
M
in

ho
 2

00
7

U October 2007

Ronnie Cley Oliveira Alves

Universidade do Minho
Escola de Engenharia

Aggregation-based Mining Methods:
From Single to N-dimensional Data Analysis

Is
ab

el
 M

ar
ia

 B
ac

el
o

Le
on

or
N

ew
 B

io
m

im
et

ic
 A

ce
llu

la
r

R
o

u
te

s
fo

r
P

re
-C

a
lc

if
ic

a
ti

o
n

 o
f

Im
p

la
n

t
M

a
te

ri
a

ls
,

C
a

rr
ie

r
P

a
rt

ic
le

s
a

n
d

 P
o

ro
u

s
S

ca
ff

o
ld

s

Thesis for the degree of Doctor in Informatics

Elaborated under the supervision of
Prof. Dr. Orlando Manuel de Oliveira Belo

Setembro de 2007

Universidade do Minho
Escola de Engenharia

October 2007

Ronnie Cley Oliveira Alves

Aggregation-based Mining Methods:
From Single to N-dimensional Data Analysis

É AUTORIZADA A REPRODUÇÃO PARCIAL DESTA TESE,
APENAS PARA EFEITOS DE INVESTIGAÇÃO, MEDIANTE DECLARAÇÃO
ESCRITA DO INTERESSADO, QUE A TAL SE COMPROMETE.

Ronnie Cley Oliveira Alves

i

Dedicated to my parents Raimundo and Rosalda, my wife Ana and my son Pedro Miguel

ii

iii

Acknowledgements

This is one of the best moments in my doctoral program - to publicly acknowledge those who have

contributed, in many different ways, to make my success a part of their own.

I am most fortunate to have had Prof. Dr. Orlando Belo as my supervisor. I wish to express my deep

gratitude for his guidance and continuous encouragement through these years. He seamlessly

encouraged me to be pro-active in learning.

My sincere thanks to Prof. Dr. Pedro Henriques for help me and encouraging me to pursue a research

assistant position in the IKF project while waiting for a proper financial fund for my PhD research at

the Department of Informatics at the University of Minho. I am indebted to him for his continuous

support.

Special thanks to all administrative staff, in particular to Paula Anjo for her administrative assistance

and support during my PhD program.

I had the privilege of visiting the University of Illinois at Urbana-Champaign, United States. Prof. Dr.

Jiawei Han allowed me to work with the Data Mining Research Group as visiting scholar during the Fall

2006. I had the opportunity to share and implement some of my ideas to the improvement of this

research. I am thankful to Dr. Han for his support and hospitality. I greatly benefited from this

collaboration. Thanks also to Xiaolei Li, Hector Gonzalez, Dong Xin, and Hong Cheng for being so

available to help.

iv

I was also fortunate of visiting the Universidad Pablo de Olavide at Sevilla, Spain. Prof. Dr. Jesus

Aguilar gave me the opportunity to work with the Bioinformatics Research Group as visiting scholar

during Fall 2007. I am grateful to Professors Jesus Aguilar and Roberto Ruiz for his support.

I have very much enjoyed being a member of the Department of Informatics at the University of

Minho. I am grateful to the professors and other fellow students – Pedro Ferreira, Joel Ribeiro, Fabio

Costa, Cristina Wanzeller, Nuno Lopes, Mario Beron and Anália Lourenço.

I would like to express my gratitude to Pedro Ferreira e Joel Ribeiro for their partnership on several

discussions concerning this thesis, especially in Chapter 3 and Chapter 5.

Special thanks to my Brazilian friends – Giovani Librelotto, Marco Barbosa, Alfranio Tavares and

Gustavo Arnold.

I also acknowledge the Portuguese funding agency FCT (Fundação para Ciência e a Tecnologia) of

Ministry for Science, Technology and Education of Portugal, for the indispensable financial support

under the grant SFRH/BD/17422/2004.

Acknowledgment is due to FCG (Fundação Calouste Gulbenkian) for the vital financial support under

grants 81687/2006 and 87749/2007.

v

vi

Resumo

Mineração de Dados baseados em Agregações: Da análise

Unidimensional à análise Multidimensional de Dados

Aplicações nas áreas do comercio electrónico, telecomunicações, varejo, acções, bio informática,

entre outras, possuem, quase que de forma natural, uma organização multidimensional e

multinivel na informação com que lidam. Vários dos esforços desenvolvidos em acções de

pesquisa, particularmente nas áreas de Data Warehousing e OLAP, têm sido realizados para no

sentido de permitir a identificação de padrões, ditos interessantes, em diversos níveis de

abstracção, usufruindo da organização multidimensional desses dados. A esta estratégia, voltada

para a Análise de Dados Multidimensionais (ADM), atribui-se vulgarmente a designação de

OLAPing. Em termos gerais, a ADM tem como principal objectivo projectar métodos que sejam, ao

mesmo tempo, eficientes e efectivos em processos de computação de funções de agregação sobre

base de dados de alta dimensionalidade. Estes casos, são um grande desafio para a ADM,

particularmente pelas limitações encontradas pelos métodos tradicionais para a computação de

agregações. Assim, é vulgar questionar, como desenvolver métodos que possam não somente

serem orientados para os dados, mas também serem orientadas para a descoberta de padrões

relevantes nestas mesmas bases de dados? Além disto, os dados e os padrões sofrem ao longo do

tempo mudanças significativas. Isso levanta outro tipo de questões. Em particular, como apontar

estas sensíveis evoluções tomando como partida estruturas multidimensionais? Os Métodos para

Mineração baseado em Agregações (MMA) resolvem problemas como os descritos anteriormente.

Esta tese posiciona-se num ponto um pouco mais à frente na pesquisa nos domínios do OLAPing.

Neste sentido, foram desenvolvidos diversos métodos para mineração baseado em agregações

para ADM de acordo com a dimensionalidade e também para com a análise a ser dirigida sobre os

dados. Complementarmente, desenvolveram-se algumas novas medidas de interesse para auxiliar

o processo de identificação de agregações interessantes durante a computação de estruturas

multidimensionais.

vii

Abstract

Aggregation-based Mining Methods: From Single to N-dimensional

Data Analysis

In many applications, data contains structured information that is multidimensional and multilevel

in nature, such as the ones in areas like e-commerce, telecommunications, retail, stocks, or

bioinformatics. Since the last decade, we have been facing several research efforts on Data

Warehousing and OLAP to get better view of multidimensional data, allowing a data-driven search

for interesting patterns at several levels of data abstraction. This strategy of Multidimensional Data

Analysis (MDA) on multidimensional databases is also called OLAPing. MDA relies on effective and

efficient computation of aggregating functions on high dimensional databases. MDA on higher

dimensional databases is not a trivial task, given the limitation of the most known aggregation-

based algorithms. So, how to enhance this data-driven search with discovery-driven features

smoothing the curse-of-dimensionality problem? Besides, data as well as patterns evolve over

time-to-time. Thus, how to highlight those significant changes? Aggregation-based Mining Methods

(AMM) takes its place helping to handle those previous issues. In summary, AMM attempts to

combine ideas of aggregating and mining functions to get better mechanisms for practical and

effective MDA. The work presented in this thesis lies outside of traditional work on OLAPing. These

previous discussions guided us to devise several methods to achieve Multidimensional Data Mining

(MDM) by applying aggregation-based mining methods. These methods cover several levels of

data summarizations, from single to n-dimensional, as well as, advanced aggregation-based

mining. Apart from these methods, we have also designed new measures of interestingness for

evaluating significant aggregations during processing time.

viii

Contents

1 Introduction.. 1

1.1 Aggregation-based Mining Methods... 1
1.2 Thesis Statement... 3
1.3 Thesis Contributions .. 3
1.4 Research Methodology ... 6
1.5 Organization of the Dissertation .. 7

2 Mining Intra and Inter-dimensional Patterns... 11

2.1 Mining Fact Tables in RDBMS.. 13
2.1.1 Frequent Pattern Mining .. 14
2.1.2 Pattern Growth Mining... 14
2.1.3 SQL-based Itemset Mining ... 15

2.2 Extracting Intra-dimensional Patterns .. 16
2.2.1 Getting Frequent Itemsets from Large Transactional Tables.................................. 16
2.2.2 Generating Pattern-tree Table .. 17
2.2.3 Mining Pattern-tree Tables ... 19
2.2.4 Evaluation Study ... 21
2.2.5 Final Discussion .. 24

2.3 From Intra-dimensional to Inter-dimensional Patterns... 25
2.3.1 Motivation .. 25
2.3.2 Related Background .. 26
2.3.3 Inter-dimensional Patterns... 27
2.3.4 Mining Inter-dimensional Patterns .. 29
2.3.5 Evaluation Study ... 32
2.3.6 Final Discussion .. 34

2.4 Summary .. 35

3 Aggregation-based Single-dimensional Mining .. 37

ix

3.1 Single-dimensional Aggregations as Signatures .. 38
3.2 Deviation-based .. 40

3.2.1 Evaluating Similarity of Simple Feature Variables.. 40
3.2.2 Evaluating Similarity of Complex Feature Variables... 40
3.2.3 Evaluating the Distance among Signatures .. 41
3.2.4 Detecting Anomalies.. 42
3.2.5 Updating Procedure for Signatures ... 42

3.3 Clustering-based.. 43
3.3.1 Dynamic Clustering of Signatures ... 43
3.3.2 Similarity of Signatures.. 43
3.3.3 Clustering Migration Analysis.. 43
3.3.4 Absolute and Relative Similarity.. 44

3.4 Evaluation Study: Deviation and Clustering-based Methods ... 46
3.5 Graph-based ... 51

3.5.1 Motivation .. 51
3.5.2 Problem Definition... 52
3.5.3 Graph Mining .. 54
3.5.4 Finding Deviating Graphs ... 55
3.5.5 Evaluating Deviating Graphs .. 56
3.5.6 Evaluation Study ... 58
3.5.7 Related Background .. 60
3.5.8 Final Discussion .. 61

3.6 Summary .. 61

4 Aggregation-based N-dimensional Mining ... 63

4.1 Motivation... 64
4.2 Problem Formulation.. 65
4.3 Cube-based Mining .. 67

4.3.1 The Cube Structure ... 67
4.3.2 Processing Cube ... 68
4.3.3 Combining Cube’s Dimensions.. 68

4.4 Enhancing Cubing.. 71
4.4.1 Incremental.. 71
4.4.2 Hierarchies ... 71

x

4.5 Mining from Cubes... 73
4.5.1 Extracting Inter-dimensional and Multilevel Patterns... 73
4.5.2 Enhancing Patterns Discovery .. 75
4.5.3 Incremental Patterns Discovery .. 76

4.6 Evaluation Study.. 76
4.6.1 Incremental Data Cubing ... 76
4.6.2 Cube-based Mining.. 77

4.7 Final Discussion... 79
4.7.1 Related Work.. 79
4.7.2 Indexing... 80

4.8 Summary .. 80

5 Advanced Aggregation-based Mining ... 83

5.1 Aggregating Maximal-correlated Cuboids ... 83
5.1.1 Motivation .. 84
5.1.2 Maximal-correlated Cuboid Cells ... 85
5.1.3 M3C-Cubing.. 87
5.1.4 Evaluation Study ... 90
5.1.5 Summary ... 94

5.2 Aggregating Top-K Gradient Cells.. 95
5.2.1 Gradient Queries... 95
5.2.2 Problem Formulation and Assumptions.. 96
5.2.3 Mining Top-K Gradient Cells ... 98
5.2.4 Evaluation Study ... 103

6 Conclusions and Future Work ... 107

6.1 Summary .. 107
6.2 Contributions of this Thesis .. 108
6.3 Future Work.. 110

6.3.1 Mining Intra- and Inter-dimensional Patterns... 110
6.3.2 Agregation-based single-dimensional Mining.. 111
6.3.3 Aggregation-based n-dimensional Mining .. 112
6.3.4 Advanced Aggregation-based Mining... 113

Bibliography... 115

xi

xii

List of Figures

Figure 1. A schematic view of the infrastructure for MDM... 6
Figure 2. The retail sales star schema, example from [Kimball 02]. ... 11
Figure 3. The overall process of mining FP-trees, example from [Han et al. 00].......................... 15
Figure 4. An overall picture of the tables involved in the PGS strategy. 17
Figure 5. The PGS database scheme... 18
Figure 6. A comparative study. PGS runs competitively in sparse and dense datasets. 23
Figure 7. Distribution plot of the cvd measure for the DS50K dataset. 34
Figure 8. Distribution plot of the lift and confidence measures for the DS50K dataset. 34
Figure 9. Positive variation of the relative similarity of the signature.. 44
Figure 10. Negative variation of relative similarity of the signature and change cluster membership.

.. 45
Figure 11. Example of fraud situations in the blacklist. ... 45
Figure 12. The impact of each feature variable over the top-10 higher alarms............................ 47
Figure 13. An overall picture of feature variable distribution over the max distance (ε ≥ 2). 48
Figure 14. Example of anomaly situations regarded to the increase in the number of calls. 49
Figure 15. Illustration of the model evolution. Considering info attributes as air_time and

charged_amount for each call and customer 1, 2, 3 and 4. The weighting factor was set to

0.85.. 54
Figure 16. It presents the results after applying equations 2(a) and 3(b) to detect suspect objects

in graph G’t of Figure 15. .. 56
Figure 17. Two screen shoots of the call graph application. Figure (a) presents the top-5 objects

according to a statistic value (sum) annotated into the graph. . Figure (b) highlights graph

objects evaluated during an overlap operation.. 57
Figure 18. In and Out degree distributions for all calls made on Thursday.................................. 58
Figure 19. ZScore distribution for one week-day (thursday). ... 59

xiii

Figure 20. (a) Graph size (vertices and edges) w.r.t the number of CDRs; (b) Categories

distribution (number of vertices) w.r.t number of CDRs; (c) Processing time for finding suspect

graphs w.r.t the number of CDRs; (d) Memory usage w.r.t to number of CDRs.................... 60
Figure 21. The complete set of partitions provided by the cube structure for Example 1.............. 67
Figure 22. Shows the updating effects (dg%, x-axis) against cubing speedup(ic/rc, y-axis). 77
Figure 23. (a) and (b) present OLAP mining performance (runn.time(s), y-axis) for different

measures of significance (%, x-axis). (c) presents the number of interesting cuboids (cb*k, y-

axis) for different thresholds. .. 78
Figure 24. Illustrates OLAP mining performance (runn.time(s), y-axis) when getting different

patterns through different support thresholds (%, x-axis).. 78
Figure 25. It shows the update effects (dg%, X-Axis) against index speedup of DAQ (Y-Axis) for

datasets S3(a), S2(b) and S1(c). ... 80
Figure 26. The M3C lattice formed by the cover partitions of the Example 1............................... 90
Figure 27. Number of cuboids generated from all datasets. .. 92
Figure 28. The execution time from all datasets. ... 92
Figure 29. Reductions cost of cubing over all datasets.. 93
Figure 30. It presents the distribution of aggregating values from a 2-D(x, y) cube. 98
Figure 31. The lattice formed by projecting GRs {x1, y1, z2}. Aggregating values are placed upper

all cuboid cells. Possible probe cells are denoted with shadow circles. The letters matchable

cells shows valid gradient pairs. .. 101
Figure 32. Performance (Runn.time(s), Y-axis) x Min_sf (X-axis). .. 103
Figure 33. Performance (Runn.time(s), Y-axis) x Min_AVG (X-axis). .. 104
Figure 34. (a) Performance x K effects (X-axis). (b) Valid-cells (Y-axis) x Min_sf (X-axis). 104

xiv

List of Tables

Table 1. A transactional database with a minimum support = 3. ... 16
Table 2. Extracting all patterns (R=root)... 17
Table 3. Transactional datasets generated. ... 22
Table 4. Subset of an original database DB. .. 29
Table 5. Subset of a transformed database DB’. .. 30
Table 6. Itemset mapping hash table.. 30
Table 7. Parameters used by the dataset generator. .. 32
Table 8. Datasets generated for the evaluation study... 32
Table 9. Experimental values for the itemset mining and sequence conversion steps. 33
Table 10. Experimental values for the sequence mining step. ... 33
Table 11. Description of the feature variables used in signatures and summaries. 39
Table 12. Different thresholds (ε) and the alarms rose for three particular days of the week. 47
Table 13. Alarms raised per cluster for three particular days of the week................................... 48
Table 14. Example of hierarchy levels for three dimensions. ... 72
Table 15. Characteristics of five data marts used in the evaluation study. 76
Table 16. Example of Maximal Correlated Cuboids Cells. .. 86
Table 17. The set of classes from Example1.. 90
Table 18. The overall information of each dataset.. 91
Table 19. Example of a base table relation R... 100
Table 20. Inverted indices and spreading factors for all dimensions of Table 19. 100
Table 21. The overall information of each dataset.. 103

xv

List of Equations

Equation 1. Similarity of simple feature variables. .. 40
Equation 2. Similarity of complex feature variables. ... 40
Equation 3. The distance among signatures. ... 41
Equation 4. The maximum distance among signatures. .. 41
Equation 5. Updating signatures... 42
Equation 6. The signatures similarity. ... 43
Equation 7. the absolute and relative similarity of cluster signatures.. 44
Equation 8. Updating factor for evolving graphs. ... 53
Equation 9. Score function for labeling deviating objects. ... 55
Equation 10. Maximization of the score function for an object... 55
Equation 11. Maximization of the score funtion for Zin-Zout of an object...................................... 55
Equation 12. The graph overlapping degree. ... 56
Equation 13. The total number of cubes given n-levels of hierarchies. 71
Equation 14. The correlated value of a cuboid cell, (Part I)... 75
Equation 15. The correlated value of a cuboid cell, (Part II). .. 75
Equation 16. The gradient ascent equation, (Part I)... 99
Equation 17. The gradient ascent equation, (Part II).. 99
Equation 18. The spreading factor equation. ... 99

xvi

List of Algorithms

Algorithm 1. Generating Pattern-tree tables. ... 19
Algorithm 2. Mining Pattern-tree tables... 21
Algorithm 3. Pseudo-code of DAQ algorithm for Cubing.. 70
Algorithm 4. Pseudo-code of the rule algorithm for mining from cubes. 74
Algorithm 5. The Pseudo-code of the Maximal-correlated cubing method................................... 89
Algorithm 6. Pseudo-code of the top-k gradient cubing method. ... 102

Introduction

1

Chapter 1

1 Introduction

1.1 Aggregation-based Mining Methods

For a long time, organizations have been using decisions support systems to help them to

understand and to predict interesting business opportunities over their huge databases. This

interesting knowledge is gathered in such way that one can explore different what-if scenarios over

the complete set of information available. Those huge databases are well known as Data Marts

(DM), organizing the information and preserving its multidimensional and multilevel characteristics.

OLAP tools have been used widely by DM users for retrieving summarized information, also called

multidimensional data cube or just cube through customized cubing algorithms. The kernel of

cubing algorithms relies on two main spots, namely, partition strategies and aggregating functions.

Cubing can also be delivered from single to n-dimensional DM. The more dimensions one select to

cube the more computational resources are needed to afford MDA. Computing high dimensional

DM is a challenge task [Sismanis et al. 2002] [Lakshmanan et al. 02] [Feng et al. 04] [Li et al. 04]

[Han & Kamber 06] [Alves & Belo 06b] [Alves & Belo 07b].

Since DM evolves, it is also necessary to have the cube updated on a timely basis. Usually,

traditional cubing methods compute the cube structure from scratch every time new information is

available. As far as we know, almost no one of them support an incremental procedure.

Furthermore, traditional cubing approaches suffer from being just data-driven oriented and not

discovery-driven ones. In fact, real data application demands both strategies [Sarawagi et al. 98a]

[Sarawagi et al. 98b] [Han & Kamber 06].

Introduction

2

Other relevant aspect of MDA is the granularity of the information. When exploring cubes either is

required detailed or general information. Concept hierarchy modeling comes as a required solution

for setting the right level of information, providing an enhanced model for multidimensional and

multilevel mining. Rather than using the TID structure like multidimensional association rules do

for multilevel mining, the cube structure itself provides a suitable data structure for MDA at several

levels of abstraction. However, cubing per-se also incurs computational and information

management costs. Thus, it is also important to provide a basic infrastructure providing a good

tradeoff between aggregation and extraction mechanisms for MDA. Furthermore, handling a large

number of dimensions and hierarchy’s levels might be quite challenge task for cubing methods.

Therefore, bringing out some mining technique into the cubing process is an essential effort to

reveal interesting relations on DM [Kamber et al. 97] [Lu et al. 00] [Han et al. 99] [Alves & Belo

07a].

On the other hand, there are also real application scenarios where it is not possible to have a n-

dimensional cube either for computational costs or for the application itself. In such cases, one can

also make use of the partition-and-aggregation model of cubing methods to summarize a particular

dimension of interest with complex aggregating functions and then push mining with constraints.

Thus, mining should guide to highlight interesting patterns over the aggregated data. Defining

proper levels of aggregation-based mining in MDA is also a challenge problem.

Clearly, MDA requires suitable Multidimensional Data Mining (MDM) methods. It is a non-trivial task

to decide what level of aggregation-based mining is necessary for revealing interesting spots in

DM. In addition, it poses new challenges for novel uses of data cubing and data mining technology.

The work presented in this thesis lies outside of traditional work on OLAP mining. These previous

discussions guided us to devise several methods to achieve multidimensional data mining through

aggregation-based mining strategies. These methods cover several levels of data summarizations,

from single to n-dimensional, as well as, advanced aggregation-based mining. Apart from the

methods, we have also designed new measures of interestingness for guiding high dimensional

data analysis.

Introduction

3

1.2 Thesis Statement

In this work, we investigate the feasibility of achieving MDM by employing aggregation-based

mining techniques. The central thesis statement of this research is presented as follows:

Multidimensional data mining, by aggregation-based mining, is to some extent as possible.

In many applications, data contains structured information that is multidimensional and multilevel

in nature, such as the ones in areas like e-commerce, telecommunications, retail, stocks or

bioinformatics. Since the last decade, we have been facing with several research efforts on Data

Warehousing and OLAP to get better view of multidimensional data, allowing a data-driven search

for interesting patterns at several levels of data abstraction [Han & Kamber 06]. This strategy of

searching patterns on multidimensional databases is also called OLAPing (or data cubing). The

basis of MDA relies on effective and efficient computation of aggregating functions. MDA on higher

dimensional databases is a quite hard task; given the limitation of the most known cubing

algorithms. So, how to enhance this data-driven search with discovery-driven features smoothing

the curse-of-dimensionality problem? Besides, data as well as patterns evolve over time-to-time.

Thus, how to highlight those significant changes? MDM take its place helping to handle those

previous issues. In summary, MDM attempts to combine ideas of aggregating and mining functions

to get better mechanisms for multidimensional data analysis.

Three major issues are addressed to support this central statement:

1. It is possible to achieve a simple infrastructure for MDM, i.e., by combining

traditional frequent pattern mining methods.

2. It is possible to evaluate evolving multidimensional and multilevel patterns

through providing different levels of aggregation-based mining methods, i.e., from

single to n-dimensional mining.

3. It is possible to achieve advanced MDA by pushing and evaluating measures of

interestingness during the processing step, i.e., cubing-based mining of high n-

dimensional databases.

1.3 Thesis Contributions

The major contributions of this thesis can be summarized as follows:

Introduction

4

• A frequent pattern mining strategy closer to RBDMS. Most of the itemset mining

approaches are memory-like and run outside of the database. On the other hand,

when dealing with data marts the size of tables is extremely huge for memory copy.

In addition, using a pure SQL-like approach is quite inefficient. Actually, those

implementations rarely take advantages of database programming. We devised a

pattern growth mining approach by means of database programming for finding all

frequent itemsets. The main idea is to avoid one-at-a-time record retrieval from the

database, saving both the copying and process context switching, expensive joins, and

table reconstruction. This strategy is described in Chapter 2.

• A hybrid method for mining inter-dimensional patterns. Classical association

rules are by nature intra-transaction based, i.e., the associations occurs among the

items within the same transaction. Further, those transactions are usually associated

with a dimensional context which is typically ignored. This prevents that patterns

occurring along this dimension (i.e. associated context) being discovered. We devised

a strategy for the extraction and analysis of inter-dimensional patterns. These patterns

allow us to discover relationships that occur among transactions within a dimensional

time frame. This strategy consists in the combination of frequent and sequence pattern

mining methods. We also have explored a measure called cvd which allow us to reject

patterns that presents significant distance variation, and thus, avoiding the

representation of misleading patterns. This method is also described in Chapter 2.

• A family of aggregation-based single-dimensional mining methods. We

studied the problem of superimposed fraud detection in telecommunication systems.

We proposed three aggregation-based single-dimensional mining methods for anomaly

detection. These methods rely on a single level of aggregation called signatures. The

first method is a signature deviation-based approach while the second one is designed

for dynamic clustering analysis. Furthermore, we enhanced this anomaly detection

strategy by using a graph-based approach representing the social or community

behavior, without losing information, and also providing a rich structure for revealing

interesting calling patterns. We used annotated digraphs to represent the call graph

network. The dynamics of changes are modeled into the graphs by weighting factors

using damping ideas. This representation highlights the fact that more recent CDR

contributes more heavily to the graph at time t. Thus, new information is aggregated

Introduction

5

in accordance with this representation and evaluated through pre-defined recursive

functions. All these methods are described in Chapter 3.

• An incremental cube-based mining method for mining multidimensional and

multilevel patterns. The updating processes on real DM applications implies that,

the summarization made by cubing methods need to handle, with some incremental

and discovery facility, the new information available. Furthermore, mining mechanisms

should be integrated into the cubing process to improve the exploration of interesting

relations on DM either before, after or while OLAPing. We described a method which is

quite competitive w.r.t. other known cubing strategies, also providing an effective

cube-based mining strategy for discovering knowledge over evolving DM. We also

demonstrate that by exploring correlated cuboids during the discovery process we are

able to provide an essential tradeoff between processing time and pattern accuracy.

Such strategy is presented in Chapter 4.

• Advancing aggregation-based mining methods. Addressing advancing

aggregation-based mining in high n-dimensional datasets requires different kinds of

pushing constraints into the aggregation process, since high MDA suffers from the

curse of dimensionality problem. We propose two distinct methods for MDA in high

dimensional spaces. The first method proposes a new notion for reducing cuboids

aggregation by means of computing only the maximal-correlated cuboids cells, and

presents a strategy that brings out those cuboids. This strategy is a promising

candidate for scalable data cubing, reducing the number of cuboids by at least an

order of magnitude or more in comparison with that of closed ones. The second

method attempts to find interesting changes in high n-dimensional spaces. Thus, we

are interested to explore best cases (Top-K cells) of interesting multidimensional

gradients. We reviewed iceberg cubing for complex measures, since it is the basis for

mining gradient cells. We also propose a gradient-based cubing strategy to evaluate

interesting gradient regions in MDS. Thus, the main challenge is to find maximum

gradient regions (MGRs) that maximize the task of mining Top-K gradient cells. Both

advanced aggregation-based mining methods are described in Chapter 5.

Our contributions mentioned previously are the major parts of an MDM infrastructure depicted in

Figure 1.

Introduction

6

Figure 1. A schematic view of the infrastructure for MDM.

1.4 Research Methodology

This research was conducted in a phased approach, as follows:

• Evaluation of prior work. Research in the area of MDM is still at a very preliminary

stage. We have surveyed efforts to address MDM and investigated the related

literature. The existing solutions for achieving MDM are reviewed in each chapter

according to its level of aggregation and application, i.e., single- to n-dimensional

mining. Chapters in this thesis are also self-contained, presenting related background,

summaries and final discussions.

• Conception and design of new aggregation-based mining methods. We

devised new methods to achieve MDM through aggregation-based mining strategies.

These methods cover several levels of data summarization, from single-dimensional to

n-dimensional, as well as aggregation-based mining. Apart from the methods, we have

Introduction

7

also devised new measures of interestingness for guiding multidimensional data

analysis.

• Implementation and test. We have implemented and tested both existing and

proposed MDM methods. We also applied our methods to real and synthetically

generated datasets to evaluate its effectiveness and to study their performance.

