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Ensemble Metropolis Light Transport
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Fig. 1. The DOOR AJAR scene showing the reference on the left, Metropolis Light Transport in the centre, and Ensemble Metropolis Light Transport on
the right, rendered at an equal sample count. The use of the ensemble to propose anisotropic transition kernels allows sampling to be adapted to the scene
geometry and lighting information, leading to variance reduction as can be seen by lower MSE values shown at the top of each image.

This article proposes a Markov Chain Monte Carlo (MCMC) render-
ing algorithm based on a family of guided transition kernels. The kernels
exploit properties of ensembles of light transport paths, which are dis-
tributed according to the lighting in the scene, and utilize this informa-
tion to make informed decisions for guiding local path sampling. Critically,
our approach does not require caching distributions in world space, saving
time and memory, yet it is able to make guided sampling decisions based
on whole paths. We show how this can be implemented efficiently by or-
ganizing the paths in each ensemble and designing transition kernels for
MCMC rendering based on a carefully chosen subset of paths from the en-
semble. This algorithm is easy to parallelize and leads to improvements in
variance when rendering a variety of scenes.
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1 INTRODUCTION

Accurately rendering photorealistic imagery requires computing
extremely large numbers of light paths in a virtual environment.
While most research has been applied to traditional Monte Carlo
estimators for rendering, Markov Chain Monte Carlo (MCMC)
methods, such as Metropolis Light Transport (MLT) [Veach and
Guibas 1997], have shown impressive capabilities for computing
light transport efficiently, even in complicated scenes.

MCMC algorithms such as MLT generate a chain of paths that
follow the distribution of the lighting in the scene. Each new path
is generated by applying a transition kernel to the previous path,
and probabilistically replacing the previous path with the new
path. In the original application of MCMC to graphics [Veach and
Guibas 1997], transition kernels were designed to either locally ex-
plore regions around an existing path, or to globally explore path
space. While these transition kernels have been improved to con-
sider local geometric or lighting information [Li et al. 2015; Otsu
et al. 2018], the use of non-local information capturing a wider
range of lighting can also be used to guide transition kernels. Such
non-local information can be captured by path guiding methods,
for example [Müller et al. 2017]; however, this comes at a precom-
putation and memory cost, and the cached distributions of lighting
may not clearly map to transition kernels. Another approach is
to exploit the fact that multiple light paths generated by MCMC
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algorithms will be distributed proportional to the lighting in the
scene, and as such can be used to generate guided transition
kernels.

This article proposes such a method that uses ensembles of
light paths to guide mutations of existing paths. We name this
approach Ensemble Metropolis Light Transport (EMLT). Cru-
cially, these guided transition kernels do not need to be based on
caching distributions in world space; they only require moderately
sized ensembles in the low tens of thousands of paths, and can be
combined to build families of mutation strategies. To summarize,
the main contributions of this work are as follows:

• The introduction of EMLT, a method that guides sampling
based on a complementary ensemble of transport paths.
• A family of adaptive and anisotropic proposal distributions

for path mutations based on ensemble sampling.
• The use of a carefully chosen subset of paths from the ensem-

ble to create guided transition kernels.
• Results showing improvement of EMLT over traditional ap-

proaches in a range of real-world scenes.

2 BACKGROUND AND RELATED WORK

This section introduces the relevant background theory of light
transport, path guiding methods which exploit information about
the radiance or importance distribution in the scene to reduce vari-
ance, and MCMC methods which can efficiently compute images
in challenging scenes.

2.1 Light Transport

The path integral form of the rendering equation [Kajiya 1986] is
given by [Hachisuka et al. 2014; Veach and Guibas 1997]

Ij =

∫
P
hj (x ) f (x )dμ (x ), (1)

and states that the intensity Ij at a pixel j consists of the contri-
bution f (x ) of light paths x weighted by a pixel filter hj (x ). The
domain of integration is the union of all possible path lengths
P = ⋃∞

k=2
P (k ) where P (k ) are all paths of length k . In this work,

path vertices x0..xk lie on the scene manifoldM, i.e., integration is
with respect to the product area measure μ, and are indexed start-
ing from the light source x0. The contribution of a path of length
k is defined as f (x ) = Le (x0)G (x0 ↔ x1)

∏k−1
j=1 f r (x j−1 → x j →

x j+1)G (x j ↔ x j+1), where Le is the emitted radiance, G is the
geometry term, and f r is the Bidirectional Reflectance Distri-

bution Function (BRDF).
There are multiple ways of solving Equation (1), almost all rely-

ing on Monte Carlo estimation:

Ij ≈
1

N

N∑
i=1

hj (x (i )) f (x (i ))

p (x (i ))
, (2)

where p (x (i )) denotes the probability density function (pdf)
of sampling the ith path and is a product of probability densities
for sampling each vertex to build up the path. This typically con-
sists of sampling the sensor, lens, BRDFs and light sources. Ideally
p (x (i )) ∝ hj (x (i )) f (x (i )); however, this is typically not possible

in practice. Therefore, distributions which approximate some com-
ponents of hj (x (i )) f (x (i )) are used (see Christensen and Jarosz
[2016] for a survey of these methods).

2.2 Path Guiding

Most rendering techniques generate light paths incrementally by
sampling the next vertex in a path given the previous vertex. Path
guiding approaches build on traditional BRDF and cosine sampling
to include information about incoming illumination or importance
when generating samples. Most techniques cache a distribution
that represents the incoming radiance or importance at a sparse set
of locations in a scene, and query locations at runtime using a spa-
tial data structure. Examples include 5D spatio-directional Trees
[Lafortune and Willems 1995; Müller et al. 2017], 7D distributions
[Pantaleoni 2020], use of various basis functions to store radiance
at discrete points in the scene [Bashford-Rogers et al. 2012; Dio-
latzis et al. 2020; Herholz et al. 2016; Hey and Purgathofer 2002;
Jensen 1995; Ruppert et al. 2020; Vorba et al. 2014], or using ma-
chine learning methods [Bako et al. 2019; Dahm and Keller 2017].

Path guiding has also been applied to sample partial or com-
plete light paths. Approaches such as neural importance sampling
[Guo et al. 2018; Müller et al. 2018; Zheng and Zwicker 2019] have
learned a warping in Primary Sample Space (PSS) [Kelemen et al.
2002] which encodes the illumination distribution in PSS based on
a small set of paths traced before rendering. However, as these ap-
proaches are designed to generate full paths, they face the curse
of dimensionality and are more effective in lower dimensional sce-
narios such as importance sampling one bounce indirect lighting.
A related approach to whole path importance sampling was pro-
posed by Reibold et al. [2018] that selectively stores and samples
distributions for high contribution paths which were unlikely to
be sampled through BRDF sampling.

