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C OM P U TA Ç Õ E S P E S A D A S : S E M Â N T I C A S E L Ó G I C A S D E P R O G R A M A S

Esta tese debruça-se sobre computações pesadas ou, por outras palavras, programas e asserções sobre

estes cuja execução ou avaliação tem alguma forma de peso associado. Por peso queremos dizer um

valor que pode representar, por exemplo, uma incerteza na execução, ou uma quantidade de recursos

consumidos, como energia ou tempo. Exemplos de sistemas que contêm alguma componente com pesos

variam desde comunicações entre dispositivos, processos biológicos em rede, sistemas de apoio à decisão

clínica ou controlo de robots, estando cada vez mais presentes no nosso quotidiano. Neste sentido, devido

à alta complexidade subjacente à introdução destes parâmetros, exige-se que a engenharia de software

recorra a metodologias de desenvolvimento rigorosas para garantir a alta fiabilidade de cada produto de

software. E se é verdade que o desenvolvimento, análise e verificação destes sistemas são cada vez mais

assentes nessa mesma abordagem formal, as práticas correntes de programação não são ainda capazes

de oferecer uma estrutura que seja, ao mesmo tempo, genérica o suficiente por forma a capturar estes

paradigmas e capaz de satisfazer os requisitos específicos para cada domínio de aplicação.

Nós queremos atacar este desafio através da apresentação de uma metodologia de desenvolvimento

sistemático de semânticas e lógicas para raciocinar sobre duas classes distintas de programas. Na

primeira classe, a que nós chamamos de computação de fluxo único, cada execução é uma única transição

com um peso associado. Na segunda classe, a que nós chamamos computação de fluxo múltiplo, cada

execução pode assumir múltiplos caminhos em simultâneo, cada um com um peso possivelmente distinto.

Nesta tese definimos, para cada classe de computação, uma semântica, e provamos que esta forma uma

álgebra apropriada para raciocinar sobre programas dessa classe. Para esse fim, definimos operadores

que interpretam as construções básicas de uma linguagem de programação imperativa: composição

sequencial, condicionais e iteração. A partir daqui construímos uma lógica, incluindo o respetivo sistema

axiomático, que permite verificar propriedades sobre estes programas.

Uma das virtudes desta metodologia é a sua parametricidade, que é dada por uma estruturamatemática

genérica que oferece tanto um modelo de computação para representar programas como um espaço de

verdade para avaliar asserções sobre eles.

Para a classe de computações de fluxo único, definimos também uma noção de bisimilaridade nos

modelos dos lógicas geradas, provando-se invariância modal para essas lógicas.

Palavras-chave: álgebra de Kleene, computação pesada, lógica dinâmica, semânticas de programas.
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W E I G H T E D C OM P U TAT I O N S : S E M A N T I C S A N D P R O G R A M LO G I C S

This thesis deals with weighted computations or, more precisely, programs and assertions about them

whose execution or evaluation has some form of weight associated. By weight we mean a value which

may represent, for example, an uncertainty in the execution, or a quantity of resources consumed, such as

energy or time. Examples of systems containing some component with weights range from device-to-device

communications, network biological processes, clinical decision support systems or robot control, being

these growingly present in our everyday life. In this sense, due to the complexity underlying the introduction

of these parameters, software engineering is forced to call upon rigorous development methodologies

which provides a high assurance of each software product. And if it is true that the development, analysis

and verification of these systems are increasingly laid on this exactly approach, the current programming

practices are not capable to offer a framework which is, at the same time, generic enough to capture such

paradigms, and able to satisfy the specific requirements for each application domain.

We intend to address this challenge by presenting a methodology for the systematic development of

semantics and logics to reason about two distinct classes of programs. In the first class, that we call

single-flow computation, each execution is a single transition with an associated weight. In the second

class, that we call multi-flow computation, each execution may assume multiple simultaneous execution

paths, each one of them with a, possible distinct, weight. In this thesis we define, for each class of

computation, a semantics, and we prove that it forms a suitable algebra to reason about programs of

that class. For that end, we define operators which interpret the basic constructions of an imperative

programming language: sequential composition, conditionals and iteration. From here we construct a

logic, including the respective axiomatic system, allowing to verify properties over those programs.

One of the merits of this methodology is its parametricity, which is given by a generic mathematical struc-

ture offering both a computational model to represent programs and a truth space to evaluate assertions

over them.

For single-flow computations, we define as well a notion of bisimilarity on the models of the generated

logics, and prove the modal invariance property for those logics.

Keywords: dynamic logic, Kleene algebra, program semantics, weighted computation.

vi



C O N T E N T S

1 Introduction 1

1.1 A new challenge for computational systems 1

1.2 Goal 3

1.3 Illustration 5

1.4 State of the art 6

1.5 Contributions 15

2 Background 23

2.1 Propositional dynamic logic 23

2.2 Kleene algebra and action lattice 26

2.3 Generating multi-valued propositional dynamic logics 31

2.4 Weighted sets and weighted relations 35

I Weighted single-flow computations

3 Algebras of weighted single-flow computations 41

3.1 Preliminaries: Kleene algebra with tests and Hoare logic 41

3.2 Generalising Kleene algebra with tests: a first approach 43

3.3 Generalising Kleene algebra with tests: an idempotent variant 50

3.4 Weighted structures and matrices as GKAT/I-GKAT 53

3.5 An illustration: a folk theorem 66

4 A weighted single-flow semantics 71

5 Dynamic logics for weighted single-flow computations 79

5.1 Generation of multi-valued equational dynamic logics 79

5.2 Back to the weighted single-flow semantics 95

5.3 An illustration 98

5.4 Bisimulation 100

II Weighted multi-flow computations

6 Algebras of weighted multi-flow computations 108

vii



6.1 Preliminaries: binary multirelations 108

6.2 Introducing weighted multirelations 111

7 A weighted multi-flow semantics 126

8 Dynamic logics for weighted multi-flow computations 135

8.1 Generation of ∗-free multi-valued equational dynamic logics 135

8.2 Back to the weighted multi-flow semantics 140

8.3 An illustration with fuzzy Arden syntax 146

8.4 An illustration with jFuzzyLogic 150

9 Conclusions and open problems 158

Bibliography 165

viii



L I S T O F F I G U R E S

Figure 1 Schematic diagram of 𝐷2𝐷 mobile communication. 2

Figure 2 Weighted “single-flow” and “multi-flow” computations. The values 𝑎 and 𝑎1, 𝑎2,… 𝑎𝑛

represent weights. 4

Figure 3 Transition system correspondent to Example 1.3.1. 5

Figure 4 Action lattice as a combination of Kleene algebra and residuated lattice 9

Figure 5 Binary tree representing successive (possible biased) coin tosses. 10

Figure 6 Conditional in a fuzzy programming language, illustrated by a liquid flowing through a

‘Y-shaped’ pipe. 18

Figure 7 Illustration of L𝑊×2𝑊 20

Figure 8 Illustration of L𝑊×L𝑊 20

Figure 9 Hoare logic rules. 42

Figure 10 Examples of KAT, GKAT and I-GKAT. 51

Figure 11 Representation of the variable O2_low 128

Figure 12 Graph O2_low (blue line) and O2_low+5 (red line) 129

Figure 13 Human body temperature variation in a 24h period 131

Figure 14 Blood pressure variation in a 24 hour period 132

Figure 15 Graph distance between crane head and target position 152

Figure 16 Graph angle of the container to the crane head 152

ix



L I S T O F TA B L E S

Table 1 Taxonomy of related work of this thesis 14

Table 3 Syntax of ℱ1 20

Table 2 Taxonomy of related work and the frameworks introduced in this thesis 21

Table 4 Syntax of ℱ2 21

Table 5 Satisfiability 161

Table 6 Global satisfiability 161

Table 7 Taxonomy of related work, frameworks introduced in this thesis and additional ones

we left for the future 164

x



1

I N T R O D U C T I O N

1.1 A n ew ch a l l e n g e f o r c ompu t a t i o n a l s y s t ems

It is consensual that a rigorous design discipline is crucial to boost productivity and enforce correctness in

software production. Thus, the development of formal techniques and tools for both program specification

and verification go hand in hand. For example, the use of logics to perform the formal verification of the

following simple program

Example 1.1.1.

while 𝑦 ≠ 0 do

begin 𝑧 ∶= 𝑥𝑚𝑜𝑑 𝑦;
𝑥 ∶= 𝑦;
𝑦 ∶= 𝑧;
end

which computes the greatest common divisor of two integers, lies on the prior definition of some sort of

specification of its behaviour. The idea is to provide obligations that need to hold after the execution of

the program, assumig that some conditions are verified beforehand. Dynamic logics [Pra91], Hoare logic

[Hoa69] and Kleene algebra [Kle56] are among the first and well established formal approaches to verify

classic imperative programs, as the one of Example 1.1.1.

Often, however, the behaviour of computations is weighted by some factor e.g. a probability, a cost, a

measure of uncertainty or energy consumed, or even execution time, so that reasoning about it requires

taking such weights seriously. In particular, reasoning with uncertainty is essential for a wide variety of ap-

plication domains, such as recommender systems [CL14], image detection algorithms [KTMK15], robotics

[CAf13, CSLM19], pharmaceutical applications [WLF+20] or support for medical diagnosis [VMA10]. An

example of the latter is the design of a system that helps with clinical decision, e.g. a program which

decides wether a patient needs some drug depending on its fever condition. Defining the threshold of

body temperature that is worth of attention represents the type of reasoning that cannot be simply set in

Boolean terms, i.e. true or false. Otherwise, the system would risk ignoring, for example, a patient with a

body temperature very close to fever condition, but still not above the threshold.

Another form of weight relevant in the software development process is the measure of computational

costs or energy consumed along the execution of some program. These are typical concerns of green
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𝑑1

base station

𝑑2

device-to-station communication

𝐷2𝐷 communication

Figure 1: Schematic diagram of 𝐷2𝐷 mobile communication.

computing, whose main goal is to maximize energy efficiency and achieve more sustainable software and

hardware development practices [Kur08]. A rich research agenda flows from this philosophy, aligned with

the crescent worry for the global climate changes, with major focus on reducing energy consumption of

large data centers [BS09], as well as on the development of energy-aware methodologies for small devices,

interconnected through e.g. 5G mobile networks [WLCW20, HCHH19].

For example, new developments in mobile transmission techniques, regarding device-to-device (D2D)

interaction lead to new possibilities for communication between devices, with positive implications in the

efficiency of the network. In a concrete situation where two handheld devices that are in physical proximity

use high data-demand services, like multiplayer gaming or video sharing, D2D communication between

those devices could relieve great network traffic from a base station, thus increasing its energy efficiency.

Let us consider the following scenario, depicted in Figure 1: two devices, 𝑑1 and 𝑑2, are in physical

proximity and intend to join a multiplayer gaming session, where they need to be in constant communi-

cation with each other to transmit data. Suppose that device 𝑑1 initiates the communication and thus

should decide, in real time, whether the data transmission is relayed by the base station or directly with

device 𝑑2, supported by 𝐷2𝐷 technology. In such a situation, the measure of resources consumed is of

high importance for making the best decision to enhance the user experience, for example, by reducing

system latency and the base station traffic. One may formalise such a problem, in very generic terms, as

the computation of the communication path which minimizes the usage of such resources.

The nature of these systems, which rely on some (non trivial) form of weighted computation, entails

the need not only for programming languages which can describe their behaviour, but also for semantic

structures and logics on which to base their rigorous design, verification and refinement.

The focus of this thesis is precisely systems whose behaviour is explained by some form of weighted

transitions. The computing paradigms embedded in such systems emerged essentially as formalisations

of knowledge for expressing concepts that cannot be evaluated in simple Boolean terms. While in the

2



“classical world”, to which programs as the one in Example 1.1.1 belong, Kleene algebras and dynamic

logics provide the underlying formal setting for correctness in software production, a generic framework

tuned to weighted computing paradigms mentioned above is lacking. To deal with the complex, often

unpredictable, behaviours typical of such paradigms, it is relevant to establish a generic formal setting,

i.e. i) algebras to model classes of computations where weights are a natural ingredient; and ii) logics, to

provide a finite set of rules for reasoning about those computations.

How to come up with such a framework is the overall aim of the thesis.

1.2 G o a l

The basic challenge in this PhD is to provide a rigorous method for the design and verification of two classes

of imperative programs, on top of weighted computations, which model the two paradigms depicted in

Figure 2.

The first class consists of programs interpreted as weighted “single-flow” computations, i.e. each

program is a single transition between two states in a transition system, with an associated weight. Those

weights, depending on the associated semantic domain, may represent the uncertainty of the execution,

a cost or a quantity of resources consumed, or even the execution time.

The second class concerns programs interpreted as a transition from a state to a weighted set of states,

modelling a sort of parallel run typical of conditionals in programming languages designed for fuzzy control

systems. In such statements, the branches are executed simultaneously with (possibly) different weights,

given by the evaluation of each condition. Such a behaviour is precisely what we mean by weighted

“multi-flow” computation.

Figure 2 schematizes the general idea which formally represents “weighted single-flow” and “weighted

multi-flow” computations, along with a comparison with the corresponding classical case.

3



Classic Weighted

“Single-flow”

(Relational)
2𝑊×𝑊 M𝑊×𝑊

𝑤0 𝑤1 𝑤0 𝑤1
𝑎

“Multi-flow”

(Multirelational)
2𝑊×2𝑊

2𝑊×M𝑊

𝑤0

𝑤1

𝑤𝑛

𝑤2

…

𝑤0

𝑤1

𝑎1

𝑤𝑛

𝑎𝑛

𝑤2

𝑎2

…

Figure 2: Weighted “single-flow” and “multi-flow” computations. The values 𝑎 and 𝑎1, 𝑎2,… 𝑎𝑛 represent weights.

The classes of programs described above are represented, formally, by the second column of the table.

The main idea is to take as a starting point in the classical notion of program as a binary (multi) relation,

generalising then its semantic domain to capture weighted computations. By embedding a proper structure

of weights into a binary relation, we obtain the formal model of weighted “single-flow” computations,

represented in the upper right cell of the table. By, instead, treating a program as a transition from a state

to a weighted set of states, we obtain the formal model of weighted “multi-flow” computations, represented

in the lower right cell of the table.

For each kind of computation described above the goal of this thesis is to characterise i) the mathemati-

cal structure that acts as a parameter in the development of ii) a formal semantics for programs interpreted

as weighted “single -flow” and weighted “multi-flow” computations, and iii) a systematic method of gener-

ating dynamic logics, for the verification and analysis of programs of these classes.

The development of such a framework will be setted up on generalisations of the well established notions

of Kleene algebra and dynamic logic, on the algebraic and logical side, respectively. This approach relies

on the definition of a structure of weights for each kind of computation acting, in both cases, simultaneously

as a computational model to interpret programs, and as a truth space to evaluate assertions about those

programs. How to achieve this goal constitutes the challenge addressed in this thesis, taking the following

research questions as a guideline.

• Which are the suitable semantic structures and logics to reason about weighted “single-flow” and

“multi-flow” computations?

• Which properties can be verified in these settings?
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1.3 I l l u s t r a t i o n

Let us now provide a simple example to illustrate each class of programs described above. The first class

is composed by programs interpreted by weighted “single-flow” computations. Consider, for example, the

following imperative program

Example 1.3.1.

double 𝑥 ∶= 2; double 𝑥 ∶= 𝑥 + 𝑦;
if (𝑥 ≤ 3)
𝑥 ∶= 𝑥 + 1;
else

𝑦 ∶= 𝑦 × 2;

which corresponds to the transition system depicted in Figure 3. Given a set of variables 𝑋 and a mathe-

𝑤0start 𝑤1 𝑤2

𝑤2

𝑤2

𝑤3

𝑤3

𝑥 ∶= 2 𝑥 ∶= 𝑥 + 𝑦

(𝑥 ≤ 3)?

¬(𝑥 ≤ 3)?

𝑥 ∶= 𝑥 + 1

𝑦 ∶= 𝑦 × 2

Figure 3: Transition system correspondent to Example 1.3.1.

matical structure A to model the space of weights, states are functions 𝑤𝑖 ∶ 𝑋 → AR, 𝑖 ∈ N, assigning a

value in a proper weighted truth space to a variable 𝑥 in a given data domain, in this case, the real numbers
R. For a mere illustrative example, we may consider, as the domain of weights, the energy consumed by

a system. Thus, 𝑤0(𝑥)(1) may represent, for instance, the energy consumed when assigning the real

value 1 to the variable 𝑥 in the initial state 𝑤0.

The simplest case of a programming construct is an assignment 𝑥 ∶= 2, whose weight in this context
is a measure of the energy consumed by performing the assignment. Other more complex program

constructs can also be defined, such as sequential composition and conditional. An example of the former

is the program 𝑥 ∶= 2; 𝑥 ∶= 𝑥 + 𝑦, which accumulates the total energy used by performing sequentially
the atomic programs 𝑥 ∶= 2 and 𝑥 ∶= 𝑥 + 𝑦. An instance of the latter is the conditional statement

(𝑥 ≤ 3)?; (𝑥 ∶= 𝑥+1)+ (¬(𝑥 ≤ 3))?; (𝑦 ∶= 𝑦 × 2), interpreted as the minimum energy consumed

by one of the assignments 𝑥 ∶= 𝑥 + 1 and 𝑦 ∶= 𝑦 × 2, guarded by the predicate 𝑥 ≤ 3.
The other class of programs which are the object of study of this thesis consists of ones interpreted as

weighted “multi-flow” computations, typically designed for fuzzy control systems [Ost82], with applications

to e.g. medical diagnosis [VMA10], similar to the example described in Section 1.1, or robotics [CAf13].

The fuzzy Arden syntax (FAS) [VMA10] is an example of a fuzzy programming language used in the design

5



of fuzzy control systems for clinical decision support. let us consider the simple FAS program represented

below.

Example 1.3.2.

if (Temperature is in Fever_condition)

then medicine:=5 else medicine:=0

In simple terms, the program makes an adjustment of the dose of medicine to be administrated to a

patient depending on his or her temperature. The latter, formally, is a function assigning, to each (crisp)

value of temperature, a real value (e.g. in the range [0, 1]) to record how close such temperature is from

a “fever condition”. In a scenario where the predicate Temperature is in Fever_condition and
its negation assume a value greater than 0, let us say, 0.4 and 0.6, respectively, we obtain a somehow

ambiguous evaluation, and therefore the program executes both the then and the else blocks, weighted
by the value of each condition. In practice, this results in a multiplication of the variable medicine.
Intuitively, the values 0.4 and 0.6 mean that Temperature has probably not reached the limit of a fever

condition but is close to it.

In other words, the intended semantics of a “conditional” in FAS does not reduce to a non deterministic

or even a probabilistic choice [MRS13]. Instead, that of it corresponds to a sort of parallel run in which the

branches are executed with a (possible) different weight, given by the evaluation of each condition. This

also differs, of course, from the usual parallel composition which models a crisp notion of two programs

running in parallel [FS15, HMSW11, Pel87], or two actions being processed at the same time [Pri10].

1.4 S t a t e o f t h e a r t

It is consensual that a rigorous design discipline is crucial to boost productivity and enforce correctness

in software production. A vast myriad of approaches, based on diverse forms of Hoare logics, Kleene al-

gebras and dynamic logics, or combinations thereof, have been proposed over the years for this purpose.

Writing a correct program is achieved by first specifying how the program is supposed to behave, through

a correctness specification. For the program of Example 1.1.1 such a specification may be the following

assertion:

If the input values of 𝑥 and 𝑦 are positive integers 𝑐 and 𝑑, respectively, then

• the output value of 𝑥 is the gcd of 𝑐 and 𝑑, and

• the program halts.

The specification consists of a precondition 𝜌1 and a postcondition 𝜌2, which defines properties of the

input and output states of the computation, respectivelly. If a program, starting on a state satisfying

6



𝜌1, halts in a state satisfying 𝜌2, it is said that the program is correct with respect to the input/output

specification 𝜌1, 𝜌2. For example, for program of Example 1.1.1, we may consider the precondition

(𝑥 ≥ 0 ∧ 𝑦 > 0) ∨ (𝑥 > 0 ∧ 𝑦 ≥ 0)

and the post condition 𝑔𝑐𝑑(𝑥, 𝑦). The program is correct with respect to such specification.

Hoare logic was one of the first formal systems proposed for verification of programs with respect to

partial correctness. Introduced in 1969 by Hoare [Hoa69], its wide influence made it a cornerstone in

the field. In Hoare logic, the specification of a program is written as partial correctness assertions of

the form {𝜌1}𝜋{𝜌2}, also called Hoare triples. Symbols 𝜌1 and 𝜌2 stand for the precondition and the

postcondition, respectively, and 𝜋 is the program statement. The intuitive meaning of a Hoare triple is

the following: a program is correct if the satisfaction of precondition 𝜌1 implies that for every execution of

𝜋, if it halts, the postcondition 𝜌2 is satisfied. The correctness of a program specified as a Hoare triple

is verified in Hoare Logic, through a set of inference rules [Hoa69, Flo93]. A fragment of Hoare logic is

Propositional Hoare logic (PHL) [Koz00], in which Hoare triples are reduced to syntactic assertions.

The predicate transformer semantics was introduced by E. Dijkstra [Dij76] to interpret each program

statement in an imperative programming language as a function between two predicates, called predicate

transformer. Different semantics for such a function can be defined: weakest preconditions, which give

the less restrictive condition to assure that a program satisfies some predicate after running; and strongest

postconditions, giving the strongest condition after the execution of 𝜋 under a given precondition. Alterna-

tively the predicate transformer semantics can be viewed a reformulation of Hoare logic, transforming the

challenge of verifying the validity of a Hoare triple into proving a first-order logic formula. The relation to

partial correctness in Hoare logic is given in the form of weakest liberal precondition (wlp), a function yield-

ing the weakest condition under which a program 𝜋 ∈ 𝑊 × 𝑊 either does not terminate or terminates

in a state satisfying 𝜌 ⊆ 𝑊, formally

𝑤𝑙𝑝(𝜋, 𝜌) = {𝑤 ∈ 𝑊 ∶ 𝜋(𝑤) ⊆ 𝜌}

Other formalisation presents 𝑤𝑙𝑝(𝜋, 𝜌) as the largest subset 𝑉 ⊆ 𝑊 such that 𝜋(𝑉) ⊆ 𝜌. Another
predicate transformer is weakest precondition (wp), differing from 𝑤𝑙𝑝 by assuring termination of 𝜋.

In order to use Hoare logic for the verification of a program, one needs first to formalise the program

behaviour. For instance, the program of Example 1.1.1 can be seen as an input/output relation of pairs

(𝑎, 𝑏) of states which relates the input with the output of the program. The mathematical structure that

can formalise such an interpretation is that of a binary relation which, together with the operators of rela-

tional composition and set union, provides the necessary ingredients to interpret the notion of sequential

composition, iteration and nondeterminism.

Binary relations can be structured as a Kleene algebra. Emerging as a generalisation of regular expres-

sions [Kle56], Kleene algebra plays however a most relevant role in semantics of programs [Koz82, Pra88].

With numerous extensions and applications (e.g. [QWWG08, FD07, AFG+14, Koz14, FKM+16]) Kleene

algebra is a standard structure to reason about programs, providing a finite axiomatisation precisely to rea-
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son about sequential composition, iteration and nondeterminism. Nevertheless the abstraction of some

programming constructs, like if-then-else and while statements, require not only the algebraic formali-

sation provided by Kleene algebra, but also a rigorous way to include tests.

How to include those assertions into a model of computations is a challenge that gave rise, over time, to

many distinct approaches and results. One such concretisation is dynamic logic [Pra76], a very powerful

framework to reason about programs in a precise way, allowing to interpret both its object (i.e. the very

notion of a program, modelled by a Kleene algebra) and assertions over it. These two components can be,

respectively, abstract programs and propositions, in Propositional Dynamic Logic (PDL) [FL77], or lifted

up to assignment statements and formulas built over variables and terms, in First-Order Dynamic Logic

[HKT00].

The syntax of PDL simply abstracts predicates and programs into propositional symbols. It represents

a combination of propositional logic and the algebra of regular expressions. First-order dynamic logic, on

the other hand, bases it syntax on first-order logic. It consists of expressions built over a set of variables,

terms, and function and predicate symbols. On top of this vocabulary, sets of programs and formulas are

defined. The most simple notion of a program, i.e. an atomic program, consists of an assignment of the

value of a term 𝑡 to a variable 𝑥, denoted as 𝑥 ∶= 𝑡. A formula is built over terms 𝑡1,… , 𝑡𝑛 and predicate

symbols 𝑝, denoted as 𝑝(𝑡1,… , 𝑡𝑛).
As a consequence of such differences in the expressibility, while PDL considers states as mere abstract

points, in first-order dynamic logic they consist on valuations of variables in a given data domain. Moreover,

compound programming constructs, like sequentiality, iteration and nondeterminism are inductively built

from atomic programs, with syntax built over a previously defined signature (propositional or first order).

Both PDL and first-order dynamic logic need nevertheless more expressibility to establish the interaction

between programs and assertions. On the assertions side, and based on modal logic [BvBW06], formulas

of dynamic logic contain also the modalities ⟨⟩ (possibility) and [] (necessity) to reason about the effects
of program executions in the states of computation. On the programs side, a proper notion of test is

required to reason about programming constructs depending on assertions, namely if 𝜌 then 𝜋1 else 𝜋2
and while 𝜌 do 𝜋. A test is a proposition/formula accompanied by the operator ?, which transforms

propositions/formulas into programs.

Dynamic logic is also expressive enough to subsume the syntax and the inference rules of Hoare logic,

reducing its deductive apparatus to the validity of a dynamic logic formula. More concretely, the validity

of a Hoare triple {𝜌1}𝜋{𝜌2} corresponds to the validity of the dynamic logic formula 𝜌1 → [𝜋]𝜌2.
As an example, to verify the correctness of the program of Example 1.1.1, one should replace 𝜌1 by

(𝑥 ≥ 0 ∧ 𝑦 > 0) ∨ (𝑥 > 0 ∧ 𝑦 ≥ 0) and the 𝜌2 by 𝑔𝑑𝑐(𝑥, 𝑦) and 𝜋 by the program, and reason

about the validity of the resulting formula, using an appropriate semantics.

The automation of program correctness using dynamic logic becomes, in a practical sense, essential

to provide a complete resource window for the use of this logic in program verification. The KeY project

is an example of such a tool. In particular, it is a deductive verification framework specialised in proving

correctness of Java programs [BKW16], supporting both interactive and fully automated proofs. Some

extensions to KeY have been introduced to support also the correctness of𝐶 programs and hybrid systems.
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Alternatively to PDL, the propositional abstraction of programming constructs, such as conditional and

while loops can be formalised in Kleene algebra with tests (KAT) [Koz00], i.e. a Kleene algebra with an

embedded Boolean subalgebra to model assertions. Like PDL, KAT is able to subsume the syntax and

the inference rules of PHL, reducing its deductive apparatus to (quasi) equational reasoning. Therefore,

the validity of a Hoare triple {𝜌1}𝜋{𝜌2} corresponds to the validity of the PDL formula 𝜌1 → [𝜋]𝜌2
and in its turn to the equality 𝜌1; 𝜋 = 𝜌1; 𝜋; 𝜌2. The axiomatisation of KAT provides the necessary rules

to manipulate programs as equations and verify their correctness. One particular application of KAT in

program manipulation is equational proofs of program equivalences, which is presented in reference.

An extension to Kleene algebra was introduced in reference [Koz94b] to overcome the limitations of

action algebras [Pra91] in their applicability to certain automata constructions and algorithm analysis.

The structure, called action lattice, is a subclass of action algebras. As depicted in Figure 4, it combines

Action Lattice
Klenne Algebra Residuated Lattice

Generic model for
 computations

Generic truth 
space

Figure 4: Action lattice as a combination of Kleene algebra and residuated lattice

Kleene algebras with residuated lattices into a single structure: as a Kleene algebra, it represents a model

for computations; as a residuated lattice, it satisfies the properties to provide a multi-valued truth space

to evaluate assertions about computations.

A distinct approach to marry programs and logics to reason about them aims at a cooperation between

KAT and PDL [DMS06]. Concretely, this research line introduces Kleene algebra with domain (KAD), an

extension of Kleene algebra by a map, called the domain operator, linking the worlds of programs and

tests. This structure acts in two directions: it allows to embed propositions into actions, as in KAT, and to

map programs to propositions, as in PDL. The domain operator behaves as the modal diamond operator of

dynamic logic. KAD provides an algebraic framework for reasoning about programs with this modality. For

example, the PDL formula ⟨𝜋⟩𝜌 is semantically equivalent to the expression 𝑑(𝜋𝜌) in KAD: if represented
relationally, both are the preimage of the states satisfying 𝜌 under program 𝜋. One particular application

of this structure is to prove the algebraic soundness and completeness of Hoare logic deductive system

[MS04].

All these mathematical formalisations are suitable to reason about classic systems typically modelled

by labelled transition systems (LTS), where assertions over programs are stated in Boolean logic. Over

time, the interpretation of a program evolved in unexpected ways, leading to the development of diverse

algebras and logics tailored to more complex programming paradigms, such as illustrated in Section 1.3.

Such structures include, naturally, an entire family of dynamic logics (e.g. [FH84, Koz85, BS06, Pla10,
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MNM16, Sed20]), and extensions and generalisations to Kleene algebra (e.g. [MCM06, QWWG08, QWG08,

AFKW14, AFG+14, FKM+16]).

Possibly the most common ingredient of such complexity arises in the form of uncertainty, interpreted

in most scenarios as a probability. Probabilistic programs extend classic imperative programs with ran-

domization, i.e. assignment of a random value to a variable according to a probability distribution. This

notion can be introduced in two ways: as an assignment 𝑥 ∶= ?, and as a probabilistic choice 𝜋1 +𝛼 𝜋2
between programs 𝜋1 and 𝜋2. The former assigns to 𝑥 a set of values with a uniform probability distribu-

tion. The latter is interpreted as a probability distribution over sets of possible terminating states. In other

words 𝜋1 is obtained with probability 𝛼 and 𝜋2 with probability 1 − 𝛼. An example of such a program is

(𝑥 ∶= Heads) +𝛼 (𝑥 ∶= Tails) (1)

representing a (possibly biased) coin toss. Each run of this program can be intuitively interpreted as a

“yes-no” question, which can be modelled by a Bernoulli distribution of a random variable. The answer

to this question (the output of the program) is a single terminating state obtained from a probabilistic

distribution, assuming the value Heads with probability 𝛼 and Tails with probability 1−𝛼. In this scenario,
even with the output of a program being a probability distribution, each run of the program entails either

𝑥 ∶= Heads or 𝑥 ∶= Tails. Sucessive runs of this program can be modelled by the binary tree of Figure

5 (see reference [MMS96] for examples and discussion).

tails

tails

⋮⋮

𝛼 1 − 𝛼

heads

⋮⋮

𝛼 1 − 𝛼

𝛼 1 − 𝛼

heads

tails

⋮⋮

𝛼 1 − 𝛼

heads

⋮⋮

𝛼 1 − 𝛼

𝛼 1 − 𝛼

𝛼 1 − 𝛼

Figure 5: Binary tree representing successive (possible biased) coin tosses.

Numerous mathematical abstractions of probabilistic programs have been studied over the last few

decades, namely program algebras [MCM06, QWWG08], semantics [Koz81, HSM97] and logics [Koz85,

dHdV02, QWG08]. Two equivalent semantics for an abstract probabilistic programming language were

given in reference [Koz81]. One interprets programs as partial measurable functions over measurable

spaces, while the other defines programs as linear operators on Banach spaces of measures. Shortly after,

the same author introduced a probabilistic version of PDL, probabilistic propositional dynamic logic (PPDL),

supported by the previously introduced semantics, to reason about probabilistic programs [Koz85]. The

notion of satisfiability is represented as the expected value of a given proposition 𝑓 in a state𝜇, calculated as
the integral∫ 𝑓 𝑑𝜇. Reference [FH84] adapts Kozen’s semantics of PPDL to formulas involving probabilistic
programs. In another context, the work of [MMS96] extends predicate transformers to reason about
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probabilistic programs with respect to pre and postconditions. We also put a remark on a notion that

slightly relaxes probabilistic choice [CW08], defined sub-probabilistic choice, i.e.

(𝛼)𝜋1 + (𝛽)𝜋2 (2)

where 𝛼+𝛽 ≤ 1. The expression (2) means that program 𝜋1 is executed with probability 𝛼 and program

𝜋2 with probability 𝛽, without imposing 𝛼 + 𝛽 = 1. Two distinct semantics are provided. One interprets
programs as sub-probability distributions, as functions J𝜋K ∶ 𝑊 → D(𝑊), where
D(𝑊) ∶= {𝛿 ∶ 𝑊 → [0, 1] ∣ ∑

𝑤∈𝑊
𝛿(𝑤) ≤ 1} is the set of sub-probability distributions 𝛿 over 𝑊. The

other interprets programs as bounded expectation transformers in terms of wp-semantics, i.e. functions

𝛼 ∶ 𝑊 → R+ bounded by a value 𝑀 ∈ R+ such that 𝛼(𝑤) ≤ 𝑀. Soundness and completeness

for total correctness is also proved for such class of programs, in terms of triples 𝛼{𝜋}𝛽. The validity of
such a triple is stated in terms of an expected value 𝑙 ∈ R+: if the precondition 𝛼 is satisfied in 𝑤 with

expected value 𝑙, then program 𝜋 terminates in 𝑤 and its output satisfies the postcondition 𝛽 with 𝑙 too.
Thus the meaning of a weakest precondition𝑤𝑝(𝑃, 𝛽) is the weakest probabilistic predicate 𝛼 that makes

the triple 𝛼{𝜋}𝛽 valid.

A Hoare-like logic was also proposed to account for partial correctness of probabilistic programs with

a first-order syntax [dHdV02, RZ15]. These references use probabilistic predicates over random variables.

An example of the probabilistic predicate is 𝑃(𝑥 = 1) = 1
2 states that 𝑥 = 1 with probability 1

2 . It is

relevant to note, nevertheless, that only one course of execution is taken. A propositional abstraction of a

probabilistic program is given in reference [QWWG08], with the introduction of probabilistic Kleene algebra

with tests (PKAT), an extension of KAT with an operator for probabilistic choice. The structure captures

precisely programs like (1). An operational semantics and a probabilistic bisimulation equivalence relation

for PKAT are also given in the paper. Although the notion of a probabilistic bisimulation was first mentioned

in [BM89], the standard definition is the one used in [LS91]. It is defined as an equivalence relation on a

set of states 𝑊, stating that two states 𝑤1, 𝑤2 ∈ 𝑊 are bisimilar if and only if 𝑤1 relates with state 𝑤
through an action 𝑎 with a probability 𝛼 implies 𝑤2 relating with 𝑤 with the same probability 𝛼 and vice

versa, formally 𝑤1
a−→𝛼 𝑤 ⇔ 𝑤2

a−→𝛼 𝑤.
A survey on distinct notions of probabilistic bisimulation for variants of probabilistic transition systems

can be found in [SdV04]. The authors of [QWWG08] discuss, in another paper, an encoding of a while-free

fragment of Hoare logic in PKAT [QWG08].

A next, although not much obvious, step was to develop rigorous mathematical structures and logics

to reason about programs containing both nondeterministic and probabilistic choices. The first type of

nondeterminism may have two variants: angelic and demonic. The former happens when the choice is

made by an ‘angel’, which corresponds to the best possible situation from a set of available scenarios.

The latter corresponds to a choice made by a ‘demon’, occurring when the outcome is the worst possible

scenario. Since the decision is made by an external agent, e.g. a computer during a program run, we

never know which option will be chosen. Moreover, each initial state may have more than one terminating
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state. To illustrate, below we present an example containing demonic nondeterministic and probabilistic

choices [MM01a].

