in biologic predictive problems is the
SVM. This method's main advantages are that their optimizations are independent of the number of
features, which is known as dimension-free, and it can integrate multiple data types and only requires
defining the kernel function [127].

For multiomics integration studies, the Multiple kernel learning (MKL) approach is used, in which,
instead of constructing a single kernel, multiple kernels for a single dataset are constructed, using
different measures of similarity. These kernels are then linearly integrated into one kernel for further
analysis, noticing that all kernel matrices representing different datasets should be constructed in the
same feature space to be correctly combined. Generally, this approach provides a better performance.
As this process follows a transformation-based approach, where data is transformed or projected into
the same feature space, it leads to information loss, and the detection of interactions between different
omics might be difficult, which represents a downside of this approach [127, 12].

Regularised MKL-Locality Preserving Projection (rMKL-LPP) [157] is used to perform mul-

tiple omics data integration dealing with gene expression, DNA methylation and microRNA expression
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profiles and to perform subtype identification. The data is projected into a lower-dimensional and
integrative subspace for clustering. This method automatically assigns higher weights to high informa-
tion content and avoids overfitting using a regularization term, allowing different kernel types. The
LPP is applied to conserve the sum of distances for each samples’ K- Nearest Neighbours. The final
cluster is performed applying a k-means on the distance summation. This approach is more flexible as
it provides different options of dimension reduction methods and a variety of kernels per data type
[137, 46].

Kernel-Relevance Vector Machine (RVM) is a ML method with a similar function as SVM, but
applies a Bayesian inference to obtain probabilistic results. Although the performance can be similar
to the SVM, the RVM is more competitive in several aspects, such as the results being sparser than
SVM, and the computation time broadly decreased. Furthermore, it can grant probabilistic predictions
for classification problems by returning the class probabilities. Additionally, it does not require any
specification for loss parameters and the kernel is more flexible [151].

However since RVM is computationally intensive, Ada-BoostRVM could lower the computational
cost. Ada-Boost RVM is an algorithm capable of combining different types of learners to improve
the final performance, being the final classifier the weighted sum of several weak learners. Since its
concept is to sample small training sets from the original training set and then train each model with
the smaller training set, the computational cost is reduced. Although is difficult to distinguish these

two methods the accuracy differences is very small between the two [151].

2.5.5 Integration of multiomics data in Plants

Plants are subjected to a wide range of environment al stresses that can be abiotic ( e.g. temperature,
salinity, drought) and biotic (e.g. attacks by pathogens), and because of these stresses, they activate
complex interactions of multiple pathways in their metabolism as a coping mechanism [158]. Therefore,
studies integrating different omics are fundamental to contribute to a more holistic view of the
plant’'s metabolism and adaptation to the surroundings [159]. Recent plant multiomics studies are
using parallel data integration, identifying the most useful features for each dataset individually and
combining them into a final dataset that will train the model to predict the outcome more accurately.
Additionally, simple correlation techniques, like Pearson and Spearman correlation coefficients, are
being used to integrate and compare different omics datasets [159].

Regarding multiomics studies in Vitis vinifera, some studies used Pearson correlation. For instance,
Ghan et al. [160] evaluated biochemical differences in biological systems by integrating transcriptomics,
proteomics, and metabolomics data, where data dimension was reduced using PCA. A linear regression
model was fitted to the transcript-protein pairs and computed using Pearson’s correlation to investigate
the linear relationship between the relative transcript abundance and therelative protein abundance.
Zaini et al. [161] aimed to reduce the Xylella fastidiosa infection in Vitis vinifera and increase
its health,using transcriptomics, proteomics and metabolomics responses to the disease compared
with healthy plants. In this study, Pearson’s correlation was measured between all pairs of samples

of all datasets. As expected they inferred that the correlation among the experimental methods
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(transcriptome, proteome, or metabolome) was a stronger determinant of higher correlation than
the experimental groups (infected or non-infected). Furthermore, Savoi et al. [162] investigated
the impact of water deficit on the secondary metabolism of white grapes using transcriptomics and
metabolomics profiling data in a season of prolonged drought. They performed PCA on all metabolite
profiles and transcriptome datasets, and used the Pearson correlation coefficient as similarity index
between any two variables of the dataset (i.e metabolites).

More elaborate correlation methods and regression models, for example, CCA, PLS and O2PLS,
and multi-omics networks are being applied in ither plant studies. O2PLS is similar to OPLS, but
OPLS only returns one predictive component while O2PLS returns two [163].

Rajasundaram et al. [164] tried to establish the relationship between cotton fibre properties and
non-cellulosic cell wall polysaccharides using data from glycomics and phenomics. CCA was used
to obtain a global view of the association between the system levels, and sPLS was applied to
predict cell wall polysaccharides linked with fibre characteristics. They proved the importance of
these types of studies to obtain and develop high-quality fibre. Another example is the Bylesjo et
al. [165] study, where they used transcriptomic and metabolomic data to investigate different light
conditions on populations of wild Populus tremula x Populus tremoloides. They used O2PLS to
identify the key transcripts and metabolites that defined most of the systematic variation across the
two datasets. Subsequently, the two datasets’ predictive features were used to infer the class and to
show that the related structures captured the implicit class information through OPLS-discriminant
analyses (DA). Zamboni et al. [166], focused on grapevine berry development and withering by
integrating transcriptomics, proteomics, and metabolomics, also used O2PLS-DA to analyze each data
set regarding different developmental stages and withering intervals to identify the key information
(well-correlated transcripts, proteins, and metabolite variables) contained in the data, using PCA was
able to recognize the three distinct classes.

A few studies extended O2PLS to handle multiple omics datasets. For example, Srivastava et
al. [167] investigated system's responses to oxidative stress in Populus, integrating transcriptomics,
proteomics, and metabolomics using a more sophisticated method of orthogonal projection to latent
structures, named OnPLS. This more recent technique did not depend on the analysis order when
more than two blocks were analyzed. Therefore the authors proved that pathways related to redox
regulation, carbon metabolism, and protein degradation were significantly influenced in transgenic
plants, providing information on the ROS metabolism and responses to oxidative stress, which indicated
that some initial responses to oxidative stress shared common pathways.

Anesi et al. [168] aimed to understand the terroir effect in Vitis vinifera cultivar in Corvina in seven
different sites over three years. They characterized the metabolome and transcriptome berries and
used PCA, PLS-DA, O2PLS-DA, and orthogonal constrained PLS discriminant analyses as correlation
analyses so that they could identify a terroir pattern in the berry metabolome composition for each
site.

Other studies used different techniques, like Acharjee et al. [169], to find genetic and metabolic
pathways related to phenotypic traits of interest of a population of potatoes using transcriptomics,

metabolomics and proteomics data. They applied Random Forest regression to predict the four quality
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traits, and constructed a partial correlation network for each trait, with genes, metabolites, proteins,
and traits as nodes and correlation values as edges, and obtained relatively small sets of interrelated
omics variables that could predict, with higher accuracy, a quality trait of interest. Another study by
Wong and Matus [170] used Network analysis to investigate fruit composition regulation in grapevine
using genomics, transcriptomics, proteomics, and metabolomics. In this particular study, they identified
new non-identified transcription factors and various microRNAs that were responsible for regulating
different steps of the phenylpropanoid pathway. The integrated network included genes, transcription
factors, and RNA types as nodes and the interactions and correlation values as edges.

Jiang et al. [171] also used Network methods to integrate genomics, transcriptomics, proteomics,
and phenomics data from Z. mays to build a multi-omics network to obtain information on its
development. Weighted networks were created for each data type and combined into a final weighted
network. The merged networks were analyzed, and the transcription factors with a key role in maize
development were obtained from the orphan nodes.

A recent study by Jiang et al. [172] investigated the contribution of KLU (cytochrome P450 gene)
to leaf longevity and drought tolerance using transcriptomic and metabolomic data from Arabidopsis
thaliana. They used hierarchical clustering based on the heatmap of sample distances to identify
the differential expression of the transcriptomics data, and PCA revealed that the harvesting dates
grouped the samples. This study demonstrated that KLU overexpression activates cytokinin signalling
by coordinately repressing cytokinin catabolism genes and the negative cytokinin response regulatory
genes, and consequently, KLU-overexpression plants showed delayed leaf senescence.

Finally, a study by Nguyen et al. [173] used a method named ManiNetCluster, alongside the
time-series gene expression dataset of Chlamydomonas reinhardtii microalgae, in different conditions
(light and dark) to identify functional links between conditions. This study integrated transcriptomics
data. The program takes two different datasets as input, and for each condition, a dataset is taken
into account and builds a co-expression network for each of the datasets. The two networks are
aligned into a single one, and this final network is clustered to allow the identification of genes linking

functions from the different datasets. The studies described are organized in Table 4.

2.5.6 Combination of experimental omics and predicted fluxomics

Recently, a few studies emerged using ML to analyse experimental omics in combination with fluxomics
data that were predicted by metabolic models (figure 10). The combination of omics with fluxomics
data can improve our holistic view of plants’ metabolism and discover genotype-phenotype associations
not captured by high-throughput data alone.

An example is the work of Plaimas et al. [174], who presented an ML strategy to study and
validate essential enzymes of a metabolic network in E.coli. First, for each reaction, features were
defined describing local topology in the network, genomics and transcriptomics data and biomass
rate predicted by Flux Balance Analysis (FBA). A table of all the reaction profiles was created and
used for training the SVM classifier to differentiate between essential and non-essential reactions. The
study showed that the approach improved FBA predictions results.
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Table 4: Examples of multiomics studies in plants.

2.5. Integration of multiomics data

First Author
(publication date)

Approach

Method

Type of Omics

Ghan (2015)

Zaini (2018)

Multiomics study to differentiate biochemical characteristics of grapevine
cultivars.

Discovering the Vitis vinifera metabolic response to the infection by Xylella
fastidiosa.

PCA, Pearson correla-
tion
Pearson correlation

transcriptomics, proteomics and

metabolomics

transcriptomics, proteomics and

metabolomics

Savoi (2016) Analyse of the phenylpropanoid and terpenoid pathway of Vitis vinifera PCA, Pearson correla- transcriptomics and
when subjected to prolonged drought. tion metabolomics

Rajasundaram (2014) Study about the relationship between cotton fiber properties and non- CCA, sPLS glycomics and phenomics
cellulosic cell wall polysaccharides.

Bylesjo (2007) Analyse of short-day inducing effects on a population of Populus tremula x  O2PLS, PCA transcriptomics and
Populus tremoloides. metabolomics

Zamboni (2010) Identification of putative stage-specific grapevine berry biomarkers and O2PLS, PCA transcriptomics, proteomics and
omics data integration into networks. metabolomics

Srivastava (2013) Study of oxidative stress responses in a population of Populus tremula x OnPLS transcriptomics, proteomics and

Anesi (2015)
Acharjee (2016)
Wong (2017)
Jiang (2019)
Jiang (2020)

Nguyen (2019)

Populus tremoloides plants.

Study of terroir conditions and their influence in the metabolome of the
Vitis vinifera' s berry.

Multiomics integration for the prediction of phenotypic traits of S. tubero-
sum.

Identification of new secondary metabolic pathway regulators for fruit
composition in Vitis vinifera.

Study of Z. mays development.

Contribution of KLU to leaf longevity and drought tolerance in Arabidopsis
thaliana.

Analyse the different light conditions effect on the metabolism of Chlamy-
domonas reinhardtii regulation of fruit composition in grapevine.

PCA, PLS, O2PLS

Random Forests, Net-
work analysis
Network analysis

Network analysis
Hierachical Clustering,

PCA
Network analysis

metabolomics
transcriptomics
metabolomics

and

transcriptomics, proteomics and

metabolomics

genomics, transcriptomics, pro-

teomics and metabolomics

genomics, transcriptomics, pro-

teomics and phenomics
transcriptomics
metabolomics
transcriptomics

and

Multiomics data

i

Context-specific constraint-based metabolic model

AL

ML model

Fluxomics data
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Figure 10: Multiomics analysis. Fluxomics data predicted by metabolic models can be analysed by ML
in combination with omics data from high-throughput technologies.

An identical technique was applied by Szappanos et al. [175] to predict genetic interactions in S.
cerevisiae. Using FBA, the authors computed in silico interaction degrees and single-mutant fitness.

Gene-pair characteristics such as gene-expression, paralogy, network topology and protein annotations
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were also defined. Then they used these features to train random forests and logistic regression and
classify genetic interactions. The study demonstrated that incorporating FBA-derived fitness and
genetic interaction scores into statistical methods boosted the predictions’ precision, indicating that
biochemical modelling provides unique information that is not captured by purely statistical data
integration.

Another example of combining experimental omics data with predicted fluxomics is the work of
Kim et al. [176] that created a database for Escherichia coli with well-annotated and normalized
multiomics data, named ECOmics. They used transcriptomics, proteomics, metabolomics, phenomics
(growth rate) and integrated these multiomics with fluxomics data obtained by condition-specific
models. This compendium provides excellent data for predictive analysis, resulting in an incremental

increase in the prediction performance.
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MATERIALS AND METHODS

3.1 PLANT DATA COLLECTION

The datasets of our choice must have a considerable amount of samples to obtain reliable results. The
larger the number of our samples, the more representative is the population, and the less influence the
outlier observations have. Additionally, a large sample size provides better results among variables
that are significantly different, setting a better picture for the analysis [177]. An extensive search in
several databases was made with these requisites.

For the first case study (Case Study |), we opted for two datasets of Vitis vinifera transcriptomics
and metabolomics data, both with two hundred and nineteen (219) samples with biological triplicates
as replicates, for a total of seventy-three (73) samples. These datasets were taken from the

study: the transcriptomics dataset was retrieved using the GEO accession number mentioned in
the article (GSE98923) and the metabolomics dataset was available in the additional files, as well as
the samples' metadata. In this research, two different cultivars were studied Cabernet Sauvignon and
Pinot Noir and the main goal of this article was to get a better insight into the key molecular events
controlling berry formation and ripening.

In the second case study (Case Study Il), we selected two datasets of Arabidopsis thaliana, with
only twenty-six (26) samples in total, exploring transcriptomics and fluxomics data. The transcriptomics
dataset was identified in the article and retrieved from Gene Expression Omnibus under
accession number GSE65046. The fluxomics dataset was identified in the supplementary material.
The main goal of this article was to understand the mechanisms evolved in the adaptation of plants

against drought in order to facilitate the development of drought-tolerant crops for agricultural use.

3.1.1 Case Study |

Sample Design

During three consecutive years (2012, 2013 and 2014), berries were collected, from the fruit set phase
until harvest, at 10-day intervals during 2012 and weekly in 2013 and 2014. The authors defined
veraison as clusters with at least 50% coloured berries and collected the samples at the same time

of the day (8 am) in random blocks for each cultivar. In total, eight vine blocks for Pinot Noir and
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3.1. Plant Data Collection

six-vine blocks for Cabernet Sauvignon were placed and replicated along three rows for each cultivar
in order to obtain biological triplicates and a total of 219 samples: 120 for Cabernet Sauvignon (39,
42, and 39 during vintages 2012, 2013, and 2014, respectively) and 99 for Pinot Noir (30, 33, and
36 during vintages 2012, 2013, and 2014, respectively). Each sample replicate comprised 26 clusters
of berries from each vine block [178]. Since the 219 total samples were biological triplicates and
therefore replicates, we calculated the mean for both the transcriptomics and metabolomics data,
ending with 73 samples in total.

Metadata

Metadata contains information about the samples that are collected. In this case, the authors recorded
with a specific identifier, for each harvested grape, the harvesting date (Sample Date), the Variety of
each sample (Cabernet Sauvignon or Pinot Noir), the Vintage in which they were collected (2012,
2013 or 2014), and the Time Point, which corresponds to the reference time point of their reaping
(the first ones to be harvest are noted as 0 and so on, until the last harvesting at the time point 14,
for each vintage). Additionally, the metadata has information regarding the days after veraison (being
the landmark for veraison the 0 days and ranging from -37 to 80 days), the content of malic acid
(mg/L), reducing sugars (RS) (g /100 ml & 5%) and finally the berry weight (g/berry).

Transcriptomics Dataset

The authors followed the steps mentioned in the article to obtain the transcriptomics data and were able
to align the reads to the grapevine 12x genome PN40024 [180], in which an average of 86, 7% of reads
were mapped for each sample, allowing the reconstruction of the transcripts and the reference genome
annotation V1 (http://genomes.cribi.unipd.it/DATA) [178]. This procedure resulted in the number
of features present in table 5. The dataset downloaded from GEO with accession number GSE98923
contained the expression measurements of 29971 transcripts (rows) for 219 samples (columns). After

pre-processing, this dataset was transposed so that the samples are represented by the rows.

Metabolomics Dataset

The authors collected sixty berries, from six confined clusters selected randomly from the vine blocks,
and the samples were analysed by Gas chromatography—-mass spectrometry (GC-MS) and Ultra-high
performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLCQTOF-MS)
to obtain the metabolome information. For the GC-MS analysis, the authors annotated 140 metabolites
resorting to a reference library search, and 72 metabolites using UHPLCQTOF-MS analyse. The
resulting number of metabolites is shown in table 5.
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3.1.2 Case Study Il

Sample Design

The work of provided one hundred and eight (108) distinct samples, that were part
of four biological replicates (13 time points in control and drought conditions, plus a zero set).
Additionally, the authors evaluated the changes in gene expression between time points, by comparing
samples from adjacent sampling times, and assessed treatments, biological replicates and sampling

times.

Metadata

The information regarding the samples from the Arabidopsis thaliana datasets is available in the
metadata table. The authors recorded the day the samples were harvested, corresponding to the
different time points (0 to 13) ("time (day):ch1”), the biological replicate (A,B,C,D) ("biological
replicate:ch1”) and the treatment they were under (control or drought) ("treatment:ch1”).

Transcriptomics Dataset

The authors retrieved microarrays data from the Gene Expression Omnibus under the accession number
GSE65046. The data was previously normalised providing a total of 26 samples and 32501 features,
as depicted in table 5.

Fluxomics Dataset

The fluxomics dataset was retrieved from the supplementary files of the work by . The
authors reconstructed context-specific Genome-scale Metabolic (GSM) models using Gene Inactivity
Moderated by Metabolism and Expression (GIMME) to integrate the transcriptomics dataset within
the GSM models. Then, the authors use the models to determine fluxes through FBA. As shown in
table 5, the dataset has 26 samples and 1602 reactions.

Table 5: Dimension of the two Vitis vinifera datasets (total of samples and features) before pre-
processing. The samples are the same in both datasets.

Omics Dataset Samples Features

Case Study |

Transcriptomics 73 29971
Metabolomics 73 212

Case Study 11

Transcriptomics 26 32501
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Fluxomics 26 1602

3.2 PRE-PROCESSING

Pre-processing data is one of the most fundamental steps of ML, to improve the data quality. These
steps transform the data to be used by ML models. Four well-known data pre-processing tasks are
missing value imputation, data normalization, data discretization and filtering/feature selection [181].

Pre-processing starts with data exploration, to easily view possible problems, which are usually
associated with the incorrect reading of files, and to visually uncover data trends and points of interest.
This can be accomplished by verifying the sample and feature names, the dimensions of the dataset as
well as the type and class of the data. The R software [182] allows users to use the names() function
to return or set the names of a data object, the dim() function to check the dimensions and the class()
and the typeof() function to return the class and type of the data object.

3.2.1 Missing Values

To check whether the transcriptomics or proteomics dataset had any missing values, the is.na()
function of R was used. In the present work, the rows/columns containing the missing values were
deleted. However, depending on the analysis to be performed, other approaches can be used, for
instance: substituting the values for another value, like the mean of the row/column, using the KNN
approach to use information from neighbour lines to opt for a better value, or a valid approach in
transcriptomics analysis is to insert the value zero for missing values. Regarding the fluxomics dataset,
several of the reactions (features) contained only zeros, therefore we removed the rows with only zero

values.

3.2.2 Data Standardization

Data Standardization is required to compare variables. Both transcriptomics and metabolomics data,
from Case Study |, were previously normalized by the authors, as well as the transcriptomics data
from the Case Study Il. For the Case Study I, the normalized expression of each transcript was
calculated as Reads Per Kilobase Million (RPKM) for each sample. Regarding metabolomics, the
authors used median scaling to normalize the metabolite measurements across vintages: for each
annotated metabolite, the abundance level in a given year was divided by the ratio of the median of
that specific year to the median for that metabolite in all samples of all years [178].

On the other hand, for the Case Study Il the transcriptomics dataset was normalized within
the array by Lowess normalization and the variation due to arrays and dyes was also removed by
a random-effects model, and averaged, in log space, using a modified version of R/MAANOVA
(MicroArrayANalysis Of VAriance).

A possible alternative is scaling the data using the R function scale(), which normalizes the values
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by subtracting them by the mean and dividing them by the standard deviation. This function was used
in the metabolomics dataset from the Case Study | and fluxomics from Case Study Il to further

scale the data and better plot visualization.

3.2.3 Data Discretization

Data discretization is a useful variable transformation technique that involves dividing the range of
possible values into sub-ranges and considering each one of them as a category. This procedure was
used in the Case Study | sample’s metadata to transform the numeric variable Time Point, ranging
from values 0 to 13, to a variable named Berry_development with two factors, referring to the
pre-Veraison and post-Veraison berry development stages (wherein, the post-Veraison stage includes
the Veraison stage) and later three factors, pre-Veraison, Veraison and post-Veraison separated. The
Time Point variable (x) was categorized in the following categories:

e Berry_development - two factors: PreV, if x € [0, 3] and PosV , if x € [4, Inf[.

e Berry_development - three factors: PreV, if x € [0, 4], Veraison, if x € [4, 5[ , and PosV , if
x € [5, Inf[.