EMLT exploits information about the lighting distribution in the
scene, and can use any of the distributions commonly used for path
guiding to generate samples. However, our method does not re-
quire a spatial cache, and builds distributions on the fly from a
small set of paths from a complementary ensemble (see Section 3).

2.3 MCMC

MCMC [Hastings 1970; Metropolis et al. 1953] techniques provide
another approach to sample a space and were initially applied to
rendering as MLT [Veach and Guibas 1997]. In MLT, sampling
starts from an initial path x , and then proposes a new path x ′ from
a transition kernel T (x → x ′). The transition kernels have to sat-
isfy certain properties in order for the chain to explore the state
space: ergodicity meaning all states will be visited by the chain
in a finite time, and aperiodicity meaning states will not get stuck
in a loop. At the limit, these states are distributed according to a

target distribution,
f
b

, where b =
∫
P hj (x ) f (x )dμ (x ) is a normal-

ization constant. A scalar contribution function, f ∗ : RS 	→ R,
is defined where S are the spectra or color channels associated
with evaluating f (x ). Then, based on the detailed balance condi-
tion f ∗ (x )T (x → x ′)a(x → x ′) = f ∗ (x ′)T (x ′ → x )a(x ′ → x ),
the new state x ′ is probabilistically chosen to replace the previous
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state based on calculating an acceptance probability:

a(x → x ′) =min ��1,
f ∗ (x ′)T (x ′ → x )

f ∗ (x )T (x → x ′)
�
� . (3)

This leads to a chain of light paths, each dependent only on the
previously sampled light path, which explore the path space. In
rendering, the scalar contribution function is typically chosen to be
the luminance of the contribution of the path, but other functions
can be chosen (see Gruson et al. [2016]; Hoberock and Hart [2010]).
b is typically estimated by a separate Monte Carlo estimator, and
the initial state of the chain is generated through resampling a path
from a small set of paths computed at startup. Then, the resulting
Monte Carlo estimator is given by

Ij ≈
b

N

N∑
i=1

hj (x (i )) f (x (i ))

f (x (i ))
=

b

N

N∑
i=1

hj (x (i )), (4)

meaning that samples will be distributed according to the inte-
grand. Equation (4) is typically evaluated over the image plane
which allows for information about light transport to be shared be-
tween pixels, resulting in a significantly more efficient estimator.
Many strategies can be designed such that many terms in the nu-
merator and denominator in Equation (3) cancel, something which
is especially important to remove the weak singularity in the geom-
etry term. The variance reduction properties of this method also
depends on the ability of the transition kernel to explore the state
space.

Veach and Guibas [1997] proposed a series of transition kernels
which were chosen to reduce variance for different types of light
transport. Bidirectional mutations were designed to ensure ergod-
icity through deleting a randomly chosen series of vertices from x ,
and replacing them with vertices generated through sampling the
same pdfs used in a standard Monte Carlo estimator, i.e., BRDF
and light source sampling. The remaining strategies, known as
perturbations, were designed to explore sub spaces of path space
given the state of the path. Lens perturbations explored image
space by perturbing the position of the path vertex on the image
plane, tracing a path through any specular interactions until a non-
specular vertex is reached, then deterministically connecting to
the unchanged light subpath. This connection leaves a geometry
term associated with the deterministic connection when evaluat-
ing Equation (3). The caustic perturbation was designed to explore
caustics through perturbing the outgoing direction for the first ver-
tex on the caustic subpath, following the chain of specular inter-
actions, and then deterministically connecting to the camera. The
multi-chain perturbation explores specular-diffuse-specular paths
through combining a perturbation on the lens with directional per-
turbations at each non-specular surface before deterministically
connecting to the remaining light subpath.

There have been several extensions to the original MLT algo-
rithm which have added or improved mutation strategies such as
perturbations in participating media [Pauly et al. 2000], improved
sampling of specular chains [Jakob and Marschner 2012], and per-
turbations in half vector space [Kaplanyan et al. 2014]. Kelemen
et al. [2002] introduced mutations to light paths in PSS (PSSMLT).
These mutations were improved by Hachisuka et al. [2014] who

combined PSSMLT with Multiple Importance Sampling [Veach and
Guibas 1995], Bitterli and Jarosz [2019] who detected and per-
turbed high variance paths in PSS, the use of delayed rejection by
Rioux-Lavoie et al. [2020], the use of Hamiltonian Monte Carlo ap-
plied to rendering by Li et al. [2015] who used anisotropic Gauss-
ian kernels generated from a path gradient, and Luan et al. [2020]
who used the Metropolis-adjusted Langevin algorithm also based
on the gradients of the path. Integration in both path space and PSS
have been proposed [Bitterli et al. 2018; Otsu et al. 2017; Pantale-
oni 2017] which allows path space mutations to be combined with
PSS mutations. For further information, Šik and Křivánek [2018]
provide a detailed survey of MCMC methods in rendering.

Closer to our work, adaptive perturbation sizes based on scene
geometry were proposed by Otsu et al. [2018], which used cone
tracing to estimate how large a perturbation could be based on
the surrounding geometry of a path. This was applied starting
at the camera, followed specular bounces if any, then traced one
extra path vertex to form a perturbed path.

Other methods mutate a set of paths but do not directly use
these to adapt transition kernels. Energy Redistribution Path Trac-
ing [Cline et al. 2005] combined Path Tracing and MLT by creating
many short chains whenever a path would be better explored by
MCMC methods than standard Monte Carlo. Segovia et al. [2007]
used Multiple-Try MCMC to generate paths for Instant Radios-
ity [Keller 1997], and Nimier-David et al. [2019] also proposed a
Multiple-Try MCMC method suitable for vectorized instructions.

2.4 Ensemble MCMC Methods

The use of multiple paths have been used in rendering to re-
duce variance and better explore path space. These methods have
largely focused on variants of parallel tempering, also known as
Replica Exchange Monte Carlo [Swendsen and Wang 1986]. This
uses multiple Markov Chains to explore different spaces, and uses
a detailed balance preserving transition to swap chains between
spaces. This was introduced to graphics by Kitaoka et al. [2009],
and improved by Šik and Křivánek [2016] and Otsu et al. [2013].
These approaches have also been applied to progressive photon
mapping [Hachisuka and Jensen 2011], the combination VCM/UPS
with MCMC [Šik et al. 2016], and with stratified MCMC on the im-
age plane [Gruson et al. 2020]. Hachisuka et al. [2014] also used a
pool of chains of different lengths to sample path lengths propor-
tional to their contribution.