• Evaluation. We evaluated our methods for different aggregation-level scenarios. For

each level of aggregation we carried out several studies by using distinct datasets.

These studies, implemented in a common platform, were used to find out proper level

of aggregation-based mining for each type of application. For newly designed

aggregation-based mining methods that found equivalent or similar counterparts in the

literature, we compared with the published results. We evaluated the effectiveness and

scalability of our strategies as well. We also used our metrics to avoid the curse of

dimensionality problem when aggregating high n-dimensional datasets. These metrics

are discussed in Chapter 5.

• Dissemination. We disseminated the results of this research through submissions of

papers to peer reviewed workshops and conferences [Alves & Belo 07a] [Alves & Belo

07b] [Alves et al. 06a] [Alves & Belo 06b] [Ferreira et al. 06] [Alves & Belo 05b]

[Ferreira et al. 05]. The review process and discussions at these meetings were

essential for further improvements of our MDM infrastructure.

1.5 Organization of the Dissertation

The rest of this dissertation is organized as follows:

• In Chapter 2, we present data mining methods for mining intra and inter-dimensional

patterns. We discuss the main differences between these two methods highlighting the

basis for achieving MDM. The kernel of these methods relies on frequent pattern

mining basis. We devised a database-like strategy for mining intra-dimensional

patterns closer to RDBMS reviewing the major methods in the literature. To achieve a

basic level for MDA, in this case, inter-dimensional ones, we extend the intra-

dimensional approach with a hybrid strategy. Thus, we combined frequent patterns

with sequential patterns for getting inter-dimensional ones. The basic aggregating

function in these methods is counting ones. These patterns are motivated by the

classical application of association rules on market basket analysis. Finally, we also ran

Introduction

8

several experimental studies to get an overall picture of these methods against

different types of datasets. Preliminary versions of these studies were published in

[Alves & Belo 05b] [Ferreira et al. 05].

• In Chapter 3, we take a different approach for achieving MDM. We allowed more

complex aggregating functions such as average and standard deviation. We restricted

this strategy for handling single-dimensional mining, i.e., aggregation-based mining

over one dimension at a time. All aggregations formed what we call profiles or

signatures. We also reviewed signature-based concepts and applications. Furthermore,

we started from signatures to extract anomalous patterns. To get such patterns we

devised several mining methods over signatures. To differentiate normal from

abnormal behavior we proposed a deviation-based strategy. To get abnormal behavior

from groups or clusters, we proposed a clustering-based method. To complete this

single-dimensional strategy we also have explored social or community behavior by

exploring aggregating functions within a graph-based approach. These methods were

developed through our working on two Telecommunication projects (FRATELO and

SFonTEL). We evaluated the effectiveness and scalability of those methods on

detecting potential fraud situations from a mobile company. These methods were

published in [Alves et al. 06a] [Ferreira et al. 06].

• In Chapter 4, we take some steps towards MDM, providing aggregation-based mining

on n-dimensions. We provided a n-dimensional structure (cube) to allow

multidimensional data analysis. We reviewed some classical data cubing methods, as

well as, multidimensional association rules strategies in the literature. We devised a

cube-based mining method which can compute an incremental cube, allowing concept

hierarchy modeling, as well as, incremental mining of interesting relations by means of

multidimensional and multilevel association rules. This method is also enhanced by a

multidimensional measure of interestingness. As far as we are concerned, this method

is the first one to support incremental cube-based mining over evolving databases.

Finally, we ran several evaluation studies using real and synthetic datasets which

demonstrated that this method is a promising OLAPing method. A preliminary version

of this study was published in [Alves & Belo 07b].

• In Chapter 5, we introduced two methods for advanced aggregation-based mining.

We called them advanced methods in sense that both strategies push measures of

interestingness during the cubing process over n-dimensional databases. The first

Introduction

9

method was devised to evaluate correlation-mining in a multidimensional space. We

review data cubing literature with respect to computing cuboids cells preserving

semantics and compression levels. Both levels are essential requirements for

multidimensional data analysis. Thus, the first method proposes a new notion for

reducing cuboids aggregation by means of computing only the maximal-correlated

cuboids cells, and presents the M3C-Cubing strategy that brings out those correlated

cuboids. Our evaluation study shows that the method followed is a promising

candidate for scalable data cubing, reducing the number of cuboids by at least an

order of magnitude or more in comparison with that of closed ones. The second

method introduced in this chapter evaluates interesting changes in high dimensional

databases. We reviewed Gradient queries and added a new level of interestingness

through exploring the most relevant (K) gradients in a multidimensional space. Thus,

we have explored Top-K cuboid cells of interesting multidimensional gradients. There

several studies on Top-K queries, but preference queries with multidimensional

selection were introduced quite recently by [Dong et al. 06]. Furthermore, traditional

Top-K methods work well in presence of convex functions (gradients are non-convex

ones). We have revisited iceberg cubing for complex measures, since it is the basis for

mining gradient cells. We also propose a gradient-based cubing strategy to evaluate

interesting gradient regions in MDS. Thus, the main challenge is to find maximum

gradient regions (MGRs) that maximize the task of mining Top-K gradient cells. Finally

we presented a performance study indicating that our strategy is effective on finding

the most interesting gradients in multidimensional space. The motivation for both

advanced cubing methods comes from a broad range of applications, for instance

business, stream, or scientific-data applications. These methods were published in

[Alves & Belo 06b] [Alves & Belo 07b].

• In Chapter 6, we conclude this dissertation with a brief summary of the work

presented, discussed the main results achieved in this research, draws some

conclusions and points future work directions as a continuation of this research.

Introduction

10

Mining Intra and Inter-dimensional Patterns

11

Chapter 2

2 Mining Intra and Inter-dimensional Patterns

In this chapter, we cover two main strategies devised for mining intra and inter-dimensional

patterns. Let us take as example a Retail Sales Warehouse [Kimball 02] to understand the

applicability of those strategies. The fine grain of our sales warehouse is represented by a

customer’s retail sales ticket. Thus, the most granular data is an individual line item on a POS

transaction. Consequently, we may think as strong candidate dimensions, the date, the product

and the store. Further refinements in this model we head us to a retail sales schema as presented

in Figure 2.

Figure 2. The retail sales star schema, example from [Kimball 02].

Mining Intra and Inter-dimensional Patterns

12

Let us say that the retail sales schema is done and now we are able to answer a couple of

questions. With such schema we can answer queries concerning what was purchased at each store

and under what conditions. However, this schema doesn’t allow us to evaluate directly

which products were sold in the same market basket together. This evaluation is quite

known by the data mining community research as Market Basket Analysis (MBA). In computational

terms, MBA relies on devising effective and efficient Frequent Itemset Mining (FIMI) algorithms.

The retail sales fact table cannot be used easily to perform market basket analyses since SQL was

never designed to constrain and group across line item fact rows [Kimball 02]. However, one can

make use of some SQL-based FIMI strategy to overcome this difficulty [Alves & Belo 05a]

[Alves & Belo 05b]. Another interesting issue is that usually MBA is high correlated with temporal

patterns [Ale & Rossi 00]. Therefore, itemsets that seem to be quite frequent during the

Christmas’ day may not be frequent either in a day before, a day after, a week before or even in

the same month (i.e. December).

From the above discussion we can summarize this chapter into two main statements concerning

MBA from fact tables:

1. Once fact tables are usually stored on Relational Database Management Systems

(RDBMS), how can one bring itemset mining into RDBMS server side, tanking

control and management of data? To answer this question we propose a

database-like strategy to mine intra-dimensional patterns.

2. Given that MBA is sensitive to time (or context) dimension, how can one bring time

(or context) dimension into the FIMI process to smooth the bias added by

temporal patterns? To reveal time effects on MBA we devised a strategy based on

mining inter-dimensional patterns.

In this chapter we present two mining strategies for answering the previous two questions. In

section 2.1 we highlight FIMI from a SQL-like perspective. A new strategy based on the Pattern-

growth mining [Han et al. 00] method is proposed in section 2.2, as well as, the complete

procedural schema to make it available for running on RDMBS server side [Alves & Belo 05a].

Finally, in section 2.3, we devised a strategy which combines intra-dimensional patterns with

sequence mining to obtain inter-dimensional patterns.

Mining Intra and Inter-dimensional Patterns

13

A preliminary version of this chapter appeared in two papers presented in [Alves & Belo 05b], and

[Ferreira et al. 05] concerning to intra- and inter-dimensional patterns respectively.

2.1 Mining Fact Tables in RDBMS

The problem of finding all frequent itemsets [Agrawal et al. 93] given a Dataset D with a minimum

support threshold S is the most time consuming task on association rule mining. In order to solve

this problem, two ways are likely to be chosen:

1. One using algorithms that employed sophisticated in memory data structures, where

the data is stored into and retrieved from flat files;

2. and another using algorithms that are based on SQL statements and extensions to

query and update a database.

The former is very efficient when it is compared with the later. On the other hand, when we deal

with data warehouse the size of tables is extremely huge for memory copy. Nevertheless, it

becomes important for RDBMS to offer new analytic functionalities to support business intelligence

applications.

There are a few implementations based on SQL [Rantzau 03] [Sarawagi et al. 98a] [Shang et al.

04] [Wang & Zaniolo 00] [Yoshizawa 00], but they have performance issues concentrated in two

central points: candidate-set generation and test (Apriori-bottleneck); and table reconstruction of

conditional pattern trees (FP-Growth-bottleneck).

In this section we do not intend to compare the effectiveness of itemset mining based on database

programming with the memory ones. Instead, we purpose a solution for bringing the itemset

mining process to the RDBMS server side, which generates the following contributions:

1. A procedural schema for itemset mining, so the process can be run as a batch script

on the RDBMS server side.

2. A cascading approach working with single tables, and also avoiding the complexity

of mining frequent itemsets from several multi-tables joins.

3. A pattern growth mining which doesn’t surfer of several tables reconstruction (of

conditional pattern trees).

Mining Intra and Inter-dimensional Patterns

14

2.1.1 Frequent Pattern Mining

The frequent pattern mining problem can be defined as follow: Given a set of items I, a transaction

database D over I, and a minimal support threshold S, find all itemsets F(D,S). Indeed, we are not

only interested in the set of itemsets (F), but also in the actual supports of these itemsets. The

most known implementation of frequent pattern mining algorithm is Apriori [Agrawal & Srikant 94].

Several Apriori-based algorithms have been purposed for getting better performance and I/O costs

[Hidber 99] [Orlando et al. 01] [Orlando et al. 02]. Recently, an FP-tree based frequent pattern

mining method, called FP-growth, developed by Han et al. [Han et al. 00], achieved high efficiency,

when compared with the Apriori-like approaches. Basically, the FP-growth method adopts the

divide-and-conquer strategy. It uses only two full I/O scans of the database, and avoids iterative

candidate generation. In general terms, the mining process consists of making available the FP-

tree data structure, and then FP-growth is applied over a FP-tree for getting frequent itemsets.

There are implementations that suggest enhancements into the frequent pattern mining in order to

make the process interactive, constrained, and incremental [Cheung & Zaïane 03] [El-Hajj &

Zaïane 03]. Those aspects will not be discussed in this chapter. Instead, we focus on the first

issue, i.e., finding frequent itemsets closer to RDBMS.

The above implementations cannot be applied directly on the main problem of this work, since

they need to copy tables out from the database for proper execution. Besides, after its execution,

the results must be load again to the database for getting suitable analysis.

2.1.2 Pattern Growth Mining

Pattern Growth Mining can be viewed as first mining frequent 1-itemset and then progressively

growing each such itemset by mining its conditional pattern base, which implies first mining its

frequent 1-itemset and then progressively growing each such itemset by mining its conditional

pattern base, etc [Han et al. 00]. Thus, a frequent k-itemset mining problem can be transformed

into a sequence of k frequent 1-itemset mining problems via a set of conditional pattern bases (see

Figure 3). The main aspects of the algorithm can be summarized as follows:

1. For each node in the FP-tree construct its conditional pattern base, which is a sub-

database constructed with the prefix sub-path set co-occurring with the suffix pattern in

the FP-tree. FP-growth traverses nodes in the FP-tree from the least frequent item in I.

Mining Intra and Inter-dimensional Patterns

15

2. From each conditional pattern base construct its conditional FP-tree.

3. Finally, if the conditional FP-tree has a single path, simply enumerate all patterns. On

the contrary run pattern growth mining recursively over the conditional FP-tree.

Figure 3. The overall process of mining FP-trees, example from [Han et al. 00].

2.1.3 SQL-based Itemset Mining

There are a few SQL-based implementations that can be used to mine frequent patterns over large

transactional tables [Agrawal & Shim 96] [Rantzau 03] [Sarawagi et al. 98a] [Wang & Zaniolo 00]

[Yoshizawa 00]. Even so, all of them are based on nature of Apriori-like approach. There is another

approach that uses FP-Growth [Shang et al. 04] in RDBMS. Nevertheless, the process of

reconstructing conditional FP tables for large datasets may pose performance issues. Therefore, we

must avoid the previous mentioned bottlenecks: candidate set generation and test; and table

reconstruction. Moreover, we have designed a procedural schema for mining all patterns on the

RDBMS server side. We examined those assumptions, and propose a new approach for pattern

growth mining using database programming.

By using a pattern growth approach we are able to manage the first bottleneck. However, the

current SQL implementation of FP-Growth [Shang et al. 04] cannot handle the second issue.

Consequently, we need to provide a solution for pattern growth mining which must have the ability

to: work in RDBMS server side, prevent multi-table joins and table reconstruction of

conditional pattern trees.

Mining Intra and Inter-dimensional Patterns

16

2.2 Extracting Intra-dimensional Patterns

From FIMI we can extract several kinds of patterns. The general one is the intra-transactional or

intra-dimensional pattern. We use the same nomenclature as [Han & Kamber 06]. Thus, like in a

DW, we refer to each distinct predicate in a rule as a dimension. For instance, an association rule

likes: Buys(X, cod fish) => Buys(X, potato). This rule is an intra-dimensional pattern, since it

contains a single distinct predicate (e.g., Buys) with multiple occurrences (i.e., the predicate occurs

more than once within the rule). Such rules are commonly mined from transactional data in MBA.

2.2.1 Getting Frequent Itemsets from Large Transactional Tables

In order to provide itemset mining over large transactional tables on the RDBMS server side, we

present a procedural schema by means of using several database programming such as stored

procedures, SQL-cursors, and UDF functions. We also call this approach as a Pattern Growth

mining with SQL-Extensions (PGS). The whole procedural schema can be found in [Alves &

Belo 05a].

The whole process can be summarized into two main steps: one for generating the pattern tree

(PT) and another one for mining all patterns from it PT. Table 1 shows the frequent 1-itemsets

extracted from a transactional table (columns TID and Items). A new transactional table (column

Freq. 1-itemsets), containing only records with frequent 1-itemsets, is created, and thus its related

pattern tree too. Finally, Table 2 presents the pattern growth method applied over the pattern

tree. For instance, giving that only items (column Item) are frequents, from its pattern tree, we

work with only a subset (column SUBFP) for reaching its conditional pattern tree (column CONFP)

and then enumerating all frequent patterns.

TID Items Freq. 1-itemsets

1 1, 3, 5, 6, 7 3, 5, 7, 1, 6
2 2, 3, 5, 6, 7 3, 5, 7, 6
3 1, 2, 3, 4, 5 3, 5, 1
4 3, 6, 7 3, 7, 6
5 1, 4, 5, 7 5, 7, 1

Table 1. A transactional database with a minimum support = 3.

Mining Intra and Inter-dimensional Patterns

17

Item SUBFP CONFP PATTERNS
3 Null Null Null
5 R=1, R:3=3 3:3 3%5:3
7 R:3=1, R:3:5=2, R:5=1 3:3, 5:3 3%7:3, 5%7:3
1 R:3:5=1, R:3:5:7=1,

R:5:7=1
5:3 5%1:3

6 R:3:5:7=1, R:3:5:7:1=1,
R:3:7=1

3:3,7:3 3%6:3, 7%6:3,
3%7%6:3

Table 2. Extracting all patterns (R=root).

2.2.2 Generating Pattern-tree Table

Several tables are manipulated during the process of generating all itemsets (Figure 4 and Figure

5). They are built just once. In the recursive part, where pattern growth is applied, other

structures are required, but they are created dynamically by using UDF functions and database

cursors. In fact, they provide SUBFP (sub-path) tables for extracting single and not-single patterns.

Figure 4. An overall picture of the tables involved in the PGS strategy.

Mining Intra and Inter-dimensional Patterns

18

Figure 5. The PGS database scheme.

We mean single patterns those which are enumerated directly from its conditional FP table

(CONFP) (for instance 3%5), meaning a co-occurrence of item 3 with item 5, without handling

sub-path tables. A pattern such as 3%7%6 is extracted by combining those items that co-occurs

added with it is respective sub-path tables [Han et al. 00].

As an pattern growth approach the first step requires a pattern-tree structure also called FP-tree.

Even though FP-tree is a compact structure, it is unlikely to build such structure in memory for

large databases. Consequently, using RDBMS capabilities like buffer management, query processor

or SQL-Extensions, it is possible to take advantage of those mechanisms avoiding size

considerations of data, in this particular case, FP (pattern-tree) tables.

The construction of FP table is set up on the following steps:

1. Based on a given support threshold (s), frequent 1-itemsets are selected from the

transactional table TRANS.

2. A new transaction table TRANSFI is created based on transactions which contains those

frequent 1-itemsets.

Mining Intra and Inter-dimensional Patterns

19

3. From the TRANSFI table, an EFP table which stands for Extended FP is built as a

preprocessing step for reaching an FP table.

4. Finally, the FP table is created by means of an SQL expression, with proper aggregate

function over EFP table.

The EFP table is an interesting approach for getting FP table, since it avoids for each frequent item

to be tested if it should be or not inserted into FP table [Shang et al. 04].

A piece of the Pattern TREE (FP) source code #
PROCEDURE EFP
DO with (EXISTS TRANSFI)
CREATE TABLE EFP (item, cnt, path)
CREATE TABLE FP (item, cnt, path)
DECLARE
 BEGIN
 count = 1
 curpath = null
 c_transfi CURSOR for TRANSFI
 FOR each row in c_transfi
 BEGIN
 curpath = curpath + ‘:’ + c_transfi.item
 INSERT INTO EFP
 values(c_transfi.item, count, curpath)
 END
 SELECT item, sum(cnt) as cnt, path
 INTO FP
 FROM EFP
 GROUP BY item, path
 END

Algorithm 1. Generating Pattern-tree tables.

2.2.3 Mining Pattern-tree Tables

For mining FP table it is necessary to build two more auxiliary tables which are the pattern base

(PB) and conditional FP table (CONFP). We present an approach where CONFP table is built based

on simple SQL with proper aggregate functions over PB table. On the other hand, SQL-based FP-

Growth [Shang et al. 04] demands several reconstruction processes for those tables. It is almost

impractical to create those tables several times. Therefore, we use an approach for getting sub-

paths by means of UDF functions and database cursors with its respective support threshold over

the SUBFP table (a SUBset of FP table).

Mining Intra and Inter-dimensional Patterns

20

SUBFP is a table that contains only rows from FP table which have itemsets enclosed in CONFP. By

doing so, we can reduce the search space for getting sub-paths directly from all items in FP table,

and also, avoid several reconstruction of PB, FP and CONFP tables. The size of FP is reduced

significantly by using SUBFP mainly when dealing with low support thresholds on large datasets.

The following steps are required for mining pattern tree table [Alves & Belo 05b]:

1. Taking as input the same support threshold defined in 2.2.1, creates the related tables

PB, CONFP and SUBFP.

2. Update the column (pos) in CONF which keeps the position of each item. This is useful

for getting sub-path databases in such way that it preserves the order of the items on

SUBFP table. This is important for using UDF (table-valued functions).

3. Extract single patterns by enumerating the prefix-item stored on CONFP table. This also

creates the PATTERNS table.

4. Extract not-single patterns by applying pattern growth over CONFP.

5. In Fragment Growth step, each prefix-item is extracted from SUBFP table and verified

by two UDF functions. One for generating the sub-path databases (function

getTable_pb) and other for getting the node support associated to each prefix-item

sub-path (function getNodeSupp). Those functions coupled with the SUBFP table play an

important role for extracting all frequent patterns, and also avoid the re-construction of

PB, FP and CONFP table for each prefix-item sub-path.

A piece of the Fragment Growth source code #
 DECLARE pg_subPath CURSOR for
 SELECT *
 FROM getTable_pb(@v_prefix,@v_item) order by ord
 SELECT list_pg_item = pg_subPath.item
 FOR each row in pg_subPath
 BEGIN
 SELECT node_path = pg_subPath.item+’%’+ c_confp.item
 SELECT node_supp =
 getNodeSupp(pg_subPath.prefix, node_path)
 SELECT pat_item = pg_subPath.item
 SELECT pat_fp = node_path+'%'+ pg_subPath.prefix
 SELECT pat_cnt = node_supp
 SELECT exist_pat = (
 SELECT count(*) FROM PATTERNS
 WHERE item=pat_item and fp=pat_fp)

 INSERT INTO PATTERNS (item,fp,cnt)
 VALUES (pat_item, pat_fp, pat_cnt)

 SELECT list_pg_item = list_pg_item
 +’%’+ pg_subPath.item

 END

UDF FUNCTION getNodeSupp (@item, @path)

Mining Intra and Inter-dimensional Patterns

21

RETURNS @node_supp ## -> node support
BEGIN
 DECLARE @supp int
 SELECT @supp = (SELECT sum(cnt)
 FROM SUB_FP
 WHERE item=@item and
 path LIKE '%'+@path+'%')
 RETURN(@supp)
END

UDF FUNCTION getTable_pb (@prefix, @item)
RETURNS TABLE ## -> sub-path databases
AS RETURN
 SELECT prefix,item,cnt,ord FROM CONFP
 WHERE prefix=@prefix and
 item<>@item ##-> criteria for sub-path mining

Algorithm 2. Mining Pattern-tree tables.

2.2.4 Evaluation Study

In order to evaluate PGS we compare our results with an Apriori (K-way join) and improved SQL-

based FP-growth (EFP). Those algorithms were chosen in sense that they present the basis on the

most known itemset mining implementations based on SQL [Agrawal & Shim 96] [Rantzau 03]

[Sarawagi et al. 98a] [Shang et al. 04] [Wang & Zaniolo 00] [Yoshizawa 00]. Both algorithms were

implemented to the best of our knowledge based on the published reports on the same machine

and compared in the same running environment. The former implementation uses a candidate k-

table Ck, which is a slow process for generating all joins and tables. So, when dealing with long

patterns and large datasets the K-way join seems to be not efficient. The EFP avoids candidate-set

generation been more competitive in low support scenario. However, it demands several tables’

reconstruction.

Our PGS strategy takes the other way around, beyond pure SQL to SQL-Extensions. Also getting

sub-paths databases, and restricting the search space for finding frequent itemsets by means of

using an SUBFP table coupled with UDF functions. Consequently, we don’t need to materialize PB,

FP and CONFP tables several times.

Datasets

We use the synthetic transaction data generation described in [Agrawal & Srikant 94] for

generating transactional tables. The nomenclature of these data sets is of the form TxxIyyDzzzK.

Where xx denotes the average number of items present per transaction, yy denotes the average

Mining Intra and Inter-dimensional Patterns

22

support of each item in the data set, and zzzK the total number of transactions in K (1000’s). Table

3 summarizes those datasets.

Datasets Dist.
Items

Nof. Rows Avg.1-
it.sup

Max.1-
it.sup

T5I51K (1) 775 5.112 6 41
T5I5D10K (2) 873 49.257 56 399

T25I10D10K (3) 947 245.933 259 1468
T25I20D100K (4) 981 2.478,55 2526 13.917

Table 3. Transactional datasets generated.

Performance Comparison

We describe our approach PGS, comparing it with K-Way-join and EFP. Our experiments were

performed with Microsoft SQL Server 2000 (v.8.0). The machine was a mobile AMD Athlon ™

2000+ 645MHZ, 224 MB RAM. The performance measure was the execution time ‘the logarithm of

the execution time (log(milliseconds))’ of the algorithm applied over the four datasets with

different support thresholds. We took that log scale in order to get a better view of the

performance comparison among all approaches, since PGS has good response time. Figure 6

shows the total time taken by the all approaches.

Based on the performance information provided in Figure 6 we can make the following

observation: PGS can get competitive performance out of EFP and K-way-join. K-way-join

has low performance when dealing with large datasets. Besides, when the support decrease the

length of frequent itemsets increase causing expensive joins with the transactional tables.

Therefore, the other two approaches perform better than K-way-join.

The results of PGS and EFP answered our second issue. The former doesn’t use table

reconstruction, getting good response time. On the other hand, the latter suffers considerably by

working with several table materialization reconstructions. By those preliminary results we have

accomplished our main goals with the proposed PGS strategy.

The store procedures which deal with the construction of tables FP and CONFP are the most time-

consuming tasks. They respectively took, for each dataset, 35%, 50%, 75% and 85% of the total

execution time. Nevertheless, the time for the whole process was quite competitive and those

Mining Intra and Inter-dimensional Patterns

23

tables are built only once. In order to speed up even more the whole process, we also have been

applied two clustered indexes on tables CONFP and SUBFP.

Figure 6. A comparative study. PGS runs competitively in sparse and dense datasets.

Foodmart Warehouse

FoodMart Warehouse is a sample database provided by Microsoft SQL Server 2000. One can use

Analysis Services for applying OLAP and Data Mining techniques over data warehouses. However,

only Clustering and Decision Tree methods were available in this DB version. Just quite recently

was introduced an Apriori-implementation for MBA in SQL 2005 within the Business Intelligence

Development Studio (http://www.sqlserverdatamining.com/DMCommunity/).

We applied PGS for mining frequent patterns over FoodMart database. It works only in first step of

association rules, which means generating all frequent itemsets. For getting all the rules, one can

program a store procedure using the pseudo-code in [Agrawal et al. 93]. We choose this last

example for presenting some results with a real application. Although we know that its size is

smaller than the largest one showed in a previous section, we also can reach interesting itemsets.

Therefore we omit the performance comparison among all approaches.

Mining Intra and Inter-dimensional Patterns

24

It was used the fact table (sales_fact_1998) as the transactional table. This table has 164.558

tuples with five dimensions (product, time, customer, promotion and store). Before using PGS, we

must define which dimensions in the fact table will be used as the transaction identifier (tid) and

the set of items. Thus, the tid was set to the customer dimension and items to the product

dimension. Furthermore, there are 1.559 distinct products distributed along 7.824 customers. The

most frequent product was 277 Great English Muffins (143) and the less one was 1559 CDR Apple

Preserves (43). It was executed several supports from (0.05%) to (0.01%). The most interesting

itemset was 282%232 means Best Choice Salsa Dip and Great Wheat Bread in low level hierarchy.

Given that the fact table was so sparse, the itemsets was selected only with very low support.

2.2.5 Final Discussion

In the previous section, it was presented a pattern growth mining implementation which takes

advantage of SQL-Extensions for getting intra-dimensional patterns. Most of the commercial

RDBMS vendors have implemented some features for SQL-Extensions. Integrating data mining in

RDBMS is a quite promising area. Frequent pattern mining is the basic task in data mining. There

are several memory-approaches to mine all patterns. However, some few efforts have been made

on database perspective, in those cases, only pure-SQL.

Given the large size of database like data warehouse, it is interesting to take advantage of

databases features in order to manage and analyze large tables. We worked in this direction

providing an approach with SQL-Extensions. By doing so, we can achieve competitive results

and also avoid classical bottlenecks: candidate set generation and test (several

expensive joins), and table reconstruction. The Store Procedures that deals with the

construction of the tables, FP and CONFP, are the most time-consuming tasks, taking 35%, 50%,

75% and 85% respectively for each synthetic dataset (1, 2, 3, 4) from the small one to the large

one. Nevertheless, the time for the whole process was quite competitive. Moreover, it was used

the FoodMart Warehouse with several supports in order to illustrate interesting intra-dimensional

patterns.