3.3 FEATURE SELECTION

As omics datasets are very large, a decisive step to improve the interpretability and performance of
the model, as well as speed up the learning process, is feature selection. This technique extracts a
subset of relevant features, consequently decreasing the size of the original dataset. The three general
classes of methods for feature selection often referred in the literature are Filter methods, Wrapper
methods and Embedded methods as explained in chapter 2 [181].

In this work, we used mainly filter methods, which apply an external statistical measure to compute
a rank for each feature depending on the assigned score [183]. The features are then selected to
be kept or removed from the dataset. This method was used in Case Study | and Case Study Il
transcriptomics dataset, where three filters were executed. First, we filtered the transcripts where the
mean for that transcript was less than one, assuring that at least one transcript per cell existed. Then,
we performed a median filter where it calculated a median expression level for the dataset as a cutoff
value and checked whether each gene was "expressed” in each sample, selecting the genes where the
expression occurred in more than 2 samples. Finally, we executed a flat patterns filter, which assumed
that genes with very consistent values do not contribute to relevant information and therefore filtered
genes whose maximum ratio value over the minimum value of expression was greater than 2. The
number of features was, therefore, decreased as shown in table 6, except for the metabolomics dataset
that was not filtered, and the fluxomics dataset that underwent feature selection but the filters did

not remove any features.
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Table 6: Dimension of the two Vitis vinifera datasets (total of samples and features) before
filtering and after filtering. The samples are the same in both datasets.
b

Omics Dataset  Samples Features? Features

Case Study |

Transcriptomics 73 29971 32501
Metabolomics 73 212 212

Case Study Il

Transcriptomics 26 32501 725
Fluxomics 26 1602 (407) € 407

a Original feature size
b Feature size after filtering
¢ Feature size after missing values operation

3.4 MODELS

For the individual omics analyses, three models in R were created for each dataset, using different

algorithms, namely:
1. Support Vector Machines (SVM) using method "“svmLinear” from package caret;
2. Random Forests (RF) using method "rf’ from package caret;
3. Atrtificial Neural Networks (ANN) using method “nnet” from package caret.

These models were specifically selected for the individual omics analysis due to their higher
performance in comparison to other family classifiers. As explicit in the article by

the best family of classifiers is RF, followed by SVM and ANN.

For multiomics integration, several models were used, differing in the programming language, ML
algorithm function and the type of learning, unsupervised or supervised, as depicted in table 7. The
two programming languages used in this project were R [185] and Python [186], as R is a recognized
and successful language for ML used to discover models for multiomics integration, and Python is
a flexible and simple language with a large number of libraries and frameworks, commonly used to

streamline large complex data sets.

For the Concatenation-Based Integration we used the two programming languages, R and Python.

The algorithms used on R were:

e DIABLO from the package mixOmics [144], selected due to being one of the only first
multivariate integrative classification methods that builds a predictive model to predict new

samples, and also being able to identify correlated (or co-expressed) variables measured on
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heterogeneous data sets, which also explain the categorical outcome of interest (supervised
analysis) [144];

e SMSPL by , that besides predicting subtypes can also identify potentially
significant multiomics signatures, and deal with the high noise of multiomics data, which is the

main cause of overfitting and poor performance;

e Stacked generalisation using the package h2o0 [187] selected to evaluate how well the performance
of several base models of the concatenated multiomics data produced into one optimal predictive
model would be;

e Lasso Regression from the package gimnet [188], as considered in the article [189] a good

concatenation-based integration approach.

We also used Python to execute SVM with the SVC() function, ANN with the function MLPClassi-
fier() and RF with the function RandomForestClassifier() from the scikit-learn [190] library. These
algorithms were advised in the [189] article and as mentioned in are the
best classifiers for each family and for this reason, were selected for the individual omics analysis. For
unsupervised learning, we used the MFA method from the R package FactoMineR.

Regarding Transformation-Based Integration, only models designed in R were identified, more
specifically, SNFtool from the package SNFtool [150] mentioned in various articles [148, 137] and
Graph-CAN and Kernel-Integrated RVM, both from package MDintegration [151], based in kernels and
graphs that were also advised in [189]. The unsupervised learning model used for transformation-based
integration was NEMO, using the R package installed with devtools from the GitHub repository of
Shamir-Lab https://GitHub.com/Shamir-Lab/NEMO /tree/master /NEMO ), mentioned in articles
like [191].

Lastly, Model-based integration focused on the use of ensemble classifiers with hard and soft voting
implemented, created through various functions identified on the library scikit-learn [190], as suggested
by [189]. The unsupervised learning model used in this integration was BCC using as source file
the R BCC function taken from the GitHub repository https://GitHub.com/ttriche/bayesCC, an
interesting model considered in [191].

The majority of the multiomics models selected for this work were retrieved from different publications
[191, , , 12, ) , 46, ]. However, most of these were all implemented and evaluated

using human tissue samples, for instance, the well-known TCGA (human cancer) multiomics dataset.

3.5 MODEL EVALUATION

Different methods were selected depending on the algorithm to evaluate our models’ performance.
For the individual omics analysis models, we selected the repeated CV (method="repeatedcv”) in the
"trainControl()" function of the package caret, that served as input for the "train()” function. Hence,
we assure that all data is used for training and testing by dividing our data into training and test sets,
which improves the performance and results in a finer model evaluation. The CV was performed using
10 folds and 3 repetitions.
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Table 7: Description of the several models used for the different integration approaches (Concatenation,
Transformation, and Model-Based Integration), as well as the package or function executed
in the corresponding programming language.

Model Package/ Function Type of Integration Programming Language Ref
DIABLO mixOmics Concatenation-Based R [144]
SMSPL GitHub: ZiYi Yang Concatenation-Based R [145]
Stacked Generalisation h2o Concatenation-Based R [187]
Lasso Regression glmnet Concatenation-Based R [189]
SVM SVC (scikit-learn) Concatenation-Based Python [192]
ANN MLPClassifier (scikit-learn) Concatenation-Based Python [190]
RF RandomForestClassifier (scikit-learn) ~ Concatenation-Based Python [190]
MFA!? FactoMineR Concatenation-Based R [193]
SNFtool SNFtool Transformation-Based R [150]
Graph-CAN MDlIntegration Transformation-Based R [151]
f:(;?tg:;ii?@iﬁ;lmel MDiIntegration Transformation-Based R [151]
NEMO!? GitHub:Shamir-Lab/NEMO Transformation-Based R [152]
Ensemble Classifier with Various functions

different ML algorithms from scikit-learn Model-Based Python [190]
(Hard and Soft Voting)

BCC? GitHub:ttriche/bayesCC Model-Based R [156]

1 Unsupervised Learning

In addition, the metrics selected to evaluate our models were PECC, recall and precision, which
could be automatically extracted from the confusion matrices created for each model, using the
function confusionMatrix() in the caret package, and also the ROC curve and AUC value, obtained
using the package MLeval. Furthermore, for all the models in individual omics analyses, we were able
to extract the top 20 most relevant features using the caret varlmp() function.

Regarding multiomics integration algorithms, as shown in table 8, most algorithms used 5-fold
CV, except for DIABLO who used repeated 10-fold CV with 10 repeats, SMSPL that opts for a
10-fold CV and Stack Generalisation that uses a 15-fold CV. For this implementation, DIABLO used
the parameter (validation = 'Mfold’, M = 10, nrepeat = 10) in its algorithm. Cross-validation was
implemented in SMSPL, as well as in Lasso Regression, using the default value 5 in the cv.glmnet()
function. Regarding Stack Generalisation, the CV was implemented in the h20.g/m() function changing
the following parameters nfolds and fold_assignment to 15 and "Modulo”, respectively. On the other
hand, scikit-learn models SVM, ANN and RF used cross_val_score and cross_val_predict functions with
argument cv=>5 for their implementation. SNFtool implements an internal (M-fold) CV analogous to
that of the DIABLO algorithm. Graph-CAN and Kernel-RVM also implement an internal CV method
and both use 5-fold CV. The Ensemble Classifier does not use any cross-validation method.

In addition, the evaluation metrics used to evaluate the multi-view models’ performance were the
same described for single-view models, using the function confusionMatrix() in the caret package,
except for the DIABLO method, which used a specific function evaluate. DIABLO.performance(), and
Lasso regression, that used evaluation metrics specific to regression problems: RMSE and R-square,
obtained using assess.glmnet() that produces a list of vectors of measures.

In respect to the Python models SVM, ANN and RF, three functions in the scikit-learn library,
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Table 8: Description of the several metrics and the validation method used to evaluate the performance
of the different models used for the different integration approaches (Concatenation, Trans-
formation, and Model-Based Integration). PECC (accuracy), Precision and Recall for the
classification algorithms, and RMSE and R square for the regression algorithms. Additionally,
ROC curves and AUC values were also determined.

Validation Metrics
Model Method
Classification Metrics Regression metrics
Pre- Re- ROC AUC Value R
PECC «ci- call  curve RMSE Square
sion
DIABLO Repeated 10-fold CV with 10 repeats X X X Yes Yes
SMSPL 10-fold CV X X X Yes Yes
Stack Generalisation (Ensemble) 15-fold CV X X X No Yes
Lasso Regression 5-fold CV X X X Yes Yes X X
SVM 5-fold CV X X X Yes Yes
ANN 5-fold CV X X X Yes Yes
RF 5-fold CV X X X Yes Yes
SNFtool None X X X Yes Yes
Graph - Composite Association Network 5- fold CV X X X Yes Yes
(CAN)
Kernel - Integrated RVM and Boosted- 5- fold CV X X X Yes Yes
RVM model
Ensemble Classifier with different ML al- None X X X Yes Yes

gorithms (Hard and Soft Voting)

were used to extract the metrics, namely, metrics.accuracy_score(), metrics.recall_score() and met-
rics.precision_score() as well as the classification_report(). The classification_report() was also used in
the Ensemble Classifier model to extract the metrics.

Finally, the Receiver Operating Characteristics (ROC) curves and Area Under Curve (AUC) values
were also obtained using different functions depending on the algorithm. DIABLO used the auroc func-
tion from the mixOmics package for the ROC curve and the function evaluation. DIABLO.performance()
for the AUC value. SMSPL, Stack Generalisation, Lasso Regression, Graph- CAN and Kernel-RVM
models used the roc() function from the pROC library that automatically accessed the AUC value.
The Python models used the roc_curve() function and the auc() function both from the scikit-learn
package to plot the ROC curve and obtain the AUC value.

3.6 MODEL OPTIMIZATION

ML models are parameterized to best adapt to different problems. A favourable set of parameters
can improve the models’ performance, opposed to a unfavorable set of parameters that decreases the

models’ performance.
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For R algorithms, ANN, RF and SVM, in individual omics analysis, the function expand.grid() from
the caret package was used to perform grid search with the manual grid to look for the best model.
Additionally, automatic grid search was implemented using the parameter tunelLength in the train()
function.

Regarding the multiomics integration models, ANN, RF and SVM in Python, the best models were
obtained using sklearn functions GridSearchCV/() and RandomizedSearchCV/(). Table 9 displays all the
values used for both grid search and automatic/random search.

On the other hand, most of multiomics integration algorithms tune models in different ways.
DIABLO fits a model without variable selection to assess the performance and selects the best number
of components for the final DIABLO model, that indicate the number of sufficient components to
discriminate all phenotype groups. Lasso Regression uses CV to find the best lambda, as well as
MDIntegration. SMSPL and SNFtool tune the model as part of the algorithm in an automatic way.

Table 9: Description of the several hyperparameters and different values used to perform Manual Grid
Search and Automatic/Randomized Grid Search to find the best performance, in both R and
Python SVM, RF and ANN models.

Model Parameters Manual Grid Search Automatic Grid/ Randomized
Search
SVM C (cost) seq(0, 2, length= 20) tunelength=15
c(2,3,6,7,10)
mtry

floor(sqrt(ncol(x)))

RF tunelLength=20
ntree (500, 1000, 1500, 2000, 3000)
- . ¢(20,40,60,80,100)
% g seq(1, 10, 1)
'-E :% size <(3, 5, 10, 20)
- ANN seq(1, 100, 10)
seq(0.1,0.5,0.1)
decay c(0.5, 0.1, 1e-2, 1le-3,1e-4, le-5, tunelength=20
le-6, le-7)
C [, 3, 10, 100] [1,3,10,100]
SVM gamma [0.01, 0.001] [0.01, 0.001]
kernel ('linear’; 'rbf") ('linear’, 'rbf")
max._depth [2,3,None] [2,3,None]
max_features [2.4,6] [2,4,6]
RF min_samples_split [2.4,6] [2.4.6]
min_samples_leaf [2,4,6] [2,4.6]
8 Ng bootstrap [True,False] [True, False]
E ‘é criterion ['gini’,entropy’] ['gini’ entropy’]
;; %D hidden_layer_sizes (8.8.8) ((15.).(25,),(50,).(75,).(100,))
- activation "relu’ ("identity, 'logistic’, "tanh’, "relu”)
ANN SO|VEI: 'adam’ (’Ibfgs’, 'sgd’, 'adam’)
max_iter 1000
alpha (0.0001,0.001,0.01)

IR programming language.
2 Python programming language.
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3.7. Computational Framework 48

3.7 COMPUTATIONAL FRAMEWORK

The developed tool will be available in an open-source computation framework, that can be identified
in https://insilicoplants.pt/, and is currently available on the GitHub page https://GitHub.com/
InesFaria-UM /Master_Thesis.git.



DEVELOPMENT

The pipeline for this work was created using Python 3.8.11 in the integrated development environment
(IDE) Spyder, and connects both Python, a multifaceted programming language, with R, a well-known
language preferred by many data analysts, statistics and graphics, using the rpy2 package, which
creates an interface between both languages, allowing access to the libraries of one language while
working on the desired language. This pipeline follows 5 steps, as depicted in figure 11.

4.1 4.2 4.3 4.3

a\ Read_data.py {g} Preprocessing.py Analysis.py ' Annotation. py
. —) LI, . [?

J

1. Exploratory analysis  (bar

Reads " xlsx”, “.txt" and “_csv” files. 1. Deals with missing values i i
. lots, boxplots Reads file of annotations {with
Converts panda data frames to R 2 Filters data 2 ﬁ.ea{map; ) ID, the UniProtkB and
data frames. 3. Mommalisation and Scaling 3. PCA annotation of that feature (or
4. Data Discretization 4. Differential Expression (DE) uses default file) for DE.

4.5 (a)

©

ﬁ : é Multiomics_integration.py 0 44 —
o = CWm T T

9 Machine_Learning.py o e

Ll lw

Performs supervised multiomics integrafion: o —_

* Concatenation- Based Integration i . in- i Omics 2
Transformation- Based Integration Individual Omic Analysis: Omics 1 mics
Model-Based Integration

RF |
* ANMN &
) 4.5 (b) Prepares data and saves it for
09, posterior use *
e Unsupervised_Learning py L
& ®e/
.

Performs unsupervised multiomics infegration: A
Concatenation- Based Integrafion
Transformation- Based Integrafion ML model

Model-Based Integration

Figure 11: Pipeline Schema. Order and steps of the different development stages.

4.1 PLANT DATA UPLOADING
The omics files and metadata selected by the user are uploaded to the open-source framework. The

data files are then converted into easier formats for analysis. At this stage, the computer runs the
script Read_data.py.
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4.2. Pre-processing

— Read_data.py
Input:

1. omics_files: A dictionary, where the keys describe the type of omics (for example,

"Transcriptomics”), and the values corresponds to the file path that leads to the dataset.

2. skip_row: A dictionary, where the keys describe the type of omics and the values the

number of lines the function should skip to start reading the file.

3. feature_name_col_index: Another dictionary, that consists of the name of the omics as
key and the index of the column corresponding to the features names as value.

4. header: Takes as default the value 0 indicating that all the datasets have an header.

The selected data files should have the features in the rows and the samples in the columns,

except for the metadata. Only datasets with ".txt", " .xIsx” and " .csv”" format can be introduced,
for now. This script takes the file paths and the type of omics, converts them into a dictionary
(omics_files) and, using the rest of the input parameters, it runs the function “read_data()” that
reads the data and creates a pandas dataframe, in which the index corresponds to the feature

names (rows), based on the feature_name_col_index parameter, and the skip_row parameter

allows an efficient reading of the file, so that it can then be converted into an R dataframe.

The R dataframe grants an easier base format for later analysis.

Output:

1. data - A dictionary that contains as keys the type of omics and as value the R dataframes.

4.2 PRE-PROCESSING

After data assimilation, an important and necessary step to prepare the data and assess its quality
for posterior analyse is data pre-processing to make data more tractable for ML models. However,
depending on the type of omics, the pre-processing method can differ. Nevertheless, four main steps
in pre-processing are common: dealing with missing values, feature selection, data standardization

and data discretization. The machine runs the script Preprocessing.py.

— Preprocessing.py
Input:
1. data: The dictionary obtained from the Read_data.py script.

Firstly, the "na_delete()” function searches for NAs in the dataframe, if true it deletes the rows
that contain those NAs.

Secondly, the “filtering()” function performs feature selection based on filter methods, as
mentioned in section Feature Selection in chapter 3.

Thirdly, using the filtered dataframes, and receiving as input the scaled parameter ( a dictionary
where the keys correspond to the omics type and the values are Booleans indicating whether
the data is normalised or not) the function "normalization()" performs the scaling of the data

that is not normalised.
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4.3. Exploratory Analysis

Finally, the "data_discretization()” function allows the user to choose a numeric vector or string
name (parameter col_index) to be converted to a factor by cutting. In order to transform that

variable into a categorical vector, the following parameters should be supplied:

— cut: List of two or more unique cut points or a single number (greater than 2) giving the

number of intervals into which the data is to be cut.
— labels: List of labels for the levels of the resulting category.
— name_variable: The new name for the resulting variable.
Output:

1. data_norm_final: A dictionary with the data types as keys and the resulting pre-processed

data as values.

4.3 EXPLORATORY ANALYSIS

The exploratory analysis stage helps the user to have a better comprehension of the data at hand. It
resorts to boxplots and barplots to better visualize a desired column, as well as a summary of the data.
Additionally, heatmaps can be created for a specific omics or both omics, and PCA can be performed
to help the user seek and understand the inherent structure, select relevant features to summarise the
data and facilitate its interpretation. Another step involves differential expression of both or a selected
omics, as an important step for feature selection. The machine runs the script Analysis.py, until the

last function also executing Annotation.py.

— Analysis.py
Input:
1. data_norm_final: Dictionary obtained from the Preprocessing.py script.

2. items: Dictionary with the type of exploratory analysis the person wants to do (barplot
or boxplot) as key and the selected column name or index as value: if the value is a list
of columns then each one is perceived as a different output; if the value is a tuple then
the output will be a measure of the relation between the first and second element.

First, using the function "exploratory()” the script uses the data obtained from the pre-processing

stage and the dictionary "items” to perform the barplots and boxplots selected by the user.

”

Next, the user has the option to request a brief summary of the data. The function "summary()
calculates the statistics of the omics data selected. It informs about the minimum value, the
1%t quartile (25th percentile), the median, mean, 3rd quartile (75”‘ percentile), and maximum

value.

”

After that, using the function "pheatmap()”, a heatmap can also be created, which gives a
graphical representation of the data with colors, indicating whether there is a high degree
of correlation or not between the different features. The function needs two parameters:
which_data, the name of the omics we want to select or " ALL", for all the omics; and columns a

list or a single value of the column we want to include in the heatmap for a better visualization.
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4.3. Exploratory Analysis

Furthermore, the function "pca()” executes the PCA algorithm, a dimensionality reduction
algorithm that grants the user the ability to see the inherent structure of each omics, select
relevant features to summarise the data and facilitate its observation. This function also needs

the following parameters to be executed:

— which_data: string of the name of the omics wanted or string "ALL" to execute for all

the omics;

— variable: a single value - the wanted column - or a dictionary of different variables and
how its represented in the plot, example {"shape”:" Variety”, " color”:" Vintage” }.
Finally, the function "differential_expression()” grants the user the ability to execute differential
analysis to the omics type desired, using the parameter which_data, and the outcome we want
to focus on (parameter y_pred indicating the name of the column in metadata we want to
analyse). Furthermore, filter_results allow the user to select the number of features to keep for
further analyse (feature selection). However, to have the biological function of the features
studied, the dataframe of the annotation file is necessary (parameter annotation). If working
with transcriptomics of Vitis vinifera, a default file can be used running the Annotation.py

script.
Output:
1. top: The top most differential expressed features. The length of the top parameter
depends on the number inserted in the parameter filter_results.

Annotation.py
Input:

1. default: A Boolean value that indicates whether the user wants to use the default

annotation file, the PN40024 Vitis vinifera reference genome and annotation from http:

//plants.ensembl.org/Vitis_vinifera/Info/Index.

2. annotation_file: The file path of the annotation file, in case the user has a specific
file. This file should contain the ID, the UniProtKB and the annotation/function of that
feature. The header should contain the following columns as "ID", " UniProtKB” and
" Annotation” .