Another related approach is to use Population Monte Carlo

(PMC) [Cappé et al. 2004; Fan et al. 2007; Lai et al. 2007]. This
iteratively and adaptively samples and resamples a population of
paths proportional to their contribution and guides future samples,
typically by adapting the parameters of distributions or kernels
used to generate samples. While this is related to our approach, it is
not trivial to combine PMC with MCMC methods without biasing
the result, and it is also not clear how this approach can be applied
when computing high dimensional integrals.

One approach outside of the graphics literature which is closely
related to our work is Affine Invariant Sampling (AIS) [Good-
man and Weare 2010]. This work considered a pool or ensemble
of walkers ∈ RN , and used the states of all other walkers to guide
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perturbations for each walker. The authors proposed three pertur-
bations: stretch moves which shift a walker’s position toward or
away from a randomly sampled walker in the ensemble, a walk
move which samples a subset of walkers and builds a Gaussian
transition kernel, and a replacement move which aims to recon-
struct the whole space and sample from the reconstruction. These
techniques were shown to efficiently guide the sampling, espe-
cially in the case of complicated distributions. This was further ex-
tended by Foreman-Mackey et al. [2013] which proposed a parallel
approach to using the ensemble of walkers. We also use a similar
approach of partitioning the walkers into two pools, and using one
pool to guide sampling in the complementary pool.

3 ENSEMBLE METROPOLIS LIGHT TRANSPORT

Our approach is based on an ensemble of paths which capture
global information of the distribution of lighting in a scene to guide
sampling for each path in the ensemble. We first define an ensem-
ble of chains containing O paths:

X = {x1,x2, ..,xO }. (5)

This ensemble can be considered to be in PO . Similar to the ar-
gument in Goodman and Weare [2010], if we consider a product
density using the ensemble F (X) = f (x1) f (x2).. f (xO ), then any
MCMC algorithm which preserves this density is valid. Such a
strategy is to update each path in the ensemble conditioned on the
other paths in the ensemble, i.e., following partial resampling [Liu
2008], if when updating path x i the remaining paths in the ensem-
ble {x1, ..,x i−1,x i+1, ..,xO } remain fixed, then the update of the
i ′th path of the ensemble preserves the joint distribution F . This
also allows the other paths in the ensemble to guide the sampling
of each path of the ensemble.

This implies updating each path in series, as each update relies
on fixing the states of all other paths in the ensemble. However,
paths can be updated in parallel for all x i ∈ X by defining a com-
plementary ensemble, Y = {y1,y2, ..,yO }, to guide sampling for
each path in X [Foreman-Mackey et al. 2013]. Therefore, each path
in X can be processed in parallel using Y as guidance for sampling,

i.e., the transition kernel takes the form T (x i → x ′
i |Y). This tran-

sition kernel can be written as the product of multiple sampling
events; in the case of light transport this corresponds to progres-
sively sampling a subpath:

T (x i → x ′
i |Y) =

k∏
j=1

K (x i
j → x ′

i
j |Y), (6)

where K (x i
j → x ′

i
j |Y) is a transition kernel for the j ′th sampling

event of k events. Specifically, this is the transition kernel associ-
ated with perturbing the direction of a path vertex conditioned on
the set of paths from the complementary ensemble. This transition
kernel can be applied to one or more path vertices, producing a per-
turbation to a light path. The acceptance probability for updating
each path in the ensemble is therefore computed as

a(x i → x ′
i
) =min ��1,

f ∗ (x ′
i
)T (x ′

i → x i |Y)

f ∗ (x i )T (x i → x ′
i |Y)

�
� . (7)

ALGORITHM 1: The EMLT algorithm. Two ensembles of paths X

and Y are input, and during rendering, paths from the ensemble X are

processed in parallel it times, and the guided transitions kernels based

on Y are used to propose new paths. After all paths in X are processed,

X and Y are swapped.

Input: X and Y

1 while rendering do

2 ParFor x i ∈ X

3 for it iterations do � See Section 3.4

4 x ′
i ∼ T (x i → x ′

i |Y) � See Section 3.3

5 a ← a (x i → x ′
i |Y) � Equation (7)

6 Accumulate to Image

7 if ξ < a then

8 x i ← x ′
i

9 end

10 end

11 end

12 Swap X and Y

13 end

Once all the paths of the ensemble X have been updated, this is
referred to as an iteration, the ensembles are swapped X↔ Y and
paths of Y are updated based on using X as path guidance:T (yi →
y′

i |X). However, without loss of generality we refer to Y as the
complementary ensemble in the remainder of the text. Algorithm 1
summarizes the EMLT algorithm. Firstly, the two ensembles X and
Y are initialized, then during rendering each path is processed in
parallel it times (lines 2 and 3) using the proposed guided transition
kernels (lines 4–9). When all paths in an ensemble are processed,
then ensembles are swapped (line 12), and the process repeats.

The use of ensembles for guiding sampling of paths could be ap-
plied to either path space or PSS. One possibility is to apply the use
of ensembles to PSS through a strategy which directly perturbs a
point in PSS based on other points in the ensemble, similar to AIS.
However, due to the difference in the number of random numbers
required to sample paths, it is not clear how walkers of different
dimensionalities could be used to create any of the transition ker-
nels proposed by Goodman and Weare [2010]. Secondly, interpo-
lating between points in high dimensions, which is the result of
applying AIS to PSS, is unlikely to lead to usable paths, especially
if there are small regions in PSS containing valid light transport
paths. However, the alternative of applying this to path space is
also not trivial as samples are no longer in RN , and the strategies
outlined in Goodman and Weare [2010] are not immediately appli-
cable. Our proposed transition kernels are designed to be suitable
for path space, but are also constructed to inherit the advantages
of using an ensemble to guide sampling.

This then allows scope for a wide range of new guided transition
kernels which are conditioned on the complementary ensemble.
While the entire complementary ensemble could be used to create
transition kernels, this would be prohibitively expensive when the
complementary ensemble is large. An alternative, and significantly
faster, approach that we propose in this article is to use a care-
fully chosen subset of the paths in the complementary ensemble.
These paths should be similar, both in interaction types and spatial
proximity, such that they can still produce valid guided transition
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kernels. Section 3.1 describes how to efficiently find and weight
the subset of paths from the complementary ensemble, then Sec-
tion 3.2 describes how guided transition kernels can be constructed
from this subset of paths. Finally, Section 3.3 describes how these
guided transition kernels can be combined into path perturbations.

3.1 Complementary Ensemble

Before describing the transition kernels, we first describe two
aspects of using the complementary ensemble for sampling. The
first, explained in Section 3.1.1, is how to select paths from the
complementary ensemble for sampling. This is important as
many of the guided perturbations require paths to be sampled
that maintain the same number of path vertices with the same
interaction types as the original path.