Consider the flip of a coin with the state space 𝑠 ∶ {𝐻𝑒𝑎𝑑𝑠, 𝑇𝑎𝑖𝑙𝑠}. The program

𝑠 ∶= 𝐻𝑒𝑎𝑑𝑠 ⊓ [𝑠 ∶= 𝐻𝑒𝑎𝑑𝑠 +2
3
𝑠 ∶= 𝑇𝑎𝑖𝑙𝑠] (3)

where ⊓ represents a demonic nondeterministic choice and +2
3
acts as the probabilistic choice referred

in (1), assigns a probability of at least 2
3 to 𝑠 ∶= 𝐻𝑒𝑎𝑑𝑠. Since the choice ⊓ is demonic, we can only be

sure that 𝐻𝑒𝑎𝑑𝑠 is chosen 2
3 of the time.

The research line on programs containing both nondeterministic and probabilistic choices is pursued

by references [MM01a, MM01b]. The first shows that nondetermistic, probabilistic, angelic and demonic

choices can coexist in a system, and presents a predicate transformer semantics for programs describing

those systems. The latter introduces axiomatic and operational frameworks for partial and total correctness

of nondeterministic probabilistic programs.

References [MNMB15, MNM16] follow, however, another direction, by adopting a more generic inter-

pretation for weight. The scope goes beyond the notion of weight as a probability: it can be a claim about

the vagueness of an execution, resources consumed or even execution time. Abstractly, such space of

weights is given by an action lattice, that acts on two dimensions: it is both a Kleene algebra to model

computations and a residuated lattice to provide a (multi-valued) truth space to evaluate assertions over

those computations. With a semantics established over this structure, the paper proposes a parametric,

systematic method of generating multi-valued dynamic logics. This exercise is inspired by [Fit91, Fit92a],

which investigates many-valued modal logics that allow both formulas and accessibility relations between

worlds to be many-valued. Another approach on this direction is reported in [Sed20], in which both the

semantics of transitions and the truth space of propositions are values in a mathematical structure, in this

case a FL-algebra.

Following previous research on KAD, some generalisations emerged also to capture weighted computa-

tions. Reference [DS11] proposes a new axiomatisation for domain and codomain operators, leading to a

relaxation of KAD, of which Heyting algebras are special cases. Later, reference [DM14] explores a weaker

version of this structure, by investigating variations of domain and codomain operators to provide applica-

tions to fuzzy relations and matrices. The approach considers an idempotent left semiring (IL-semiring)

as the base algebraic structure, i.e. a weaker idempotent semiring in which left distributivity of multiplica-

tion over addition and right aniquilation of zero are not axioms. The structure was introduced in [Mö07]

with the motivation to reason about finite and infinite streams, by allowing infinite computations which are

left annihilators of sequential composition. This aims to study, for example, operational semantics of the

guarded command language [Luk93, Luk94] or computation calculus [Dij98, Dij00].

The growing complexity of programs was also accompanied by the introduction of concurrency in their

executions, a component ubiquitous to many current systems. Therefore the verification and analysis of

concurrent programs started to be tuned to such computational paradigm, leading to the introduction of

new concepts, or to the adaptation of existing ones.
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While originally introduced as an alternative to predicate transformer semantics, the concept of binary

multirelation [Rew03] was established as a formalisation of parallelism. Formally, it is a subset of 𝐴 ×
𝑃(𝐴), for a set 𝐴, representing intuitively a parallel execution from a state in 𝐴 to a set of states over

𝐴. Multirelations appear also in the formalisation of languages with commands having both angelic and
demonic types of nondeterminism [MCR07].

Another use for multirelations goes back to the semantics of Peleg’s concurrent propositional dynamic

logic (CPDL) [Pel87], to interpret a program as a relation between an initial state and a set of terminating

states. In such a setting the interpretations of sequential composition and the modalities of the logic are

distinct from the corresponding cases in classic PDL, since they operate over a set of states instead of a

single state. The sequential composition of two multirelations𝑅, 𝑆 ⊆ 𝐴×𝑃(𝐴), for a set𝐴, is introduced
as

𝑅 ∘ 𝑆 = {(𝑤,𝑈) ∣ ∃𝑉⋅(𝑤,𝑉) ∈ 𝑅 ∧ ∃𝐹∶𝑉→𝐴⋅(∀𝑣∈𝑉⋅(𝑣, 𝐹(𝑣)) ∈ 𝑆) ∧ 𝑈 = ⋃𝐹(𝑉)}

and the diamond operator ⟨⟩ of dynamic logic is defined as

𝑤 ⊧ ⟨𝜋⟩𝜌 = {𝑤 ∣ ∃𝑈⋅(𝑤,𝑈) ∧ ∀𝑢∈𝑈 𝑢 ⊧ 𝜌}

A pair (𝑤,𝑈) is in 𝑅 ∘ 𝑆 if 𝑤 is related by 𝑅 with some intermediate set 𝑉 and each element

in 𝑉 is related by 𝑆 to a set 𝐹(𝑉) such that 𝑈 = ⋃𝐹(𝑉). Additionally, the formula ⟨𝜋⟩𝜌 holds

in state 𝑤 if there is some state 𝑈 related to 𝑤 and every element in 𝑈 satisfies 𝜌. Beyond Peleg’s

definition of sequential composition of binary multirelations, there are two other variants of the operator,

whose introduction is motivated by other contexts: the Kleisli composition and the Parikh composition.

References [FS16, FKST17] provide a detailed study of their main properties. The research about KAD

also gave rise to an extension of such structure with a parallel operator [FS15], where programs are, as in

CPDL, modeled as binary multirelations.

Among the numerous variants of KAT, concurrent Kleene algebra (CKA) [HMSW11] and its extention

concurrent Kleene algebra with tests (CKAT) [JM16] were introduced with the specific motivation of formal-

ising concurrency. Following the solidity of KAT in reasoning about programs, these structures present a

finite axiomatisation to reason about concurrent programs. They present two composition operators, rep-

resenting, in program semantics, sequential and parallel compositions, linked by the weak exchange law

(𝑎 ∗ 𝑏); (𝑐 ∗ 𝑑) ≤ (𝑎; 𝑐) ∗ (𝑏; 𝑑). The semantics of CKA is given in terms of a trace model of programs.
CKAT is based on a combination of two classes of automata: one is nondeterministic guarded automata,

to model tests, and the other is branching automata, to model concurrency. Such an interpretation allows

to process guarded series-parallel strings, a language model for parallel runs of a program.

An extension to CKA, combining probability with parallelism, is documented in [MRS13], named proba-

bilistic concurrent Kleene algebra. The uncertainty is presented in the form of a probability, and handled

through the subdistirbutivity law of probabilistic Kleene algebra [MM05], i.e. 𝑝; 𝑞 + 𝑝; 𝑟 ≤ 𝑝; (𝑞 + 𝑟)
and the explicit probabilistic choice operator +𝛼. The parallelism is handled by the parallel composition
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operator and weakening of concurrent Kleene algebra, i.e. 𝑝||𝑞+𝑝||𝑟 ≤ 𝑝||(𝑞+ 𝑟). It is then proved that
the set of axioms presented for such an algebra is sound with respect to a probabilistic automata model.

A relational model for probabilistic programs was introduced in [Tsu12], based on the concept of prob-

abilistic multirelation. The paper takes, however, a more generic algebra to evaluate truth degrees, and

agnostic with respect to some properties, such as convexity.

Summing up

The algebras and logics that we just finished describing are organised in Table 1, together with their main

syntactic and semantic features. The aim of this representation is to help to distinguish, at a high level, the

more classic algebras and logics from the more unconventional ones. Each row represents an entry for one

Prop Eq Rel MRel B W
Hoare Logic (HL) [Hoa69] X X X
Propositional HL (PHL) [Koz00] X X X
Predicate transformer (wlp) [Dij76] X X X X
Propositional Dynamic Logic (PDL) [FL77] X X X
First-order DL [HKT00] X X X
Kleene Algera with Tests (KAT) [Koz97] X X X
Kleene Algebra with Domain (KAD) [DMS06] X X X

Probabilistic HL [dHdV02] X X X
Probabilistic wlp [MMS96] X X X
Probabilistic PDL [Koz85] X X X
Probabilistic KAT [QWWG08] X X X
“Weighted” PDL (𝒢𝒟ℒ(A)) [MNM16] X X X
“Weighted” KAD [DS11] X X X

Algebra of binary multirelations [Rew03] X X X
Concurrent PDL (CPDL) [Pel87] X X X
Concurrent KAT (CKAT) [JM16] X X X
Concurrent Dynamic Algebra [FS15] X X X

Probabilistic CKA [MRS13] X X X
Algebra of probabilistic multirelations [Tsu12]

Table 1: Taxonomy of related work of this thesis

algebraic structure or logic well established in the literature. The different features that are discussed in this

thesis are organised in pairs of columns, each pair illustrating a specific dichotomy which distinguishes

the respective algebra or logic in each row. The first pair differentiates between the propositional and

equational variants of a given algebra or logic.The second dichotomy divides the semantics into binary

relations and binary multirelations. Third, the table helps to distinguish which semantic domain, Boolean

or weighted, is captured by each framework. We organise also the different frameworks in different groups,

according to their semantic features, in the following order: Boolean “single-flow”, probabilistic/weighted
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“single-flow”, Boolean “multi-flow” and weighted “multi-flow”. Such a division is represented by the double

horizontal lines in the table.

1.5 C o n t r i b u t i o n s

As explained in Subsection 1.2, the main contribution of this thesis is the characterisation of proper math-

ematical structures which will provide the basis for defining relational semantics and generate dynamic

logics for the modelling, analysis and verification of imperative programs with weighted “single-flow” or

“multi-flow” computations.

We resort again to Figure 2 to organise the contributions of this thesis. The first column represents

classic binary relations and binary multirelations, and the second column lists their generalisations, for-

mally defined as: weighted relations, based on fuzzy relations introduced in [Zad65], which generalise

binary relations and will be used to interpret imperative programs as weighted “single-flow” computations;

weighted binary multirelations, which generalise binary multirelations, capture the weighted parallelism of

conditionals in languages such as FAS. Our thesis is that these two mathematical concepts give precise

interpretations of the programs illustrated, respectively, by examples 1.3.1 and 1.3.2.

Hence, these two structures will serve as the main ingredient for introducing semantic structures (al-

gebraic and relational) and logics, in order to offer a framework for rigorous modelling and analysis of

weighted “single-flow” and weighted “multi-flow” kinds of computations.

Part 1: weighted “single-flow” computation

Part 1 focusses on weighted “single-flow” computation. First, the algebra which acts as the computational

model is obtained by investigating possible generalisations of Kleene algebra with tests, by relaxing its

Boolean substructure. As a result, we obtain two structures to model computations living in multi-valued,

non-probabilistic, truth spaces. Considering instances of these structures as parameters, we develop a

formal semantics to model the behaviour of imperative programs as weighted “single-flow” computations,

and a family of dynamic logics for their verification. The main contributions are the following.

1. (Chapter 3) Graded Kleene algebra with tests (GKAT) (Definition 3.2.1) and idempotent Graded

Kleene algebra with tests (I-GKAT) (Definition 3.3.1) as generalisations of KAT, with several instanti-

ations where computations are interpreted in a graded scenario: weighted sets (WSET) (Definition

3.4.1), weighted relations (WREL) (Definition 3.4.2) and weighted languages (WLANG) (Definition

3.4.3). Moreover, an encoding of PHL for programs and assertions interpreted in this context in

both GKAT and I-GKAT. Results are stated in theorems 3.2.1 and 3.3.1. This chapter finalises with

an instantiations, which revisits a classic result on denesting two while loops (Theorem 3.5.1).

2. (Chapter 4) The semantics of this class of programs, which consists of an interpretation for program

variables, functional and predicate terms, and programs built over an equational signature. In
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particular, programs are interpreted as weighted binary relations (Definition 2.4.2), i.e. functions

which attribute a value in a complete action lattice A to each pair of relating states of a computation.

This models modelling different notions of weighted “single-flow” computations: vagueness degree

associated to the effectiveness of a particular computation, a measure of the resources consumed

in it, or even the associated cost or execution time.

3. (Chapter 5) A method for generating a family of weighted equational dynamic logics, that we call

Γ(A), with semantics presented in Chapter 4 and the satisfaction relation over a complete action

lattice A, in order to reason about imperative programs interpreted as “single-flow” computations.

The results were obtained in collaboration with the following people: Alexandre Madeira, Luís Soares

Barbosa, Mario Benevides and Manisha Jain, and are reported in the following publications:

• [GMB17] Gomes L., Madeira A., Barbosa L.S. On Kleene Algebras for Weighted Computation. In:

Cavalheiro S., Fiadeiro J. (eds) Formal Methods: Foundations and Applications. SBMF 2017. Lec-

ture Notes in Computer Science, vol 10623. Springer, Cham. (2017)

• [GMJB19] Gomes L., Madeira A., Jain M., Barbosa L.S. On the Generation of Equational Dynamic

Logics for Weighted Imperative Programs. In: Ait-Ameur Y., Qin S. (eds) Formal Methods and

Software Engineering. ICFEM 2019. Lecture Notes in Computer Science, vol 11852. Springer,

Cham. (2019)

• [GMB19] Gomes, L., Madeira, A., and Barbosa, L. S. Generalising KAT to verify weighted computa-

tions. Sci. Ann. Comp. Sci. 29(2): 141-184. (2019)

Part 2: weighted “multi-flow” computations

Part 2 is concerned about weighted “multi-flow” computations. The approach is to define, first, an

algebra to model programs of this class, leading to weighted binary multirelations. Next we define a

formal semantics and a family of logics to reason about imperative programs interpreted as weighted

“multi-flow” computations. The following list enumerates the main contributions.

1. (Chapter 6) An algebra to interpret programs, based on the concept of weighted binary multirelation

(Definition 6.2.1).

2. (Chapter 7) The semantics of this class of programs, over an equational signature, function and

program symbols, parametric on a complete right residuated lattice L. In particular, programs are

interpreted as weighted binary multirelations, to model a parallel execution leading from a state to

a set of states.

3. (Chapter 8) A method for generating a family of ∗-free dynamic logics, with semantics presented

in Chapter 7 and the satisfaction relation defined also on a complete right residuated lattice L. We

call such logics Ω(L).
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The results were obtained in collaboration with the following people: Alexandre Madeira and Luís Soares

Barbosa, and are reported in the following papers:

• [Gom20] Gomes, L. On the construction of multi-valued concurrent dynamic logics. 2𝑛𝑑 DaLi

Workshop - Dynamic Logic: New Trends and Applications - Coallocated with 3𝑟𝑑 World Congress on
Formal Methods 2019. Lecture Notes in Computer Science, Springer. (2019)

• Gomes, L., Madeira, A., Barbosa, L.S. (2021) A semantics and a logic for Fuzzy Arden Syntax. Soft

Computing. 25. 6789-6805. (2021)

One important feature which pervades the whole thesis is the parametric nature of the approach. Both

semantics and logics (built over such semantics) are parametric on an algebraic structure able to model

both computations and truth spaces in a weighted context. Such a structure is a complete action lattice

in Section 3.5 and chapters 4 and 5. The instances presented for GKAT and I-GKAT, in Chapter 3, and

in chapters 6, 7 and 8 rely on a complete right residuated lattice, a reduct of a complete action lattice

without the operator ∗. We require completeness for both structures to guarantee the existence of arbitrary

supremma, which will be relevant to prove the most important results of this thesis.

Differences from the literature

Weighted “single-flow” computations

The notion of weighted “single-flow” computation goes beyond the scope of probabilistic programs like (1).

In this thesis, both semantic structures of weighted “single-flow” computations differs from the probabilistic

scenario in the following sense:

• Our approach is not first and foremost syntactic, but rather mainly semantic, in the sense that

we do not add new operators to algebraic structures or logics already established in the literature.

We focus instead on providing weighted semantics to programs and predicates which live in those

algebras and logics. Such approach is visible in Chapter 3, where the algebra used to formalise

predicates is relaxed to capture a variety of weighted computations. Also in Chapter 4, although

the syntax is the same as for classic imperative programs, the semantics of the language interprets

assignments as weighted “single-flow” actions and predicates as weighted assertions, which define

how much of a computation actually flows.

• We do not require, as it naturally occurs in a probabilistic event, that a single ouptut is always

obtained in eah run of a program (in case of termination). In other words, the weights of all com-

putations leaving a certain state do not necessarily sum to 1, i.e. we do not assure that an output
is obtained in each run of a program.

Another relevant comparison relates to the research line that started with reference [DMS06], which

presents a powerful framework to include programs and tests in the same formalisation, the KAD. Like
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GKAT and I-GKAT introduced in Chapter 3, the authors also include relaxed versions of KAD, a structure

based on Kleene algebra, to capture some notion of weight [DS11] and fuzziness [DM14]. The main

features which distinguish both aproaches are detailed below:

• The main difference between the structures of [DS08] and our approach lies on the construction of

the structure itself: while ours is purely propositional and based on KAT, the one of [DS08] makes

use of a unary operator, called the domain operator, to axiomatise the test algebra, resulting in a

one sorted structure.

• Reference [DM14] goes even further by investigating a generalisation of these domain algebras to

support fuzzy relations, taken as functions from pairs of elements to the interval [0, 1]. Differently
from our approach, the authors study an axiomatisation of domain and codomain operators in the

setting of IL-semirings. However, as shown in Chapter 3, we adopt a presentation similar to KAT

when relaxing its Boolean subalgebra to obtain GKAT and I-GKAT. That results, for the purpose of

this work, in a more direct comparison between the two obtained structures, either axiomatically

and in terms of achieved results.

Weighted “multi-flow” computations

The mathematical formalisations that we propose in this thesis for weighted “multi-flow” computations also

feature some clear differences with respect to other similar computational paradigms [MNM16, MRS13],

as explained below:

Figure 6: Conditional in a fuzzy programming language, illustrated by a liquid flowing through a ‘Y-shaped’ pipe.

• Probabilistic: we may distinguish our approach from the probabilistic paradigm, depicted in Figure

5, by comparing it with Figure 6, an intuitive metaphor to weighted “multi-flow” computations. We

can observe that the liquid, represented by blue arrows, reaches a point where it flows through both

channels in parallel (“multi-flow”), with different quantities of liquid going through each channel,

represented by different thicknesses of arrows (weights). The behaviour of the probabilistic scenario

is associated with a choice from a set of possible output states in a probability distribution. As a

consequence, in each run of a probabilistic program we may obtain a different output (e.g. coin

toss of Figure 5). In this sense, we may think of a probabilistic program as a set of relations between
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states ({(𝑎, 𝑏)𝛼, (𝑎, 𝑐)1−𝛼}), where 𝛼 and 1 − 𝛼 are the probabilities of reaching, from state 𝑎,
states 𝑏 and 𝑐, respectively. In another direction, a weighted “multi-flow” computation adopts the
behaviour metaphorically illustrated in Figure 6, where multiple instructions are executed in parallel

with some weight associated. In this paradigm, from a single state 𝑎, the output of each run of a

program is a single weighted set of output states 𝑏 and 𝑐, with weights 𝛼 and 𝛽, formally the pair
({(𝑎, {𝑏𝛼, 𝑐𝛽})}). The execution of a weighted “multi-flow” computation is deterministic in this

sense.

• Weighted nondeterminism: we compare our approach with reference

[MNM16], which proposes a method to generate formal semantics and logics for weighted pro-

grams. In such paper, despite the weighted nature of both programs and predicates, if-then-else

statements are encoded by the + operator of Kleene algebra, which is interpreted as nondetermin-

istic choice. Moreover, the semantics of those programs is given by an algebra of square matrices,

which relates to the semantics of programs introduced in Part 1.

• Weighted parallelism: our approach can also be compared with reference

[MRS13], which incorporates a weight into the execution of programs running in parallel. How-

ever, the weight is introduced in the nondeterministic choice, and does not capture the parallelism

inherent to weighted “multi-flow” computations.

In sum, the main differences to these paradigms reside in the conflict nondeterministic choice/parallelism,

in the following way: the “flow” of the kind of computations introduced in Part 2 does not live neither

in a nondeterministic, nor in a probabilistic choice, arising instead in the very interpretation of a program

as a weighted binary multirelation. Our thesis is that this interpretation formalises the weighted parallel

behaviour illustrated in Section 1.3. Chapter 8 provides themathematical framework, i.e. formal semantics

which formalises programs with such behaviour, and Chapter 8 delineates a family of dynamic logics for

their verification.

A comparison between our approach and variants of the concept of binary multireltion is in order. Although

this thesis defines weighted binary multirelations as 2𝑊×L𝑊 to model weighted “multi-flow” computations,

alternative formalisations with distinct meanings could be adopted, as detailed below:

• One example is to define binary multirelation as L𝑊×2𝑊
, which adds weights to the transitions

between a state and a set of states, as depicted in Figure 7. That corresponds to assigning an

“external” weight to the transition itself (e.g. a failure in the run of a program).

• Another variant, L𝑊×L𝑊 , depicted in Figure 8, not only considers this “external” weight, but incor-

porates as well the “internal” weight of the definition adopted in this thesis.

We finalise this subsection with Table 2, containing the frameworks introduced in this thesis marked

with blue-coloured 𝑋 marks.
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𝑤0

𝑤1

𝑤𝑛

𝑤2𝑎

…

Figure 7: Illustration of L𝑊×2𝑊

𝑤0

𝑤1

𝑎1

𝑤𝑛

𝑎𝑛

𝑤2

𝑎2

𝑎
…

Figure 8: Illustration of L𝑊×L𝑊

A note on syntax and notation

Programs in the two classes discussed in this thesis are described by two imperative programming lan-

guages: ℱ1 for programs interpreted as weighted “single-flow” computations and ℱ2 for programs in-

terpreted as weighted “multi-flow” computations. The syntax of ℱ1-programs is given by the following

grammar:

𝑡 ∶∶= c ∣ 𝑥 ∣ f(𝑡1,… , 𝑡𝑛) functional terms

𝑝 ∶∶= p(𝑡1,… , 𝑡𝑛) predicate terms

𝜋0 ∶∶= skip ∣ 𝑥 ∶= 𝑡 atomic programs

𝜋 ∶∶= 𝜋0 ∣ 𝜋; 𝜋 ∣ if 𝑝 then 𝜋 else 𝜋 compound programs

while 𝑝 do 𝜋

Table 3: Syntax of ℱ1

On the other hand the syntax of ℱ2-programs is given by:
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Prop Eq Rel MRel B W
Hoare Logic (HL) [Hoa69] X X X
Propositional HL (PHL) [Koz00] X X X
Predicate transformer (wlp) [Dij76] X X X X
Propositional Dynamic Logic (PDL) [FL77] X X X
First-order DL [HKT00] X X X
Kleene Algebra with Tests (KAT) [Koz97] X X X
Kleene Algebra with Domain (KAD) [DMS06] X X X

Probabilistic HL [dHdV02] X X X
Probabilistic wlp [MMS96] X X X
Probabilistic PDL [Koz85] X X X
Probabilistic KAT [QWWG08] X X X
Weighted PDL (𝒢𝒟ℒ(A)) [MNM16] X X X
GKAT /I-GKAT [GMB19] X X X
Weighted PHL [GMB17] X X X
Weighted Equational Dynamic Logic (Γ(A)) [GMJB19] X X X
“Weighted” KAD [DS11] X X X

Algebra of binary multirelations [Rew03] X X X
Concurrent PDL (CPDL) [Pel87] X X X
Concurrent KAT (CKAT) [JM16] X X X
Concurrent Dynamic Algebra [FS15] X X X

Probabilistic CKA [MRS13] X X X
Algebra of probabilistic multirelations [Tsu12] X X X
Algebra of weighted binary multirelations X X X
Weighted CPDL [Gom20] X X X
Weighted “multi-flow” dynamic logic (Ω(L)) X X X

Table 2: Taxonomy of related work and the frameworks introduced in this thesis

𝑡 ∶∶= c ∣ 𝑥 ∣ f(𝑡1,… , 𝑡𝑛) functional terms

𝑝 ∶∶= p(𝑡1,… , 𝑡𝑛) predicate terms

𝜋0 ∶∶= skip ∣ 𝑥 ∶= 𝑡 atomic programs

𝜋 ∶∶= 𝜋0 ∣ 𝜋; 𝜋 ∣ if 𝑝 then 𝜋1 else 𝜋2 compound programs

if 𝑝 then 𝜋1 else 𝜋2 aggregate ∣

if 𝑝 then 𝜋1 else 𝜋2 aggregate defuzzify

Table 4: Syntax of ℱ2

where

• 𝑥 ∈ 𝑋 are variables;
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• f ∈ 𝐹 are function symbols. (𝐹𝑛)𝑛∈N0
⊆ 𝐹 denotes sets of function symbols with arity 𝑛.

Symbols 𝑐 ∈ 𝐹0 are called constants. Function symbols are interpreted in 𝐹 as

𝑓 (𝑡1,… , 𝑡𝑛) ∶ R ×⋯ × R → R (e.g. +, √);

• p ∈ 𝑃 are predicate symbols. (𝑃𝑛)𝑛∈N0
⊆ 𝑃 denotes sets of predicate symbols with arity 𝑛.

Predicate symbols are interpreted in 𝑃 as 𝑝(𝑡1,… , 𝑡𝑛) ∶ R𝑛 → 2 (e.g. =, ≥).

Additionally, notation 𝑇(𝑋) stands for the set of terms with variables in 𝑋, and 𝑇𝐹(𝑋) (respectively,

𝑇𝑃(𝑋)) represents its restriction to functional (respectively, predicate) terms. We denote by Prog0 the set
of all atomic programs over 𝑋, i.e. the set of all assignments of terms in 𝑇𝐹(𝑋) to variables in 𝑋

Prog0 = {𝑥 ∶= 𝑡 ∣ 𝑥 ∈ 𝑋 and 𝑡 ∈ 𝑇𝐹(𝑋)}

Moreover, the set of (compound) programs generated with the grammars described above is named Prog.

The grammars defined above mean that a programming assignment of values from a data space to a

variable is taken as the elementary construction, with terms being defined over a signature of program

variables, predicate and function symbols. Although the syntax of ℱ1 and ℱ2 are similar to the one

typical of classic imperative programming languages, their semantics, as we have seen in Subsection

1.2, is given in terms of “weighted” computations, and thus both terms, predicates and programs are

interpreted accordingly.

Finally, the text adopts the following notation:

• Logic formulas will be denoted as 𝜌𝑖, 𝑖 ∈ N.

• Programs will be denoted as 𝜋𝑖, 𝑖 ∈ N.

• Weighted sets will often be denoted as 𝜑, 𝜓.

• Weighted relations will often be denoted as 𝜇, 𝜈, 𝜉 .

• Weighted languages will often be denoted as 𝜆𝑖, 𝑖 ∈ N.

• Both a lattice itself and its support set will be denoted by the same letter interchangeably, as A, L.

• Program states will often be denoted as 𝑤𝑖, 𝑖 ∈ N.

• Both the expressions in the logic and the least (greatest) element of the lattice will be denotated as

⊥ (⊤).

• The abbreviation iff stands, as usual, for if and only if.

22



2

B A C KG R O U N D

This chapter surveys some important concepts that will set forth both the algebraic and logic constructions

presented along the thesis. These includes the notions of Kleene algebra, action lattice, and variants of

dynamic logic. In order to give meaning to weighted computations, we present some instances of the

semantic structures and dynamic logics based on the theory of fuzzy sets and fuzzy relations [Zad65].

2.1 P r o p o s i t i o n a l d y n am i c l o g i c

We start by recalling PDL [HKT00], namely its syntax, semantics and satisfaction relation.

Syntax. The language of PDL is built over atomic programs and propositions. The set of all atomic

programs is denoted by Prog0 and the set of atomic propositions by Prop.

The set of all compound programs, denoted by Prog, and the set of all PDL formulas, denoted by 𝑃,
are built inductively from the atomic ones, by the grammars

𝜋 ∶∶= 𝜋0 | 𝜋; 𝜋 | 𝜋 ∪ 𝜋 | 𝜋∗ | 𝜌?

for 𝜋0 ∈ Prog0 and 𝜌 ∈ 𝑃, and
𝜌 ∶∶= ⊥| 𝑝 | 𝜌 → 𝜌 | [𝜋]𝜌

for 𝑝 ∈ Prop and 𝜋 ∈ Prog, respectively.

Compound programs and propositions have the following intuitive meanings:

[𝜋]𝜌 “Necessarily after the execution of 𝜋, 𝜌 is true.”

𝜋1; 𝜋2 “Execute 𝜋1, then execute 𝜋2.”

𝜋1 ∪ 𝜋2 “Choose 𝜋1 or 𝜋2 nondeterministically.”

𝜋∗ “Execute 𝜋 a nondeterministically finite number of times.”

𝜌? “Test 𝜌; proceed if true, fail otherwise”.

Other conventional operators for formulas can be formed from the ones presented above, as in classic

propositional logic: ∧, ∨, ¬ and ⊤. The modal operator ⟨ ⟩ is the dual of [ ], and is defined as
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⟨𝜋⟩𝜌 = ¬[𝜋]¬𝜌. Its intuitive meaning is “There is a computation of 𝜋 that terminates in a state

satisfying 𝜌”.
The expressiveness of PDL allows to abstract the following programming constructs:

skip def= ⊤?
fail def= ⊥?

if 𝜌 then 𝜋1 else 𝜋2
def= 𝜌?; 𝜋1 ∪¬𝜌?; 𝜋2

while 𝜌 do 𝜋 def= (𝜌?; 𝜋)∗; ¬𝜌?
{𝜌1}𝜋{𝜌2}

def= 𝜌1 → [𝜋]𝜌2

The programs skip and fail are, respectively, the program that does nothing and the one that fails. The

if-then-else and while-do operators are the usual conditional and while loop constructs found in con-

ventional programming languages. Finally PDL allows to encode the Hoare partial correctness assertion

{𝜌1}𝜋{𝜌2}.

Semantics.

The semantics of PDL is obtained from modal logic. Programs and propositions are interpreted over a

Kripke frame K = (𝐾,𝑚K), where 𝐾 is a set of states and 𝑚K is a function assigning a subset of 𝐾 to

each atomic proposition in 𝑃0 and a binary relation to each atomic program in Prog0, as follows

𝑚K(𝜋0) ⊆ 𝐾 × 𝐾, for 𝜋0 ∈ Prog0

𝑚K(𝑝) ⊆ 𝐾, for 𝑝 ∈ Prop

The function 𝑚K can be inductively extended to give meaning to all elements of 𝑃 and Prog.

𝑚K(𝜋) ⊆ 𝐾 × 𝐾, for 𝜋 ∈ Prog

𝑚K(𝜌) ⊆ 𝐾, for 𝜌 ∈ 𝑃

Intuitively, the set𝑚K(𝜌) is the set of states satisfying 𝜌 and𝑚K(𝜋) represents the semantics of program
𝜋 as a relation between states.

The meanings of compound programs and propositions can be defined, as well, by mutual induction on

the structure of 𝜌 and 𝜋. Let operator ∘ be the relational composition, operator ∗ the reflexive transitive

closure on binary relations, Δ𝑚K(𝜌)
the coreflexive correspondent to the set 𝑚K(𝜌) and P(Π1) the

extension of the projection Π1 to a set.
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𝑚K(⊥) def= ∅
𝑚K(𝜌1 → 𝜌2)

def= (𝐾\𝑚K(𝜌1)) ∪ 𝑚K(𝜌2)
𝑚K([𝜋]𝜌) def= P(Π1)(Δ𝑚K(𝜌)

∘ 𝑚K(𝜋))

= {𝑤1 ∣ ∀𝑤2∈𝐾 if (𝑤1, 𝑤2) ∈ 𝑚K(𝜋) then 𝑤2 ∈ 𝑚K(𝜌)}
𝑚K(𝜋1; 𝜋2)

def= 𝑚K(𝜋2) ∘ 𝑚K(𝜋1)
= {(𝑤1, 𝑤2) ∣ ∃𝑤′∈𝐾 ⋅ (𝑤1, 𝑤′) ∈ 𝑚K(𝜋1) and (𝑤′, 𝑤2) ∈ 𝑚K(𝜋2)}

𝑚K(𝜋1 ∪ 𝜋2)
def= 𝑚K(𝜋1) ∪ 𝑚K(𝜋2)

𝑚K(𝜋∗) def= 𝑚K(𝜋)∗ = ⋃
𝑛≥0

𝑚K(𝜋)𝑛

𝑚K(𝜌?)
def= {(𝑢, 𝑢) ∣ 𝑢 ∈ 𝑚K(𝜌)}

Satisfaction. The satisfaction relation is defined as

𝑤 ⊭ ⊥
𝑤 ⊨ 𝑝 def⇔ 𝑤 ∈ 𝑚K(𝑝)

𝑤 ⊨ 𝜌1 → 𝜌2
def⇔ 𝑤 ⊨ 𝜌1 implies 𝑤 ⊨ 𝜌2

𝑤 ⊨ [𝜋]𝜌 def⇔ ∀𝑤′ if (𝑤,𝑤′) ∈ 𝑚K(𝜋) then 𝑤′ ⊨ 𝜌

and the operators defined for programs and propositions have the following meaning

𝑚K(𝜌1 ∧ 𝜌2)
def= 𝑚K(𝜌1) ∩ 𝑚K(𝜌2)

𝑚K(𝜌1 ∨ 𝜌2)
def= 𝑚K(𝜌1) ∪ 𝑚K(𝜌2)

𝑚K(¬𝜌) def= 𝐾\𝑚K(𝜌)
𝑚K(⊤) def= 𝐾

𝑚K(⟨𝜋⟩𝜌) def= Δ𝑚K(𝜌)
∘ 𝑚K(𝜋)

= {𝑤 ∣ ∃𝑤′∈𝐾⋅(𝑤,𝑤′) ∈ 𝑚K(𝜋) and 𝑤′ ∈ 𝑚K(𝜌)}

The following example, from [HKT00], provides a simple illustration of a Kripke frame, and discusses

the validity of some PDL formulas in the model.

Example 2.1.1. Let 𝑝 be an atomic proposition, 𝜋 an atomic program and K = (𝐾,𝑚K) a Kripke

frame where

𝐾 = {𝑤1, 𝑤2, 𝑤3}
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𝑚𝑘(𝑝) = {𝑤1, 𝑤2}

𝑚𝑘(𝜋) = {(𝑤1, 𝑤2), (𝑤1, 𝑤3), (𝑤2, 𝑤3), (𝑤3, 𝑤2)}.

as illustrated below

GFED@ABC𝑤3

!!C
CC

CC
CC

CC

GFED@ABC𝑤1 𝜋
//

𝜋
==||||||||| GFED@ABC𝑤2

𝜋
aaCCCCCCCCC

In this model, for instance, 𝑤1 ⊨ ⟨𝜋⟩¬𝑝 ∧ ⟨𝜋⟩𝑝, 𝑤2 ⊨ [𝜋]¬𝑝 and 𝑤3 ⊨ [𝜋]𝑝.

Note that PDL programs are built using the primitive operators ; , ∪ and ∗, which are inherited from

regular expressions. Thus, those programs can be viewed as regular expressions over atomic programs

and tests. In fact, such connection makes Kleene algebra the de facto mathematical structure to abstract

PDL programs, paving the way to become the standard computational model for many current frameworks

for reasoning about programs. Along this thesis, we resort most of the times to Kleene algebra and variants

as an algebra for the kind of computation discussed. Next section recalls them.

2.2 K l e e n e a l g e b r a a n d a c t i o n l a t t i c e

These structures will play a fundamental role in the frameworks introduced in the thesis. First, we present

Kleene algebra, established as the de facto algebra for abstract imperative programs. Next, the notion of

action lattice is introduced as a Kleene algebra enriched with the structure of a residuated lattice, which

offers a proper truth space for dynamic logic constructions.