This script runs the function "read_annotation()”. If default is True, the function reads the

default file from Vitis vinifera.

On the other hand, if default is False, then the function reads the annotation_file, considering

certain parameters, namely:
— header, the default value is 0, indicating the row where the header is;

— feature_col, column (0-indexed) to use as the row labels of the dataframe, the default
value is 0;

— skip_rows, Line numbers to skip (0-indexed) or number of lines to skip (int) at the start
of the file. The default is 1.

Output:

52



4.4. Individual Omics Analyses

1. annotation: dataframe with the columns ID, UniProtKB and Annotation to use in
differential expression analysis, function "differential_expression()” of Analysis.py script.

INDIVIDUAL OMICS ANALYSES

We first need to understand how each omics influences the final result to clearly highlight a more
holistic perception of the organism’s metabolism and the fundamental mechanisms that lead to
different phenotypes with multiomics integration, to can compare the different methods (individual
and multiomics integration analysis), comprehend the insights obtained for each analysis, and verify
the advantageous of multiomics integration. Therefore, the Machine_Learning.py script starts by
analysing each omics with different models, preparing and saving them for multiomics analysis, allowing
to compare the insights obtained by individual and multiomics analysis and understand the advantages

obtained by multiomics integration.

— Machine_Learning.py

1. top: the output of the Analysis.py script.
2. data_norm_final: The dictionary obtained from the Preprocessing.py script.
3. y_pred: The name or index of the metadata column we want to analyse/predict.

The first function "train_models()”, depending on which_data the user chooses, uses the
data_norm_final parameter to produce the final dataset, where the rows correspond to the
samples, and the columns to the features for that specific omics type, including the y_pred the
user wants to analyse. This method returns a dictionary train_test_datasets as output, that for
each key (the omics type) includes, as value, a list containing the dataset, the trainData and
testData.

Next, the "SVM()", "RF()" and "ANN()" functions use the output from "train_models()” to
execute the individual omics analyses. The output is written to a file in the user’s directory,
containing the dimension of the dataset, train dataset and test dataset and also the error

metrics, precision, recall, PECC and the confusion matrix.

Lastly, the "save_data()” function creates the dataset concatenated with the two omics: first,
it saves the dataset into the file named dataset_concat.xlsx, and then organises the data in a
list with the train and test dataset for the concatenated dataset, which will be used by the
concatenated-based integration models. Furthermore, it builds another list for the other types
of integration, dividing the omics and creating a train and test dataset for each omics.
Output:

1. res_concat: A list containing the train and test dataset of the concatenated dataset.

2. res_multi: A list consisting of the train and test datasets for each omics and the Y _train

and Y _test.

3. omic_1l: Dataset for the first omics.
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4.
5.

4.5. Multiomics Integration

omic_2: Dataset for the second omics.

Y: The column the user wants to analyse.

4.5 MULTIOMICS INTEGRATION

When the individual omics analyses is done, the machine executes different methods for each type of

multi-omics integration (concatenation, transformation and model-based). In the first sub-stage (a), the

machine executes supervised learning multiomics algorithms running the Multiomics_integration.py

script, and

in the second sub-stage (b) the machine performs unsupervised learning multiomics

algorithms by running the Unsupervised_Learning.py script.

(a) Multiomics_integration.py

Input:

1.

8.
The

res_concat: A list containing the train and test dataset of the concatenated dataset,
obtained from the "save_data()” function from the Machine_Learning.py script.

res_multi: A list consisting of the train and test datasets for each omics and the Y _train
and Y _test, obtained from the "save_data()” function from the Machine_Learning.py
script.

omics_1: Dataset for the first omics, given as output from the Machine_Learning.py

script.

omics_2: Dataset for the second omics, given as output from the Machine_Learning.py
script.

Y: Output feature the user wants to analyse, given as output from the Machine_Learning.py

script.
y_pred: The name or index of the column to analyse/predict.

train_test_datasets: Dictionary obtained executing the function “train_models()” from
the Machine_Learning.py script.

omics: A tuple with the name of the two omics selected for multiomics analyse.

user has the option to choose which model wants the machine to run, however the

Multiomics_integration.py script divides itself into three steps. The first step is concatenation-

based integration. There are seven models to chose from:

DIABLO(): Performs DIABLO from the mixOmics package.
SMSPL(): Executes SMSPL model referred in the article from ;
Stack_Generalisation(): Runs stacked generalisation using the package h2o;

Lasso_Regression(): Executes lasso regression from the package glmnet;

SVM(), RF(), and ANN() functions that perform SVM, RF and ANN from the package

caret.
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4.5. Multiomics Integration

Then, for the transformation-based the user has the following options:

— SNFtool(): Executes model from the package SNFtool;

— CAN_TBI(): Performs Graph-CAN from package MDintegration;

— RVM_Ada_TBI(): Runs Kernel-Integrated RVM also from the package MDintegration.
Lastly, for the model-based integration, the machines focuses on ensemble classifiers with hard
and soft voting, using several function from the Python library scikit-learn.

— Ensemble_classifier(): Ensemble Classifier with different ML algorithms.

For this function, the user can input the option and the voting strategy they prefer in the

parameter option and voting respectively. The five options for the parameter option are:

Option 1 Ensemble Classifier with two SVM models;

Option 2 Ensemble Classifier with different models (SVM, ANN, Decision Trees and
Guassian Naive Bayes (NB));

Option 3 Ensemble Classifier with many ANNs;

Option 4 Ensemble Classifier with NB (combination of models using voting classifier
with NB, recommended for a model-based integration approach, according to
).
— ALL: executes all options.
Regarding the parameter voting the input values can be "Soft”, "Hard” and "ALL".

1. Text files (.txt) and pictures (.png) with the error metrics for all the models generated.

(b) Unsupervised_Learning.py
Input:
1. train_test_datasets: Dictionary obtained executing the function “train_models()” from

the Machine_Learning.py script.
2. omics: A tuple with the name of the two omics selected for multiomics analyse.
3. y_pred: The name or index of the output column to analyse/predict.

The Unsupervised_Learning.py script provides the user three algorithms to perform unsu-
pervised learning in multiomics data. The three algorithms are executed using the following

functions:

— MFA(): A concatenation-based integration algorithm, that can be identified in the
FactoMineR package for the R language. The user need to insert one parameter to

execute this function:

— type_: Represents the type of variables in each group (the groups are separated
into omicsl, omics2 and Y). By default, the first two groups are numeric and
the Y group is categorical, ['c”,"c”,"n"]. Allowed values include “c” or “s” for

w_n won

quantitative variables. If “s”, the variables are scaled to unit variance; “n” for

categorical variables; “f" for frequencies (from a contingency tables).
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4.5. Multiomics Integration

— NEMO: A transformation-based integration method designed in R and developed by
. To run this function the following parameters should be given:

— num_clusters: Number of clusters, if not given NEMO decides the values itself.

— num_neighbours: Number of nearest neighbours, if not given NEMO decides the
values itself.

— K: The number of neighbors to use for each omics. It can either be a number, a
list of numbers or NA. If it is a number, this is the number of neighbors used for all
omics. If this is a list, the number of neighbors are taken for each omics from that
list. If it is NA, NEMO chooses its value.

— BCC: A model-based integration method develop by . The following
parameters should be given, to execute this function:

— K: The (maximum) number of clusters. Default value is 10;

— a and b: a and b are hyperparameters for the Beta(a,b) prior distribution on alpha.

Default values are 1 for both.

— IndivAlpha: Indicates whether the alpha should be separate for each data source
("TRUE" or "FALSE"). Default value is "False”;

— Concentration: Dirichlet concentration parameter for the overall cluster sized. Default

value is 1.

— NumDraws: Number of MCMC draws (NumDraws/2 is used as the "burn-in").

Default value is 1000.
Output:

1. Text files (.txt) and pictures (.png) with the error metrics for all the models generated.
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RESULTS AND DISCUSSION

The first step and the most important in our project was plant data collection. Despite many searches
in omics databases, the ideal plant dataset was almost impossible to find. Although there were several
Vitis vinifera omics datasets, only a few of them had a sufficient number of samples or the same
samples analysed for different types of omics, which is necessary for this project to achieve good
results. This limitation was identified for other plants too.

Nonetheless, as mentioned in chapter 3, two omics datasets of transcriptomics and metabolomics
from Vitis vinifera were selected as Case Study | and two omics datasets of transcriptomics and
fluxomics from Arabidopsis thaliana were selected for the Case Study Il. These omics were then pre-
processed, individually analysed and integrated to provide a more holistic interpretation, improve our
knowledge on plant’'s metabolic phenotypes and their underlying products, when facing environmental

stresses and diseases.

5.1 CASE STUDY I: Vitis vinifera

5.1.1 Pre-processing

The two datasets of Vitis vinifera, as depicted in table 5, originated from the same 73 biological

samples and a different number of features.

Missing Values

In the first step of pre-processing, we could see that the datasets did not contain any missing values;
hence, no row was deleted. However, the number of rows (corresponding to the features) was still

very high in the transcriptomics dataset, thus feature selection was performed.

Feature Selection

Three filter methods were applied to transcriptomics data. The first filter removed rows where the
mean for such row was less than one, assuring that at least one transcript per cell existed, resulting in

a transcriptomics dataset with 17720 features (12251 features removed). The second filter, the median
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5.1. Case Study |: Vitis vinifera

filter, calculated a median expression level for the dataset and selected which genes were expressed in
each sample, to filter only genes present in at least 2 samples. The resulting dataset encompassed
13011 (4209 features removed). The final filter, the flat patterns filter, assumed that genes with
very consistent values did not contribute to relevant information, filtering genes whose maximum
ratio value over the minimum value of expression was greater than 2, resulting in a transcriptomics
dataset containing 3447 features (deleting 9564 features), as shown in table 6. On the other hand,
the metabolomics dataset encompassed 212 features; thus, it was considered small in comparison to
the transcriptomics dataset and feature selection was not performed.

Normalisation and Scaling

Next, even though the metabolomics dataset was previously normalised by the authors, it was scaled
not only to provide better visualisation and comprehension of the plots but also to be suitable for ML

algorithms.

Data Discretization

Finally, as the variable that we wanted to predict, Time Point, for this case study was quantitative,
we performed data discretization to a variable named Berry_development, as specified in the
section 3.2.3. We opted for the two-factor variable, as most multiomics integration algorithms could
not predict variables with more than two levels, for instance, Stack Generalisation, Graph-CAN and
Kernel-Integrated RVM and Boosted RVM model.

5.1.2  Exploratory Analysis

Barplots and Boxplots

Barplots and Boxplots provide a better comprehension of the data, allowing to visualise data distribution
and to comprehend the range of values. Information regarding the boxplots and barplots is available
in the Case Study | section, in the supplementary figures A.

Therefore, we opted to analyse the " Time Point” as our predictive variable, as it allows studying
the different development stages and having a better look into the metabolism of the berry during
growth.

Heatmaps

Next, we provide a summary of the data confirmed that the metabolomics dataset was scaled. Two
different heatmap analyses were performed. The first analysis identifies similarities within the same
vintage year or within samples from different varieties in both datasets. As shown in supplementary

figure S4, the transcriptomics heatmap allows visualization of samples regarding Variety, while the
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5.1. Case Study |: Vitis vinifera

heatmap analysis for the metabolomics dataset allows differentiating the vintage year from which the
samples were collected.

On the other hand, the heatmap from the second analysis allowed identifying similarities regarding
the different varieties, but also for the outcome we wanted to predict, which indicated the development
stage of the berries (pre-Veraison or post-Veraison, including Veraison). As depicted in supplementary

figure S4, both analysis can explain berry development.

PCA

Additionally, PCAs were carried out, as shown in Figure 12, which illustrates a PCA regarding
the variety and development stage of berries. Data discretization of the factor Time Point into
Berry_Development, allows demonstrating that the first two principal components (PC1: 71.41% and
PC2: 18.58%) in the PC1-PC2 plot of the transcriptomics distribution, divided the samples into 3
main groups: pre-veraison berries of both varieties (Group 1), post-veraison Pinot Noir berries (Group
2) and post-veraison Cabernet Sauvignon berries (Group 3). Additionally, with the metabolomics
dataset (figure 12B), we could see that PC1 (55.666%) can also differentiate metabolite content in
two groups: berries in Early development (pre-veraison) and berries in Veraison and Late Ripening
stage (post-veraison).

Thus, these results indicate that the cultivars in post-Veraison are different regarding gene expression,
compared to the pre-Veraison phase, that shows a similar gene expression for each variety. Contrarily,

in the metabolite expression, the pre-Veraison and post-veraison phases are very different.
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5.1. Case Study |: Vitis vinifera

A. Transcriptomics B. Metabolomics
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Figure 12: Exploratory Analysis. PCA of (A) transcriptomics and (B) metabolomics regarding Variety
and Berry_Development. In (A) we see that the transcriptomics analysis divided the samples
into 3 main groups: pre-Veraison berries of both varieties (Group 1), post-Veraison berries
Pinot Noir berries (Group 2) and post-Veraison Cabernet Sauvignon berries (Group 3). In
(B) the analysis differentiates the metabolite content in two groups: Early-development
(pre-Veraison) berries and berries in Veraison and Late Ripening stage (post-Veraison).

In supplementary figure S4A, we can observe that the PC1-PC2 principal component analysis
evaluates changes in gene expression regarding different varieties, showing that the second principal
component (18.581%) distributed samples according to cultivar (Pinot Noir and Cabernet Sauvignon).
Whereas metabolomics data does not provide a clear division between varieties.

On the other hand, in supplementary figure S5A, the principal components in the PC1-PC2 plot
of transcriptomics regarding variety and vintage did not divide vintage years, but in PC1-PC2 of
metabolomics dataset, we can see that the second principal component (PC2: 21.026%) distributed

samples according to vintage years (2012, 2013 and 2014).

Differential Expression

The features of the transcriptomics dataset were narrowed further to match the number of features
in the metabolomics dataset and facilitate the analysis by multiomics algorithms. We opted for
performing differential expression of only the transcriptomics dataset. In table 10, we have the top
20 significantly expressed transcripts regarding the contrast between pre-Veraison and post-Veraison
stages, and their respective annotation obtained with the PN40024 Vitis vinifera reference genome

and description from http://plants.ensembl.org/Vitisvinifera/Info/Index.
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5.1. Case Study |: Vitis vinifera

Table 10: Top 20 up-regulated and down-regulated differential expressed genes from transcriptomics

dataset.
Up-Regulated Down-Regulated
) UniProtkB Annotation D UniProtKB Annotation
VIT_02s0154g00070 D7TN10 Abnormal floral organs VIT_ 155004801920 D7U7J4 F-box family protein
VIT_1450083g01030 D7SMN6 MADS-box APETALA 1 VIT_1850001¢11930 F6HO40 Thaumatin SCUTL2
VIT_17s0000g06880 F6GT30 Heparanase protein 2 precursor VIT_0350091g00260 F6H699 Zinc finger protein 4
VIT 0950002g00060 D7TZQ4 Inter-alpha-trypsin inhibitor heavy chain VIT 045004401110 A5COI8 Alcohol dehydrogenase 6
Acid phosphatase/vanadium-dependent haloperoxi-
VIT_0650004g07880 D7SIKT Allergen VIT 1250059201080 D7TEB6 .
ase
VIT_0850007g07550 F6HLAG GATA transcription factor 11 VIT_1450006202020 F6HSNO NADH dehydrogenase (ubiquinone) Fe-$ protein 1
VIT 095000204260 D7UOHS Unknown protein VIT 0350063g00730 F6HQCO CXE carboxylesterase CXE10
ol haryltransf lex subunit alph
VIT 1350019503040 F6HNNS Indole-3-acetate beta-glucosyltransferase VIT 135001904410 D7TM83 ( _':“:“_nalr)y ransierase complex subunit alpha
ribophori

VIT_0150026g01780 F6HPE9 Leucine-rich repeat transmembrane VIT 0650061200550 D7SNC1 Xyloglucan endotransglucosylase /hydrolase 32
VIT_04s0044g01870 F610B3 Auxin efflux carrier VIT_00s0207g00280 F61234 WAK receptor protein kinase
VIT_1350064g00890 F6HB61 Cellulose synthase CESA3 VIT.035009100520 D7SXT3 Prolyl 4-hydroxylase
VIT_0650004g05340 NA Tropinone reductase VIT_0050002g01800 D7TZW9 Dihydrolipoamide S-acetyltransferase
VIT 145006601650 F6HV18 Nodulin MtN21 family VIT 1650050g00910 F6HGE7 MATE efflux family protein

LHCAS (Photosystem | light harvest !
VIT 185000110550 E0CP66 5 (Photosystem | light harvesting complex |\ g 000703830 A5B118 fructose-bisphosphate aldolase cytoplasmic isozyme

gene
VIT_1450083200850 D7SMLY Lipase GDSL 7 VIT_0450023203020 F6GWP9 Serine carboxypeptidase 528

Zinc finger (C3HC4-type ring finger)BIG ) !
VIT_1350064g01030 D7T226 BROTHER VIT.0850040200430 D7TQS50 COP9 signalosome complex subunit 2
VIT_06s0004g03020 D7SKW9 Beta-galactosidase VIT_0650004g05890 F6GUV6E Ceramidase
VIT 0550020404880 D7TT7A2 Seed specific protein Bn15D14A VIT 075000501250 ABASG2 Unknown protein
VIT_0550020g02690 F6HDL7 Copper-binding family protein VIT 1450066201600 F6HV14 NHL repeat-containing protein
VIT_0950002g04080 F6HYD4 1AA9 VIT 0750031200460 F6HaJ6 Nicotinate phosphoribosyltransferase

As in the work by , we identified some insightful differential expressed transcripts,

contrasting the pre-Veraison stage with the post-Veraison stage, as depicted in table 10. Looking
at the up-regulated genes in pre-Veraison, we identified genes involved in fruit development and
developmental processes, such as, cell differentiation and proliferation, enabling growth, which is the
case of D7TTN10 (Abnormal floral organs). Additionally, we identified F6GT30 (Heparanase protein 2
precursor) that enables beta-glucuronidase activity, notably prominent in young regions of developing
organs and associated with cell elongation [194]. These genes are associated with the first growth
phase characterized by pericarp enlargement, caused by cell division and elongation [178]. Moreover,
this phase also accumulates organic acids but little sugar, explaining the up-regulation of genes involved
in carbohydrate metabolism, TCA, carbon fixation and photosynthesis.

Organic acids are frequently formed during carbohydrate metabolism, especially during the TCA
cycle or carbon fixation that occurs during the dark phase of photosynthesis. The differential expression
analysis identified genes like D7SKW9 (Beta galactosidase) involved in the carbohydrate metabolic
process and EOCP66 (LHCAS (Photosystem | light-harvesting complex gene 5)) in photosynthesis.

Furthermore, this stage also accumulates tannins, hydroxycinnamates, and phenolic precursors,
in which several of these compounds were up-regulated. Tannins describe a group of phenols
present in Vitis vinifera that promote berry and seed colour, from which flavonoids, such as flavonols
and anthocyanins, are present. Consequently, we identified several genes, e.g., F6I4E7 (UDP-
glucose:flavonoid 7-O-glucosyltransferase) and D7TJX3 (flavonol synthase) related to flavonols, and
F6H6Q6 (UDP-glucose: anthocyanidin 5,3-O-glucosyltransferase) related to anthocyanins formation.
In their most basic form, these anthocyanins are called anthocyanidins, but when they bind with
glucose, anthocyanins are formed [195]. In addition, hydroxycinnamates were also present, like D7TJI5
(Anthranilate N-hydroxycinnamoyl/benzoyltransferase) involved in the coumarin biosynthetic process.
This type of hydroxycinnamates possess antimicrobial and antioxidant capacities [196]. Phenolic

precursors like D7T5P6 (Polyphenol oxidase Il, chloroplast precursor) were also identified.
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Several auxin signal transduction components were also identified in up-regulated genes, like F610B3
(Auxin efflux carrier) and FGHNNS (Indole-3-acetate beta-glucosyltransferase), which is in concordance
with the article and the fact that auxin indole-3-acetic acid inhibits ripening.

This early development phase also requires genes involved in oxidative phosphorylation, like FOHDL7
(Copper-binding family protein) that enables protein kinase activity and ATP Binding. Several other
genes were related to genetic information processing, for instance, FEHYD4 (IAA9), enabling ATP

binding, and D7SMN6 (MADS-box APETALA 1), which regulates transcription, enabling DNA-binding.

Regarding the down-regulated genes in pre-veraison, we identified genes highly expressed related to
the post-veraison grapes, and also the included Veraison phase. This second growth phase is defined
by changes that make the fruit edible and alluring, including changes in the skin colour, accumulation
of sugars, loss of organic acids and tannins. Therefore, since grape ripening takes place, is normal to
find proteins related to ripening, for instance, F6I714 (MATE efflux family protein ripening responsive)
and F6HOY9 (Ripening regulated protein DDTFR18), putative ripening-related proteins.

Furthermore, we also identified differential expressed genes involved in iron ion binding, FGHSNO
(NADH dehydrogenase (ubiquinone) Fe-Sprotein 1)) and D7SXT3 (Prolyl 4-hydroxylase). Iron (Fe) is
an essential element for the growth and reproduction of plants. The increase in Fe content improves
the production of Reducing Sugar (RS), and a good RS/TCA ratio, that improves wine grape quality, if
this ratio is decreased the ripening phase will be delayed. Plus, Fe promotes anthocyanin accumulation
[197].