One issue that is controversial is the code portability, in sense that PGS is tightly dependent of the

database programming language with SQL-Extensions. On the other hand for huge databases, one

might be interested to take all the advantages offered by the RDBMS.

Mining Intra and Inter-dimensional Patterns

25

As future research, one should work on method enhancements for making this strategy more

interactive, constrained and incremental. Furthermore, some work on improving the whole

performance of PGS by using Table Variables (TV), which allows mimicking an array, instead of

using database cursors, it is also very interesting topic for further research with PGS.

2.3 From Intra-dimensional to Inter-dimensional Patterns

2.3.1 Motivation

In data warehouses, data records (in fact tables) are typically associated to one or more contexts

or dimensions. These records can be related to distinct dimensions (or predicates) such as items,

time and location. Classical examples are customer transactions in supermarkets, logs of network,

clickstreams, or events related to manufacturing in industry. When analyzing such events within its

context (i.e. associated dimensions), they provide valuables sources to explore, not only by its

frequency and the co-occurrence, but further, inter-dimensional patterns that arise along each

context associated to it. However this kind of inter-dimensional patterns can not be induced

directly by using the method discussed in section 2.2. Context information is usually discarded by

intra-dimensional mining methods [Agrawal & Srikant 94]

A typical example of this type of pattern is that one obtained from stock market database (Example

1). if company A goes up (day-0), company B goes down (day-1) then with probability of P%

company C will go down (day-4). Although, this type of pattern provides more accurate time

information than rules that only express a temporal order (e.g. A, B and C will happen within 5

days) or sequences (e.g. B happens after A and C after B) , such accuracy may also incurs some

bias into the mining process. Let’s take the Example 1, where the company B goes down

sometimes at day-1 (A0 B1 C4 with probability of
2
P

%) and other times at day-2 (A0 B2

C4 with probability of
2
P

%). Even though the pattern trend is still the same, this may result into a

not frequent pattern (i.e. both patterns do not achieve the minimum required probability P% when

both of them are evaluated in separated manner). To overcome this situation we propose to mine

inter-dimensional patterns in the form: if company A goes up in one day, company B goes down on

a subsequent day, then with probability of P% company C goes down after B and the mean

Mining Intra and Inter-dimensional Patterns

26

distance between A and C is µ and its respective standard deviation is σ. Furthermore, we also can

obtain the mean distance of all item of a pattern. Our mining strategy relies in the

combination of frequent pattern and sequence pattern mining to extract inter-

dimensional patterns.

2.3.2 Related Background

The task of association rule mining is well studied problem with many proposed algorithms

[Agrawal & Srikant 94] [Han et al. 00] [Pei et al. 00] [Zaki & Hsiao 02]. Other studies are

derivative from this original problem, like multilevel, with constraints or quantitative rules.

Sequential pattern mining refers to the task of finding sequence patterns. The first algorithm to

tackle this problem was presented in [Agrawal & Srikant 95] and other algorithms [Srikant &

Agrawal 96] [Zaki 01] [Garofalakis et al. 99] [Pei et al. 01] [Ayres et al. 02] were successively

proposed to improve this task. The transactions are aggregated by customer and ordered in time.

Each customer is described by the respective sequence of transactions.

Frequent patterns are extracted having into account the respective order of their items along the

sequence. Viewing each sequence as a transaction, the extracted patterns are intra-transactional

(or intra-dimensional) in their nature. Other algorithms that incorporate temporal information into

association rule mining have also been proposed. In [Ale & Rossi 00] it was proposed an algorithm

that only considers the items’ lifetime for supporting counting purposes, since an item may not be

frequent in the overall time but be frequent in its life time window. The notion of cyclic association

rule is presented in [Özden et al. 98]. Rules like coffee and donuts are frequent from 7AM to 10

AM'', express a regular variation (hourly, daily, weekly…) and can be considered as a cycle. None

of the previous algorithms are inter-transactional (or dimensional).

Inter-transactional patterns were introduced in [Lu et al. 00]. In this work, the notion of intra-

transactional rules was extended to the multidimensional space. An Apriori [Srikant & Agrawal 96]

based algorithm, called EH-Apriori was proposed to mine such rules. The algorithm works by

moving a sliding window across the database of transactions. Each item is mapped into an integer

identifier (extended item), being tagged by the offset of the respective original transaction within

the window. All the integer identifiers are projected into new transactions (mega-transactions)

forming a transformed transactional database. This database is then mined for the extraction of

frequent itemsets and its respective association rules. In [Tung et al. 03] a new algorithm called

Mining Intra and Inter-dimensional Patterns

27

FITI (``First Intra Then Inter'') was presented, showing a better performance than EH-Apriori. The

FITI algorithm works in three phases:

1. First, it starts by mining and storing frequent intra-transactional itemsets.

2. In a second phase, the stored itemsets are mapped into integer identifiers and the

database is transformed using these identifiers. Once again, a sliding window is used to

restrict the span which rules may have.

3. Finally, the transformed database is mined for inter-transactional itemsets, where some

constraints are imposed to the association rules, in order to limit the number of interesting

rules.

In [Berberidis et al. 04] an approach based in [Lu et al. 00] is used to predict rare items. Here, the

user selects an item that wants to predict. Antecedent periods of the selected item are used to

generate mega-transactions that will compose the transformed database.

The above described algorithms for inter-transactional (or inter-dimensional) mining make use of

an item or itemset mapping to force the order among the itemsets. In our proposed strategy,

association mining is used to extract interesting itemsets present in a transaction. Applying a

sliding window, those itemsets are aligned, and compose a set of sequences, which are then mined

in order to find frequent sequence patterns. Finally sequential rules, that express frequent actions

occurring within a dimensional window, are obtained.

2.3.3 Inter-dimensional Patterns

In this section we provide definitions which will allows us to express inter-dimensional patterns

among different transaction records, followed by the problem of mining such pattern.

Definition 1 (n-dimensional database) Let Ω be a set of events, generally called items. Let D the

dimensional attribute and Dom(D) the domain of D. DB is a n-dimensional database and contains

instances in the form (d, e), where d ∈ Dom(D) and Ω⊆e . As an example of dimensional

attributes we have time, distance and temperature. It is assumed that Dom(D) is R or N, that di+1

> di and (di+1-di) is equal for all i.

Mining Intra and Inter-dimensional Patterns

28

Definition 2 (frequent itemset) I is a frequent itemset, where I = {ij,...,ik} Ω⊆ , if it occurs in a

number of transactions θ(minimum support). This is also the same notion of an intra-dimensional

pattern discussed in section 2.2.

Definition 3 (sequence) A sequence s = s1 * s2 * … * sk is an ordered list of items, where

Ψ⊆is (an alphabet of items), i ∈ {1,…,k}. * is a wildcard that corresponds to zero or more

arbitrary items from Ψ. The length of s, |s|, is the number of non wildcard in s. As an example of

a sequence we have abc**e*f, which has a length of 5. The items are contained in Ψ. In the next

section we will see that Ψ ≠ Ω.

Definition 4 (sequence database) A database of sequences P is a set of instance tuples in the

form (sid, s), where sid is the sequence identifier and s the respective sequence. |P| is the size

(number of sequences) of P.

We may look to the sequence identifier as a customer or time identifier. S follows definition 3 of a

sequence. Furthermore, a sequence is frequent if it occurs in a number of sequences greater than

a sequence minimum support φ. The cover list of an itemset or sequence pattern is,

respectively, the set of the transactions and sequence where it occurs.

A sliding window w, is a dimensional frame that is used to limit the span of the inter-dimensional

patterns, i.e. the range of interaction between transactions. This window is imposed for

performance issues, since it limits the search space. That is, rules that span too much and have no

significant interest.

The problem of mining inter-dimensional patterns can be formulated as follow: Given a database

DB, an itemset minimum support θ, a window size w, a sequence minimum support φ, a minimal

rule confidence c (or other measure of interestingness), find all sequence rules (inter-dimensional

patterns) in the form },){...()...(11 σµmn CCAA →→⇒→→ .)1,1(, mjniCA ji ≤≤≤≤

are in the form i1 * … * ip, where)1(pkik ≤≤Ω⊆ . µ is the mean distance between A1 and Cm.

σ is the standard deviation of the distance.

Mining Intra and Inter-dimensional Patterns

29

2.3.4 Mining Inter-dimensional Patterns

Our method is divided into three steps, enumerated as follows:

1. Database transformation,

2. Sequence conversion and mining, and

3. Sequence rule extraction

To get a better understanding of the proposed strategy, for next sections we take time as the

dimensional attribute.

Database transformation

The main goal in this step is to extract the relevant information in the context of the problem

described in section 2.3.3. This transformation corresponds to the selection of relevant items for

each transaction. This can be achieved through applying a function f, where f(DB)=DB’; and DB

and DB’ as the original and the transformed databases respectively. We choose a generic function

f, suitable to be applied in many domains and in particular to the time domain. This function

extracts all frequent intra-transactional patterns (greater than a pre-defined size) present in a

transaction for a minimum support threshold θ. An example of an alternative function is the,

correlation-function, where only sets of items that have a pair-wise correlation greater than a

particular threshold are evaluated. The motivation to use a function f, is that by enumerating all

frequent intra-dimensional patterns in a transaction, all the possible pattern combinations are

tested out. Table 4 and Table 5 illustrate the utilization of such function.

d t
… …
di <1 2 3>

di+1 <4 5 6>
di+2 <7 8 9>

… …
dj <1 2 6>

dj+1 <4 5 10>
dj+2 <8 9 15>

… …

Table 4. Subset of an original database DB.

Mining Intra and Inter-dimensional Patterns

30

d t
… …
di <1 2> <1 3> <2 3> <1 2 3>

di+1 <4 5> <4 6> <5 6>
di+2 <8 9>

… …
dj <1 2> <1 6>

dj+1 <4 5> <5 10> <4 10> <4 5 10>
dj+2 <8 9>

… …

Table 5. Subset of a transformed database DB’.

After obtaining all frequent patterns (intra-dimensional ones) greater than size one, we are able to

enumerate all inter-dimensional patterns. Let’s consider that transactions (di, di+1, di+2) are within

window Wk, and transactions (dj, dj+1, dj+2) within Wp, (K≠p), then <1 2> <4 5> <8 9> is an

inter-dimensional pattern (Table 5).

The method explained in section 2.2 is applied here to enumerate all intra-dimensional patterns

[Alves & Belo 05a] [Alves & Belo 05b]. Next, for each transaction identifier, the cover list of all

patterns in the set of all intra-dimensional patterns is scanned. When the pattern appears in a

given transaction, it is reported out for that particular transaction.

Sequence Conversion and Mining

First, the database DB’ is converted into a database of sequences P. Then, P is evaluated in order

to obtain sequence patterns (inter-dimensional ones).

The process starts by mapping each itemset to an integer identifier. The hash table (Table 6)

containing all itemsets (alphabet Ω) | identifier (alphabet Ψ) correspondence is kept during this

evaluation.

itemset <1 2> <1 3> <2 3> <1 2 3> … <4 5> <4 6> <5 6> <8 9> …
Id 1 2 3 4 … 8 9 13 14 …

Table 6. Itemset mapping hash table.

Next, database DB’ is scanned and for each w, consecutive transactions with its correspondent

itemsets identifiers are projected into a dimensional sequence. These sequences will compose the

Mining Intra and Inter-dimensional Patterns

31

database P. The obtained sequences are non-overlapped, i.e. mutually exclusive, which avoid the

bias introduced by the overlapping regions of the sequence. Therefore, if a sequence starts at dp

the sequence will start at dp+k, which results in the following relation |DB’|≥ w x |P|. Taking the

example given in Table 4 and Table 5, for the window wk, we will have the sequence identifiers: 1

2 3 4 8 9 13 14.

Finally, we are able to use any sequence mining algorithm to mine all the sequence patterns that

are frequent for a given sequence support φ. In this proposal we make use of gIL [Ferreira et al.

05]. This algorithm makes use of a sequence transitivity extension property. Thus, in order to

get a pattern A B C, the pattern A B needs to be combined with the pattern B C. This

allows us to keep a track of the mean distance among all the items.

Rule Extraction

In the rule extraction step, sequence patterns are filtered out and rules are generated. Only rules

that fulfill constraint of interestingness are reported. Pattern distance can be problematic in where

standard deviation is high. Thus we devised a new filter coefficient of variation of distances,

µ
σ

=cvd , applying a threshold min_cvd to remove sequences which express high distance

variation. In addition, we also need to smooth redundant patterns. Redundant patterns are

itemsets which are contained in subsequent itemsets originated in the same transaction. For

instance, the patterns represented by sequence identifiers {1, 2, 3} in Table 6 are contained in

sequence {4}, and all of them belong to the same transaction.

Following the definitions presented in [Spiliopoulou 99], a sequence rule is obtained by splitting a

sequence pattern s in two adjacent parts: (l,r), where s=l.r (. is the concatenation of two

sequences) . The obtained rule has the form: l r. While testing a sequence s for different rules,

the split into l and r parts, should be done using different combinations of the subsequences of s.

However, the order of those subsequences should be preserved. As an example, for the sequence

abcd, the following combinations are valid ones: abc d, ab cd, and a bcd. The typical

measures of interests used in association mining, can also be applied in sequence mining. For a

database of sequences P, we may have:

1. support sup (l r) =
P
rl |.|

Mining Intra and Inter-dimensional Patterns

32

2. confidence conf (l r) =
)sup(
).sup(

l
rl

3. lift =
)sup(

)(
r

rlconf →

2.3.5 Evaluation Study

To evaluate our method we will use several transactional datasets where the dimensional attribute

is time. The datasets were generated according to the IBM data generator [Agrawal & Srikant 94],

which has been widely used for the evaluation of frequent pattern mining algorithms (association &

sequence). The datasets characteristics are illustrated in Table 7 and Table 8. The algorithms were

implemented in database-like (T-SQL) for mining frequent patterns [Alves et al. 05b] and in C++

for getting sequence patterns [Ferreira et al. 05]. All experiments were performed on 1.5Ghz Intel

Centrino machine with 512Mb (main memory), within Windows XP environment.

D Number of transactions
T Average size of transactions
I Average size of max potentially large itemsets
L Number of max potentially large itemsets
N Number of items

Table 7. Parameters used by the dataset generator.

Dataset D T I L N
DS1K 1K 10 5 0.02K 100
DS10K 10K 5 5 0.1K 70
DS50K 50K 5 5 0.5k 500
DS100K 100K 5 5 1k 500

Table 8. Datasets generated for the evaluation study.

Table 9 and Table 10 show the experimental values obtained in different steps of the method.

Table 9 shows that for each dataset the value of the itemset support threshold (θ) and the

respective running time to get all frequent patterns (intra-dimensional ones). It is also presented

the values used and obtained while applying the sequence conversion step. The Max.Item refers to

the number of different itemsets (with size greater than 2), W is the window size, Nº.Ws the

Mining Intra and Inter-dimensional Patterns

33

number of windows (with size greater than one). The last column shows the windows average

length.

Dataset θ% Time(s) Max.Item W Nº.Ws Avg.W.Len
DS1K 10 1.6 44 2 500 13.9
DS10K 10 58.3 245 4 2500 20.4
DS10K 50 205 75 3 2721 4.3
DS50K 0.5 1604 171 3 16513 27
DS100K 1 50614 56 2 46188 8

Table 9. Experimental values for the itemset mining and sequence conversion steps.

Table 10 presents the results while applying the sequence mining step. For each support threshold

(φ), it is reported the computational time used to obtain frequent sequences along with their

characteristics (quantity and average size). The latter column is obtained after removing redundant

itemsets.

Dataset φ% Time(s) Nº Sequences Avg.Size
DS1K 2 4.6 32729 4.6
DS1K 5 3.2 2520 3.2
DS1K 10 2.8 460 2.8
DS10K 0.4 46 45360 3.9
DS10K 0.5 0.27 1388 3.0
DS10K 1 0.14 621 2.9
DS50K 5 27.6 8049 3.5
DS100K 1 78.5 6422 3.6

Table 10. Experimental values for the sequence mining step.

Finally, in Figure 7, we show the distribution plot of the cvd measure for all patterns in the DS50K

dataset. We can see that from a total of 8049 sequence patterns, 1039 have a cvd greater or equal

than 1; 5398 less or equal than 0.85; 1556 less or equal than 0.5; and only 3 have a cvd bellow

0.3. Figure 8 presents the distribution plot of the confidence and lift measures for the set of

sequence rules extracted from the DS50K dataset.

Mining Intra and Inter-dimensional Patterns

34

Figure 7. Distribution plot of the cvd measure for the DS50K dataset.

Figure 8. Distribution plot of the lift and confidence measures for the DS50K dataset.

2.3.6 Final Discussion

Previously we have introduced a strategy to extract inter-dimensional patterns from dimensional

databases. This strategy combines two well known data mining tasks: frequent and sequence

mining. First, a filter function was applied to the transactional database in order to obtain the

relevant information (intra-dimensional patterns) from each transaction. This function extracts all

frequent itemsets contained in a given transaction. Nonetheless, depending on the problem itself,

different functions can be applied. Then, based in the extracted itemsets a database of sequence is

Mining Intra and Inter-dimensional Patterns

35

built. Each sequence corresponds to a dimensional frame (particularly in this discussion we

considered time as our dimension of interest). Finally, sequence rules fulfilling measures of

interestingness are reported out. Those sequence patterns (inter-dimensional patterns) are

augmented with two measures, µ and σ. The first measure corresponds to the mean distance

between the first and last itemsets of the pattern and the later one its respective standard

deviation of the distance. Optionally, the mean distance can also be reported. When compared

with the offset based pattern description [Lu et al. 00] [Tung et al. 03], µ and σ, provides more

flexibility and accuracy description with respect to the dimensional behavior of those patterns.

The introduction of a measure like cvd allow us to reject patterns that presents

significant distance variation, and thus, avoiding the representation of misleading

patterns. The performance of the strategy proposed in this section is tightly related to the

algorithms used, the database characteristics and the parameters used on each step. The main

advantage of this approach is its simplicity, where neither novel algorithm nor complex itemset

labeling features are required.

So far, the cvd filter had been used as post-processing step of the sequence mining step. Although

the performance of this strategy does not imply a bottleneck figure, it can be further improved. An

interesting issued for future study is to push directly this pruning mechanism in the mining

process. This is non trivial task, since this measure is neither monotonic nor anti-monotonic.

Ideally, one should be concerned to devise a unique support measure, i.e. a measures combining

both frequent and sequence threshold for mining inter-dimensional patterns.

2.4 Summary

In this chapter we covered two mining strategies devised for extracting intra and inter-dimensional

patterns. The kernel of such strategies is based on FIMI theories.

Most of the itemset mining approaches for getting intra-dimensional patterns are memory-like and

run outside of the database. On the other hand, when we deal with data warehouse the size of

tables is extremely huge for memory copy. In addition, using a pure SQL-like approach is quite

inefficient. Actually, those implementations rarely take advantages of database programming.

Furthermore, RDBMS vendors offer a lot of features for taking control and management of the

data. In section 2.2 we presented a pattern growth mining approach by means of database

Mining Intra and Inter-dimensional Patterns

36

programming for finding all frequent itemsets. Thus, the main idea was to avoid one-at-a-

time record retrieval from the database, saving both the copying and process context

switching, expensive joins, and table reconstruction. The empirical evaluation of our

strategy shows that runs competitively when compared with most known itemset mining

implementations based on SQL.

Classical association rules are by nature intra-transaction based, i.e., the associations occurs

among the items within the same transaction. Further, those transactions are usually associated

with a dimensional context which is typically ignored. This prevents that patterns, occurring along

this dimension (i.e. associated context), are discovered. In section 2.3 we have introduced a

strategy for the extraction and analysis of inter-transactional patterns. These patterns allow us to

discover relationships that occur among transactions within a dimensional time frame. The method

consists in the combination of association and sequence mining. First, association mining is applied

to transform a dimensional transactional database into a sequence database. The latter is then

mined in order to obtain frequent sequence patterns. Sequence patterns are augmented with

additional distance (among events) information. We also have experienced that by using a

measure like cvd allow us to reject patterns that presents significant distance

variation, and thus, avoiding the representation of misleading patterns.

Finally, inter-dimensional patterns fulfilling user's constraints (with relation to the measures of

confidence, lift and others) are extracted.

Aggregation-based Single-dimensional Mining

37

Chapter 3

3 Aggregation-based Single-dimensional

Mining

In this chapter we present several aggregation-based mining methods particularly devised for a

real application scenario. We tackle the problem of mining superimposed fraud situations in

telecommunication systems. Previously, in chapter 2 we have discussed count-based mining

methods for getting intra and inter-dimensional patterns. Those count-based mining methods are

quite constrained with respect to the aggregation function used, i.e., count ones. Thus, for

handling more elaborated functions we need to design methods which can allow computation of

complex aggregating functions such as, average and standard deviation. We propose three

anomaly detection methods based on single-dimensional aggregations or just signatures. The first

method relies on a signature deviation-based approach. The second one explores dynamic

clustering analysis while the third method works towards community behavior. All methods are

aggregation-based mining ones in sense that first proper aggregations are made over a particular

dimension and then mining methods are applied to highlight interesting patterns. Experiments

carried out with real data, voice call records from an entire week, corresponding to approximately

2.5 millions of CDRs and 700 thousand of signatures processed per day, allowed us to detect

several interesting situations. Preliminary results and discussion with fraud analysts has already

proved that those methods are a valuable tool to assist them in superimposed fraud detection. A

preliminary version of this chapter were published in two papers presented in [Alves et al. 06] and

[Ferreira et al. 06].

Aggregation-based Single-dimensional Mining

38

3.1 Single-dimensional Aggregations as Signatures

In superimposed fraud situations, the fraudsters make an illegitimate use of a legitimate account

by different means. In this case, some abnormal usage is blurred into the characteristic usage of

the account. This type of fraud is usually more difficult to detect and poses a bigger challenge to

the telecommunications companies. Telecommunications companies use since the 90's decade

several kinds of approaches based on statistical analysis and heuristics methods to assist them in

the detection and categorization of fraud situations. Recently, they have been adopting the use

and exploitation of data mining and knowledge discovery techniques for this task. In this chapter

we focus on superimposed fraud detection in telecommunication systems. We first discuss two

methods for discovering fraud situations through mining anomalous customers’ behavior patterns.

These methods are based on the concept of signature [Cortes & Pregibon 01], which has already

been used successfully for anomalous detection in many areas like credit card usage [Kou et al.

04], network intrusion [Lunt 99] and in particular in telecommunications fraud [Cortes & Pregibon

01]. The main goal was established into two central statements:

• To detect deviating behaviors on useful time, giving better basis to analysts being

more accurate in their decisions in the establishment of potential fraud situations.

• To elaborate aggregation-based mining methods which were capable of smoothing the

course of dimensionality dilemma, as well as, revealing interesting anomalous patterns.

Our technique has as a core concept on the notion of signature. The curse of dimensionality is

handled by signatures. Each signature profiles the user behavior from a single-dimensional point of

view. Thus, we emphasize the work of Cortes and Pregibon [Cortes & Pregibon 01], since it was

the main inspiration for the use of signatures. We have redefined the notion of signature. Thus, a

signature of a user corresponds to a vector of feature variables whose values are determined

during a certain period of time. A signature is a single-dimensional aggregation, in sense that all

variables (or measures) are summarized according to a unique dimension. In this particular

scenario of application the dimension to aggregate is the mobile phone number.

The variables can be simple, if they consist into a unique atomic value (ex: integer or real) or

complex, if they consist in two co-dependent statistical values, typically the average and the

standard deviation of a given feature. The choice of the type of the variables depends on several

factors, like the complexity of the feature described or the data available to perform such

Aggregation-based Single-dimensional Mining

39

calculation. A feature like the duration of the calls shows a significant variability which is much

better expressed through an average(µ)/standard-deviation(σ) parameter. A feature like the

number of international calls is typically much less frequent and thus an average value is sufficient

to describe it. In table 11 we list the complete set of feature variables (fv) used in the context of

this work. One can also see the signature model as a 1-D (one-dimesional) cube. Thus, the

dimension to aggregate is the phone number and several measures are calculated according to

table 11. This model is particularly different from the traditional data cubes where just few

measures are associated and several dimensions are aggregated.

Description Type

Duration of Calls Complex

N. of Calls – Working Days Complex

N. of Calls – Weekends and Holidays Complex

N. of Calls – Working Time (8h-20h) Complex

N. of Calls – Night Time (20h-8h) Complex

N. of Calls to Diff. National Networks Simple

N. of Calls as Caller (Origin) Simple

N. of Calls as Called (Destination) Simple

N. of International Calls Simple

N. of Calls as Caller in Roaming Simple

N. of Calls as Called in Roaming Simple

Table 11. Description of the feature variables used in signatures and summaries.

The choice of the type of the variables depends on several factors, like the complexity of the

feature described or the data available to perform such calculation. A feature like the duration of

the calls shows a significant variability which is much better expressed through an

average(µ)/standard-deviation(σ) parameter. A feature like the number of international calls is

typically much less frequent and thus an average value is sufficient to describe it.

In Table 11 we list the complete set of feature variables (fv) used in the context of this work. A

signature S is then obtained from a function φ for a given temporal window ω, where S = φ(ω).

We consider a time unit, the amount of time in which the CDRs are accumulated and that in the

end of this period are processed. A summary C, has the same information structure as a signature,

but it is used to resume the user behavior in a smaller time period. Typically, a signature reflects

Aggregation-based Single-dimensional Mining

40

the usage patterns for a period of a week, a month or even half year, whereas a summary reflects

the periods of an hour, a half day or complete day. In this work, we considered the period of one

day for a summary and a week for the signature.

3.2 Deviation-based

3.2.1 Evaluating Similarity of Simple Feature Variables

A simple feature is defined by a unique variable, which corresponds to the average value of the

considered feature. For simple feature variable comparison we will make use of a ratio-scaled

function. This type of function makes a positive measurement on a non-linear scale, which will be,

in this case, the exponential scale. The used function is defined in the range [0, 1] and is defined

according to the Equation 1:

}
||

{
),(Amp

BSS

yx

yx

eSSd
×−

−

=

Equation 1. Similarity of simple feature variables.

In Equation 1, SBx B and SBy B are the two simple variables under comparison, B is a constant value, and

Amp is the amplitude (difference between the maximum and minimum value) of the respective

feature variable in all signatures space.

3.2.2 Evaluating Similarity of Complex Feature Variables

Complex feature variables are defined by two co-dependent variables. These variables correspond

respectively to the average and the standard deviation of the considered feature. For two complex

variables, CBxB = (MBxB,σBx B,) and CBy B = (MBy B,σBy B), the similarity function is defined in Equation 2, and is

within the range [0, 1].

||
||

),(),(
yx

yx
yxyx CC

CC
SSdCCd

∪

∩
×=

Equation 2. Similarity of complex feature variables.

Aggregation-based Single-dimensional Mining

41

Equation 2 is the result of the combination of two formulas, the similarity function for simple

variables (see Equation 1) and the ratio
||
||

yx

yx

CC
CC

∪
∩

. This ratio is also within the range [0, 1] and

provides the overlap degree of the two complex feature variables by measuring the intersection of

the intervals [MBx B-σBx B, M BxB+σBx B] and [MByB-σBy B, MBy B+σByB].

3.2.3 Evaluating the Distance among Signatures

Since the feature variables in the signature have different types, each variable has to be evaluated

according to a distinct sub-function. Thus, the dist function is composed by the several sub-

functions: dist = θ(f B1 B, f B2 B,…, f BnB). Consider as an example the simplification of a signature Sg =

{(µBa B,σBaB); µ BbB; µBc B; (µBdB,σBdB)}, where the first and the last feature variables are complex (calculated by

Eq. 2) and the second and the third are simple (calculated by Eq. 1) variables. Let Sm = {(µ’BaB,σ’BaB);

µ’BbB; µ’Bc B; (µ’Bd B,σ’BdB)}, be a summary. Since we are interested in considering deviation detection from a

probabilistic point of view, i.e. the distance measure among two signatures Sg and Sm, would

therefore correspond to the probability of Sm being different from Sg. The proposed distance

function can be presented as:

22
1111),(...),(),(nnnn SmSgfSmSgfSmSgD ⋅++⋅= αα

Equation 3. The distance among signatures.