Definition 2.2.1 (Kleene algebra). A Kleene algebra is a tuple

(𝐾,+, ; ,∗ , 0, 1)

where 𝐾 is a set, +, ; are binary operators, ∗ is a unary operator, and 0, 1 are constants, and a partial

order ≤ defined by 𝑎 ≤ 𝑏 if and only if 𝑎 + 𝑏 = 𝑏, verifying the following axioms:

𝑝 + (𝑞 + 𝑟) = (𝑝 + 𝑞) + 𝑟 (4)

𝑝 + 𝑞 = 𝑞 + 𝑝 (5)

𝑝 + 𝑝 = 𝑝 (6)

𝑝 + 0 = 𝑝 (7)

𝑝; (𝑞; 𝑟) = (𝑝; 𝑞); 𝑟 (8)
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𝑝; 1 = 1; 𝑝 = 𝑝 (9)

𝑝; (𝑞 + 𝑟) = (𝑝; 𝑞) + (𝑝; 𝑟) (10)

(𝑝 + 𝑞); 𝑟 = (𝑝; 𝑟) + (𝑞; 𝑟) (11)

𝑝; 0 = 0; 𝑝 = 0 (12)

1 + 𝑝; 𝑝∗ = 𝑝∗ (13)

1 + 𝑝∗; 𝑝 = 𝑝∗ (14)

𝑞 + 𝑝; 𝑟 ≤ 𝑟 ⇒ 𝑝∗; 𝑞 ≤ 𝑟 (15)

𝑞 + 𝑟; 𝑝 ≤ 𝑟 ⇒ 𝑞; 𝑝∗ ≤ 𝑟 (16)

In program semantics, operator + is interpreted as nondeterministic choice, ; as sequential composition
and ∗ as iteration.

The definition and axiomatisation of an action lattice are now recalled below.

Definition 2.2.2 (Action lattice [Koz94b]). An action lattice is a tuple

(𝐴,+, ; ,∗ ,→, ⋅, 0, 1)

satisfying the axioms characterising a Kleene algebra, and additionally the following ones

𝑎; 𝑏 ≤ 𝑐 ⇔ 𝑏 ≤ 𝑎 → 𝑐 (17)

(𝑎 → 𝑎)∗ = 𝑎 → 𝑎 (18)

𝑎 ⋅ (𝑏 ⋅ 𝑐) = (𝑎 ⋅ 𝑏) ⋅ 𝑐 (19)

𝑎 ⋅ 𝑏 = 𝑏 ⋅ 𝑎 (20)

𝑎 ⋅ 𝑎 = 𝑎 (21)

𝑎 + (𝑎 ⋅ 𝑏) = 𝑎 (22)

𝑎 ⋅ (𝑎 + 𝑏) = 𝑎 (23)

Operators + and ⋅ represent the supremum and the infimum w.r.t. ≤, respectively. Note that + has a

double role, depending on the interpretation over a Kleene algebra or an action lattice. We say that an

action lattice A is complete when every subset of its carrier 𝐴 has both supremum and infimum with

respect to ≤. The greatest and least elements are denoted in the sequel by ⊤ and ⊥, respectively.

Consider a set 𝐼. We say that A is linear if it satisfies, for any set {𝑎𝑖 ∣ 𝑖 ∈ 𝐼}, the property

∑
𝑖∈𝐼

𝑎𝑖 = 𝑎𝑗, for some 𝑗 ∈ 𝐼 (24)

The following two lattices are examples of linear action lattices.
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Example 2.2.1. (2 - the Boolean lattice). The first example is the Boolean lattice

2 = ({⊤,⊥},∨,∧,∗ ,→,∧,⊥,⊤)

with the standard interpretation of Boolean connectives. Operator ∗ maps each element to ⊤, and →
corresponds to logical implication.

Example 2.2.2. (3 - the three-valued lattice). The second example is provided by the three-element

lattice, which introduces an explicit denotation 𝑢 for “unknown” (or “undefined”).

3 = ({⊤, 𝑢,⊥},∨,∧,∗ ,→,∧,⊥,⊤)

where

∨ ⊥ u ⊤
⊥ ⊥ 𝑢 ⊤
𝑢 𝑢 𝑢 ⊤
⊤ ⊤ ⊤ ⊤

∧ ⊥ 𝑢 ⊤
⊥ ⊥ ⊥ ⊥
𝑢 ⊥ 𝑢 𝑢
⊤ ⊥ 𝑢 ⊤

→ ⊥ u ⊤
⊥ ⊤ ⊤ ⊤
𝑢 ⊥ ⊤ ⊤
⊤ ⊥ 𝑢 ⊤

∗

⊥ ⊤
𝑢 ⊤
⊤ ⊤

An action lattice is called I-action lattice when the identity of operator ; coincides with the greatest

element of the residuated lattice, i.e. 1 = ⊤. It is called H-action lattice if operator ; coincides with the
infimum of the residuated lattice, i.e. for any 𝑎, 𝑏 ∈ 𝐴, 𝑎; 𝑏 = 𝑎 ⋅ 𝑏. For a complete action lattice A, since
operators +, ; and ⋅ are associative and have identity, they admit a 𝑛-ary iterated version, represented by
∑, ∏ and ⋀, respectively.

Beyond the lattices of examples 2.2.1 and 2.2.2, the following are examples of complete action lattices.

Example 2.2.3. (2𝑆 - powerset of 𝑆). For a fixed, finite set 𝑆, another instance of is

2𝑆 = (𝑃(𝑆),∪,∩,∗ ,→,∩, ∅, 𝑆)

where 𝑃(𝑆) denotes the powerset of 𝑆, ∪ and ∩ are set union and intersection, respectively, ∗ maps

each set 𝑋 ∈ 𝑃(𝑆) into 𝑆, and 𝑋 → 𝑌 = 𝑋𝐶 ∪ 𝑌, where 𝑋𝐶 = {𝑥 ∈ 𝑆 ∣ 𝑥 ∉ 𝑋}.

Example 2.2.4. (Łukasiewicz arithmetic lattice).

Ł = ([0, 1],max, ⊙,∗ ,→,min, 0, 1)

where 𝑥 → 𝑦 = min{1, 1 − 𝑥 + 𝑦}, 𝑥 ⊙ 𝑦 = max{0, 𝑥 + 𝑦 − 1} and ∗ maps each point of the interval

[0, 1] to 1, and ∗ maps each point of the interval [0, 1] to 1.
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Example 2.2.5. (The Floyd-Warshall algebra).

N+
⊥⊤ = ({⊥, 0, 1,… ,⊤},max, +,∗ ,⌣ , min, ⊥, 0)

where + extends addition on N by considering ⊥ as its absorbent element and 𝑎+⊤ = ⊤ = ⊤+𝑎 for

any 𝑎 ≠ ⊥. Operation max (respectively, min) is defined as the maximum (respectively, minimum) under

the order ⊥ < 0 < ⋯ < ⊤. Operation ⌣ is truncated subtraction

𝑎 ⌣ 𝑏 =

⎧{{{{
⎨{{{{⎩

⊤, if 𝑎 = ⊥ or 𝑏 = ⊤
𝑏 − 𝑎, if 𝑏 ≥ 𝑎 and 𝑎, 𝑏 ∈ N

0, if 𝑎 > 𝑏 and 𝑎, 𝑏 ∈ N

⊥ otherwise

and, for any natural 𝑖 > 0,

∗
⊥ 0
0 0
𝑖 ⊤
⊤ ⊤

.

Example 2.2.6. (P - the product algebra).

P = ([0, 1],max, ⋅,∗ ,→,min, 0, 1)

where ⋅ is the usual multiplication of real numbers,

𝑥 → 𝑦 =
⎧{
⎨{⎩

1, if 𝑥 ≤ 𝑦
𝑦/𝑥, if 𝑦 < 𝑥

/ is real division and ∗ maps each point of the interval [0, 1] to 1.

Example 2.2.7. (G - the Gödel algebra). Gödel algebras are the locally finite variety of Heyting algebras.

Formally,

G = ([0, 1],max,min,∗ ,→,min, 0, 1)

where

𝑥 → 𝑦 =
⎧{
⎨{⎩

1, if 𝑥 ≤ 𝑦
𝑦, if 𝑦 < 𝑥

Example 2.2.8. (REL(𝑋) - relational algebra over a set𝑋). Let us consider the action lattice defined by

relations over a set𝑋. The corresponding Kleene algebra turns to be quite paradigmatic, since it underlies
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most standard semantics for sequential programs based on input/output relations. Then, given a set 𝑋,

we have

REL(𝑋) = (𝒫(𝑋2), ∪, ∘,∗ , �, ∩, ∅, Δ)

where ∪ and ∩ stand for set union and intersection, respectively, ∅ represents the empty relation and

Δ the diagonal relation {(𝑥, 𝑥)|𝑥 ∈ 𝑋}. Operation ∗ is Kleene closure, recursively defined, for each

𝑅 ∈ 𝒫(𝑋2), by 𝑅∗ = ⋃𝑛≤𝜔 𝑅𝑛, where 𝑅0 = Δ and 𝑅𝑛+1 = 𝑅𝑛 ∘ 𝑅. Finally the residuum is given

by 𝑄 � 𝑅 = {(𝑥, 𝑦)| for every 𝑧 if (𝑦, 𝑧) ∈ 𝑄 then (𝑥, 𝑧) ∈ 𝑅}.

Example 2.2.9. (LAN(Σ)- languages over an alphabet Σ). Let us consider the action lattice defined by

the finite languages on a finite alphabet Σ. Then, for a given finite alphabet Σ, we define the action lattice

of languages over Σ as

LAN(Σ) = (𝒫(Σ∗), ∪, ⋅,∗ ,→,∩, ∅, {𝜖})

where ∪ and ∩ stand for set union and intersection, ∅ represents the empty language, 𝜖 is the empty

word, the operation ∗ is the Kleene star defined by 𝐿∗ = ⋃𝑛≥0 𝐿𝑛 = {𝑤1 ⋅⋯⋅𝑤𝑛 ∣ 𝑤𝑖 ∈ 𝐿, 1 ≤ 𝑖 ≤ 𝑛}
and 𝐿0 = {𝜖} and 𝐿𝑛+1 = 𝐿 ⋅ 𝐿𝑛. The composition ⋅ is defined by 𝐿1 ⋅ 𝐿2 = {𝑤1 ⋅ 𝑤2 ∣ 𝑤1 ∈
𝐿1 and 𝑤2 ∈ 𝐿2} and the residuum → by 𝐿1 → 𝐿2 = {𝑤2 ∣ ∀𝑤1⋅ if 𝑤1 ∈ 𝐿1 then 𝑤1 ⋅ 𝑤2 ∈ 𝐿2}.

Example 2.2.10. (Wk - finite Wajsberg hoops). Let us consider now an action lattice endowing the finite

Wajsberg hoop with a star operator [BF00]. For a fixed natural 𝑘 and a generator 𝑎, one gets

𝑊𝑘 = (𝑊𝑘, +, ; ,∗ ,→,min, 0, 1)

where 𝑊𝑘 = {𝑎0, 𝑎1, ..., 𝑎𝑘−1}, 1 = 𝑎0 and 0 = 𝑎𝑘−1. Moreover, for any 𝑚, 𝑛 ≤ 𝑘 − 1, 𝑎𝑚 + 𝑎𝑛 =
𝑎min{𝑚,𝑛}, 𝑎𝑚; 𝑎𝑛 = 𝑎min{𝑚+𝑛,𝑘−1}, (𝑎𝑚)∗ = 𝑎0 and 𝑎𝑚 → 𝑎𝑛 = 𝑎max{𝑛−𝑚,0}.

Example 2.2.11. (R - the tropical algebra). Finally, the (min, +) Kleene algebra [Koz92], known as the

tropical semiring, can be extended to an action lattice through the introduction of residuation →:

R = (R+
0 ∪ {+∞},min, +R,∗ ,→,min, +∞, 0R)

where, for any 𝑥, 𝑦 ∈ R+
0 ∪ {+∞}, 𝑥∗ = 0R, 𝑥 → 𝑦 = max{𝑦 − 𝑥, 0}, and +R, 0R are the sum of

real numbers and the real number 0, respectively, with R+
0 = {𝑥 ∈ R ∣ 𝑥 ≥ 0}.

The framework introduced in Part 2 resorts, however, to a restriction of an action lattice without the

operator ∗1, i.e.

Definition 2.2.3 (Right residuated lattice). A right residuated lattice 2 is a tuple

L = (𝐿,+, ; ,→, ⋅, 0, 1)
1 The class of programs that we address in Part 2 do not include loops, and thus the lattice which acts as the parameter to model

computations does not need to have an operator to model iteration. That is the reason we opt for a more simple structure.
2 Note that while the most common nomenclature for← (→) is right (left) division, which comes from the definition of residuated

lattice [GJKO07], we follow reference [Koz94b], where ← (→) is called the left (right) residual.
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where 𝐿 is a set, 0, 1 are constants, and +, ; , → and ⋅ are binary operations over 𝐿 satisfying axioms

(4)-(12), (17) and (19)-(23).

The order relation≤ is the same as for an action lattice. Moreover, the nomenclatures complete, linear, I

andH are maintained for right residuated lattices. Naturally, all the examples of action lattices presented

above (2.2.1 - 2.2.11) can be reduced to right residuated lattices, by disregarding operator ∗.

2.3 G e n e r a t i n g mu l t i - v a l u e d p r o p o s i t i o n a l d y n am i c l o g i c s

This section illustrates the method introduced in [MNM16], for generation of multi-valued dynamic logics,

parametric on an action lattice. The signature, formulæ, semantics and satisfaction are recalled below.

Given an action lattice A, the corresponding family of logics is denoted by 𝒢𝒟ℒ(A).

Signatures. A signature of 𝒢𝒟ℒ(A) is a pair

Δ = (Prog0, Prop)

of atomic programs and propositions, respectively.

Formulæ. The set of compound programs, denoted by Prog, is generated by

𝜋 ∶∶= 𝜋0 | 𝜋; 𝜋 | 𝜋 + 𝜋 | 𝜋∗

where 𝜋0 ∈ Prog0. Given a signature Δ = (Prog0, Prop), we define the 𝒢𝒟ℒ(A)-formulæ for Δ,
denoted by Fm𝒢𝒟ℒ(A)(Δ), as the ones generated by the grammar

𝜌 ∶∶= ⊤ |⊥ | 𝑝 | 𝜌 ∨ 𝜌 | 𝜌 ∧ 𝜌 | 𝜌 → 𝜌 | 𝜌 ↔ 𝜌 | ⟨𝜋⟩𝜌 | [𝜋]𝜌

for 𝑝 ∈ Prop and 𝜋 ∈ Prog. Note that this corresponds to the positive fragment of the propositional

dynamic logic. Moreover, in order to support a multi-valued truth space, the negation is not explicitly

denoted, being instead defined as 𝜌 → ⊥, for 𝜌 ∈ Fm𝒢𝒟ℒ(A)(Δ). Hence, contrary to what occurs in
𝑃𝐷𝐿, where some operators are defined by abbreviation (∨,⊤,⊥, ⟨ ⟩), using the negation ¬, all those

operators are included in the syntax of 𝒢𝒟ℒ(A).

Semantics. The first step is to introduce the space where the computations of 𝒢𝒟ℒ(A) are to be

interpreted. Based on the classic matricial constructions over Kleene algebras (see [Con12, Koz94a]), let

us define

M𝑛(A) = (𝑀𝑛(A), + , ; , ∗ , 0 , 1)

as follows:

1. 𝑀𝑛(A) is the space of (𝑛 × 𝑛)-matrices over A

2. for any 𝐴, 𝐵 ∈ 𝑀𝑛(A), define 𝑀 = 𝐴+𝐵 by 𝑀𝑖,𝑗 = 𝐴𝑖,𝑗 + 𝐵𝑖,𝑗, 𝑖, 𝑗 ≤ 𝑛.
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3. for any 𝐴, 𝐵 ∈ 𝑀𝑛(A), define 𝑀 = 𝐴 ; 𝐵 by 𝑀𝑖,𝑗 = ∑𝑛
𝑘=1(𝐴𝑖,𝑘; 𝐵𝑘,𝑗) for any 𝑖, 𝑗 ≤ 𝑛.

4. for any 𝑀 = [𝑎] ∈ M1(A), 𝑀* = [𝑎∗];

for any 𝑀 = ⎡⎢
⎣

𝐴 𝐵
𝐶 𝐷

⎤⎥
⎦
∈ 𝑀𝑛(A), 𝑛 > 1, where 𝐴 and 𝐷 are square matrices, define

𝑀* = ⎡⎢
⎣

𝐹* 𝐹* ;𝐵 ;𝐷*

𝐷∗ ;𝐶 ; 𝐹∗ 𝐷*+ (𝐷* ;𝐶 ; 𝐹* ;𝐵 ;𝐷*)
⎤⎥
⎦

where 𝐹 = 𝐴+𝐵 ;𝐷* ;𝐶. Note that this construction is recursively defined from the base case

(where 𝑛 = 2) where the operations of the base action lattice A are used.

5. 1 and 0 are the (𝑛×𝑛)-matrices defined by 1𝑖,𝑗 =
⎧{
⎨{⎩

1 if 𝑖 = 𝑗
0 otherwise

and 0𝑖,𝑗 = 0, for any 𝑖, 𝑗 ≤ 𝑛.

The following classic result (e.g. [Con12, Koz94a]) establishes that Kleene algebras are closed under

formation of matrices.

Theorem 2.3.1. The structureM𝑛(A) = (𝑀𝑛(A) , + , ; , ∗ , 0 , 1) defined above is a Kleene algebra.

𝒢𝒟ℒ(A)-models for a signature Δ = (Prog0, Prop), denoted by Mod
𝒢𝒟ℒ(A)(Δ), consists of tuples

𝒜 = (𝑊,𝑉, (𝒜𝜋)𝜋∈Prog0)

where𝑊 is a finite set (of states), 𝑉 ∶ Prop×𝑊 → A is a function, and𝒜𝜋 ∈ 𝑀𝑛(A), with 𝑛 standing

for the cardinality of 𝑊.

The interpretation of programs in these models is done over the space of the matrices over the Kleene

algebra of A. Each matrix represents the effect of a program executing from any point of the model.

Formally, the interpretation of a program 𝜋 ∈ Prog0 in a model 𝒜 ∈ Mod𝒢𝒟ℒ(A)(Δ) is recursively

defined, from the set of atomic programs (𝒜𝜋0
)𝜋0∈Prog0 , as follows:

𝒜𝜋;𝜋′ = 𝒜𝜋 ;𝒜𝜋′ , 𝒜𝜋+𝜋′ = 𝒜𝜋 +𝒜𝜋′ and 𝒜𝜋∗ = 𝒜*
𝜋 .

together with the constants’ interpretation 𝒜1 = 1 and 𝒜0 = 0. Note that the adoption of the classic

matricial constructions on Kleene algebras [Con12, Koz94a], where the operations are defined for 𝑛 × 𝑛
matrices, assumes the finiteness of the state spaces (since 𝑛 stands for the cardinality of 𝑊). Although

sum, composition and union can be easily generalised for the infinite setting, it is not clear if a similar

construction exists for the star operation.

Let us now give some examples of this construction, by instantiating it with some of the action lattices

enumerated above.
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Example 2.3.1. Let us fix a complete action lattice A = (𝐴,+, ; , 0, 1, ∗,→, ⋅) and a signature

({𝜋, 𝜋′}, {𝑝}). Moreover, consider the model 𝒜 = (𝑊,𝑉, (𝒜𝜋)𝜋∈Π), with 𝑊 = {𝑠1, 𝑠2} and

the following atomic programs

𝒜𝜋 = ⎡⎢
⎣

⊥ 𝑞12
⊥ 𝑞22

⎤⎥
⎦

𝒜𝜋′ = ⎡⎢
⎣

⊥ 𝑞′12
⊥ ⊥

⎤⎥
⎦

which can be represented by the following labelled transition systems:

GFED@ABC𝑠1 𝑞12
// GFED@ABC𝑠2

𝑞22

�� GFED@ABC𝑠1 𝑞′
12

// GFED@ABC𝑠2

Let A = 2, from Example 2.2.1. Taking 𝑞12 = 𝑞22 = 𝑞′1,2 = ⊤ we get the standard adjacency matrices

of the graph underlying the transition systems. In this case, we interpret choice 𝜋 + 𝜋′ by

𝒜𝜋+𝜋′ = 𝒜𝜋+𝒜𝜋′ = ⎡⎢
⎣

⊥ ⊤
⊥ ⊤

⎤⎥
⎦
+ ⎡⎢
⎣

⊥ ⊤
⊥ ⊥

⎤⎥
⎦
= ⎡⎢

⎣
⊥ ∨ ⊥ ⊤ ∨⊤
⊥∨⊥ ⊤ ∨⊥

⎤⎥
⎦
= ⎡⎢

⎣
⊥ ⊤
⊥ ⊤

⎤⎥
⎦

The interpretation of the composition 𝜋;𝜋′ is as follows,

𝒜𝜋;𝜋′ = ⎡⎢
⎣

⊥ ⊤
⊥ ⊤

⎤⎥
⎦
; ⎡⎢
⎣

⊥ ⊤
⊥ ⊥

⎤⎥
⎦
= ⎡⎢

⎣
(⊥ ∧ ⊥) ∨ (⊤ ∧ ⊥) (⊥ ∧ ⊤) ∨ (⊤ ∧ ⊥)
(⊥ ∧ ⊥) ∨ (⊤ ∧ ⊥) (⊥ ∧ ⊤) ∨ (⊤ ∧ ⊥)

⎤⎥
⎦

= ⎡⎢
⎣

⊥ ⊥
⊥ ⊥

⎤⎥
⎦

Thus, as expected,

𝒜𝜋′;𝜋 = ⎡⎢
⎣

⊥ ⊤
⊥ ⊥

⎤⎥
⎦

For the interpretation of the 𝜋 closure, we have

𝒜𝜋* = (𝒜𝜋)* ⎡⎢
⎣

⊥ ⊤
⊥ ⊤

⎤⎥
⎦

*

= ⎡⎢
⎣

𝑓 ∗ 𝑓 ∗ ∧⊤∧⊤∗

⊤∗ ∧⊥∧⊥∗ ⊤∗ ∨ (⊤∗ ∧⊥∧⊤∧ ⊤)
⎤⎥
⎦

where 𝑓 = ⊥ ∨ (⊤ ∧ ⊤∗ ∧⊥) = ⊥; hence 𝒜𝜋∗ = ⎡⎢
⎣

⊤ ⊤
⊥ ⊤

⎤⎥
⎦
.

Now, we introduce some uncertainty on the execution of the programs, to illustrate its effect when comput-

ing the sequential composition of two programs. For this purpose, we take A = 3, from Example 2.2.2,

as the parameter. Considering 𝑞12 = 𝑞22 = ⊤ and 𝑞′12 = 𝑢, we have
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𝒜𝜋′;𝜋 = ⎡⎢
⎣

⊥ 𝑢
⊥ ⊥

⎤⎥
⎦
; ⎡⎢
⎣

⊥ ⊤
⊥ ⊤

⎤⎥
⎦
= ⎡⎢

⎣

(⊥ ∧ ⊥) ∨ (𝑢 ∧ ⊥) (⊥ ∧ ⊤) ∨ (𝑢 ∧ ⊤)
(⊥ ∧ ⊥) ∨ (⊥ ∧ ⊥) (⊥ ∧ ⊤) ∨ (⊥ ∧ ⊤)

⎤⎥
⎦

= ⎡⎢
⎣

⊥ 𝑢
⊥ ⊥

⎤⎥
⎦

As expected, the unknown factor affecting transition 𝑠1 → 𝑠2 in 𝒜 ′
𝜋 is propagated to transition 𝑠1 → 𝑠2

in 𝒜𝜋′;𝜋 .

If, nevertheless, a continuous space is required to define the “unknown” metric, the Łukasiewicz arith-

metic lattice Ł, from Example 2.2.4, would be a suitable option. Consider, for instance, 𝑞12 = 𝑎, 𝑞22 = 𝑏
and 𝑞′12 = 𝑐 for some 𝑎, 𝑏, 𝑐 ∈ [0, 1]. In this case the compound program representing the nondeter-

ministic choice 𝒜𝜋+𝜋′ is computed as follows:

𝒜𝜋+𝜋′ = ⎡⎢
⎣

0 𝑎
0 𝑏

⎤⎥
⎦
+ ⎡⎢
⎣

0 𝑐
0 0

⎤⎥
⎦
= ⎡⎢

⎣
max{0, 0} max{𝑎, 𝑐}
max{0, 0} max{𝑏, 0}

⎤⎥
⎦
= ⎡⎢

⎣
0 max{𝑎, 𝑐}
0 𝑏

⎤⎥
⎦

The sequential composition is computed as follows.

𝒜𝜋′;𝜋 = ⎡⎢
⎣

0 𝑐
0 0

⎤⎥
⎦
; ⎡⎢
⎣

0 𝑎
0 𝑏

⎤⎥
⎦
= ⎡⎢

⎣

0 ⊙ +𝑐 ⊙ 0 0 ⊙ 𝑎 + 𝑐 ⊙ 𝑏
0 ⊙ 0 + 0 ⊙ 0 0 ⊙ 𝑎 + 0 ⊙ 𝑏

⎤⎥
⎦
= ⎡⎢

⎣

0 max{0, 𝑐 + 𝑏 − 1}
0 0

⎤⎥
⎦

The computation of the 𝜋 closure yields

𝒜𝜋∗ = ⎡⎢
⎣

0 𝑎
0 𝑏

⎤⎥
⎦

*

= ⎡⎢
⎣

𝑓 ∗ max {0,max{0, 𝑓 ∗ + 𝑎 − 1} + 𝑏∗ − 1}
(𝑏 ⊙ 0) ⊙ 𝑓 ∗ max{𝑓 ∗,⋯}

⎤⎥
⎦
= ⎡⎢

⎣
1 𝑎
0 1

⎤⎥
⎦
.

Satisfaction. Finally, let us define the (graded) satisfaction relation. A similar satisfaction relation was

already considered, in the context of many-valued modal logics by M. Fitting in [Fit91, Fit92b] and, more

recently, by F. Bou in [BEGR11].

As mentioned above, the carrier of A corresponds to the space of truth degrees for 𝒢𝒟ℒ(A). Hence,
the graded satisfaction relation for a model𝒜 ∈ Mod𝒢𝒟ℒ(A)(Δ), with A complete, consists of a function

⊧ ∶ 𝑊 × Fm𝒢𝒟ℒ(A)(Δ) → A

recursively defined as follows:

• (𝑤 ⊧ ⊤) = ⊤

• (𝑤 ⊧ ⊥) = ⊥

• (𝑤 ⊧ 𝑝) = 𝑉(𝑝,𝑤), for any 𝑝 ∈ Prop

• (𝑤 ⊧ 𝜌 ∧ 𝜌′) = (𝑤 ⊧ 𝜌) ⋅ (𝑤 ⊧ 𝜌′)

• (𝑤 ⊧ 𝜌 ∨ 𝜌′) = (𝑤 ⊧ 𝜌) + (𝑤 ⊧ 𝜌′)

• (𝑤 ⊧ 𝜌 → 𝜌′) = (𝑤 ⊧ 𝜌) → (𝑤 ⊧ 𝜌′)

• (𝑤 ⊧ 𝜌 ↔ 𝜌′) = (𝑤 ⊧ 𝜌 → 𝜌′); (𝑤 ⊧ 𝜌′ → 𝜌)
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• (𝑤 ⊧ ⟨𝜋⟩𝜌) = ∑
𝑤′∈𝑊

(𝒜𝜋(𝑤,𝑤′); (𝑤′ ⊧ 𝜌))

• (𝑤 ⊧ [𝜋]𝜌) = ⋀
𝑤′∈𝑊

(𝒜𝜋(𝑤,𝑤′) → (𝑤′ ⊧ 𝜌))

We say that 𝜌 is valid when, for any any model 𝒜 , and for each state 𝑤 ∈ 𝑊, (𝑤 ⊧ 𝜌) = ⊤. As

stated above, we use, in the semantics of 𝜌 ↔ 𝜌, the adjunct of the implication ; , instead of (standard)
conjunction ⋅. Actually, the operation ; has a double role, acting as composition when modelling the space
of computations, and as “strong conjunction” when referring to the truth space. We present below a

simple illustration of our framework.

Example 2.3.2. Let us fix the complete action lattice Ł of Example 2.2.4 and a signature ({𝜋}, {𝑝}).
Moreover, consider the model 𝒜 = (𝑊,𝑉, (𝒜𝜋0

)𝜋0∈Prog0), with 𝑊 = {𝑠1, 𝑠2} and the atomic pro-

gram

𝒜𝜋 = ⎡⎢
⎣

⊥ 𝑞12
⊥ 𝑞22

⎤⎥
⎦

which can be represented by the following labelled transition system:

GFED@ABC𝑠1 𝑞12
// GFED@ABC𝑠2

𝑞22

��

In order to illustrate the method, let us consider the logic 𝒢𝒟ℒ(). Assuming 𝑉(𝑠1, 𝑝) = 0 and

𝑉(𝑠2, 𝑝) = 1 we evaluate the very simple sentence ⟨𝜋∗⟩𝑝 in state 𝑠1. For this we calculate
(𝑠1 ⊧ ⟨𝜋∗⟩𝑝) = ∑

𝑤′∈𝑊
(𝒜𝜋∗(𝑠1, 𝑤′); (𝑤′ ⊧ 𝑝))

= max {
max{0, (𝑠1 ⊧ 𝑝) + 𝒜𝜋∗(𝑠1, 𝑠1) − 1},
max{0, (𝑠2 ⊧ 𝑝) + 𝒜𝜋∗(𝑠1, 𝑠2) − 1}

}
= max{0, 𝑞12}
= 𝑞12

This means that, we can assure, with a degree of certainty 𝑞12, that 𝑝 is achieved from 𝑠1 through 𝜋∗.

2.4 We i g h t e d s e t s a n d we i g h t e d r e l a t i o n s

Although Kleene algebra and residuated lattices, or their combinations, represent well established math-

ematical abstractions for programs and propositions, there is a lack of suitable models to interpret them

in the weighted case. The construction of such models is based on the theory of fuzzy sets and fuzzy

relations [Zad65, Gog67], to embed the weights into the meaning of both programs and propositions.

Definition 2.4.1. Let 𝑊 be a set and A a complete residuated lattice. A weighted subset of 𝑊 is a

function 𝜑 ∶ 𝑊 → L.
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The value 𝜑(𝑤) defines the membership degree of 𝑤 in 𝜑. The set of all weighted subsets of 𝑊 is

denoted as L𝑊 .

Example 2.4.1. Take the action lattice of example 2.2.4. Consider the colour “brown” which is com-

posed by the three main components “red” (R), “green” (G) and “blue” (B). Such colour may be seen as

a weighted set over 𝑊 = {𝑅,𝐺, 𝐵}, i.e. a function 𝜑 defined as 𝜑(𝑅) = 0, 65, 𝜑(𝐺) = 0, 16 and

𝜑(𝐵) = 0, 16, where the values 0, 65, 0, 16, and 0, 16 are the respective colour proportions in a 0-1
scale.

Note that the definition presented is neither the original, from [Zad65], where the unit interval [0, 1]
was taken as the set of truth values for weighted sets, nor its generalisation [Gog67] to -valued weighted

sets, where can be a partial ordered set, a lattice, or a residuated lattice. Due to our approach in Part

1 we adopt, instead, an extension of the latter over an arbitrary complete action lattice, by defining the

operator ∗ as shown in the examples of Section 2.2.

Definition 2.4.2. Let 𝑊1,𝑊2,… ,𝑊𝑛 be sets. A weighted relation 𝜇 between 𝑊1,𝑊2,… ,𝑊𝑛 is a

weighted subset of the Cartesian product 𝑊1 ×𝑊2 ×⋯ ×𝑊𝑛.

For each 𝑤1 ∈ 𝑊1, 𝑤2 ∈ 𝑊2,… ,𝑤𝑛 ∈ 𝑊𝑛, 𝜇(𝑤1, 𝑤2,… ,𝑤𝑛) can be interpreted as the truth

value of how elements 𝑤1, 𝑤2,… ,𝑤𝑛 are related by 𝜇. Therefore, as weighted sets model collections of
objects, weighted relations model relationships between objects up to some membership degree. Since

in this thesis we work only with binary weighted relations, the term weighted relation always refers to

weighted subsets of the Cartesian product𝑊1 ×𝑊2. The set of all weighted relations over𝑊 is denoted

as A𝑊×𝑊 .

Example 2.4.2. Take, again, the same lattice from the previous example. Consider the set 𝑊 =
{𝐿𝑖𝑠𝑏𝑜𝑛, 𝐿𝑜𝑛𝑑𝑜𝑛, 𝑅𝑖𝑜 𝑑𝑒 𝐽𝑎𝑛𝑒𝑖𝑟𝑜}. It is possible to define a weighted relation 𝜇 representing “how

close” the cities are from each other as 𝜇(𝐿𝑖𝑠𝑏𝑜𝑛, 𝐿𝑜𝑛𝑑𝑜𝑛) = 0.8, 𝜇(𝐿𝑖𝑠𝑏𝑜𝑛, 𝑅𝑖𝑜 𝑑𝑒 𝐽𝑎𝑛𝑒𝑖𝑟𝑜) = 0.3,
𝜇(𝑅𝑖𝑜 𝑑𝑒 𝐽𝑎𝑛𝑒𝑖𝑟𝑜, 𝐿𝑜𝑛𝑑𝑜𝑛) = 0.1.

Definition 2.4.3. Let Σ be an alphabet, A a complete action lattice and consider Σ∗ the set of words

over Σ. A weighted language over Σ is a weighted subset of Σ∗, that is, a function 𝜆 ∶ Σ∗ → A.
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Part I

W E I G H T E D S I N G L E - F L OW C OM P U TAT I O N S



Con t e x t

Kleene algebra is a pervasive structure in computer science, applications ranging from semantics and

logics of programs, to automata and formal language theory, as well as to the design and analysis of

algorithms. Some recent examples show the applicability of Kleene algebra also to the analysis of hybrid

systems [HM09], separation logic [DHM11] and non-termination analysis [DMS11]. As shown in 2, the

axiomatisation of Kleene algebra forms a deductive system to manipulate programs [Koz94a]. Its applica-

tions typically deal with conventional, imperative programming constructs, namely conditionals and loops.

Reasoning equationally about them entails the need for a notion of a test, which lead to the development

of Kleene algebra with tests (KAT) [Koz97] combining the expressiveness of Kleene algebra with a Boolean

subalgebra to formalise tests.

D. Kozen [Koz94a] proved that plain Kleene algebra is closed under the formation of box matrices, later

extending this result to Kleene algebra with tests by seeing a test as a Boolean diagonal matrix. Instances

of KAT include, but are not limited to, binary relations, which model programs as input-output relations

between states, and guarded languages, as a formal semantics for guarded automata.

Hoare logic was the first formal system proposed for verification of programs. Introduced in 1969,

its wide influence made it a cornerstone in program correctness. Hoare Logic encompasses a syntax to

reason about Partial Correctness Assertions (PCA) of the form {𝜌1}𝜋{𝜌2}, called Hoare triples, and a

deductive system to reason about them [Hoa69, Flo93]. In a Hoare triple, 𝜌1 and 𝜌2 stand for predicates,

representing the pre and post conditions, respectively, and 𝜋 is a program statement. Propositional Hoare

logic (PHL) is a fragment of Hoare Logic, in which Hoare triples are reduced to static assertions about the

underlying domain of computation [Koz00].

