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ABSTRACT
Traditional post-hoc high-fidelity scientific visualization (HSV) of
numerical simulations requires multiple I/O check-pointing to in-
spect the simulation progress. The costs of these I/O operations
are high and can grow exponentially with increasing problem sizes.
In situ HSV dispenses with costly check-pointing I/O operations,
but requires additional computing resources to generate the visual-
ization, increasing power and energy consumption. In this paper
we present LOOM, a new interweaving approach supported by
a task scheduling framework to allow tightly coupled in situ vi-
sualization without significantly adding to the overall simulation
runtime. The approach exploits the idle times of the numerical
simulation threads, due to workload imbalances, to perform the
visualization steps. Overall execution time (simulation plus visu-
alization) is minimized. Power requirements are also minimized
by sharing the same computational resources among numerical
simulation and visualization tasks. We demonstrate that LOOM
reduces time to visualization by 3× compared to a traditional non-
interwoven pipeline. Our results here demonstrate good potential
for additional gains for large distributed-memory use cases with
larger interleaving opportunities.
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1 INTRODUCTION
Today high-performance computing (HPC) has become pervasive
across all society. Science, health care, industry, and even enter-
tainment rely on considerable computing resources, especially on
HPC.

Numerical simulation is the cornerstone for discovery in science
and engineering, with increasing demands for computational re-
sources and producing massive datasets for analysis. In addition to
the computation itself, most of these applications and workflows
involve some graphical capabilities, either as part of the application
itself (e.g., user interface) or for analysis of the resulting data (e.g.,
scientific visualization) [10].

Scientific visualization is typically the last step in the scien-
tific numerical analysis pipeline and, until a decade ago, was only
performed using a post-hoc approach. A collection of frameworks
[4, 8, 9, 12, 14, 15, 22] are considered tightly-coupled, and many
also offer an off-node, "loosely coupled" mode which requires addi-
tional computational resources. The loosely coupled approach uses
a collection of techniques to intercept the data, for instance, ADIOS
[13], an in-transit framework that intercepts the simulation I/O
operations to transport the data the visualization nodes. Two other
examples of co-processing approach are ParaView Catalyst[4] from
Kitware, and VisIt libsim[22] from Lawrence Livermore National
Laboratory (LLNL) and Intelligent Light.

We observe that since a simulation and the analysis of that simu-
lation represent separate workflow phases, there is an opportunity
to exploit simulation workload imbalance to insert visualization
operations on "ready" simulation data before global conclusion
of a simulation iteration. This paper presents LOOM, a new in-
terweaving approach to in situ numeric simulation and scientific
visualization resource sharing. The new interweaving approach
aims to integrate the two workloads seamlessly by classifying each
as high and low priority, respectively, and schedule the task exe-
cution such that the low priority task execution can fully exploit
the potential resource idle due to the numeric simulation load un-
balance and minimize or even hide the visualization workload cost.
We demonstrate that for both a single-node, multi-threaded use
case and a small multi-node use case, LOOM achieves time to visu-
alization 3 × faster than non-interwoven simulation-visualization
workflow. We expect LOOM to achieve similar performance for
large multi-node use cases with greater work imbalance across
nodes.
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2 RELATEDWORK
For the last decade, a significant effort has been made to migrate
from a post-hoc visualization to an in situ data visualization, and
analysis [7]. These efforts stem from the need to overcome some
of the significant I/O bottlenecks [2, 19] that large numeric simula-
tions incur when dumping their state for post-analysis, especially
as they scale up to exascale. Furthermore, it is critical to allow com-
putational steering as the numeric simulations grow up to exascale.

Although a collection of frameworks [4, 8, 9, 12, 14, 15, 22] are
considered tightly-coupled often requiring additional computa-
tional resources. Amore complete description of in situ terminology
and frameworks can be found by Kress [11] and Childs et al. [7].