Different distance functions can be provided, by the fraud analyst, by setting weighing factors αBiB to

different values. The use of different distance functions will allow detecting deviations in different

scenarios. The overall distance function can be re-defined as in 2.

)},(),...,,(),,({),(21 SmSgdistSmSgdistSmSgdistMaxSmSgD m=

Equation 4. The maximum distance among signatures.

If according to the distance function, a threshold value ε defined by the analyst is

exceeded, Dist(Sg, Sm) > ε, then an alarm should be raised to future examination of

the respective user. Otherwise, the user is considered to be within its normal behavior.

Aggregation-based Single-dimensional Mining

42

3.2.4 Detecting Anomalies

The anomaly detection procedure based on signature’s deviation consists in several steps. It starts

by a loading step, which imports the information to a local database staging area. This information

refers to the signature and summary information of each user. The signatures are imported only

once, when the system is started. All the signatures of a user are kept through time. Such

information will also be useful for posterior analysis. A signature may have two different status

Active or Expired. For each user only one signature can have the Active state, and it is the most up

to date one. The processing step corresponds to the algorithm described in [Ferreira et al. 06], and

follows the previous equations for calculating the distance and similarities among signatures.

According to equation (4), if an alarm is raised, the user is put on a blacklist. This is performed on

the triggering alarm step, which is based on the calculation of the whole distance functions over

the signatures. At the end, all the raised alarms have to pass through the analyst verification in

order to determine if this alarm corresponds or not to a fraud situation. The evaluation of the

alarms is supported by the interface of the system that employs features of dashboard systems,

providing a complete set of valuable information.

3.2.5 Updating Procedure for Signatures

The updating process of the signatures follows the ideas presented in [Cortes & Pregibon 01]. The

update of a signature SBt B in the instant t+1, SBt+1 B, through a set of processed CDRs (summary) C, is

given by the formula:

SBt+1 B = β.SBt B + (1-β).C

Equation 5. Updating signatures.

The constant β indicates the weight of the new actions C in the values of the new signature.

Depending on the size of the time window ω this constant can be adjusted [Cortes & Pregibon 01].

In contrast to the system in [Cortes & Pregibon 01], the value of signature is always updated. If

the Dist(SBt B, C) ≤ ε then the user is considered to have a normal behavior. If Dist(SBtB, C) > ε then an

alarm is triggered, nevertheless the signature continues to be constantly updated. The reason for

this is that the alarm still needs to pass through the analysis of the company fraud analyst. It could

be the case in which the analyst considers it as a false alarm. The continuous update of that user

signature avoids the loss of information that was gathered between the moment when the alarm

was triggered and the moment the analyst gives his verdict.

Aggregation-based Single-dimensional Mining

43

3.3 Clustering-based

3.3.1 Dynamic Clustering of Signatures

The analysis of changes in the clusters topology over a period of time will provide valuable

information for the better understanding of the usage patterns of the telecommunications services.

In particular, the detection of abrupt changes in cluster membership may provide

strong evidences of a fraud situation. We propose the application of dynamic clustering

analysis techniques over signature data. Our aim is that these changes will also provide evidences

to fraud analysts for establishing potential fraud situations.

3.3.2 Similarity of Signatures

Signatures are composed of simple and complex variables. Traditional similarity measures, like for

example Euclidean distance, Pearson correlation, Jaccard measure will not be applicable for

signature comparison. Therefore, we need to devise a new similarity measure which will allow us

to determine similarities among signatures. We define the similarity between two signatures as the

combination of the variable similarity measures defined in section 3.1. For two signatures Sg and

Sg’, where SgBiB and Sg’BiB are respectively the feature variable i of Sg and Sg’, and for n possible

variables, the similarity measure can be defined as in Equation 6.

22
1111)',(...)',()',(nnnn SgSgdWSgSgdWSgSgD ⋅++⋅=

Equation 6. The signatures similarity.

D(Sg, Sg’) ∈ [0, 1] and WBiB defines the weight of the feature and∑ =
=

n

k
Wi

1
1 .With this signature

similarity measure, we can compare all signatures. This will provide a N x N matrix, that

summarizes the similarities among the N signatures. The clustering solution can then be obtained

by taking into account the previous calculated matrix as the input.

3.3.3 Clustering Migration Analysis

According to the moment of the week, different usage patterns can be found [Alves et al.

06][Ferreira et al. 06]. These usage profiles are provided by means of signature clustering analysis,

according to the method describe previously in section 3.3. Therefore, for each day of the week a

cluster topology is provided. This topology describes customers' usage patterns during that period.

Aggregation-based Single-dimensional Mining

44

Each cluster is described by the characteristics of its centroid. The centroid is defined as a

signature. This allows making direct comparisons of the signatures and clusters centroid. The

comparison is made according to the Equation 6. The signature assignment to the cluster is done

by comparing each signature against each cluster centroid, and it is assigned to the cluster in

which has the smallest distance.

3.3.4 Absolute and Relative Similarity

In order to make the comparison of signatures against cluster centroids, two types of similarity

measures can be defined: absolute and relative similarity. Absolute similarity defines the similarity

value between the signature and the centroid in a given time moment t. This value is calculated

according to Equation 6. Relative similarity relates the absolute similarity between instant t and

t+1, providing the percentage of the signature variation between two consecutive time instants.

This value is obtained through the Equation 7:

[]
[] %100}

,(
,(

1{ 1 ×−=∆ +

tii

tii

SSignClSD
SSignClSD

Equation 7. the absolute and relative similarity of cluster signatures.

In Equation 7, SBiB corresponds to a signature and SignCl[SBiB] to the cluster that SBiB belongs in the

moment t. Figure 9 shows a positive variation, where the signature SBiB is closer to the centroid 0 in

the instant t than in t+1.

Figure 9. Positive variation of the relative similarity of the signature.

Aggregation-based Single-dimensional Mining

45

A negative value of the relative similarity in the instant t+1, indicates that the signature SBiB is now

close to the centroid of the cluster that it fits in the instant t. Nevertheless (see figure 10), we can

detect to a cluster membership change, since now Si is now closer to another cluster (cluster 1).

Figure 10. Negative variation of relative similarity of the signature and change cluster membership.

We define a cluster membership change as follows: a signature S changes its cluster membership

to cluster CBjB in the instant t+1, if it belongs to cluster CBiB in the instant t, in the instant t+1 the

distance D(S,CBj B) is minimal concerning all clusters and D(S,CBjB)Bt+1 B < D(S,CBiB) BtB. All the data relative to

the cluster membership of the signatures are kept for posterior analysis. These data, which we call

Historical data, will make possible to assess the evolution of the customer behavior through time.

In order to offer the analyst a tool for a better examination of the changing behavior of the

customers, during a defined interval, analysis reports can be generated [Alves et al. 06]. This tool

will provide the identification of all the conditions used, as well as, the average and standard

deviation of the signatures variations and the maximum, minimum and average values for all the

signature feature variables. The deviating signatures detected are included into a blacklist, for

further analysis.

Figure 11. Example of fraud situations in the blacklist.

Aggregation-based Single-dimensional Mining

46

Figure 11 shows an example of a fraud situation on a blacklist. The first line contains a header with

the temporal reference, the analysis report description, and the limits of the range [µ-2σ, µ+2σ],

which indicates that any variation outside this limit is considered an abnormal situation. For the

next lines, it is listed the moment when the anomaly was detected, the signature identification

(phone number), the cluster where the signature belongs, a flag indicating a cluster membership

change (in the positive case), the absolute similarity of the signature and the cluster, the relative

similarity (variation) and as the last column the description of the respective analysis report. More

detailed information about the methods, as well as, scalability issues regarding its application can

be obtained in [Ferreira et al. 06] [Alves et al. 06].

3.4 Evaluation Study: Deviation and Clustering-based

Methods

In order to assess the quality of the first two methods in detecting anomalous behaviors, we have

examined the data correspondent to a week of voice calls from a national mobile

telecommunications network. By using this real dataset, we were able to evaluate not only the

applicability of these methods but also the feasibility of using aggregation-based mining methods

on a single level of summarization, and then delivering the detection of interesting fraud situations

through adaptation of traditional mining methods over signatures.

The complete set of Call Details Records (CDR) corresponds to approximately 2.5 millions of

records, and 700 thousand of signatures processed per day. Up to now, there isn’t exists any

accurate database with previous cases of fraud. Thus, the settings of our methods were guided by

a small list of 12 customers (fraudsters in the referenced week), provided by the fraud analyst in

order to detect other similar behaviors. In this first stage of detecting anomalous situations, we are

interested on the effectiveness of our methods. Therefore, we worked on a subset of the previous

data concerning to a sample distribution with approximately 5 thousands summaries per day and

its respective signatures to the whole week. The detection process was carried out by applying the

method described in section 3.2 and 3.3. Several thresholds (ε) were used and basically four main

distance functions were designed combining different feature variables and weights. An illustration

of the alarms generated by the deviation-based approach is given in Table 12. Pay attention to the

Aggregation-based Single-dimensional Mining

47

most right (gray) column, further investigation on those alarms shown that some of them were

real fraud situations.

ε/day 0.8 1.0 1.2 1.6 2.0

Tue 2141 649 139 50 25

Wed 3029 1145 251 103 56

Sat 1006 560 150 39 23

Table 12. Different thresholds (ε) and the alarms rose for three particular days of the week.

For getting more understanding under the circumstances in which those alarms where generated

one must investigate the impact of each variable over the MAX distance function (see Equation 4).

In figure 12 we exemplify such evaluation by allowing Top-K queries over the complete set of

alarms. We also verified that the most 10 imperative anomalous situations were raging from 2.76

up to 3.33 concerning its distance function. The feature variable which has more impact over the

distance calculation is the international call (originated ones). On the other hand, in Figure 13 we

can see that workhours variable has great importance to the distance calculation over the whole

period.

Figure 12. The impact of each feature variable over the top-10 higher alarms.

Aggregation-based Single-dimensional Mining

48

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6

weekdays
weekends
workhours
nighthours
net91
net93
net96
netfix
orig
dest
intrnl_duration
intrnl_orig
intrnl_dest

Figure 13. An overall picture of feature variable distribution over the max distance (ε ≥ 2).

It is important to mention that both methods (i.e. deviantion- and clustering-based) provide just

insights that could be recognized as anomalous situations. In fact, the characteristics of the data

provided by the analysts don’t allow us to apply any classification technique. Therefore, it is quite

hard to evaluate, precisely, the rates for false positive and false negatives. Although, given the

small list provided by analyst we can report a recall of 75%.

 In order to complement the previous results we further make use of a dynamic clustering

approach to detect suspect changes on cluster membership over the whole week. The

identification of those changes will trigger alarms for future inspection. After several executions,

the qualities of the clusters were maximized with 8 clusters. The distribution of the alarms raised

by this method can be figured out in Table 13.

Cluster Tue Wed Sat

1 3 9 1

2 9 7 123

3 3 12 71

4 5 17 16

5 23 21 22

6 20 31 40

7 8 11 26

8 52 72 0

Table 13. Alarms raised per cluster for three particular days of the week.

Aggregation-based Single-dimensional Mining

49

The bottom (gray) line in Table 13 shows the cluster with the highest number of calls. Figure 14

shows an example of changing on cluster membership, which represents a real fraud situation

identified by this method. The first and second customers pass from a cluster (1 and 2) with a

lower average of number of calls to the cluster with the highest number of calls (8), in days 4 and

3 respective. The third customer in this example, although always in the same cluster, has

registered a significant variation between days between days 5 and 6.

Figure 14. Example of anomaly situations regarded to the increase in the number of calls.

By using dynamic clustering we can now report a recall of 91%. As one can see this method is a

little bit susceptible for detecting anomalous situations than the previous one. This is explained by

the relative similarity measure (see Equation 7) which provides a fine tuning of the clustering

migration method by exploring signatures relative variation over the time (whole week). Finally,

the overlap rate of both methods corresponds to approximately 62% for the whole sample used,

and 66% for the blacklist provided by the fraud analyst. Meanwhile, the remaining cases, other

anomalous situations with the same behavior of the previous cases detected, are under inspection

by the company analysts. Thus, the next efforts will be heading to the development of a database

of fraud cases, as well as, an induction rule engine to help analyst on the evaluation of the alarms.

Concerning the scalability issues preliminary results showed to us that the most costly step is the

calculation of the summaries and signatures. It requires several aggregations functions over CDRs

Aggregation-based Single-dimensional Mining

50

records with the purpose of grouping information by each customer. At this time, this is done by

several SQL scripts over a Microsoft SQL Server 2005. By the time that this information is available

we can make use of each method discussed in this work without pre-defined order to detect

anomalies. When dealing with such huge data we have realized that working with chunks of

information (summaries and signatures) plus clustered indexes structures, it improves the

processing time without losing quality of the results by at least one order of magnitude. On the

other hand adds a new trouble, in sense that, when sliding the window from ω to ω+1 requires

rebuilding of the all respective indexes.

Finally, in case of using dynamic clustering we have divide the original chunk of data D, into a set

of partitions D’i, mutually exclusive, in order to make the processing of each partition feasible.

After all partitions have been processed, the last step is to merge all the clustering information

resulted from each chunk processed. The parameters that described the cluster topology obtained

for each block are gathered in a unique set of D’f. These parameters are considered the data

objects for further processing of the final K clusters obtained.

Previously we have presented two methods for detecting potential telecom fraud situations. Both

methods rely on the concept of signatures to summarize the customer behavior through a certain

period of time. In the first approach, the user signature is used as a comparison basis. A possible

differentiation between the actual behavior (summary) of the user and its signature may reveal an

abnormal situation. The second approach uses dynamic clustering analysis in order to evaluate

changes on cluster membership over the time. The clear basis of these detection-based methods is

that they complement each on reporting anomalous situations. For instance, in our evaluation

study we got an overlapping of 66% fraud situations which was raised by the proposed methods.

The experimental evaluation performed with data from a week of voice calls, and

respective comparison, with a list of previously detected fraud cases, allowed us to

conclude about the high rate of true positives (91%) detected by the proposed

methods. Additionally, they discovered other fraud situations which were not reported previously

by the analysts. Preliminary discussion with fraud analysts gave us feedback about the promising

capabilities of the proposed methodologies. These strategies clearly point out the importance and

applicability of aggregation-based mining methods on a real application scenario.

Aggregation-based Single-dimensional Mining

51

3.5 Graph-based

As a general data structure, graphs have become increasingly important in modeling sophisticated

structures and their interactions, with broad applications including chemical informatics,

bioinformatics, web analysis and telecommunications. In this section we explore the application of

graph mining for identifying anomalous situations on telecommunications call detail records

(CDRs). This application is interesting, both because of its size and its rate of changes.

The main motivation is that those changes may reveal interesting situations of fraud, particularly in

this work, superimposed ones. By using graphs, we can represent the dynamic interactions in

mobile telecom networks with the whole set of call records, without losing information, and also

providing a rich structure for revealing abnormalities. We used annotated digraphs to represent the

communication networks. The dynamics of changes are modeled into the graphs by weighting

factors using damping ideas. This representation highlights the fact that more recent CDR

contributes more heavily to the graph at time t. Thus, new information is aggregated in

accordance with this representation and evaluated through pre-defined recursive functions.

We also provide the exploration of several statistics over the graphs. Those statistics not only are

important for querying graphs, but also play a key role to define anomaly functions for searching

suspect situations (suspect graphs). We have designed functions to reveal suspect objects

(subgraphs/vertices/edges). By manipulating those functions the fraud analyst can set up

combined thresholds to points out suspect objects. Furthermore, those suspect graphs, can be

matched against other graphs (which are known cases of fraud) in order to find out similarities

with respect to its common networks. We called this operation as graph overlapping. Experimental

evaluation carried out with real data, from a local mobile telecom company, showed us the

feasibility and scalability of the proposed methods.

3.5.1 Motivation

As a general data structure, graphs have become increasingly important in modeling sophisticated

structures and their interactions, with broad applications including chemical informatics,

bioinformatics, web analysis and telecommunications. In this section we explorer the application of

graph mining for highlighting interesting and anomalous situations on a mobile telecommunications

scenario. Such anomalous situations may be indicative of fraud cases, and it may also isolate

interesting network (possibly fraudulent) communities.

Aggregation-based Single-dimensional Mining

52

We propose a simple but effective approach for mining suspect (or deviating) call graphs. It is not

our aim to compare the effectiveness of several graph mining methods for getting graph patterns.

The call graphs discussed in this section are a representation of the social network behavior of

several customers from a local mobile company1. Recently, we have also conducted other studies

on telecom fraud detection. These works were concerned in understanding customer behavior

using signatures [Ferreira et al. 06] and dynamic clustering [Alves et al. 06].

In section 3.4, telecommunications customers were analyzed on an individual basis. In this new

study we extend previous works, combining individual customer call usage information with its

respective call network behavior.

The main contributions proposed by this approach are:

1. A dynamic model for mining evolving call graph networks. The model is constantly updated

when new information is available;

2. Anomaly functions, so the graph can be inspected by employing customized statistical

functions to detect significant deviations on graph components (subgraphs/vertices/edges);

3. Graph similarity evaluation, after identifying suspect graphs, fraud analysts should be

able to evaluate those graphs against other ones representing previously detected fraudulent

behavior.

3.5.2 Problem Definition

The problem tackled in this section can be stated as follows:

Based on information provided by the customer call detail records (CDRs), build an evolving model

which helps fraud analysts to understand customer social network behavior – specially those ones

concerning to potential fraud situations.

Several studies show that telecommunication companies lose large amounts of money every year

due to a large diversity of fraudulent cases [Nanavati et al. 06] [Cortes et al. 03]. Besides, fraud is

continuously evolving and telecommunications networks generate huge amounts of data

1 This work was developed under the SFonTEL project. Its main goal is to employ mining methods to understand social
network behavior from CDRs. It is a follow-up of FRATELO project, where several methods for fraud detection in mobile
telecommunications systems were studied.

Aggregation-based Single-dimensional Mining

53

(sometimes of the order of several gigabytes per day) the detection and identification of fraud

cases on useful time is extremely hard and costly. Among the many kinds of fraud in

Telecommunications, we are particularly interested in the superimposed ones.

As described in previous sections, in superimposed fraud situations, the fraudsters make an

illegitimate use of a legitimate account by different means. In this case, some abnormal usage is

blurred into the characteristic usage of the account. This type of fraud is usually more difficult to

detect and poses a bigger challenge to the telecommunications companies.

To build such fraud detection model, we generalize the method of Cortes et al [Cortes et al. 01]

[Cortes et al. 03] using an annotated graph-based mining approach to highlight potential situations

of fraud.

Definition 1 (Annotated Graph) An annotated graph is a digraph G’:=(V,A) with:

1. V, is a set of vertices or nodes,

2. A, is a set of ordered pairs of vertices, called directed edges,

3. info, is a set of information that describes the edge A. Each edge a(x,y,info) from A denotes a

direct connection from x to y and contains a set of attribute values (info).

Definition 2 (Weighted Information) The proposed model is constantly updated with new

information and a weighting factor θ (ranging from 0 to 1). For a time instant t, the new

information g’t is combined with the information contained in the graph G’t-1, of the instant t-1 (see

Figure 15):

() ttt gGG '1'' 1 ⋅−⊕⋅= − θθ

Equation 8. Updating factor for evolving graphs.

By employing definitions 1 and 2, the proposed model is able to support two important

requirements in this kind of application: 1) dynamic, reflecting the temporal evolution of

existing behaviors; and 2) adaptative, incorporating new behaviors.

Aggregation-based Single-dimensional Mining

54

Figure 15. Illustration of the model evolution. Considering info attributes as air_time and

charged_amount for each call and customer 1, 2, 3 and 4. The weighting factor was set to 0.85.

Due to operational limitations the updating process is made on daily basis. The setting values

pointed by Cortes et al. in [Cortes et al. 01] have been used. Namely, θ=0.85; this corresponds to

a situation where the graph reflects the call activity of the last month.

3.5.3 Graph Mining

With respect to our particular problem, we want to find graph patterns which point out anomalous

situations. These anomalous situations should be indicative of potential fraud cases. In this sense,

we are interested in finding abnormal behavior concerning subgraphs, nodes or edges. Different

from [8] where deviations are evaluated from a pure power law distribution, we propose a more

generalized approach finding significant deviations by exploring statistics over graph components

(or objects). Therefore, our graph-mining approach attempts to detect suspect graphs, i.e., graphs

which present significant changes on its vertex or edges. Furthermore, those suspect graphs,

should be matched against other graphs (which are known cases of fraud) in order to find out

similarities with respect to its common networks.

Aggregation-based Single-dimensional Mining

55

3.5.4 Finding Deviating Graphs

Suspect graphs are graphs in which its objects (or components) present significant deviations.

Definition 3 (Suspect objects) Are graph components in which present significant deviation when

evaluated by the following ZScore function:

()
i

ii xxiObjZScore
σ
−

=;

, where i ∈ info, and Obj = {V, A}.

Equation 9. Score function for labeling deviating objects.

Since info should contains several attributes, deviations per vertex (customers) or edge (calls) are

evaluated according to:

() |));(max(|; iObjZScoreIObjf =

, for all i ∈ I, where I=info if Obj = A and I={info} if Obj=V. |ZScore(Obj;i)| is the modulus of the

ZScore function.

Equation 10. Maximization of the score function for an object.

In this approach we restrict the evaluation of suspect graphs simply by scoring its vertices. In this

sense, we rewrite equation 10 to:

() |));(||,);(max(|; iVZScoreiVZScoreIObjf outin=

, where ZScorein and ZScoreout denote the ZScore calculated for each vertex (customer),

respectively for the received and originated calls.

Equation 11. Maximization of the score funtion for Zin-Zout of an object.

Vertices are labeling according to the function f (see equation 11) as following:

1. Normal, if (f <= -1 and f > 0) or (f > 0 and f <= 1);

2. Suspect, if (f > -1 and f <= -2) or (f > 1 and f <= 2); and

3. Abnormal, if (f > -2 and f <= -3) or (f > 2 and f <= 3)

Aggregation-based Single-dimensional Mining

56

Vertex labeled as suspect or abnormal could be potential situations of either fraud or churning.

Although in this work we are just interested on fraud situations. It is important to mention that the

final decision, to evaluate whether a particular graph is a fraud case or not, should be made by the

fraud analyst. This task of labeling suspect graphs only helps to filter out interesting cases for

further analysis.

The next step should be to match this suspect graphs with other call graphs (previously identified

as fraud situations), in order to evaluate similarities. Besides, fraud analysts could also make use of

several statistics available to get deep analysis of all call graph network.

(a) (b)(a) (b)

Figure 16. It presents the results after applying equations 2(a) and 3(b) to detect suspect objects

in graph G’t of Figure 15.

3.5.5 Evaluating Deviating Graphs

We provide two alternatives for inspecting suspect graphs. The first one is to use graph statistics,

so the fraud analyst can explore carefully all graph components (see Figure 16 and Figure 17). The

second alternative is to evaluate the overlap degree between two graphs. The overlap degree

between two graphs is given by a distance function, we called just graph overlapping.

Definition 4 (Graph overlapping) Given two vertices (A,B), their respective call networks can be

compared by finding an overlapping degree between these two graphs:

)}){deg()}({deg(
|)}({)}({|),(

BAMax
BNetANetBAoverlap

∪
∩

=

, where Net(X) corresponds to its adjacency list and deg(X) corresponds to the sum of the in-

degree(X) + out-degree(X). |Net(X)| is the cardinality of a set Net(X).

Equation 12. The graph overlapping degree.

Aggregation-based Single-dimensional Mining

57

Since the overlap is between [0,1], the analyst can define a threshold (γ) to select the most similar

networks. Consequently, if overlap(A,B) ≤ γ graphs are considered not similar, otherwise if

overlap(A,B) ≥ γ they are similar. When overlap(A,B) = 1, we may say that both graphs are

isomorphic. Thus, there exists a one-to-one correspondence between their node sets which

preserves adjacency.

As a simple example, but not losing its generality, let’s assume we want to evaluate the overlap

degree between graphs G’t-1 and g’t in Figure 15. We are interested to assess overlap(G’t-1(2),

g’t(2)) for a threshold setting γ=75%. Thus, this ratio is given by evaluating

})2,2({
|}4,3{}3{|)2,2(

Max
overlap ∩

= which provides a final overlap of 50%. In summary, this evaluation

should be carried out by pair comparison between each vertex (suspect tag) from G’t-1 against each

vertex (abnormal tag) in g’t..

In our application, normal vertices are green, suspect ones are yellow and abnormal ones are red.

When vertices are selected for overlapping they appear on blue. Figure 17 shows a screen shot of

the application.

(a) (b)(a) (b)

Figure 17. Two screen shoots of the call graph application. Figure (a) presents the top-5 objects

according to a statistic value (sum) annotated into the graph. . Figure (b) highlights graph objects

evaluated during an overlap operation.

Aggregation-based Single-dimensional Mining

58

3.5.6 Evaluation Study

The evaluation study was carried out with real dataset. This data corresponds to a week of voice

calls from a Portuguese mobile telecommunications company. The complete CDRs have several

variables, but specifically in this study the fraud analyst set up the following variables to build the

call graphs: a_number (in), b_number (out), air_time, billed_time and charged_ammount. More

discussion about variables related to this dataset could be obtained in previous works [Ferreira et

al. 06] [Alves et al. 06]. An example of the degree distribution of the graph (~5 millions of

vertices) for Thursday can be seen on Figure 18. The in-degree and out-degree distributions are

closer to other distributions presented in [Chakrabarti et al. 06]. It also shows that most customers

have similar calling behavior.

It is quite impractical to evaluate the proposed methods while looking at to the complete week

dataset, given the huge size of these call graphs (see Figure 18). To make this experimental study

feasible, the fraud analysts have selected a more reasonable week dataset for the running test. In

this sense, the final dataset correspond to ~120K calls covering ~140k mobile phone numbers.

(a) In-degree (b) Out-degree(a) In-degree (b) Out-degree

Figure 18. In and Out degree distributions for all calls made on Thursday.

The first aspect to be evaluated is the practical implications of the functions defined on section

3.5.4. Figure 19 shows the plot of the normal curve for equation 9. It corresponds to calls made on

Thursday. Thursday was chosen since it is day of the week with larger activity. The ZScore values

for this day are: σ=1.17, µ=0.11 and for a total of 35702 cases. It can be generally considered

that customers have a behavior that is reflected through a normal distribution. A minority of the

cases (7%) show a considerably deviating behavior.

Aggregation-based Single-dimensional Mining

59

The complete view of this labeling task for the entire week is illustrated on Figure 20 (b). As we

would expect, the number of new vertices increase regularly when compared with the number of

edges (see Figure 20 (a)). Although, a large number of potential fraud situations were triggered,

preliminary feedback given by the fraud analysts has already proved that our methods are a

valuable tool to assist them in fraud detection. To make this analysis more reliable we strongly

advise using previous methods [Alves et al. 06] [Ferreira et. Al 06] to assess and to complement

the quality of results achieved in this presented approach.

2118>=8

567

2136

8255

18874

233193

23520532

18986143961

16404187870

outinFreq.

2118>=8

567

2136

8255

18874

233193

23520532

18986143961

16404187870

outinFreq.

Distribution

Figure 19. ZScore distribution for one week-day (thursday).

The second characteristic to be explored is the overlapping similarity between suspect graphs and

abnormal graphs. Again, the main idea is highlight the most interesting cases for further analysis.

Unfortunately, given the higher percentage of call graphs with low edge distribution the

overlapping (suspect x abnormal) was not so effective on detecting similarities (usually just one

edge associated). In addition, this pair-wise comparison has shown high computational costs. So,

graph indexing and constraining should be taken place here to smooth this task. It also requires a

well-made dataset to analyze not only the quantity but the quality of the overlapping task.