During ripening the berry also decreases its water content occurring berry softening, which is in
concordance with differential expressed genes related to cell wall organization and biogenesis, e.g.,
D7SNC1 (Xyloglucan endotransglucosylase/hydrolase 32).

The accumulation of sugars, loss of organic acids and tannins, and synthesis of volatile aromas can
be explained by the differential expression of A5BB118 (fructose-bisphosphate aldolase cytoplasmic)
and other genes that participate in the glycolytic process and other occurrences of the carbohydrate
degradation metabolism.

In this phase, we also identified several genes involved in transport, like FGH6E7 ( MATE efflux
family protein) that enables transmembrane transporter activity and antiporter activity, and also genes
involved in detoxification, like D7TEB6 (Acid phosphatase/vanadium-dependent haloperoxidase).

Lastly, hormones also play an essential role in ripening and maturation, as ethylene and abscisic
acid (ABA) induce ripening. Ethylene induces alterations in colour, aroma, texture and flavour besides
other biochemical and physiological parameters in berry. A differential expressed gene identified in this
analysis involved in the transcription factor of ethylene was F6I12P2 (Ethylene-responsive transcription
factor ERF105), among others. Ethylene production occurs just before veraison so it is normal to
find genes related to ethylene in the PreV phase, although they can also be identified differentially
expressed in the PostV phase, like D7TFI7 (Ethylene-responsive transcription factor ERF114).

On the other hand, ABA helps in the accumulation of anthocyanins and sugars and the up-regulation
of genes involved in ripening and is also differentially expressed in this analysis as we can see by the
gene ABBHW6 (ABA-responsive protein (HVA22a)) in the up-regulated genes and FGHW11 (GRAM

domain-containing protein / ABA-responsive) in the down-regulated genes [178].
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5.1.3 Classic Machine Learning Methods

Classic ML models were used, in this project, both for the individual omics analysis and for the
multiomics integration analysis, such as the SVM, RF and ANN models.

In the individual omics analysis stage, we used the "train()” function of the package caret in R
language to split both our data individually into train and test datasets (70% train and 30% test).
Table 11 shows the dimensions of the original dataset and the resultant train and test datasets. Then,
using only the train dataset, we trained the different models and evaluated them with 10 fold and 3
repetitions CV, and used the test dataset to predict the output. On the other hand, for the multiomics
integration analysis, the three models were created using the library scikit-learn for Python and 5-fold
CV was implemented.

This way, we could determine which classical ML algorithm better suited our data, having an
idea of how well the individual datasets predict the outcome compared to the multiomics integration
analysis, and determine the features for each dataset that best explain the outcome. Table 12 in
the supplementary tables contains the different error metric values (Accuracy, Recall and precision)
obtained for both datasets, for the individual omics analysis, whereas table 18 shows the results for all

the error metrics in the multiomics integration analysis, in the three models.

Table 11: Individual Omics Analysis. Dimensions (samples, features) of the original transcriptomics
and metabolomics datasets and their respective train and test datasets.

Transcriptomics Metabolomics

Original (73,213) (73,213)
Train (50,213) (50,213)
Test (23,213) (23,213)

Table 12: Values of the different error metrics (Accuracy, Recall and Precision) for each model (SVM,
RF and ANN) for both the transcriptomics and metabolomics datasets.

Model Metrics Transcriptomics Metabolomics

Accuracy 0.95 0.9

SVM Recall 0.8571 1
Precision 1 0.75
Accuracy 1 0.8

RF Recall 1 1
Precision 1 0.6
Accuracy 0.8 0.9

ANN Recall 0.4286 1

Precision 1 0.75
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Support Vector Machine
e Individual Omics Analysis

The SVM model has very good performance, the results are shown in table 12. It as an accuracy,
recall and precision of 0.95, 0.8571 and 1 in the transcriptomics dataset, and 0.9, 1, 0.75 in the
metabolomics dataset, respectively. Figure 13 shows the ROC plot and AUC value for both datasets.
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Figure 13: Individual Omics Analysis. ROC curve of the SVM model for the (A) transcriptomics
dataset, with an AUC value of 1 and (B) metabolomics dataset, with an AUC value of

0.98.

e Multiomics Integration Analysis

Grid search and random search were executed to obtain the best estimator for our data in the
SVM model. The best estimator was obtained with grid search and the hyperparameters were: C=1,
gamma=0.01, kernel='linear’. The model’s accuracy, precision and recall for the grid search were
0.933, 0.666 and 1.0, respectively. Furthermore, we calculated the ROC curve, depicted in figure 14,
for grid search and the AUC value was 0.96. Lastly, we obtained the top 10 most important features
that explain the outcome of the model. Table 13 shows the top 10 features for the grid search model,

which has better accuracy.
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Figure 14: Multiomics Analysis Integration. ROC curve for the SVM model in the concatenation-based
integration. Grid Search ROC curve with an AUC value of 0.96.

Table 13: Most important features regarding the concatenation dataset for the SVM model.

Most important features

Variable UniProtKB Annotation Score
VIT_11s0016g05840  F6HHB3  Protease inhibitor/seed storage/lipid transfer protein (LTP) 0.00268498
VIT_19s0090g01570  F6HEM1 Ribosomal protein S8 (RPS8A) 40S 0.00201202
VIT_05s0020g02690 F6HDL7 Copper-binding family protein 0.00192066
VIT_18s0001g01490 A5ASV7 Oxidoreductase N-terminal domain-containing 0.00159169
VIT_13s0064g00890 F6HB61 Cellulose synthase CESA3 0.00131851
VIT_1250028g01080 A5B1D3 Photosystem |l oxygen-evolving complex precursor, 32kda PSBP  0.00117213
VIT_06s0004g03240 ABAFS1 Elongation factor 1-alpha 1 0.00100799
VIT_19s0014g03850 A5BX41 Cytochrome B6-F complex iron-sulfur subunit, PETC 0.000736657
VIT_11s0016g01230 D7TCGO 12-oxophytodienoate reductase 3 0.000499583
VIT_02s0025g03540 F6HUC8  Tubulin beta-6 chain 0.000497651

Random Forest

e Individual Omics Analysis

For the RF model, the transcriptomics dataset had an accuracy, recall and precision of 1, which

indicates that it correctly classifies all samples but it might be overfitted, even though cross-validation

was performed, although it is not possible to prove unless we test with new data. On the other

hand, the metabolomics dataset returned accuracy, recall and precision of 0.8, 1 and 0.6, respectively.

Figure 15 depicts the ROC plot and AUC value for both datasets.
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Figure 15: Individual Omics Analysis. ROC curve of the RF model for the (A) transcriptomics dataset,
with an AUC value of 1 and (B) metabolomics dataset, with an AUC value of 1.

e Multiomics Integration Analysis

For the concatenation-based integration, grid and random search were executed to obtain the

best estimator for our data in the RF model. The best estimator had the following hyperparameters:

bootstrap=False, max_depth=2, max_features=4, min_samples_leaf=2. Additionally, we identified

the features with greater importance. The model's accuracy, precision and recall were 0.87, 0, 0,
respectively. Figure 16 shows the ROC curve for the RF model with an AUC value of 0.5. Table 14

depicts the most important features for this model.
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Figure 16: Multiomics Analysis Integration. ROC curve for the RF model in the concatenation-based
integration. The AUC value corresponds to 0.5.
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Table 14: Most important features regarding the concatenation dataset for the RF model.

Most important features

Variable UniProtKB Annotation Score

VIT_11s0016g05840  F6HHB3  Protease inhibitor/seed storage/lipid transfer protein (LTP) 0.0306963

VIT_04s0044g01870 F610B3 Auxin efflux carrier 0.0303425
VIT_06s0004g07880 D7SJK7 Allergen 0.0290973
VIT_01s0026g01780 F6HPE9 Leucine-rich repeat transmembrane 0.0289725
VIT_18s0001g09390 EOCP50 Protein phosphatase 2C 0.0205442
VIT_01s0026g00330 D7TNP7 NHL repeat-containing protein 0.02
VIT_06s0004g07310 F6GUL1 Indole-3-acetate beta-glucosyltransferase 0.0199708
VIT_18s0001g08240 F6GZM2 Leucine-rich repeat transmembrane protein kinase 0.0196217
VIT_18s0001g09070 F6H199 ZCWT protein 0.0196005
VIT_16s0013g01510 D7U7B0 WD-repeat protein 8 0.019315
fructose - - 0.0192617

Artificial Neural Network
o Individual Omics Analysis

Lastly, the ANN model for the transcriptomics dataset exhibited accuracy and precision of 0.8 and
1, respectively, and a lower value of recall (0.4286). This means that the model is identifying few
pre-Veraison cases. In turn, the metabolomics dataset presented an accuracy, recall and precision
of 0.9, 1 and 0.75. Figure 17 illustrates the ROC plot and AUC value for both datasets. This
model obtained better results for the metabolomics dataset, while the others performed best with

transcriptomics data.
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Figure 17: Individual Omics Analysis. ROC curve of the ANN model for the (A) transcriptomics
dataset, with an AUC value of 0.97 and (B) metabolomics dataset, with an AUC value of
0.99.

e Multiomics Integration Analysis

Lastly, we implemented an ANN model. Using the random search and grid search we selected the

best estimator, with the following hyperparameters: activation="tanh’, alpha=0.001, max_iter=900,
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solver="Ibfgs’. As grid search took too long to run, we opted to use only the random search results.
The model’s accuracy, recall and precision for the best estimator were 0.733, 0.5 and 0.25, respectively.

Then, we used the Python package LIME to calculate feature relevance. However, only the important
features for each specific sample at each time are returned. Still, we can see which features are
more important to consider for each class. Figure 18 displays the ROC curve, which the AUC value

corresponds to 0.58. In table 15, we find the features with greater importance.
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Figure 18: Multiomics Analysis Integration. ROC curve for the ANN model in the concatenation-based
integration. The AUC value corresponds to 0.833.

Table 15: Most Important features regarding the concatenation dataset for the ANN model.

Most important features

Variable UniProtKB Annotation

VIT_05s0020g02690 F6HDL7 Copper-binding family protein
VIT_19s0090g01570  F6HEM1  Ribosomal protein S8 (RPS8A) 40S
VIT_13s0064g00390 F6HB61 Cellulose synthase CESA3
VIT_16s0022g00670 F6HAUO  Vacuolar invertase 1, GIN1
VIT_14s0083g01110 D7SMP3 Brassinosteroid-6-oxidase
VIT_18s0001g01490  AB5ASV7  Oxidoreductase N-terminal domain-containing

Feature Relevance
o Individual Omics Analysis

Regarding the individual omics analysis, looking at the most important features in the transcriptomics
dataset that could explain the outcome, for each model (SVM,RF and ANN - supplementary tables S1,
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table S3 and table S5 respectively) we identified transcripts common to some models. Table 16
depicts the most common features identified in the three individual omics models that were identified
in at least two models or all models, their respective annotation, and the role they play in berry
development.

Analysing the results, we identified similar biological processes, like plant development, cell population
proliferation and cell growth, ion binding and oxidoreductase activity, chlorophyll, plant cell wall
organization and biogenesis, regulation of transcription and auxin-related, which indicate some of
the most important events in the pre-Veraison stage. For instance, the cell wall of the berry is still
hard and green, explaining the cell wall biogenesis and the chlorophyll. Additionally, this stage is also
notable for the intense cell proliferation events and the auxin hormone that inhibits ripening.

Regarding the metabolomics dataset (Supplementary tables S2, table S4 and table S6, respectively)
the most important metabolites that explain the outcome for all three models were fructose, tartaric
acid, malic acid, malvidin-3-o-glucoside, glucose, peonidin-3-glucoside, sucrose, stearic acid and
benzenemethanol. There are several organic acids, like tartaric and malic acid that are the most
prevalent organic acids in the pre-Veraison stage. On the other hand, glucose, fructose, sucrose and
benzenemethanol are compounds identified in the post-Veraison phase that indicate the increase in

sugar concentration and accumulation of aroma and flavour compounds.
e Multiomics Integration Analysis

Looking at the results obtained by the three classic ML models for the concatenation-based
integration approach, we identified 5 transcripts in common with at least two models. Table 17
depicts the most relevant features in the three classical ML models for multiomics integration analysis
identified in at least two models, the respective annotation, and the role they play in berry development.
The biological processes discovered were related to plant growth and development, ribosomal protein,
oxidative phosphorylation, nucleotide-binding and cell wall biogenesis, cellulose biosynthetic process
and cell wall organization. With these results, we identified new essential functions like nucleotide-
binding and ribosomal protein, that appear in other publications as overexpressed functions in berry
development [198, ]. Furthermore, the other functions were previously mentioned in the prior
analyses, such as plant development, oxidoreductase activity and plant cell wall biogenesis, cellulose
biosynthetic process and cell wall organization.

On the other hand, for the metabolomics dataset, only one metabolite was considered as a relevant
feature to explain the outcome. It was the case of fructose, indicated by the RF model, a sugar
identified in the post-veraison phase in grapes.

Thus, comparing the three classic ML models and the results for individual omics analysis and
multiomics integration analysis, we determined that the individual omics analyses can indicate a
greater number of biological processes and metabolites present in grape development and relevant
for predicting the outcome. However, both analyses identified two transcripts in common, F6HHB3
(Protease inhibitor/seed storage/lipid transfer protein (LTP)) and F6HB61 (Cellulose synthase CESA3)
referring to plant growth, development, and importance for fruit ripening and cell wall biogenesis,

cellulose biosynthetic process and cell wall organization, key roles in berry development.
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5.1.4 Novel models for Multiomics Integration Analysis

For the multiomics integration stage, we studied three different integration based approaches:
concatenation-based, transformation-based and model-based integration. The multiomics integration
stage uses both datasets simultaneously, which may result in better and more holistic outcomes, and
give interesting variable relations. In this stage, we are exploring different models and integrating
approaches and try to complement berry development studies, giving more insightful information.
Table 18 shows the different algorithms in each integration approach and the corresponding accuracy,
recall, precision and AUC values.

Due to the poor results, in the models suggested in chapter 3, we opted to show results obtained
for the multiomics integration models. For the concatenation-based approach, we studied DIABLO,
SMSPL, Stack Generalization (Ensemble) and the three classical ML methods, removing the lasso
regression model. Regarding the transformation-based models, we analyzed the SNFtool model but left
out the graph-CAN and kernel- Integrated RVM and Boosted-RVM models. Lastly, for model-based
integration, we selected the first of the four options. However, all models can be run in the developed
pipeline. The link can be identified in the section 3.7.

Table 18: Multiomics Integration Analysis.Results of the error metrics: PECC (accuracy), Precision,
Recall and the AUC values for all models executed.

Metrics
Model
Classification Metrics
A
PECC Precision Recall uc

Value
DIABLO 0.85 0.66 0.875 0.8375
SMSPL 0.952 1 0.833 0.969
Stack Generalisation (Ensemble) 0.9523 1 1 0.9875
SVM 0.933 0.666 1.0 0.96
RF 0.87 0.87 1 0.5
SNFtool 0.933 0.916 1 0.875
Ensemble Classifier with different ML algorithms (Hard and - - - -
Soft Voting)
Option 1 (Soft Voting) 0.93 1 0.92 0.96

Option 1 (Hard Voting) 1 1 1 -
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Concatenation-Based Integration
e DIABLO

First, we set our data as a list of data matrices matching the same samples in the rows. The omics
datasets were named as blocks, block omicsl corresponding to transcriptomics and block omics2
equivalent to metabolomics dataset.

For the matrix design, a symmetrical matrix, that indicates which blocks are connected (ranging
from 0 to 1) is required. We first opted to examine the correlation between the different blocks via
the modelled components, and therefore, we executed a partial least square regression and a Sparse
Partial Least Squares regression to find the best value to input in the design matrix. We opted for a
correlation of 0.88.

Regarding the tuning of the parameter "number of components” (the number of sufficient compo-
nents to discriminate all phenotype groups), the mixOmics package suggests first fitting a DIABLO
model without variable selection to assess the global performance and obtain the number of com-
ponents for the final DIABLO model. The plot in figure 19 shows the performance of the executed
DIABLO model.
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Figure 19: Multiomics Integration. Diablo model performance for number of components tuning.
Looking at the weighted vote of overall balanced error rate (BER) and the centroids
distance (centroids.dist), the model obtained a total of 5 components for the final model.

Looking at the performance plot, we extract the number of components regarding the weighted
vote of overall balanced error rate (BER) and the centroids distance (centroids.dist), obtaining a total
of five components for the final model.

Then, we executed the final model with the "block.splsda()” function using the five components
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and obtained the following sample plot that projects the samples into the space extended by the
components of each block (figure 20).
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Figure 20: Multiomics Integration. Plot resultant of the "plotindiv()” function of mixOmics, that
projects each sample into a space extended by the components of each block. Block: omicsl
concerning the transcriptomics dataset and block: omics2 regarding the metabolomics
dataset.

As shown in figure 30, variate 1 explains with success the outcome of berry development in the
transcriptomics dataset. The same can also be shown in the arrow plot in supplementary figure S8.

MixOmics also allows the execution of variable plots to visualize and analyze the associations
between the selected variables. The variable plot (figure 21) depicts the variables from all blocks
selected on components 1 and 2.
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Figure 21: Multiomics Integration. Plot resultant of the "plotVar()” function of mixOmics, that allows
the visualization and analyse of the variations between selected variables.

As clusters of points indicate a strong correlation between variables we can see that the transcrip-
tomics dataset variables are more correlated than the metabolomics dataset variables.

On the other hand, the Circos plot in figure 22 can provide a good insight into the correlations
between variables of different types. However, the number of samples makes the interpretation difficult.
Nevertheless, we can see that the features from the metabolomics dataset explain both the preV and
postV stages, while in the features from the transcriptomics dataset, we cannot see a clear distinction,
and if we take a closer look we see that the space between the blue (PreV) line and orange (PostV)

line is larger in the transcriptomics dataset, which means this dataset explains better the preV stage.
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Figure 22: Multiomics Integration. Plot resultant of the "circosPlot()” function of mixOmics, that
allows the visualization and analyse of the variations between selected variables.

In supplementary figure S9, we can see a network plot made using the "network()” function from
mixOmics, which allows us to visualize the correlation between the different datasets. Using a cutoff
value of 0.9 we observe a relation between some transcripts and malvidin-3-O-glucoside and tartaric
acid.

The final plot was executed using the "plotLoadings()” function of mixOmics, and aids in visualizing
the loading weights of each selected variable on each component and each data set, see figure 23
that demonstrates the top 20 features for each omics dataset. As shown in the Circos plot, the
transcriptomics dataset explains only the preV stage while the most important features of the
metabolomics dataset are related to both preV and postV stages. Thus, the metabolomics dataset
has a larger weight in component 1.
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Figure 23: Multiomics Integration. Plot resultant of the "plotLoadings()” function of mixOmics, that
allows the visualization of the loading weights of each selected variables on each component
and each data set.

Finally, to evaluate the performance of the DIABLO model we opted for a 10-fold cross-validation
repeated 10 times using the "perf()” function. This function runs another "block.splsda()” with the
output of the final model but on cross-validated samples. Then, we obtained the ROC curve for
both the transcriptomics and metabolomics blocks and the correspondent AUC value for the model
performance. Figure 24 shows the final AUROC curve. As shown in table 18, DIABLO’s accuracy,
precision and recall were 0.85, 0.66 and 0.875, respectively.



5.1. Case Study |: Vitis vinifera
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Figure 24: Multiomics Integration. DIABLO AUROC curve. AUC value equal to 0.998 for transcrip-
tomics dataset and metabolomics dataset 0.929.

Lastly, we used the "selectVar()"” function to evaluate the most important features for the DIABLO
algorithm and obtained the following 20 most important features of transcriptomics dataset (table 19)
and of the metabolomics dataset (table 20).
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Table 19: Multiomics Integration. Most relevant features obtained from the DIABLO model for the

transcriptomics dataset.

Transcript UniProtKB Annotation
VIT_00s0759g00010 D7STO7 Porphobilinogen deaminase chloroplast precursor
VIT_0550094g00780 D7T2G6 Cysteine synthase
VIT_14s0066g01650 F6HV18 Nodulin MtN21 family
VIT_19s0177g00340 D7TOCY Unknown protein
VIT_12s0028g02160 FoH4ZT Ribulose bisphosphate carboxylase
VIT_04s0023g02120 D7SPA6 GTP-binding protein era
VIT_08s0040g03010  D7TQB7  Pigment defective 149
VIT_17s0000g06880 F6GT30 Heparanase protein 2 precursor
VIT_1350064g01030 D7T226 Zinc finger (C3HC4-type ring finger)BIG BROTHER
VIT_18s0001g06370 EOCRP4 L-ascorbate peroxidase, chloroplast
VIT_15s0046g00290 F6I6F3 Auxin response factor 18
VIT_09s0002g02110 D7TZZ7 Ribonuclease 1
VIT_14s0006g01410 D7TSRO fructokinase-2
VIT_01s0026g00330 D7TNP7 NHL repeat-containing protein
VIT_00s0274g00060 F6GZ22 Glycine-rich protein
VIT_13s0019g05380 D7TM13 Unknown protein
VIT_1250028g03100 F6H5G9 GPRI1 (GOLDEN2 1)
VIT_06s0004g08450 D7SJF6 Unknown protein
VIT_13s0106g00060 F6HVM2 Ankyrin repeat
VIT_03s0091g00870 F6H656 Adenylylsulfate kinase 1 (AKN1)

Table 20: Multiomics Integration. Most relevant features obtained from the DIABLO model for the

metabolomics dataset.