Zheng et. al. [23] proposed the GoldRush framework that per-
forms analysis during the serial portions of OpenMP based scientific
applications. GoldRush is able to predict the serial region length
and execute the analysis payload when the interval is long enough.
This approach throws out any serial region deemed small and so
does not recover the idle time of the cores waiting for the end of
the parallel region.

Barbosa et al. [5, 18] proposed allowing the developer to define
the partition method for the data and rely on a performance model
and scheduler to dice the tasks to be decomposed into smaller ones
when needed. This mechanism can be leveraged to enable the inter-
weaving of simulation and visualization tasks, primarily because
they operate in different time intervals, t and t − 1, respectively. We
leverage this property in our approach.

Our work is a tightly coupled in situ, focusing on balancing the
simulation and the visualization workloads by exploiting the idle
time in the simulation threads. This approach allows us to reduce
the overall simulation and visualization time (Ts+v ) saving at least
static energy and our goal is to achieve a solution time (Ts | |v ) equal
to the simulation execution time (Ts ).

3 OUR APPROACH
Assuming that the simulation is irregular, we also assume that it
will generate idle time that we can exploit to hide a portion of the
visualization time. Our goal is then to interweave the simulation
and the visualization in such a way that: Ts ≤ Ts ∥v < Ts+v , i.e.,
such that the execution Ts ∥v is equal to the simulation time (Ts )
and smaller than the traditional approach (Ts+v ).

This requires as little impact on the simulation as possible, thus
we use a priority based policy for our scheduling approach. We
schedule tasks (τ ) as high or low priority depending on if they are
simulation or visualization tasks. Using this approach, we ensure
that for the scheduling interval that corresponds to the interval
between I/O checkpoints, the scheduler serves primarily ready to
execute simulation tasks (τs ), while serving τv tasks, if available,
when simulation threads idles. The solution gives rise to a gran-
ularity of τv , i.e., if the workload from τv (W (τv )) is too large, it
will delay the execution of subsequently scheduled τs , on the other
hand, ifW (τv ) is too small it will increase the scheduling overhead.
To address this problem, we follow the approach proposed by Bar-
bosa et al. [5, 18] referred to as dicing. The dicing strategy enables
the developer to define a generic workload applied to a partition
created by the scheduler using a developer-defined partitioning
method called dice. In other words, the scheduler is free to dice the

original task τv to fit a specific time slot, in our case, an expected
idle time between consecutive τs . As a consequence, the scheduler
will begin sim timestep t + 1 immediately after sim timestep t and
attempt to render vis timestep t within the gaps of sim timestep
t + 1. This approach offers more opportunities to interleave the
computation compared to rendering vis t within the gaps of sim
t , at the cost of maintaining both timesteps sim t and sim t + 1 in
memory.

We use a simple moving average model to predict both the idle
time (Ti ) and visualization task execution time (Tv,τv ). Such val-
ues are fed to the scheduler, which estimates the diced task (τ

′

v )
workload size (W (τ

′

v )) using the following equation:

W (τ
′

v ) =
Ti ∗W (τv )

Tv
(1)

whereW (τ
′

v ) is going to be passed to the developer defined partition
method to obtain τ

′

v . The partitioned task is then submitted for
execution and the remainingW (τv ) is pushed for rescheduling.

To maintain and ensure that all task dependencies are met and to
ensure execution in a timely fashion, we maintain a hierarchical set
of queues that serve different purposes. At the top level, wemaintain
aGlobal Not Ready Queue (GNRQ) implemented as a directed acyclic
graph (DAG) that contains all the tasks submitted to the scheduler
that are not yet ready for execution due to dependencies. Whenever
a task is executed, all of its successors are checked to verify if any
became ready for execution. If the successor has become ready (all
dependencies are met), it is moved to a Global Ready Queue (GRQ).
We implement the priority scheduling policy described above at
this level. Ultimately a Local Ready Queue (LRQ) is used at each
core to reduce access contention to GRQ and to implement a simple
work-stealing mechanism to improve load balancing among the
cores: i) Pull from GRQ a set of tasks (high and low according to
the GRQ policy) to fill the LRQ; ii) If GRQ is empty, steal work from
the core siblings if possible; and iii) Idle the core if no more work
exists in the scheduler GRQ and LRQ’s until a task released from
GNRQ awakes the core/thread.