Aggregation-based Single-dimensional Mining

60

Scalability figures are presented in (Figure 20 (c) and Figure 20(d)). Those tests were performed

on an Intel machine 3GHz with 3GB of main memory.

(a) (b)

 (c) (d)

Figure 20. (a) Graph size (vertices and edges) w.r.t the number of CDRs; (b) Categories

distribution (number of vertices) w.r.t number of CDRs; (c) Processing time for finding suspect

graphs w.r.t the number of CDRs; (d) Memory usage w.r.t to number of CDRs.

3.5.7 Related Background

From the extensive literature in mining graph patterns, we emphasize two works that concern

mining call graph patterns [Nanavati et al. 06] [Cortes et al. 03]. Recently, in [Chakrabarti et al.

06] was presented a complete survey about graph mining, covering algorithms, laws and

generators. There also other kinds of graph patterns based on frequent patterns analysis [Han &

Kamber 06]. With respect to graph mining on CDRs, Cortes et al [Cortes et al. 01] [Cortes et al.

Aggregation-based Single-dimensional Mining

61

03] propose a data structure based on the union of small subgraphs (top-k edges), called

community of interests (COI) to handle large dynamics graphs. The previous methods do not

explore deviations for detecting fraud situations. In [Pennock et al. 99] are presented an approach

in which deviations are evaluated from a pure power law distribution. Our method is a

generalization from the last mentioned works [Cortes et al. 03] [Pennock et al. 99]. Damping ideas

for refreshing all call graphs, followed by exploration of deviating graph components have been

used. Furthermore, we allow overlapping test for graph similarity.

3.5.8 Final Discussion

This work is part of the SFonTel Project, which relies on mining call graph patterns for better

understanding of social mobile telecommunications networks. Particularly, we are interested on

identifying deviating behaviors on graph components (subgraphs/vertices/edges). We have devised

two methods for highlighting suspect graphs on a dynamic model. The first one is based on

significant deviations of vertices and the later one related to graph overlapping. Before any

calculation regarding the detection of anomalous graphs, aggregations are conducted over

particular nodes, in this case, the phone number, and then deviating behaviors are identified. The

main idea is quite related with the previously discussed methods, although the main difference is

the way deviation is evaluated over those resulting aggregations.

Experimental evaluation carried out with real data from a local mobile company showed us the

feasibility of the proposed methods. We verified that the majority of the call graphs present normal

behavior and, as expected, just few customers show an abnormal behavior. Given that a higher

percentage of call graphs has low edge distribution the overlapping (suspect x abnormal) was

partially effective on detecting similarities. Furthermore, this pair-wise comparison has extremely

costs. So, indexing and constraints should be considered in the future in order to smooth this task.

We have not explored graph patterns based on other metrics like hub and authorities, giant

components, power laws and shortest-paths (small-word effect). New research will be heading to

complement this study with these ideas in the near future.

3.6 Summary

In this chapter we have presented two methods for detecting telecom fraud situations based on

the utilization of single-dimensional aggregations, i.e., signatures. Both methods rely on the

Aggregation-based Single-dimensional Mining

62

concept of signature to summarize the customer behavior through a certain period of time. The

clear basis of these detection-based methods is that they complement each other on reporting

anomalous situations. For instance, in our evaluation study we got an overlapping of 66% fraud

situations which was raised by the proposed methods. Additionally, they discovered other fraud

situations which were not reported previously by the analysts. Preliminary discussion with fraud

analysts gave us feedback about the promising capabilities of the first two proposed methods.

The third method discussed in this chapter relies on mining call graph patterns for better

understanding of social network behavior. Particularly, we are interested on identifying deviating

behaviors on graph components (subgraphs/vertices/edges). We have devised two methods for

highlighting suspect graphs on a dynamic model. We experienced that the majority of the call

graphs present normal behavior and, as expected, just few customers show an abnormal behavior.

Given that a higher percentage of call graphs has low edge distribution the overlapping (suspect x

abnormal) was partially effective on detecting similarities.

All methods presented previously encompass a set of single-dimensional mining methods which

plainly confirm their usability, as well as, applicability on real data applications. The main

advantage of such approach is to avoid high-dimensional aggregation by profiling with one

dimension and then take the discovery of interesting patterns (anomalous situations) through

adaptation of traditional mining methods over signatures. On the other hand, it should be also

interesting to allow discovering from single to n-dimensional aggregation. The drawback of the

single-dimensional approach is the extremely constraint of employing just one dimension to

summarize multidimensional databases. Although, in the particular application scenario presented

in this chapter was fairly useful.

Aggregation-based N-dimensional Mining

63

Chapter 4

4 Aggregation-based N-dimensional Mining
Organizations have been used decisions support systems to help them to understand and to

predict interesting business opportunities over their huge databases. Those huge databases are

well known as data marts (DMs), organizing information and preserving its multidimensional and

multilevel characteristics. A multidimensional data cube, also called cube, stores aggregation (or

summarization) data for exploring interesting n-dimensional relations over DMs. OLAP tools have

been used widely for retrieving information in a summarized way by employing customized cubing

methods. The majority of these cubing methods suffer from being just data-driven oriented and

not discovery-driven ones. In fact, real applications demand enhanced cubing methods which can

employ mining functions into the discovery process. Other relevant aspect of DMs is the granularity

of the information. By allowing concept hierarchy modeling, DM users can set the right level of

information for mining interesting relations at any level of data abstraction. Finally, data marts

grow quite fast, so an incremental OLAP mining process is a required and desirable solution for

mining evolving multidimensional data.

In order to present a solution that covers all the previous mentioned issues, we propose a cube-

based mining method which can compute an incremental cube, allowing concept hierarchy

modeling, as well as, incremental mining of interesting relations by means of multidimensional and

multilevel association rules. As far as we know, our method is the first one to support incremental

OLAP mining over evolving DMs. The evaluation study using real and synthetic datasets

demonstrates that our proposed method is a promising incremental cube-based mining method. A

preliminary version of this study has been published in [Alves & Belo 07b].

Aggregation-based N-dimensional Mining

64

4.1 Motivation

For a long time, organizations have been using decisions support systems to help them to

understand and to predict interesting business opportunities over their huge databases. This

interesting knowledge is gathered in such way that one can explore different what-if scenarios over

the complete set of information available. Those huge databases are well known as data marts

(DM), organizing the information and preserving its multidimensional and multilevel characteristics.

OLAP tools have been used widely by DM users for retrieving summarized information, also called

multidimensional data cube, through customized cubing algorithms. Since DMs are evolving

databases, it is necessary to have the cube updated on a useful time. Usually, traditional cubing

methods compute the cube structure from scratch every time new information is available. As far

as we know, almost no one of them support an incremental procedure. Furthermore, those

traditional cubing approaches suffer from being just data-driven oriented and not discovery-driven

ones. In fact, real data application demands both strategies [Sarawagi et al. 98b].

Other relevant aspect of data cube exploration is the granularity of the information. When

exploring the cube either is required detailed or general information. Concept hierarchy modeling

comes as a required solution for setting the right level of information, providing an enhanced

model for multidimensional and multilevel mining. On the other hand, handling a large number of

dimensions and hierarchy’s levels might be quite hard task for cubing methods. Therefore, bringing

out some mining technique into the cubing process is an essential effort to reveal interesting

relations on DMs [Kamber et al. 97] [Lu et al. 00] [Han et al. 99] [Alves & Belo 06].

In this chapter, we propose an incremental cube-based mining method for discovery-driven

exploration of evolving cubes. We devised a new cubing strategy, capturing the goal of extracting

interesting relations from data cubes on an incremental basis. Using this incremental cube, we

develop a new cube-based mining method. The curse of dimensionality and granularity is handled

by dimension selection during the mining process. More specifically, in this chapter, the main

contributions can be summarized as follows:

• Incremental data cubing. The cubing method proposed is inspired on a MOLAP

approach [Zhao et al 97], and it also adopts a divide-and-conquer strategy. We’ve

generalized bulk incremental updating from [Feng et al. 03]. Verification tasks through

Aggregation-based N-dimensional Mining

65

join-indexes are used every time a new cubing process is required. Thus reducing the

search space and handling new information available.

• Multidimensional and multilevel mining. Since the cube is processed from a DM.

The implementation of hierarchies is supported by computing several cubes. The final

cube is a collection of each processed cube. This requirement is essential to guide

multilevel mining through dimension selection with the desirable granularity [Kamber

et al. 00] [Han et al. 99]. Besides, it allows discovering interesting relations at any-

level of abstraction from the cubes.

• Enhanced cube mining. To discovery interesting relations on incremental basis, we

support inter-dimensional [Lu et al. 00] and multilevel association rules [Kamber et al.

00]. We provide an apriori-based rule algorithm for rule discovering taking advantages

of the cube structure, being incremental and tightly integrated into the cubing process.

We also enhance our cube-based mining using other measure of interestingness [Alves

& Belo 06].

4.2 Problem Formulation

Apart from the classical association rules algorithms, that usually take a flat database to extract

interesting relations [Agrawal et al. 96], we are interested to explore multidimensional databases.

In this sense, the data cube plays an interesting role for discovering multidimensional and multiple-

level association rules [Kamber et al. 00].

A rule of the form X→Y, where body X and head Y consists of a set of conjunctive predicates, is a

inter-dimensional association rule iff {X, Y} contains more than one distinct predicate, each of

which occurs only once in the rule. Considering each OLAP dimension as a predicate, we can

therefore mining rules, such as: Age(X, 30-35) and Occupation (X, Engineer) → Buys(X, laptop).

Many real data applications at mining associations require that mining be performed at multiple

levels of abstraction [Han et. al 99]. For instance, besides finding in previous rule that 80 percent

of people who age are between 30-35 and are Engineer may buy laptops, its is interesting to allow

OLAP users to drill-down and show that 75 percent of customers buy macbook if 10 percent are

Architect Engineer. The association relationship in the latter statement is expressed at lower level

of abstraction but carries more specific and interesting relation than that in the former. Therefore,

it is quite important to provide also the extraction of multilevel association rules.

Aggregation-based N-dimensional Mining

66

Lets us now thinking in another real situation where the DM has been updated with new purchases

or sales information. One may be interested to see if that latter patterns still holds. So, an

incremental procedure is a fundamental issue on incremental OLAP mining of evolving cubes. We

further present few definitions.

Definition 1 (Base and Aggregate Cells) A data cube is a lattice of cuboids. A cell in the base

cuboid is a base cell. A cell from a non-base cuboid is an aggregate cell. An aggregate cell

aggregates over one or more dimensions, where each aggregated dimension is indicated by a * in

the cell notation. Suppose we have an n-dimensional data cube. Let i= (i1, i2, …, in, measures) be a

cell from one of the cuboids making up the data cube. We say that i is an k-dimensional cell (that

is, from an k-dimensional cuboid) if exactly k (k ≤ n) values among {i1, i2, …, in} are not *. If k =

n, then i is a base cell; otherwise, it is an aggregate cell.

Definition 2 (Inter-dimensional predicate) Each dimension value (d1,d2,…,dn) on a base or

aggregate cell c is an inter-dimensional predicate λ in the form (d1∈D1∧…∧dn∈Dn). The set

{D1,…,Dn} corresponds to all dimensions used to build all k-dimensional cells. Furthermore, each

dimension has a distinct predicate in the expression.

Definition 3 (Multilevel predicate) A Multilevel predicate is a specialization or generalization of

an inter-dimensional predicate. Each predicate follows a containment rule such as λ∈Di<<Dj,

where << poses order dependency among levels (i to j) of abstractions for a dimension D.

Definition 4 (Evolving cube) A cube C is a set of k-dimensional cells generated from a base

relation R on time instant t. For a time instant tn+1 all k-dimensional cells in C should be re-

evaluated according to R’ generating a evolving cube C’.

From the above definitions we can define our problem of mining evolving data cubes as: Given a

base Relation R, which evolves through times instants t to tn+1, extract interesting

inter-dimensional and multilevel patterns DM, on incremental cubing basis.

Aggregation-based N-dimensional Mining

67

Figure 21. The complete set of partitions provided by the cube structure for Example 1

4.3 Cube-based Mining

4.3.1 The Cube Structure

The cube structure will be a set of arrays. Observing the cube as an object, it is simple to realize

that the cube can be split into small cubes. These small cubes, usually defined as cuboids, are each

one of the arrays (partitions) that together represent the final cube. The number of cuboids in the

cube is defined by the number of elements of the power set of the dimensions to be processed,

which is given by 2n, where n is the number of dimensions. Inside the cuboids, each element is

formed by a pair, where the left hand side is a set of dimensions and the right hand side is the

measure (usually a numeric value) resulting from the aggregation of the data.

Example 1. Given the SQL-like notation for expressing a cube query is as follows:

Select time_id, product_id, warehouse_id,

 sum(warehouse_sales) as sum

From inventory_fact_1997

group by product_id, time_id, warehouse_id

with cube

Aggregation-based N-dimensional Mining

68

The final array is formed by a group of eight partitions. In Figure 21, we show just the first three

tuples processed from the inventory fact table of the FoodMart Warehouse provided by Microsoft

SQL Server.

4.3.2 Processing Cube

The cubing method consists of four steps. Basically, these steps can be divided as follows:

1. Read a line from the fact table

2. Combine the dimensions

3. Insert or (update) the data in the cube

4. Update the index

Step 1. The first step is reading a line from a fact table and identifying what are the dimension(s)

and the measure(s).

Step 2. Next, the dimension(s) are combined using an algorithm based on a divide and conquer

strategy, in order to get the dimensions power set, each of which is per-se a cuboid. The step 2 is

further explained on next section. At this point, it is required to build the temporary data structure

which is used additionally for inserting or updating the cube. It is important to mention that the

cubing process supports the following distributive aggregate functions: sum, maximum, minimum,

and count.

Step 3. Following step 2, the process checks whether the set of dimensions is already in the cuboid

of the cube. In this case, the information is updated with the result given by the computation of

the defined aggregating function. Otherwise, the data is inserted.

Step 4. Finally, the index is built so the access to the cube information can be done quickly.

4.3.3 Combining Cube’s Dimensions

After reading a line from the fact table, it is necessary to combine the dimensions. In this step, the

power set of the dimensions is generated. However, generating power sets usually requires a great

amount of resources and time. Instead of using existing cubing strategies like top-down [Zhao et

al. 97] or bottom-up [Beyer & Ramakrishnan 99], it was developed an algorithm based on a divide-

Aggregation-based N-dimensional Mining

69

and-conquer (DAQ) strategy. These kinds of algorithms are recursive and proved to be extremely

efficient among others algorithms, since it divides the initial problem in small ones until it reaches a

trivial state which is straightforward to solve. Consequently, the algorithm combines the solutions

until fulfils the goal. Besides, our proposed method supports an incremental procedure which is not

allowed by the previous cubing approaches.

Before presenting the algorithm, first it is explained the two trivial cases.

1. Combine a singular set A of dimensions. In this case, since there is only one element in

the set, then the result is the set itself. Example, X={A} gives [{A}].

2. Combine a set A with two dimensions. In this case, the result will is given by a set

containing each element of A and the set A itself. Example, X={A,B} gives [{A},{B},{A,B}].

As it can be seen, the process has not taken into account the empty set, since it is not necessary

at this time. Having presented the trivial cases, the remaining steps are discussed as follows.

Suppose we have a set of dimensions D. The main goal is to combine the items of D among them,

in order to get the power set of the items.

At the start, the set D is divided in two parts (D1 and D2). If the number of elements of D is odd,

then D2 will have one more elements than D1. This step is executed again, recursively for each Di

until it reaches a trivial case. Whenever a set Di is a trivial situation, then the combination is done

according to the explanation given above.

The next step consists of combining the results of the trivial cases among them, until the final

solution is achieved. After solving a trivial case, the result is a set as well. At this point, the

algorithm takes two resulting sets that have the same ancestor and combine its results. To execute

this, it is necessary to take into consideration the position of each element in the set. This is done

as follows:

1. Put the same elements of both sets in a temporary set

2. Combine each element of each set, position to position

3. Add the result to the temporary set

4. Perform a left shift to the second set

5. Execute this step until the second set returns to its initial order

Aggregation-based N-dimensional Mining

70

We demonstrate each step by a running example:

Given a set of dimensions to combine like X={A,B,C,D}. The temporary set

Ts={{A},{B},{AB},{C},{D},{CD}} is built from the two resulting arrays A1={{A,B},{A,B,AB}} and

A2={{C,D},{C,D,CD}}. After the combination step, and executing a left shift operation on A2, the

results are Ts={{A},{B},{AB},{C},{D},{CD},{AC},{BD},{ABCD}}, A1={{A,B},{A,B,AB}} and

A2={{D},{CD},{C}}. Since the second set has not achieved its initial order, we repeat this

combination-shift step. After more two rounds (italic, bold) we achieved the result set as

Ts={{A},{B},{AB},{C},{D},{CD},{AC},{BD}, {ABCD},{AD},{BCD},{ABC},{ACD},{BC},{ABD}}.

Applying the method (pseudo DAQ algorithm) explained above for the partition [product_id(0),

time_id(1), warehouse_id(2)] = {6,534,13} from Example 1, we get a tree representation as

follow:

{6,534,13}:[0,1,2]

|--{6}:[0]

 |--{6}:[0]

|--{534,13}:[1,2]

 |--{{534}:[1], {13}:[2], {534,13}:[1,2]}

|--{{6}:[0], {534}:[1], {13}:[2], {534,13}:[1,2], {6,534}:[0,1],…,{6,534,13}:[0,1,2]}

Pseudo DAQ Algorithm
(input: arraysOfDim[L[],I[]], output: powerset)
Combine array (L[], I[])
If sizeOf[L] = 1 or sizeOf[L]=2 //trivial case
 add pair (L,I) to powerset
If sizeOf[L]>2
 split L[] on left[] and right[]
 add each element of left[] and right[] to powerset
For each element in right[]
 For each element in left[]
 Let L[], I[]
 L[] <- getFirst(left[]), L[] <- getFirst(right[])
 I[] <- getSnd(left[]), L[] <- getSnd(right[])
 add pair (L,I) to powerset
 right • leftShift(right)
Return powerset

Algorithm 3. Pseudo-code of DAQ algorithm for Cubing.

Aggregation-based N-dimensional Mining

71

4.4 Enhancing Cubing

4.4.1 Incremental

While developing a process which was able to build a cube, the cube built could also be able to be

incremented by an equivalent process or by the same process itself. Therefore, the process

described in Section 4.3.2 is itself an incremental one. The proposed method runs line by line of

the fact table. Therefore, it is only required to identify the new data in the fact table, and then

start the process described in Section 4.3.3 followed with a checking task. This checking step is

achieved by using a join-index guided by bulk incremental updating [Feng et al. 03].

Whenever data is inserted in that fact table, it is appended at the bottom (for instance on Oracle

Databases, we can look for higher UUIDs), thus it becomes simple task to pinpoint the new lines,

by saving the number of the lines that had already been evaluated.

4.4.2 Hierarchies

The implementation of hierarchies in the cubing process is handled by constructing several cubes

instead of only one. Therefore, the final cube will be a collection of each cube processed.

Let the hierarchies be defined as follows:

H1 = {L1,0, L1,1, L1,2,...., L1,p}

H2 = {L2,0, L2,1, L2,2,...., L2,q}

…………………………….

Hn = {Ln,0, Ln,1, Ln,2,...., Ln,r}

Where Hi is an hierarchy and Li,j is the jth level of hierarchy i. Thus, the number of cubes to be

built is given by Equation 1.

Number of Cubes = (p+1) * (q+1) * … * (r+1)

Equation 13. The total number of cubes given n-levels of hierarchies.

As explained in Section 4.3.2, the cube is processed from a fact table. Although the cubing process

will be the same, the table used to read the data will be slightly different. Instead of having only

the fact table’s fields, it will have some extra fields and some others from the levels of the

hierarchies, which will substitute the fields of the corresponding dimension later on. Therefore, it

will be required to construct several tables, one corresponding to each cube. These tables will be

Aggregation-based N-dimensional Mining

72

given by the combination of each and every level of the hierarchies. Once again, the algorithm

described in Section 4.3.3 is called to combine dimensions in all hierarchies’ level.

We can summarize the proposed method with hierarchies as follows:

1. First it is required the number of cubes to be processed

2. Then, the tables are generated by combining the levels of the hierarchies, using the

algorithm described in Section 4.3.3. At this point, for each built table, apply the process

describe in Section 4.3.2.

3. Finally, it is obtained a collection of cubes that all together form the final cube.

We provide a running example to show the total number of cubes to be calculated. Let’s use Table

14 providing the dimensions and levels to compute.

 Dimensions
Hierarchy
level

Product TimeByDay Warehouse

0 ProdId timeId WarId
1 DayOMonth WarName
2 Month WarCountry
3 Year

Table 14. Example of hierarchy levels for three dimensions.

The final solution is obtained by multiplying all dimensions’ levels (Product * TimeByDay *

Warehouse = 1 * 4 * 3 = 12 cubes). Finally, the number of tables is provided as follows.

Table 0 = {product_id, time_id, warehouse_id}

Table 1 = {product_id, day_of_month, warehouse_id}

Table 2 = {product_id, the_month, warehouse_id}

Table 3 = {product_id, the_year, warehouse_id}

Table 4 = {product_id, time_id, warehouse_name}

Table 5 = {product_id, time_id, warehouse_ctry}

Table 6 = {product_id, day_of_month, warehouse_name}

Table 7 = {product_id, day_of_month, warehouse_ctry}

Table 8 = {product_id, the_month, warehouse_name}

Table 9 = {product_id, the_month, warehouse_ctry}

Table 10 = {product_id, the_year, warehouse_name}

Table 11 = {product_id, the_year, warehouse_ctry}

Aggregation-based N-dimensional Mining

73

4.5 Mining from Cubes

4.5.1 Extracting Inter-dimensional and Multilevel Patterns

The main goal of this process is the extraction of interesting relations from a cube. This extraction

is guided by an Association Rule Mining approach. Association Rules (AR) can extract remarkable

relations, as well as, patterns and tendencies [Han et al. 99]. However, it can also return a great

amount of rules, which makes difficult either the analysis of the data or its comprehension. In

addition, traditional frequent pattern mining algorithms are single-dimensional (intra-dimensional)

in nature [Lu et al. 00], in sense of exploring just one dimension at a time. Besides, doesn’t allow

the extraction of inter-dimensional and multilevel association rules.

To enhance association rule mining from cubes, the discovery step is integrated with cubing. Thus,

it allows getting inter-dimensional and multilevel association rules by using the intrinsic properties

provided by the cube structure.

The rule extraction devised is based on Apriori-implementation [Agrawal et al. 96] and the most

costly part, getting the frequent itemsets, is achieved by the proposed cubing algorithm. Each

cuboid cell, along with its aggregating measure in the data cube, could be evaluated as a

candidate itemset (CI). It is important to mention that by evaluating aggregating measures as CIs

we are concerning to the population of facts rather than the population of units of measures of

these facts. Thus, support and confidence of a particular rule is evaluated according to users’

preference for a specific aggregating function (count, min, max, sum, etc…). It is clear that the

cube structure provides a rich model for rule analysis rather than classical count-based

analysis of ARs.

Having found all interesting cuboids, the next step is generating rules. This implies firstly the

calculation of the confidence of the rule for each non-singular itemset and check whether it

satisfies the minimum pre-defined threshold or not. To generate a rule it is necessary to go

through the following algorithm.

Aggregation-based N-dimensional Mining

74

Pseudo Rule Algorithm
(input: cube, output: rules)
For each non-singular cuboid cell T
 Obtain the aggregate value of T (supOfT)

 Generate all the non-empty cuboid Si of T, using the algorithm
described in Section 2.3

For each cuboid Si.
 Obtain the aggregate value of Si (supOfSi)
 Calculate the confidence (conf = supOfT/supOfSi)
If conf satisfies the minimum threshold ε
 Construct rule (Si (T - Si))
If the rule is valid then store the rule

Algorithm 4. Pseudo-code of the rule algorithm for mining from cubes.

To verify the validity of a rule it is necessary to check if all the subsets (cuboids) of the rule are a

valid rule [Agrawal et al. 96]. In other words, it is necessary to generate all the subsets Ri of Si

and check whether Ri (T - Si) already exists. If that is true then Si (T - Si) is a valid rule.

Otherwise, the rule must not be stored. One particular aspect that needs to be mentioned is the

fact that the process must generate the rules starting with the cuboids that have fewer dimensions

and finishing with the cuboids that have more dimensions (k-d cells).

Inter-dimensional association rules. Given the process explained previously, one just needs to

select cube dimensions to generate valid multidimensional rules. For instance, Age(X, 30-35) and

Occupation (X, Engineer) Buys(X, laptop), it is a inter-dimensional rule. Furthermore, it allows

slicing the cube to get valid rules for different cube’s scenarios (sizing the maximum number of

predicates to evaluate).

Multilevel association rules. One can also use the same process for getting multilevel

association rules. Although, the granularity is controlled according to the set of pre-defined

hierarchies (selecting dimensions) explained in 5.4.2. In this sense, one can explore several levels

of interests in the cube to obtain interesting relations. Thus, the process is guided by roll-ups and

drill-downs operation over the cube. For instance, Age(X, 30-35) and Occupation (X, Computer

Engineer) Buys(X, macbook), it is a multilevel rule (specialization of the multidimensional rule

example above).

Aggregation-based N-dimensional Mining

75

Even by using a cube-based mining (relying on support/confidence) approach the number of valid

rules is still large to analyze. Furthermore, what are the right cube abstractions to evaluate? It

might not be the case of materializing all cells to see that just a few really matters.

Thus, we smooth this problem by generating interesting rules according to the maximal-correlated

cuboid measure of a cuboid cell [Alves & Belo 06b]. We further explore this measure with more

details on chapter 5.

4.5.2 Enhancing Patterns Discovery

To avoid the generation of non-interesting relations we augment cuboid cells with one more

measure called the maximal-correlated value of a cuboid cell. This measure is inspired on

all_confidence measure, which has been successfully adopted for judging interesting patterns in

association rule mining, and further exploited in [Alves & Belo 06b] for correlation and compression

of cuboid cells. This measure discloses true correlation (also dependence) relationship among

cuboids cells and holds the null-invariance property. Furthermore, real world databases tend to be

correlated, i.e., dimensions values are usually dependent on each other. This measure is evaluated

according to the following definition.

Definition 5 (Correlated Value of a Cuboid Cell) Given a cell c, the correlated value 3CV of a

cuboid V(c) is defined as,

maxM(c) = max {M(ci)|for each ci ∈ V(c)}

Equation 14. The correlated value of a cuboid cell, (Part I).

3CV(c) = M(c) / maxM(c) Eq.(3),

where M(ci) corresponds to the aggregating value of this cell c.

Equation 15. The correlated value of a cuboid cell, (Part II).

By using the above definition we are able to find infrequent cuboid cells that may be interesting to

the user but should not be obtained when using other measures of interests such as support,

confidence lift, among others. Furthermore, given a set of abstraction levels to mine as interesting

predicates, this measure will highlight most interesting multilevel patterns among those available

predicates. In our evaluation study, we experienced the effects of correlated cuboid cells when

using those measures of interest.

Aggregation-based N-dimensional Mining

76

4.5.3 Incremental Patterns Discovery

The incremental rule discovery is achieved by combining NFUP approach [Chang et al 05] with the

incremental cube maintenance (see next section). The NFUP algorithm relies on Apriori and

considers only these newly added transactions. Since the cubing method is devised on incremental

basis, it is simple task to identify cuboid cells that are still important to the rule discovery process.

4.6 Evaluation Study

The complete set of tests was elaborated in a PC Pentium 4 3.0 GHz, with 1 Gb of RAM, and

Windows XP. The main code was developed with Java 1.5. We have elaborated two studies with

the proposed method. In the first one, we evaluate the incremental feature in presence of different

cubing strategies versus re-computation. The cubing strategy DAQ was compared with one

bottom-up (BUC) [Beyer and Ramakrishnan 99] and other top-down (MOLAP) [Zhao et. al 97]

approaches. Those strategies were chosen in sense that they present the most known cubing

implementations. Both algorithms were implemented to the best of our knowledge based on the

published papers. The second study evaluates the cube-base mining capabilities by incrementally

maintenance of multidimensional and multilevel rules.