Metabolites

fructose

malic acid

tartaric acid

glucose

stearic acid

citric acid
malvidin-3-O-glucoside
palmitic acid

quercetin-3-glucuronide

threonic acid

benzenemethanol

myo-inositol
D-erythro-dihydrosphingosine
phenylalanine
1,2-anhydro-myo-inositol NIST
benzoic acid

sucrose

myricetin
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e SMSPL

For the second concatenation-based approach, we selected the SMSPL algorithm, which can
simultaneously predict subtypes and identify potentially significant multiomics signatures. The
datasets were divided into train and test datasets (70% train and 30% test) to precisely evaluate
the accuracy of the SMSPL. First, we created a list of omics matrices, one for the training datasets
and another for the testing datasets, and initialized all the parameters. Then, we proceeded to
the initialization of the classifier and started the optimization stage. Lastly, we identified the best
validation map and evaluated its performance. In figure 25, we can visualize the ROC curve and AUC

value for both the train and test predictions.
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Figure 25: Multiomics Integration. SMSPL AUROC curve. AUC value equal to 0.974 for prediction
with the train dataset and an AUC value of 0.969 for the performance of the test dataset.

The test dataset prediction demonstrated an accuracy of 0.952, precision of 1.000 and recall of 0.833,
hence showing good performance for the SMSPL algorithm in the concatenation-based integration
approach. This model can also indicate the most important features. Table 21 and table 22 depict

the features for the transcriptomics and metabolomics dataset, respectively.
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Table 21: Most Important features regarding the transcriptomics dataset for the SMSPL model. The
positive class corresponds to the preV phase, hence positive coefficient values coincide with
the preV phase.

Most important features

Transcriptomics  UniProtKB Annotation Coef.
VIT_05s0020g02690 F6HDL7 Copper-binding family protein 0.0041
VIT_09s0002g04080 F6HYD4 IAA9 0.0148
VIT_12s0057g01080 D7ST21 Unknown protein 0.0250
VIT_03s0091g00500 F6H673 Unknown protein 0.0084
VIT_16s0039g02550 F6HEH4 Seed specific protein Bn15D1B 0.0002
VIT_04s0008g07340 F6H3L9 CONSTANS-like protein 4 0.0013
VIT_04s0023g03010 F6GWQO  fructose-bisphosphate aldolase, chloroplast precursor 0.0001
VIT-13s0106g00060 F6HVM?2  Ankyrin repeat 0.4867
VIT _15s0048g00940 D7U7S2 ATP-dependent DNA helicase 2 subunit 2 0.1242

Table 22: Most Important features regarding the metabolomics dataset for the SMSPL model. The
positive class corresponds to the preV phase, hence positive coefficient (Coef) values specify
PreV features, and negative coefficient values postV features.

Most Important Features

Metabolites Coef
stearic acid 0.3457
malic acid 0.0423
glucose -0.0223
fructose -0.4194
L-aspartic-acid 0.2119

malvidin-3-O-glucoside -0.1341
N8-acetylspermidine -0.1239
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e Stack Generalisation

Next, stack generalisation was performed using the h2o library from R, to fit two Generalized
Linear Model (glm)s to the training dataset, from the concatenation-based dataset. Then, the two
models were stacked and the berry development stage was predicted for the test dataset. The model's
performance was, as depicted in table 18, 0.9523 for accuracy and 1.000 for recall and precision. The
AUC value was 0.9875. Table 23 shows the 15 most important variables for both models. In this
case, since both glm models had the same data and hyperparameters it resulted in the same variable

importance results.

Table 23: Most important features of the concatenation dataset for the Stack Generalisation models.

Most important features

Variable UniProtKB Annotation Relative Importance
VIT_06s0004g07880 D7SJK7 Allergen 0.09238
VIT_15s0046g00290 F616F3 Auxin response factor 18 0.07791
VIT_08s0007g07550 F6HLAG GATA transcription factor 11 0.07595
VIT_12s0057g01080 F6HHQ2 Kelch repeat-containing protein 0.07279
VIT_04s0044g01870 F6I0B3 Auxin efflux carrier 0.06921
VIT_14s0068g01020 D7SVG9 Unknown protein 0.06392
VIT_14s0066g01650 F6HV18 Nodulin MtN21 family 0.06371
VIT_07s0104g01440 D7TP32 Phototropic-responsive NPH3 0.06349
VIT_06s0004g05340 NA Tropinone reductase 0.06225
VIT_09s0002g00960 D7TZQ4 Inter-alpha-trypsin inhibitor heavy chain 0.06211
VIT_18s0001g15520 EOCQN6 Leaf senescence protein 0.05795
fructose — — 0.05769
VIT_09s0002g04260 D7UOH5 Unknown protein 0.05631
VIT_18s0001g10550 EOCP66 LHCA5 (Photosystem | light harvesting complex gene 5) 0.05628
VIT_01s0026g01640 D7TNE5 Band 7 family 0.05624

Transformation-based Integration
e SNFtool

For the transformation-based integration, we used the R library SNFtool to implement the SNFtool
model. First, we calculated the pair-wise distance using the "dist2()” function. Then, we constructed
the similarity graphs, that have complementary information about the clusters (presented in the
supplementary figure S8). Next, the graphs were fused and the overall matrix was computed using
the "SNF()” function for similarity network fusion. We identified the features with more influence
using the "rankFeaturesByNMI()” function that returned the list containing the rank based on the
normalized mutual information for each feature (table 24). Additionally, we also executed spectral
clustering using the function "spectralClustering()”, that gave information regarding the final subtype
information. The "displayClusters()” function can also display the spectral clustering of the fused
graphs ( shown in supplementary figure S9). Using the output from the spectral clustering in the
function "calNMI()”, we evaluated the accuracy of the obtained clustering results. In the final step,
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we predicted the new labels using label propagation with the library function "groupPredict()”. The
model's accuracy, precision and recall were 0.933, 0.916 and 1, respectively. The ROC curve is depicted
in figure 26, with an AUC value of 0.875.
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Figure 26: Multiomics Analysis Integration. ROC curve for the SNFtool model in the transformation-
based integration. The AUC value corresponds to 0.875.

Table 24: Most important features regarding the transformation-based integration for the SNFtool

model.
Most important features
Transcriptomics Metabolomics
Variable UniProtKB Annotation Variable

VIT_14s0083g01030 D7SMN6 MADS-box APETALA 1 fructose
VIT_06s0004g07880 D7SJK7 Allergen glucose
VIT_14s0083g00850 D7SML9 Lipase GDSL 7 petunidin-3-glucoside
VIT_18s0001g01490 A5ASV7 Oxidoreductase N-terminal domain-containing | malvidin-3-O-glucoside
VIT_07s0104g00490 D7TPB3 Unknown sucrose
VIT_06s0004g02230 D7SL39 Unknown protein peonidin-3-glucoside
VIT_18s0041g01350 F6I3U7 Receptor-like protein kinase HAIKU2 delphinidin-3-O-glucoside
VIT_18s0001g15520 EOCQNG6 Leaf senescence protein quercetin-3-glucuronide
VIT_03s0063g02010 D7TPW9 Protease stearic-acid
VIT_16s0013g00220 D7U738 Metacaspase AtMCP1b cyanidin-3-glucoside
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Model-based Integration
e Ensemble Classifier with different ML algorithms(Hard and Soft Voting)

For model-based integration, we used as supervised model an ensemble classifier with different ML
algorithms implemented in Python. The model offers 4 different ensemble classifiers, depending on
the models selected to perform: the parameter "option” enables the user to choose which option to
consider (“optl”, "opt2”, "opt3” or "opt4”) or run "ALL" the options. Additionally, it enables two
different voting approaches (Hard and Soft voting) that can be selected with the "voting” parameter,
executing "Hard”, "Soft” or "ALL" approaches.

Although four options were tested and analyzed, we presented only the option that gave a better

performance, option 1.
e Option 1

Option 1 executes an ensemble classifier with 2 SVM models, predicts the outcome of each one
and calculates the final prediction using the voting strategy. For this case study, we opted for both
voting strategies. The final prediction had an accuracy, precision and recall of 0.93, 1 and 0.92 for
soft voting and accuracy, precision and recall of 1, 1, 1 for hard voting. The ROC curve plotted for
soft voting is depicted in figure 27. The AUC value is 0.96.
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Figure 27: Multiomics Analysis Integration. ROC curve for the option 1 of the ensemble classifier
model in model-based integration using soft voting. The AUC value corresponds to 0.96.

We also identified the top 4 features with more importance for the transcriptomics and metabolomics

dataset, shown in table 25.
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Table 25: Most important features according to option 1 of ensemble classifier model in model-based

integration.
Most Important Features
Transcriptomics Metabolomics
Variable UniProtKB Annotation Variable
VIT_06s0004g03240 AS5AFS1 Elongation factor 1-alpha 1 malic acid
VIT_08s0007g07680 Q107W9 Aquaporin SIP1;1 leucine
VIT_19s0014g01350 F6H2N3 Ribulose bisphosphate carboxylase, large chain fructose
VIT_08s0007g00840 D7THJ7 Ribulose bisphosphate carboxylase/oxygenase activase, chloroplast | glucose

Feature Relevance

In conclusion, looking at all the results from the multiomics integration analysis, we identified features

relevant for all models, both in transcriptomics and metabolomics datasets. For the transcriptomics

dataset, the most frequent transcripts can be identified in table 26 and for the metabolomics dataset,

the most relevant features are depicted in table 27.
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All features are related to the PreV stage, being in charge of some crucial functions. The common
transcripts play similar roles in the PreV stage, such as gene information processing, auxin regulation,
signal transduction, allergen, plant development, production of anthocyanins and flavonoids. However,
when analysing biological processes we also identify other roles such as, cell wall biogenesis, regulation
and structure (D7SML9 (Lipase GDSL 7); F6GZ22 (glycine-rich protein) and F6HB61 (Cellulose
synthase CESA3)) and defence responses (FGHPE9 and F6GZM2(Leucine-rich repeat transmembrane)),
cell division and elongation (D7SPA6 (GTP-binding protein era)), carbohydrate metabolism, TCA
cycle (FGGWQO (fructose-bisphosphate aldolase); D7TSRO (fructokinase-2)), carbon fixation and
nucleotide-binding (FGHUCS8 (Tubulin beta-6 chain)).

As mentioned before, the PreV stage is characterized by pericarp enlargement, caused by cell
division and elongation and overall plant development. Furthermore, it also accumulates organic acids,
hence explaining the transcripts involved in carbohydrate metabolism, TCA cycle, carbon fixation and
photosynthesis. Organic acids are frequently formed in carbohydrate metabolism, especially in the
TCA cycle or carbon fixation reaction that occurs in the dark phase of photosynthesis. Additionally,
this stage also accumulates tannins, hydroxycinnamates, and phenolic precursors, so it is reasonable
to find transcripts related to the production of anthocyanins and flavonoids. Auxin regulation and
signal transduction components are also important since the auxin hormone inhibits ripening. The
increase in chlorophyll levels in this phase is also normal. The berries are mainly green and the berries
skin is hard, therefore transcripts for cell wall biogenesis, regulation and structure are needed. We also
identified nucleotide-binding and defence responses, in some of the transcripts in this stage, just like
gene information processing, due to the constant cell division.

On the other hand, in the metabolomics dataset, the most common metabolites are depicted in
table 27. In concordance with the information observed in the transcriptomics dataset, we identified
that the metabolites are divided into 3 groups. The groups consist of flavonoids, where the anthocyanins
belong, organic acids and sugar compounds. The anthocyanins group is composed of malvidin-3-
O-glucoside, and although not in common with the models we also identified petunidin-3-glucoside,
peonidin-3-glucoside, delphinidin-3-glucoside, quercetin-3-glucoside and cyanidin-3-glucoside. Another
flavonoid was identified, corresponding to quercetin-3-glucuronide. The organic acids more frequently
observed ,were malic acid and stearic acid, although other organic acids were identified, such as tartaric
acid. The most relevant sugars were fructose, glucose and sucrose. Lastly, one other compound group
was identified, when looking at all the results. It was the case of aromatic compounds, for instance,

benzenemethanol and phenylalanine.

Unsupervised Learning

Finally, besides supervised learning algorithms, we also implemented unsupervised learning for multi-
omics integration. We used three models for each type of integration to discover similarities, differences,
hidden patterns or data grouping in multiomics unlabeled datasets.

For the different integration based approaches, we chose different multiomics unsupervised models.

For the concatenation-based approach we executed MFA, for the transformation-based integration we
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performed NEMO, and for the model-based integration we opted for BCC. However, both NEMO
and BCC did not offer much information, so they were omitted from the discussion of the results.

e Concatenation-Based Integration

- MFA

For the concatenation-based unsupervised learning, we implemented the MFA algorithm in R, using
the library FactoMineR. First, we selected the concatenated dataset and formed a vector with the
number of variables present in each group. We also selected the type of variables that were present
in each group. Since we divided the concatenated dataset into 3 groups, transcriptomics dataset,
metabolomics dataset and output, our parameter "type” corresponded to ['c”,"c","n"]

Then, we extracted the proportion of variances explained by the different dimensions and obtained
the scree plot, which is illustrated in figure S12. As shown in the scree plot, the first dimension
explains the most variance of our dataset.

The MFA model also offers several different graphs of variables, figure S13 shows the plotted groups
of variables. The same conclusions can be observed in figure S14, which demonstrates the contribution
of the groups to dimension 1 and dimension 2.

We can use the "fviz_contrib()” function (figure 28) to visualize in more detail the contribution of
the quantitative variables (in %) to the definition of the dimensions. The transcriptomics dataset
contributes more to explain dimension 1 and the metabolomics dataset is better to explain dimension
2.
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Figure 28: Multiomics Analysis Integration. Unsupervised Learning. Graph of variables, that shows the
contribution of quantitative variables relative to the (A) dimension 1 and (B) dimension 2.

Furthermore, as we can see in the figure 28, the variables with bigger values, contribute the most
to the definition of the dimensions, hence are the most important in explaining the variability in the
data set. The transcriptomics and metabolomics datasets contribute both to the first dimension, the
metabolomics dataset explains dimension 2 with greater detail. The features that explain most of the
variability in the dataset, for dimensions 1 and 2 are illustrated in table 28.

Table 28: Features that explain the most variability in the dataset according to the MFA unsupervised

model.

Dimension 1 UniProtKB Annotation ‘ Dimension 2
VIT06s0004g03240 ABAFS1 Elongation factor 1-alpha 1 proline
fructose - - N-methylnicotinic acid cation
malic acid — — malic acid
glucose — — leucine
tartaric acid — — tartaric acid
N-methylnicotinic acid cation - - fructose
VIT16s0022g00670 F6HAUO Vacuolar invertase 1, GIN1 glucose
malividin-3-O-glucoside - - -
VIT11s0016g05840 F6HHB3  Protease inhibitor/seed storage/lipid transfer protein (LTP) -
VIT01s0011g02710 AS5AEV3 No hit -
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Lastly, Figure 29 represents the individuals, colored by their outcome variable, Berry development.
Individuals with similar profiles are closer to each other on the factor map.

Individuals - MFA

Berry

E Posty

Pra

Dim2 (13.6%)

Dim1 (68.7%)

Figure 29: Multiomics Analysis Integration. Unsupervised Learning. Graph of variables, that shows the
contribution of quantitative variables relative to the (A) dimension 1 and (B) dimension 2.

Figure 29 exhibits a clear distinction between the two levels of the outcome variable PreV and
PostV, explained by dimension 1 (68.7%), which indicates that the berry development is explained by
dimension 1.

Regarding dimension 1, in the resultant features that explain most of the variability, and thus,
explain berry development, we found some transcripts and metabolites obtained in previous analysis.

It was the case of:

e A5AFSI (Elongation factor 1-alpha 1), that enables GTP binding, translation elongation factor

activity, heterocyclic compound binding and organic cyclic compound binding;

e F6HAUO (vacuolar invertase 1 (GIN1), involved in the carbohydrate metabolic process, which is
responsible for the organic acid formation and other compounds important in the PreV phase;

[200]

e F6HHB3, a protease inhibitor/seed storage/lipid transfer protein (LTP), involved in plant growth
and development, is important for fruit ripening and cell wall biogenesis, cellulose biosynthetic

process and cell wall organization, key roles in berry development [200]

However, it was also identified a new transcript ASAEV3, with unknown annotation, being a good

case study for future research. On the other hand, for the metabolomics dataset, we identified fructose,
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malic acid, glucose and tartaric acid, key metabolites identified in the previous analysis. All these
features were mentioned before and thus, are in agreement with the supervised multiomics integration

analysis.

5.2 CASE STUDY I1: Arabidopsis thaliana

5.2.1 Pre-processing

The second case study focused on two datasets of transcriptomics and fluxomics data that, as shown
in table 5, had the same 26 samples. We successfully inputted the datasets in our pipeline. Then,

proceeded with the preprocessing of the data as follows.

Missing Values

In the first step of preprocessing, we identified that none of the datasets contained missing values,
hence none of the rows was removed. However, in order to further decrease the number of features in

transcriptomics and fluxomics datasets, we continued with the next step, feature selection.

Feature Selection

Three filter methods were applied in both datasets. Regarding the transcriptomics dataset, the first
filter, that assured that at least one transcript per cell existed, did not remove any features. The
second filter, the median filter, that filtered genes expressed in at least two samples removed 14706
rows, resulting in a total of 17795 features. The last filter, the flat patterns filter, filtered genes whose
maximum ratio value over the minimum value of expression was greater than 2 and deleted 17070
features, ending with a transcriptomics dataset of 725 features.

On the other hand, although the same filters were executed for the fluxomics dataset, it did not
remove any features. However, since the fluxomics datasets may contain fluxes with zero values in all
samples, we searched for rows with only zero values and successfully removed 1195 rows, ending with

a total of 407 reactions.

Normalisation and Scaling

Furthermore, as the last step in the preprocessing stage, we executed the normalisation and scaling
of the datasets. As the transcriptomics dataset was previous scaled by the authors, we scaled the
fluxomics dataset with the "scale()” function in R, to obtain more comprehensible plots and improve

the models’ accuracy.
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5.2.2  Exploratory Analysis

After completing the preprocessing stage, we advanced to a brief exploratory analysis to have a clear
idea of how the data is divided and if it was in agreement with the original article.

Barplots

As the metadata contained the treatment type of the samples, we executed a barplot to see how
many samples were in the control and drought groups. Figure 30 depicts a barplot of the treatment
variable. Both treatments have the same number of control and drought samples, the thirteen samples

as described in the article, confirming the dataset balance.

treatment

Samples

Control Drought

Figure 30: Exploratory Analysis. Barplot of the treatment variable for the second case study. Same
number of samples for control and drought treatments (13).

Heatmaps

Additionally, we executed two heatmaps' analyses for each dataset to identify interesting similarities
and discrepancies in our data. Heatmaps are an useful way to show relationships between two variables
plotted on each axis. Figure 31 shows the heatmap for the transcriptomics dataset (A) and the
fluxomics dataset (B). Figure 31A illustrates that the transcriptomics dataset allows to divide the
samples according to their treatment type (control or drought) more easily when compared to the

analysis of the second heatmap figure 31B, from the fluxomics dataset.
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Figure 31: Exploratory Analysis. Heatmap analysis further inspecting the treatment variable for the
second case study. (A) transcriptomics dataset. (B) Fluxomics dataset.

PCA

Regarding the PCA analysis, Figure 32 depicts a PCA in relation to the treatment variable. As shown
in the heatmaps, using the PCA analysis, we can more clearly understand that the PC1(31.076%) and
PC2 (29.464%) from the transcriptomics dataset (A) can explain transcript expression regarding the
control and drought samples. On the other hand, the fluxomics dataset (B) cannot divide the samples
according to their treatment.
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A. Transcriptomics B. Fluxomics
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Figure 32: Exploratory Analysis. PCA analysis to inspect the treatment variable for the second case
study. (A) transcriptomics dataset. (B) Fluxomics dataset.

Differential Expression

At last, for the final step in the exploratory analysis, we performed a differential expression analysis to
the transcriptomics dataset, thus contributing to improving our knowledge of Arabidopsis thaliana
metabolism when defending itself from the environmental stresses of drought. Additionally, this
analysis allowed us to filter the transcriptomics dataset to match the number of features of fluxomics
to facilitate the analysis in the multiomics integration analysis, ending with a total of 407 features
in transcriptomics and fluxomics. In table 29, we have the top 10 significantly expressed transcripts
regarding the contrast between the control and drought treatments, and their respective annotation

obtained from the supplementary files of article.

Table 29: Case Study II: Top 10 up-regulated and down-regulated differential expressed genes from
transcriptomics dataset, explaining the drought condition.