The second aspect deals with the similarity of paths sampled
from the complementary ensemble to the original path. This is
required as although paths with the same length and interaction
types may be sampled from the ensemble, paths which are similar
to the original path are likely to lead to better proposal distribu-
tions than those further away. Effective use of this similarity be-
tween paths is what allows our approach to avoid a spatial cache.
Section 3.1.2 describes an approach for measuring similarity be-
tween paths.

3.1.1 Finding Paths. As discussed previously, the proposed
guided perturbations rely on a subset of M paths from Y: ϒ =

{υ1..υM }. These M paths are located in Y based on similar proper-
ties to a base path x i , such as identical length or the same Heckbert
notation interaction types [Heckbert 1990]. This is motivated by
two observations: (i) perturbations guided by similar paths, rather
than all paths, are likely to explore similar regions of path space
leading to higher acceptance probabilities and (ii) perturbations
are more likely to succeed since they rely on preserving interac-
tion types.

Therefore, the set of paths in ϒ is deterministically selected from
the paths in Y with similar properties to x i . This is facilitated by a
tree data structure over path lengths and interaction types which
can be queried inO (1) time to find a subset of Y which matches the
desired properties. This is built at the start of the rendering process,
or at the end of each iteration, and please see the supplementary
material for more details about the construction and traversal of
this data structure. If the selection of paths forming ϒ was proba-
bilistic and dependent on x i , then the probability of sampling the
set ϒ given x i would have to be computed taking into account all
paths with similar properties in Y which would be prohibitively
slow. By performing a deterministic selection, in our case based
on a counter which is stored with the ensemble and updated each
step, this has the effect of having a minimal impact on performance
with the additional benefit that the computation of the acceptance
probabilities is significantly simplified as the probability of sam-
pling ϒ is not required.

3.1.2 Measuring Similarity. The set of paths returned from
querying the ensemble, ϒ, may have similar properties to the cur-
rent light path x i . However, while some of the vertices in the paths
returned may have similar positions in world space to x i , others

Fig. 2. Measuring similarity between a base path (red circles) and a path
from υn ∈ ϒ (empty circles). This is a product of the similarity between
pairs of path vertices with the same index j : S (x i

j , υn
j ).

may not. When developing guided transition kernels, it is useful to
have a measure of how similar light paths, or vertices within light
paths, are to each other. For instance, some transition kernels can
benefit from calculating weights for each vertex from ϒ as this is
likely to provide a good estimate of nearby lighting.

The use of entire light paths in MCMC methods widens the
range of methods to measure similarity. While Chaitanya et al.
[2018] proposed an effective heuristic of total path length, i.e., the
sum of distances between path vertices, we typically do not need
to consider the whole path. We develop a heuristic based on the
world space position of a set of vertices from ϒ, and vertices in the
current light path x i . Other attributes, such as normals, albedo, or
surface roughness could be considered, but we found that using
the world space position was effective for computing similarity.

Specifically, given the j’th vertex from x i , x i
j , and the previous

vertex, x i
j−1, the similarity value can be computed for all paths in

ϒ by computing the distance to υn
j and υn

j−1, n ∈ [1..M]. We de-

fine the difference between the world position of two vertices as
d (x i

j ,υ
n
j ) = max ( |x i

j − υ
n
j |

2, ϵ )−1 where ϵ is a small positive con-

stant (we use ϵ = 0.0001). From this, we define a normalized simi-
larity value as

S
(
x i

j ,υ
n
j

)
=

2

1 + e−d
(
x i

j ,υ
n
j

) − 1. (8)

This scaled sigmoid leads to a larger value when vertices are simi-
lar, and smaller the further apart they become. See Figure 2 for an
illustration of similarity computation. The similarity of multiple
vertices starting at the j’th position in the path to the k’th position
can be computed as

S
(
x i ,υn , j,k

)
=

k∏
l=j

S
(
x i

l
,υn

l

)
. (9)

3.2 Guided Transition Kernels

We first describe guided transition kernels for a single vertex, and
then describe how full perturbation strategies can be built from
these individual strategies in the following section. All of these
methods require information gathered from the set returned from
querying the tree structure ϒ.
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Fig. 3. Given some 2D domain, vertices in ϒ can be projected onto that
domain (empty circles). One of these is selected (the orange circle) and
used by Linear Transition Kernels to form a ray from that point to a pro-
jection of a vertex from the current path (the green circle). A distance along
this ray is sampled λ which generates a new point in this domain (the red
circle).

Linear Transition Kernel. The simplest form of guided transi-
tion kernels are the linear transition kernels, which is suitable for
guided sampling on the lens. These operate inR2 in our implemen-
tation. Given coordinatesCxy (xi ) ∈ R2 of the current path vertex

and the coordinates of a path vertex from ϒ: Cxy (υn
i ) ∈ R2, this

generates a proposal along a ray in R2: Cxy (x ′i ) = Cxy (υn
i ) + λ ·

(Cxy (xi )−Cxy (υn
i )). The distance along the ray, λ is sampled from

a distribution centered on Cxy (xi ). This is illustrated in Figure 3.
Goodman and Weare [2010] proposed the stretch move

which samples λ from a distribution λ ∼ д(c ) = 1√
c

, where

c ∈ [ 1
1+α , 1 + α], where α ∈ R+ is a scaling term. This density is

symmetricд(c ) = cд( 1
c ) (see Goodman and Weare [2010]), and this

leads to the ratio of
K (x ′

i
j→x i

j |Y)

K (x i
j→x ′

i
j |Y)
= λ, simplifying the acceptance

probability. However, other 1D distributions can be sampled to
generate λ. For example, a uniform λ ∼ [1 − β, 1 + β], β ∈ R+,
or truncated Gaussian can be used, and so long as these are
symmetric they simplify in the computation of the acceptance
probability.

Linear Hemispherical Transition Kernels. While linear tran-
sition kernels are defined in R2, many transition kernels are re-
quired to be defined over the (hemi)sphere S2. Therefore, we ex-
tend the linear transition kernels to the (hemi)sphere. This starts
by sampling λ from one of the linear distributions, then mapping
this to a perturbation of the original direction on the sphere. Given
two directions in the sphere ω1 and ω2, these directions may cor-
respond to a direction on the original path, and the other on a
path from ϒ, a new direction ωnew can be sampled along the great

arc connecting these two directions: ωnew =
ω1 sin((ω1 ·ω2 )λ)

sin((ω1 ·ω2 )) +

ω2 sin((ω1 ·ω2 )(1−λ))
sin((ω1 ·ω2 )) , i.e., a slerp between ω1 and ω2 with parame-

ter 1 − λ (see Figure 4). This leads to

K (x ′
i
j → x i

j |Y)

K (x i
j → x ′

i
j |Y)

=
sin cos−1 (ω1 · ω2)

sin cos−1 (ωnew · ω2)
=

√
1 − (ω1 · ω2)2√

1 − (ωnew · ω2)2
.