Both a mathematical structure, providing an algebraic abstraction of programs behaviour, and a logic,

to reason about their properties, are essential ingredients for a rigorous software engineering develop-

ment methodologies. A well known way to combine those two components is dynamic logic [HKT00],

whose development along the past twenty years went hand-in-hand with the evolution of its object, i.e.

the very notion of a program. The result was the emergence of a plethora of dynamic logics tailored to

specific programming paradigms. This ranges from the well-known classical case [FL79] to less conven-

tional examples for which e.g. programs are compositions of actions in UML state machines [KMRG15] or

event/actions regular expressions [HMK19]. Different rephrasings of what should count for a program in

each specific context lead to different variants of dynamic logics: examples include probabilistic [Koz85],

fuzzy [LY02], concurrent [Pel87], quantum [BS12] and continuous [Pla10] computations, and combina-

tions thereof. The fragment introduced in reference [FL77], PDL, abstracts programs and formulas itno a

language built from propositions.

It was later proved that both the syntax and the deductive system of PHL is subsumed by PDL [HKT00]

and KAT [Koz00]. The former translates a Hoare triple {𝜌1}𝜋{𝜌2} into the PDL formula 𝜌1 → [𝜋]𝜌2,

while the latter maps Hoare triples to equations and the rules of inference into implications between

equations.
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The characterisation of relations that identify states with equivalent behaviours is crucial to support a

set of software development practices, including reuse, refinement and minimization of programs and

models. On the logical view, these relations usually enjoy an invariance property, i.e. they preserve the

satisfaction of formulas.

O v e r v i ew

As originally presented, KAT, dynamic logic and Hoare logic are suitable frameworks to reason about classic

imperative programs. In fact, such programs are particularly “well tractable”: they represent a sequence

of discrete steps, each of them modelled as an atomic transition in a standard automaton. Typically,

assertions about those programs have an outcome in a Boolean truth space. Our goal in Part 1 is to

provide mathematical support to generalise algebras and logics based on KAT, Dynamic Logic and Hoare

Logic to model programs and assertions in weighted contexts. The results achieved will provide the formal

setting to reason about ℱ1-programs interpreted as weighted “single-flow” computations.

To follow this programme, we first need an algebra of programs. In order to obtain such a structure, we

present two generalisations of KAT, graded Kleene algebra with tests (GKAT) and idempotent graded Kleene

algebra with tests (I-GKAT), while comparing their axiomatisations. We also illustrate both structures with a

set of relevant examples and discuss some properties. Analogously to [Koz00], we encode PHL in I-GKAT

and its while-free fragment in GKAT. Moreover, we examine in this setting a classic result of denesting two

nested while loops in a weighted scenario. To interpret programs and assertions in a weighted context,

we resort to the theory of weighted sets and weighted relations, proving that those endowed with suitable

operators are instances of both GKAT and I-GKAT. In other words, the set of instances presented, namely the

algebra of weighted setsWSET(K, T) and the algebra of weighted relationsWREL(K, T), over complete
residuated lattices K and T, will be used to give semantics to ℱ1-programs.

The development of dynamic logics for ℱ1-programs is based on reference

[MNM16]. This paper initiated a research agenda on the systematic development of propositional, multi-

valued dynamic logics parametric on an action lattice, which defines both the computational paradigm

where programs live, and the truth space where assertions take value. We extend this agenda to an

equational scenario, taking computational states as valuations of variables over a given domain, and

programs as their modifiers. The idea is to capture weighted “single-flow” computations, i.e. imperative

programs interpreted over different notions of ‘weighted’ computation — the very notion of weight being

brought to scene as a parameter, encoded, as in [MNM16], in a complete action lattice, for the generation

of the corresponding dynamic logic. Depending on each complete action lattice chosen, such weights will

be interpreted as e.g. the uncertainty associated to the effectiveness of a particular computation, or a

measure of the resources consumed, such as the energy or the execution time.

A second contribution of Part 1 is the study of bisimulation for the models introduced above, which is,

in our approach, defined parametrically on a complete action lattice. Finally, bisimilarity is shown to entail

modal equivalence for the corresponding dynamic logic.
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Ro a dmap

Part 1 is organised as follows. Chapter 3 discusses the algebraic constructions to model ℱ1-programs.

In particular, Section 3.1 recapitulates some fundamental concepts. Section 3.2 introduces graded Kleene

algebra with tests (GKAT) as a generalisation of KAT, detailing its axiomatisation, a few examples and proofs

of basic properties. It also presents a partial encoding of PHL in GKAT. Section 3.3 introduces idempotent

graded Kleene algebra with tests (I-GKAT) as another generalisation of the standard KAT and a refinement

of GKAT, offering a complete encoding of PHL. Section 3.4 presents the sets of all weighted sets, weighted

relations, weighted languages and 𝑛 × 𝑛 matrices, with the appropriate operations, as examples of GKAT

and I-GKAT. Section 3.5 puts those frameworks in action, by discussing some equational proofs for program

equivalences in a weighted scenario.

Chapter 4 presents a semantics forℱ1-programs to include program variables and assignments. Chap-

ter 5 extends the method proposed in [MNM16] to incorporate ℱ1-programs. All constructions are illus-

trated in detail for three paradigmatic parameters: the classical Boolean lattice, the Gödel algebra to

capture vagueness in computation, and the tropical semiring to reason about resource consumption. An

axiomatic system for the generated logics is presented in Section 5.1. Finally, results on bisimilarity and

invariance are discussed in Section 5.4.
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3

A L G E B R A S O F W E I G H T E D S I N G L E - F L OW C OM P U TAT I O N S

As stated in the introduction, the frameworks developed in this thesis to model and reason about weighted

“single-flow” computations are built on top of the triple algebra-semantics-logic. This chapter focuses on

the first component, by developing generalisations of Kleene algebra with tests [Koz97] to model programs

and assertions in a weighted setting.

3.1 P r e l im i n a r i e s : K l e e n e a l g e b r a w i t h t e s t s a n d Ho a r e l o g i c

First of all, let us recall from [Koz97, Koz00] the basic concepts of KAT and PHL, and the relation between

them.

Definition 3.1.1. A Kleene algebra with tests (KAT) is a tuple

(𝐾, 𝑇,+, ; ,∗ , ̄, 0, 1)

where 𝑇 ⊆ 𝐾, 0 and 1 are constants in 𝑇, + and ; are binary operators in both 𝐾 and 𝑇, ∗ is a unary

operator in 𝐾, and ̄ is a unary operator defined only on 𝑇 such that:

• (𝐾,+, ; ,∗ , 0, 1) is a Kleene algebra;

• (𝑇,+, ; , ̄, 0, 1) is a Boolean algebra;

• (𝑇,+, ; , 0, 1) is a subalgebra of (𝐾,+, ; , 0, 1).

The elements of𝐾, denoted by lower case letters 𝑝, 𝑞, 𝑟, 𝑠, 𝑥, 𝑦, 𝑧, stand for programs and the elements
of 𝑇, denoted by 𝑎, 𝑏, 𝑐, 𝑑 are called tests. Operators “+” and “;” play a different role when acting on

programs or tests. The former stands for non-deterministic choice over programs, and a form of logical

disjunction on tests. The latter is taken as the sequential composition of actions when applied to elements

of 𝐾, and as a ”multiplication” of tests when applied to elements of 𝑇. Finally, in the domain of programs,
constants 0 and 1 interpret the halt and skip commands. When applied to tests, they stand for the logical

constants false and true, respectively. Some operators are specific to only tests or programs. For instance,

operator ∗ stands for iterative execution of programs and operator ̄ corresponds to the negation ¬ of a

test. Kleene algebra with tests induces an abstract programming language, where conditionals and while

loops programming constructs are encoded as follows:
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if 𝑏 then 𝑝 def= 𝑏; 𝑝 + 𝑏̄
if 𝑏 then 𝑝 else 𝑞 def= 𝑏; 𝑝 + 𝑏̄; 𝑞

while 𝑏 do 𝑝 def= (𝑏; 𝑝)∗; 𝑏̄

The encoding of Propositional Hoare Logic (PHL) in KAT leads to an equational calculus to reason about

Hoare triples. As originally introduced [Hoa69], one such triple {𝑏}𝑝{𝑐} is valid if whenever precondition 𝑏
is met, the postcondition 𝑐 is guaranteed to hold, upon the successful termination of program 𝑝. Classically,
validity in PHL is established through the set of rules in Figure 9.

• Composition rule:

{𝑏}𝑝{𝑐} {𝑐}𝑞{𝑑}
{𝑏}𝑝; 𝑞{𝑑}

• Conditional rule:

{𝑏 ∧ 𝑐}𝑝{𝑑}, {¬𝑏 ∧ 𝑐}𝑞{𝑑}
{𝑐} if 𝑏 then 𝑝 else 𝑞 {𝑑}

• While rule:

{𝑏 ∧ 𝑐}𝑝{𝑐}
{𝑐} while 𝑏 do 𝑝{¬𝑏 ∧ 𝑐}

• Weakening and Strengthening rule:

𝑏′ → 𝑏, {𝑏}𝑝{𝑐}, 𝑐 → 𝑐′
{𝑏′} 𝑝{𝑐′}

Figure 9: Hoare logic rules.

A Hoare triple {𝑏}𝑝{𝑐} is encoded in KAT as 𝑏; 𝑝; ̄𝑐 = 0, which is equivalent to 𝑏; 𝑝 = 𝑏; 𝑝; 𝑐. The
first equation means, intuitively, that the execution of 𝑝 with precondition 𝑏 and postcondition ̄𝑐 does not
halt. Equation 𝑏; 𝑝 = 𝑏; 𝑝; 𝑐, on the other hand, states that the verification of the post condition 𝑐 after
the execution of 𝑏; 𝑝 is redundant. PHL inference rules are encoded in KAT, as follows:

• Composition rule:

𝑏; 𝑝 = 𝑏; 𝑝; 𝑐 ∧ 𝑐; 𝑞 = 𝑐; 𝑞; 𝑑 ⇒ 𝑏; 𝑝; 𝑞 = 𝑏; 𝑝; 𝑞; 𝑑

• Conditional rule:

𝑏; 𝑐; 𝑝 = 𝑏; 𝑐; 𝑝; 𝑑 ∧ 𝑏̄; 𝑐; 𝑞 = 𝑏̄; 𝑐; 𝑞; 𝑑 ⇒ 𝑐; (𝑏; 𝑝 + 𝑏̄; 𝑞) = 𝑐; (𝑏; 𝑝 + 𝑏̄; 𝑞); 𝑑
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• While rule:

𝑏; 𝑐; 𝑝 = 𝑏; 𝑐; 𝑝; 𝑐 ⇒ 𝑐; (𝑏; 𝑝)∗; 𝑏̄ = 𝑐; (𝑏; 𝑝)∗; 𝑏̄; 𝑏̄; 𝑐

• Weakening and Strengthening rule:

𝑏′ ≤ 𝑏 ∧ 𝑏; 𝑝 = 𝑏; 𝑝; 𝑐 ∧ 𝑐 ≤ 𝑐′ ⇒ 𝑏′; 𝑝 = 𝑏′; 𝑝; 𝑐′

where ≤ is a partial order on 𝐾 defined by 𝑝 ≤ 𝑞 iff 𝑝 + 𝑞 = 𝑞.

3.2 G e n e r a l i s i n g K l e e n e a l g e b r a w i t h t e s t s : a f i r s t a p p r o a ch

The approach proposed in this thesis to reason about computations in a weighted context proceeds by

redefining not only the notion of a program execution, but also the interpretation of assertions about

programs. Since such assertions take the form of tests, we start by modifying the part of the axiomatisation

of KAT that deals with properties of tests, i.e. the Boolean algebra (𝑇,+, ⋅, ̄, 0, 1).

Graded Kleene algebra with tests

Instead of having a Boolean outcome, as in KAT, tests are weighted, taking values from a truth space

with more than two possible outcomes, a weighted truth space. As a consequence, the expression 𝑏; 𝑝
represents a weighted execution of program 𝑝, guarded by the value of test 𝑏. This leads to the following
generalisation of KAT:

Definition 3.2.1. A graded Kleene algebra with tests (GKAT) is a tuple

(𝐾, 𝑇,+, ; ,∗ ,→, 0, 1)

where 𝐾 and 𝑇 are sets, with 𝑇 ⊆ 𝐾, 0 and 1 are constants in 𝑇, + and ; are binary operators in both

𝐾 and 𝑇, ∗ is a unary operator in 𝐾, and → is an operator only defined in 𝑇, satisfying axioms (25)-(38),

where 𝑝, 𝑞, 𝑟 ∈ 𝐾 and 𝑎, 𝑏 ∈ 𝑇. Relation ≤ is induced by + in the usual way: 𝑝 ≤ 𝑞 iff 𝑝 + 𝑞 = 𝑞.

As in KAT, programs are elements of 𝐾 denoted by lower case letters 𝑝, 𝑞, 𝑟, 𝑠, 𝑥, 𝑦, 𝑧 and tests are

elements of 𝑇 denoted by 𝑎, 𝑏, 𝑐, 𝑑. Observe that a Kleene algebra is recovered by restricting the definition
of GKAT to (𝐾, 𝑇,+, ; ,∗ , 0, 1), axiomatised by (25)-(35). Operators+, ; and constants 0, 1 in GKAT are
interpreted as for KAT. The operator → plays in GKAT the role of logical implication over tests. Note also

that (𝑇,+, ; , 0, 1) is a subalgebra of (𝐾,+, ; , 0, 1). Differently from what happens in KAT, negation ̄𝑎,
for 𝑎 ∈ 𝑇, is not explicitly denoted, although it can be derived as 𝑎 → 0.
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𝑝 + (𝑞 + 𝑟) = (𝑝 + 𝑞) + 𝑟 (25)

𝑝 + 𝑞 = 𝑞 + 𝑝 (26)

𝑝; (𝑞; 𝑟) = (𝑝; 𝑞); 𝑟 (27)

𝑝; 1 = 1; 𝑝 = 𝑝 (28)

𝑝; (𝑞 + 𝑟) = (𝑝; 𝑞) + (𝑝; 𝑟) (29)

(𝑝 + 𝑞); 𝑟 = (𝑝; 𝑟) + (𝑞; 𝑟) (30)

𝑝; 0 = 0; 𝑝 = 0 (31)

1 + 𝑝; 𝑝∗ = 𝑝∗ (32)

1 + 𝑝∗; 𝑝 = 𝑝∗ (33)

𝑞 + 𝑝; 𝑟 ≤ 𝑟 ⇒ 𝑝∗; 𝑞 ≤ 𝑟 (34)

𝑞 + 𝑟; 𝑝 ≤ 𝑟 ⇒ 𝑞; 𝑝∗ ≤ 𝑟 (35)

𝑎; 𝑏 ≤ 𝑐 ⇔ 𝑏 ≤ 𝑎 → 𝑐 (36)

𝑎 ≤ 1 (37)

𝑎; 𝑏 = 𝑏; 𝑎 (38)

Note that a GKAT can be characterised by two more equations, which we removed from Definition 3.1.1:

𝑝 + 𝑝 = 𝑝 (39)

𝑝 + 0 = 𝑝 (40)

The two of them, however, can be derived from the axiomatisation above.

Lemma 3.2.1. Equations (39) and (40) hold in any GKAT.

Proof. For (39) we have, by (37),

1 + 1 = 1
⇒ { monotonicity of ;}

𝑝; (1 + 1) = 𝑝; 1
⇔ { (29) and (28)}

𝑝 + 𝑝 = 𝑝

We prove (40) by stating, by (37),

0 + 1 = 1
⇒ { monotonicity of ;}

𝑝; (0 + 1) = 𝑝; 1
⇔ { (29)}

𝑝; 0 + 𝑝; 1 = 𝑝; 1
⇔ { (28) and (31)}

0 + 𝑝 = 𝑝
⇔ { (26)}

𝑝 + 0 = 𝑝
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A main particularity of the GKAT axiomatization concerns rules (37) and (38), which form a weakened

version of the axiomatization of a Boolean algebra. Indeed, GKAT generalises KAT in the following sense:

Lemma 3.2.2. Any KAT is a GKAT.

Proof. For a fixed KAT

𝐴 = (𝐾, 𝑇,+, ; ,∗ , ̄, 0, 1)

define

𝑀 = (𝐾, 𝑇,+, ; ,∗ ,→, 0, 1)

inheriting operators +, ; , ∗ and constants 0 and 1 from 𝐴. Let 𝑎 → 𝑏 ∶= ̄𝑎 + 𝑏, for 𝑎, 𝑏 ∈ 𝑇.
The crucial part of the proof verifies that axiom (36) holds for 𝑀, for all 𝑎, 𝑏, 𝑐 ∈ 𝑇. To see that, assume
𝑎; 𝑏 ≤ 𝑐. Then,

𝑎; 𝑏 ≤ 𝑐
⇔ { ; is the conjunction of tests}

𝑎 ∧ 𝑏 ≤ 𝑐
⇔ { commutativity of ∧}

𝑏 ∧ 𝑎 ≤ 𝑐
⇔ { test shunting}

𝑏 ≤ ̄𝑎 + 𝑐
⇔ { definition of →}

𝑏 ≤ 𝑎 → 𝑐

Since axioms (25)-(35), (37) and (38) are axioms of 𝐴, 𝑀 is indeed a GKAT.

GKAT is abel to model weighted computations and propositions evaluated in a weighted truth space.

Instances of this structure range from a discrete scale to the real interval [0, 1], as shown below. As

stated in Lemma 3.2.2, some instances of GKAT can also be retrieved from the classical case. Such is

the case of the Boolean lattice:

Example 3.2.1. Our first example is the well-known Boolean lattice

2 = ({⊤,⊥}, {⊤,⊥},∨,∧,∗ ,→,⊥,⊤)

with the standard interpretation of Boolean connectives. Operator ∗ maps each element of {⊤,⊥} to ⊤
and → corresponds to logical implication.
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Example 3.2.2. The second example is provided by the three-element linear lattice, which introduces

an explicit denotation 𝑢 for “unknown” (or “undefined”).

3 = ({⊤, 𝑢,⊥}, {⊤, 𝑢,⊥},∨,∧,∗ ,→,⊥,⊤)

where

∨ ⊥ u ⊤
⊥ ⊥ 𝑢 ⊤
𝑢 𝑢 𝑢 ⊤
⊤ ⊤ ⊤ ⊤

∧ ⊥ 𝑢 ⊤
⊥ ⊥ ⊥ ⊥
𝑢 ⊥ 𝑢 𝑢
⊤ ⊥ 𝑢 ⊤

→ ⊥ u ⊤
⊥ ⊤ ⊤ ⊤
𝑢 ⊥ ⊤ ⊤
⊤ ⊥ 𝑢 ⊤

∗

⊥ ⊤
𝑢 ⊤
⊤ ⊤

Example 3.2.3. For a fixed, finite set 𝑆, another instance of GKAT is

2𝑆 = (𝑃(𝑆), 𝑃(𝑆),∪,∩,∗ ,→, ∅, 𝑆)

where 𝑃(𝑆) denotes the powerset of 𝑆, ∪ and ∩ are set union and intersection, respectively, ∗ maps

each set 𝑋 ∈ 𝑃(𝑆) into 𝑆, and 𝑋 → 𝑌 = 𝑋𝐶 ∪ 𝑌, where 𝑋𝐶 = {𝑥 ∈ 𝑆 ∣ 𝑥 ∉ 𝑋}.

Example 3.2.4. As another example, consider the standard P algebra

P = ([0, 1], [0, 1],max, ⋅,∗ ,→, 0, 1)

where ⋅ is the usual multiplication of real numbers,

𝑥 → 𝑦 =
⎧{
⎨{⎩

1, if 𝑥 ≤ 𝑦
𝑦/𝑥, if 𝑦 < 𝑥

/ is the division of reals and ∗ maps each point of the interval [0, 1] to 1.

Example 3.2.5. A Gödel algebra is also an instance of GKAT. Actually,

G = ([0, 1], [0, 1],max,min,∗ ,→, 0, 1)

where

𝑥 → 𝑦 =
⎧{
⎨{⎩

1, if 𝑥 ≤ 𝑦
𝑦, if 𝑦 < 𝑥

Example 3.2.6. Another example is the well-known Łukasiewicz arithmetic lattice.

Ł = ([0, 1], [0, 1],max, ⊙,∗ ,→, 0, 1)
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where 𝑥 → 𝑦 = min{1, 1 − 𝑥 + 𝑦}, 𝑥 ⊙ 𝑦 = max{0, 𝑥 + 𝑦 − 1} and ∗ maps each point of the interval

[0, 1] to 1.

Example 3.2.7. Let us consider now a GKAT endowing the finite Wajsberg hoop with a star operator

[BF00]. For a fixed natural 𝑘 and a generator 𝑎, one gets

𝑊𝑘 = (𝑊𝑘,𝑊𝑘, +, ; ,∗ ,→, 0, 1)

where 𝑊𝑘 = {𝑎0, 𝑎1, ..., 𝑎𝑘−1}, 1 = 𝑎0 and 0 = 𝑎𝑘−1. Moreover, for any 𝑚, 𝑛 ≤ 𝑘 − 1, 𝑎𝑚 + 𝑎𝑛 =
𝑎min{𝑚,𝑛}, 𝑎𝑚; 𝑎𝑛 = 𝑎min{𝑚+𝑛,𝑘−1}, (𝑎𝑚)∗ = 𝑎0 and 𝑎𝑚 → 𝑎𝑛 = 𝑎max{𝑛−𝑚,0}.

Example 3.2.8. The (min, +) Kleene algebra [Koz92], known as the tropical semiring, can be extended

to a GKAT by adding residuation →. First, let 𝑅+ denote the set {𝑥 ∈ R ∣ 𝑥 ≥ 0} and adjoin +∞ as a

new constant. Thus, define

R = (𝑅+ ∪ {+∞}, 𝑅+ ∪ {+∞},min, +R,∗ ,→,+∞, 0R)

where, for any 𝑥, 𝑦 ∈ 𝑅+ ∪ {+∞}, 𝑥∗ = 0R and 𝑥 → 𝑦 = max{𝑦 − 𝑥, 0}.

By abuse of notation we use the same notation for the complete action lattices presented in Section 2.2

(Examples (2.2.1)-(2.2.11)) and the instances of GKAT listed above. Examples 3.2.2 and 3.2.7 represent

instances to reason in discrete multi-valued logics. Examples 3.2.4, 3.2.5 and 3.2.6, in their turn, are

particularly relevant to model fuzzy and continuous multi-valued logics.

Modelling weighted assertions where the outcome is not Boolean entails the need for weakening the

subalgebra (𝑇,+, ; ,∗ , ̄, 0, 1) of KAT. As a consequence, it is not necessarily true that 𝑎+(𝑎 → 0) = 1,
as it happens in Boolean algebras. Let us illustrate this in the following example.

Example 3.2.9. Consider the GKAT

({0, 𝑛,𝑚, 1}, {0,𝑚, 1}, +, ; ,∗ ,→, 0, 1)

in which the operation ∗ maps all points to the top element 1, and the remaining operations are defined

as follows:

+ 0 𝑛 𝑚 1
0 0 𝑛 𝑚 1
𝑛 𝑛 𝑛 𝑚 1
𝑚 𝑚 𝑚 𝑚 1
1 1 1 1 1

; 0 𝑛 𝑚 1
0 0 0 0 0
𝑛 0 0 0 𝑛
𝑚 0 0 0 𝑚
1 0 𝑛 𝑚 1

→ 0 𝑛 𝑚 1
0 1 0 1 1
𝑛 0 0 0 0
𝑚 𝑚 0 1 1
1 0 0 𝑚 1

Clearly, 𝑎 = 𝑚 entails 𝑚+ (𝑚 → 0) = 𝑚 + 𝑚 = 𝑚 ≠ 1.
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The example above illustrates that tests can assume a wider range of values in GKAT, representing the

truth degree of the statement “𝑏 holds”. The expression 𝑏; 𝑝 means that the execution of a program 𝑝 is

guarded by that particular value.

Encoding propositional Hoare logic in GKAT

Section 3.1 discusses framing PHL (syntax and inference rules) in equations and quasi-equations in KAT.

Similarly, exploring a possible encoding of propositional Hoare logic into GKAT provides a smooth way for

reasoning about the correctness of programs with some form of weight associated to their execution. Since

this new structure deals with graded tests, both the meaning of Hoare triples and the inference rules need

to be adjusted. This reinterpretation leads to a generalised version we shall refer to as graded propositional

Hoare logic (GPHL).

In the presence of graded tests, the interpretation of a triple {𝑏}𝑝{𝑐}, and hence, the correctness of

a program, relies on the idea that whenever 𝑏; 𝑝 executes with truth degree 𝑏, if and when it halts, it is

guaranteed that (𝑏; 𝑝); 𝑐 holds with at least the same truth degree. In other words, the computation of the
correctness degree is monotonic for sequential composition. Therefore, the encoding in GKAT is captured

by the following inequality:

𝑏; 𝑝 ≤ 𝑏; 𝑝; 𝑐

Note that the equivalence

𝑏; 𝑝 ≤ 𝑏; 𝑝; 𝑐 ⇔ 𝑏; 𝑝 = 𝑏; 𝑝; 𝑐, (41)

holds in GKAT, following directly from (29), (37) and (28).

The inference rules of Hoare logic are encoded in GKAT as follows.

Theorem 3.2.1. The following implications are theorems in GKAT.

1. Composition rule:

𝑏; 𝑝 ≤ 𝑏; 𝑝; 𝑐 ∧ 𝑐; 𝑞 ≤ 𝑐; 𝑞; 𝑑 ⇒ 𝑏; 𝑝; 𝑞 = 𝑏; 𝑝; 𝑞; 𝑑

2. Conditional rule:

𝑏; 𝑐; 𝑝 ≤ 𝑏; 𝑐; 𝑝; 𝑑 ∧ (𝑏 → 0); 𝑐; 𝑞 ≤ (𝑏 → 0); 𝑐; 𝑞; 𝑑 ⇒

𝑐; (𝑏; 𝑝 + (𝑏 → 0); 𝑞) ≤ 𝑐; (𝑏; 𝑝 + (𝑏 → 0); 𝑞); 𝑑
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3. Weakening and Strengthening rule:

𝑏′ ≤ 𝑏 ∧ 𝑏; 𝑝 ≤ 𝑏; 𝑝; 𝑐 ∧ 𝑐 ≤ 𝑐′ ⇒ 𝑏′; 𝑝 ≤ 𝑏′; 𝑝; 𝑐′

Proof.

1. COMPOSITION RULE: Let us assume that 𝑏; 𝑝 ≤ 𝑏; 𝑝; 𝑐 and 𝑐; 𝑞 ≤ 𝑐; 𝑞; 𝑑. By (41), these inequalities are
equivalent to 𝑏; 𝑝 = 𝑏; 𝑝; 𝑐 and 𝑐; 𝑞 = 𝑐; 𝑞; 𝑑, respectively. So, we have

𝑏; 𝑝; 𝑞
= { 𝑏; 𝑝 = 𝑏; 𝑝; 𝑐}

𝑏; 𝑝; 𝑐; 𝑞
= { 𝑐; 𝑞 = 𝑐; 𝑞; 𝑑}

𝑏; 𝑝; 𝑐; 𝑞; 𝑑
= { 𝑏; 𝑝 = 𝑏; 𝑝; 𝑐}

𝑏; 𝑝; 𝑞; 𝑑

2. CONDITIONAL RULE: Assume 𝑏; 𝑐; 𝑝 ≤ 𝑏; 𝑐; 𝑝; 𝑑 and (𝑏 → 0); 𝑐; 𝑞 ≤ (𝑏 → 0); 𝑐; 𝑞; 𝑑. First of all,

observe that, for any 𝑝, 𝑞, 𝑟, 𝑠 ∈ 𝐾

𝑝 ≤ 𝑞 ∧ 𝑟 ≤ 𝑠 ⇒ 𝑝 + 𝑟 ≤ 𝑞 + 𝑠 (42)

Because 𝑝 ≤ 𝑞 and 𝑟 ≤ 𝑠, i.e. 𝑝+𝑞 = 𝑞 and 𝑟+𝑠 = 𝑠, then, by (25) and (26), (𝑝+𝑟)+(𝑞+𝑠) =
(𝑝 + 𝑞) + (𝑟 + 𝑠) = 𝑞 + 𝑠. So, by (42),

𝑏; 𝑐; 𝑝 + (𝑏 → 0); 𝑐; 𝑞 ≤ 𝑏; 𝑐; 𝑝; 𝑑 + (𝑏 → 0); 𝑐; 𝑞; 𝑑.
⇔ { (38), (29) and (30)}

𝑐; (𝑏; 𝑝 + (𝑏 → 0); 𝑞) ≤ 𝑐; (𝑏; 𝑝 + (𝑏 → 0); 𝑞); 𝑑

3. WEAKENING AND STRENGTHENING RULE: Observe that, for all 𝑏, 𝑐 ∈ 𝑇 and 𝑝 ∈ 𝐾,

𝑏; 𝑝 ≤ 𝑏; 𝑝; 𝑐 ⇒ 𝑏; 𝑝; (𝑐 → 0) ≤ 0 (43)

Using (41) to rewrite (43) as

𝑏; 𝑝 = 𝑏; 𝑝; 𝑐 ⇒ 𝑏; 𝑝; (𝑐 → 0) = 0 (44)
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and, assuming 𝑏; 𝑝 = 𝑏; 𝑝; 𝑐, we have

𝑏; 𝑝; (𝑐 → 0)
= { 𝑏; 𝑝 = 𝑏; 𝑝; 𝑐 assumption}

𝑏; 𝑝; 𝑐; (𝑐 → 0)
= { 𝑎; (𝑎 → 0) = 0) and (31)}

0

Using (44), the Weakening and Strengthening rule can be rewritten as

𝑎 ≤ 𝑏 ∧ 𝑏; 𝑝; (𝑐 → 0) = 0 ∧ (𝑑 → 0) ≤ (𝑐 → 0) ⇒ 𝑎; 𝑝; (𝑑 → 0) = 0

which follows from the monotonicity of “;”.

The attentive reader certainly noticed the absence of an encoding of the While rule in the graded setting.

In analogy with what was done before, such a rule would take the form:

𝑏; 𝑐; 𝑝 ≤ 𝑏; 𝑐; 𝑝; 𝑐 ⇒ 𝑐; (𝑏; 𝑝)∗; (𝑏 → 0) ≤ 𝑐; (𝑏; 𝑝)∗; (𝑏 → 0); (𝑏 → 0); 𝑐 (45)

However, this is not necessarily true for all 𝑝 ∈ 𝐾 and 𝑏, 𝑐 ∈ 𝑇. To see this, consider the GKAT structure
of Example 3.2.9.

If 𝑏 = 0, 𝑐 = 𝑚, 𝑝 = 0, by (31) and (40), the instantiation of 𝑏; 𝑐; 𝑝 ≤ 𝑏; 𝑐; 𝑝; 𝑐 boils down to

0;𝑚; 0 + 0;𝑚; 0;𝑚 = 0;𝑚; 0;𝑚 ⇔ 0 = 0

and that of 𝑐; (𝑏; 𝑝)∗; (𝑏 → 0) ≤ 𝑐; (𝑏; 𝑝)∗; (𝑏 → 0); (𝑏 → 0); 𝑐 becomes, by (31), (28) and (40),

𝑚; (0)∗; 1 + 𝑚; (0)∗; 1; 1; 𝑚 = 𝑚; (0)∗; 1; 1; 𝑚 ⇔ 𝑚 = 0

Using these two equations, implication (45) boils down to 0 = 0 ⇒ 𝑚 = 0, which is obviously false.

3.3 G e n e r a l i s i n g K l e e n e a l g e b r a w i t h t e s t s : a n i d empo t e n t v a r i a n t

By carfefully observing the encoding of the PHL while rule in KAT, it becomes apparent that one cause

of failure of an analogous encoding in GKAT, mentioned in the previous section, is the impossibility of

duplicating graded tests. Actually, in GKAT, 𝑏; 𝑏 = 𝑏 does not hold, but only the weaker form 𝑏; 𝑏 ≤ 𝑏.
The solution proposed is to refine the GKAT structure with some additional properties such that, i) it allows

for a complete encoding of Hoare logic and, at the same time, ii) captures non-Boolean examples, assigning

truth degrees to program execution and evaluation of tests. The idea is still to resort to a weaker algebra

to model the tests, instead of the Boolean algebra implicitly used in KAT.
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Idempotent graded Kleene algebra with tests

Definition 3.3.1. An idempotent graded Kleene algebra with tests (I-GKAT) is a tuple

(𝐾, 𝑇,+, ; ,∗ ,→, 0, 1)

where 𝐾 and 𝑇 are sets, with 𝑇 ⊆ 𝐾, 0 and 1 are constants in 𝑇, + and ; are binary operations in both

𝐾 and 𝑇, ∗ is a unary operator in 𝐾, and → is an operator only defined in 𝑇, satisfying axioms (25)-(38)

plus the axiom below:

𝑎; 𝑎 = 𝑎 (46)

Note that, as in GKAT, negation is not explicitly denoted, but can be derived as 𝑎 → 0.
The following result establishes I-GKAT as a strict subclass of GKAT, as well as another generalisation

of KAT. Examples 3.2.1, 3.2.2, 3.2.3, 3.2.5 and the two-element 3.2.7 are instances of I-GKAT. Figure 10

sums up our results.

Figure 10: Examples of KAT, GKAT and I-GKAT.
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Lemma 3.3.1. Any KAT is a I-GKAT, which in turn is also a GKAT.

Proof. It suffices to show that axiom (36) holds for all 𝑎, 𝑏, 𝑐 ∈ 𝑇. The proof is similar to that of Lemma
3.2.2.

Encoding propositional Hoare logic in I-GKAT

After refining the basic structure, the remaining of this section discusses how to encode propositional

Hoare logic in I-GKAT. Differently from what happens in GKAT, the three encodings proposed by D. Kozen

for Hoare logic are equivalent in I-GKAT:

𝑏; 𝑝 = 𝑏; 𝑝; 𝑐 ⇔ 𝑏; 𝑝 ≤ 𝑏; 𝑝; 𝑐 ⇔ 𝑏; 𝑝 ≤ 𝑝; 𝑐

Hence, the inference rules of Hoare logic can be encoded in I-GKAT as they are in classical propositional

Hoare logic.

Theorem 3.3.1. The following implication is a theorem in I-GKAT.

𝑏; 𝑐; 𝑝 ≤ 𝑏; 𝑐; 𝑝; 𝑐 ⇒ 𝑐; (𝑏; 𝑝)∗; (𝑏 → 0) ≤ 𝑐; (𝑏; 𝑝)∗; (𝑏 → 0); (𝑏 → 0); 𝑐

Proof. Assume, by (38),

𝑏; 𝑐; 𝑝 ≤ 𝑏; 𝑐; 𝑝; 𝑐 ⇔ 𝑐; 𝑏; 𝑝 ≤ 𝑐; 𝑏; 𝑝; 𝑐 (47)

Let us start by proving

𝑐 + 𝑐; (𝑏; 𝑝)∗; 𝑐; 𝑏; 𝑝
≤ { by (71)}

𝑐 + 𝑐; (𝑏; 𝑝)∗; 𝑐; 𝑏; 𝑝; 𝑐
≤ { by (46) and (28)}

𝑐; 1; 𝑐 + 𝑐; (𝑏; 𝑝)∗; 𝑐; 𝑏; 𝑝; 𝑐
≤ { by distributivity}

𝑐; (1 + (𝑏; 𝑝)∗; 𝑐; 𝑏; 𝑝); 𝑐
≤ { by monotonicity}

𝑐; (1 + (𝑏; 𝑝)∗; 𝑏; 𝑝); 𝑐
≤ { by (14)}

𝑐; (𝑏; 𝑝)∗; 𝑐

On the other hand,
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𝑐 + 𝑐; (𝑏; 𝑝)∗; 𝑐; 𝑏; 𝑝 ≤ 𝑐; (𝑏; 𝑝)∗; 𝑐
⇒ { (35)}

𝑐; (𝑏; 𝑝)∗ ≤ 𝑐; (𝑏; 𝑝)∗; 𝑐
⇒ { monotonicity of ;}

𝑐; (𝑏; 𝑝)∗; (𝑏 → 0) ≤ 𝑐; (𝑏; 𝑝)∗; 𝑐; (𝑏 → 0)
⇔ { (38)}

𝑐; (𝑏; 𝑝)∗; (𝑏 → 0) ≤ 𝑐; (𝑏; 𝑝)∗; (𝑏 → 0); 𝑐
⇔ { (46)}

𝑐; (𝑏; 𝑝)∗; (𝑏 → 0) ≤ 𝑐; (𝑏; 𝑝)∗; (𝑏 → 0); (𝑏 → 0); 𝑐

3.4 We i g h t e d s t r u c t u r e s a n d ma t r i c e s a s GKAT / I - GKAT

Binary relations model classic imperative programs as input/output pairs of states, constituting one of the

standard models of Kleene algebra with tests [EC96]. However, the behaviour of weighted computations

calls for other formalisms.