Up-Regulated

Down-Regulated

CATMA ID TAIRT Annotation CATMA ID TAIRT Annotation
Encod CBL-interact t ki 12
CATMA4a19840 At4g18700 ((;‘IC:K:;) interacting  protein  kinase CATMAS5253370 At5g57660 zinc finger (B-box type) family protein
CATMA1a22270 At1g23200 pectinesterase family protein CATMAIC71101 At1g08360 60S ribosomal protein L10A (RPL102A)
CATMALc72010 At1g66390 PAP2 (Production of Anthocyanin Pigment 2) CATMA4203190 At4g02840 small nuclear ribonucleoprotein D1 putative
CATMA4a30730 At4g29070 unknown protein CATMA1218630 At1g19610 Low-molecular-weight cysteine-rich 78
CATMA3c57894 At3g60910 Methyltransferase superfamily protein CATMA3a18630 At3g18980 F-box family protein
CCAAT-binding t tion factor (CBF-B/NF-
CATMA1a28510 At1g30500 binding transcription factor ( / CATMA2242166 AL2g43760 Molybdopterin biosynthesis MoaE family protein
YA) family protein
CATMA4227270 At4g25580 stress-responsive protein-related CATMABC64749 At5g44340 TUBA (tubulin beta-4 chain)
CATMA1a69150 At1g79970 unknown protein CATMASC65084 At5g62300 40S ribosomal protein $20 (RPS20C)
CATMA5200120 At5g01090 legume lectin family protein CATMAILC72183 At1g76680 OPRI (12-0xophytodiencate reductase 1)
SRF1; kinase,similar to | ich repeat t
CATMA4203330 At4g03000 protein binding / zinc ion binding CATMA2219460 At2g20850 inasesimifar to feucine-rich repeat trans-
membrane protein kinase
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Therefore, we identified interesting up-regulated transcripts involved in drought stress. The first
is At4gl18700 that encodes a CBL-interacting protein kinase 12 (CIPK12). This protein encodes a
member of the family of SNRK3 kinases that plays an essential role in the ABA regulatory pathway
[210]. The Absicic Acid (ABA) regulatory pathway is a well known regulatory circuit, also mentioned
in [179], that when under a water deficit, increases the ABA levels that triggers the expression of
several drought-stress related genes.

Next, we identified At1g23200, a pectinesterase protein involved in cell wall modification and
organization, that has been identified in other articles, which concluded that drought stress limits cell
growth and alters the cell wall [211, ]

Additionally, we identified Atlg66390 encoding the protein PAP2 (Production of Anthocyanin
Pigment 2), extremely important in drought response, because the many drought-stress associated
genes, triggered by ABA, result in the accumulation of protective proteins that increase the concen-
tration of certain compatible solutes, like sugars and proline, and antioxidants, such as flavonoids
and polyphenols, consequently suppressing energy-consuming pathways [179]. Anthocyanins are a
main class of flavonoids that function as scavengers of Reactive Oxigen Species (ROS), therefore
contributing to abiotic stress tolerance [213].

At4g29070 encoding an unknown protein was also identified as relevant as it seems to be involved
in arachidonic acid secretion, according to UniProtKB. This acid is mentioned in article for
the Italian ryegrass (Lolium multiflorum) species, which defended that the arachidonic acid reduced
the oxidative damage in the drought-tolerant species.

At3g60910, a methyltransferase, improves tolerance to dehydration stress treatment [215]. At1g30500,
encoding a transcription factor for CCAAT-binding (CBF-B/NF-YA), is described in [212] to maintain
the reduced growth of plants under drought, which is an acclimation response of plants to survive
prolonged drought stress.

Furthermore, we also identified At4g25580, a stress-responsive related protein, that plays a crucial
role in abscisic acid response. Atlg79970 is an unknown protein but is similar to a senescence-
associated protein that plays an important role in regulating ABA signalling and drought tolerance
through interaction with open stomata 1 (OST1) [216].

Lastly, we identified At5g01090, a legume lectin family protein, that plays a role in stress-related
responses [217], and At4g03000, a zinc ion binding protein. Zinc ion binding proteins can be ZPT2-
related proteins that have zinc-finger motifs in their molecules and work as transcriptional repressors,

which increase stress tolerance following growth retardation under drought stress [218].

5.2.3 Classic Machine Learning Models

As for Case Study I, classical ML models were used for both the individual omics analysis and
multiomics integration analysis, namely SVM, RF and ANN models.

For both analysis, individual and multiomics integration, we split our data into train and test
datasets. For the individual omics analysis, table 30 depicts the train and test dimensions for both

datasets.
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Table 30: Individual Omics Analysis. Dimensions (samples, features) of the original transcriptomics
and metabolomics datasets and their respective train and test datasets.

Transcriptomics Fluxomics

Original (26,408) (26,408)
Train (18,408) (14,408)
Test (8,408) (12,408)

For the different ML models, we executed 10-fold and 3 repetitions CV in R for the individual
omics analysis and implemented 3-fold CV in Python for the multiomics integration analysis. Hence,
by executing these classic ML models, we can verify which models better suit our data and see how
well can the individual datasets predict the treatment outcome, find the most important features for
the prediction, compared to the multiomics integration analysis. Table S1 shows the values of the
different error metrics (PECC, Precision and Recall) obtained by the three models for both datasets,

in the individual omics analysis.

Support Vector Machine
e Individual Omics Analysis

The SVM model has an accuracy, precision and recall of 0.75, 0.8 and 0.8 for the transcriptomics
dataset and accuracy, precision and recall of 0.33, 1 and 0.33 for the fluxomics dataset. Figure 33 shows
the ROC curve plot for the SVM model and respective value for each dataset. The transcriptomics
dataset had an AUC of 0.96 while the fluxomics dataset had an AUC value of 0.11, which indicates
that the fluxomics dataset was not a very good predictor of the outcome variable as the AUC value

measures the ability that a classifier has to distinguish between the positive and negative classes.

A. Transcriptomics B. Fluxomics
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Figure 33: Individual Omics Analysis. ROC curve of the SVM model for the of (A) transcriptomics
dataset, with an AUC value of 0.96 and (B) Fluxomics dataset, with an AUC value of 0.11.
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e Multiomics Integration Analysis

For the SVM model, we executed grid search and random search to obtain the best estimator for
our data. The best estimator hyperparameters were: C=1, gamma=0.01, kernel="linear" obtained
with grid search and random search. The model's accuracy, precision and recall were 0.33 for all.
Furthermore, we calculated the ROC curve, depicted in figure 34 and the top 10 most relevant features
(table 31). The AUC value was 0.33.

Figure 34: Multiomics Integration Analysis. ROC curve for the SVM model in the concatenation-based
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integration. Grid Search ROC curve with an AUC value of 0.33.

Table 31: Most important features regarding the concatenation dataset for the SVM model, in Case

Study II.
Most Relevant features
Variable TAIR7 mapping Annotation Score
CATMA1c72010  Atl1g66390 PAP2 (PRODUCTION OF ANTHOCYANIN PIGMENT 2)  0.122518
CATMA4c42685  At4g37980 ELI3-1 (ELICITOR-ACTIVATED GENE 3) 0.0963773
CATMA4A19840 At4gl8700 Encodes CBL-interacting protein kinase 12 (CIPK12) 0.089341
CATMA3b43840 At3g50840 phototropic-responsive NPH3 family protein 0.088634
TCP7 — Triose phosphate translocator (G3P) 0.0842384
CATMA2A35140 At2g36870 xyloglucan:xyloglucosyl transferase 0.0826423
CATMABa00120  At5g01090 legume lectin family protein 0.0806931
CATMABA22560 At5g24870 zinc finger (C3HC4-type RING finger) family protein 0.0777628
CATMA1A54860 Atlgb5560 allyl alcohol dehydrogenase 0.0744085
CATMA2A33070 At2g34960 CAT5 (CATIONIC AMINO ACID TRANSPORTER 5) 0.0688854

Random Forest

e Individual Omics Analysis
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For the RF, the transcriptomics dataset obtained an accuracy, precision and recall of 0.5, 0.667
and 0.4, respectively, and for the fluxomics dataset, it obtained an accuracy, precision and recall of
0.5, 0.33 and 0.5, respectively. The ROC curve for both datasets is displayed in figure 35. As the
SVM model, the RF model had much better results using transcriptomics (AUC value of 0.95 ) than
fluxomics (AUC value of 0.62), indicating that these models can correctly distinguish control and

drought conditions when trained with transcriptomics data alone.

A. Transcriptomics B. Fluxomics
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Figure 35: Individual Omics Analysis. ROC curve of the RF model for the of (A) transcriptomics
dataset, with an AUC value of 0.95 and (B) Fluxomics dataset, with an AUC value of 0.62.

o Multiomics Integration Analysis

For concatenation-based integration, we also performed a RF model. By executing the grid search
and random search, we obtained the best estimator with the following hyperparameters: max_depth=2,
max_features=6, min_samples_leaf=2. The model’s accuracy, precision and recall were 0.33, 0.33 and
0.33, respectively. Figure 36 shows the ROC curve for the RF model. Additionally, we also identified
the most relevant features, as depicted in table 32.
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Figure 36: Multiomics Integration Analysis. ROC curve of the RF model in the concatenation-based
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integration. Obtained an AUC value of 0.33.

Table 32: Most important features regarding the concatenation dataset for the RF model, in Case

Study II.
Most Relevant features
Variable TAIR7 mapping Annotation Score
CATMABA56040 At5g60280 lectin protein kinase family protein 0.0255075
CATMABA47470 Atbgb1545 unknown protein 0.0179174
CATMA1A22270 At1g23200 pectinesterase family protein 0.0178999
CATMAS5c64749  At5g44340 TUB4 (tubulin beta-4 chain),beta tubulin gene 0.0162646
CATMA3c57192  At3gl3610 oxidoreductase, 20G-Fe(ll) oxygenase family protein 0.0161255
CATMABA5B3370  Atbg57660 zinc finger (B-box type) family protein 0.0154991
CATMABA47980  At5g52030 TraB protein-related 0.0143004
CATMA5a00130  At5g01100 unknown protein 0.0135263
CATMAA4c42587  At4g31985 60S ribosomal protein L39 (RPL39C) 0.0126991
CATMAbBa44470  At5g48490 protease inhibitor/seed storage/lipid transfer protein (LTP) family protein  0.0124231

Artificial Neural Network

e Individual Omics Analyses

For the last individual omics analysis model, we opted for the ANN classifier. The accuracy, precision
and recall values for the transcriptomics dataset were 0.5, 0.667 and 0.4, respectively, while for the
fluxomics dataset were 0.416, 0.285 and 0.5, respectively. Figure 37 depicts the ROC curve for the
transcriptomics and fluxomics datasets. The AUC value for the transcriptomics dataset was 0.92, and

for the fluxomics dataset, was 0.6.
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dataset, with an AUC value of 0.92 and (B) Fluxomics dataset, with an AUC value of 0.6.

5.2. Case Study Il: Arabidopsis thaliana

B. Fluxomics

1.00

075

Group 1

AUC-ROC = 0.92 = Group 1

0:50 AUC-ROC =06

True positive rate

025

0.00

) o )
~ ] ~
o o

0.00
1.00

o
False positive rate

ROC curve of the ANN model for the of (A) transcriptomics

e Multiomics Integration Analysis

Lastly, for the multiomics integration analysis, we implemented an ANN model. Using the random

search only, since the grid search took to long to run we obtained the best estimator with the

following hyperparameters: activation='logistic’, alpha=0.01, hidden _layer_sizes=(25,), max_iter=900

solver="lbfgs'. The model's accuracy, precision and recall were 0.5, 0.6 and 0.75. Figure 38 displays
the ROC curve, with an AUC value of 0.375. Table 33 depicts the most relevant features for the ANN
model obtained using the Python package LIME to calculate feature relevance. However, it can only

say the important features for each sample at each time. Nevertheless, it gives us the features that

had more importance to make the decision.
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Figure 38: Multiomics Integration Analysis. ROC curve of the ANN model for the concatenation-based
integration in Case Study I, with an AUC value of 0.375.
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Table 33: Most important features regarding the concatenation dataset for the ANN model, in Case
Study Il

Most Relevant features

Variable TAIR7 mapping Annotation
CATMA1a24995 At1g26770 ATEXPA10 (ARABIDOPSIS THALIANA EXPANSIN A10), encodes an expansin
R01900_x — Glyoxylate and dicarboxylate metabolism; Reductive carboxylate cycle (CO2 fixation);Citrate cycle (TCA cycle)
TCX14 — Citrate Transporter
R01325 x - Glyoxylate and dicarboxylate metabolism; Reductive carboxylate cycle (CO2 fixation);Citrate cycle (TCA cycle)

5.2.4 Feature Relevance

e Individual Omics Analysis

Besides the error metrics evaluation, we also obtained the most relevant features, used by the models
in the transcriptomics dataset to predict the treatment variable, for each classifier (SVM, RF, ANN -
supplementary tables S2, table S4 and table S6 respectively).

Looking at the results from the three classifiers for the transcriptomics dataset, we identified
features in common with at least two models. The results are depicted in table 34, which shows the
transcripts identified, the respective annotation and function they have in drought conditions, and

also the models where they were identified.
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5.2. Case Study Il: Arabidopsis thaliana

Looking closely at variables identified in the transcriptomics dataset, most of the functions are
related with the reduced cell and plant growth induced in the drought conditions by the modification
of cell wall and also drought-stress associated genes triggered in this conditions.

Regarding the fluxomics dataset (table 35), most reactions are related to the glycolysis/ gluconeo-
genesis pathway, the carbon fixation and the TCA cycle. Although these pathways are active in both
control and drought samples, glycolysis/ gluconeogenesis is active in the drought treatment as drought
conditions promote an increase in the levels of sugars, like fructose and mannose [224]. The carbon
fixation pathway is hypothesized to perform major functions in drought resistance as mentioned in the

article. Furthermore, the TCA cycle is also functional in water-stress responses since these
responses increase the content of TCA cycle intermediates and total amino acid levels [224].

Other reactions, like the TCP8, and the TCP7, responsible for the triose phosphate translocator
pathway were also identified; however, not much is known about the relation of this reaction to the
drought stress response in Arabidopsis thaliana, but they were also considered relevant in the original
article [179].

e Multiomics Integration Analysis

For the multiomics integration analysis, when looking at all the features obtained using the
three classical ML models, we do not see any features in common with the models, neither in the
transcriptomics or the fluxomics datasets. The poor results in the different models may be caused by
the small number of samples in this case study. Nevertheless, the use of novel multiomics integration

algorithms may give better results.

5.2.5 Novel models for Multiomics Integration Analysis

Next, we performed multiomics integration analysis, in which we studied three different integration-
based approaches: concatenation-based, transformation-based and model-based integration. The
multiomics integration stage was the most important since it could give us better and more holistic
results than individual omics analysis. We evaluated which models could give better accuracy and more
useful information. Therefore, for the same reasons indicated in Case Study |, we selected for this
analysis only the models that obtained better results and provide more useful information. The selected
models were: DIABLO, SMSPL for concatenation-based integration, SNFtool for transformation-based
integration and option 1 with soft voting for the model-based integration. Table 36 shows the different
algorithms for each integration and the corresponding accuracy, precision and recall values for the
Case Study II.
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Table 36: Results of the several metrics used to evaluate the performance of the different models in
the Case Study Il. PECC (accuracy), Precision and Recall for the classification algorithms,
and the AUC values.

Metrics
Model Classification Metrics
PECC Precision Recall AUC value

DIABLO 0.83 1 1 0.833
SMSPL 0.6667 1 0.6 0.667
SNFtool 0.6667 0.6 1 0.667
Ensemble Classifier:

Option 1 (soft Voting)  0.833 0.8 1 0.75

Concatenation-based Integration
For the concatenation-based integration, we opted for two models: DIABLO and SMSPL.
e DIABLO

The steps are identical to the steps executed in the Case Study I. First, we set our data as a list
of data matrices matching the same samples in the rows. The omics datasets were named as blocks,
block omicsl corresponding to the transcriptomics dataset, and block omics2 for the fluxomics
dataset.

For the matrix design, a symmetrical matrix that indicates the correlation between the two omics
as a value ranging from 0 to 1 was built, and a partial least square regression and a Sparse Partial
Least Squares regression were executed to find the best value. We opted for the value of 0.78.

Regarding the tuning of the number components, we first fitted a DIABLO model without variable
selection to assess the global performance and then we selected the best component numbers based
on the plot from figure 39, which shows the performance of the executed DIABLO model.
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Figure 39: Multiomics Integration Analysis. DIABLO model performance for number components
tuning.

Looking at the figure, we extracted the number of components regarding the weighted vote of the
overall balanced error rate (BER) and the distance of the centroid (centroids.dist), obtaining a total
of five (5) components for the final model.

Then, we executed the final model, with the selected five components, and acquired the following
sample plot that projects the sample into the space extended by the components of each block,

figure 40.
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Figure 40: Multiomics Integration Analysis. Plot resultant of the” plotindiv()" function of mixOmics,
that projects each sample into a space extended by the components of each block.

Block: omicsl concerning the transcriptomics dataset and block: omics2 regarding the
metabolomics dataset.

As shown in figure 40, the results are similar to the PCA analysis executed in the exploratory
analysis (figure 32). Only the transcriptomics dataset (block: omicsl) is capable of differentiating the
control and drought treatment to some extent.

MixOmics also allows the execution of variable plots, to visualize and analyze the associations
between the selected variables. The variable plot, figure 41 depicts the variables from all blocks
selected for components 1 and 2.
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Figure 41: Multiomics Integration Analysis. Plot resultant from the "plotVar()” function of mixOmics,
that allows the visualisation and analysis of the variations between selected variables.

Clusters of points indicate a strong correlation between variables. However, when looking at the
resulting figure, we do not see an evident formation of clusters in the space since they are dispersed.

Furthermore, the Circos plot (figure 42) from the mixOmics library also gives a good insight into
the correlations between variables of different types. Looking at the figure, we can see that features
from both transcriptomics and fluxomics can explain the control and drought treatments.
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Figure 42: Multiomics Integration Analysis. Plot resultant from the "circosPlot()” function of

mixOmics that allows the visualisation and analysis of the variations between selected
variables.

The last plot executed was the loadings plot using the function "plotLoadings()”. This plot aids
in visualising the loading weights of each selected variable on each component and each data set,

(figure 43). As in the Circos plot, both datasets explain the control and drought treatment; however,
fluxomics contributes more to the control condition.
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Figure 43: Multiomics Integration Analysis. Plot resultant from the "plotLoadings()” function of
mixOmics, that allows the visualisation of the loading weights of each selected variable on
each component and each dataset.

Finally, to evaluate the performance of the DIABLO model, we opted for 10-fold cross-validation
repeated 10 times using the "perf()” function. We obtained the ROC curve, for both the transcriptomics
and fluxomics blocks and the correspondent AUC value for the model performance. Figure 44 shows
the final ROC curve. Just like depicted in table 30, DIABLO's accuracy, precision and recall are 0.83,
1, 1, respectively.
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Figure 44: Multiomics Integration Analysis. AUC value equal to 0.9704 for the transcriptomics dataset,
and 0.6686 for the fluxomics dataset. The overall AUC was of 0.83.

Furthermore, we executed the function "selectVar()" and obtained the following 10 most important
features for transcriptomics (table 37) and fluxomics dataset (table 38) to evaluate the most relevant
features in the DIABLO algorithm.

Table 37: Most relevant features obtained from the DIABLO model for the transcriptomics dataset in
Case Study II.

CATMA ID TAIR7 mapping Annotation
CATMA4a07540 - -
CATMA3A43840 At3g50840 phototropic-responsive NPH3 family protein
CATMAb5a00120  At5g01090 legume lectin family protein
CATMA1A18630 Atlgl9610 LCR78/PDF1.4 (Low-molecular-weight cysteine-rich 78)
CATMA1A69330 Atl1g80150 pentatricopeptide (PPR) repeat-containing protein
CATMA1a05880 At1g06800 lipase class 3 family protein
CATMA1A22270 Atlg23200 pectinesterase family protein
CATMA3A23280 At3g23280 zinc finger (C3HC4-type RING finger) family protein / ankyrin repeat family protein
CATMA4A13710 At4gl3530 unknown protein

CATMA4c42582  At4g31640 transcriptional factor B3 family protein
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Table 38: Most relevant features obtained from the DIABLO model for the fluxomics dataset in Case

Study II.

Reaction Subsystem
BIO_L Biomass synthesis (Leaf)
Bcb Glutamate drain
Bc25 Asparagine drain
R00578_c Nitrogen metabolism;Alanine and aspartate metabolism
Bcl7 Glutamine drain
R03652N_c  Glutamate metabolism;Aminoacyl-tRNA biosynthesis
R01830_c Pentose phosphate pathway
Bc3 Cellulose drain

e SMSPL

For the second concatenation-based approach, we chose the SMSPL model that can predict subtypes
and identify potentially multiomics signatures. We first created a list of omics matrices, one for the
train and the other for the test datasets. After initializing all the parameters, we proceeded with the
start of the classifier and posterior optimization stage. Lastly, we ran the best validation map and
evaluated its performance. Figure 45 shows the ROC curve and AUC value for the train and test

prediction.
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Figure 45: Multiomics Integration Analysis. SMSPL ROC curve. AUC value for the train train dataset
is 1 and for the test dataset the value is 0.667.

The test dataset prediction, as pictured in table 30, obtained an accuracy, precision and recall of
0.6667, 1 and 0.6, respectively. Furthermore, it also calculates the most important features for the
transcriptomics (table 39) and fluxomics dataset (table 40).
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Table 39: Most relevant features obtained from the SMSPL model for the transcriptomics dataset in

Case Study II.