(10)

Guided Anisotropic Transition Kernels. The linear and hemi-
spherical transition kernels rely on a single path from the com-
plementary ensemble, and domains in R2 or S2. However, more

Fig. 4. The Linear Hemispherical Transition Kernel uses the outgoing direc-
tion of a path from ϒ (the orange circle), and the current path (the green cir-
cle) to propose a new direction (the red circle) along the great arc denoted
by the dashed line. Other directions from ϒ which are not considered are
shown as empty circles.

information can be gained from utilizing all M paths in ϒ. For ex-
ample, a distribution in world space can be fit to the vertices at a
certain point along the path, recentered at the current path vertex,
and this distribution can be used for sampling. This allows lighting
information from multiple paths to inform sampling of the current
path, similar to Reibold et al. [2018].

There are multiple methods to achieve this; we describe one
such approach. We start with the j’th vertex in a path x j and an-
other vertex in the scene x ′j−1, and then retrieve the set of path

vertices from ϒ which match the index: υn
j ,υ

n
j−1 ∈ ϒ. For each sub-

path, we assign a weight:

w (n) =
S (x i ,υn , j, j + 1)∑M

k=1
S (x j ,υk , j, j + 1)

. (11)

Then each of these points is projected onto the plane defined
by x j and the normal at x j : N (x j ). Next, an anisotropic Gaussian
N (μ, Σ; ϒ,x j ) is fitted to these points via weighted maximum likeli-
hood estimation where the weight of each point is that assigned to
each path: μ = 1

M

∑M
n=1w (n)υn

j and Σ = 1
M−1
∑M

n=1w (n) (υn
j − μ )2.

This is recentered such that μ = x j , leading toN (x j , Σ; ϒ,x j ). This
recentering is required such that the sampled point is close to the
original, and to ensure that the evaluation of the reverse transi-
tion kernel returns a value similar to the proposed transition ker-
nel in the computation of the acceptance probability. The steps of
this algorithm are shown in Figure 5. Occasionally, all weights can
be zero, or a degenerate covariance matrix can be computed. We
detect these cases, and revert to a von Mises–Fisher distribution
aligned in the direction x ′j−1 → x j with a high concentration pa-

rameter for sampling. Another approach could be to convolve with
an isotropic Gaussian similar to Li et al. [2015]; however, the value
to use for the variance of the isotropic Gaussian is unclear in our
case.

Once the anisotropic Gaussian is defined in world space, it is
sampled producing a point z′j . This point may not be aligned to

the scene geometry, so a ray is traced from x j−1 in the direction
x j−1 → z′j , producing a new point on the scene manifold x ′j . The
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Fig. 5. The procedure to build and sample anisotropic Gaussian transition kernels.

Fig. 6. Generating and sampling using the guided directional transition kernels.

density w.r.t. area of computing this point is K (x i
j → x ′

i
j |Y) =

N (z′j |x j , Σ; ϒ,x j )
G (x ′j↔x j−1 )

G (z′j↔x j−1 ) , where the final term stems from the

ratio of geometry terms resulting from the Jacobian from sampling
a point on the plane over whichN (z′j |x j , Σ; ϒ,x j ) is defined, to the

scene manifold.
To compute the acceptance probability, this process has to be

computed in reverse; the distribution N (x ′j , Σ; ϒ,x ′j ) is first com-

puted, then the vertex x j is projected onto the plane defined by x ′j
and N (x ′j ) leading to a point zj . This leads to a resulting ratio:

K (x ′
i
j → x i

j |Y)

K (x i
j → x ′

i
j |Y)

=
N (zj |x ′j , Σ; ϒ,x ′j )G (z′j ↔ x j−1)G (x j ↔ x j−1)

N (z′j |x j , Σ; ϒ,x j )G (zj ↔ x j−1)G (x ′j ↔ x j−1)
.

(12)
A simpler version of this approach can be used on the image

plane. In this case, an anisotropic Gaussian can be fit to the
image plane coordinates of the paths in ϒ, each weighted by
the similarity measure. Again, this can be centered at the image
plane coordinates of the current path, and a new point on the
image plane for the proposed path can be sampled from this
distribution.

Guided Directional Transition Kernels. Guided anisotropic
transition kernels form an anisotropic distribution in world space.
However, sometimes it is useful to sample perturbations over solid

angle. The linear hemispherical transition kernel performs this, but
restricted along a great arc. Another approach is to fit a distribu-
tion on S2. Various approaches for this exist, for example tabulated,
spherical Gaussian or a von Mises–Fisher distribution. Any distri-
bution on the sphere whose parameters can be estimated from a
set of directions can be used. Given a set of normalized directions
from some base vertex x j to each member of ϒ, ωn = x j → υn

j ,

and weights computed in the same manner as Equation (11), the
parameters of a distribution can be estimated. Similar to the guided
anisotropic perturbations, this distribution is recentered around
the original direction from the vertex. This can then be sampled
generating directions which are guided by nearby paths. Figure 6
shows this process.

3.3 Guided Perturbation Strategies

The previous section defined a range of guided transition kernels
which are designed to update individual path vertices guided by
global information from the ensemble. When perturbing a path,
these guided transition kernels can be combined into a wide range
of guided perturbation strategies designed to explore different
lighting effects. Note that these can be combined with the origi-
nal mutation and perturbation strategies; this simply adds to the
strategies available. We always include the bidirectional mutation
strategy from Veach and Guibas [1997] as this ensures ergodic-
ity, thereby guaranteeing that the whole space will be explored.
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The following lists the strategies we have implemented, but many
more can be built using combinations of the kernels defined in Sec-
tion 3.2.

Linear Lens Perturbation.

Fig. 7. Linear Lens Perturbation.

The Linear Lens Pertur-
bation uses the linear tran-
sition kernel on the image
plane, then similar to Veach
and Guibas [1997] traces a
subpath over any specular
vertices, then connects to
the original path. As ϒ con-
tains paths with similar in-
teraction types and lengths
to the current path, this
strategy aims to explore the
image plane around similar

interaction types and also typically moves paths toward higher
contribution regions for that path type. This strategy samples a
path for the perturbation from ϒ, where the weight for the k’th

path is given by S (x i ,υk , j,k )∑N
p=1 S (x i ,υp, j,k )

, where j is the index of a vertex

on the camera, and k is the index of the first non-specular vertex
in the path. Figure 7 illustrates this strategy.

Linear Caustic Perturbation.

Fig. 8. Linear Caustic Perturbation.