Since they were introduced as concepts based on natural language and fuzzy logic, weighted sets and

weighted relations [AZ96] are natural candidates to model weighted computations. In fact, weighted sets

describe the membership degree of elements in a collection. In its turn, weighted relations contain input-

output pairs of states with a value describing how strong the relation is.

This section illustrates both GKAT and I-GKAT constructions by discussing how they can be developed

over weighted sets, weighted relations, weighted languages and square matrices.

Consider two complete residuated lattices K and T over, respectively, carriers 𝐾 and 𝑇. Weighted

sets, weighted relations and weighted languages may be presented as functions from their domain to,

respectively, 𝐾 and 𝑇. We denote by + the supremum of K, and operators ; and → satisfying axioms

(25)-(31) and (36). We use the same notation for operators of T satisfying (25)-(31) plus (36)-(38).
Since + and ; are associative and have identity, we can generalise them to 𝑛-ary operators. We use

the notation ∑ and ∏ to represent their iterated versions, respectively. For the specific constructions

presented in this section (definitions 3.4.1, 3.4.2 and 3.4.3), we assume both K and T to be complete

residuated lattices, ensuring that the following properties hold:

𝑎; (∑
𝑖∈𝐼

𝑏𝑖) = ∑
𝑖∈𝐼

(𝑎; 𝑏𝑖) (48)
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(∑
𝑖∈𝐼

𝑏𝑖); 𝑎 = ∑
𝑖∈𝐼

(𝑏𝑖; 𝑎) (49)

where 𝐼 is a (possibly infinite) index set. To formalise these structures as I-GKAT, we consider ; to be also
idempotent, i.e. to satisfy (46).

Definition 3.4.1. Let𝑋 be a set and T a complete residuated lattice. The algebra of weighted sets over

T is the structure

WSET(T) = (T𝑋, T𝑋, ∪,⊗,∗ ,→, ∅, 𝜒)

where T𝑋 is the set of all weighted sets over𝑋 and, for all 𝜑, 𝜓 ∈ T𝑋 and 𝑥 ∈ 𝑋, operators are defined

pointwise by

(𝜑 ∪ 𝜓)(𝑥) = 𝜑(𝑥) + 𝜓(𝑥)
(𝜑 ⊗ 𝜓)(𝑥) = 𝜑(𝑥); 𝜓(𝑥)

(𝜑∗)(𝑥) = ∑
𝑘≥0

𝜑𝑘(𝑥)

(𝜑 → 𝜓)(𝑥) = 𝜑(𝑥) → 𝜓(𝑥)
∅(𝑥) = 0

𝜒(𝑥) = 1

with 𝜑0(𝑥) = 𝜒(𝑥) and 𝜑𝑘+1(𝑥) = (𝜑𝑛 ⊗ 𝜑)(𝑥). The values of weighted sets, 𝜑(𝑥) and 𝜓(𝑥), are
elements of T, and 0,1 are constants.The partial order ⊆ for weighted sets is given by

𝜑 ⊆ 𝜓 ⇔ ∀𝑥∈𝑋 ⋅ 𝜑(𝑥) ≤ 𝜓(𝑥), 𝜑, 𝜓 ∈ T𝑋

where ≤ is the order of Definition 2.2.1.

Note that, in this definition, the two sets of the signature ofWSET(T) coincide, both defined as functions
with codomain T.

Theorem 3.4.1. For any complete residuated lattice T satisfying (38), WSET(T) forms a GKAT and. If

T satisfies (46), WSET(T) forms a I-GKAT.

Proof. Considering the way that elements of T𝑋 and operators ∪, ⊗ and → are defined, it is straightfor-

ward to verify that axioms (25) to (31) and (36) to (38), plus (46) for I-GKAT, are satisfied. We prove that

axioms dealing with operator ∗ ((32)- (34)) hold as well. Axiom (35) can be proved analogously to (34).

Axiom (32):

(𝜒 ∪ (𝜑 ⊗ 𝜑∗))(𝑥)
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= { definition of T𝑋}
𝜒(𝑥) + 𝜑(𝑥); 𝜑∗(𝑥)

= { definition of 𝜑∗(𝑥)}

𝜒(𝑥) + 𝜑(𝑥); (∑
𝑘≥0

𝜑𝑘(𝑥))

= { definition of ∑}

𝜒(𝑥) + 𝜑(𝑥); (𝜑0(𝑥) + 𝜑1(𝑥) + ⋯)
= { (48)}

𝜒(𝑥) + 𝜑(𝑥); 𝜑0(𝑥) + 𝜑(𝑥); 𝜑1(𝑥) + ⋯
= { definition of 𝜑𝑘+1(𝑥)}

𝜒(𝑥) + 𝜑(𝑥) + 𝜑2(𝑥) + ⋯
= { definition of ∑}

𝜑∗(𝑥)

The proof of (33) is analogous but using (49).

Axiom (34)

Let us assume (𝜑⊗𝜓)(𝑥) ≤ 𝜓(𝑥), i.e. 𝜑(𝑥); 𝜓(𝑥) ≤ 𝜓(𝑥), by definition of the operators on weighted
sets. Moreover,

(𝜑∗ ⊗ 𝜓)(𝑥)
= { definitions of ∗ and ⊗}

(∑
𝑘≥0

𝜑𝑘(𝑥)); 𝜓(𝑥)

= { definition of ∑}

(𝜑0(𝑥) + 𝜑1(𝑥) + ⋯); 𝜓(𝑥)
= { (49) and (28)}

𝜓(𝑥) + 𝜑(𝑥); 𝜓(𝑥) + ⋯

By hypothesis and given that 𝜑(𝑥); 𝜑(𝑥) ≤ 𝜑(𝑥), for all 𝜑(𝑥) ∈ 𝑇, we conclude that

𝜓(𝑥) + 𝜑(𝑥); 𝜓(𝑥) + ⋯ ≤ 𝜓(𝑥)

Definition 3.4.2. Let 𝑋 be a set, K and T complete residuated lattices. The algebra of weighted

relations over K and T is defined as
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WREL(K, T) = (K𝑋×𝑋, T𝑋×𝑋, ∪, ∘,∗ ,→, ∅,𝐷)

where K𝑋×𝑋 is the set of all weighted relations over𝑋×𝑋, the elements of T𝑋×𝑋 are diagonal weighted

relations, i.e. weighted relations 𝜎 such that 𝜎(𝑥, 𝑦) = 0 whenever 𝑥 ≠ 𝑦. Moreover, for all 𝜇, 𝜈 ∈
K𝑋×𝑋, 𝜎, 𝜂 ∈ T𝑋×𝑋, 𝑥, 𝑦, 𝑧 ∈ 𝑋, the operators are defined by

(𝜇 ∪ 𝜈)(𝑥, 𝑦) = 𝜇(𝑥, 𝑦) + 𝜈(𝑥, 𝑦)
(𝜇 ∘ 𝜈)(𝑥, 𝑦) = ∑

𝑧∈𝑋
𝜇(𝑥, 𝑧); 𝜈(𝑧, 𝑦)

(𝜇∗)(𝑥, 𝑦) = ∑
𝑘≥0

𝜇𝑘(𝑥, 𝑦)

(𝜎 → 𝜂)(𝑥, 𝑦) =
⎧{
⎨{⎩

𝜎(𝑥, 𝑦) → 𝜂(𝑥, 𝑦), if 𝑥 = 𝑦
0, otherwise

∅(𝑥, 𝑦) = 0

𝐷(𝑥, 𝑦) =
⎧{
⎨{⎩

1, if 𝑥 = 𝑦
0, otherwise

with 𝜇0(𝑥, 𝑦) = 𝐷(𝑥, 𝑦), 𝜇𝑘+1(𝑥, 𝑦) = (𝜇𝑘 ∘𝜇)(𝑥, 𝑦). The values of weighted relations, 𝜇(𝑥, 𝑦) and
𝜈(𝑥, 𝑦), are elements of 𝐾, the values of 𝜎(𝑥, 𝑦) and 𝜂(𝑥, 𝑦) are elements of T, and, finally, 0,1 are

constants. Similarly to the previous one, the partial order ⊆ for weighted relations is given by

𝜇 ⊆ 𝜈 ⇔ ∀(𝑥,𝑦)∈𝑋×𝑋 ⋅ 𝜇(𝑥, 𝑦) ≤ 𝜈(𝑥, 𝑦), 𝜇, 𝜈 ∈ 𝐾𝑋

where ≤ is the order referred in Definition 2.2.1.

Theorem 3.4.2. Given complete residuated lattices K and T, with T satisfying (38), WREL(K, T) is a

GKAT. If T satisfies (46), WREL(K, T) is also a I-GKAT.

Proof. The validity of (25) and (26) follows immediately from the definitions of operators on weighted

relations. Let 𝜇, 𝜈, 𝜉 ∈ 𝐾𝑋×𝑋 and 𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝑋.

Axiom (27):

((𝜇 ∘ 𝜈) ∘ 𝜉)(𝑥, 𝑦)
= { definition of ∘}

∑
𝑧∈𝑋

( ∑
𝑤∈𝑋

(𝜇(𝑥, 𝑤); 𝜈(𝑤, 𝑧)); 𝜉(𝑧, 𝑦)

= { definition of ∑ and 𝑧𝑖, 𝑤𝑖 ∈ 𝑋, 1 ≤ 𝑖 ≤ 𝑛}
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(𝜇(𝑥, 𝑤1); 𝜈(𝑤1, 𝑧1) + ⋯+ 𝜇(𝑥, 𝑤𝑛); 𝜈(𝑤𝑛, 𝑧1)); 𝜉(𝑧1, 𝑦) + ⋯
+ (𝜇(𝑥, 𝑤1); 𝜈(𝑤1, 𝑧𝑛) + ⋯+ 𝜇(𝑥, 𝑤𝑛); 𝜈(𝑤𝑛, 𝑧𝑛)); 𝜉(𝑧𝑛, 𝑦)

= { (49) and (27)}

𝜇(𝑥, 𝑤1); (𝜈(𝑤1, 𝑧1); 𝜉(𝑧1, 𝑦)) + ⋯+ 𝜇(𝑥, 𝑤𝑛); (𝜈(𝑤𝑛, 𝑧1); 𝜉(𝑧1, 𝑦)) + ⋯
+ 𝜇(𝑥,𝑤1); (𝜈(𝑤1, 𝑧𝑛); 𝜉(𝑧𝑛, 𝑦)) + ⋯+ 𝜇(𝑥, 𝑤𝑛); (𝜈(𝑤𝑛, 𝑧𝑛); 𝜉(𝑧𝑛, 𝑦))

= { (26) and (48)}

𝜇(𝑥, 𝑤1); (𝜈(𝑤1, 𝑧1); 𝜉(𝑧1, 𝑦) + ⋯ + 𝜈(𝑤1, 𝑧𝑛); 𝜉(𝑧𝑛, 𝑦)) + ⋯
+ 𝜇(𝑥,𝑤𝑛); (𝜈(𝑤𝑛, 𝑧1); 𝜉(𝑧1, 𝑦) + ⋯ + 𝜈(𝑤𝑛, 𝑧𝑛); 𝜉(𝑧𝑛, 𝑦))

= { definition of ∑}

∑
𝑤∈𝑋

(𝜇(𝑥, 𝑤); (∑
𝑧∈𝑋

(𝜈(𝑤, 𝑧); 𝜉(𝑧, 𝑦))))

= { definition of ∘}
(𝜇 ∘ (𝜈 ∘ 𝜉))(𝑥, 𝑦)

Axiom (28):

(𝜇 ∘ 𝐷)(𝑥, 𝑦)
= { definition of ∘}

∑
𝑧∈𝑋

𝜇(𝑥, 𝑧); 𝐷(𝑧, 𝑦)

= { definition of ∑ and 𝑧𝑖 ∈ 𝑋, 1 ≤ 𝑖 ≤ 𝑛}
𝜇(𝑥, 𝑧1);𝐷(𝑧1, 𝑦) + ⋯ + 𝜇(𝑥, 𝑧𝑛);𝐷(𝑧𝑛, 𝑦)

= { definition of 𝐷}
𝜇(𝑥, 𝑧1); 1 + ⋯+ 𝜇(𝑥, 𝑧𝑛); 1, for all 𝐷(𝑧𝑖, 𝑦) = 1, 1 ≤ 𝑖 ≤ 𝑛

= { (28)}
𝜇(𝑥, 𝑧1) + ⋯+ 𝜇(𝑥, 𝑧𝑛)

= { definition of 𝜇}
𝜇(𝑥, 𝑦)
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Axiom (29):

(𝜇 ∘ (𝜈 ∪ 𝜉))(𝑥, 𝑦)
= { definitions of ∘ and ∪}

∑
𝑧∈𝑋

𝜇(𝑥, 𝑧); (𝜈(𝑧, 𝑦) + 𝜉(𝑧, 𝑦))

= { definition of ∑ and 𝑧𝑖 ∈ 𝑋, 1 ≤ 𝑖 ≤ 𝑛}
𝜇(𝑥, 𝑧1); (𝜈(𝑧1, 𝑦) + 𝜉(𝑧1, 𝑦)) + ⋯+ 𝜇(𝑥, 𝑧𝑛); (𝜈(𝑧𝑛, 𝑦) + 𝜉(𝑧𝑛, 𝑦))

= { (29)}
𝜇(𝑥, 𝑧1); 𝜈(𝑧1, 𝑦) + 𝜇(𝑥, 𝑧1); 𝜉(𝑧1, 𝑦) + ⋯ + 𝜇(𝑥, 𝑧𝑛); 𝜈(𝑧𝑛, 𝑦) + 𝜇(𝑥, 𝑧𝑛); 𝜉(𝑧𝑛, 𝑦)

= { (26)}
𝜇(𝑥, 𝑧1); 𝜈(𝑧1, 𝑦) + ⋯ + 𝜇(𝑥, 𝑧𝑛); 𝜈(𝑧𝑛, 𝑦)
+ 𝜇(𝑥, 𝑧1); 𝜉(𝑧1, 𝑦) + ⋯ + 𝜇(𝑥, 𝑧𝑛); 𝜉(𝑧𝑛, 𝑦)

= { definition of ∑}
∑
𝑧∈𝑋

𝜇(𝑥, 𝑧); 𝜈(𝑧, 𝑦) + ∑
𝑧∈𝑋

𝜇(𝑥, 𝑧); 𝜈(𝑧, 𝑦)

= { definitions of ∘ and ∪ on weighted relations}
((𝜇 ∘ 𝜈) ∪ (𝜇 ∘ 𝜉))(𝑥, 𝑦)

Axioms (30) to (35): The proof of Axiom (30) is analogous. Axiom (31) follows straightforwardly, since

∅(𝑥, 𝑦) = 0 is the absorbing element of ; over K. Axioms (32)-(35) are proved as in Theorem 3.4.1, but

taking instead the composition of weighted relations, i.e.

(𝜇 ∘ 𝜈)(𝑥, 𝑦) = ∑
𝑧∈𝑋

𝜇(𝑥, 𝑧); 𝜈(𝑧, 𝑦)

for all 𝜇, 𝜈 ∈ K𝑋×𝑋. As in Theorem 3.4.1, we only verify axioms (32) and (34). The validity of (33) and

(35) is left for the reader, since the arguments used are essentially the same of (34).
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Axiom (32):

(𝐷 ∪ (𝜇 ∘ 𝜇∗))(𝑥, 𝑦)
= { definition of ∪, ∘ and ∗}

𝐷(𝑥, 𝑦) + ∑
𝑧∈𝑋

(𝜇(𝑥, 𝑧); (∑
𝑘≥0

𝜇𝑘(𝑧, 𝑦)))

= { definition of 𝜇}
𝐷(𝑥, 𝑦) + ∑

𝑧∈𝑋
(𝜇(𝑥, 𝑧); 𝜇0(𝑧, 𝑦) + 𝜇(𝑥, 𝑧); 𝜇(𝑧, 𝑦) + ⋯)

= { definition of ∑ and 𝑧𝑖 ∈ 𝑋, 1 ≤ 𝑖 ≤ 𝑛}
𝐷(𝑥, 𝑦) + 𝜇(𝑥, 𝑧1); 𝜇0(𝑧1, 𝑦) + 𝜇(𝑥, 𝑧1); 𝜇(𝑧1, 𝑦) + ⋯
+ 𝜇(𝑥, 𝑧𝑛); 𝜇0(𝑧𝑛, 𝑦) + 𝜇(𝑥, 𝑧𝑛); 𝜇(𝑧𝑛, 𝑦) + ⋯

= { definition of 𝜇𝑘}
𝐷(𝑥, 𝑦) + 𝜇(𝑥, 𝑦) + 𝜇(𝑥, 𝑦) + ⋯+ 𝜇(𝑥, 𝑦) + 𝜇(𝑥, 𝑦) + ⋯

= { (26) and (39)}
𝐷(𝑥, 𝑦) + 𝜇(𝑥, 𝑦) + 𝜇(𝑥, 𝑦) + ⋯

= { definition of 𝜇𝑘}
𝜇∗(𝑥, 𝑦)

Axiom (34): We assume the left side of the implication of (34) for elements of 𝐾, i.e.

(𝜇 ∘ 𝜈)(𝑥, 𝑦) ≤ 𝜈(𝑥, 𝑦) ⇔ ∑
𝑧∈𝑋

𝜇(𝑥, 𝑧); 𝜈(𝑧, 𝑦) ≤ 𝜈(𝑥, 𝑦)

by definition of ∘ on weighted relations.

(𝜇∗ ∘ 𝜈)(𝑥, 𝑦)
= { definitions of ∘ and ∗}

∑
𝑧∈𝑋

(( ∑
𝑘≥0

𝜇𝑘(𝑥, 𝑧)); 𝜈(𝑧, 𝑦))

= { definition of ∑, (49) and 𝑧𝑖 ∈ 𝑋, 1 ≤ 𝑖 ≤ 𝑛}

𝜇0(𝑥, 𝑧1); 𝜈(𝑧1, 𝑦) + 𝜇(𝑥, 𝑧1); 𝜈(𝑧1, 𝑦) + ⋯
+𝜇0(𝑥, 𝑧𝑛); 𝜈(𝑧𝑛, 𝑦) + 𝜇(𝑥, 𝑧𝑛); 𝜈(𝑧𝑛, 𝑦) + ⋯

(50)

Resorting to (26) and the hypothesis, the terms of (50) are re-organised as follows. For 𝑘 = 0

𝜇0(𝑥, 𝑧1); 𝜈(𝑧1, 𝑦) + ⋯ + 𝜇0(𝑥, 𝑧𝑛); 𝜈(𝑧𝑛, 𝑦) ≤ 𝜈(𝑥, 𝑦)
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and for 𝑘 = 1

𝜇(𝑥, 𝑧1); 𝜈(𝑧1, 𝑦) + ⋯ + 𝜇(𝑥, 𝑧𝑛); 𝜈(𝑧𝑛, 𝑦) ≤ 𝜈(𝑥, 𝑦).

Each term 𝜇𝑘(𝑥, 𝑧𝑖); 𝜈(𝑧𝑖, 𝑦), for 𝑘 ≥ 2, for each 𝑧𝑖, 1 ≤ 𝑖 ≤ 𝑛, becomes

(𝜇 ∘ ⋯ ∘ 𝜇)(𝑥, 𝑧𝑖); 𝜈(𝑧𝑖, 𝑦) = ∑
𝑤1∈𝑋

(⋯ ∑
𝑤𝑘∈𝑋

(𝜇(𝑥, 𝑤𝑘); 𝜇(𝑤𝑘, 𝑤𝑘−1));⋯ ; 𝜇(𝑤1, 𝑧𝑖)); 𝜈(𝑧𝑖, 𝑦)

Using (49), (27) and the hypothesis, we can simplify the expression and prove (34). As an example, the

term for 𝑘 = 2, for each 𝑧𝑖 is computed as follows.

𝜇2(𝑥, 𝑧𝑖); 𝜈(𝑧𝑖, 𝑦)
= { definition of 𝜇𝑖 of Definition 3.4.2}

(𝜇 ∘ 𝜇)(𝑥, 𝑧1); 𝜈(𝑧𝑖, 𝑦)
= { definition of ∘}

( ∑
𝑤∈𝑋

(𝜇(𝑥, 𝑤); 𝜇(𝑤, 𝑧𝑖))); 𝜈(𝑧𝑖, 𝑦)

= { definition of ∑ and 𝑤𝑖 ∈ 𝑋, 1 ≤ 𝑖 ≤ 𝑛}
(𝜇(𝑥, 𝑤1); 𝜇(𝑤1, 𝑧𝑖) + ⋯+ 𝜇(𝑥, 𝑤𝑛); 𝜇(𝑤𝑛, 𝑧𝑖)); 𝜈(𝑧𝑖, 𝑦)

= { (49) and (27)}
𝜇(𝑥, 𝑤1); (𝜇(𝑤1, 𝑧𝑖); 𝜈(𝑧𝑖, 𝑦)) + ⋯+ 𝜇(𝑥, 𝑤𝑛); (𝜇(𝑤𝑛, 𝑧𝑖); 𝜈(𝑧𝑖, 𝑦))

≤ { 𝜇(𝑥, 𝑧); 𝜈(𝑧, 𝑦) ≤ 𝜈(𝑧, 𝑦) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 and monotonicity of ; and +}
𝜇(𝑥, 𝑤1); 𝜈(𝑤1, 𝑦) + ⋯ + 𝜇(𝑥, 𝑤𝑛); 𝜈(𝑤𝑛, 𝑦)

= { hypothesis}
∑

𝑤∈𝑋
𝜇(𝑥, 𝑤); 𝜈(𝑤, 𝑦) ≤ 𝜈(𝑥, 𝑦)

1 ≤ 𝑖 ≤ 𝑘. Generalisation to other values for 𝑘 is straightforward.
So, we prove that (50) becomes 𝜈(𝑥, 𝑦) + ⋯+ 𝜈(𝑥, 𝑦), reduced by (39) to 𝜈(𝑥, 𝑦).

Axiom (36) (“⇒”): Let 𝜎 , 𝜂, 𝜃 ∈ T𝑋×𝑋 and assume

(𝜎 ∘ 𝜂)(𝑥, 𝑦) ≤ 𝜃(𝑥, 𝑦)
⇔ { definition of ∘}

∑
𝑧∈𝑋

𝜎(𝑥, 𝑧); 𝜂(𝑧, 𝑦) ≤ 𝜃(𝑥, 𝑦)

⇔ { definition of ∑ and 𝑧𝑖 ∈ 𝑋, 1 ≤ 𝑖 ≤ 𝑛}
𝜎(𝑥, 𝑧1); 𝜂(𝑧1, 𝑦) + ⋯ + 𝜎(𝑥, 𝑧𝑛); 𝜂(𝑧𝑛, 𝑦) ≤ 𝜃(𝑥, 𝑦)
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Since 𝜎(𝑥, 𝑧𝑖), 𝜂(𝑧𝑖, 𝑦) ∈ T𝑋×𝑋, there is, at most, one 1 ≤ 𝑖 ≤ 𝑛 such that 𝑥 = 𝑧𝑖 and 𝑧𝑖 = 𝑦.
So, 𝜎(𝑥, 𝑧1); 𝜂(𝑧1, 𝑦) + ⋯ + 𝜎(𝑥, 𝑧𝑛); 𝜂(𝑧𝑛, 𝑦) = 𝜎(𝑥, 𝑧𝑖); 𝜂(𝑧𝑖, 𝑦) ≤ 𝜃(𝑥, 𝑦), for the only 1 ≤
𝑖 ≤ 𝑛 such that 𝑥 = 𝑧𝑖 and 𝑧𝑖 = 𝑦. Since 𝜎(𝑥, 𝑧𝑖), 𝜂(𝑧𝑖, 𝑦) and 𝜃(𝑥, 𝑦) ∈ T, by (36) on T,

𝜎(𝑥, 𝑧𝑖); 𝜂(𝑧𝑖, 𝑦) ≤ 𝜃(𝑥, 𝑦) implies 𝜂(𝑥, 𝑦) ≤ 𝜎(𝑥, 𝑦) → 𝜃(𝑥, 𝑦). The proof of (“⇐”) is analogous.

Axiom (37): The proof of (37) is trivial, since 𝜎(𝑥, 𝑦) ≤ 1 = Δ(𝑥, 𝑦), for all 𝜎(𝑥, 𝑦) ∈ T𝑋×𝑋.

Axiom (38): First observe that

(𝜎 ∘ 𝜂)(𝑥, 𝑦)
= { definition of ∘}

∑
𝑧∈𝑋

𝜎(𝑥, 𝑧); 𝜂(𝑧, 𝑦)

= { definition of ∑ and 𝑧𝑖 ∈ 𝑋, 1 ≤ 𝑖 ≤ 𝑛}
𝜎(𝑥, 𝑧1); 𝜂(𝑧1, 𝑦) + ⋯ + 𝜎(𝑥, 𝑧𝑛); 𝜂(𝑧𝑛, 𝑦),
for all 𝜎(𝑥, 𝑧𝑖), 𝜂(𝑧𝑖, 𝑦) ≠ 0, with 1 ≤ 𝑖 ≤ 𝑛

Clearly 𝑥 = 𝑧𝑖 = 𝑦, using the definition of 𝜎(𝑥, 𝑦), for all 𝜎 ∈ T𝑋×𝑋. Thus, the proof follows directly

from (38) on elements of 𝑇, as shown below.

𝜂(𝑥, 𝑧1); 𝜎(𝑧1, 𝑦) + ⋯ + 𝜂(𝑥, 𝑧𝑛); 𝜎(𝑧𝑛, 𝑦)
= { definition of ∑}

∑
𝑧∈𝑋

𝜂(𝑥, 𝑧); 𝜎(𝑧, 𝑦)

= { definition of ∘}
(𝜂 ∘ 𝜎)(𝑥, 𝑦)

To prove thatWREL(T) is also a I-GKAT, for any complete residuated lattice T, we need to prove axiom
(46).

Axiom (46):

(𝜎 ∘ 𝜎)(𝑥, 𝑦)
= { definition of ∘}

∑
𝑧∈𝑋

𝜎(𝑥, 𝑦); 𝜎(𝑧, 𝑦)

= { definition of ∑ and 𝑧𝑖 ∈ 𝑋, 1 ≤ 𝑖 ≤ 𝑛}
𝜎(𝑥, 𝑧1); 𝜎(𝑧1, 𝑦) + ⋯ + 𝜎(𝑥, 𝑧𝑛); 𝜎(𝑧𝑛, 𝑦)
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Again, 𝜎(𝑥, 𝑦) + 𝜎(𝑥, 𝑧1); 𝜂(𝑧1, 𝑦) + ⋯ + 𝜎(𝑥, 𝑧𝑛); 𝜂(𝑧𝑛, 𝑦) reduces to 𝜎(𝑥, 𝑧𝑖); 𝜎(𝑧𝑖, 𝑦), for
the only 1 ≤ 𝑖 ≤ 𝑛 such that 𝑥 = 𝑧𝑖 = 𝑦. But 𝜎(𝑥, 𝑧𝑖); 𝜎(𝑧𝑖, 𝑦) = 𝜎(𝑥, 𝑦), by (46), since

𝜎(𝑥, 𝑧𝑖), 𝜎(𝑧𝑖, 𝑦) ∈ T.

Definition 3.4.3. Let Σ be an alphabet, Σ∗ the set of all words over Σ and K, T complete residuated

lattices. The algebra of weighted languages over K, T is defined as

WLANG(K, T) = (𝐾Σ∗ , 𝑇Σ∗ , ∪, ⋅,∗ ,→, ∅, 𝜖)

where KΣ∗
stands for the set of all weighted languages over Σ. The elements of TΣ

∗
are languages de-

fined, for each 𝑡 ∈ 𝑇, by

𝜄𝑡(𝑎1 …𝑎𝑛) =
⎧{
⎨{⎩

𝑡, if 𝑎1 …𝑎𝑛 = 𝜖, with 𝜖 being the empty word

0, otherwise

and, for all 𝜆1, 𝜆2 ∈ 𝐾Σ∗
and all 𝜄1, 𝜄2 ∈ 𝑇Σ∗

, given a word 𝑎1 …𝑎𝑛 ∈ Σ∗, the operators ∪, ⋅, ∗, →,

∅ and 𝜖 are defined as:

(𝜆1 ∪ 𝜆2)(𝑎1 …𝑎𝑛) = 𝜆1(𝑎1 …𝑎𝑛) + 𝜆2(𝑎1 …𝑎𝑛)

(𝜆1 ⋅ 𝜆2)(𝑎1 …𝑎𝑛) =
𝑛−1
∑
𝑖=1

𝜆1(𝑎1 …𝑎𝑖); 𝜆2(𝑎𝑖+1 …𝑎𝑛)

(𝜆∗)(𝑎1 …𝑎𝑛) = ∑
𝑘≥0

𝜆𝑘(𝑎1 …𝑎𝑛)

(𝜄1 → 𝜄2)(𝑎𝑖 …𝑎𝑛) =

⎧{{{
⎨{{{⎩

∏
𝑎1…𝑎𝑖−1

(𝜄1(𝑎1 …𝑎𝑖−1) → 𝜄2(𝑎1 …𝑎𝑛)), 𝑖 ≤ 𝑛,

if 𝑎1 …𝑎𝑖−1 = 𝜖
0, otherwise

∅(𝑎1 …𝑎𝑛) = 0

𝜖(𝑎1 …𝑎𝑛) =
⎧{
⎨{⎩

1 if 𝑎1 …𝑎𝑛 = 𝜖, with 𝜖 being the empty word

0 otherwise

with 𝜆0(𝑎1 …𝑎𝑛) = 𝜖(𝑎1 …𝑎𝑛) and 𝜆𝑘+1(𝑎1 …𝑎𝑛) = (𝜆𝑘.𝜆)(𝑎1 …𝑎𝑛). The values of weighted

sets, 𝜆1(𝑎1 …𝑎𝑛) and 𝜆2(𝑎1 …𝑎𝑛), are elements of K, and 0,1 are constants. The partial order ⊆
for weighted languages is given by

𝜆1 ⊆ 𝜆2 ⇔ ∀𝑎1…𝑎𝑛∈Σ∗ ⋅ 𝜆1(𝑎1 …𝑎𝑛) ≤ 𝜆2(𝑎1 …𝑎𝑛), 𝜆1, 𝜆2 ∈ KΣ∗

where ≤ is the order of Definition 2.2.1.

Theorem3.4.3. Given complete residuated lattices K and T, with T satisfying (38) and (46),WLANG(K, T)
is a I-GKAT.
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Proof. Since a weighted language 𝜆 is a weighted subset of a set of elements (in this case, the alphabetΣ∗)

and the operators∪ and ∗ are defined as∪ and ∗ inWSET(T), respectively, and ⋅ as ∘ inWREL(K, T),
the proof is identical to that of Theorem 3.4.1 for the cases of ∪ and ∗, and to that of Theorem 3.4.2 for

the ⋅ operator.
It remains to prove axiom (36): Take 𝜄1, 𝜄2, 𝜄3 ∈ TΣ

∗
and 𝑣 ∈ Σ∗. Consider first the case 𝑣 ≠ 𝜖.

Assuming

(𝜄1 ⋅ 𝜄2)(𝑣) ≤ 𝜄3(𝑣) ⇔ ∑
𝑣1,𝑣2

𝜄1(𝑣1); 𝜄2(𝑣2) ≤ 𝜄3(𝑣) ⇔ 𝜄3(𝑣) = 0

we want to prove that 𝜄2(𝑣) ≤ (𝜄1 → 𝜄3)(𝑣). But, by definition of 𝜄 and →,

𝜄2(𝑣) ≤ (𝜄1 → 𝜄3)(𝑣) ⇔ 0 ≤ 0

Consider now 𝑣 = 𝜖. We want to prove that

(𝜄1 ⋅ 𝜄2)(𝜖) ≤ 𝜄3(𝜖) ⇔ 𝜄2(𝜖) ≤ (𝜄1 → 𝜄3)(𝜖)

𝜄2(𝜖) ≤ (𝜄1 → 𝜄3)(𝜖)
⇔ { definition of →}

𝜄2(𝜖) ≤ ∏
𝑢
(𝜄1(𝑢) → 𝜄3(𝑢𝜖))

⇔ { definition of ∏}
𝜄2(𝜖) ≤ (𝜄1(𝑢1) → 𝜄3(𝑢1𝜖));… ; (𝜄1(𝑢𝑛−1) → 𝜄3(𝑢𝑛−1𝜖)); (𝜄1(𝜖) → 𝜄3(𝜖𝜖)),
𝑢1,… , 𝑢𝑛−1 ≠ 𝜖

⇔ { definition of 𝜄}
𝜄2(𝜖) ≤ (0 → 0);… ; (0 → 0); (𝜄1(𝜖) → 𝜄3(𝜖))

⇔ { 0 → 0 = 1 for all I-action lattices ([MNM16]) and (28)}
𝜄2(𝜖) ≤ 𝜄1(𝜖) → 𝜄3(𝜖)

⇔ { (36)}
𝜄1(𝜖); 𝜄2(𝜖) ≤ 𝜄3(𝜖)

⇔ { definition of ⋅}
(𝜄1 ⋅ 𝜄2)(𝜖) ≤ 𝜄3(𝜖)

Now we present the construction of square matrices over a GKAT and I-GKAT.

Definition 3.4.4. Let 𝐴 = (K, T, +, ; ,∗ ,→, 0, 1) be a GKAT (or a I-GKAT). Define the following struc-

ture over the family of 𝑛 × 𝑛 matrices.

M𝑛(𝐴) = (𝑀𝑛(K), Δ𝑛(T), +, ; ,∗ ,→, 0𝑛, 𝐼𝑛)
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where + and ; stand for the usual matrix addition and multiplication, respectively; 0𝑛 is the 𝑛 × 𝑛 matrix

of zeros and 𝐼𝑛 the 𝑛 × 𝑛 identity matrix. The subalgebra over the set Δ𝑛(T) of 𝑛 × 𝑛 diagonal matrices

keep operators + and ; and matrices 0𝑛 and 𝐼𝑛 defined as before. The entries of the diagonal matrices

are elements of the subalgebra (T, +, ; , 0, 1) of GKAT (or I-GKAT) Finally, operation → is defined as:

𝐴 → 𝐵 =
⎧{
⎨{⎩

𝐴𝑖𝑗 → 𝐵𝑖𝑗 if 𝑖 = 𝑗
0 otherwise

Theorem 3.4.4. M𝑛(𝐴) is a GKAT (and a I-GKAT).

Proof. It was already proved by Kozen [Koz94a] that the structure

(𝑀𝑛(K), +, ; ,∗ , 0𝑛, 𝐼𝑛)

forms a Kleene algebra. Then, it remains to prove that

(Δ𝑛(T), +, ;→, 0𝑛, 𝐼𝑛)

satisfies axioms (36)-(38).