4.6.1 Incremental Data Cubing

In order to execute the tests for this study, it was developed a dataset generator to provide DMs in

a star scheme model. Therefore, it is required to give as parameters the number of dimensions,

the number of lines of the fact table, the number of lines of each dimension table, the number of

levels of each hierarchy and the number of distinct elements in each column of the dimension

tables. We have used three synthetics(S) DM, plus two real datasets(R). The real ones were the

(F)oodMart DB provided by Microsoft SQL Server and the (W)eather Dataset

(http://cdiac.esd.ornl.gov/ndps/ndp026b.html) for September 1985. The main characteristics of

those datasets are presented in Table 15.

DS S/R FactSZ NDims HLevels
1 S-1 100,00 4 3L
2 S-2 250,00 5 4L, 3L
3 S-3 500,00 6 3L, 2L
4 R-F 164,558 5 3L, 2L
5 R-W 1,015,367 9 0L

Table 15. Characteristics of five data marts used in the evaluation study.

Aggregation-based N-dimensional Mining

77

Having generated those datasets (S-1 to S-3), we also set a degree of updating (dg%), meaning

insertions on fact tables. Thus, it was possible to measure the effects of each cubing strategy

either by computing every fact table line-by-line from scratch or by computing it incrementally.

Figures 22(a), 22(b) and 22(c) illustrate the effects of DM updating x (re)cubing over datasets S-3,

S-1 and S-2, respectively. We measure the speedup (processing time) ratio between (rc=re-

compute cube) and (ic=incremental cube). This ratio (ic/rc), allows measuring the degree of

improvement that ic achieves over rc. Although, we are working on extending the method to work

with complex aggregating functions, in those experiments, just distributive ones were taken into

account.

Figure 22. Shows the updating effects (dg%, x-axis) against cubing speedup(ic/rc, y-axis).

The Figure 22(a), 22(b) and 22(c) allows observe that in general ic performs much better than rc,

specially when the degree of updating is low. We also notice that the speedup increases with

respect to the size of the DM. Furthermore, one can see that DAQ generally shows better

computational costs rather than other strategies.

4.6.2 Cube-based Mining

We have elaborated several experiments (observe the running time on ms) based on the value of

the minimum support (%) with respect to different settings of predicates (see Figure 24). We also

have constrained the maximum number of levels to explore as 3, and the maximum number of

dimensions to 4. Figure 24(a) and 24(c) show the performance figures of mining interesting

relations through different thresholds using R-F dataset. We can see that increasing the number of

hierarchies (levels) doesn’t imply high costs on our incremental OLAP Mining. The other way

around, increasing the number of dimensions plays few overheads. Although, we can also save

cube computation when exploring the downward property of 3CV measure (Figure 23).

Aggregation-based N-dimensional Mining

78

Performance figures with R-W dataset are given in Figure 24(b) and Figure 23(b). Again, we can

see the effects of mining correlated cuboids when evaluating interesting relations on each dataset.

The tradeoff between cube-based mining using confidence (conf) and correlated-cuboids (3CV) are

evaluated according to low and higher thresholds. Low 3CV values will provide interesting relations

regardless the high overhead provided by the conf measure. We can evidence this tradeoff while

OLAP Mining datasets R-F and R-W on Figure 23(a) and Figure 23(b), respectively. Finally, we are

able to evaluate our method with respect to update effects on a fact table. The update effects

generated from S-1 dataset for a dg%=70% (Figure 9(b)) is quite exponential when OLAP Mining

two or three predicates with conf as measure of interest, but is quite stable when using 3CV.

Figure 23. (a) and (b) present OLAP mining performance (runn.time(s), y-axis) for different

measures of significance (%, x-axis). (c) presents the number of interesting cuboids (cb*k, y-axis)

for different thresholds.

Figure 24. Illustrates OLAP mining performance (runn.time(s), y-axis) when getting different

patterns through different support thresholds (%, x-axis).

Aggregation-based N-dimensional Mining

79

4.7 Final Discussion

4.7.1 Related Work

OLAP has been taken attention of several researchers since the introduction of the cube operator

[Gray et al. 96]. There are several works on data cube computation. The closer work with our

method is the metarule-guided mining approach [Kamber et al. 97] [Han et al. 99], but

incremental cubing issues were not mentioned in this study. To situate our work, among those

cubing strategies, we first categorize them in three possible spots. The first one deals with data

cube computation, and its many ways of cubing [Xin et al. 06] [Zhao et al. 97] [Beyer &

Ramakrishnan 99]. The second spot is made of the several studies which try to integrate

interesting exploitation mechanisms either by using statistical approaches [Sarawagi et al. 98b] or

by integrating mining in the cube process [Alves & Belo 06]. The latter spot deals with OLAP over

evolving DMs. Thus, those methods basically must deal with incremental issues either when cubing

[Feng et al. 03] or when mining evolving databases [Chang et al. 05]. Given such simple

categorization we can say that:

• w.r.t. first spot. We compute the full cube, employing a DAQ strategy. One can also

make use of equivalence class from [Xin et al. 06] [Alves & Belo 06] to explore cube

semantics and compression. Our cubing method showed to be quite effective through

our performance studied in presence of evolving data rather than other cubing

strategies.

• w.r.t. second spot. We use multidimensional association rules as our basis to explore

interesting relations from DMs. Given that traditional association rules usually work on

single flat table, our method uses cube structure to extract inter-dimensional and

multilevel patterns on incremental basis. Furthermore, we have enhanced this mining

task extending the proposed model for exploring correlated cuboid cells.

• w.r.t. third spot. We provide a cubing method which is per-se incremental, and it can

handle effectively the addition of new information on DM fact tables; it also provides

concept hierarchy modeling, as well as, integrated and incremental multidimensional

and multilevel mining.

• With the above discussion, our method is the first one to integrate all those important

requirements in only one strategy for incremental OLAP Mining over evolving DMs. An

interesting topic for further research is to perform a detailed comparison with other

Aggregation-based N-dimensional Mining

80

cube-based mining methods, including updates caused by tuple deletion and in-place

value modification.

4.7.2 Indexing

The index strategy adopted by our method is a join-index on the combined (foreign key) FK

columns in the fact table. We provide an index for each partition (see Figure 21). In fact each

cuboid has an index associated to. Therefore, if it is necessary to insert or update any information

in a cuboid, first it is necessary to check if the information is already in the cube. Thus, firstly the

index is analyzed to verify if there is any set of items that begins with the first item of the set of

items of the information. If that is not true, then the information is not available in the cuboid and

it can be inserted. Otherwise, the index will return a set of lines where the information is possibly

stored. At this point, the process will go through the whole process discussed in section 4.5. If it is

found, then the measure is updated based on the aggregation function used. Otherwise, the

information is inserted. Figure 25, shows the effects of processing (DAQ) speed up while indexing

datasets through different updating scenarios. The little overhead in Figure 25(b) is given by its

multilevel properties (ranging from 3 to 4).

Figure 25. It shows the update effects (dg%, X-Axis) against index speedup of DAQ (Y-Axis) for

datasets S3(a), S2(b) and S1(c).

4.8 Summary

We have presented an incremental OLAP mining method to explore evolving DM. The updating

process on real DM applications implies that, the summarization made by cubing methods need to

handle, with some incremental facility, the new information available. Furthermore, mining

mechanisms should be integrated into the cubing process to improve the exploration of interesting

relations on DMs either before of after OLAP. Our evaluation study demonstrates that our

Aggregation-based N-dimensional Mining

81

method is quite competitive and effective w.r.t. other known cubing strategies, also

providing an integrated and incremental cube-based mining method for discovering

knowledge over evolving DMs. We have also demonstrated that exploring correlated cuboids

during the whole discovery process we are able to provide an essential tradeoff between

processing time and accuracy patterns. Further, we evidence that mining multilevel patterns are

less costly than inter-dimensional ones.

Aggregation-based N-dimensional Mining

82

Advanced Aggregation-based Mining

83

Chapter 5

5 Advanced Aggregation-based Mining
In this chapter we cover two aggregation-based mining methods devised for MDA in high

multidimensional space. The first method effectively reduces the complete set of cuboids cells

introducing a new notion called maximal-correlated cuboids cells which alleviates the curse-of-

dimensionality problem. Through this cubing method one may find the maximal combinations

among the grouping attributes and also keep its exceptional correlated cuboids, which can also

indicates interesting changes on the cuboids during the cubing process. The second method

studied issues and mechanisms on effective mining of Top-K multidimensional gradients. Gradient

are interesting changes in a set of measures (aggregates) associated with the changes in the core

characteristics of cube cells. We have also proposed a gradient-based cubing strategy (TopKgr-

Cube) to evaluate interesting gradient regions in MDS. This strategy relies on cubing gradient

regions which show high variance. Thus, the main challenge is to find maximum gradient regions

(MGRs) that maximize the task of mining Top-K gradient cells through a set of Top-K probe cells.

Preliminary versions of this chapter were published in two papers presented in [Alves & Belo 06b]

and [Alves & Belo 07b] with respect to correlation and top-k gradient analysis respectively.

5.1 Aggregating Maximal-correlated Cuboids

The main idea of iceberg data cubing methods relies on optimization techniques for computing

only the cuboids cells above certain minimum support threshold. Even using such approach the

curse of dimensionality remains, given the large number of cuboids to compute, which produces,

as we know, huge outputs. However, more recently, some efforts have been done on computing

only closed cuboids. Nevertheless, for some of the dense databases, which are considered in this

section, even the set of all closed cuboids will be too large. An alternative would be to compute

only the maximal cuboids. However, a pure maximal approaching implies loosing some

information, this is one can generate the complete set of cuboids cells from its maximal but

Advanced Aggregation-based Mining

84

without their respective aggregation value. To play with some loss of information we need to add

an interesting measure, that we call the correlated value of a cuboid cell.

In this section, we propose a new notion for reducing cuboids aggregation by means of computing

only the maximal-correlated cuboids cells, and present the M3C-Cubing algorithm that brings out

those cuboids. Our evaluation study shows that the method followed is a promising candidate for

scalable data cubing, reducing the number of cuboids by at least an order of magnitude or more in

comparison with that of closed ones.

5.1.1 Motivation

Efficient computation of data cubes has been one of the focusing points in research since the

introduction of data warehousing, OLAP, and the data cube operator [Gray et al. 96]. Data cube

computation can be formulated as a process that takes a set of tuples as input, computes with or

without some auxiliary data structure, and materializes the aggregated results for all cells in all

cuboids. Its size is usually much larger than the input database, since a table with n dimensions

results in 2
n
cuboids. Thus, most work is dedicated to reduce either the computation time or the

final cube size, such as efficient cube computation [Beyer & Ramakrishnan 99] [Shao et al. 04]

[Han et al. 01] or cube compression [Lakshmanan et al. 02] [Xin et al. 06]. These cost reduction

processes are all without loss of any information, while some others, like the approximation

[Barbara et al. 97] or the iceberg-cube [Fang et al. 98] [Beyer & Ramakrishnan 99] [Xin et al. 06]

[Han et al. 01] ones, reduce the costs by skipping trivial information.

The ideas of compressing cuboids cells in terms of classes of cells, or closed cells, seem to be an

interesting approach to reduce size complexity, and also to explore optimally the semantics from

the cube lattice. Nevertheless, for some of the dense databases we consider in this discussion,

even the set of all closed cuboids cells would grow to be too large. The only recourse may be to

mine the maximal cuboids cells in such domains. However, a pure maximal approaching implies

loosing some information - one can generate the complete set of cuboids cells from its maximal

but without their respective aggregation value. To play with some loss of information we propose a

new measure, that we called the correlated value of a cuboid cell. This measure is inspired on

all_confidence measure [Omiecinski 03], which has been successfully adopted for judging

interesting patterns in association rule mining, and further exploited with confidence closed

correlated pattern [Kim et al. 04]. This measure must disclose true correlation (also dependence)

relationship among cuboids cells and needs to hold the null-invariance property. Furthermore, real

Advanced Aggregation-based Mining

85

world databases tend to be correlated, i.e., dimensions values are usually dependent on each

other.

The main motivation of the proposed method emerged from the observation that real databases

tend to be correlated, i.e., dimensions values are usually dependent on each other. For example,

Store Wallgreens always sells Product Nappy or Store Starbucks always makes Product Coffee. In

addition, the result of correlated cells on the corresponding data cube is to generate a large

number of cells with same aggregation values. The Range CUBE method was the first approach to

explore correlation among dimensions values by using a range trie [Feng et al. 04]. Although it

does not compress the cube optimally and may not disclose true correlation relationship among

cuboids cells holding the null-invariance property [Omiecinski 03] [Xiong et al. 03] [Kim et al. 04].

Inspired on the previous issues we raise a few questions to drive this work:

• Can we develop an algorithm which captures maximal correlated cuboids cells on

dense/sparse databases?

• How much such an approach can reduce the complete set of cuboids in comparison

with the other approaches (i.e., pure maximal to closed ones)?

• How about the data cubing costs?

In this section, we propose a new iceberg cube mining method for reducing cuboids aggregation

by means of computing only the maximal-correlated cuboids cells, and present the M3C-

Cubing algorithm that brings out those cuboids.

5.1.2 Maximal-correlated Cuboid Cells

A cuboid is a multi-dimensional summarization of a subset of dimensions and contains a set of

cells. A data cube can be viewed as a lattice of cuboids, which also integrates a set of cells. Next,

we present few definitions to state the problem of finding maximal-correlated cuboids cells.

Definition 1 (Cuboid Cell) In an n-dimension data cube, a cell c = (i1,i2,…,in : m) (where m is a

measure) is called a k-dimensional cuboid cell (i.e., a cell in a k-dimensional cuboid), if and only if

there are exactly k (k ≤ n) values among {i1,i2,…,in} which are not * (i.e., all). We further denote

M(c) = m and V(c) = (i1,i2,…,in). In this paper, we assume that the measure m is count.

A cell is called iceberg cell if it satisfies a threshold constraint on the measure. For example, an

iceberg constraint on measure count is M(c) ≥ min_supp (where min_supp is a user-given

Advanced Aggregation-based Mining

86

threshold). Given two cells c = (i1,i2,…,in : m) and c’ = (i'1,i'2,…,i'n : m’), we denote V(c) ≤ V(c’) if

for each ij (j = 1,…,n) which is not *, i'j = ij. A cell c is said to be covered by another cell c' if for

each c'' such that V(c) ≤ V(c'') ≤ V(c'), M(c'') = M(c'). A cell is called a closed cuboid cell if it is not

covered by any other cells. A cell is called a maximal cuboid cell if it is closed and has no other cell

c which is superset of it (we have an exception just in case when its correlated value is higher than

a minimum threshold).

Definition 2 (The Correlated Value of a Cuboid Cell) – Given a cell c, the correlated value 3CV

of a V(c) is defined as,

maxM(c) = max {M(ci)|for each ci ∈ V(c)} Eq.(1)

3CV(c) = M(c) / maxM(c) Eq.(2)

Definition 3 (Maximal Correlated Cuboid Cell) A cell c is a maximal-correlated cuboid cell (M3C)

if it is covered by a maximal cuboid cell, its M(c) value is higher than min_supp and its 3CV(c)

value is higher than min_3CV (where min_3CV is a user-given threshold for correlation).

From the last definition we allow a correlated exception for its supersets, where it is true when cell

c is covered by another cell c' and 3CV(c') is higher than min_3CV. Given the above definitions,

the problem of computing the maximal-correlated cuboids cells is to compute all

maximal cuboids cells which satisfy iceberg constraints and its correlated exception

cells. An example of the maximal-correlated cuboids cells is given in Example 1.

A B C D
a1 b1 c1 d1
a1 b2 c2 d2
a1 b1 c1 d3
a1 b1 c1 d1
a2 b2 c2 d4

Table 16. Example of Maximal Correlated Cuboids Cells.

Example 1 - Maximal Correlated Cuboids Cells. Table 16 shows a table (with four attributes) in a

relational database. Let the measure be count, the iceberg be count ≥ 2 and the correlated value

3CV ≥ 0.85. Then c1 = (a1,b1,c1,* : 3) and c2 = (a1,*,*,* : 4) are closed cells; c1 is a maximal

cell; c3 = (a1,b1,*,* : 3) and c4 = (*,b1,c1,* : 3) are covered by c1; but c4 has a correlated

Advanced Aggregation-based Mining

87

exception (3CV=1); c5 = (a2,b2,c2,d4 : 1) does not satisfy the iceberg constraint. Therefore, c1

and c4 are maximal correlated cuboids’ cells. The iceberg condition is count ≥ min_sup and the

correlated exception value ≥ min_3CV.

5.1.3 M3C-Cubing

The proposed method for extraction of the Maximal-Correlated Cuboids Cells follows the BUC data

cubing ideas [Beyer & Ramakrishnan 99] – we call it as M3C-Cubing. The computation starts from

the smallest cuboids of the lattice, and works its way towards the larger, less aggregated cuboids.

Our method does not share the computation of aggregates between parent and child cuboids, only

the partitioning cost. Besides, as was verified by BUC experimental results, partitioning is the major

expense, not the aggregation one.

We begin by defining the necessary terminology for describing the M3C-Cubing algorithm. We

consider a base relation cell being a mapping K(c)→ M(c), where K is a composite key built from

the grouping attributes values in V(c) and M(c) is also a composite key with the value to be

aggregated. From the base relation cell we can extract several partitions; each partition has a

subset of cells to aggregate. The partition of a base relation cell is defined as P(c)→ {K(c)→M(c)},

where P(c) is the partition key.

In order to get the correlated value of a cuboid cell (3CV) we need to keep the aggregation value

for each 1-D cuboid. This is denoted as a mapping from 1-D(c)→ M(c). We should note that the

maximum value will occur when the subset K(c) consists of a single grouping attribute (see

Definition 2).

M3C-Cubing is guided by an SE-tree infrastructure, first introduced by Rymon [Rymon 92], and

adopted later by Mafia [Burdick et al. 01] and Max-miner[Bayardo 98]. In this work, we call it as

M3C-tree. The M3C-tree is traversed by using a pure depth-first (DFS) order. Each node of the

M3C-tree provides n-D cuboids which will be further partitioned, aggregated and checked if it is

maximal or not (see Definition 1). In general, superset pruning works better with DFS order since

many least aggregated cuboids may already have been discovered.

The strategies for pruning non-maximal correlated cuboids cells (nonM3C) basically attempt to:

test out iceberg condition, check if it is maximal and when is not, check if it is a correlation

Advanced Aggregation-based Mining

88

exception (see Definition 3). They are just discarded in case its 3CV value is lower than a minimum

threshold (min_3CV). Consequently, we provide the complete set of interesting cuboids which are

maximal-correlated cuboids.

M3C-Cubing also keeps the current cuboids aggregated and the previous one for further pruning

out of nonM3C cells. To speed up this process, we cannot remove an entire branch of the M3C-

tree, since we have to aggregate its related partitions in order to validate the pruning conditions

mentioned before. In this sense, we are just able to prune out nonM3C cells by the time we

expand the M3C-tree level-by-level.

Pseudo M3C-Cubing Algorithm
Input: a table relation trel; min_supp; min_3CV.
Output : the set of maximal-correlated cuboids cells.
Method :
1. Let brel be the base relation of trel.
2. Build the M3C-tree concerning the grouping attributes in brel.
3. Call M3C-Cubing (min_supp, min_3CV, brel, M3C-tree).

Procedure M3C-Cubing (min_supp, min_3CV, brel, M3C-tree)
 1: get 1-D cuboids from M3C-tree
 2: for each j in 1-D cuboids do
 3: get its partition from brel on dimensions [n], and
 set part ←{K(c)→M(c)}
 4: aggregate part and set agg ← {V(c)→M(c)} when
M(c)>=min_supp
 5: set allCbs ← {agg}; set 3cv-1d ← {allCbs}
 6: end for
 7: get n-D cuboids in DFS order from M3C-tree
 8: for each k in n-D cuboids do
 9: get its partition from brel on dimensions [n-D],
 and set part ←{K(c)→M(c)}
10: aggregate part and set agg ← {V(c)→M(c)} when
M(c)>=min_supp
11: set allCbs ← allCbs ∪ {agg}; set currCbs ← {agg}
12: set 3cv-nd ← 3cv-nd ∪ {call 3cv-nd(3cv-1d, agg)}
13: set maxCbs ← maxCbs ∪
 {call maxCorr (allCbs, currCbs, 3cv-nd, min_3CV)}
14: end for
Procedure maxCorr(allCbs, currCbs, 3cv-nd, min_3CV)
 1: set nonM3C ←{ }
 2: for each j in currCbs do
 2: for each k in allCbs do
 3: if dom(allCbs) is superset of dom(currCbs),
 nonM3C ← nonM3C ∪ {dom(currCbs)}
 4: end for
 5: end for
 6: remove any nonM3C in allCbs where 3cv-nd(nonM3C)< min_3CV
 7: return allCbs

Procedure 3cv-nd(3cv-1d, agg)

Advanced Aggregation-based Mining

89

 1: for each j in agg do
 2: splits into 1-D cells; maxValue=0;
 3: for each k in 1-D cells do
 4: get its aggValue(3cv-1d)
 5: if aggValue>=maxValue, maxValue=aggValue
 6: end for
 7: set 3cv=SI{agg}/ maxValue; set 3cv-nd ← {dom(agg) → 3cv}
 8: end for; return 3cv-nd

Algorithm 5. The Pseudo-code of the Maximal-correlated cubing method.

With the aim of evaluating how M3C-Cubing reduces the final set of cuboids, we have to do a few

modifications to the main method to support both pure maximal cuboids and closed ones. Those

modifications are available as two new procedures: One for pure maximal and other for closed

cuboids. We omit here those procedures, but one can also follows the definitions on section 5.1.2.

To bring out the pure maximal we just need to re-write the line 6 in maxCorr Procedure. Thus, the

conditional test on 3CV value of the ancestor cuboids is set apart. Needless to say, that we cannot

make any use of 3CV-nd procedure either to get pure maximal or closed cuboids. To get just the

closed cuboids we must verify the closedness property [Xin et al. 06] among the cuboids,

consequently we just have to check if its not covered by other cells.

Cover Equivalence in M3C-cubing

The idea of grouping cover partitions cells into classes can also be explored by M3C- Cubing in

order to shrink even more the final data cube. By definition 1, it is possible to group a set of

cuboids cells by verifying those cells which are cover equivalent ones [Lakshmanan et al. 02].

Thus, these cells essentially have the same value for any aggregate on any measure but with

different degrees of correlation. For instance, in Example 1 the cells (a1,b1,c1,*) and (*,b1,c1,*)

are cover equivalent cells. Next, we present a few concepts for guiding the grouping cover

partition process with M3C-Cubing.

Cover partitions – The partition induced by cover equivalence is convex. Cover partitions can be

grouped into a M3C class (ji..jn) (Figure 26). Each class in a cover partition has a unique maximal

upper bound, and a unique lower bound (Table 17).

Upper bound cell – The upper bound for a particular class is the maximal cuboid cell contained in

this class. Such as, in Example 1, the cell (a1,b1,c1,*) is the upper bound cell.

Advanced Aggregation-based Mining

90

Lower bound cell – The lower bound cell for a particular class is the maximal 3CV value achieved

by the correlated value of the cuboid cell (see Definition 2). Since M3C cubing allows catching all

correlated exception cuboids, the lower bound cell will be that one with the highest 3CV value.

E.g., in Example 1, the lower bound cell for class j1 is given by (*,b1,c1,*).

To explore maximal correlation over those classes we have to define the local_3CV value for each

class. The local_3CV value of a class is the maximum local value given by the lower bound cell of

each class (Table 17).

Figure 26. The M3C lattice formed by the cover partitions of the Example 1.

ClassID UpBound LoBound Local_3CV Lat_child Agg
j0 (*,*,*,*) (*,*,*,*) 0 -1 5
j1 (a1,b1,c1,*) (*,b1,c1,*) 1 j0 3
j2 (a1,b1,c1,d1) (*,b1,*,d1) 2/3 j0 2
j3 (*,b2,c2,*) (*,b2,c2,*) 1 j0 2

Table 17. The set of classes from Example1.

5.1.4 Evaluation Study

In this section, we report our experimental results on compression and performance aspects of

each method (M3C=Maximal-Correlated, Max = pure Maximal and Closed). The results are quite

the same concerning to the performance point of view. This is true because those methods were

developed having the basis on our main method (M3C). So, we can take those results only as an

example of how much these modifications affect the whole time processing of the M3C-Cubing. On

the other hand, reducing aspects of M3C-Cubing shows its viability by providing an interesting

tradeoff between a pure maximal approaches to a closed one.

Advanced Aggregation-based Mining

91

All the experiments were performed on a 3GHz Pentium IV with 1Gb of RAM memory, running

Windows XP Professional. M3C-Cubing was coded with Java 1.5, and they were performed over

eight synthetic datasets (Table 18). The values for columns min_3CV% and min_supp% are

provided for the tests when fixing one value and varying the other. The density column shows the

degree(%)2 of density/sparseness of each dataset. All datasets have a normal distribution.

Dset Tuples Dims Card. Density Min_3CV% Min_Supp%
d1 100 3 3 27% 40% 2%
d2 250 5 3 97% 27% 0.80%
d3 500 3 5 25% 10% 0.60%
d4 750 4 5 83% 15% 0.67%
d5 1000 5 3 24% 17% 0.40%
d6 1250 4 6 100% 9% 0.16%
d7 3000 7 3 73% 35% 0.10%
d8 5000 6 4 82% 50% 0.04%

Table 18. The overall information of each dataset.

We first show that the complete set of maximal-correlated cuboids cells (M3C) is much smaller in

comparison with both that of pure maximal (Max) and that of close ones (Closed). Figure 27 shows

the number of cuboids generated by each approach from all datasets. The number of cuboids is

plotted on a log scale. Figure 27(a) presents the number of cuboids generated when min_3CV is

fixed and min_supp varies, while figure 27(b) shows those cuboids the other way around, fixing

min_supp and varying min_3CV. These figures show that the M3C generates much smaller cuboids

under lower min_supp or lower min_3CV. They also illustrate how much bigger the closed cuboids

are in comparison with the other two methods. These results also indicate that under higher

density datasets the chances of reducing cuboids by M3C-Cubing is more effective. Furthermore,

the distance between Max and M3C reveals the gap of cuboids which are discarded (higher

correlated ones) when using a pure maximal approach.

2 The density degree of a dataset is calculated by the division: the product of each dimension (its cardinality value) by the
number of tuples within the related dataset. The dataset is more dense when density degree is close to 100%.

Advanced Aggregation-based Mining

92

Figure 27. Number of cuboids generated from all datasets.

The next two figures (figure 28(a) and figure 28(b)) show the performance aspects of M3C-Cubing

from all datasets. These figures follow the same configuration properties from previous two (figure

27(a) and figure 27(b)). Figure 28(a) illustrate that under a fixed min_supp, the maximal-

correlated cuboids are useful only with lower 3CV thresholds. This is confirmed by the downward

property [12] of 3CV_value of a cuboid cell. By the time the data cubing process is getting closer

to the least aggregated cuboids, the 3CV_value also decreases, so the computation time is pretty

close, because 3CV is decreasing. Figure 28(b) points out the effectiveness of M3C-Cubing under

lower min_supp, giving more likelihood to identify correlated-cuboids, increasing a little-bit the

processing time to prune out nonM3C cells.

Figure 28. The execution time from all datasets.

Now, we are going to present a few examples concerning the reduction costs of computing the

cube. Figures ranging from figure 29(a) to figure 29(d) illustrate those results. Figure 29(a) and

figure 29(b) shows the number of cuboids generated when min_supp varies and min_3CV is fixed,

while figures 29(c), 29(d) present those when min_3CV varies and min_supp is fixed. Under any

Advanced Aggregation-based Mining

93

circumstances the final cube is quite closer to the closed one, which points out that even using

such closed-reduction the cuboids size remains even bigger. It is also demonstrates how much

M3C-Cubing can save in comparison with the other methods.