CATMA ID TAIR7 mapping Annotation
CATMA1a22270 At1g23200 pectinesterase family protein
CATMA4a03190 At4g02840 small nuclear ribonucleoprotein D1
CATMA3al18630 At3gl8980 F-box family protein
CATMAbBc64749  At5g44340 TUB4 (tubulin beta-4 chain)
CATMAba38240 Atbgd2470 unknown protein
CATMA1A51440 Atlg62320 early-responsive to dehydration protein-related

Table 40: Most relevant features obtained from the SMSPL model for the fluxomics dataset in Case
Study II.

Reaction Subsystem

TCP7 Triose phosphate translocator (G3P)

R04780_p Glycolysis / Gluconeogenesis; Pentose phosphate pathway;Fructose and mannose metabolism (drought)
R02950_c  Coumarine and phenylpropanoid biosynthesis (Lignin subunit; coniferyl alcohol)

R01561_c Purine metabolism

Transformation-based Integration
e SNFtool

For the transformation-based integration, we used the library SNFtool to implement the SNFtool
model. First, we calculated the pairwise distance and next, we created the similarity graphs (presented
in the supplementary figure S1). Then, the graphs were fused and the overall matrix was computed
using similarity network fusion. We also obtain a list containing the rank based on the normalized
mutual information for each feature, indicating the features with more influence, which we can see
in table 41 for the transcriptomics dataset and table 42 for the fluxomics dataset. Furthermore,

we executed the spectral clustering that gave information regarding the final subtype information

(supplementary figure S2). Additionally, we evaluate the accuracy of the obtained clustering results.

Lastly, we predicted the new labels using label propagation. The model’s accuracy, precision and recall
were 0.6667, 0.6 and 1, respectively. The ROC curve is depicted in figure 46, with an AUC value of
0.667.
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Figure 46: Multiomics Integration Analysis. SNFtool ROC curve. The AUC value is 0.667.

Analysing these results, it seems that if we had more samples we could obtain a better result, but

we still identified some relevant features. To further validate this model, we must apply it to new data.

Table 41: Most relevant features obtained from the SNFtool model for the transcriptomics dataset in

Case Study Il

CATMA ID TAIR7 mapping Annotation
CATMAbBa50910 Atbgh5140 ribosomal protein L30 family protein
CATMAba02390 - -
CATMABA43690 Atbgd7710 C2 domain-containing protein
CATMA3A43840 At3gh0840 phototropic-responsive NPH3 family protein
CATMA4a02730 At4g02425 unknown protein
CATMA2a16900 At2g18240 RER1 protein
CATMABa13690 At5gl15430 calmodulin-binding protein-related
CATMAbBa45910 At5g49990 xanthine/uracil permease family protein
CATMA1a21826 Atl1g22780 PFL (POINTED FIRST LEAVES)

CATMA1c71468 Atl1g30060 COP1-interacting protein-related
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Table 42: Most relevant features obtained from the SMSPL model for the fluxomics dataset in Case
Study II.

Reaction Subsystem

TCX16 Glycerate transport

R01324 ¢  Citrate cycle (TCA cycle)

R01325.x  Glyoxylate and dicarboxylate metabolism; Reductive carboxylate cycle (CO2 fixation); Citrate cycle (TCA cycle)

R01900-x  Glyoxylate and dicarboxylate metabolism; Reductive carboxylate cycle (CO2 fixation);Citrate cycle (TCA cycle)

R00243_c  Glutamate metabolism; Nitrogen metabolism; Urea cycle and metabolism of amino groups; Arginine and proline metabolism
R03050_c  Butanoate metabolism

BIO_L Biomass synthesis (Leaf)

TCM1 Pyruvate transporter

TCX2 Serine transporter

TCX13 Glycerate transport

Model-Based Integration
¢ Ensemble Classifier with different ML algorithms (Hard and Soft Voting)
For model-based integration we opted for the option 1 with the soft voting approach.
e Option 1

Option 1 executes an ensemble classifier with two SVM models, predicts the outcome of each one
and calculates the final prediction using a soft voting approach on all the classifiers predictions. For
this case study, we chose the soft voting strategy. The final prediction had an accuracy, precision and
recall of 0.833, 0.8 and 1, respectively. The ROC curve plot is present in figure 47, with an AUC value
of 0.75.

ROC

Tue Positive Rate

P —— ROC curve (area = 0.75)
0.0 T

0.0 02 04 0.6 0.8 10
False Positive Rate

Figure 47: Multiomics Integration Analysis. Ensemble Classifier (option 1) roc curve. The AUC value
is 0.75.
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We also identified the top 4 features with more importance for the transcriptomics and fluxomics

dataset, shown in table 43.

Table 43: Most relevant features obtained from the ensemble classifier (option 1) model for the
model-based integration approach in Case Study II.

CATMA ID TAIR7 mapping Annotation
CATMA1c72010 At1g66390 PAP2 (PRODUCTION OF ANTHOCYANIN PIGMENT 2)
CATMA4c42685  At4g37980 ELI3-1 (ELICITOR-ACTIVATED GENE 3)
CATMA1a28510 Atlg30500 CCAAT-binding transcription factor (CBF-B/NF-YA) family protein
CATMABA47680 Atbgb1750 subtilase family protein

Reaction Subsystem

R01195 p Ferredoxin transhydrogenase

TCP7 Triose phosphate translocator (G3P)

R00342 Citrate cycle (TCA cycle); Glyoxylate and dicarboxylate metabolism; Pyruvate metabolism;

P Reductive carboxylate cycle (CO2 fixation);Carbon fixation (control)
R02739 ¢ Pentose phosphate pathway;Glycolysis / Gluconeogenesis (drought)

Feature Relevance

Looking at the most relevant features that prevail in most models of the multiomics integration

analysis, for the transcriptomics dataset, we identified two relevant features:

o At3g50840 (phototropic-responsive NPH3 family protein), identified in DIABLO and SNFtool -
Up-regulated in drought conditions, although little information is identified about this protein

under drought, the

drought conditions;

article mentions this protein as being overexpressed in

o At1g23200 (pectinesterase family protein), identified in DIABLO and SMSPL - involved in cell
wall modification and organization, that has been identified in other articles, which concluded

that drought stress limits cell growth and alters the cell wall [211, 212].

However, when looking at all the results, we were able to identify some patterns regarding the

drought condition for both transcriptomics and fluxomics data. The most relevant features of the

transcriptomics dataset were related to cell wall modifications and responses against osmotic stress.

These roles are important in drought conditions to limit the cell growth, since the concomitant

restructuring of the cell wall allows growth processes to occur at lower water contents [227], and also

to protect the cell from osmotic stress caused by drought conditions. Regarding the fluxomics dataset,

only two most common reactions were identified:

e BIO_L - Biomass synthesis (Leaf), identified in DIABLO and SNFtool in control conditions;

e TCP7 - Triose phosphate translocator (G3P), identified in SMSPL and Ensemble in drought

conditions.
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Nevertheless, looking at all the results from the fluxomics dataset, we find some pathways that
repeat themselves in drought conditions. It is the case of Triosephosphate translocator (G3P);
Glyoxylate and dicarboxylate metabolism, Reductive carboxylate cycle (CO, fixation), Citrate cycle
(TCA cycle); and Pentose phosphate pathway and Glycolysis / Gluconeogenesis. Regarding the triose
phosphate translocator (G3P), little is known about the relation of this reaction to the drought stress

response in Arabidopsis thaliana, but they were also considered relevant in the original article [179].

The CO, fixation pathway and the TCA cycle had previously been noted as important pathways in
drought tolerance in the differential expression analysis. Furthermore, we noticed the Glyoxylate and
dicarboxylate metabolism, which was mentioned in some articles as a possible factor in the response
to drought stress [228]. The pentose phosphate pathway and glycolysis/ gluconeogenesis are active in
the drought treatment as drought conditions promote an increase in the levels of sugars, like fructose

and mannose and other compounds, such as antioxidants, such as flavonoids, and polyphenols [224].

Unsupervised Learning

The last step in our project was the implementation of unsupervised learning methods for multiomics
integration. We used three models for each type of integration in order to discover similarities,
differences, hidden patterns or data grouping in multiomics unlabeled datasets. However, the
transformation-based and model-based unsupervised models did not provide much information besides
the cluster plot so they were omitted from the results and discussion.

e Concatenation-Based Integration

For the concatenation-based integration, we implemented the MFA algorithm, using the library
FactoMineR. The same steps mentioned in Case Study | were performed here. Looking at
figure figure 48, that demonstrates the contribution of the groups to dimension 1 and dimension
2. The plot in supplementary figure S3 illustrates the contribution of the different groups
regarding dimension 1 and dimension 2.

- MFA

Furthermore, to visualize in detail the contribution of the quantitative variables (in %) to the

definition of the dimensions, we created figure ?7.
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Figure 48: Multiomics Integration Analysis with Unsupervised Learning. Graph of the variables, that
shows the contribution of quantitative variables relative to the (A) Dimension 1 and (B)
Dimension 2.

As shown in figure 48, the variables with the larger value contribute the most to the definition;

hence, these are the most important in explaining the variability in the data set. Table 44 shows the

features that explain most of the variability in the data set, for the dimension 1 and 2 (table 44 and
table 45, respectively).

Table 44: Features that explain the most variability in the dataset according to the MFA unsupervised
model for Dimension 1.

Dimension 1

Reaction Subsystem
R01063_p Glycolysis / Gluconeogenesis;Carbon fixation
R01061_p Glycolysis / Gluconeogenesis;Carbon fixation (control)
R00343_p Pyruvate metabolism;Carbon fixation
R00342 Citrate cycle (TCA cycle); Glyoxylate and dicarboxylate metabolism; Pyruvate metabolism;
-+ Reductive carboxylate cycle (CO2 fixation);Carbon fixation (control)
R05875_p Ferredoxin transhydrogenase
R01195_p Ferredoxin transhydrogenase (control)
CATMA ID TAIR7 mapping Annotation
CATMA4a08380 At4g08570 heavy-metal-associated domain-containing protein / copper chaperone (CCH)-related
CATMA3a44230 At3g51240 F3H (TRANSPARENT TESTA 6)
CATMA1a55685 Atlgb6390 PAP2 (PRODUCTION OF ANTHOCYANIN PIGMENT 2)
CATMA2c47695 At2g41100 TCH3 (TOUCH 3)
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Table 45: Features that explain the most variability in the dataset according to the MFA unsupervised
model for Dimension 2.

Dimension 2

Reaction Subsystem

R0O1195_p  Ferredoxin transhydrogenase (control)
R05875_p  Ferredoxin transhydrogenase
R00343_m Pyruvate metabolism;Carbon fixation
RO0267.m Reductive carboxylate cycle (CO2 fixation);
Glutathione metabolism (control)
R01063_p  Glycolysis / Gluconeogenesis;Carbon fixation
Citrate cycle (TCA cycle);
Glyoxylate and dicarboxylate metabolism;
R00342_m Pyruvate metabolism;
Reductive carboxylate cycle (CO2 fixation);
Carbon fixation

R00709.m  Citrate cycle (TCA cycle)

Analysing the results, we see that the fluxomics dataset features are the most important for
both dimension 1 and dimension 2. The top features in table 39 for dimension 1, regarding the
drought condition, are related to glycolysis/gluconeogenesis, Carbon Fixation, TCA cycle, mentioned
in the previous analysis. However, we also identified new pathways, like pyruvate metabolism and
ferredoxin transhydrogenase. The pyruvate metabolism is important in drought responses since the
pyruvate carriers in guard cells are responsible for ABA signalling [229]. Additionally, the ferredoxin
transhydrogenase is identified in both control and drought conditions, because of the overall expression
levels of ferredoxin-NADP+-oxidoreductase (FNR) genes that are increased upon drought [230].

Regarding the transcriptomics features identified relevant for dimension 1, the only feature described
before was At1g66390 (PAP2 (PRODUCTION OF ANTHOCYANIN PIGMENT 2)). We identified
At4g08570, a heavy-metal-associated domain-containing protein/copper chaperone (CCH)-related. In

article, the authors mentioned that a heavy-metal-associated domain-containing protein is
induced during drought stress. Furthermore, we identified At3g51240, an F3H (Transparent Testa
6) gene, that is involved in catalysing intermediates for the biosynthesis of flavonols, anthocyanidins,
catechins and proanthocyanidins in plants, that function as scavengers of ROS, therefore contributing
to abiotic stress tolerance [213]. The other feature, At2g41100 TCH3 (TOUCH 3), encodes a
calmodulin-like protein, which acts as Ca2+ sensors in plants and is known to be involved in various
stress reactions like drought [232].

On the other hand, looking at table 40, we find the same pathways that were involved with drought
responses in the previous analysis, such as, ferredoxin transhydrogenase, pyruvate metabolism, carbon
fixation, TCA cycle, and glyoxylate and dicarboxylate metabolism.
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5.3 SUMMARY

This section, gives a brief summary of the advantages and disadvantages of each multiomics integration

model performed in this project, depicted in table 46.

Table 46: Summary. Advantages and Disadvantages of every model analyzed in this project, regarding
performance, attainment of feature relevance, running time and model availability and
implementation.

Model Availability/

Multiomics Integration Supervised Models Performance Provides Feature Relevance Running Time More Information
Implementation
Concatenation-Based Integration - - - - Excellent
DIABLO Good Yes (original code) Slow Yes -
SMSPL Good Yes (original code) Fast No -
Stack Generalization Good Yes (implemented) Fast No -
Lasso Regression Needs more samples Yes (implemented) Fast No -
SVM Good Yes (original code) Fast No -
ANN Good Yes (implemented) Fast No -
RF Good Yes (original code) Fast No -
Transformation-Based - - - - Medium
SNFtool Good Yes (original code) Fast Yes -
Graph-CAN Needs more samples No Fast No -
Kernel-Integrated RVM and Boosted-RVM Good No Fast No -
Model-Based Integration - - - - Difficult
Ensemble Classifier with i
K K Better in the ) Slow, due to
different ML algorithms ) Yes (implemented) No -
Soft Voting strategy feature relevance

(Hard and Soft Voting)

The concatenation-based integration, which is the most analysed and reviewed integration approach,
has several supervised models available in publications. DIABLO, has an overall good performance,
providing the most relevant features, and additional information providing an interesting look into

both datasets. However, the running time, depending on the number of samples could be extensive.

The SMSPL model's performance was good, allowing to obtain the most important features fast.

However, it did not provide additional information. The stack generalization model was similar to the
SMSPL in terms of advantages, but we must implement feature relevance.

On the other hand, Lasso Regression due to the lower number of samples in both datasets was
omitted. SVM, RF and ANN, provide an overall good performance, although performing poorly for
Case Study Il, due to the small number of samples. Nevertheless, they provided feature importance
and a fast running time. No other information was provided except for the error metrics.

For the transformation-based integration, it was harder to obtain the models, as thre are fewer
publications regarding this type of integration, especially in Python and R. The SNFtool model, was
the only providing the features' importance; therefore, the other two models were omitted from the
discussion. However, all the models seem to have a good performance, although this conclusion is not
absolute due to the small number of samples. SNFtool also provided more information and had a fast
running time.

Lastly, for the model-based integration, the available algorithms were nearly non-existent. We
developed an ensemble classifier with hard and soft voting; however, feature relevance was hard to
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obtain and implement. Furthermore, due to the packages used for feature relevance the model’s
running time was slow. Additionally, it did not provide more information besides the error metrics.



CONCLUSIONS AND FUTURE WORK

In this work, several models were developed to integrate multiple omics data. The main goal was
to use the multiomics integration models to improve our knowledge of plants’ metabolic phenotypes
when facing environmental stresses and diseases and verify the advantages of performing multiomics
analysis compared to individual omics analysis.

The first hurdle was the lack of plant datasets with a good number of samples and subject to more
than one type of omics analysis, leading to the impossibility of drawing reliable conclusions about the
performance of the models. The selected datasets were derived from extensive searches in several
databases, opting for, as a Case study |, two datasets of transcriptomics and metabolomics analysis,
with 73 samples of Vitis vinifera regarding berry development, and, for Case Study Il, two datasets of
transcriptomics and fluxomics analysis, with 26 samples, for Arabidopsis thaliana, regarding control
and drought treatment, due to the lack of fluxomics analysis in Vitis vinifera species.

The second problem identified was that although there were a considerable amount of multiomics
integration models, none of them was designed for plants, focusing on the health issue, especially in
humans, with the TCGA dataset being the most used to validate the models. Within the multiomics
integration models, the concatenation-based integration strategy models are the ones with the most
offer, following the transformation-based integration ones, while the model-based integration models
are the ones with the least offer and the most difficult to implement. All methods received different
omics analyses but for the same samples.

Even so, we selected some methods to integrate into our pipeline. This integration was successful,
in which we were able to read the datasets, preprocess them, do an exploratory analysis, perform an
individual omics analysis, and execute the multiomics integration analysis with both supervised and
unsupervised methods.

Regarding the concatenation-based integration models, they were the easiest to implement. Also,
as they are one of the most studied integration strategies, some of the models offer innovative and
interesting ways of looking at data and observing relationships between them. This is the case of
the DIABLO model, which in addition to having a good performance, even with the small sample
size, manages to identify the most important features. The only downside is that it can take some
time to run. The SMSPL model, in terms of performance, thanks to its innovative self-pace learning
strategy is good and can indicate the features with greater relevance. However, it does not give us

more information. For the remaining models, it was possible to obtain the most relevant features using
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different packages. Nonetheless, the efficiency, even with the implemented cross-validation, could not
be evaluated due to the small number of samples.

Transformation-based integration models, on the other hand, were more difficult to find compared
to concatenation-based models; thus, only three methods were selected. In terms of performance, The
SNFtool model was able to predict well the outcome for Case Study | and Il, even with the reduced
number of samples. Additionally, it is capable of identifying the most relevant features and displaying
the executed clusters, being also easy to implement in our pipeline. The remaining transformation-
based integration models (Graph-CAN, Kernel-RVM and Boosted-RVM model), created by the same
author, had a good performance. However, since they were not able to identify the most relevant
features, nor provide more information, precluding the biological interpretation of the results, we
omitted these models from our discussion.

Finally, the model-based integration models were the most difficult to find and implement. We did
not find any model available, based on this type of integration, and easy to implement in our pipeline.
However, after extensive research in publications, we chose an ensemble classifier, which combined
all the predictions made by different models, using different voting strategies, to calculate the final
prediction. Since it calculated the final prediction using the other predictions, the search for the most
relevant features was challenging for this type of strategy. In terms of performance, the voting soft
strategy was more successful compared to the hard strategy.

In the unsupervised learning models, the same was observed. The MFA model related to the
concatenation-based integration, in addition, to trying to comprehend the variability of the datasets,
obtained the features with greater relevance for each dimension. In turn, NEMO, referring to the
transformation-based integration approach, and the BCC, for the model-based integration, only
provided the plot of the executed cluster, therefore were omitted. Nevertheless, due to the small
number of samples we were unable to conclude anything regarding its performance, both in Case
Study | and Case Study I, only that the models could not separate the clusters based on the desired
variable.

Regarding the results obtained with the individual omics analysis and the multiomics integration
analysis, both obtained interesting results in both Case Study | and Case Study Il. However, multiomics
integration analysis uncovered a greater number of biological processes that participate in grape
development and drought conditions.

In case study |, for the transcriptomics dataset, we identified key functions related to grape
development, such as plant growth and development, oxidative phosphorylation, nucleotide binding,
cell wall biogenesis and structure, gene information processing, auxin regulation, signal transduction,
allergen and production of anthocyanins and flavonoids. The metabolites discovered were also in
concordance with the results of the transcriptomics dataset, as the metabolites could be grouped by the
following compounds: organic acids, flavonoids/anthocyanins for the pre-Veraison stage and sugar and
aromatic compounds for the post-Veraison phase. The most common organic acids were stearic acid
and malic acid, the flavonoids/anthocyanins were malvidin-3-O-glucoside and quercetin-3-glucuronide,
the most relevant sugars were fructose, glucose and sucrose and lastly, for the aromatic compounds,

we identified benzenemethanol and phenylalanine.
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In Case Study Il, the essential roles in drought condition, in the transcriptomics datasets were

related with cell wall modifications and responses against osmotic stress and, for the fluxomics dataset,

although most of the reactions were related to the control condition, the most relevant reactions

for drought conditions were related with the Triose phosphate translocator (G3P); Glyoxylate and

dicarboxylate metabolism, Reductive carboxylate cycle (CO2 fixation), Citrate cycle(TCA cycle); and

Pentose phosphate pathway and Glycolysis / Gluconeogenesis.

Therefore the main goal proposed for this thesis was accomplished: develop methods and computa-

tion tools based on ML to integrate different omics data and extract knowledge to understand plant

behaviour under different environmental conditions and integrate all the collected data, developed

tools and algorithms into a pipeline to be integrated into an open-source computation framework.

However, some steps can be improved in future work:

Obtain datasets with a large number of samples for more than one type of omics analysis;
Develop more models for each type of integration;

Find ways to obtain biological relations between the different omics using the integration based
models;

Develop more models with the main focus in plants;
Test other methods for feature selection to improve the process;
Test other hyperparameter values to optimize the models;

Optimize the code to speed up the training process and include more types of omics.