Linear Caustic Pertur-
bation uses the linear
hemispherical transition
kernel to perturb the
sampled direction on the
hemisphere to take into
account nearby caustic
paths. In this case, ϒ
will only contain caustic
paths of the same num-
ber of path vertices, so
they are likely to be ex-
ploring a similar region

of the scene. This first finds the best path from ϒ which closest
matches the starting point and first specular vertex of the origi-
nal caustic subpath, and sets the directions ω1 = x i

c → x i
c−1, and

ω2 = x i
c → υn

c−1. This then perturbs the direction on the hemi-
sphere, and traces the specular subpath to the first diffuse vertex,
and connects to the camera. This is visualized in Figure 8.

Linear Multi-Chain Perturbation.

Fig. 9. Linear Multi-chain
Perturbation.

Similar to the multi-
chain strategy described in
Veach and Guibas [1997],
Linear Multi-chain Per-
turbation uses the linear
transition kernel on the
image plane in the same
way as the Linear Lens
Perturbation. This then
traces a specular chain
until a non-specular vertex

is generated. A deterministic connection to the next specular
subpath is then made and this process repeats until the path
can be reconnected to the light subpath of the original path (see
Figure 9).

Anisotropic Path Perturbation.

Fig. 10. The Anisotropic Path Perturbation uses the guided anisotropic
perturbations for the first and second non-specular interactions from the
camera. This can either start from the camera (left image), or toward the
camera (right image).

This perturbation strategy comprises using the guided
anisotropic transition kernels to perturb the current path. This
can be applied to any number of path vertices, either from the
light source or the eye. As the process of fitting an anisotropic
Gaussian is relatively expensive, we restrict this perturbation
to the first two vertices from the camera, and randomly select
whether to sample from or toward the camera. If sampling from
the camera is selected, an anisotropic Gaussian is created on
the image plane and sampled, and for all other non-specular
interactions the guided anisotropic transition kernels in world
space are used, then reconnected to the original path. Likewise,
if sampling toward the camera is selected, the guided anisotropic
transition kernel is used to generate path vertices which are
deterministically connected to the camera. This perturbation
strategy helps to explore the local region around the path, and
sampling more than one vertex from the camera helps to minimize
the impact of the weak singularity in the geometry term near
edges visible from the camera (see Figure 10). Another option is
to sample with respect to solid angle similar to Otsu et al. [2018]
or using the guided hemispherical perturbation which would can-
cel geometry terms in the calculation of the acceptance probability.

Environment Perturbation.

Fig. 11. Environment Perturbation.

This perturbation is de-
signed to explore environment
lighting based on nearby paths.
This perturbation uses the
linear hemispherical tran-
sition kernel or the guided
directional transition kernel
applied toward the environ-
ment map to perturb the
direction to the environment
map, assuming that the first
path vertex from the light is non-specular. This is illustrated in
Figure 11. Variants of this strategy can also be applied to other
area light sources, or for light source selection.
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3.4 Implementation Details

This method is initialized similar to the resampling approach de-
scribed in MLT [Veach and Guibas 1997]. A large set of paths
is computed with bidirectional path tracing, the contributions of
these paths stored and used to scale the result, then these paths
are resampled into two subsets: one to generate the ensemble X ,
and the other used to generate the complementary ensemble Y .

There is no limit on the size of X and Y; however, for conve-
nience we choose them to be the same size of |X| = |Y| = 16, 384
(please see the supplementary material for further analysis). There
is also much flexibility about when to update and swap ensembles
(see Section 3 for details). Although updating the data structures
for finding paths sampling is relatively inexpensive, this does come
with some computational overhead of clearing out previous values
and reinserting new values. Therefore, each path in the ensemble
is perturbed or mutated it times (see Algorithm 1) before the en-
sembles are swapped, which amortizes the overhead of updating
the data structure compared to swapping after every mutation or

perturbation. We choose it to take a value of
⌊

W ×H
|X |+ |Y |

⌋
, whereW

and H are the width and height of the image plane, respectively,
which balances the computation cost of rebuilding the data struc-
tures and runtime performance.

There is significant freedom to choose the value of α used for
the linear transition kernels described in Section 3.2. However, the
method does not work well if this is set to a constant, as if the paths
in ϒ are clustered in a small region of space, e.g., in a small area on
the image plane, then α should be large to facilitate exploration of
a small space. Conversely, when paths are spread over a large area
α should be small such that the proposed path is able to explore
a similar region of the space. We solve this issue by adapting α
based on ϒ. For a linear perturbation on the lens, we first compute
a ratio of the bounding box of the image plane coordinates of each
path in ϒ to the image plane resolution: br es . α is then computed
by linearly interpolating between two bounds αl and αs based on

a weight wα = (1 + e
− br es −c

σ 2 )−1, where c ∈ [0..1]. This uses a
generalized sigmoid as a weighting function as it gives control over
where and how fast the weights transition from 0 to 1. We use the
parameters αl = 0.5, αs = 0.05, c = 0.1, and σ 2 = 0.02, although
the algorithm is quite robust to these values. The supplementary
material provides further details on the impact of α .

For the linear lens, caustic, and multi-chain perturbations, if the
number of paths in ϒ is less than two, then the original perturba-
tion strategies are used. This is to handle two situations: one is if
no nearby paths are found, then the path can still be perturbed,
and secondly, if only one path is found then there is too little infor-
mation about nearby paths to create a useful sampling distribution.
We also set the probabilities of sampling each proposed mutation
type to be equal.

4 RESULTS

EMLT, MLT [Veach and Guibas 1997], and Geometry Aware MLT
(GAMLT) [Otsu et al. 2018] were implemented into the same ren-
dering framework for comparison. We implemented the Bidirec-
tional, Lens, Caustic, and Multichain perturbations in MLT, and
compare to GAMLT as it is the closest method to ours in terms

of using adaptive sized perturbations in path space. We tested the
methods in a variety of scenes, from those which exhibit challeng-
ing light transport where MCMC methods are expected to perform
well, to simpler scenes which represent more common use cases
for rendering. All results were computed on a laptop with an i7-
8750H and 16GB RAM. Computation was spread over 12 threads
using a thread pool to process paths in parallel and the ensemble
was the same size per scene (see Section 3.4 for more information).
We set a constant probability for the bidirectional mutation of 1

3 .
All results were rendered at an average of 64 mutations per pixel
to allow equal comparison between methods.