Let 𝐴=

⎡⎢⎢⎢⎢⎢
⎣

𝑎11 0 ⋯ 0
0 𝑎22 ⋯ 0

. . . . . . . . .
0 0 ⋯ 𝑎𝑛𝑛

⎤⎥⎥⎥⎥⎥
⎦

, 𝐵=

⎡⎢⎢⎢⎢⎢
⎣

𝑏11 0 ⋯ 0
0 𝑏22 ⋯ 0

. . . . . . . . .
0 0 ⋯ 𝑏𝑛𝑛

⎤⎥⎥⎥⎥⎥
⎦

and 𝐶=

⎡⎢⎢⎢⎢⎢
⎣

𝑐11 0 ⋯ 0
0 𝑐22 ⋯ 0

. . . . . . . .
0 0 ⋯ 𝑐𝑛𝑛

⎤⎥⎥⎥⎥⎥
⎦

be elements of Δ𝑛(𝑇).
For (36) we prove that 𝐴; 𝐵 + 𝐶 = 𝐶 ⇒ 𝐵 + 𝐴 → 𝐶 = 𝐴 → 𝐶. Using the definitions of the

operators, we obtain

⎡⎢⎢⎢⎢⎢
⎣

𝑎11 0 ⋯ 0
0 𝑎22 ⋯ 0

. . . . . . . . .
0 0 ⋯ 𝑎𝑛𝑛

⎤⎥⎥⎥⎥⎥
⎦

;

⎡⎢⎢⎢⎢⎢
⎣

𝑏11 0 ⋯ 0
0 𝑏22 ⋯ 0

. . . . . . . . .
0 0 ⋯ 𝑏𝑛𝑛

⎤⎥⎥⎥⎥⎥
⎦

+

⎡⎢⎢⎢⎢⎢
⎣

𝑐11 0 ⋯ 0
0 𝑐22 ⋯ 0

. . . . . . . .
0 0 ⋯ 𝑐𝑛𝑛

⎤⎥⎥⎥⎥⎥
⎦

=

⎡⎢⎢⎢⎢⎢
⎣

𝑐11 0 ⋯ 0
0 𝑐22 ⋯ 0

. . . . . . . .
0 0 ⋯ 𝑐𝑛𝑛

⎤⎥⎥⎥⎥⎥
⎦

which is equivalent to
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⎡⎢⎢⎢⎢⎢
⎣

𝑎11; 𝑏11 + 𝑐11 0 ⋯ 0
0 𝑎22; 𝑏22 + 𝑐22 ⋯ 0

. . . . . . . . . . . . . . . . . . . . . . . .
0 0 ⋯ 𝑎𝑛𝑛; 𝑏22 + 𝑐𝑛𝑛

⎤⎥⎥⎥⎥⎥
⎦

=

⎡⎢⎢⎢⎢⎢
⎣

𝑐11 0 ⋯ 0
0 𝑐22 ⋯ 0

. . . . . . . .
0 0 ⋯ 𝑐𝑛𝑛

⎤⎥⎥⎥⎥⎥
⎦

In order for two matrices to be equal, their elements must be equal in the corresponding positions. So,

the assumption is

⎧{{{{
⎨{{{{⎩

𝑎11; 𝑏11 + 𝑐11 = 𝑐11
𝑎22; 𝑏22 + 𝑐22 = 𝑐22
⋯
𝑎𝑛𝑛; 𝑏𝑛𝑛 + 𝑐𝑛𝑛 = 𝑐𝑛𝑛

which is verified as follows.

⎡⎢⎢⎢⎢⎢
⎣

𝑏11 0 ⋯ 0
0 𝑏22 ⋯ 0

. . . . . . . . .
0 0 ⋯ 𝑏𝑛𝑛

⎤⎥⎥⎥⎥⎥
⎦

+

⎡⎢⎢⎢⎢⎢
⎣

𝑎11 0 ⋯ 0
0 𝑎22 ⋯ 0

. . . . . . . . .
0 0 ⋯ 𝑎𝑛𝑛

⎤⎥⎥⎥⎥⎥
⎦

→

⎡⎢⎢⎢⎢⎢
⎣

𝑐11 0 ⋯ 0
0 𝑐22 ⋯ 0

. . . . . . . .
0 0 ⋯ 𝑐𝑛𝑛

⎤⎥⎥⎥⎥⎥
⎦

=

⎡⎢⎢⎢⎢⎢
⎣

𝑎11 0 ⋯ 0
0 𝑎22 ⋯ 0

. . . . . . . . .
0 0 ⋯ 𝑎𝑛𝑛

⎤⎥⎥⎥⎥⎥
⎦

→

⎡⎢⎢⎢⎢⎢
⎣

𝑐11 0 ⋯ 0
0 𝑐22 ⋯ 0

. . . . . . . .
0 0 ⋯ 𝑐𝑛𝑛

⎤⎥⎥⎥⎥⎥
⎦

⇔

⎡⎢⎢⎢⎢⎢
⎣

𝑏11 + 𝑎11 → 𝑐11 0 ⋯ 0
0 𝑏22 + 𝑎22 → 𝑐22 ⋯ 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 ⋯ 𝑏22 + 𝑎22 → 𝑐22

⎤⎥⎥⎥⎥⎥
⎦

=

⎡⎢⎢⎢⎢⎢
⎣

𝑎11 → 𝑐11 0 ⋯ 0
0 𝑎22 → 𝑐22 ⋯ 0

. . . . . . . . . . . . . . . . . . .
0 0 ⋯ 𝑎𝑛𝑛 → 𝑐𝑛𝑛

⎤⎥⎥⎥⎥⎥
⎦

i. e.

⎧{{{{
⎨{{{{⎩

𝑏11 + 𝑎11 → 𝑐11 = 𝑎11 → 𝑐11
𝑏22 + 𝑎22 → 𝑐22 = 𝑎22 → 𝑐22
⋯
𝑏𝑛𝑛 + 𝑎𝑛𝑛 → 𝑐𝑛𝑛 = 𝑎𝑛𝑛 → 𝑐𝑛𝑛
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But, since 𝑎𝑖𝑗, 𝑏𝑖𝑗, 𝑐𝑖𝑗 ∈ 𝑇 for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛 it is verified by axiom (36) of GKAT that

⎧{{{{
⎨{{{{⎩

𝑎11; 𝑏11 + 𝑐11 = 𝑐11 ⇒ 𝑏11 + 𝑎11 → 𝑐11 = 𝑎11 → 𝑐11
𝑎22; 𝑏22 + 𝑐22 = 𝑐22 ⇒ 𝑏22 + 𝑎22 → 𝑐22 = 𝑎22 → 𝑐22
⋯
𝑎𝑛𝑛; 𝑏𝑛𝑛 + 𝑐𝑛𝑛 = 𝑐𝑛𝑛 ⇒ 𝑏𝑛𝑛 + 𝑎𝑛𝑛 → 𝑐𝑛𝑛 = 𝑎𝑛𝑛 → 𝑐𝑛𝑛

The proof for ⇐ is similar. The proofs of axioms (37) and (38) are analogous, using the definitions of

the operators over elemtents of Δ𝑛(T). Note, in particular, the proof of axiom (38). It is well known that

the multiplication of matrices is not commutative. However, since axiom (38) is only applied to elements of

Δ𝑛(T), that is, diagonal matrices, and the multiplication of diagonal matrices is commutative, this axiom
is valid in this context.

To prove that this also forms a I-GKAT, it suffices to show the validity of (46). The proof is similar to the

one presented for GKAT, for all 𝐴, 𝐵, 𝐶 ∈ Δ𝑛(T), using the definitions of the operators over elements of
Δ𝑛(T).

3.5 A n i l l u s t r a t i o n : a f o l k t h e o r em

To illustrate our framework we revisit, in this section, a previously mentioned result on denesting two nested

while loops [Koz97], in a scenario where both assertions and programs are expressed in a weighted

context. Most proofs in [Koz97] rely on the use of a commutativity condition (𝑏; 𝑝 = 𝑝; 𝑏) which asserts
that the execution of program 𝑝 does not modify the value of test 𝑏. In KAT, it is possible to argue, as well,
that if 𝑝 does not affect 𝑏, neither should it affect ̄𝑏, which is formally stated through the following lemma:

Lemma 3.5.1. In any Kleene algebra with tests the following are equivalent:

(1) 𝑏; 𝑝 = 𝑝; 𝑏

(2) 𝑏̄; 𝑝 = 𝑝; 𝑏̄

(3) 𝑏; 𝑝; 𝑏̄ + 𝑏̄; 𝑝; 𝑏 = 0

In GKAT, negation is relaxed and expressed as 𝑎 → 0, for all 𝑎 ∈ 𝑇. So, the conditions above must be
written as

(1) 𝑏; 𝑝 = 𝑝; 𝑏

(2) (𝑏 → 0); 𝑝 = 𝑝; (𝑏 → 0)

(3) 𝑏; 𝑝; (𝑏 → 0) + (𝑏 → 0); 𝑝; 𝑏 = 0

However, it is important to note that not all implications hold in GKAT.
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Lemma 3.5.2. (1) ⇔ (2) does not hold in GKAT.

Proof. This can be shown by the following counter example: a GKAT over the set {0, 𝑛,𝑚, 1}, with
{0, 𝑛, 1} ⊆ 𝑇 and 𝑚 ∈ 𝐾, in which the operator ∗ maps all points to the top element 1 and the

remaining operators are defined as follows:

+ 0 𝑛 𝑚 1
0 0 𝑛 𝑚 1
𝑛 𝑛 𝑛 𝑚 1
𝑚 𝑚 𝑚 𝑚 1
1 1 1 1 1

; 0 𝑛 𝑚 1
0 0 0 0 0
𝑛 0 0 0 𝑛
𝑚 0 𝑛 𝑚 𝑚
1 0 𝑛 𝑚 1

→ 0 𝑛 𝑚 1
0 1 0 𝑛.𝑑. 1
𝑛 0 0 𝑛.𝑑. 1
𝑚 𝑛.𝑑. 𝑛.𝑑. 𝑛.𝑑. 𝑛.𝑑.
1 0 0 𝑛.𝑑. 1

If 𝑏 = 𝑛, 𝑝 = 𝑚, the instantiation of 𝑏; 𝑝 = 𝑝; 𝑏 ⇔ (𝑏 → 0); 𝑝 = 𝑝; (𝑏 → 0) becomes

𝑛;𝑚 = 𝑚; 𝑛 ⇔ (𝑛 → 0);𝑚 = 𝑚; (𝑛 → 0)

Thus, the expression turns into 0 = 𝑛 ⇔ 0 = 0, which is clearly false.

Lemma 3.5.3. Implications (1) ⇒ (3) and (2) ⇒ (3) hold in GKAT.

Proof. Both implications arise by commutativity and the fact that 𝑎; (𝑎 → 0) = 0, for all 𝑎 ∈ 𝑇.

The intuitive interpretation of these implications corresponds to that if 𝑝 preserves 𝑏 (or 𝑏 → 0), the
execution of 𝑝 between testing 𝑏 and its complement, no matter which test is performed first, results in

halting.

Lemma 3.5.4. Implication (3) ⇒ (1) does not hold in GKAT.

Proof. This can be shown by the following counter example: a GKAT over the set {0, 𝑛,𝑚, 1}, with
{0, 𝑛, 1} ⊆ 𝑇 and 𝑚 ∈ 𝐾, in which the operator ∗ maps all points to the top element 1 and the

remaining operators are defined as follows:

+ 0 𝑛 𝑚 1
0 0 𝑛 𝑚 1
𝑛 𝑛 𝑛 𝑚 1
𝑚 𝑚 𝑚 𝑚 1
1 1 1 1 1

; 0 𝑛 𝑚 1
0 0 0 0 0
𝑛 0 0 𝑛 𝑛
𝑚 0 0 𝑚 𝑚
1 0 𝑛 𝑚 1

→ 0 𝑛 𝑚 1
0 1 1 𝑛.𝑑. 1
𝑛 𝑛 1 𝑛.𝑑. 1
𝑚 𝑛.𝑑. 𝑛.𝑑. 𝑛.𝑑. 𝑛.𝑑.
1 0 𝑛 𝑛.𝑑. 1

If 𝑏 = 𝑛, 𝑝 = 𝑚, the instantiation of 𝑏; 𝑝; (𝑏 → 0) + (𝑏 → 0); 𝑝; 𝑏 = 0 ⇒ 𝑏; 𝑝 = 𝑝; 𝑏 becomes

0 = 0 ⇒ 𝑛 = 0 which is obviously false.

Lemma 3.5.5. Implication (3) ⇒ (2) does not hold in GKAT.

Proof. Consequence of Lemma 3.5.2 and Lemma 3.5.3.

These implications are interpreted as follows: if program 𝑝 being executed between testing 𝑏 and its

complement 𝑏 → 0 (no matter which test is performed first) results in halting, then the execution of 𝑝
preserves 𝑏 (or 𝑏 → 0). A similar result holds for I-GKAT and is proved along similar lines.
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We can therefore argue that this dependency on commutativity conditions becomes a hindrance for

proving several, usual results on program equivalence: it is impossible to handle such proofs in a (quasi)

equational way without considering them. However, the result that is, perhaps, the most interesting one,

of denesting two nested while loops, does not resort to the commutativity conditions, and therefore can

be shown to hold.

Its original proof [Koz97] relies on one of De Morgan laws:

¬(𝑎 ∨ 𝑏) ≡ ¬𝑎 ∧ ¬𝑏

that can be formalised in our setting as

(𝑎 + 𝑏) → 0 = (𝑎 → 0); (𝑏 → 0) (51)

Since, in general, this rule does not hold in I-GKAT, we impose it to prove the result below. Note that the

rule holds in all instances of I-GKAT enumerated in this chapter, namely (3.2.1), (3.2.2), (3.2.3), (3.2.5)

and the two-element (3.2.7).

We are now in conditions to show that a pair of while loops can be transformed into a single while

loop inside a conditional test, as formalised in the following theorem:

Theorem 3.5.1. The program

while 𝑏 do begin

𝑝;
while 𝑐 do 𝑞 (52)

end

is equivalent to

if 𝑏 then begin

𝑝;
while 𝑏 + 𝑐 do (53)

if 𝑐 then 𝑞 else 𝑝
end

in I-GKAT extended with (51).

Proof. The proof uses an analogous reasoning of [Koz97]. First of all, we need the following identities:

𝑝; (𝑞; 𝑝)∗ = (𝑝; 𝑞)∗; 𝑝 (54)
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𝑝∗; (𝑞; 𝑝∗)∗ = (𝑝 + 𝑞)∗ (55)

which are derivable from the axioms of Kleene algebra and were proved in [Koz94a].

Let us now translate programs (52) and (53) to the language of I-GKAT. Program (52) becomes

(𝑏; 𝑝; (𝑐; 𝑞)∗; (𝑐 → 0))∗; (𝑏 → 0), (56)

and (53) becomes1

𝑏; 𝑝; ((𝑏 + 𝑐); (𝑐; 𝑞 + (𝑐 → 0); 𝑝))∗; ((𝑏 + 𝑐) → 0) + (𝑏 → 0) (57)

Simplifying (61),

(𝑏; 𝑝; (𝑐; 𝑞)∗; (𝑐 → 0))∗; (𝑏 → 0)
= { (32)}

(1 + 𝑏; 𝑝; (𝑐; 𝑞)∗; (𝑐 → 0); (𝑏; 𝑝; (𝑐; 𝑞)∗; (𝑐 → 0))∗); (𝑏 → 0)
= { (30)}

(𝑏 → 0) + 𝑏; 𝑝; (𝑐; 𝑞)∗; (𝑐 → 0); (𝑏; 𝑝; (𝑐; 𝑞)∗; (𝑐 → 0))∗; (𝑏 → 0)
= { (54)}

(𝑏 → 0) + 𝑏; 𝑝; (𝑐; 𝑞)∗; ((𝑐 → 0); 𝑏; 𝑝; (𝑐; 𝑞)∗)∗; (𝑐 → 0); (𝑏 → 0)

For (57), the sub expression (𝑏 + 𝑐); (𝑐; 𝑞 + (𝑐 → 0); 𝑝) becomes

(𝑏 + 𝑐); (𝑐; 𝑞 + (𝑐 → 0); 𝑝)
= { (29)}

𝑏; 𝑐; 𝑞 + 𝑏; (𝑐 → 0); 𝑝 + 𝑐; 𝑐; 𝑞 + 𝑐; (𝑐 → 0); 𝑝
= { (46), 𝑎; (𝑎 → 0) = 0, (31) and (40)}

𝑏; 𝑐; 𝑞 + 𝑏; (𝑐 → 0); 𝑝 + 𝑐; 𝑞
= { (39) and (38)}

𝑏; 𝑐; 𝑞 + 𝑐; 𝑞 + (𝑐 → 0); 𝑏; 𝑝
= { (30)}

(𝑏 + 1); 𝑐; 𝑞 + (𝑐 → 0); 𝑏; 𝑝

Moreover, (𝑏 + 𝑐) → 0 = (𝑏 → 0); (𝑐 → 0), by (51). Applying these transformations on (57), we

obtain

1 As in Kozen’s paper [Koz97], we interpret the program if 𝑏 then 𝑝 as an abbreviation for a conditional test with the dummy
else clause i.e., as the program 𝑏; 𝑝 + 𝑏̄ (𝑏; 𝑝 + 𝑏 → 0 in our setting).

69



𝑏; 𝑝; (𝑐; 𝑞 + (𝑐 → 0); 𝑏; 𝑝)∗; (𝑏 → 0); (𝑐 → 0) + (𝑏 → 0)

Now, we need to prove that

(𝑏 → 0) + 𝑏; 𝑝; (𝑐; 𝑞)∗; (𝑐 → 0); (𝑏; 𝑝; (𝑐; 𝑞)∗)∗; (𝑐 → 0); (𝑏 → 0)
=𝑏; 𝑝; (𝑐; 𝑞 + (𝑐 → 0); 𝑏; 𝑝)∗; (𝑏 → 0); (𝑐 → 0) + (𝑏 → 0)

But, by monotonicity of operators + and ; , such an expression is equivalent to

(𝑐; 𝑞)∗; (𝑐 → 0); (𝑏; 𝑝; (𝑐; 𝑞)∗)∗ = (𝑐; 𝑞 + (𝑐 → 0); 𝑏; 𝑝)∗

which is just an instance of the denesting rule (60).
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4

A W E I G H T E D S I N G L E - F L OW S E M A N T I C S

We now focus on the development of a denotational semantics for weighted “single-flow” computations.

Along the chapter we will illustrate the introduced concepts by the program of Example 1.3.1, recalled

below.

Example 4.0.1. Consider the imperative program

𝑥 ∶= 2; 𝑥 ∶= 𝑥 + 𝑦; (if 𝑥 ≤ 3 then 𝑥 ∶= 𝑥 + 1 else 𝑦 ∶= 𝑦 × 2)

Its execution can be represented by the following transition system, where the conditional statement is

encoded as a sum of alternatives guarded by a test.

𝑤0start 𝑤1 𝑤2

𝑤′
2

𝑤″
2

𝑤′
3

𝑤″
3

𝑥 ∶= 2 𝑥 ∶= 𝑥 + 𝑦

(𝑥 ≤ 3)?

¬(𝑥 ≤ 3)?

𝑥 ∶= 𝑥 + 1

𝑦 ∶= 𝑦 × 2

The semantics of ℱ1-programs is defined over state spaces whose elements are weighted valuations of

variables, i.e. functions 𝑤 ∶ 𝑋 → AR, where A is a complete action lattice. We denote the set of all states

by A𝑋×R.

An arbitrary ℱ1-program is generated as an expression described by the following rule

𝜋 ∶∶= skip | 𝜋0 | 𝜌? | 𝜋; 𝜋 | 𝜋 + 𝜋 |𝜋∗ (58)

with 𝜋0 ∈ Prog0, and 𝜌? standing for a suitable notion of test. The latter, however, needs to be handled
with some care: indeed the meaning of a test will depend on the generated logic and therefore on A itself,

as we will discuss in the next chapter when defining its semantics in terms of the satisfaction relation. For

the moment, it is enough to notice that choice (+), iteration ( ∗) and tests (𝜌?) encode the usual constructs
for conditionals and loops as considered in Table (3).
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Definition 4.0.1 (Interpretation of functional terms). Let 𝐹 be a set of function symbols. The interpreta-

tion of a functional term 𝑡 ∈ 𝑇𝐹(𝑋) in a state 𝑤 ∈ 𝑊, is given by the map

J_K𝑤 ∶ 𝑇𝐹(𝑋) → AR

defined recursively as follows:

• J𝑥K𝑤(𝑟) = 𝑤(𝑥)(𝑟)

• J𝑐K𝑤(𝑟) =
⎧{
⎨{⎩

⊤ if 𝑟 = 𝑐
⊥ otherwise

• J𝑓 (𝑡1,… , 𝑡𝑛)K𝑤(𝑟) = ∑
𝑖∈𝐼

{
𝑛
∏
𝑗=1

J𝑡𝑗K𝑤(𝑟𝑖𝑗) ∣ 𝑓 (𝑟𝑖1,… , 𝑟𝑖𝑛) = 𝑟}, where 𝐼 is the cardinality of the

set of all possible solutions of 𝑓 (𝑟𝑖1,… , 𝑟𝑖𝑛) = 𝑟 in R, with each 𝑓 of arity 𝑛 being interpreted as a

function on real numbers R𝑛 → R (e.g. +, ×, 2, √, …), and 𝑐 representing both the constant 𝑐
and its syntactic representation.

Example 1.3.1 may help to illustrate this interpretation. Consider a set of states 𝑊 = {𝑤0, 𝑤1, 𝑤2}, a
set of variables 𝑋 = {𝑥, 𝑦} and the complete action lattice in Example 2.2.7. Define state 𝑤0 as follows.

𝑤0(𝑥)(𝑟) =

⎧{{{
⎨{{{⎩

0.5 if 𝑟 = 1
0.2 if 𝑟 = 2
0 otherwise

𝑤0(2)(𝑟) =
⎧{
⎨{⎩

1 if 𝑟 = 2
0 otherwise

𝑤0(𝑦)(𝑟) =

⎧{{{
⎨{{{⎩

0.1 if 𝑟 = 1
0.4 if 𝑟 = 2
0 otherwise

The interpretation of the term 𝑥 + 𝑦 in 𝑤0 is given by:

J𝑥 + 𝑦K𝑤0
(2) =J𝑥K𝑤0

(1); J𝑦K𝑤0
(1) = min{0.5, 0.1} = 0.1J𝑥 + 𝑦K𝑤0

(3) =J𝑥K𝑤0
(1); J𝑦K𝑤0

(2) + J𝑥K𝑤0
(2); J𝑦K𝑤0

(1)
=𝑤0(𝑥, 1); 𝑤0(𝑦, 2) + 𝑤0(𝑥, 2); 𝑤0(𝑦, 1)
=max{min{0.5; 0.4}},min{0.2; 0.1}} = 0.4J𝑥 + 𝑦K𝑤0

(4) =J𝑥K𝑤0
(2); J𝑦K𝑤0

(2) = min{0.2, 0.4} = 0.2

and 0 otherwise.
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Definition 4.0.2 (Interpretation of predicates). Let 𝑃 be a set of predicate symbols. The interpretation

of a predicate 𝑝 ∈ 𝑇𝑃(𝑋) in a state 𝑤 ∈ 𝑊 is given by the map

J_K𝑤 ∶ 𝑇𝑃(𝑋) → A

defined by

J𝑝(𝑡1,… , 𝑡𝑛)K𝑤 = ∑
𝑖∈𝐼

{
𝑛
∏
𝑗=1

J𝑡𝑗K𝑤(𝑟𝑖𝑗) ∣ 𝑝(𝑟𝑖1,… , 𝑟𝑖𝑛)}

where 𝐼 is the cardinality of the set of all possible values (𝑟𝑖1,… , 𝑟𝑖𝑛) ∈ R𝑛 satisfying 𝑝(𝑟𝑖1,… , 𝑟𝑖𝑛), with
each 𝑝(𝑟𝑖1,… , 𝑟𝑖𝑛) being interpreted as a Boolean predicate.

Again this can be illustrated by computing the truth degree of predicate 𝑥 ≤ 3 in state 𝑤2, of Example

1.3.1, as the expression J𝑥 ≤ 3K𝑤2
= J𝑥K𝑤2

(3); J3K𝑤2
(3). Now, instantiating with action lattices 2.2.7

and 2.2.11, this yields

G: min{0.1, 1} = 0.3. The value 0.1 means that the predicate is true with a certainty 0.3.

R: 1.2 +R 3.7 = 4.9. This interpretation corresponds to the energy consumed by evaluating the
predicate.

Let us now interpret atomic programs. To do so, we first introduce the programs weighting function,

given a set of programs Prog, and for each complete action lattice A, 𝐸A ∶ Prog → A𝑊×𝑊 , which assigns

a weight to a program execution, for any program 𝜋 ∈ Prog.

Definition 4.0.3 (Interpretation of atomic programs). The interpretation of atomic programs is a map

J_K0 ∶ Prog0 → A𝑊×𝑊

mapping each 𝑥 ∶= 𝑡 ∈ Prog0 into a function

J𝑥 ∶= 𝑡K0(𝑤,𝑤′) =
⎧{
⎨{⎩

𝐸A(𝑥 ∶= 𝑡)(𝑤,𝑤′) if (𝑤,𝑤′) ∈ L𝑥 ∶= 𝑡M𝑀
⊥ otherwise

where L𝑥 ∶= 𝑡M is the standard relational semantics of a program assignment, typically given by:

(𝑤,𝑤′) ∈ L𝑥 ∶= 𝑡M ⇔
⎧{
⎨{⎩

𝑤′(𝑦)(𝑟) = 𝑤(𝑦)(𝑟) if 𝑦 ≠ 𝑥
𝑤′(𝑥)(𝑟) = J𝑡K𝑤(𝑟) otherwise

It is important to highlight that the function 𝐸 is sound in the sense that weights are only possible to assign

to an admissible execution, i.e. iff (𝑤,𝑤′) ∈ L𝑥 ∶= 𝑡M. Intuitively, the expression 𝐸A(𝜋)(𝑤0, 𝑤1)
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denotes the weighted execution of program 𝜋 from state 𝑤0 to 𝑤1, i.e. the weight associated to the

corresponding transition. For instance, in Example 4.0.1, taking A as a Godel algebra (Example 2.2.7), the

expression 𝐸G(𝑥 ∶= 3)(𝑤0, 𝑤1) = 0.6 means that the system allows the execution of the assignment

𝑥 ∶= 3 from state 𝑤0 to 𝑤1 with truth degree 0.6. For simplification on the syntax, we will omit the

parameter A on the function 𝐸A. We illustrate the semantics by interpretation in the three distinct lattices

2.2.1, 2.2.7 and 2.2.11.

2: Consider states 𝑤0 and 𝑤1 defined as:

𝑤0(𝑥)(𝑟) =
⎧{
⎨{⎩

⊤, if 𝑟 = 1
⊥ otherwise

𝑤1(𝑥)(𝑟) =
⎧{
⎨{⎩

⊤ if 𝑟 = 2
⊥, otherwise

If J𝑥 ∶= 2K0(𝑤0, 𝑤1) = 𝐸(𝑥 ∶= 2)(𝑤0, 𝑤1) = ⊤ and ⊥ otherwise, then

(𝑤0, 𝑤1) ∈ L𝑥 ∶= 2M and, conversely, if (𝑤0, 𝑤1) ∈ L𝑥 ∶= 2M and J𝑥 ∶= 2K0(𝑤0, 𝑤1) =
𝐸(𝑥 ∶= 2)(𝑤0, 𝑤1) = ⊤ and ⊥ otherwise, then the interpretation of the assignment 𝑥 ∶= 2
in Γ(2) coincides with the classical scenario, where an action simply may or may not execute. In
such case, the truth degree of execution is a Boolean value.

G: Assume J𝑥 ∶= 2K0(𝑤0, 𝑤1) = 𝐸(𝑥 ∶= 2)(𝑤0, 𝑤1) = 0.8, J𝑥 ∶= 𝑥 + 𝑦K0(𝑤1, 𝑤2) =
𝐸(𝑥 ∶= 𝑥 + 𝑦)(𝑤1, 𝑤2) = 0.4, J𝑥 ∶= 𝑥 + 1K0(𝑤′

2, 𝑤′
3) = 𝐸(𝑥 ∶= 𝑥 + 1)(𝑤″

2, 𝑤″
3) = 0.7

and J𝑦 ∶= 𝑦 × 2K0(𝑤′
2, 𝑤′

3) = 𝐸(𝑦 ∶= 𝑦 × 2)(𝑤″
2, 𝑤″

3) = 0.9. These values are regarded as
truth degrees, or, in a complementary reading, vagueness, associated to the execution of actions

𝑥 ∶= 2, 𝑥 ∶= 𝑥 + 𝑦, 𝑥 ∶= 𝑥 + 1 and 𝑦 ∶= 𝑦 × 2, respectively.

As a consequence of executing these assignments, the weights of the variables are updated ac-

cordingly. That is the case of 𝑥 in state 𝑤1, by the value 𝑤1(𝑥)(2) = J𝑥K𝑤0
(2) = 0.2, and 0

otherwise, according to Definition 4.0.3. The weights of 𝑦 are maintained, since the assignment

𝑥 ∶= 2 does not modify its value. The situation may be interpreted as follows: from a state where

the evaluation of predicate 𝑥 = 1 yields a truth degree 0.5 and 𝑥 = 2 a truth degree 0.2, the
execution of assignment 𝑥 ∶= 2 with a truth degree of 0.8, whenever occurs, leads to a state where
𝑥 = 2 yields a truth degree 0.2. The weights of the variable 𝑥 in 𝑤2 are updated as follows:

𝑤2(𝑥)(3) = J𝑥 + 𝑦K𝑤1
(3) = J𝑥K𝑤1

(2); J𝑦K𝑤1
(1) = min{1, 0.1} = 0.1

𝑤2(𝑥)(4) = J𝑥 + 𝑦K𝑤1
(4) = J𝑥K𝑤1

(2); J𝑦K𝑤1
(2) = min{1, 0.4} = 0.4

R: Consider, for example, 𝐸(𝑥 ∶= 2)(𝑤0, 𝑤1) = 8, 𝐸(𝑥 ∶= 𝑥 + 𝑦)(𝑤1, 𝑤2) = 4, 𝐸(𝑥 ∶=
𝑥 + 1)(𝑤′

2, 𝑤′
3) = 7 and 𝐸(𝑦 ∶= 𝑦 × 2)(𝑤″

2, 𝑤″
3) = 9. These values can be regarded as

resources (e.g. energy) consumed by executing the associated assignments. Analogously to the

previous case, the weights associated to 𝑦 are maintained.

Finally, to interpret an arbitrary program in Prog the procedure is divided in two steps. First, the seman-

tics of compound program constructs is given directly in terms of operations on A-valued binary relations
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A𝑊×𝑊 : union, composition, and Kleene closure. To interpret these operators, we define the following

algebra:

Definition 4.0.4. Let A = (𝐴,+, ; ,∗ ,→, ⋅, 0, 1) be an complete action lattice and 𝑊 be a finite set

of states. The algebra of program weighting functions is the structure

E = (𝑍(𝐸),∪, ∘, ∅, 𝜒, ∗)

where:

• 𝑍(𝐸) is the universe of all the program weighting functions

• (𝐸(𝜋1) ∪ 𝐸(𝜋2))(𝑤,𝑤′) = 𝐸(𝜋1)(𝑤,𝑤′) + 𝐸(𝜋2)(𝑤,𝑤′)

• (𝐸(𝜋1) ∘ 𝐸(𝜋2))(𝑤,𝑤′) = ∑
𝑤″∈𝑊

𝐸(𝜋1)(𝑤,𝑤″); 𝐸(𝜋2)(𝑤″, 𝑤′)

• ∅(𝑤,𝑤′) = ⊥

• 𝜒(𝑤,𝑤′) =
⎧{
⎨{⎩

⊤, if 𝑤 = 𝑤′

⊥, otherwise

•

(𝐸(𝜋))∗(𝑤,𝑤′) = ∑
𝑖≥0

(𝐸(𝜋))𝑖(𝑤,𝑤′)

= (𝐸(𝜋))0(𝑤,𝑤′) + (𝐸(𝜋))1(𝑤,𝑤′) + (𝐸(𝜋))2(𝑤,𝑤′) + …

with 𝐸(𝜋1), 𝐸(𝜋2) ∈ 𝑍(𝐸).

Note that operator ∗ can be defined as an infinite sum due to the completeness of the complete action

lattice.

Theorem 4.0.1. The algebra of Definition 4.0.4 is a Kleene algebra.

Proof. Analogous to Theorem 3.4.2.

Definition 4.0.5. The interpretation of a program 𝜋 ∈ Prog is a map

J_K ∶ Prog → A𝑊×𝑊

recursively defined as

• JskipK = 𝜒

• J𝜋0K = J𝜋0K0, for each 𝜋0 ∈ Prog0
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• J𝜋1; 𝜋2K = J𝜋1K ∘ J𝜋2K
• J𝜋1 + 𝜋2K = J𝜋1K ∪ J𝜋2K
• J𝜋∗K = (J𝜋K)∗.

where, for 𝑟 ∈ A𝑊×𝑊 , 𝑟∗(𝑤,𝑤′) = ∑
𝑘≥0

𝑟𝑘(𝑤,𝑤′).

Again Example 1.3.1 illustrates choice and sequential composition by interpreting fragments (𝑥 ∶= 2); (𝑥 ∶=
𝑥 + 𝑦) and (𝑥 ∶= 𝑥 + 1) + (𝑦 ∶= 𝑦 × 2). The first one yields

J𝑥 ∶= 2; 𝑥 ∶= 𝑥 + 𝑦K(𝑤0, 𝑤2) = (J𝑥 ∶= 2K0 ∘ J𝑥 ∶= 𝑥 + 𝑦K0)(𝑤0, 𝑤2)
= J𝑥 ∶= 2K0(𝑤0, 𝑤1); J𝑥 ∶= 𝑥 + 𝑦K0(𝑤1, 𝑤2)
= 𝐸(𝑥 ∶= 2)(𝑤0, 𝑤1); 𝐸(𝑥 ∶= 𝑥 + 𝑦)(𝑤1, 𝑤2)

which can be instantiated within the three usual lattices we have been considering:

2: Under this interpretation programs either fail or succeed. In the absence of failure execution

proceeds sequentially; otherwise, if one (or both) statement fails (takes ’weight’ ⊥), so does the

program.

G: In this case a truth degree is associated to the composition based on the corresponding de-

gree for the atomic components. This is computed as a minimum. For example, if 𝐸(𝑥 ∶=
2)(𝑤0, 𝑤1) = 0.8 and 𝐸(𝑥 ∶= 𝑥 + 𝑦)(𝑤1, 𝑤2) = 0.4 the overall truth degree for the composi-

tion becomes min{0.8, 0.4} = 0.4.

R: Computations have a cost, under this interpretation, for example the amount of energy dissipated.

Thus, 𝐸(𝑥 ∶= 2)(𝑤0, 𝑤1); 𝐸(𝑥 ∶= 𝑥+ 𝑦)(𝑤1, 𝑤2) = 8+R 4 = 12 represents the sum of the

energy consumed by executing atomic programs 𝑥 ∶= 2 and 𝑥 ∶= 𝑥 + 𝑦 sequentially.