In summary, the experimental results show that the number of maximal-correlated cuboids is quite

smaller in comparison with that of the closed ones. Even, with a few modifications to the main

features of M3C-Cubing, it still performs competitively with the other ones. Moreover, we provide

the set of all maximal-correlated cuboids.

Figure 29. Reductions cost of cubing over all datasets.

Advanced Aggregation-based Mining

94

5.1.5 Summary

The motivation behind iceberg cube mining is tightly related to reducing the search space for

computing aggregates. The classical methods either offer ways for sharing the computation among

cuboids or for exploring the partition costs in order to reduce the large output size.

We have presented M3C-Cubing that effectively reduces the complete set of cuboids cells

introducing a new notion called maximal-correlated cuboids cells. Through this cubing

method we can find the maximal combinations among the grouping attributes and also keep its

exceptional correlated cuboids, which can also indicates interesting changes on the cuboids during

the cubing process.

We also have plans to investigate other aspects not addressed in this work such as: the application

of 3CV measure over other aggregate functions (average, min, max…) and the issues related to

recover an aggregation value of subcells of an M3C cell.

For efficient mining of those cuboids we have devised M3C-Cubing which is guided by an M3C-tree

with a pure DFS traversal order. In order to improve pruning, we must investigate the tail

information of each node in the M3C-tree such as designed in [Gouda & Zaki 05] [Zou et

al. 02].

Finally, our evaluation study shows that maximal-correlated cuboids computation reduces the

number of cuboids by at least an order of magnitude or more in comparison with the traditional

approaches.

Advanced Aggregation-based Mining

95

5.2 Aggregating Top-K Gradient Cells

Several business applications such as marketing basket analysis, clickstream analysis, fraud

detection and churning migration analysis demand gradient data analysis. By employing gradient

data analysis one is able to identify trends, outliers and answering what-if questions over large

databases. Gradient queries were first introduced by [Imielinski et al. 02] as the cubegrade

problem. The main idea is to detect interesting changes in a multidimensional space (MDS). Thus,

changes in a set of measures (aggregates) are associated with changes in sector characteristics

(dimensions).

MDS contains a huge number of cells which poses great challenge for mining gradient cells on a

useful time. [Dong et al. 04] have proposed gradient constraints to smooth the computational

costs involved in such queries. Even by using such constraints on large databases, the number of

interesting cases to evaluate is still large.

In this section, we are interested to explore best cases (Top-K cells) of interesting

multidimensional gradients. There several studies on Top-K queries, but preference queries with

multidimensional selection were introduced quite recently by [Dong et al. 06]. Furthermore,

traditional Top-K methods work well in presence of convex functions (gradients are non-convex

ones). We have revisited iceberg cubing for complex measures, since it is the basis for mining

gradient cells. We also propose a gradient-based cubing strategy to evaluate interesting gradient

regions in MDS. Thus, the main challenge is to find maximum gradient regions (MGRs) that

maximize the task of mining Top-K gradient cells. Our performance study indicates that our

strategy is effective on finding the most interesting gradients in multidimensional space.

5.2.1 Gradient Queries

Gradient queries were first introduced by [Imielinski et al. 02] as the cubegrade problem. The main

idea is to detect interesting changes in a multidimensional space (MDS). Thus, changes in a set of

measures (aggregates) are associated with changes in sector characteristics (dimensions). By

employing gradient data analysis one is able to identify trends, outliers and answering what-if

questions over large databases. MDS contains a huge number of cells which poses great challenge

for mining gradient cells on a useful time. To reduce search space, [Dong et al. 04] propose

several constraints which are explored by a set-oriented processing. Even by using such constraints

on large databases, the number of interesting cases to evaluate is still large. Furthermore, at a first

Advanced Aggregation-based Mining

96

experience for finding gradients in MDS, users often don’t feel confident of what set of probe

constraints to use. Thus, it should be the case to provide some Top-K facility over MDS.

As illustration of the motivation behind this problem, consider the following example of generating

alarms for potential fraud situations on mobile telecommunications systems. Generally speaking,

those alarms are generated when abnormal utilization of the system is detected, meaning that

sensitive changes happened concerning the normal behavior. For example, one may want to see

what are associated with significant changes of the average (w.r.t., the number of calls) in the

Porto area on Monday compared against Tuesday, and the answer could be one in the form the

average of number of calls for callings during working time in Campaña went up 55 percent, while

those callings during night time in Bonfim went down 15 percent. Expressions such as callings

during working time correspond to cells in data cubes and describe sectors of the business

modeled by the data cube. Given that the number of calls generated in a business day in Porto

area is extremely large (hundred million calls); the fraud analyst would be interest to evaluate just

the Top-10 higher changes in that scenario, specially those ones in Campaña area. Then the fraud

analyst would be able to drillthrough most interesting customers.

The problem of mining Top-K cells with multidimensional selection conditions and raking gradients

is significantly more expressive than the classical Top-K and cubegrade query [Imielinski et al. 02].

In this section, we are interested to mine best cases (Top-K cells) of multidimensional gradients in

a MDS.

5.2.2 Problem Formulation and Assumptions

A cuboid is a multidimensional summarization by means of aggregating functions over a subset of

dimensions and contains a set of cells, called cuboid cells. A data cube can be viewed as a lattice

of cuboids, which also integrates a set of cuboid cells. Data cubes are built from relational base

tables (fact tables) from large data warehouses. Further we provide a set of definitions which

allows us stating the problem of mining top-k gradient cells.

Definition 1 (K-Dimensional Cuboid Cell) In a n-dimension data cube, a cell c = (i1,i2,…,in : m)

(where m is a measure) is called a k-dimensional cuboid cell (i.e., a cell in a k-dimensional cuboid),

if and only if there are exactly k (k ≤ n) values among {i1,i2,…,in} which are not * (i.e., all). If k =

n, then c is a base cell. A base cell does not have any descendant. A cell c is an aggregated cell

Advanced Aggregation-based Mining

97

only when it is an ancestor of some base cell (i.e., where k < n). We further denote M(c) = m and

V(c) = (i1,i2,…,in).

Definition 2 (Iceberg Cell) A cuboid cell is called iceberg cell if it satisfies a threshold constraint

on the measure. For example, an iceberg constraint on measure count is M(c) ≥ min_supp (where

min_supp is an user-given threshold).

Definition 3 (Closed and Maximal Cells) Given two cells c = (i1,i2,…,in : m) and c’ = (i1’, i2’,…,in’

: m’), we denote V(c) ≤ V(c’) if for each ij (j = 1,…,n) which is not *, ij’ = ij. A cell c is said to be

covered by another cell c’ if for each c’’ such that V(c) ≤ V(c’’) ≤ V(c’), M(c’’) = M(c’). A cell is

called a closed cuboid cell if it is not covered by any other cells. A cell is called a maximal cuboid

cell if it is closed and has no other cell c which is superset of it.

Definition 4 (Matchable Cells) A cell c is said to match a cell c’ when they differ from each other

in one, and only one, cube modification at time. These modifications could be: Cube

generalization/specialization iff c is an ancestor of c’ and c’ a descendant of c; or mutation iff c is a

sibling of c’, and vice versa.

Definition 5 (Probe Cells) Probe cells (pc) are particular cases of iceberg cells which are

significant according to some selection condition. This selection condition is a query constraint on

base table’s dimensions.

Definition 6 (Gradient Cells) A cell cg is said to be gradient cell of a probe cell cp, when they are

matchable cells and their delta change, given by ∆g(cg, cp) ≡ (g(cg, cp) ≥ ψ) is true, where ψ is a

constant value and g is a gradient function.

In this section we confine our discussion with average gradients (M(cg)/M(cp)). Average gradients

are effective functions for detecting interesting changes in multidimensional space, but they also

pose great challenge to the cubing computation model [Dong et al. 04] [Han et al. 01].

Problem Definition. Given a base table R, iceberg condition IC, probe condition PC, the mining

of Top-k Multidimensional Gradients from R is: Find the most interesting (TopK) gradient-probe

pairs (cg, cp) such that ∆g(cg, cp) is true.

Advanced Aggregation-based Mining

98

5.2.3 Mining Top-K Gradient Cells

Before start the discussion about mining Top-K cells in MDS, lets first look to Figure 30. This figure

shows how aggregating values are distributed along cube’s dimensions. The base table used for

cubing was generated according to a uniform distribution. It has 100 tuples, 3 dimensions (x, y, z)

with cardinalities varying from 1 to 10, and a measure (m) varying from 1 to 100.

(a) count() (b) average()

Figure 30. It presents the distribution of aggregating values from a 2-D(x, y) cube.

From Figure 30 we can see that different aggregating functions will provide different density

regions in data cubes. When searching for gradients, one may want to start this task by evaluating

a region in which presents higher variance. In Figure 30(b) the central region corresponding to the

rectangle R1 {[4, 7] : [6, 5]} covers all five bins {b0={0-20},b1={20-40}, b2={40-60}, b3={60-80},

b4={80-100}}. If it is possible to identify such region, chances are that the most interesting

gradients will take place there. We denote those regions as gradient regions (GR). The problem is

that average is an algebraic function and it has a spreading factor (SF) with respect to the

distribution of aggregating values over the cube quite unpredictable. Thus, there will be sets of

possible gradient regions to looking for in the cube before selecting the most Top-K gradient cells.

Another interesting insight from Figure 30(b) is that gradients are maximized when walking from

bins bo to b4. Therefore, even if a region doesn’t cover all bins but if at least has the lowest and

highest ones; it should be a good candidate GR for mining Top-K cells. We expect that GRs with

largest aggregating values will provide higher gradient cells. This observation motivates us to

evaluate gradients cells by using a gradient ascent approach [Navidi 2007].

Advanced Aggregation-based Mining

99

Gradient ascent is based on the observation that if the real-valued function f(x) is defined and

differentiable in a neighborhood of a point Y, f(x) then increases fastest if one goes from Y in the

direction of the gradient of f at Y, ∆f(Y) . It follows that, if

)(YfYZ ∆+= γ

Equation 16. The gradient ascent equation, (Part I).

for, γ > 0 a small enough number, then f(Y) ≤ f(Z). With this observation, one could start with x0

for a local maximum of f, and considers the sequence x0,x1,x2,… such that

0),(1 ≥∆+=+ nxfxx nnnn γ

Equation 17. The gradient ascent equation, (Part II).

We have f(x0) ≤ f(x1) ≤ f(x2) ≤ …, so we expect the sequence (xn) converge to the local

maximum. Therefore, when evaluating a GR we first search for the maximal probe cells, i.e. the

highest aggregating values (non-closed and non-maximal cells) on it and then calculating its

gradients from all possible matchable cells.

To allow this gradient ascent traversal through cube’s lattice, one needs to incorporate the main

observations mentioned above into the cubing process.

Spreading Factor

The spreading factor is measured by the variance. This statistical measure indicates how the

values are spread around the expected value. From 1-D cuboid cell we want to capture how large

the differences are in a list of measures values ML=(M1,…,Mn) from the base relation R. Thus,

dimensions are projected onto cube’s lattice according to this variation. This variation follows

N
X∑ − 2)(µ

, X is a particular value from ML, µ is the mean from ML and N is the number of elements in ML.

Equation 18. The spreading factor equation.

For large datasets one could use a variation of Equation 18, using a sample rather than the

population. In this sense one can replace the denominator N by N-1.

Advanced Aggregation-based Mining

100

Aggregating Gradient Cells

Our cubing method follows Frag-Cubing approach [Li et al. 04]. We start by building inverted

indices and value-list indices from the base relation R, and then assembling high-dimensional

cubes from low-dimensional ones. For example, to compute the cuboid cell {x1, y3, *} from Table

19, we intersect the tids (see Table 20) of x1 {1, 4} and y3 {4} to get the new list of {4}.

tid X Y Z M
1 x1 y2 z3 1
2 x2 y1 z2 2
3 x3 y1 Z2 3
4 x1 y3 z1 4

Table 19. Example of a base table relation R.

The order in which we compute all cuboids is given by a processing tree GRtree following a DFS

traversal order. Before creating GRtree we can make use of the first heuristics for pruning (p1,

pruning non-valid tuples). To smooth the evaluation of iceberg-cells, it is interesting to build

such tree only with tuples satisfying the iceberg condition.

After applying p1, we are able to calculate the spreading factor (sf, see Section 5.2.3.1) of all

individual dimensions X, Y and Z. From Table 20 we may say that we have a total of nine GRs to

grow.

Attr.Value Tid.Lst Tid.Sz sf
x1 1, 4 2 2.25
x2 2 1 0
x3 3 1 0
y1 2, 3 2 0.25
y2 1 1 0
y3 4 1 0
z1 4 1 0
z2 2, 3 2 0.25
z3 1 1 0

Table 20. Inverted indices and spreading factors for all dimensions of Table 19.

Advanced Aggregation-based Mining

101

The GRtree will follow the order of X>>Y>>Z. Given that we want to find large gradients, chances

are that higher gradients will take place on projecting GRs having higher spreading factors. Here

comes the second heuristic for pruning (p2, pruning non-valid regions). For example, a

threshold constraint on a GR is sf(GR) ≥ min_sf (where min_sf is a user-given threshold). Let’s say

that we are interested to search for gradients on GRs having a sf ≥ 0.25. From this constraint we

only need to evaluate 3 GRs rather than 9 ones. Cubing is carried out through projecting x1; y1 and

finally z2 (see Figure 31).

Figure 31. The lattice formed by projecting GRs {x1, y1, z2}. Aggregating values are placed upper

all cuboid cells. Possible probe cells are denoted with shadow circles. The letters matchable cells

shows valid gradient pairs.

Since we have cubing those three regions in Figure 31, it is possible now to mine the Top-K

gradient cells from them. After this cubing, we also augment each region with its respective bin

[aggmin; aggmax] according to the minimum and maximum aggregating value on it. For example

bx1=[1; 4], by1=[2,5; 2,5] and bz2=[2,5; 2,5]. With all those information we can make use of the

third heuristic for pruning (p3, pruning non-TOPk regions). Given that we have an iceberg

condition on average such as Mavg(c) ≥ 2.7, we can confine our search for Top-K cells only for

GR=x1.

Advanced Aggregation-based Mining

102

Even by using such constraint, the number of gradient pairs to evaluate is still large in x1. So, we

must define our set of probe cells pc{} to mine. Remember that discussion about gradient ascent

(section 5.2.3); by taking the local maximum (i.e., a cuboid cell having the highest aggregating

value) from a particular region, all matchable cells containing this local maximum will increase

gradient factors. Thus, our probe cells are given by the set of the Top-K aggregating values in that

region TopKpc. For a cuboid cell to be eligible as a probe cell, it cannot be a closed and maximal

cell. For example, in Figure 31 the cuboid cell = {1,3,1} cannot be selected as a probe cell. Next,

for each probe cell in TopKpc we calculate its gradients. Finally we select the Top-K gradient cells

TopKgr. For example, with we are looking for the Top-3 cell, the TopKpc is formed by

{{1,3};{1,1};{1}}and TopKgr is formed by letters {i, L, j}.

Usually we will have more valid-ToPk regions rather than in the previous example. Thus, the final

solution must take into account all local TopKgr before raking TOP-K cells. Besides, after having

calculated all local TopKgr, we continue searching for other valid gradient cells resulting from

matchable cells (i.e., projecting probe cells from a GRi over cuboid cells in GRj).

Pseudo TopKgr-Cube Algorithm
Input: a table relation trel; an iceberg condition on average
minavg; an iceberg condition on GR min_sf; the number of Top-K
cells K
Output : the set of gradient-cell pairs TopKgr.
Method :
1. Let ftrel be the relation fact table
2. Build the processing tree GRtree // evaluating heuristic p1
3. Call TopKgr-Cube ().

Procedure TopKgr-Cube (ftrel, GRtree, minavg, min_sf, K)
1: Get 1-D cuboids from GRtree
2: For each 1-D cuboids do {
3: Set GR ← {subTree_GR(V(c))} //build gradient regions
4: For each GR having sf • min_sf do //apply p2
 Aggregate valid GR // do projections, cubing
5: For each valid GR having a bin[min,max] satisfying minavg //
apply p3
6: Set TopKpc ← {topKpc_GR(GR,K)} //select probe cells
7: For each valid TopK GR
 Set TopKgr ←{topKgr_GR(TopKpc)} // calculate its gradients
8: Rank Top-K cells (TopKgr,K) //rank gradient cells,
DESC order of ψ

Algorithm 6. Pseudo-code of the top-k gradient cubing method.

Advanced Aggregation-based Mining

103

5.2.4 Evaluation Study

All the experiments were performed on a 3GHz Pentium IV with 1Gb of RAM memory, running

Windows XP Professional. TopKgr-Cube was coded with Java 1.5, and it was performed over

synthetic datasets (Table 21). These datasets were generated using the data generator described

in [Dong et al. 03] [Han et al. 01].

Dset Tuples Dims Card* M[min,max]
D1 5000 7 100 100,1000
D2 10000 10 100 100,1000

Table 21. The overall information of each dataset.

When running the next performance figures, we confine our tests with TopKgr-Cube to the

following scenarios: one, (Figure 32) we want to see the effects of using variance as a criteria for

mining Top-K cells: two, (Figure 33) we want to see the effects of iceberg condition while selecting

interesting regions; and three, (Figure 34) the pruning effects by using the heuristics used by our

Top-K cubing method.

 (a) D1 dataset (b) D2 dataset

Figure 32. Performance (Runn.time(s), Y-axis) x Min_sf (X-axis).

* Those cardinalities provide very sparse data cubes, thus, poses more challenge to the Top-K cubing computation model.

Advanced Aggregation-based Mining

104

 (a) D1 dataset (b) D2 dataset

Figure 33. Performance (Runn.time(s), Y-axis) x Min_AVG (X-axis).

 (a) D2 dataset (b) Pruning Effects

Figure 34. (a) Performance x K effects (X-axis). (b) Valid-cells (Y-axis) x Min_sf (X-axis).

Related Work

The problem of mining changes of sophisticated measures in a multidimensional space was first

introduced by [Imielinski et al. 02] as a cubegrade problem. The main idea is to explore how

changes (delta changes) in a set of measures (aggregates) of interest are associated with changes

in the underlying characteristics of sectors (dimensions). In [Dong et al. 04] was proposed a

Advanced Aggregation-based Mining

105

method called LiveSet-Driven leading to a more efficient solution for mining gradient cells. This is

achieved by group processing of live probe cells and pruning of search space by pushing several

constraints deeply. There are also other studies [Sarawagi et al. 98a] [Sarawagi & Sathe 00]

[Sathe & Sarawagi 01] for mining interesting cells on data cubes. The idea of interestingness in

these works is quite different from that explored by gradient-based ones. Instead of using a

specified gradient threshold in relevance to the cells’ ancestor, descendants, and siblings, it relies

on the statistical analysis of neighborhood values of a cell to determine its interestingness (or also

outlyingness).

Those previous methods employ the idea of interestingness supported by either statistical or ratio-

based approach. Such approach still provides a large number of interesting cases to evaluate, and

on a real application scenario, one could be interested to explore just such a small number (best

cases of Top-K cells) of gradient cells. There are several research papers on answering Top-queries

[Chang et al. 00] [Hristidis et al. 01] [Bruno et al. 02] on large databases, which could be used as

baseline for mining Top-K gradient cells. However, the range of complex delta functions provided

by the cube gradient model complicates the direct application of those traditional Top-K query

methods.

To the best of our knowledge, the problem of mining Top-K gradient cells in large databases is not

well addressed yet. Even the idea of Top-K queries with multidimensional selection was introduced

quite recently by [Dong et al. 06]. Furthermore, the model still relies on the computation of convex

functions.

Conclusions

In this section, we have studied issues and mechanisms on effective mining of Top-K

multidimensional gradients. Gradient are interesting changes in a set of measures (aggregates)

associated with the changes in the core characteristics of cube cells. We have also proposed a

gradient-based cubing strategy (TopKgr-Cube) to evaluate interesting gradient regions in MDS.

This strategy relies on cubing gradient regions which show high variance. Thus, the main challenge

is to find maximum gradient regions (MGRs) that maximize the task of mining Top-K gradient cells

through a set of Top-K probe cells. To do so, we use a gradient ascent approach with a set of

pruning heuristics guided by a specific GRtree.

Advanced Aggregation-based Mining

106

Our performance study indicates that our strategy is effective on mining the most interesting

gradients in multidimensional space. To end up our discussion we set the follow topics as

interesting issues for future research:

• Top-K average pruning into GRs. Although, we make pruning of GRs according to

an iceberg condition. One can take advantage of Top-K average [Han et al. 01] for

cubing only GRs satisfying this condition.

• Looking ahead for Top-K gradients. Given that GR1>>GR2>>GR3, it should be

the case that by looking ahead for a gradient cell in GR2 will not generate gradients

higher than that in GR1.

• Mining high-dimensional Top-K cells. The idea is to select small-fragments [Li et

al. 04] (with some measure of interest) and then explore on-line query computation to

mine high-dimensional Top-K cells.

Conclusions and Future Work

107

Chapter 6

6 Conclusions and Future Work

6.1 Summary

In many applications, data contains structured information that is multidimensional and multilevel

in nature, such as that ones in areas like e-commerce, telecommunications, retail, stocks,

scientific-data, etc. Since last decade, we have been facing several research efforts on Data

Warehousing and OLAP to get better view of multidimensional data, allowing a data-driven search

for interesting patterns at several levels of data abstraction. This strategy of searching patterns on

multidimensional databases is also called OLAPing (or data cubing). The basis of MDA relies on

effective and efficient computation of aggregating functions.

MDA on higher dimensional data is a quite hard task; given the limitation of the most known

cubing algorithms. So, how to enhance this data-driven search with discovery-driven features

smoothing the curse-of-dimensionality problem? Besides, data as well as patterns evolve over

time-to-time. Thus, how to highlight those significant changes? Multidimensional Data Mining

(MDM) take its place helping to handle those previous issues. In summary, MDM attempts to

combine ideas of cubing and mining techniques to get better mechanisms for multidimensional

data analysis.

Clearly, MDA requires suitable multidimensional data mining (MDM) methods. It is not an easy task

to decide what level of aggregation-based mining is necessary for revealing interesting spots in

DM. In addition, it poses new challenges for novel uses of data cubing and data mining technology.

Therefore, the work presented in this thesis lies outside of traditional work on OLAP mining. These

Conclusions and Future Work

108

previous discussions motivated us to devise several methods to achieve MDM through aggregation-

based mining strategies.

These methods cover several levels of multidimensional data aggregation, from single-dimensional

to n-dimensional, as well as, mining of interesting patterns. Apart from the methods, we have also

designed new measures of interestingness for guiding MDA through high dimensional databases.

Three major issues were addressed to support the central thesis statement of this research, as

follow:

• It is possible to achieve a simple infrastructure for MDM, i.e., by combining

traditional frequent- and sequential-pattern mining methods.

• It is possible to evaluate evolving multidimensional and multilevel patterns

through providing different levels of aggregation-based mining methods, i.e., from

single- to n-dimensional mining.

• It is possible to achieve advanced MDA by pushing and evaluating measures of

interestingness during the processing step, i.e., cubing-based mining of high

dimensional databases.

6.2 Contributions of this Thesis

We now summarize the main contributions accomplished in this research. These contributions are

parts of several aggregation-based mining strategies provided in this thesis:

• A frequent pattern mining strategy closer to RBDMS. Most of the itemset mining

approaches are memory-like and run outside of the database. On the other hand,

when we deal with data warehouse the size of tables is extremely huge for memory

copy. We devised a pattern growth mining approach by means of database

programming for finding all frequent itemsets. The main idea is to avoid one-at-a-time

record retrieval from the database, saving both the copying and process context

switching, expensive joins, and table reconstruction. This method is described in

Chapter 2 and had been published in [Alves & Belo 05b].

• A hybrid method for mining inter-dimensional patterns. Classical association

rules are by nature intra-transaction based, i.e., the associations occurs among the

Conclusions and Future Work

109

items within the same transaction. Further, those transactions are usually associated

with a dimensional context which is typically ignored. This prevents that patterns,

occurring along this dimension (i.e. associated context), are discovered. We devised a

strategy for the extraction and analysis of inter-dimensional patterns. We also have

explored a measure called cvd which allow us to reject patterns that presents

significant distance variation, and thus, avoiding the representation of misleading

patterns. This method is described in Chapter 2 and had been published in [Ferreira el

al. 05].

• A family of aggregation-based single-dimensional mining methods. We

studied the problem of superimposed fraud detection in telecommunication systems.

We proposed three aggregation-based single-dimensional mining methods for anomaly

detection. These methods rely on a single level of aggregation called signatures. The

first method is a signature deviation-based approach while the second one is designed

for dynamic clustering analysis. Furthermore, we enhanced those two methods by

using a graph-based strategy representing the social or community behaviour, without

losing information, and also providing a rich structure for revealing abnormalities. We

used annotated digraphs to represent the call graph network. The dynamics of

changes are modeled into the graphs by weighting factors using damping ideas. New

information is aggregated into this call graph in accordance with this representation

and evaluated through pre-defined recursive functions. All these methods are

described in Chapter 3 and were published in [Alves et al. 06a] [Ferreira et al. 06].

• An incremental cube-based mining method for mining multidimensional and

multilevel patterns. The updating processes on real DM applications implies that,

the summarization made by cubing methods need to handle the new information

available with incremental and discovery facilities. We described a method which is

quite competitive w.r.t. other known cubing strategies, also providing an effective

cube-based mining strategy for discovering knowledge over evolving DM. We also

demonstrate that by exploring correlated cuboids during the discovery process we are

able to provide an essential tradeoff between processing time and pattern accuracy.

Such strategy is presented in Chapter 4 and had been published in [Alves & Belo 07a]

• Advancing aggregation-based mining methods. Addressing advancing

aggregation-based mining in high dimensional databases requires different kinds of

pushing constraints into the aggregation process, since high MDA suffers from the

Conclusions and Future Work

110

curse of dimensionality problem. We propose two distinct methods for MDA in high

dimensional spaces. The first strategy is a promising candidate for scalable data

cubing, reducing the number of cuboids by at least an order of magnitude or more in

comparison with that of closed ones. This is achieved by pushing and evaluating

correlated cuboids during processing time. The second method attempts to find

interesting changes (Top-K cells) in high n-dimensional spaces. We reviewed iceberg

cubing for complex measures, since it is the basis for mining gradient cells. We also

propose a gradient-based cubing strategy to evaluate interesting gradient regions in

MDS. Thus, the main challenge is to find maximum gradient regions (MGRs) that

maximize the task of mining Top-K gradient cells. Both advanced aggregation-based

mining methods are described in Chapter 5 and were published in [Alves & Belo 06b]

[Alves & Belo 07b].

6.3 Future Work

Several directions can be exploited as a continuation of this research. We discuss and highlight a

few technical challenges in this direction according to each topic discussed in this thesis.

6.3.1 Mining Intra- and Inter-dimensional Patterns

Frequent pattern mining (FIMI) is one of the basic tasks in data mining. Furthermore, it has been

improved over the last decades through several research studies. Numerous methods have been

developed to support the extraction of different kind of patterns. We have proposed two main

strategies to discovery intra and inter-dimensional patterns. By combining classical FIMI methods

we were able to provide a simple but effective strategy for mining multidimensional patterns. As a

continuation of this work we suggest the next issues for further research:

• With respect to mining intra-dimensional patterns. One issue that is

controversial is code portability, in sense that PGS is tightly dependent of the database

programming language with SQL-Extensions. On the other hand for huge databases,

one might be interested to take all the advantages offered by the RDBMS. As future

research, one should work on method enhancements for making this strategy more

interactive, constrained and incremental. Furthermore, some work on improving the

whole performance of PGS by using Table Variables (TV), which allows mimicking an

Conclusions and Future Work

111

array, instead of using database cursors, it is also very interesting topic for further

research with PGS.