4.1 Indirect Lighting

Our method is primarily focused on efficiently computing global
illumination. Therefore, we first investigate the performance of
EMLT in scenes with indirect lighting only, as direct lighting can
be efficiently handled by other techniques in these scenes when
compared to MLT. We show results for six scenes which exhibit
different types of lighting effects. The DOOR AJAR scene in
Figure 1 is a challenging scenario where light propagates through
the ajar door. Similarly, the BEDROOM scene in Figure 15 has
thick, diffuse curtains with a light source on the other side leading
to a very challenging lighting scenario. The CLASSROOM scene
in Figure 15 is lit by an environment map with light entering
through the windows. The KITCHEN scene in Figure 15 shows
strong indirect lighting on the back wall and glossy reflections.
The CORNELL BOX scene in Figure 16 is representative of many
real-world scenes with simple lighting configurations. Finally,
the STAIRCASE scene exhibits simple indirect lighting above the
stairs, and more complicated indirect lighting under the stairs.
Insets in the images show details, and the values printed on the
top left of full resolution images correspond to Mean Squared

Error (MSE) for the whole image.
In Figure 17, we show loglog convergence plots for MSE

versus average mutations per pixel for the scenes used in this
article to show how error decreases. This shows that there is an
improvement in convergence using EMLT (blue line) compared to
MLT (green line) and GAMLT (red line; see below for further dis-
cussion). This can be seen in the rendered images as a reduction in
noise compared to MLT. Diffuse and low glossy surfaces, such as
the walls in the DOOR AJAR, CLASSROOM, and CORNELL BOX
scenes, or behind the cooker in the KITCHEN scene, exhibit signif-
icantly reduced variance with EMLT. This is due to the transition
kernels adapting to both the illumination and scene as encoded
in the paths in the ensemble. However, EMLT also captures
higher frequency lighting effects, and can adapt to higher glossy
materials, as can be seen in the BEDROOM scene above the cur-
tains, the metal on the chairs in the CLASSROOM scene, and the
strong indirect lighting on the back wall in the KITCHEN scene.
EMLT leads to improvements in MSE for all tested scenes com-
pared to MLT: 2.23× for DOOR AJAR, 1.38× for the BEDROOM
scene, 2.11× for the CLASSROOM scene, 1.44× for KITCHEN,
1.71× for the STAIRCASE scene, and 2.93× for the CORNELL
BOX scene.
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Fig. 12. Visualization of perturbations on the image plane for the
KITCHEN scene. Green colors mean perturbations were predominantly
vertical, red means predominantly horizontal, and yellow means pertur-
bations were predominantly isotropic. The left image shows perturbations
from MLT and the right shows our method.

Figure 12 visualizes the anisotropic nature of the perturbations
proposed in this article for the KITCHEN scene; other scenes are
shown in the supplementary material. The colors visualize the
predominant direction of the perturbations on the image plane,
green represents vertical, red shows horizontal, while yellow are
isotropic. The perturbations for MLT are predominantly isotropic,
as the lens and multi-chain perturbations use an isotropic tran-
sition kernel. In MLT, caustic perturbations are isotropic over
the hemisphere, but do lead to an anisotropic distribution on the
image plane. Our method in contrast adapts to both geometry
and lighting information as can be seen in the right image in
Figure 12. This shows that EMLT proposes perturbations which are
predominantly horizontal in the strong horizontal indirect lighting
on the rear wall, whereas on the rest of the wall the perturbations
are predominantly vertical.

4.1.1 Comparison to GAMLT. Our implementation of GAMLT
for indirect lighting used the geometry aware multi-chain pertur-
bations with the same parameters as used for the results in Otsu
et al. [2018], and we also extended this to use geometry aware
lens and caustic perturbations following the same approach as
described in Otsu et al. [2018]. We found this significantly im-
proved the results in GAMLT and these extra perturbation strate-
gies were implemented to facilitate a fair comparison between
EMLT, MLT, and GAMLT. The convergence plots in Figure 17 show
that EMLT outperforms GAMLT in several scenes, although both
EMLT and GAMLT have similar variance reduction properties in
the KITCHEN and CLASSROOM scenes. This is due to more small
scale details in these scenes which GAMLT can adapt to, leading to
approximately equal performance to EMLT. However, EMLT also
adapts to these details, while also adapting to incident illumina-
tion. GAMLT is also significantly more computationally expensive
than EMLT. In our implementation, we observed a 4 to 10 times in-
crease in time to generate the same number of samples. Figure 18
shows results comparing EMLT to GAMLT for the STAIRCASE
scene. Both EMLT and GAMLT are able to achieve variance reduc-
tion by considering scene geometry in the transition kernels, but
EMLT is also able to better adapt to illumination, as can be seen in
the inset images.

4.2 Ablation Study

We performed an ablation study to assess the impact of the
proposed strategies. We rendered the scenes using either the
Anisotropic Path Perturbation, the Linear Guided Perturbations, or
the combination of these two strategies. Figure 13 shows zoomed

Fig. 13. Ablation study for the perturbation types presented in this article,
where Ani refers to the Anisotropic Path Perturbation, Lin refers to the
Linear Guided Perturbations, and EMLT refers to the combination. Com-
bination refers to using all strategies presented in this article. The images
show insets of the scenes used in this article, and MSE values are shown
in Table 1.

Table 1. MSE Values for the Different Strategies Used in
the Ablation Study (for the Scenes Used in this Article, see

Figure 13 for Accompanying Images)

Scene MLT Ani Lin EMLT

DOOR AJAR 7.32e-3 4.14e-3 3.86e-3 3.28e-3

KITCHEN 2.19e-2 1.75e-2 1.56e-2 1.52e-2

BEDROOM 1.15e-4 9.28e-5 9.24e-5 8.34e-5

STAIRCASE 7.42e-5 5.07e-5 4.92e-5 4.34e-5

CLASSROOM 2.45e-2 1.26e-2 1.32e-2 1.16e-2

CORNELL BOX 9.62e-3 4.72e-3 4.34e-3 3.28e-3

in regions of the scenes used in this article highlighting the dif-
ferences between strategies visually, and Table 1 provides MSE
values for these strategies across all scenes. This shows that the
Anisotropic Path Perturbation is effective at reducing noise in re-
gions with low frequency variations in lighting and is responsi-
ble for an average of 63% improvement over MLT in the scenes
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Table 2. MSE Values for Direct Lighting

Scene MIS MLT EMLT

BREAKFAST ROOM 0.1082 0.0213 0.0177

SPONZA 0.0193 0.0038 0.0031

in this article. However, this exhibits noise when sampling higher
frequency lighting as the subset of paths contained in ϒ are less
likely to be able to capture this type of lighting effect. Conversely,
the Linear Lens, Caustic, and Multichain Perturbations are efficient
at capturing these higher frequency effects and are responsible for
an average of 68% improvement over MLT, but exhibit more noise
in more uniform regions of the scene. The combination of these
strategies is able to reduce noise in both low and high frequency
variations in lighting.