The interpretation of the nondeterministic choice

(𝑥 ∶= 𝑥 + 1) + (𝑦 ∶= 𝑦 × 2) (59)

on the other hand, is given by

J(𝑥 ∶= 𝑥 + 1) + (𝑦 ∶= 𝑦 × 2)K(𝑤′
2, 𝑤′

3) = (J𝑥 ∶= 𝑥 + 1K0 ∪ J𝑦 ∶= 𝑦 × 2K0)(𝑤′
2, 𝑤′

3)
= J𝑥 ∶= 𝑥 + 1K0(𝑤′

2, 𝑤′
3) + J𝑦 ∶= 𝑦 × 2K0(𝑤′

2, 𝑤′
3)

= 𝐸(𝑥 ∶= 𝑥 + 1)(𝑤′
2, 𝑤′

3, +)𝐸(𝑦 ∶= 𝑦 × 2)(𝑤′
2, 𝑤′

3)
= 𝐸(𝑥 ∶= 𝑥 + 1)(𝑤′

2, 𝑤′
3) + ⊥
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and

J(𝑥 ∶= 𝑥 + 1) + (𝑦 ∶= 𝑦 × 2)K(𝑤″
2, 𝑤″

3) = (J𝑥 ∶= 𝑥 + 1K0 ∪ J𝑦 ∶= 𝑦 × 2K0)(𝑤″
2, 𝑤″

3)
= J𝑥 ∶= 𝑥 + 1K0(𝑤″

2, 𝑤″
3) + J𝑦 ∶= 𝑦 × 2K0(𝑤″

2, 𝑤″
3)

= 𝐸(𝑥 ∶= 𝑥 + 1)(𝑤″
2, 𝑤″

3) + 𝐸(𝑦 ∶= 𝑦 × 2)(𝑤″
2, 𝑤″

3)
= ⊥ + 𝐸(𝑦 ∶= 𝑦 × 2)(𝑤″

2, 𝑤″
3)

Interpreting with the usual lattices, this yields

2: In this case choice is exactly nondeterministic choice: either one of 𝑥 ∶= 𝑥 + 1 or 𝑦 ∶= 𝑦 × 2
is executed.

– 𝐸(𝑥 = 𝑥 + 1)(𝑤′
2, 𝑤′

3) + ⊥ = ⊤∨⊥ = ⊤

– ⊥+ 𝐸(𝑦 ∶= 𝑦 × 2)(𝑤′
2, 𝑤″

3) = ⊥ ∨ ⊤ = ⊤

G: This interpretation yields the weighted choice between the alternative executions.

– 𝐸(𝑥 ∶= 𝑥 + 1)(𝑤′
2, 𝑤′

3) + ⊥ = max{0.7, 0} = 0.7.

– ⊥+ 𝐸(𝑦 ∶= 𝑦×)(𝑤″
2, 𝑤″

3) = max{0, 0.9} = 0.9.

R: In this complete action lattice, the program is interpreted as the energy consumed by the two

choices

– 𝐸(𝑥 ∶= 𝑥 + 1)(𝑤′
2, 𝑤′

3) + ⊥ = min{7,+∞} = 7

– ⊥+ 𝐸(𝑦 ∶ 𝑦 × 2)(𝑤″
2, 𝑤″

3) = min{+∞, 9} = 9

Intuitively, J(𝑥 ∶= 𝑥 + 1) + (𝑦 ∶= 𝑦 × 2)K represents the set of weighted alternative executions,

formally a function which attributes weight 𝐸(𝑥 ∶= 𝑥 + 1)(𝑤′
2, 𝑤′

3) to the execution 𝑥 ∶= 𝑥 + 1 and

𝐸(𝑦 ∶= 𝑦 × 2)(𝑤″
2, 𝑤″

3) to the execution 𝑦 ∶= 𝑦 × 2.
In particular, if 𝐸(𝑥 ∶= 𝑥 + 1)(𝑤′

2, 𝑤′
3) + 𝐸(𝑦 ∶= 𝑦 × 2)(𝑤″

2, 𝑤″
3) = 1, we may relate the G

instantiations with the probabilistic choice (𝑥 ∶= 𝑥 + 1) +𝛼 (𝑦 ∶= 𝑦 × 2), where, as described in

Section 1.4, assignment 𝑥 ∶= 𝑥 + 1 is executed with probability 𝛼 and 𝑦 ∶= 𝑦 × 2 with probability

1−𝛼. Thus we may attribute the weights of each assignment to the probabilities themselves, i.e. 𝐸(𝑥 ∶=
𝑥+1)(𝑤′

2, 𝑤′
3) = 𝛼 and 𝐸(𝑦 ∶= 𝑦×2)(𝑤″

2, 𝑤″
3) = 1−𝛼. Additionally, if 𝐸(𝑥 ∶= 𝑥+1)(𝑤′

2, 𝑤′
3)+

𝐸(𝑦 ∶= 𝑦 × 2)(𝑤″
2, 𝑤″

3) ≤ 1, we may associate the semantics of (59), interpreted with G, with the

sub-probabilistic choice (𝛼)(𝑥 ∶= 𝑥+1)+ (𝛽)(𝑦 ∶= 𝑦 ×2), by putting 𝐸(𝑥 ∶= 𝑥+1)(𝑤′
2, 𝑤′

3) = 𝛼
and 𝐸(𝑦 ∶= 𝑦 × 2)(𝑤″

2, 𝑤″
3) = 𝛽.
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Note that nothing prevents the state space 𝑊 from being infinite, because of completeness enforced

upon A. However, one may only compute explicitly a truth value associated with a program execution when

𝑊 is finite.
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5

D Y N AM I C L O G I C S FO R W E I G H T E D S I N G L E - F L OW C OM P U TAT I O N S

Finally, we have now collected all the ingredients to focus on the logic. Each complete action lattice A

induces a multi-valued, equational dynamic logic Γ(A) to reason about imperative programs interpreted

as weighted “single-flow” computations with weights taken from A. The proposed construction adapts the

method introduced in [MNM16] by taking a non-empty set of variables (𝑋) and terms constructed over

𝑋 and R in the syntax of the logic. The signature, formulæ, semantics and satisfaction relation of Γ(A)
are given below. In particular, the syntax and the semantics of programs are the ones presented in the

previous chapter.

5.1 G e n e r a t i o n o f mu l t i - v a l u e d e qu a t i o n a l d y n am i c l o g i c s

Once a language for programs is fixed (58), the set of formulas for Γ(A) introduces, as expected, the

universal and existential modalities over programs. Formally,

Definition 5.1.1. A signature for Γ(A) is a tuple

Δ = ((𝐹, 𝑃),Π)

where (𝐹, 𝑃) is a data signature composed by functional and predicate symbols, and Π ⊆ Prog0. The

set of formulas for Δ, denoted by FmΓ(A)(Δ), are the ones generated by the rule

𝜌 ∶∶= ⊤ |⊥ | 𝑝(𝑡1,… 𝑡𝑛) | 𝜌 ∨ 𝜌 | 𝜌 ∧ 𝜌 | 𝜌 → 𝜌 | ⟨𝜋⟩𝜌 | [𝜋]𝜌

for 𝑝(𝑡1,… 𝑡𝑛) ∈ 𝑇𝑃(𝑋) and 𝜋 is a program in Prog.

Note that we sometimes make use of ¬𝜌 as an abbreviation for 𝜌 → ⊥, as in Example 1.3.1.

We can now turn to semantics. For each A, models are defined over state spaces.

Definition 5.1.2 (Models). Let Δ = ((𝐹, 𝑃),Π) be a signature and𝑋 a set of variables. A Γ(A)-model

for Δ is a structure

𝑀 = (𝑊,𝑉, 𝐸)

where
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• 𝑊 ⊆ A𝑋×R is a set of states;

• 𝑉 ∶ 𝑃 × 𝑊 → A, defined as 𝑉(𝑝(𝑡1,… , 𝑡𝑛), 𝑤) = J𝑝(𝑡1 …, 𝑡𝑛)K𝑤, for any 𝑝(𝑡1,… , 𝑡𝑛) ∈
𝑇𝑃(𝑋);

• 𝐸 ∶ Π → A𝑊×𝑊 is a programs weighting function.

The set of Γ(A)-models for Δ is denoted by ModΓ(A)(Δ).

An important element to care about when computing the semantics is the interpretation of tests. Our

goal is to introduce a notion of a test in an arbitrary dynamic logic generated by A. As mentioned above,

tests are written as 𝜌?, for 𝜌 ∈ FmΓ(A)(Δ). Their semantics resort, therefore, to the satisfaction relation
for FmΓ(A)(Δ), which is defined as follows:

Definition 5.1.3 (Satisfaction). Given a complete action lattice A, the satisfaction relation for a model

𝑀 ∈ ModΓ(A)(Δ) is given by

⊧Γ(A) ∶ 𝑊 × FmΓ(A)(Δ) → A

recursively defined as follows:

• (𝑤 ⊧Γ(A) ⊤) = ⊤

• (𝑤 ⊧Γ(A) ⊥) = ⊥

• 𝑉(𝑝,𝑤), for any 𝑝(𝑡1,… , 𝑡𝑛) ∈ 𝑇𝑃(𝑋)

• (𝑤 ⊧Γ(A) 𝜌 ∧ 𝜌′) = (𝑤 ⊧Γ(A) 𝜌) ⋅ (𝑤 ⊧Γ(A) 𝜌′)

• (𝑤 ⊧Γ(A) 𝜌 ∨ 𝜌′) = (𝑤 ⊧Γ(A) 𝜌) + (𝑤 ⊧Γ(A) 𝜌′)

• (𝑤 ⊧Γ(A) 𝜌 → 𝜌′) = (𝑤 ⊧Γ(A) 𝜌) → (𝑤 ⊧Γ(A) 𝜌′)

• (𝑤 ⊧Γ(A) ⟨𝜋⟩𝜌) = ∑
𝑤′∈𝑊

(J𝜋K(𝑤,𝑤′); (𝑤′ ⊧Γ(A) 𝜌))

• (𝑤 ⊧Γ(A) [𝜋]𝜌) = ⋀
𝑤′∈𝑊

(J𝜋K(𝑤,𝑤′) → (𝑤′ ⊧Γ(A) 𝜌))

An axiomatic system for Γ(A)

A core ingredient of any logic is its axiomatisation. We discuss now an axiomatisation for Γ(A), over a
complete I-action lattice. Similarly to [MNM16], such a characterisation is necessary to establish most of

the results.

Let us establish first some auxiliary results.
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Lemma 5.1.1. The following properties hold in any complete I-action lattice:

𝑎 ≤ 𝑏 ⇒ 𝑎; 𝑐 ≤ 𝑏; 𝑐 (60)

𝑎 ≤ 𝑏 & 𝑐 ≤ 𝑑 ⇒ 𝑎 + 𝑐 ≤ 𝑏 + 𝑑 (61)

𝑎 ≤ 𝑏 & 𝑐 ≤ 𝑑 ⇒ 𝑎 ⋅ 𝑐 ≤ 𝑏 ⋅ 𝑑 (62)

𝑎; (𝑏 ⋅ 𝑐) ≤ (𝑎; 𝑏) ⋅ (𝑎; 𝑐) (63)

𝑎 ≤ 𝑏 ⇒ (𝑐 → 𝑎) ≤ (𝑐 → 𝑏) (64)

𝑎 ≤ 𝑏 ⇒ (𝑏 → 𝑐) ≤ (𝑎 → 𝑐) (65)

𝑎 → (𝑏 → 𝑐) = (𝑏; 𝑎) → 𝑐 (66)

𝑎 ≤ 𝑏 & 𝑎 ≤ 𝑐 ⇒ 𝑎 ≤ 𝑏 ⋅ 𝑐 (67)

𝑎 ≤ 𝑏 & 𝑐 ≤ 𝑑 ⇒ 𝑎; 𝑐 ≤ 𝑏; 𝑑 (68)

If 𝑎; 𝑏 = 𝑏; 𝑎,
𝑎; 𝑎 = 𝑎 ⇒ (𝑎 → (𝑏 → 𝑐)); (𝑎 → 𝑏) ≤ (𝑎 → 𝑐) (69)

When 𝐼 finite, we have also,

𝑎 → (⋀
𝑖∈𝐼

𝑏𝑖) = ⋀
𝑖∈𝐼

(𝑎 → 𝑏𝑖) (70)

(∑
𝑖∈𝐼

𝑎𝑖) → 𝑏 = ⋀
𝑖∈𝐼

(𝑎𝑖 → 𝑏) (71)

∑
𝑖∈𝐼

(𝑎𝑖 ⋅ 𝑏𝑖) ≤ ∑
𝑖∈𝐼

𝑎𝑖 ⋅∑
𝑖∈𝐼

𝑏𝑖 (72)

Proof. The proof is analogous to [MNM16].

Lemma 5.1.2. The following properties hold in any complete I-action lattice:

1. (1 → 𝑎) = 𝑎

2. (⊥ → 𝑎) = 1

3. 𝑎 ≤ 𝑏 ⇔ (𝑎 → 𝑏) = 1

4. 𝑎 = 𝑏 ⇔ (𝑎 ↔ 𝑏) = 1

Proof. The proof of this lemma is analogous to [MNM16].

Lemma 5.1.3. Let A be a complete I-action lattice. Then

• (𝑤 ⊧Γ(A) 𝜌 → 𝜌′) = ⊤ iff (𝑤 ⊧Γ(A) 𝜌) ≤ (𝑤 ⊧Γ(A) 𝜌′)

• (𝑤 ⊧Γ(A) 𝜌 ↔ 𝜌′) = ⊤ iff (𝑤 ⊧Γ(A) 𝜌) = (𝑤 ⊧Γ(A) 𝜌′)
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Proof. Since A is a complete I-action lattice, we have ⊤ = 1 and hence we conclude both equivalences

by clauses 3 and 4 of Lemma 5.1.2, respectively.

To prove axioms for ∗-programs, we need also the following auxiliary result.

Theorem 5.1.1 ([Con12]). Let (𝐴,+, ; , 0, 1, ∗) be a Kleene algebra. The following properties hold:

𝑎 ≤ 𝑎∗ (73)

𝑎∗ = 𝑎∗∗ (74)

𝑎∗ = 𝑎∗; 𝑎∗ (75)

1 + 𝑎; 𝑎∗ = 𝑎∗ (76)

Now we prove the main axiomatisation for Γ(A).

Lemma 5.1.4. Let A be a complete I- action lattice. The following are valid formulæ in any Γ(A):

(1.) ⟨𝜋⟩(𝜌 ∨ 𝜌′) ↔ ⟨𝜋⟩𝜌 ∨ ⟨𝜋⟩𝜌′

(2.) ⟨𝜋⟩(𝜌 ∧ 𝜌′) → ⟨𝜋⟩𝜌 ∧ ⟨𝜋⟩𝜌′

(3.) ⟨𝜋 + 𝜋′⟩𝜌 ↔ ⟨𝜋⟩𝜌 ∨ ⟨𝜋⟩𝜌

(4.) ⟨𝜋; 𝜋′⟩𝜌 ↔ ⟨𝜋⟩⟨𝜋′⟩𝜌

(5.) ⟨𝜋⟩⊥ ↔ ⊥

(6.) ⟨𝜋⟩𝜌 → ⟨𝜋∗⟩𝜌

(7) ⟨𝜋∗⟩𝜌 ↔ ⟨𝜋∗; 𝜋∗⟩𝜌

(8.) ⟨𝜋∗⟩𝜌 ↔ ⟨𝜋∗∗⟩𝜌

(9.) ⟨𝜋∗⟩𝜌 ↔ 𝜌 ∨ ⟨𝜋⟩⟨𝜋∗⟩𝜌

(10.) [𝜋 + 𝜋′]𝜌 ↔ [𝜋]𝜌 ∧ [𝜋′]𝜌

(11.) [𝜋](𝜌 ∧ 𝜌′) ↔ [𝜋]𝜌 ∧ [𝜋]𝜌′

Proof. (1.):

(𝑤 ⊧Γ(A) ⟨𝜋⟩(𝜌 ∨ 𝜌′))
= { definition of ⊧Γ(A)}

∑
𝑤′∈𝑊

(J𝜋K(𝑤,𝑤′); (𝑤′ ⊧Γ(A) 𝜌 ∨ 𝜌′))
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= { definition of ⊧Γ(A)}

∑
𝑤′∈𝑊

((J𝜋K(𝑤,𝑤′); ((𝑤′ ⊧Γ(A) 𝜌) + (𝑤′ ⊧Γ(A) 𝜌′)))

= { (10)}

∑
𝑤′∈𝑊

((J𝜋K(𝑤,𝑤′); (𝑤′ ⊧Γ(A) 𝜌) + (J𝜋K(𝑤,𝑤′); (𝑤′ ⊧Γ(A) 𝜌′)))

= { by (4) and (5)}

∑
𝑤′∈𝑊

(J𝜋K(𝑤,𝑤′); (𝑤′ ⊧Γ(A) 𝜌)) + ∑
𝑤′∈𝑊

(J𝜋K(𝑤,𝑤′); (𝑤′ ⊧Γ(A) 𝜌′))

= { definition of ⊧Γ(A)}
(𝑤 ⊧Γ(A) ⟨𝜋⟩𝜌) + (𝑤 ⊧Γ(A) ⟨𝜋⟩𝜌)

= { definition of ⊧Γ(A)}
(𝑤 ⊧Γ(A) ⟨𝜋⟩𝜌 ∨ ⟨𝜋⟩𝜌)

Therefore, by Lemma 5.1.3, ⟨𝜋⟩(𝜌 ∨ 𝜌′) ↔ ⟨𝜋⟩𝜌 ∨ ⟨𝜋⟩𝜌 is valid.

(2.):

(𝑤 ⊧Γ(A) ⟨𝜋⟩(𝜌 ∧ 𝜌′))
= { definition of ⊧Γ(A)}

∑
𝑤′∈𝑊

(J𝜋K(𝑤,𝑤′); (𝑤′ ⊧Γ(A) 𝜌 ∧ 𝜌′))

= { definition of ⊧Γ(A)}

∑
𝑤′∈𝑊

(J𝜋K(𝑤,𝑤′); ((𝑤′ ⊧Γ(A) 𝜌) ⋅ (𝑤′ ⊧Γ(A) 𝜌′)))

≤ { by (63) and (61)}

∑
𝑤′∈𝑊

(J𝜋K(𝑤,𝑤′); (𝑤′ ⊧Γ(A) 𝜌) ⋅ (J𝜋K(𝑤,𝑤′); (𝑤′ ⊧Γ(A) 𝜌′)))

≤ { by (72) }

∑
𝑤′∈𝑊

(J𝜋K(𝑤,𝑤′); (𝑤′ ⊧Γ(A) 𝜌)) ⋅ ∑
𝑤′∈𝑊

(J𝜋K(𝑤,𝑤′); (𝑤′ ⊧Γ(A) 𝜌′)))

= { definition of ⊧Γ(A)}
(𝑤 ⊧Γ(A) ⟨𝜋⟩𝜌) ⋅ (𝑤 ⊧Γ(A) ⟨𝜋⟩𝜌′)

= { definition of ⊧Γ(A)}
(𝑤 ⊧Γ(A) ⟨𝜋⟩𝜌 ∧ ⟨𝜋⟩𝜌′)

Therefore, by Lemma 5.1.3, ⟨𝜋⟩(𝜌 ∧ 𝜌′) → ⟨𝜋⟩𝜌 ∧ ⟨𝜋⟩𝜌′ is valid.
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(3.):

(𝑤 ⊧Γ(A) ⟨𝜋 + 𝜋′⟩𝜌)
= { definition of ⊧Γ(A)}

∑
𝑤′∈𝑊

(J𝜋 + 𝜋′K(𝑤,𝑤′); (𝑤′ ⊧Γ(A) 𝜌))

= { definition of J_K}
∑

𝑤′∈𝑊
((J𝜋K(𝑤,𝑤′) + J𝜋′K(𝑤,𝑤′)); (𝑤′ ⊧ 𝜌))

= { by (11)}

∑
𝑤′∈𝑊

(J𝜋K(𝑤,𝑤′); (𝑤′ ⊧Γ(A) 𝜌) + J𝜋′K(𝑤,𝑤′); (𝑤′ ⊧Γ(A) 𝜌))

= { by (4) and (5)}

∑
𝑤′∈𝑊

(J𝜋K(𝑤,𝑤′); (𝑤′ ⊧Γ(A) 𝜌)) + ∑
𝑤′∈𝑊

(J𝜋′K(𝑤,𝑤′); (𝑤′ ⊧Γ(A) 𝜌))

= { definition of ⊧Γ(A)}
(𝑤 ⊧Γ(A) ⟨𝜋⟩𝜌) + (𝑤 ⊧Γ(A) ⟨𝜋′⟩𝜌)

= { definition of ⊧Γ(A)}
(𝑤 ⊧Γ(A) ⟨𝜋⟩𝜌 ∨ ⟨𝜋′⟩𝜌)

Therefore, by Lemma 5.1.3, ⟨𝜋 + 𝜋′⟩𝜌 ↔ ⟨𝜋⟩𝜌 ∨ ⟨𝜋′⟩𝜌 is valid.
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(4.):

(𝑤 ⊧Γ(A) ⟨𝜋⟩⟨𝜋′⟩𝜌)
= { definition of ⊧Γ(A)}

∑
𝑤′∈𝑊

(J𝜋K(𝑤,𝑤′); (𝑤 ⊧Γ(A) ⟨𝜋′⟩𝜌))

= { definition of ⊧Γ(A)}
∑

𝑤′∈𝑊
(J𝜋K(𝑤,𝑤′); ∑

𝑤″∈𝑊
(J𝜋′K(𝑤′, 𝑤″); (𝑤″ ⊧Γ(A) 𝜌)))

= { by (10)}
∑

𝑤′∈𝑊
( ∑

𝑤″∈𝑊
(J𝜋K(𝑤,𝑤′); (J𝜋′K(𝑤′, 𝑤″); (𝑤″ ⊧Γ(A) 𝜌)))

= { by (4) and (5)}
∑

𝑤″∈𝑊
( ∑

𝑤′∈𝑊
(J𝜋K(𝑤,𝑤′); J𝜋′K(𝑤′, 𝑤″); (𝑤″ ⊧Γ(A) 𝜌)))

= { (𝑤″ ⊧Γ(A) 𝜌) is independent of 𝑤′}
∑

𝑤″∈𝑊
( ∑

𝑤′∈𝑊
(J𝜋K(𝑤,𝑤′); J𝜋′K(𝑤′, 𝑤″)); (𝑤″ ⊧Γ(A) 𝜌))

= { definition of ∘}
∑

𝑤″∈𝑊
(J𝜋;𝜋′K(𝑤,𝑤″); (𝑤″ ⊧Γ(A) 𝜌))

= { definition of ⊧Γ(A)}
(𝑤 ⊧Γ(A) ⟨𝜋; 𝜋′⟩𝜌)

Therefore, by Lemma 5.1.3, ⟨𝜋⟩⟨𝜋′⟩𝜌 ↔ ⟨𝜋; 𝜋′⟩𝜌 is valid.

(5.):

(𝑤 ⊧Γ(A) ⟨𝜋⟩⊥)
= { defninition of ⊧Γ(A)}

∑
𝑤′∈𝑊

(J𝜋K(𝑤,𝑤′); (𝑤′ ⊧Γ(A) ⊥))

= { definition of ⊧Γ(A)}

∑
𝑤′∈𝑊

(J𝜋K(𝑤,𝑤′); ⊥)

= { by (12)}

∑
𝑤′∈𝑊

(⊥)

= { by (40)}
⊥
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Therefore, by Lemma 5.1.3, ⟨𝜋⟩⊥ ↔ ⊥ is valid.

Since E = (𝑍(𝐸),∪, ∘, ∅, 𝜒,∗ ) is a Kleene algebra, by Theorem 5.1.1 and (73)–(76), we have:

J𝜋K(𝑤,𝑤′) ≤ J𝜋∗K(𝑤,𝑤′) (77)J𝜋∗K(𝑤,𝑤′) = J𝜋∗∗K(𝑤,𝑤′) (78)J𝜋∗K(𝑤,𝑤′) = J𝜋∗; 𝜋∗K(𝑤,𝑤′) (79)Jskip+ 𝜋;𝜋∗K(𝑤,𝑤′) = J𝜋∗K(𝑤,𝑤′) (80)

(6.):

for any 𝑤′ ∈ 𝑊J𝜋K(𝑤,𝑤′) ≤ J𝜋∗K(𝑤,𝑤′)
⇒ { by (60)}

for any 𝑤′ ∈ 𝑊J𝜋K(𝑤,𝑤′); (𝑤′ ⊧Γ(A) 𝜌) ≤ J𝜋∗K(𝑤,𝑤′); (𝑤′ ⊧Γ(A) 𝜌)
⇒ { by (61)}

∑
𝑤′∈𝑊

(J𝜋K(𝑤,𝑤′); (𝑤′ ⊧Γ(A) 𝜌)) ≤ ∑
𝑤′∈𝑊

(J𝜋∗K(𝑤,𝑤′); (𝑤′ ⊧Γ(A) 𝜌))

⇔ { definition of ⊧Γ(A)}
(𝑤 ⊧Γ(A) ⟨𝜋⟩𝜌) ≤ (𝑤 ⊧Γ(A) ⟨𝜋∗⟩𝜌)

Since by (77), J𝜋K(𝑤,𝑤′) ≤ J𝜋∗K(𝑤,𝑤′) holds for any𝑤,𝑤′ ∈ 𝑊, we conclude (𝑤 ⊧Γ(A) ⟨𝜋⟩𝜌) ≤
(𝑤 ⊧Γ(A) ⟨𝜋∗⟩𝜌). Hence, by Lemma 5.1.3, ⟨𝜋⟩𝜌 → ⟨𝜋∗⟩𝜌 is valid. The remaining of the first two

proofs follows exactly the same steps but starting from (78) and (79).
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(9.):

Jskip+ 𝜋;𝜋∗K(𝑤,𝑤′) = J𝜋∗K(𝑤,𝑤′) for any 𝑤,𝑤′ ∈ 𝑊
⇔ { definition of J_K}JskipK(𝑤,𝑤′) + J𝜋;𝜋∗K(𝑤,𝑤′) = J𝜋∗K(𝑤,𝑤′) for any 𝑤′ ∈ 𝑊
⇔ { 𝑎 = 𝑏 ⇒ 𝑎; 𝑐 = 𝑏; 𝑐}

(JskipK(𝑤,𝑤′) + J𝜋;𝜋∗K(𝑤,𝑤′)); (𝑤′ ⊧Γ(A) 𝜌) = J𝜋∗K(𝑤,𝑤′); (𝑤′ ⊧Γ(A) 𝜌)
for any 𝑤′ ∈ 𝑊

⇔ { (11)}JskipK(𝑤,𝑤′); (𝑤′ ⊧Γ(A) 𝜌) + J𝜋;𝜋∗K(𝑤,𝑤′); (𝑤′ ⊧Γ(A) 𝜌)
= J𝜋∗K(𝑤,𝑤′); (𝑤′ ⊧Γ(A) 𝜌), for any 𝑤′ ∈ 𝑊

⇔ { 𝑎𝑖 = 𝑏𝑖, 𝑖 ∈ 𝐼 ⇒ ∑
𝑖∈𝐼

𝑎𝑖 = ∑
𝑖∈𝐼

𝑎𝑖}

∑
𝑤′∈𝑊

(JskipK(𝑤,𝑤′); (𝑤′ ⊧Γ(A) 𝜌) + J𝜋;𝜋∗K(𝑤,𝑤′); (𝑤′ ⊧Γ(A) 𝜌))

= ∑
𝑤′∈𝑊

(J𝜋∗K(𝑤,𝑤′); (𝑤′ ⊧Γ(A) 𝜌))

⇔ { by (4) and (5)}
∑

𝑤′∈𝑊
(JskipK(𝑤,𝑤′); (𝑤′ ⊧Γ(A) 𝜌)) + ∑

𝑤′∈𝑊
(J𝜋;𝜋∗K(𝑤,𝑤′); (𝑤′ ⊧Γ(A) 𝜌))

= ∑
𝑤′∈𝑊

(J𝜋∗K(𝑤,𝑤′); (𝑤′ ⊧Γ(A) 𝜌))

⇔ { definition of J_K, (9) and definition of ⊧Γ(A)}
(𝑤 ⊧Γ(A) 𝜌) + (𝑤 ⊧Γ(A) ⟨𝜋; 𝜋∗⟩𝜌) = (𝑤 ⊧Γ(A) ⟨𝜋∗⟩𝜌)

⇔ { (4.)}
(𝑤 ⊧Γ(A) 𝜌) + (𝑤 ⊧Γ(A) ⟨𝜋⟩⟨𝜋∗⟩𝜌) = (𝑤 ⊧Γ(A) ⟨𝜋∗⟩𝜌)

⇔ { definition of ⊧Γ(A)}
(𝑤 ⊧Γ(A) 𝜌 ∨ ⟨𝜋⟩⟨𝜋∗⟩𝜌) = (𝑤 ⊧Γ(A) ⟨𝜋∗⟩𝜌)

Therefore, by Lemma 5.1.3, ⟨𝜋∗⟩𝜌 ↔ 𝜌 ∨ ⟨𝜋⟩⟨𝜋∗⟩𝜌 holds.
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(10.):

(𝑤 ⊧Γ(A) [𝜋 + 𝜋′]𝜌)
= { definition of ⊧Γ(A)}

⋀
𝑤′∈𝑊

(J𝜋 + 𝜋′K(𝑤,𝑤′) → (𝑤′ ⊧Γ(A) 𝜌))

= { definition of J_K}
⋀

𝑤′∈𝑊
((J𝜋K(𝑤,𝑤′) + J𝜋′K(𝑤,𝑤′)) → (𝑤′ ⊧Γ(A) 𝜌))

= { (71)}

⋀
𝑤′∈𝑊

((J𝜋K(𝑤,𝑤′) → (𝑤′ ⊧Γ(A) 𝜌)) ⋅ (J𝜋′K(𝑤,𝑤′) → (𝑤′ ⊧Γ(A) 𝜌)))

= { (19)}

⋀
𝑤′∈𝑊

(J𝜋K(𝑤,𝑤′) → (𝑤′ ⊧Γ(A) 𝜌)) ⋅ ⋀
𝑤′∈𝑊

(J𝜋′K(𝑤,𝑤′) → (𝑤′ ⊧Γ(A) 𝜌))

= { definition of ⊧Γ(A)}
(𝑤 ⊧Γ(A) [𝜋]𝜌) ⋅ (𝑤 ⊧Γ(A) [𝜋′]𝜌)

= { definition of ⊧Γ(A)}
(𝑤 ⊧Γ(A) [𝜋]𝜌 ∧ [𝜋′]𝜌)

Therefore, by Lemma 5.1.3, we have that [𝜋 + 𝜋′]𝜌 ↔ [𝜋]𝜌 ∧ [𝜋′]𝜌 is valid.
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(11.):

(𝑤 ⊧Γ(A) [𝜋](𝜌 ∧ 𝜌′))
= { definition of ⊧Γ(A)}

⋀
𝑤′∈𝑊

(J𝜋K(𝑤,𝑤′) → (𝑤′ ⊧Γ(A) 𝜌 ∧ 𝜌′))

= { definition of ⊧Γ(A)}

⋀
𝑤′∈𝑊

(J𝜋K(𝑤,𝑤′) → ((𝑤′ ⊧Γ(A) 𝜌) ⋅ (𝑤′ ⊧Γ(A) 𝜌′)))

= { (70)}

⋀
𝑤′∈𝑊

((J𝜋K(𝑤,𝑤′) → (𝑤′ ⊧Γ(A) 𝜌)) ⋅ (J𝜋K(𝑤,𝑤′) → (𝑤′ ⊧Γ(A) 𝜌′)))

= { (19)}

⋀
𝑤′∈𝑊

(J𝜋K(𝑤,𝑤′) → (𝑤′ ⊧Γ(A) 𝜌)) ⋅ ⋀
𝑤′∈𝑊

(J𝜋K(𝑤,𝑤′) → (𝑤′ ⊧Γ(A) 𝜌′))

= { definition of ⊧Γ(A)}
(𝑤 ⊧Γ(A) [𝜋]𝜌) ⋅ (𝑤 ⊧Γ(A) [𝜋]𝜌′)

= { definition of ⊧Γ(A)}
(𝑤 ⊧ [𝜋]𝜌 ∧ [𝜋]𝜌′)

Therefore, by Lemma 5.1.3, [𝜋](𝜌 ∧ 𝜌′) ↔ [𝜋]𝜌 ∧ [𝜋]𝜌′ holds.

Lemma 5.1.5. Let A be a complete I-action lattice satisfying

𝑎 → (𝑏 → 𝑐) = (𝑎; 𝑏) → 𝑐 (81)

Then property

[𝜋; 𝜋′]𝜌 ↔ [𝜋][𝜋′]𝜌 (82)

is valid in Γ(A).
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Proof.

(𝑤 ⊧Γ(A) [𝜋; 𝜋′]𝜌)
= { definition of ⊧Γ(A)}

⋀
𝑤′∈𝑊

(J𝜋;𝜋′K(𝑤,𝑤′) → (𝑤′ ⊧Γ(A) 𝜌))

= { definition of J_K}
⋀

𝑤′∈𝑊
(( ∑

𝑤″∈𝑊
(J𝜋K(𝑤,𝑤″); J𝜋′K(𝑤″, 𝑤′))) → (𝑤′ ⊧Γ(A) 𝜌))

= { by (71)}
⋀

𝑤′∈𝑊
( ⋀

𝑤″∈𝑊
(J𝜋K(𝑤,𝑤″); J𝜋′K(𝑤″, 𝑤′) → (𝑤′ ⊧Γ(A) 𝜌)))

= { by (81)}
⋀

𝑤′∈𝑊
( ⋀

𝑤″∈𝑊
(J𝜋K(𝑤,𝑤″) → (J𝜋′K(𝑤″, 𝑤′) → (𝑤′ ⊧Γ(A) 𝜌))))

= { by (19) and (20)}
⋀

𝑤″∈𝑊
( ⋀

𝑤′∈𝑊
(J𝜋K(𝑤,𝑤″) → (J𝜋′K(𝑤″, 𝑤′) → (𝑤′ ⊧Γ(A) 𝜌))))

= { by (70)}
⋀

𝑤″∈𝑊
(J𝜋K(𝑤,𝑤″) → ( ⋀

𝑤′∈𝑊
(J𝜋′K(𝑤″, 𝑤′) → (𝑤′ ⊧Γ(A) 𝜌))))

= { definition of ⊧Γ(A)}
⋀

𝑤″∈𝑊
(J𝜋K(𝑤,𝑤″) → (𝑤″ ⊧Γ(A) [𝜋′]𝜌))

= { definition of ⊧Γ(A)}
(𝑤 ⊧Γ(A) [𝜋][𝜋′]𝜌)

Lemma 5.1.6. Let A be a complete I-action lattice satisfying

𝑎; 𝑏 = 𝑏; 𝑎 (83)

𝑎; 𝑎 = 𝑎 (84)

Then property

[𝜋](𝜌 → 𝜌′) → ([𝜋]𝜌 → [𝜋]𝜌′) (85)

is valid in Γ(A).