• With respect to mining inter-dimensional patterns. So far, the cvd filter had

been used as post-processing step of the sequence mining step. Although the

performance of this strategy does not imply a bottleneck figure, it can be further

improved. An interesting issued for future study is to push directly this pruning

mechanism in the mining process. This is non trivial task, since this measure is neither

monotonic nor anti-monotonic. Ideally, one should be concerned to devise a unique

support measure, i.e. a measures combining both frequent and sequence threshold for

mining inter-dimensional patterns.

6.3.2 Agregation-based single-dimensional Mining

Traditional count-based mining strategies such as FIMI ones relies on simple aggregating

functions. We have proposed single-dimensional mining methods employing more complex

functions which were properly evaluated on a real application scenario. We smooth high-

dimensional computation by electing one dimension to profile at a time, and finally enhancing this

single-dimensional model with several classical mining methods. Although, those methods were

deeply investigate on a Telecommunication problem. We suggest the following issues as

continuation of this study:

• With respect to aggregation-based deviation mining. The most sensitive part of

this approach relies on the evaluation step of the distance among signatures (section

3.2.3). Different distance functions may have different weighting factors. This allows

us to detect several possible deviation scenarios, i.e., higher and low variability of the

features variables involved in this evaluation. The main concern in the current

approach relies on the manual settings of those weighting factors by fraud analysts. An

interesting study would be to use some supervised/ weighting algorithm for suggesting

analyst to use some particular setting which had been used successfully on similar

running scenario in the past. In fact, the importance of feature variables used at each

running scenario should take into account in this kind of evaluation. Finally, the

maintenance of tables and indexes should be explored with more experimental studies

in order to avoid the problem of rebuilding DB structures while sliding the window

frame from w to w+1.

Conclusions and Future Work

112

• With respect to aggregation-based clustering mining. The proposed clustering

approach is more or less the k-means/k-medoid approach, and has some issues when

clustering very high-dim. Several other clustering methods should be explored here to

alleviate the curse-of-dimensionality problem. Furthermore, since we compute an N*N

matrix of distance measures of signatures, some feature selection method could be

applied to point out important signatures for further analysis. On the other hand one

should be concerned to define the importance criteria of a signature in this kind of

application. On a daily basis scenarios with huge data stream it is not a trivial task

applying clustering algorithms on N*N matrices. A comparison analysis should be made

with other dynamic clustering algorithms to evaluate real gains of our chunk-based

partitional clustering against other existent in the referenced literature.

• With respect to aggregation-based graph mining. The score function we devised

for detecting interesting call graph patterns takes into account usage patterns from a

calling. In this sense, other graph component metrics should take place in order to

incorporate measures of interesting concerning social impacts of that particular

user/call in the whole call graph network. For instance, the work presented in

[Nanavati et al. 06] employ several metrics such as pageRank, clustering coefficients,

strong and weak components, among others for detecting significant graph patterns.

On the other hand, in this study the authors do not consider the usage aspect when

dealing with weighting (call co-occurrences) direct graphs. We believe that our

proposed strategy will be enhanced by adding more score graph functions. Next, one

could make use of some order statistics method to filter out the most (Top-K)

significant call graph patterns. In this particular discussion, important nodes and

communities from the whole call graph network. Given the huge data size associated

to this kind of application, one should clearly take good benefits from using a Top-K

approach to highlight interesting calls for further analysis.

6.3.3 Aggregation-based n-dimensional Mining

To allow aggregation-based mining on multidimensional space, we proposed a cube-mining

strategy that can handle data cubing with several hierarchies, as well as, extraction and evaluation

of multilevel and multidimensional patterns. Furthermore, it is also an incremental procedure. The

following aspects would be interesting roads for future research on mining evolving data cubes:

Conclusions and Future Work

113

• With respect to aggegation with several hierarchies. Dimension hierarchies are

actually a very complex area. They usually cannot be computed by producing new

tables for each distinct hierarchy combination even by using arrays as proposed here.

Although, we presented a method which takes this naïve implementation this problem

is alleviated by employing measures of interestingness such as described on chapter 5.

In practice, it has been shown that this can produce hundreds of thousands of views or

more in real DM. Thus, future work must take into account other approaches like

Dwarf cube [Sismanis et al. 02] and the CURE cube [Morfonios & Ioannidis 06] as

comparison basis when cubing with several hierarchies.

• With respect to aggregation-based mining. In terms of the mining work, we

made use of Apriori-based approach for rule mining. It should be interesting to

evaluate other rule mining method such as the FP-Growth (FP) [Han et al 00]. This

method is very robust for mining large patterns. One should take as example the PGS

strategy [Alves & Belo 05b] described in chapter 2, as an initial step for developing a

similar method for rule mining with high dimensional DM. Even though, the frequent

pattern mining discussed in the chapter 4 was not pure Apriori-like and indeed cube-

mining, one should benefit from using a FP strategy for discovery interesting relations

on DM. Finally, we suggest more experimental figures concerning cubing such as: a)

use Zipf to control the skew of the data, and vary Zipf from 0 to 3 (0 being uniform);

b) cubing process supports only distributive aggregate functions: sum(), maximum(),

minimum(), and count(), future work must incorporate complex measures such as

average(), std(), mean(). Take as an example the method discussed in [Alves et al.

07b].

6.3.4 Advanced Aggregation-based Mining

We have presented two methods for advanced aggregation-based mining by exploring measures of

interestingness while cubing. We have also achieved a fair tradeoff between cube computation,

compression and pattern discovery in a multidimensional space. To improve high-dimensional data

analysis, taking as basis those proposed methods; we enumerate the following future works:

• With respect to mining correlated-cuboid cells. We suggest evaluating the

application of 3CV measure over more complex aggregating functions such as average,

Conclusions and Future Work

114

min, max, among others. In addition, one should also be concerned to recovering

issues in M-D space, i.e., generating an aggregation value of subcells of an M3C cuboid

cells. For efficient mining of those cuboids we have devised M3C-Cubing which is

guided by an M3C-tree with a pure DFS traversal order. In order to improve even more

the pruning step, one must investigate the tail information of each node in the M3C-

tree such as designed in [Gouda & Zaki 05] [Zou et al. 02].

• With respect to mining Top-K gradients. We can enumerate the following

interesting paths to be explored: a) Top-K average pruning into GRs. Although we

make pruning of GRs according to an iceberg condition, one can take advantage of

Top-K average [Han et al. 01] for cubing only GRs satisfying this condition; b) Looking

ahead for Top-K gradients. Given that GR1>>GR2>>GR3, it should be the case that

by looking ahead for a gradient cell in GR2 will not generate gradients higher than that

in GR1; c) Mining high-dimensional Top-K cells. The idea is to select small-fragments

[Li et al. 04] (with some measure of interest) and then explore on-line query

computation to mine high-dimensional Top-K cells.

The research efforts discussed so far in this thesis contributes with a set of methods for making

practical and effective multidimensional data analysis (MDA) through multidimensional

aggregation-based mining strategies. All these methods handle MDA from different perspectives.

Thus, they are quite dependent on the kind of analysis and the level of dimensions to explore. To

conclude this thesis, based on the review process and discussions at all conference meetings we

attended, we can select our Mining Top-K Gradient Method as a promising one for further research

and application on high-dimensional data analysis such as the ones required in biological

databases.

Bibliography

115

Bibliography

[Agrawal & Shim 96] Agrawal, R., Shim., R.: Developing tightly-coupled data mining

application on a relational database system. In Proc. of the 2nd Int. Conf. on Knowledge Discovery

in Database and Data Mining, Portland, Oregon (1996).

[Agrawal & Srikant 94] Agrawal, R., Srikant., R.: Fast algorithms for mining association rules.

In Proc. of the 20th Very Large Data Base Conference (1994) 487–499.

[Agrawal & Srikant 95] Agrawal, R. and Srikant, R.: 1995. Mining Sequential Patterns. In

Proceedings of the Eleventh international Conference on Data Engineering (March 06 - 10, 1995).

P. S. Yu and A. L. Chen, Eds. ICDE. IEEE Computer Society, Washington, DC, 3-14.

[Agrawal et al. 96] Agrawal, R., Mannila, H., Srikant, K., Toiven, H., Verkano, A.: Fast

Discovery of Association Rules. Advances in Knowledge Discovery and Data Mining 1996: 307-328.

[Agrawal et al. 93] Agrawal, R., Imielinski, T., Swami, A..: Mining association rules between

sets of items in large databases. In Proc. of the ACM SIGMOD Intl. Conference on Management of

Data (1993) 207–216.

[Ale & Rossi 00] Ale, J. M. and Rossi, G. H.: 2000. An approach to discovering temporal

association rules. In Proceedings of the 2000 ACM Symposium on Applied Computing - Volume 1

(Como, Italy). J. Carroll, E. Damiani, H. Haddad, and D. Oppenheim, Eds. SAC '00. ACM Press, New

York, NY, 294-300. DOI= http://doi.acm.org/10.1145/335603.335770

[Alves & Belo 05a] Alves, R., Belo, O.: Integrating Pattern Growth Mining on SQL-Server

RDBMS. Technical Report-003, University of Minho, Department of Informatics, May (2005)

http://alfa.di.uminho.pt/~ronnie/files_files/rt/2005-RT3-Ronnie.pdf

[Alves & Belo 05b] Alves, R., Belo, O.: Programming Relational Databases for Itemset

Mining over Large Transactional Tables. EPIA 2005: 314-324. DOI= 10.1007/11595014_32.

[Alves & Belo 06b] Alves, R., Belo, O.: On the Computation of Maximal-Correlated

Cuboids Cells. DaWaK 2006: 165-174. DOI = 10.1007/11823728_16.

 [Alves et al. 06a] Alves, R., Ferreira, P., Belo, O., Lopes, J., Ribeiro, J., and Cortesao, L.:

Discovering telecom fraud situations through mining anomalous behavior patterns. In Proceedings

of the DMBA Workshop on the 12th ACM SIGKDD, 2006.

Bibliography

116

[Alves & Belo 07a] Alves, R., Belo, O.: Effective Olap Mining of Evolving Data Marts.

IEEE IDEAS 2007: to appear.

[Alves & Belo 07b] Alves, R., Belo, O.: Mining Top-K Multidimensional Gradients. DaWaK

2007: to appear.

[Ayres et al. 02] Ayres, J., Flannick, J., Gehrke, J., and Yiu, T.: 2002. Sequential PAttern

mining using a bitmap representation. In Proceedings of the Eighth ACM SIGKDD international

Conference on Knowledge Discovery and Data Mining (Edmonton, Alberta, Canada, July 23 - 26,

2002). KDD '02. ACM Press, New York, NY, 429-435. DOI=

http://doi.acm.org/10.1145/775047.775109

[Barbara et al. 97] Barbara, D., Sullivan, M.: Quasi-cubes: Exploiting Approximations in

Multidimensional Databases. In Proc. Int. Conference on Management of Data (SIGMOD), 1997.

[Bayardo 98] Bayardo, R.: Efficiently Mining Long Patterns from Databases. In Proc. Int.

Conference on Management of Data (SIGMOD), 1998.

[Berberidis et al. 04] Berberidis, C., Angelis, L., and Vlahavas, I.: 2004. PREVENT: An

algorithm for mining intertransactional patterns for the prediction of rare events. In Proc. Second

Starting AI Researchers’ Symposium, volume 9 of Frontiers in Artificial Intelligence and

Applications. IOS Press, 2004.

[Beyer & Ramakrishnan 99] Beyer, K., Ramakrishnan, R.: Bottom-Up Computation of Sparse

and Iceberg CUBEs. SIGMOD 1999: 359-370.

[Bruno et al. 02] Bruno, N., Chaudhuri, S., Gravano, L.: Top-k selection queries over

relational databases: Mapping strategies and performance evaluation. ACM Transactions on

Database Systems, 2002.

[Burdick et al. 01] Burdick, D., Calimlim, M., Gehrke, J.: MAFIA: A Maximal Frequent Itemset

Algorithm for Transactional Databases. In Proc. Int. Conference on Data Engineering (ICDE),

pp.443-452, 2001.

[Chakrabarti et al. 06] Chakrabarti, D., and Faloutsos. C.: Graph mining: Laws, generators,

and algorithms. ACM Comput. Surv. 38, 1 (Jun. 2006), 2. DOI=

http://doi.acm.org/http://doi.acm.org/10.1145/1132952.1132954.

[Chang et al. 00] Chang, Y., Bergman, L., Castelli, V., Li, M., L., C., Smith, J.: Onion

technique: Indexing for linear optimization queries. In Proc. Int. Conference on Management of

Data (SIGMOD), 2000.

Bibliography

117

[Chang et al. 05] Chang, C., Li, Y., and Lee, J.: 2005. An Efficient Algorithm for

Incremental Mining of Association Rules. In Proceedings of the 15th international Workshop on

Research Issues in Data Engineering: Stream Data Mining and Applications (Ride-Sdma'05) -

Volume 00 (April 03 - 04, 2005).

[Cheung & Zaïane 03] Cheung, W., Zaïane, O. R.: Incremental Mining of Frequent Patterns

Without Candidate Generation or Support Constraint, Seventh International Database Engineering

and Applications Symposium (IDEAS 2003), Hong Kong, China, July 16-18 (2003) 111-116.

[Cortes & Pregibon 01] Cortes, C., Pregibon, D.: Signature-based methods for data streams.

Data Mining and Knowledge Discovery, (5):167-182, 2001.

[Cortes et al. 01] Cortes, C., Pregibon, D., and Volinsky, C.: Communities of Interest. In

Proceedings of the 4th international Conference on Advances in intelligent Data Analysis

(September 13 - 15, 2001). F. Hoffmann, D. J. Hand, N. M. Adams, D. H. Fisher, and G.

Guimarães, Eds. Lecture Notes In Computer Science, vol. 2189. Springer-Verlag, London, 105-114.

[Cortes et al. 03] Cortes, C., Pregibon, D., and Volinsky, C.: Computational Methods for

Dynamics Graphs, Journal of Computational and Graphical Statistics 12 (2003) (4), pp. 950–970.

[Dong et al. 04] Dong, G., Han, J., Lam, J., M., W., Pei, J., Wang, K., Zou, W.: Mining

Constrained Gradients in Large Databases. IEEE Transactions on Knowledge Discovery and Data

Engineering, 2004.

[Dong et al. 06] Dong, X., Han, J., Cheng, H., Xiaolei, L.: Answering Top-k Queries with

Multi-Dimensional Selections: The Ranking Cube Approach. In Proc. Int. Conference on Very Large

Databases (VLDB), 2006.

[El-Hajj & Zaïane 03] El-Hajj, M., Zaïane, O.R.: Inverted Matrix: Efficient Discovery of

Frequent Items in Large Datasets in the Context of Interactive Mining, in Proc. 2003 Int'l Conf. on

Knowledge Discovery and Data Mining (ACM SIGKDD), Washington, DC, USA, August 24-27 (2003)

109-118.

[Fang et al. 98] Fang, M., Shivakumar, N., Garcia-Molina, H., Motwani, R., Ullman, J., D.:

Computing Iceberg Queries Efficiently. In Proc. Int. Conference on Very Large Databases (VLDB),

1998.

[Feng et al. 03] Feng, J., Si, H., and Feng, Y.: 2003. Indexing and incremental updating

condensed data cube. In Proceedings of the 15th international Conference on Scientific and

Statistical Database Management (Cambridge, MA, July 09 - 11, 2003).

Bibliography

118

[Feng et al. 04] Feng, Y., Agrawal, D., Abbadi, A. E., and Metwally, A.: Range CUBE:

Efficient Cube Computation by Exploiting Data Correlation. In Proceedings of the 20th international

Conference on Data Engineering (March 30 - April 02, 2004). ICDE. IEEE Computer Society,

Washington, DC, 658.

[Ferreira et al. 05] Ferreira, P., Alves, R., Azevedo, P., Belo, O.: A Hybrid Method to

Discover Inter-Transactional Rules. In Proceedings of the JISBD’2005, Granada (2005)

[Ferreira et al. 06] Ferreira, P., Alves, R., Belo, O. and Cortesao, L.: Establishing fraud

detection patterns based on signatures. In Proceedings of the 7th Industrial Conference on Data

Mining, 2006. DOI = 10.1007/11790853_41.

[Garofalakis et al. 99] Garofalakis, M. N., Rastogi, R., and Shim, K.: 1999. SPIRIT:

Sequential Pattern Mining with Regular Expression Constraints. In Proceedings of the 25th

international Conference on Very Large Data Bases (September 07 - 10, 1999). M. P. Atkinson, M.

E. Orlowska, P. Valduriez, S. B. Zdonik, and M. L. Brodie, Eds. Very Large Data Bases. Morgan

Kaufmann Publishers, San Francisco, CA, 223-234.

[Gouda & Zaki 05] Gouda, K., Zaki, J.: GenMax : An Efficient Algorithm for Mining Maximal

Frequent Itemsets. Data Mining and Knowledge Discovery, 11:1-20, 2005.

[Gray et al. 96] Gray, J., Bosworth, A., Layman, A., Pirahesh, H.: Data Cube: A Relational

Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Total. ICDE 1996: 152-159.

[Han & Kamber 06] Han, J. and Kamber, M.: 2006 Data Mining: Concepts and Techniques,

2nd ed. Morgan Kaufmann Publishers Inc.

[Han et al. 01] Han, J., Pei, J., Dong, G., Wank, K.: Efficient Computation of Iceberg Cubes

with Complex Measures. In Proc. Int. Conference on Management of Data (SIGMOD), 2001.

[Han et al. 00] Han, J., Pei, J., Yin., Y.: Mining frequent patterns without candidate

generation. In Proc. of ACM SIGMOD Intl. Conference on Management of Data, (2000) 1–12

[Han et al. 99] Han, J., Lakshmanan, L., Ng., R.: Constraint-Based Multidimensional Data

Mining. IEEE Computer 32(8): 46-50 (1999).

[Hidber 99] Hidber, C.: Online association rule mining. In A. Delis, C. Faloutsos, and S.

Ghandeharizadeh, editors, Proceedings of the 1999 ACM SIGMOD International Conference on

Management of Data, volume 28(2) of SIGMOD Record. ACM Press (1999) 145–156

[Hristidis et al. 01] Hristidis, V., Koudas, N., Papakonstantinou, Y.: Prefer: A system for the

efficient execution of multi-parametric ranked queries. In Proc. Int. Conference on Management of

Data (SIGMOD), 2001.

Bibliography

119

[Imielinski et al. 02] Imielinski, T., Khachiyan, L., Abdulghani, A.: Cubegrades: Generalizing

Association Rules. Data Mining and Knowledge Discovery, 2002.

[Kamber et al. 97] Kamber, M., Han, J., Chiang, J.: Metarule-Guided Mining of Multi-

Dimensional Association Rules Using Data Cubes. KDD 1997: 207-210.

[Kim et al. 04] Kim, W.-Y., Lee, Y.-K., Han, J.: CCMine: Efficient Mining of Confidence-Closed

Correlated Patterns. In Proc. Int. Pacific-Asia Conference on Knowledge Discovery and Data Mining

(PAKDD), 2004.

[Kimball 02] Kimbal, R.: 2002. The Data Warehouse Toolkit: The Complete Guide to

Dimensional Modeling, 2nd ed. Wiley.

[Kou et al. 04] Kou, Y., Lu, T., Sirwongwattana, S. and Huang, Y.: Survey of fraud detection

techniques. In Proceedings of IEEE Intl Conference on Networking, Sensing and Control, March

2004.

[Lakshmanan et al. 02] Lakshmanan, J., Pei, J., and Han, J.: Quotient cube: How to

summarize the semantics of a data cube. In VLDB'02, Hong Kong, China, Aug. 2002.

[Li et al. 04] Li, X., Han, J., Gonzalez, H.: High-dimensional OLAP: A Minimal Cubing

Approach. In Proc. Int. Conference on Very Large Databases (VLDB), 2004.

[Lu et al. 00] Lu, H., Feng, L., and Han, J. 2000. Beyond intratransaction association

analysis: mining multidimensional intertransaction association rules. ACM Trans. Inf. Syst. 18, 4

(Oct. 2000), 423-454. DOI= http://doi.acm.org/10.1145/358108.358114.

[Lunt 99] T.F. Lunt. A survey of intrusion detection techniques. Computer and Security,

(53):405-418, 1999.

[Morfonios & Ioannidis 06] Morfonios, K. and Ioannidis, Y. 2006. CURE for cubes: cubing

using a ROLAP engine. In Proceedings of the 32nd international Conference on Very Large Data

Bases (Seoul, Korea, September 12 - 15, 2006). U. Dayal, K. Whang, D. Lomet, G. Alonso, G.

Lohman, M. Kersten, S. K. Cha, and Y. Kim, Eds. Very Large Data Bases. VLDB Endowment, 379-

390.

[Nanavati et al. 06] A. A. Nanavati, S. Gurumurthy, G. Das, D. Chakraborty, K. Dasgupta, S.

Mukherjea, and A. Joshi. On the structural properties of massive telecom call graphs: findings and

implications. In Proceedings of the 15th ACM international Conference on information and

Knowledge Management (Arlington, Virginia, USA, November 06 - 11, 2006). CIKM '06. ACM Press,

New York, NY, 435-444. DOI= http://doi.acm.org/10.1145/1183614.1183678.

[Navidi 2007] Navidi, C., W.: 2007. Statistics for Engineers and Scientists, 2nd ed. McGraw-

Hill Science/Engineering/Math.

Bibliography

120

[Omiecinski 03] Omiecinski. Alternative Interest Measures for Mining Associations. IEEE

Trans. Knowledge and Data Engineering, 15:57-69, 2003.

[Orlando et al. 01] Orlando, S., Palmerini, P., Perego, R.: Enhancing the apriori algorithm for

frequent set counting. In Y. Kambayashi, W. Winiwarter, and M. Arikawa, editors, Proceedings of

the Third International Conference on Data Warehousing and Knowledge Discovery, volume 2114

of Lecture Notes in Computer Science (2001) 71–82.

[Orlando et al. 02] Orlando, S., Palmerini, P., Perego, R., Silvestri, F.: Adaptive and

resource-aware mining of frequent sets. In V. Kumar, S. Tsumoto, P.S. Yu, and N.Zhong, editors,

Proceedings of the 2002 IEEE International Conference on Data Mining. IEEE Computer Society

(2002).

[Özden et al. 98] Özden, B., Ramaswamy, S., and Silberschatz, A. 1998. Cyclic Association

Rules. In Proceedings of the Fourteenth international Conference on Data Engineering (February

23 - 27, 1998). ICDE. IEEE Computer Society, Washington, DC, 412-421.

[Pei et al. 00] Pei, J., Han, J. and Mao, P.: CLOSET: An efficient algorithm for mining

frequent closed itemsets. In DMKD'00, May 2000.

[Pei et al. 01] Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., and Hsu, M.

2001. PrefixSpan: Mining Sequential Patterns by Prefix-Projected Growth. In Proceedings of the

17th international Conference on Data Engineering (April 02 - 06, 2001). IEEE Computer Society,

Washington, DC, 215-224.

[Pennock et al. 99] Pennock, D. M., Flake, G. W., Lawrence, S., Glover, E. J. and Giles, C.

L.: Winners Don’t Take All: Characterizing the Competition for Links on the Web. Proceedings of

the National Academy of Sciences 99, 8, 5207–5211.

[Rantzau 03] Rantzau, R.: Processing frequent itemset discovery queries by division and set

containment join operators. In DMKD03: 8th ACM SIGMOD Workshop on Research Issues in Data

Mining and Knowledge Discovery (2003).

[Rymon 92] Rymon, R.: Search through Systematic Set Enumeration. In Proc. Int.

Conference on Principles of Knowledge Representation and Reasoning (KR), 539-550, 1992.

[Sarawagi & Sathe 00] Sarawagi, S., Sathe, G.: i3: Intelligent, Interactive Investigaton of

OLAP data cubes. In Proc. Int. Conference on Management of Data (SIGMOD), 2000.

[Sarawagi et al. 98a] Sarawagi, S., Thomas, S., Agrawal, R.: Integrating mining with

relational database systems: alternatives and implications. In Proc. of the ACM SIGMOD

Conference on Management of data, Seattle, Washington, USA (1998).

Bibliography

121

[Sarawagi et al. 98b] Sarawagi, S., Agrawal, R., Megiddo, N.: Discovery-Driven Exploration

of OLAP Data Cubes. EDBT 1998: 168-182.

[Sathe & Sarawagi 01] Sathe, G., Sarawagi, S.: Intelligent Rollups in Multidimensional OLAP

Data. In Proc. Int. Conference on Very Large Databases (VLDB), 2001.

[Shang et al. 04] Shang, X., Sattler, K., Geist, I.: Sql based frequent pattern mining without

candidate generation. In SAC’04 Data Mining, Nicosia, Cyprus (2004).

[Shao et al. 04] Shao, Z., Han, J., Xin, D.: MM-Cubing: Computing Iceberg Cubes by

Factorizing the Lattice Space. In Proc. Int. Conference on Scientific and Statistical Database

Management (SSDBM), 2004.

 [Sismanis et al. 02] Sismanis, Y., Deligiannakis, A., Roussopoulos, N., and Kotidis, Y. 2002.

Dwarf: shrinking the PetaCube. In Proceedings of the 2002 ACM SIGMOD international Conference

on Management of Data (Madison, Wisconsin, June 03 - 06, 2002). SIGMOD '02. ACM Press, New

York, NY, 464-475. DOI= http://doi.acm.org/10.1145/564691.564745

[Spiliopoulou 99] Spiliopoulou, M. Managing interesting rules in sequence mining. In Proc.

European Conf. on Principles and Practice of Knowledge Discovery in D atabases, 554-560, 1999.

[Srikant & Agrawal 96] Srikant, R. and Agrawal, R. 1996. Mining Sequential Patterns:

Generalizations and Performance Improvements. In Proceedings of the 5th international

Conference on Extending Database Technology: Advances in Database Technology (March 25 - 29,

1996). P. M. Apers, M. Bouzeghoub, and G. Gardarin, Eds. Lecture Notes In Computer Science, vol.

1057. Springer-Verlag, London, 3-17.

[Tung et al. 03] Tung, A. K., Lu, H., Han, J., and Feng, L. 2003. Efficient Mining of

Intertransaction Association Rules. IEEE Transactions on Knowledge and Data Engineering 15, 1

(Jan. 2003), 43-56. DOI= http://dx.doi.org/10.1109/TKDE.2003.1161581

[Wang & Zaniolo 00] Wang, H., Zaniolo, C.: Using SQL to build new aggregates and

extenders for Object-Relational systems. In Proc. Of the 26th Int. Conf. on Very Large Databases,

Cairo, Egypt (2000).

[Xin et al. 06] Xin, D., Shao, Z., Han, J., Liu, H.: C-Cubing: Efficient Computation of Closed

Cubes by Aggregation-Based Checking. ICDE 2006: 4.

[Xiong et al. 03] Xiong, H., Tan, P.-N., Kumar, V. Mining Strong Affinity Associations Patterns

in Data Sets with Skewed Support Distribution. In Proc. Int. Conference on Data Mining (ICDM),

2003.

[Yoshizawa 00] Yoshizawa, T., Pramudiono, I., Kitsuregawa, M.: Sql based association rule

mining using commercial rdbms (ibm db2 udb eee). In In Proc. DaWaK, London, UK (2000).

Bibliography

122

[Zaki & Hsiao 02] Zaki, M. J. and Hsiao, C.: CHARM: An efficient algorithm for closed

itemset mining. In SDM'02, April 2002.

[Zaki 01] Zaki, M. J. 2001. SPADE: An Efficient Algorithm for Mining Frequent Sequences.

Mach. Learn. 42, 1-2 (Jan. 2001), 31-60.

[Zhao et al. 97] Zhao, Y, Deshpande, P, Naughton, J: An Array-Based Algorithm for

Simultaneous Multidimensional Aggregates. SIGMOD 1997: 159-170.

[Zou et al. 02] Zou, Q., Chu, W.-W., Lu, B.: SmartMiner: A Depth First Algorithm Guided by

Tail Information for Mining Maximal Frequent Itemsets. In Proc. Int. Conference on Data Mining

(ICDM), 2002.

	Página 1
	Página 2
	Página 3