Using this strategy, we can interweave the simulation and visu-
alization as shown in Figure 1 using real data from the scheduler.

4 NUMERIC SIMULATION AND SCIENTIFIC
VISUALIZATION INTERWEAVING

We assume that the numeric simulation performs its own partition
(decomposition) and that such partitioning is efficient, and thus the
task implements an operation over each partition. For the visual-
ization, we implement diceble tasks that the scheduler can shape to
the best granularity to fit in the numeric simulation idle gaps.

4.1 Generic Task and Diceble Task
A Generic Task is an object that encodes a workload using state
attributes and an execute method, i.e., it encodes the operation to
perform and the application state to manipulate within the class
attributes.

A Diceable Task is a generic task that adds a user-defined dice
method allowing the scheduler to request specific sized partitions.
A generalized prediction model for the work generated by a certain
partition size remains an open research question beyond the scope
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of this paper. Rather than a generalized model, we use a per-task
user-defined work unit (Wu) that allows the user to specify the
number ofWu’s per task, enabling them to define work by the
concept or measure most appropriate for the task. The scheduler
uses the observed execution time of these work units to create a
statistical model of expected execution time that determines the
number of work units to schedule into an available time slot, as
described in Equation 1.

4.2 Execution and Scheduling
The task system uses a simple work-stealing strategy that balances
workloads across the threads issued to eachCPU core. The scheduler
does not over-subscribe the CPU cores except for the first core
that runs a working thread and the main application thread. Each
thread has its individual Local Ready Queue (LRQ) from where it
pulls a single task for execution. All tasks in the LRQ are ready
for execution, i.e., it is expected that all tasks in LRQ have their
dependencies met. Whenever the LRQ is empty it either: i) steals
a group of tasks from the the Global Ready Queue (GRQ); ii) Steal
a group of tasks from the neighbors LRQ if GRQ is empty; and iii)
Idle/Sleep on a conditional variable until a task is posted to GRQ.

The system keeps a DAG with all the tasks in flight, i.e., all the
tasks submitted for execution but have not yet been executed.When
a task is submitted, the set of dependencies must be attached by the
developer. These dependency sets are used to build the DAG, which
is used to ensure that all dependencies are met before placing the
task in the GRQ.

When a diceble task is pulled from the GRQ, the dice method of
the task is invoked after computing the value of equation 1 using
the performance bookkeeping. If a new task is returned, it is placed
in LRQ, and the remaining task (the part that was not assigned to
the diced task) is placed back in the GRQ; otherwise, it is assumed
that the task cannot be diced anymore and placed in the LRQ.

4.3 Time bookkeeping
A crucial step is to keep a reasonable time bookkeeping with the
scheduler since the visualization tasks’ dice strategy needs it. We
achieve such a goal by measuring the time a working thread sleeps,
the time a task takes to execute, and the scheduler’s scheduling
overhead. For the idle time information, we maintain two simple
atomic variables per worker thread that store: the total amount of
idle time of the thread and a weighted moving average of the idle
time interval.

The only tasks that we track are the diceble tasks through the
user-defined method to partition the task into smaller ones. For each
diceble task type, we keep a collection of ten samples uniformly
random selected containing: the average idle time of the thread
when the dice was requested; the total number of work units (Wu)
as supplied by the developer; the total execution time of the sam-
ple; and estimated execution time as predicted by the scheduler.
Whenever a dice request is going to be performed, the samples are
averaged, and the values obtained are supplied to equation 1.