4.3 Direct Lighting

To more clearly demonstrate the performance of the environment
perturbation, we apply our method to direct lighting. This uses
a combination of the Guided Lens Perturbation to perturb path
position on the image plane, and the Environment Perturbation
to guide sampling on the environment map. We compare with
a traditional approach of BRDF and environment sampling com-
bined with MIS, MLT applied to direct lighting, and EMLT. Please
note, this is not meant to compete with specialized direct light-
ing approaches, but to illustrate the proposed perturbation strate-
gies. In Figure 19, we show results for the BREAKFAST ROOM
and SPONZA scene, only showing direct illumination from the en-
vironment map. Table 2 shows MSE for the scenes and sampling
techniques. This shows that our perturbations outperform MLT,
and significantly improve on using MIS for direct lighting.

4.4 Performance

Our method has some computational overhead compared to MLT.
On average, we observed an 18% overhead with our method due to
(a) rebuilding the pools of paths (see Section 3.1.1), although this
is amortized by infrequently updating the pools, and (b) slightly
more complicated procedures for sampling perturbations. The ma-
jority of the overhead in our implementation comes from com-
puting the similarity measure (Section 3.1.2). The impact of this
overhead is illustrated in Figure 14, where we show the results for
equal time versus equal quality for the scenes where our method
performs best (DOOR AJAR) and worst (KITCHEN). The images
show the same insets corresponding to Figures 1 and 15, respec-
tively. These results show that the overhead of our method is out-
weighed by the variance reduction of guided transition kernels in
EMLT.

EMLT also proposes perturbations which are more likely to
be accepted than with MLT. For the scenes in this article, we
observed a 14% increase in the acceptance probability averaged
over all the scenes.

5 DISCUSSION AND FUTURE WORK

In this section, we briefly discuss our method, and propose
directions to extend this work.

Fig. 14. Equal time versus equal quality for the DOOR AJAR and KITCHEN
scenes. The images correspond to the same insets as the main results. The
left column shows MLT rendered for 30 s, the middle is EMLT rendered for
30 s, and the right images show MLT rendered to the same MSE for the
whole image.

Derivative-Based Approaches. Our method guides sampling
based on creating distributions from an ensemble of paths which
capture lighting information in the region near the current path.
The size of this region depends on the number of paths selected
from the pool (ϒ), and the size of the pool. Approaches such as
Li et al. [2015] and Luan et al. [2020] use gradient information
associated with the path to create proposal distributions which
allow perturbations to be proportional to the local gradient.
Our work is complementary to these approaches as we target
perturbations guided over a wider region, and as such can take
into account larger scale geometric and lighting details, whereas
these approaches allow for more optimal local perturbations but
do not consider lighting from nearby paths, or geometrical detail.
Combining both approaches would be an interesting avenue for
future work.

Combination with Primary Sample Space. Our approach
works in world space as discussed in Section 3. However, us-
ing the approaches which fuse world space Metropolis Light
Transport and PSSMLT [Bitterli et al. 2018; Otsu et al. 2017;
Pantaleoni 2017] would allow our approach to be combined
with PSS approaches. Another approach would be to adapt our
method to work in PSS; however, this is not trivial as discussed in
Section 3.

Combination with Other Mutation Strategies. Perturbation
strategies such as Manifold Perturbations [Jakob and Marschner
2012], Multiple Try Metropolis [Nimier-David et al. 2019; Segovia
et al. 2007], selectively choosing paths to perturb [Bitterli and
Jarosz 2019], and Delayed Rejection MLT [Rioux-Lavoie et al.
2020] could all be combined with our approach into a larger set of
possible strategies. Manifold perturbations are especially effective
at locally perturbing specular paths, thus complementary to
our approach which perturbs paths in a wider region. Delayed
Rejection MLT would help balance between when to use the
different strategies, leading to a more efficient method.
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Fig. 15. Results for the BEDROOM, KITCHEN, and CLASSROOM scenes. The left images are the reference, middle is MLT, and the right images are EMLT.
Insets highlight reduced variance with our method, for example showing where the sampling has adapted to scene geometry or illumination.

Parameters. Our method requires several parameters such as
pool size, update frequency, the number of paths in ϒ, and the
parameters used to compute α . We discuss these parameters
in Section 3.4; however, we do not claim these parameters are
optimal. Theoretically finding optimal values of these parameters
would be useful as it would further increase the efficiency of our
method. One possibility is to use the scene acceleration structure
to estimate maximum values for the parameters used in the same
manner as the approach taken by Otsu et al. [2018].

Limitations. While our method achieves variance reduction for
scenes with both complicated and simple lighting, there are some
situations or sets of parameters where our method is outperformed

by MLT. An example of this is when the size of the ensemble be-
comes very small. In this case, there is not enough information in
the complementary ensemble to guide sampling, and our method
falls back to MLT, albeit with the computational overhead of main-
taining a pool. We found this was not a problem using the range of
parameters outlined in Section 3.4, but there may be scenes which
require the ensemble to represent more paths.

Finally, the approach of deterministically selecting a subset of
paths from an ensemble of paths could be used for path guiding
in non-MCMC methods such as path tracing. This would have
the advantage of no longer requiring an additional spatial data
structure as is needed by the approaches in Section 2.2, and would
likely require different probability distributions than those used
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Fig. 16. Results for the CORNELL BOX scene. This illustrates that EMLT provides an advantage over MLT in simple scenes.

Fig. 17. Convergence graphs showing MSE versus average mutations per pixel on a logarithmic scale for the scenes used in this article. The blue line is
EMLT, green is MLT, and red is GAMLT.

Fig. 18. Results for the STAIRCASE scene showing the reference on the left, GAMLT in the middle, and EMLT on the right. This shows that both EMLT and
GAMLT can adapt transition kernels to the scene geometry, but EMLT can also sample illumination, leading to variance reduction.
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Fig. 19. Environment Lighting in the BREAKFAST ROOM scene (top row) and SPONZA (bottom row). The inset images show (left to right): Reference, MIS,
MLT, and EMLT. Our guided perturbations reduce variance compared to MLT, and significantly compared to MIS.

in this article. However, we believe this could lead to conceptually
simpler and easier to implement path guiding with lower memory
overheads.

6 CONCLUSION

This article has presented a new family of transition kernels for
MCMC rendering algorithms. These are based on efficiently sam-
pling ensembles of transport paths, and utilizing these ensembles
to guide path mutations. This approach does not require spatial
caching of radiance or importance distributions, nor the associ-
ated spatial data structures, yet is efficient and reduces variance
in scenes of different complexity and light transport effects. We
believe that many more transport kernels of the type presented
in this article are possible, and we hope this work opens up new
possibilities for further variance reduction strategies for MCMC
methods in the future.
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