After this has been achieved, the next goal is to develop other multiomics integration plant models,

able to obtain more accurate relations between the different omics datasets and implement them in

our open-source computational framework to allow other users to understand the disease mechanisms

and interactions between the plants and its pathogens and predict phenotypes of disease resistance.
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SUPPLEMENTARY FIGURES

A.1 CASE STUDY I

Metadata include some useful information, such as the berry weight, "Berry Weight (g / berry)”, the
concentration of malic acid, "Malic Acid (mg / 1)”, the accumulation of RS, "RS (g /100 ml £ 5%)",
the time point, " Time Point”, the days after veraison in which the samples were extracted, "Days
after veraison”, and the variety and vintage they belonged.

In supplementary figure S1A, it is clear that the samples were divided by two types of variety:
Cabernet Sauvignon and Pinot Noir. The total number of samples was 73, 40 for Cabernet Sauvignon
and 33 for Pinot Noir. Regarding the vintage variable, 23 samples were taken in the first year
(2012) and 25 samples were collected in the two consecutive years (2013-2014, see supplementary
figure S1B). In supplementary figure S1C), the samples are divided by our selected outcome, 24
samples in pre-veraison and 49 samples in post-veraison stage, which shows dataset imbalance.

A. B. C.

B
Variety Vintage il

Figure S1: (A)Variety, (B)Vintage and (C)Berry. (A)The samples were divided as 40 samples for
Cabernet Sauvignon (light blue) and 33 for Pinot Noir (dark blue). (B) In the three
consecutive years, samples were extracted as follows: 23 samples in 2012 (light blue), 25
samples in 2013 (yellow) and 25 samples in 2014 (grey). (C) For our selected outcome,
the division is 24 in pre-veraison (dark blue) and 49 in post-veraison stage (green).
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Supplementary figure S2 shows a summary of the berry weight by grape variety. The berry weight
had a mean of 1.238g/ berry, however if we looked at the berry weight depending on the variety of
grape, we could see that the berry weight in the Pinot Noir cultivar was slightly bigger than the
Cabernet Sauvignon grape. This proposed an interesting difference between the both cultivar types
and how they developed through time.

Berry Weight (g / berry)

o/ berry

Variety

Figure S2: Exploratory Analysis. Boxplot of berry weight by grape variety.

Supplementary figure S3 replicated the plots made in the original article that explained how the
different varieties behaved in terms of berry weight, concentration of malic acid and accumulation of
RS in the different days after veraison.

As we can see in figure S3, both varieties have similar patterns of development in all three variables,
however some discrepancies can be identified. It is the case of berry weight, as mentioned above,
and RS that accumulates faster in the Pinot Noir grapes than in Cabernet Sauvignon, resulting in a
shorter development time and early harvest. In addition, malic acid initial concentration is also higher
in Pinot Noir berries than Cabernet Sauvignon, yet when the concentration matches both varieties

the degradation is also faster.
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Figure S3: Exploratory Analysis. Progression of grape berry ripening. Grape berry development is
shown by berry weight in the first plot, reducing sugar accumulation in the second plot,
and malic acid (MA) accumulation in the third plot, from fruit set to harvest.
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A. Transcriptomics B. Metabolomics
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Figure S4: Exploratory Analysis. Heatmap of the (A) transcriptomics dataset and (B) metabolomics
dataset, regarding vintage and variety.
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A. Transcriptomics B. Metabolomics
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Figure S5: Exploratory Analysis. Heatmap of the (A) transcriptomics dataset and (B) metabolomics
dataset, regarding berry development stage (PreV and PostV and variety.
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A. Transcriptomics B. Metabolomics
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Figure S6: Exploratory Analysis. PCA analysis of (A) transcriptomics and (B) metabolomics regarding
Variety.
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Figure S7: Exploratory Analysis. PCA analysis of (A) transcriptomics and (B) metabolomics regarding
Variety and Vintage.
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Figure S8: Multiomics Integration. Arrow plot in which the start of the arrow indicates the centroid
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Figure S9: Multiomics Integration. Relevance network plot in which we visualize the correlation
regarding the two different types of variables built on the similarity matrix.
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A. Transcriptomics B. Metabolomics
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Figure S10: Multiomics Integration. Transformation-based integration. Display of the two similarity
graphs for each omics dataset that have complementary information about clusters.(A)
Transcriptomics dataset. (B) Metabolomics dataset.
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Figure S11: Multiomics Integration. Transformation-based integration. Display of the fusion of the
two similarity graphs.
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Figure S12: Multiomics Analysis Integration. Unsupervised Learning. Scree plot of the eigen values
obtained by the MFA model.
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Figure S13: Multiomics Analysis Integration. Unsupervised Learning. Plot of the group variables using
the MFA model. It illustrates the correlation between the groups and dimensions. We can
see that the green groups indicate the supplementary groups of variables and that the red
groups represent the active groups of variables. Therefore, our active groups correspond
to the metabolomics and transcriptomics dataset. Additionally, we can see that both
datasets contribute similarly to the first dimension. Concerning the second dimension,
the metabolomics dataset had higher coordinates indicating a highest contribution to the
second dimension. The Berry variable contributes only for the dimension 1.
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Figure S14: Multiomics Analysis Integration. Unsupervised Learning. Plot of the contribution of the
different groups regarding the (A) Dimension 1 and (B) Dimension 2.
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Figure S1: Multiomics Integration. Transformation-based integration. Display of the two similarity
graphs for each omics dataset that have complementary information about clusters.(A)
Transcriptomics dataset. (B) Fluxomics dataset.
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Figure S2: Multiomics Integration. Transformation-based integration. Display of the fusion of the two

similarity graphs.
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Figure S3: Multiomics Integration Analysis with Unsupervised Learning. Plot of the contribution of the
different groups regarding the (A) Dimension 1 and (B) Dimension 2. The transcriptomics
dataset contributes more to dimension 1 and the fluxomics dataset contributes more for
dimension 2.



SUPPLEMENTARY TABLES

B.1 CASE STUDY I

Table S1: Individual Omics Analysis. Most relevant features obtained from the SVM model for the
transcriptomics dataset.

Transcript UniProtKB Annotation Importance
VIT_15s0046g00230 F6I6F6 Lateral organ boundaries protein 1 1.0000
VIT_13s0019g03040 F6HNNS Indole-3-acetate beta-glucosyltransferase 1.0000
VIT_00s0759g00010 D7STO7 Porphobilinogen deaminase, chloroplast precursor 1.0000
VIT_13s0064g01030 D7T2Z6 Zinc finger (C3HC4-type ring finger)BIG BROTHER 1.0000
VIT_03s0063g01560 F6HQG7  CYP82Clp 1.0000
VIT_04s0044g01870 F6l0B3 Auxin efflux carrier 1.0000
VIT_01s0011g02330 D7T9F1 Unknown protein 1.0000
VIT_14s0060g01090 D7UA38 LNG1 (LONGIFOLIAL) 1.0000
VIT_08s0007g02170 A5C287 Yippee 1.0000
VIT_02s0154g00350 D7TN36 L-lactate dehydrogenase A 1.0000
VIT_13s0064g00890 F6HB61 Cellulose synthase CESA3 1.0000
VIT_12s0028g02160 F6H4Z7 Ribulose bisphosphate carboxylase 1.0000
VIT_14s0083g01100 F6GVV2 Alpha-1,4-glucan-protein synthase 1 1.0000
VIT_11s0016g05840  F6HHB3  Protease inhibitor/seed storage/lipid transfer protein (LTP) 1.0000
VIT_12s0028g03100 F6H5G9 GPRI1 (GOLDEN2 1) 1.0000
VIT_03s0038g02470 F61101 Nickel ion transporter 1.0000
VIT_01s0026g00330 D7TNP7  NHL repeat-containing protein 1.0000
VIT_09s0002g04080 F6HYD4  1AA9 1.0000
VIT_05s0020g04880 D7T7A2 Seed specific protein Bn15D14A 1.0000
VIT_18s0001g15520 EOCQN6 Leaf senescence protein 1.0000
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Table S2: Individual Omics Analysis. Most relevant features obtained from the SVM model for the
metabolomics dataset.

Metabolites Importance
petunidin-3-glucoside 1.0000
fructose 0.9980
tartaric acid 0.9919
malic acid 0.9898
malvidin-3-O-glucoside 0.9898
glucose 0.9878
delphinidin 3-O-glucoside 0.9817
peonidin-3-glucoside 0.9797
sucrose 0.9715
citric acid 0.9695
stearic acid 0.9634
1,2-anhydro-myo-inositol NIST 0.9329
quercetin-3-glucuronide 0.9329
threonic acid 0.9329
cyanidin 3-glucoside 0.9228
myo-inositol 0.9146
myricetin-3-glucoside 0.8984
palmitic acid 0.8882
benzenemethanol 0.8841

benzoic acid 0.8841
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transcriptomics dataset.

Table S3: Individual Omics Analysis. Most relevant features obtained from the RF model for the

Transcripts UniProtKB Annotation Importance
VIT_17s0000g08900 F6GSJ2 LRR receptor-like kinase 2 0.3642
VIT _1550046g00230 F616F6 Lateral organ boundaries protein 1 0.3200
VIT_01s0244g00070 D7TYT5 Unknown protein 0.2838
VIT_14s0060g01090 D7UA38 LNG1 (LONGIFOLIAL) 0.2783
VIT_12s0028g03100 F6H5G9 GPRI1 (GOLDEN2 1) 0.2691
VIT_14s0083g01100 F6GVV2 Alpha-1,4-glucan-protein synthase 1 0.2634
VIT _03s0063g01560 F6HQGT CYP82Cl1p 0.2567
VIT_01s0026g01780 F6HPE9 Leucine-rich repeat transmembrane 0.2545
VIT _05s0020g04880 D7T7A2 Seed specific protein Bn15D14A 0.2411
VIT _00s0759g00010 D7STO7 Porphobilinogen deaminase, chloroplast precursor 0.2397
VIT_13s0064g01030 D7T2Z6 Zinc finger (C3HC4-type ring finger)BIG BROTHER 0.2391
VIT_13s0019g00240 D7TLZ6 Glycosyltransferase family 14 Beta-1-3-galactosyl-O-glycosyl-glycoprotein 0.2202
VIT_13s0064g00890 F6HB61 Cellulose synthase CESA3 0.2197
VIT_08s0007g04510 F6HKE6 RPG related protein 1 RR1 0.2165
VIT_13s0019g03040 F6HNNS Indole-3-acetate beta-glucosyltransferase 0.2083
VIT_07s0031g02160 F6H4D2 Protein phosphatase 2C DBP 0.2081
VIT _00s0802g00020 D7ST21 Unknown protein 0.2044
VIT_00s0203g00040  D7UDP4  Vesicle-associated membrane protein 0.1944
VIT_16s0050g02630 F6HG6F7 FtsH protease that is localized to the chloroplast 0.1879
VIT_09s0002g04080 F6HYD4  |AA9 0.1744
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Table S4: Individual Omics Analysis. Most relevant features obtained from the RF model for the
metabolomics dataset.

Metabolites Importance
glucose 0.6228
malic acid 0.5795
peonidin-3-glucoside 0.5158
tartaric acid 0.4253
sucrose 0.4049
benzenemethanol 0.3792
delphinidin 3-O-glucoside 0.3737
threonic acid 0.3500
fructose 0.3218
stearic acid 0.3132
citric acid 0.3093
cyanidin 3-glucoside 0.2984
phenylalanine 0.2967
myricetin-3-glucoside 0.2933
quercetin-3-glucuronide 0.2843
malvidin-3-O-glucoside 0.2764
palmitic acid 0.2344
spirotetramat 0.2334

peonidin 3-(6"-acetylglucoside) 0.2188
petunidin-3-glucoside 0.2152
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Table S5: Individual Omics Analysis. Most relevant features obtained from the ANN model for the
transcriptomics dataset.

Transcripts UniProtKB Annotation Importance
VIT_18s0001g01490 ABASV7 Oxidoreductase N-terminal domain-containing 5.247
VIT_05s0020g02690 F6HDL7 Copper-binding family protein 4.647
VIT_13s0064g00890 F6HB61 Cellulose synthase CESA3 4.066
VIT_14s0083g01110 D7SMP3 Brassinosteroid-6-oxidase 3.724
VIT_19s0014g03850 A5BX41 Cytochrome B6-F complex iron-sulfur subunit, PETC 3.724
VIT_03s0091g00500 F6H673 Unknown protein 3.719
VIT_11s0016g05840  F6HHB3  Protease inhibitor/seed storage/lipid transfer protein (LTP) 3.647
VIT_16s0022g00670 F6HAUO Vacuolar invertase 1, GIN1 3.172
VIT_06s0004g03240 A5AFS1 Elongation factor 1-alpha 1 3.062
VIT_05s0020g04880 D7T7A2 Seed specific protein Bn15D14A 3.001
VIT_10s0003g00980 F6HM77 Unknown protein 2.501
VIT_12s0028g01080 A5B1D3 Photosystem Il oxygen-evolving complex precursor,23kda PSBP 2.071
VIT_05s0020g04490  F6GHDW2  No hit 1.477
VIT _06s0004g00200 F6GUP1 Splicing factor YT521-B 1.413
VIT_04s0023g03010 FOGWQO  fructose-bisphosphate aldolase,chloroplast precursor 1.363
VIT_01s0011g02710  ABAEV3 No hit 1.350
VIT_16s0039g02550 F6HEH4 Seed specific protein Bn15D1B 1.182
VIT_16s0050g02530  A8VPW6  Myb Triptychon 1.140
VIT_06s0009g00410 F6HACS BLH1 (embryo sac development arrest 29) 1.098
VIT_06s0004g07880 D7SJK7 Allergen 1.060
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Table S6: Individual Omics Analysis. Most relevant features obtained from the ANN model for the
metabolomics dataset.

Metabolites Importance
fructose 13.9159
proline 13.1387
malic acid 11.5559
leucine 7.2458
N-methylnicotinic acid cation 7.1200
tartaric acid 6.4139
glucose 4.2651
stearic acid 3.0876
1-methylgalactose NIST 3.0555
malvidin-3-O-glucoside 2.9699
1,3,5-benzenetriol 2.7066
peonidin-3-glucoside 2.6081
hydroxylamine 2.1694
malvidin 3-(6"-acetylglucoside) 1.2324
erythritol 1.1846
benzenemethanol 0.9632
13-docosenamide 0.9469
lactulose 0.7142
sucrose 0.6676

peonidin 3-(6"-acetylglucoside) 0.6353
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Table S1: Values of the different error metrics (Accuracy, Recall and Precision) for each model (SVM,

B.2. Case Study Il

RF and ANN) for both the transcriptomics and fluxomics datasets in Case Study II.

Model Metrics Transcriptomics Fluxomics
Accuracy 0.75 0.33
SVM Recall 0.8 1
Precision 0.8 0.33
Accuracy 0.5 0.5
RF Recall 0.4 0.5
Precision 0.67 0.33
Accuracy 0.5 0.41
ANN Recall 0.4 0.5
Precision 0.67 0.28

Table S2: Individual Omics Analysis. Most relevant features obtained from the SVM model for the

transcriptomics dataset.

CATMA ID TAIR7 mapping Annotation Importance
CATMA1a22270 Atlg23200 pectinesterase family protein 0.9467
CATMA4al19840 At4gl8700 Encodes CBL-interacting protein kinase 12 (CIPK12) 0.9290
CATMA1c72010 At1g66390 PAP2 (PRODUCTION OF ANTHOCYANIN PIGMENT 2) 0.9172
CATMA1al18630 Atlgl9610 LCR78/PDF1.4 (Low-molecular-weight cysteine-rich 78) 0.8817
CATMA3c57894  At3g60910 catalytic,Generic methyltransferase 0.8817
CATMA4a30730 At4g29070 unknown protein, Phospholipase A2, PLA2 0.8817
CATMALc72183 Atlg76680 OPR1 (12-oxophytodienoate reductase 1) 0.8757
CATMA3al18630 At3g18980 F-box family protein 0.8698
CATMA4c42685  At4g37980 ELI3-1 (ELICITOR-ACTIVATED GENE 3) 0.8639
CATMALc71101 Atlg08360 60S ribosomal protein LI0A (RPL10aA) 0.8521
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Table S3: Individual Omics Analysis. Most relevant features obtained from the SVM model for the

fluxomics dataset.

Reaction

Overall Importance Subsystem

TCPT7
R01015_p
R01015_c
TCP8
R00127_c
R03321_c
R02739_c
TCX16
R01324_c
R01325_x

4.973
3.195
3.181
2.095
1.614
1.500
1.500
1.393
1.393
1.315

Triose phosphate translocator (G3P)

Fructose and mannose metabolism; Glycolysis / Gluconeogenesis; Inositol metabolism;Carbon fixation

Fructose and mannose metabolism; Glycolysis / Gluconeogenesis; Inositol metabolism;Carbon fixation

Triose phosphate trasnlocator (glyceroneP)

Purine metabolism

Glycolysis / Gluconeogenesis

Pentose phosphate pathway;Glycolysis / Gluconeogenesis

Isocitrate transporter

Citrate cycle (TCA cycle)

Glyoxylate and dicarboxylate metabolism; Reductive carboxylate cycle (CO2 fixation);Citrate cycle (TCA cycle)

Table S4: Individual Omics Analysis. Most relevant features obtained from the RF model for the

transcriptomics dataset.

CATMA ID TAIR7 mapping Annotation Importance
CATMA1a22270 At1g23200 pectinesterase family protein 0.16446
CATMA3a18630 At3g18980 F-box family protein 0.13316
CATMA1a28510 Atlg30500 CCAAT-binding transcription factor (CBF-B/NF-YA) family protein 0.12914
CATMABc65084  At5g62300 40S ribosomal protein S20 (RPS20C) 0.12542
CATMA1c72183 Atlg76680 OPR1 (12-oxophytodienoate reductase 1) 0.12003
CATMA42a19460 At4g18390 TCP family transcription factor, putative 0.11641
CATMA1a18630 Atlgl9610 LCR78/PDF1.4 (Low-molecular-weight cysteine-rich 78) 0.11298
CATMA3c57894  At3g60910 catalytic, domain Generic methyltransferase 0.10418
CATMA1c72010 Atlg66390 PAP2 (PRODUCTION OF ANTHOCYANIN PIGMENT 2) 0.10086
CATMA22a45990 At2g47530 unknown protein 0.10045

Table S5: Individual Omics Analysis. Most relevant features obtained from the RF model for the

fluxomics dataset.

Reaction Importance Subsystem
R01070N_c 0.07819 Fructose and mannose metabolism; Glycolysis / Gluconeogenesis; Pentose phosphate pathway; Carbon fixation
TCP21 0.07721 ADP transporter
R02950_c 0.07013 coniferyl alcohol; Coumarine and phenylpropanoid biosynthesis (Lignin subunit)
R03968_c 0.06976 Valine, leucine and isoleucine biosynthesis
TCP20 0.06973 ATP transporter
TCP6 0.06895 alpha-D-Glucose 6-phosphate transporter
R00709-m 0.06879 Citrate cycle (TCA cycle)
R01943_c 0.06609 Stilbene, coumarine and lignin biosynthesis
R00948_p 0.06504 Starch and sucrose metabolism
TCP7 0.06449 Triose phosphate translocator (G3P)
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Table S6: Individual Omics Analysis. Most relevant features obtained from the ANN model for the
transcriptomics dataset.

CATMA ID TAIR7 mapping Annotation Importance
CATMA1c72010 Atlg66390 PAP2 (PRODUCTION OF ANTHOCYANIN PIGMENT 2) 1.5292
CATMA4a03190 At4g02840 small nuclear ribonucleoprotein D1 1.0633
CATMABc64551  At5g35525 unknown protein 0.9745
CATMA1A24995 Atlg26770 ATEXPA10 (ARABIDOPSIS THALIANA EXPANSIN A10) 0.9137
CATMAA4c42685  At4g37980 ELI3-1 (ELICITOR-ACTIVATED GENE 3) 0.8881
CATMA3A38785  At3g45780 PHOT1 (phototropin 1) 0.8847
CATMA1A18630 Atlgl9610 LCR78/PDF1.4 (Low-molecular-weight cysteine-rich 78) 0.8814
CATMABA47680 At5g51750 subtilase family protein 0.8731
CATMA1a28510 Atlg30500 CCAAT-binding transcription factor (CBF-B/NF-YA) family protein 0.8669
CATMA1a08610 Atlg09750 chloroplast nucleoid DNA-binding protein-related 0.8590

Table S7: Individual Omics Analysis. Most relevant features obtained from the ANN model for the
metabolomics dataset.

Reaction Importance Subsystem

TCP7 4.973 Triose phosphate translocator (G3P)

R01015_p 3.195 Fructose and mannose metabolism; Glycolysis / Gluconeogenesis; Inositol metabolism; Carbon fixation
R01015_¢ 3.181 Fructose and mannose metabolism; Glycolysis / Gluconeogenesis; Inositol metabolism; Carbon fixation
TCP8 2.095 Triose phosphate trasnlocator (glyceroneP)

R00127 ¢ 1.614 Purine metabolism

R03321_¢ 1.500 Glycolysis / Gluconeogenesis

R02739_c 1.500 Pentose phosphate pathway; Glycolysis / Gluconeogenesis

TCX16 1.393 Isocitrate transporter

R01324_c 1.393 Citrate cycle (TCA cycle)

R01325_x 1.315 Glyoxylate and dicarboxylate metabolism; Reductive carboxylate cycle (CO2 fixation);Citrate cycle (TCA cycle)