5 RESULTS
5.1 VADIS
We test our assumption on a Computational Fluid Dynamics (CFD)
model VADIS (pollutant DISpersion in the atmosphere under VAri-
able wind conditions) developed as a numerical tool to assess lo-
cal scale air pollutants dispersion in complex urban morphologies
[3, 16, 17, 20], by considering multi-obstacle and multi-source de-
scription, as well as time-varying flow fields and time-varying
emissions. The VADIS functioning is based on two modules: the
FLOW and the DISPER modules. The FLOW is an Eulerian mod-
ule that uses the numerical solution of the 3D Reynolds averaged
Navier-Stokes equations to calculate the wind velocity components,
turbulent viscosity, pressure, turbulence kinetic energy, and temper-
ature fields. The DISPER module applies the Lagrangian approach
to the computation of the 3D concentration field of the air pollutant
dispersion using the wind field previously estimated by the FLOW.

5.2 DGSWEM
We use the discontinuous Galerkin (DG) shallow water equation
model (SWEM) as an example of an application that requires sci-
entific visualization to monitor the progress of the simulation.
DGSWEM is a hurricane storm surge prediction model which takes
into account the effects of wind stress that pushes water on to land
using a DG kernel which has achieved widespread popularity due
to its stability and high-order convergence properties. For details
of the model and the parallelization method see [6].

5.3 Testing environment
The interweaving solution was tested on an Intel(R) Core(TM)
i7-8809G CPU @ 3.10GHz, with four cores plus two-way hyper-
threading (8 core targets), 32GB of RAM, and an SSD storage unit.
The machine was running Fedora Core 33 with kernel 5.10.13-
200.fc32. The software was compiled with GCC version 11.0.0 with
options "-O3 -arch=native". Frontera [21] at the Texas Advanced
Computing Center (TACC) was also used. We used up to 4 compute
nodes each with two Intel(R) Xeon(TM) Platinum 8280 ("Cascade
Lake") processors for 56 cores per node, without hyper-threading,
running CentOS 7.8. The software was compiled with GCC version
8.3.0 with options "-O3 -arch=native". Each version of the appli-
cation and the different combinations was run 10 times, and the
average time was taken as the reference value.

5.4 Results Discussion
Figure 1 shows how the interweaving approach works on the DIS-
PER application from VADIS, with the simulation tasks in red, the
I/O tasks for the simulation to read data from storage in yellow,
and the visualization tasks for the previous simulation results in
green. Figure 1 (a) shows the result of performing the visualization
and simulation using the traditional in situ approach, where all
the tasks from t − 1 are executed prior to the simulation tasks of
t . We can see that between the simulation tasks black blocks rep-
resent idle time that is wasted. In Figure 1 (b) we can see that the
visualization tasks from t − 1 are inter-weaved with the simulation
tasks of t leading to a much lower percentage of overall idle time.
Furthermore, since the time axis of both images are the same length
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(a) Traditional in situ approach

(b) LOOM approach

Figure 1: DISPER - VADIS task timeline plot for visualiza-
tion at time t and simulation at time t + 1 on a 8 core ma-
chine: the visualization tasks are in green and the simula-
tion tasks are in red. Time grows from left to right and time
axis has the same length. By interleaving simulation and
analysis, our approach completes the workflow faster than
traditional post-hoc analysis.

∆ Ts Ts+v Ts ∥v ↓ TTV Ts+IO
3 187.29 487.61 402.2 1.39x 246.74

1.5 636.02 1097.94 929.89 1.57x 1366.63
1 1723.18 2382.19 1953.83 2.85x 4740.81

Table 1: DISPER simulation time, sequential time for sim-
ulation and visualization, parallel execution of simulation
and visualization, improved time to visualization (TTV), and
simulation with I/O (sim cost for post-hoc analysis). ∆ is the
decomposition delta of the 1248 × 1248 × 120 grid using 3m,
1.5m and 1m cell size.

Nodes Ts Ts+v Ts ∥v ↓ TTV Ts+IO
2 2141 2273 2189 2.75x 2991
4 1219 1298 1247 2.82x 1603

Table 2: DGSWEM simulation time, time for simulation and
visualization, parallel execution of simulation and visualiza-
tion using 2 and 4 nodes of TACC Frontera

we can see that there is an total time advantage of interweaving
the tasks; this overall time reduction is due to the recovery of the
idle time of Figure 1 (a). This advantage can be seen on Table 1.

Table 1 shows the average results from DISPER application of
VADIS in seconds for each of the configurations for different grid
sizes obtained by defining the decomposition delta of the grid as
33m, 1.53m, and 11m respective to the full grid size of 1248× 1248×
120 meters of an urban environment. Besides defining the fluid
field size for the advection space, the grid also defines the particle
concentration volume that is checkpointed (I/O) and the size of the
volume used for volume ray tracing through the Intel OpenVKL
library.

Each column of Table 1 represents a different configuration of
the application. The Ts column shows the result of executing the
numerical simulation and is our base point for the complete analy-
sis. Ts+v column presents the average execution of the simulation
code followed by the visualization code sequentially, i.e., without
overlapping with the simulation step of the next time step. The
column Ts ∥v is our proposed approach that overlaps the execution
of the next simulation step with the in situ visualization of the pre-
vious time-step. The Ts+IO is similar to our approach because we
overlap IO and simulation instead of waiting for the write operation
to finish; however, instead of performing the visualization, it writes
the final pollutant particle concentration into the disk.

The "↓ TTV" values show the reduction of time to visualiza-
tion using our approach Ts ∥v when compared to the traditional
approach Ts+v using the following formula:

Improvement =
Ts+v −Ts
Ts ∥v −Ts

(2)

Table 1 shows that as simulation size increases, the cost of check-
pointing data for post-hoc analysis also increases (as expected) and
that even at these modest simulation sizes, in situ methods provide
faster time to visualization. Although the rendering cost is higher
as resolution increases, it does not increase in a cubic fashion but
the worst case as the norm of the diagonal of the volume. As seen
in Figure 1 the higher cost of the simulation allows for the entire
visualization step to finish before the simulation step. This charac-
teristic also explains why the improvement increases with the grid
size; we have more time to hide the visualization.

Table 2 shows the execution of DGSWEM for different MPI pro-
cesses count. The visualization of DGSWEM generates per check-
point three 4k (4096× 2160) images showing three different proper-
ties. The images are generated in each process for the local meshes
and gathered in rank 0 using a last sort approach. Table 2 shows
that we were able to hide a significant portion of the visualization
cost to achieve almost a 3x acceleration. However, we can clearly
see that the visualization still has a significant weight in the overall
execution which implies that the idle time predictor needs improve-
ment to be able to reduce the impact of visualization and better
estimate the vis workload.

6 CONCLUSION
In this paper we present a interweaving simulation and in situ
visualization workloads able to exploit the simulation idle time to
perform the lower priority task (visualization). The interweaving
is supported by a scheduling strategy that includes an automatic
granularity adjustment of the visualization workload using a user-
defined dicing function. This strategy allows the scheduler to choose
a granularity that matches the expected idle time with a low over-
head.

The proposed approach in this paper does not yet target a production-
scale in situ visualization pipeline, most obviously due to the lack
of a cross-node scheduler (the DGSWEM results interleave only lo-
cally to each node). Nevertheless, these results demonstrate overall
efficiency for both execution time and resource allocation require-
ments. Being able to efficiently interleave the simulation and the
visualization pipeline without performance degradation on the sim-
ulation side and without the need for additional resources is a
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significant step towards efficient exascale computing. As future
work, we will explore further optimizations and scheduling oppor-
tunities enabled by using a distributed task scheduling framework
such as Galaxy [1].

Our approach degenerates into a traditional approach when the
simulation workload is perfectly balanced among the cores of a
single node and thus, in the worst-case, increments the visualiza-
tion’s execution time to the overall execution time. However, we
are interested in the other side of the spectrum, or the middle range,
when applications are not well balanced between the threads/cores
or even computational nodes. In such cases, the approach can effi-
ciently exploit the idle simulation time to perform the pipeline and
generate the visualization outputs, minimizing the overall execution
time, i.e., minimal performance impact.
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