Proof. In order to prove (85) observe that

(𝑤 ⊧Γ(A) [𝜋](𝜌 → 𝜌′)); (𝑤 ⊧Γ(A) [𝜋]𝜌)
= ⋀

𝑤′∈𝑊
(J𝜋K(𝑤,𝑤′) → ((𝑤′ ⊧Γ(A) 𝜌) → (𝑤′ ⊧Γ(A) 𝜌′))); ⋀

𝑤′∈𝑊
(J𝜋K(𝑤,𝑤′) → (𝑤′ ⊧Γ(A) 𝜌))
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By (68) we have:

⋀
𝑤′∈𝑊

(J𝜋K(𝑤,𝑤′) → ((𝑤′ ⊧Γ(A) 𝜌) → (𝑤′ ⊧Γ(A) 𝜌′))); ⋀
𝑤′∈𝑊

(J𝜋K(𝑤,𝑤′) → (𝑤′ ⊧Γ(A) 𝜌))

≤(J𝜋K(𝑤,𝑤′) → ((𝑤′ ⊧Γ(A) 𝜌) → (𝑤′ ⊧Γ(A) 𝜌′)); (J𝜋K(𝑤,𝑤′) → (𝑤′ ⊧Γ(A) 𝜌))

for any 𝑤′ ∈ 𝑊. Moreover, we have for any 𝑤′ ∈ 𝑊,

(J𝜋K(𝑤,𝑤′) → ((𝑤′ ⊧Γ(A) 𝜌) → (𝑤′ ⊧Γ(A) 𝜌′)); (J𝜋K(𝑤,𝑤′) → (𝑤′ ⊧Γ(A) 𝜌))
≤ { by hypothesis and (69)}J𝜋K(𝑤,𝑤′) → (𝑤′ ⊧Γ(A) 𝜌′)

Therefore, by (67) we have that

⋀
𝑤′∈𝑊

(J𝜋K(𝑤,𝑤′) → ((𝑤′ ⊧Γ(A) 𝜌) → (𝑤′ ⊧Γ(A) 𝜌′))); ⋀
𝑤′∈𝑊

(J𝜋K(𝑤,𝑤′) → (𝑤′ ⊧Γ(A) 𝜌))

≤ ⋀
𝑤′∈𝑊

(J𝜋K(𝑤,𝑤′) → (𝑤′ ⊧Γ(A) 𝜌′)) = (𝑤 ⊧Γ(A) [𝜋]𝜌′)

Moreover,

(𝑤 ⊧Γ(A) [𝜋](𝜌 → 𝜌′); (𝑤 ⊧Γ(A) [𝜋]𝜌) ≤ (𝑤 ⊧Γ(A) [𝜋]𝜌′)
⇔ { (83)}

(𝑤 ⊧Γ(A) [𝜋]𝜌); (𝑤 ⊧Γ(A) [𝜋](𝜌 → 𝜌′) ≤ (𝑤 ⊧Γ(A) [𝜋]𝜌′)
⇔ { by (17)}

(𝑤 ⊧Γ(A) [𝜋](𝜌 → 𝜌′) ≤ (𝑤 ⊧Γ(A) [𝜋]𝜌) → (𝑤 ⊧Γ(A) [𝜋]𝜌′)
⇔ { definition of ⊧Γ(A)}

(𝑤 ⊧Γ(A) [𝜋](𝜌 → 𝜌′) ≤ (𝑤 ⊧Γ(A) [𝜋]𝜌 → [𝜋]𝜌′)

Therefore, by Lemma 5.1.3, [𝜋](𝜌 → 𝜌′) → ([𝜋]𝜌 → [𝜋]𝜌′).

Lemma 5.1.7. Let A be a complete H-action lattice. The following are valid formulæ in Γ(A):
(12.) 𝜌 ∧ [𝜋][𝜋∗]𝜌 ↔ [𝜋∗]𝜌

(13.) [𝜋∗](𝜌 → [𝜋]𝜌) → (𝜌 → [𝜋∗]𝜌)

Proof. (12.):

Jskip+ 𝜋;𝜋∗K(𝑤,𝑤′) = J𝜋∗K(𝑤,𝑤′) for any 𝑤,𝑤′ ∈ 𝑊
⇔ { 𝑎 = 𝑏 ⇒ (𝑎 → 𝑐) = (𝑏 → 𝑐)}
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(Jskip+ 𝜋;𝜋∗K(𝑤,𝑤′) → (𝑤′ ⊧Γ(A) 𝜌))
= (J𝜋∗K(𝑤,𝑤′) → (𝑤′ ⊧Γ(A) 𝜌)) for any 𝑤′ ∈ 𝑊

⇔ { 𝑎𝑖 = 𝑏𝑖, 𝑖 ∈ 𝐼 ⇒ ⋀
𝑖∈𝐼

𝑎𝑖 = ⋀
𝑖∈𝐼

𝑏𝑖}

⋀
𝑤′∈𝑊

(Jskip+ 𝜋;𝜋∗K(𝑤,𝑤′) → (𝑤′ ⊧Γ(A) 𝜌)) = ⋀
𝑤′∈𝑊

(J𝜋∗K(𝑤,𝑤′) → (𝑤′ ⊧Γ(A) 𝜌))

⇔ { definition of J_K}
⋀

𝑤′∈𝑊
((JskipK(𝑤,𝑤′) + J𝜋;𝜋∗K(𝑤,𝑤′)) → (𝑤′ ⊧Γ(A) 𝜌))

= ⋀
𝑤′∈𝑊

(J𝜋∗K(𝑤,𝑤′) → (𝑤′ ⊧Γ(A) 𝜌))

⇔ { by (71)}

⋀
𝑤′∈𝑊

((JskipK(𝑤,𝑤′) → (𝑤′ ⊧Γ(A) 𝜌)) ⋅ (J𝜋;𝜋∗K(𝑤,𝑤′) → (𝑤′ ⊧Γ(A) 𝜌)))

= ⋀
𝑤′∈𝑊

(J𝜋∗K(𝑤,𝑤′) → (𝑤′ ⊧Γ(A) 𝜌))

⇔ { by (19) and (20)}

⋀
𝑤′∈𝑊

((JskipK(𝑤,𝑤′) → (𝑤′ ⊧Γ(A) 𝜌)) ⋅ ⋀
𝑤′∈𝑊

((J𝜋;𝜋∗K(𝑤,𝑤′) → (𝑤′ ⊧Γ(A) 𝜌)))

= ⋀
𝑤′∈𝑊

(J𝜋∗K(𝑤,𝑤′) → (𝑤′ ⊧Γ(A) 𝜌))

⇔ { step ⋆}

(𝑤 ⊧Γ(A) 𝜌) ⋅ ⋀
𝑤′∈𝑊

(J𝜋;𝜋∗K(𝑤,𝑤′) → (𝑤′ ⊧Γ(A) 𝜌)))

= ⋀
𝑤′∈𝑊

(J𝜋∗K(𝑤,𝑤′) → (𝑤′ ⊧Γ(A) 𝜌))

⇔ { definition of ⊧Γ(A)}
(𝑤 ⊧Γ(A) 𝜌) ⋅ (𝑤 ⊧Γ(A) [𝜋; 𝜋∗]𝜌) = (𝑤 ⊧Γ(A) [𝜋∗]𝜌)

⇔ { (82)}
(𝑤 ⊧Γ(A) 𝜌) ⋅ (𝑤 ⊧Γ(A) [𝜋][𝜋∗]𝜌) = (𝑤 ⊧Γ(A) [𝜋∗]𝜌)

⇔ { definition of ⊧Γ(A)}
(𝑤 ⊧Γ(A) 𝜌 ∧ [𝜋][𝜋∗]𝜌) = (𝑤 ⊧Γ(A) [𝜋∗]𝜌)

The proof step annotated with ⋆ comes from

⋀
𝑤′∈𝑊

((JskipK(𝑤,𝑤′) → (𝑤′ ⊧Γ(A) 𝜌))

⇔ { definition of JskipK}
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(1 → (𝑤 ⊧Γ(A) 𝜌)) ⋅ ⋀
𝑤′∈𝑊�{𝑤}

(⊥ → (𝑤′ ⊧Γ(A) 𝜌))

⇔ { by Lemma 5.1.2}

(𝑤 ⊧Γ(A) 𝜌) ⋅ ⋀
𝑤′∈𝑊�{𝑤}

(⊤)

⇔ { by (21)}
(𝑤 ⊧Γ(A) 𝜌) ⋅ ⊤

⇔ { 𝑎 ≤ ⊤}
(𝑤 ⊧Γ(A) 𝜌)

Therefore, since by (80), Jskip+ 𝜋;𝜋∗K(𝑤,𝑤′) = J𝜋∗K(𝑤,𝑤′) for any 𝑤,𝑤′ ∈ 𝑊, we have

(𝑤 ⊧ 𝜌 ∧ [𝜋][𝜋∗]𝜌) = (𝑤 ⊧ [𝜋∗]𝜌). By Lemma 5.1.3, 𝜌 ∧ [𝜋][𝜋∗]𝜌 ↔ [𝜋∗]𝜌 is valid.

93



(13.):

(𝑤 ⊧Γ(A) [𝜋∗](𝜌 → [𝜋]𝜌))
= { definition of ⊧Γ(A)}

⋀
𝑤′∈𝑊

(J𝜋∗K(𝑤,𝑤′) → ((𝑤′ ⊧Γ(A) 𝜌) → (𝑤′ ⊧Γ(A) [𝜋]𝜌))

= { definition of ⊧Γ(A)}
⋀

𝑤′∈𝑊
(J𝜋∗K(𝑤,𝑤′) → ((𝑤′ ⊧Γ(A) 𝜌) → ( ⋀

𝑤″∈𝑊
(J𝜋K(𝑤′, 𝑤″) → (𝑤″ ⊧Γ(A) 𝜌)))))

= { (70) twice }
⋀

𝑤′∈𝑊
⋀

𝑤″∈𝑊
(J𝜋∗K(𝑤,𝑤′) → ((𝑤′ ⊧Γ(A) 𝜌) → (J𝜋K(𝑤′, 𝑤″) → (𝑤″ ⊧Γ(A) 𝜌))))

= { (66) 3× and (83) fromH}
⋀

𝑤′∈𝑊
⋀

𝑤″∈𝑊
((𝑤′ ⊧Γ(A) 𝜌) → ((J𝜋∗K(𝑤,𝑤′); J𝜋K(𝑤′, 𝑤″)) → (𝑤″ ⊧Γ(A) 𝜌)))

≤ { step ⋆⋆ and (62)}
⋀

𝑤′∈𝑊
⋀

𝑤″∈𝑊
((𝑤′ ⊧Γ(A) 𝜌) → (J𝜋∗K(𝑤,𝑤″) → (𝑤″ ⊧Γ(A) 𝜌)))

= { by (70)}
⋀

𝑤′∈𝑊
((𝑤′ ⊧Γ(A) 𝜌) → ( ⋀

𝑤″∈𝑊
(J𝜋∗K(𝑤,𝑤″) → (𝑤″ ⊧Γ(A) 𝜌))))

= { definition of ⊧Γ(A)}
⋀

𝑤′∈𝑊
((𝑤′ ⊧Γ(A) 𝜌) → (𝑤 ⊧Γ(A) [𝜋∗]𝜌))

≤ { infimum}
(𝑤 ⊧Γ(A) 𝜌) → (𝑤 ⊧Γ(A) [𝜋∗]𝜌)

= { definition of ⊧Γ(A)}
(𝑤 ⊧Γ(A) 𝜌 → [𝜋∗]𝜌)

Step ⋆⋆ holds by definition of program interpretation and (37):

J𝜋∗K(𝑤,𝑤′); J𝜋K(𝑤′, 𝑤″) ≤ ∑
𝑤‴∈𝑊

(J𝜋∗K(𝑤,𝑤‴); J𝜋K(𝑤‴, 𝑤″)) = J𝜋∗; 𝜋K(𝑤,𝑤″)

⇒ { by (65)}J𝜋∗; 𝜋K(𝑤,𝑤″) → (𝑤″ ⊧Γ(A) 𝜌) ≤ J𝜋∗K(𝑤,𝑤′); J𝜋K(𝑤′, 𝑤″) → (𝑤″ ⊧Γ(A) 𝜌)
⇒ { by (64)}

(𝑤′ ⊧Γ(A) 𝜌) → (J𝜋∗; 𝜋K(𝑤,𝑤″) → (𝑤″ ⊧Γ(A) 𝜌))
≤ (𝑤′ ⊧Γ(A) 𝜌) → (J𝜋∗K(𝑤,𝑤′); J𝜋K(𝑤′, 𝑤″) → (𝑤″ ⊧Γ(A) 𝜌))
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Lemma 5.1.8. Let A be a complete I-action lattice. Then

⟨𝜋⟩𝜌 → ⊥ ↔ [𝜋](𝜌 → ⊥) (86)

is valid in Γ(A).

Proof.

(𝑤 ⊧Γ(A) (⟨𝜋⟩𝜌 → ⊥)

= { definition of ⊧Γ(A)}

(𝑤 ⊧Γ(A) ⟨𝜋⟩𝜌) → (𝑤 ⊧Γ(A) ⊥)

= { definition of ⊧Γ(A) }

( ∑
𝑤′∈𝑊

(J𝜋K(𝑤,𝑤′); (𝑤′ ⊧Γ(A) 𝜌))) → (𝑤 ⊧Γ(A) ⊥)

= { by (71) and

(𝑤′ ⊧Γ(A) ⊥) = ⊥ = (𝑤 ⊧Γ(A) ⊥)}

⋀
𝑤′∈𝑊

(J𝜋K(𝑤,𝑤′) → ((𝑤′ ⊧Γ(A) 𝜌) → (𝑤′ ⊧Γ(A) ⊥)))

= { definition of ⊧Γ(A)}

⋀
𝑤′∈𝑊

(J𝜋K(𝑤,𝑤′) → (𝑤′ ⊧Γ(A) 𝜌 → ⊥))

= { definition of ⊧Γ(A)}

(𝑤 ⊧Γ(A) [𝜋](𝜌 → ⊥))

Therefore, we conclude the validity of (86) by Lemma 5.1.3.

5.2 B a ck t o t h e we i g h t e d s i n g l e - f l ow s eman t i c s

The interpretation of tests in the classical, Boolean case is given by co-reflexive relations

𝑅𝜌? = {(𝑤,𝑤)|𝑤 ⊧Γ(A) 𝜌}. In the generic setting of the present work this generalises to

J𝜌?K(𝑤,𝑤′) =
⎧{
⎨{⎩

(𝑤 ⊧Γ(A) 𝜌) if 𝑤 = 𝑤′

⊥ otherwise

Let us revisit Example 1.3.1 to interpret the conditional statement

if 𝑥 ≤ 3 then 𝑥 ∶= 𝑥 + 1 else 𝑦 ∶= 𝑦 × 2 (87)

translated to ((𝑥 ≤ 3)?; 𝑥 ∶= 𝑥 + 1)+ ((((𝑥 ≤ 3) → ⊥)?); 𝑦 ∶= 𝑦 × 2). Using the value computed
for predicate 𝑥 ≤ 3, this leads to
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J((𝑥 ≤ 3)?; 𝑥 ∶= 𝑥 + 1) + (((𝑥 ≤ 3) → ⊥)?; 𝑦 ∶= 𝑦 × 2)K(𝑤′
2, 𝑤′

3) =
= (J(𝑥 ≤ 3)?K ∘ J𝑥 ∶= 𝑥 + 1K ∪ J((𝑥 ≤ 3) → ⊥)?K ∘ J𝑦 ∶= 𝑦 × 2K)(𝑤′

2, 𝑤′
3)

= J(𝑥 ≤ 3)?K(𝑤′
2, 𝑤′

2); J𝑥 ∶= 𝑥 + 1K(𝑤′
2, 𝑤′

3)+J((𝑥 ≤ 3) → ⊥)?K(𝑤′
2, 𝑤′

2); J𝑦 ∶= 𝑦 × 2K(𝑤′
2, 𝑤′

3)
= (𝑤′

2 ⊧Γ(A) 𝑥 ≤ 3); 𝐸(𝑥 ∶= 𝑥 + 1)(𝑤′
2, 𝑤′

3)+
(𝑤′

2 ⊧Γ(A) (𝑥 ≤ 3) → ⊥); 𝐸(𝑦 ∶= 𝑦 × 2)(𝑤′
2, 𝑤′

3)
= (𝑤′

2 ⊧Γ(A) 𝑥 ≤ 3); 𝐸(𝑥 ∶= 𝑥 + 1)(𝑤′
2, 𝑤′

3) + ⊥

J((𝑥 ≤ 3)?; 𝑥 ∶= 𝑥 + 1) + (((𝑥 ≤ 3) → ⊥)?; 𝑦 ∶= 𝑦 × 2)K(𝑤″
2, 𝑤″

3) =
= (J(𝑥 ≤ 3)?K ∘ J𝑥 ∶= 𝑥 + 1K ∪ J((𝑥 ≤ 3) → ⊥)?K ∘ J𝑦 ∶= 𝑦 × 2K)(𝑤″

2, 𝑤″
3)

= J(𝑥 ≤ 3)?K(𝑤″
2, 𝑤″

2); J𝑥 ∶= 𝑥 + 1K(𝑤″
2, 𝑤″

3)+J((𝑥 ≤ 3) → ⊥)?K(𝑤″
2, 𝑤″

2); J𝑦 ∶= 𝑦 × 2K(𝑤″
2, 𝑤″

3)
= (𝑤″

2 ⊧Γ(A) 𝑥 ≤ 3); 𝐸(𝑥 ∶= 𝑥 + 1)(𝑤″
2, 𝑤″

3)+
(𝑤″

2 ⊧Γ(A) (𝑥 ≤ 3) → ⊥); 𝐸(𝑦 ∶= 𝑦 × 2)(𝑤″
2, 𝑤″

3)
= ⊥ + (𝑤″

2 ⊧Γ(A) (𝑥 ≤ 3) → ⊥); 𝐸(𝑦 ∶= 𝑦 × 2)(𝑤″
2, 𝑤″

3)

which can be, once again, instantiated for the three complete action lattices under consideration, yielding

2:

– (𝑤′
2 ⊧Γ(A) 𝑥 ≤ 3); 𝐸(𝑥 ∶= 𝑥 + 1)(𝑤′

2, 𝑤′
3) + ⊥ = (⊤ ∧ ⊤) ∨ ⊥ = ⊤

– ⊥+ (𝑤″
2 ⊧Γ(A) (𝑥 ≤ 3) → ⊥); 𝐸(𝑦 ∶= 𝑦 × 2)(𝑤″

2, 𝑤″
3) = ⊥ ∨ (⊤ ∧ ⊤) = ⊤

This interpretation coincides, as expected, with the standard if-then-else statement.

G:

– (𝑤′
2 ⊧Γ(A) 𝑥 ≤ 3); 𝐸(𝑥 ∶= 𝑥 + 1)(𝑤′

2, 𝑤′
3) + ⊥ = max{min{0.1, 0.7}, 0} = 0.1

– ⊥ + (𝑤″
2 ⊧Γ(A) (𝑥 ≤ 3) → ⊥); 𝐸(𝑦 ∶= 𝑦 × 2)(𝑤″

2, 𝑤″
3) = max{0,min{0.1 →

0, 0.9}} = 0

which expresses the weighted choice of executing 𝑥 ∶= 𝑥 + 1 or 𝑦 ∶= 𝑦 × 2.

R:

– (𝑤′
2 ⊧Γ(A) 𝑥 ≤ 3); 𝐸(𝑥 ∶= 𝑥 + 1)(𝑤′

2, 𝑤′
3) + ⊥ = min{1 + 7,+∞} = 8

– ⊥ + (𝑤″
2 ⊧Γ(A) (𝑥 ≤ 3) → ⊥); 𝐸(𝑦 ∶= 𝑦 × 2)(𝑤″

2, 𝑤″
3) = min{+∞, (1 → +∞) +

9} = +∞
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giving the energy consumed by executing the alternatives 𝑥 ∶= 𝑥 + 1 and 𝑦 ∶= 𝑦 × 2, weighted
by the energy consumed by evaluating the predicates (𝑥 ≤ 3) and (𝑥 ≤ 3) → ⊥. The value

+∞ corresponds to the worst case scenario of energy consumption, let us say, a value above a

certain threshold, sufficiently high to be considered not reasonable for consideration in the particular

application scenario. We can thus assume, in this context, that the execution of assignment 𝑥 ∶=
𝑥 + 1 represents the best alternative in terms of energy consumption.

Lemma 5.2.1. Let A be a complete H-action lattice. The following are valid formulæ in Γ(A):

(14.) ⟨𝜌1?⟩𝜌2 ↔ (𝜌1 ∧ 𝜌2)

(15.) [𝜌1?]𝜌2 ↔ (𝜌1 → 𝜌2)

Proof. (14.):

(𝑤 ⊧Γ(A) ⟨𝜌1?⟩𝜌2)
= { definition of ⊧Γ(A)}

∑
𝑤′∈𝑊

(J𝜌1?K(𝑤,𝑤′); (𝑤′ ⊧Γ(A) 𝜌2))

= { 𝑤 ≠ 𝑤′ ⇒ J𝜌1?K(𝑤,𝑤′) = ⊥, (40) and (12)}
(𝑤 ⊧Γ(A) 𝜌1); (𝑤 ⊧Γ(A) 𝜌2)

= { ; = ⋅ byH}
(𝑤 ⊧Γ(A) 𝜌1) ⋅ (𝑤 ⊧Γ(A) 𝜌2)

= { definition of ⊧Γ(A)}
(𝑤 ⊧Γ(A) 𝜌1 ∧ 𝜌2)

(15.):

(𝑤 ⊧Γ(A) [𝜌1?]𝜌2)
= { definition of ⊧Γ(A)}

⋀
𝑤′∈𝑊

(J𝜌1?K(𝑤,𝑤′) → (𝑤′ ⊧Γ(A) 𝜌2))

= { definition of J𝜌1?K + (19)}

⋀
𝑤′∈𝑊−{𝑤}

(⊥ → (𝑤′ ⊧Γ(A) 𝜌2)) ⋅ ((𝑤 ⊧Γ(A) 𝜌1) → (𝑤 ⊧Γ(A) 𝜌2))

= { by Lemma 5.1.2}

⋀
𝑤′∈𝑊�{𝑤}

{⊤} ⋅ ((𝑤 ⊧Γ(A) 𝜌1) → (𝑤 ⊧Γ(A) 𝜌2))
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= { 𝑎 ≤ ⊤ ⇔ 𝑎 ⋅ ⊤ = 𝑎}
(𝑤 ⊧Γ(A) 𝜌1) → (𝑤 ⊧Γ(A) 𝜌2)

= { definition of ⊧Γ(A)}
(𝑤 ⊧Γ(A) 𝜌1 → 𝜌2)

5.3 A n i l l u s t r a t i o n

We explore in this section the application of the logic to a simple program. Concretely, we give examples

of computing the truth degree of some logical properties, defined over programs (87) and (59).

Consider first the following example. We want to evaluate the predicate 𝑥 ≥ 4 after the execution of

program (87), which can be represented by the Γ(A) formula

⟨((𝑥 ≥ 3)?; 𝑥 ∶= 𝑥 + 1) + (((𝑥 ≤ 3) → ⊥)?; 𝑦 ∶= 𝑦 × 2)⟩(𝑥 ≥ 4)

Resorting on the axiomatic system given above, such calculation is obtained as follows

𝑤2 ⊧Γ(A) ⟨(𝑥 ≤ 3)?; (𝑥 ∶= 𝑥 + 1) + (((𝑥 ≤ 3) → ⊥)?; 𝑦 ∶= 𝑦 × 2)⟩(𝑥 ≥ 4)
= { 3. and 4. of lemma 5.1.4}

𝑤2 ⊧Γ(A) ⟨(𝑥 ≤ 3)?⟩⟨𝑥 ∶= 𝑥 + 1⟩(𝑥 ≤ 4) ∨ ⟨((𝑥 ≤ 3) → ⊥)?⟩⟨𝑦 ∶= 𝑦 × 2⟩)(𝑥 ≥ 4)
= { definition of ⊧Γ(A)}J(𝑥 ≤ 3)?K(𝑤2, 𝑤′

2); (J𝑥 ∶= 𝑥 + 1K(𝑤′
2, 𝑤′

3); 𝑤′
3 ⊧Γ(A) (𝑥 ≥ 4))

+ J(𝑥 ≤ 3)?K(𝑤2, 𝑤″
2); (J𝑥 ∶= 𝑥 + 1K(𝑤″

2, 𝑤″
3); 𝑤″

3 ⊧Γ(A) (𝑥 ≥ 4))
+ J((𝑥 ≤ 3) → ⊥)?K(𝑤2, 𝑤′

2); (J𝑦 ∶= 𝑦 × 2K(𝑤′
2, 𝑤′

3); 𝑤′
3 ⊧Γ(A) (𝑥 ≥ 4))

+ J((𝑥 ≤ 3) → ⊥)?K(𝑤2, 𝑤″
2); (J𝑦 ∶= 𝑦 × 2K(𝑤″

2, 𝑤″
3); 𝑤″

3 ⊧Γ(A) (𝑥 ≥ 4))

Concretely, we assume instantiations with the usual three action lattices, yielding

2 ∶ [⊤ ∧ (⊤ ∧ ⊤) ∨ ⊥ ∧ (⊥ ∧ ⊤)] ∧ [⊥ ∧ (⊥ ∧ ⊤) ∨ ⊤ ∧ (⊤ ∧ ⊤)] = ⊤ ∨ ⊤ = ⊤
This instantiation coincides with the classical case, i.e. the Boolean evaluation of logic formulas.

G ∶

[0.1; (0.7; 0.4) + 0; (0; 0.4)] + [0; (0; 0.4) + 0; (0.9; 0.4)]
=max{max{min{0.1,min{0.7, 0.4}},
min{0,min{0, 0.4}}},max{min{0,min{0, 0.4}},min{0,min{0.9, 0.4}}}}

=0.1
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The Gödel lattice gives the certainty degree of the formula.

R ∶

[1; (7; 1) + (+∞); (+∞+ 4)] + [+∞; (+∞; 1) + 0; (9; 4)]
=min{min{9,+∞},min{+∞, 13}}
=9

Note the singularity of this interpretation. Instead of verifying a formula, as in the Boolean case,

or computing its certainty, as occurs for the Gödel algebra, this value is the energy consumed by

performing the operation itself.

Let us now revisit program (59) and assume, by considering an instantiation with lattice G, that 𝐸(𝑥 ∶=
𝑥 + 1)(𝑤′

2, 𝑤′
3) = 0.6 and 𝐸(𝑦 ∶= 𝑦 × 2)(𝑤″

2, 𝑤″
3) = 0.4. As discussed before, by perceiving (59)

as a probabilistic choice, these weights are interpreted as probabilities of execution of each assignment.

We also consider, for this interpretation, the following characterisation of program states:

𝑤0(𝑥)(𝑟) =
⎧{
⎨{⎩

1, if 𝑟 = 1
0 otherwise

𝑤0(𝑦)(𝑟) =
⎧{
⎨{⎩

1 if 𝑟 = 2
0, otherwise

𝑤1(𝑥)(𝑟) =
⎧{
⎨{⎩

1 if 𝑟 = 2
0, otherwise

𝑤1(𝑦)(𝑟) =
⎧{
⎨{⎩

1 if 𝑟 = 2
0, otherwise

𝑤2(𝑥)(𝑟) =
⎧{
⎨{⎩

1 if 𝑟 = 4
0, otherwise

𝑤2(𝑦)(𝑟) =
⎧{
⎨{⎩

1 if 𝑟 = 2
0, otherwise

and with the execution of the program, the states 𝑤′
3 and 𝑤″

3 become

𝑤′
3(𝑥)(𝑟) =

⎧{
⎨{⎩

1 if 𝑟 = 5
0, otherwise

𝑤′
3(𝑦)(𝑟) =

⎧{
⎨{⎩

1 if 𝑟 = 2
0, otherwise

𝑤″
3(𝑥)(𝑟) =

⎧{
⎨{⎩

1 if 𝑟 = 4
0, otherwise

𝑤″
3(𝑦)(𝑟) =

⎧{
⎨{⎩

1 if 𝑟 = 4
0, otherwise

and, consequently, the evaluation of the predicate in the same states is J𝑥 ≥ 4K𝑤′
3

= 1 and J𝑥 ≥
4K𝑤″

3
= 0.

In this particular context, the logic is capable of asking, for example, ”what is the probability of reaching

a state which satisfies 𝑥 ≥ 4”, corresponding to the computation of the Γ(G) formula
⟨(𝑥 ∶= 𝑥 + 1) + (𝑦 ∶= 𝑦 × 2)⟩(𝑥 ≥ 4), as follows
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𝑤2 ⊧Γ(A) ⟨(𝑥 ∶= 𝑥 + 1) + (𝑦 ∶= 𝑦 × 2)⟩(𝑥 ≥ 4)
= { 3. of lemma 5.1.4}

𝑤2 ⊧Γ(A) ⟨𝑥 ∶= 𝑥 + 1⟩(𝑥 ≥ 4) ∨ ⟨𝑦 ∶= 𝑦 × 2⟩(𝑥 ≥ 4)
= { definition of ⊧Γ(A)}J𝑥 ∶= 𝑥 + 1K(𝑤2, 𝑤′

3); 𝑤′
3 ⊧Γ(A) (𝑥 ≥ 4) + J𝑦 ∶= 𝑦 × 2K(𝑤2, 𝑤″

3); 𝑤″
3 ⊧Γ(A) (𝑥 ≥ 4)

= { definition of G}
max{min{0.6, 1},min{0.4, 0}} = 0.6

The value 0.6 is the probability that the program (59) reaches a state satisfying 𝑥 ≤ 4. An analogous

computation can be made if the program (59) yields a sub-probabilistic choice instead.

5.4 B i s imu l a t i o n

We introduce in this section a parametric notion of bisimulation, and we prove its modal invariance for

any Γ(A). The bisimulation generalises the notion recently introduced in [JMM20] in the context of fuzzy
modal logic. In this section we resort to a linear complete action lattice as parameter, since the linearity

is necessary to establish some of the results. In order to distinguish the semantics and the satisfaction

relation over different models, we assume notations J_K𝑀𝑤 and 𝑀,𝑤 ⊧Γ(A), for a model 𝑀 ∈ ModΓ(A)

and a state 𝑤 ∈ 𝑊.

Let us firs recall some handy properties of action lattices from [MNM16].

𝑥 ≤ 𝑦 ⇒ 𝑥; 𝑎 ≤ 𝑦; 𝑎 (88)

𝑎 ≤ 𝑏 & 𝑐 ≤ 𝑑 ⇒ 𝑎 + 𝑐 ≤ 𝑏 + 𝑑 (89)

Definition 5.4.1 (Π-Bisimulation). Let 𝑋 be a set of variables, and Δ = ((𝐹, 𝑃),Π), where (𝐹, 𝑃)
is a data signature and Π ⊂ Prog0, 𝑀 = (𝑊,𝑉, 𝐸) and 𝑀′ = (𝑊′, 𝑉′, 𝐸′) be, respectively, a

signature and two Γ(A)-models, for any linear complete action lattice A. A Π-bisimulation from 𝑀 to 𝑀′

is a non empty relation 𝐵 ⊆ 𝑊 × 𝑊′ such that whenever 𝑤 𝐵 𝑤′, the following conditions hold:

(ATOMS) for any 𝑥 ∈ 𝑋, 𝑟 ∈ R, J𝑥K𝑀𝑤 (𝑟) = J𝑥K𝑀′

𝑤′ (𝑟) and, for any 𝑝 ∈ 𝑇𝑃(𝑋), J𝑝K𝑀𝑤 = J𝑝K𝑀′

𝑤′

(FZIG) for any 𝑢 ∈ 𝑊 and 𝜋 ∈ Π, J𝜋K𝑀0 (𝑤, 𝑢) ≤ ∑
𝑢′∈ 𝐵[{𝑢}]

J𝜋K𝑀′

0 (𝑤′, 𝑢′)

(FZAG) for any 𝑢′ ∈ 𝑊′ and 𝜋 ∈ Π, J𝜋K𝑀′

0 (𝑤′, 𝑢′) ≤ ∑
𝑢∈𝐵−1[{𝑢′}]

J𝜋K𝑀0 (𝑤, 𝑢)

We write 𝑤 ∼ 𝑤′ whenever, there is a bisimulation 𝐵 such that (𝑤,𝑤′) ∈ 𝐵.

Next result generalises the notion of Π-Bisimulation to any program in Prog.
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Proposition 5.4.1. Let A be a linear complete action lattice, Δ a data signature, and 𝑀 = (𝑊,𝑉, 𝐸),
𝑀′ = (𝑊′, 𝑉′, 𝐸′) two Γ(A)-models for Δ. Then, any Π-bisimulation over Γ(A)-models is a Prog-

bisimulation.

Proof. The proof is done by induction over the programs structure. Let 𝐵 ⊆ 𝑊 × 𝑊′ be a bisimulation

and 𝑤 ∈ 𝑊,𝑤′ ∈ 𝑊′ such that (𝑤,𝑤′) ∈ 𝐵.
The result for atomic programs is given by hypothesis. Let us prove the (Fzig) condition for programs

𝜋;𝜋′. By induction hypothesis, let us assume that (Fzig) of 𝐵 for 𝜋 and 𝜋′. Hence, for any 𝑣 ∈ 𝑊

J𝜋K𝑀(𝑤, 𝑣) ≤ ∑
𝑣′∈𝐵(𝑣)

J𝜋K𝑀′(𝑤′, 𝑣′) (90)

holds. By (24), we have also that, for any 𝑣 ∈ 𝑊 there is a 𝑣′𝑣 ∈ 𝐵(𝑣) such that
∑

𝑣′∈𝐵(𝑣)
J𝜋K𝑀′(𝑤′, 𝑣′) = J𝜋K𝑀′(𝑤′, 𝑣′𝑣). Moreover, since (𝑣, 𝑣′𝑣) ∈ 𝐵, we have by (Fzig) of 𝐵 for

𝜋′ that J𝜋′K𝑀(𝑣, 𝑢) ≤ ∑
𝑢′∈𝐵(𝑢)

J𝜋′K𝑀′(𝑣′𝑣, 𝑢′)

By (88) in (90) we get, for any 𝑣 ∈ 𝑊,

J𝜋K𝑀(𝑤, 𝑣); J𝜋′K𝑀(𝑣, 𝑢) ≤ J𝜋K𝑀′(𝑤′, 𝑣′𝑣); ∑
𝑢′∈𝐵(𝑢)

J𝜋′K𝑀′(𝑣′𝑣, 𝑢′)

and, by (89),

∑
𝑣∈𝑊

J𝜋K𝑀(𝑤, 𝑣); J𝜋′K𝑀(𝑣, 𝑢) ≤ ∑
𝑣′𝑣∈𝑊′

J𝜋K𝑀′(𝑤′, 𝑣′𝑣); ∑
𝑢′∈𝐵(𝑢)

J𝜋′K𝑀′(𝑣′𝑣, 𝑢′) (91)

Moreover, since {𝑣′𝑣 ∶ 𝑣 ∈ 𝑊} ⊆ {𝑣′ ∶ 𝑣′ ∈ 𝑊′}, and by (29), (25) and (26), we have that

∑
𝑣′𝑣∈𝑊′

J𝜋K𝑀′(𝑤′, 𝑣′𝑣); ∑
𝑢′∈𝐵(𝑢)

J𝜋′K𝑀′(𝑣′𝑣, 𝑢′) ≤ ∑
𝑢′∈𝐵(𝑢)

( ∑
𝑣′∈𝑊′

(J𝜋K𝑀′(𝑤′, 𝑣′); J𝜋′K𝑀′(𝑣′, 𝑢′)) (92)

By (91) and (92), we achieve J𝜋;𝜋′K𝑀(𝑤, 𝑢) ≤ ∑
𝑢′∈𝐵(𝑢)

J𝜋;𝜋′K𝑀′(𝑤′, 𝑢′). The proof of (Fzag)

condition is analogous.

For a program 𝜋 + 𝜋′, we observe that

J𝜋 + 𝜋′K𝑀(𝑤, 𝑢)
= { interpretation of programs}

J𝜋K𝑀(𝑤, 𝑢) + J𝜋′K𝑀(𝑤, 𝑢)
≤ { (Fzig) and (89)}

∑
𝑢′∈𝐵(𝑢)

J𝜋K𝑀′(𝑤′, 𝑢′) + ∑
𝑢′∈𝐵(𝑢)

J𝜋′K𝑀′(𝑤′, 𝑢′)
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= { definition of +}

∑
𝑢′∈𝐵(𝑢)

J𝜋 + 𝜋′K𝑀′(𝑤′, 𝑢′)

Finally, for a program 𝜋∗, we observe that, by definition of ∗,

J𝜋∗K𝑀(𝑤, 𝑢) = ∑
𝑘≥0

(J𝜋K𝑘)𝑀(𝑤, 𝑢) = (J𝜋K0)𝑀(𝑤, 𝑢) + J𝜋K𝑀(𝑤, 𝑢) + (J𝜋K2)𝑀(𝑤, 𝑢) + …

But, for each 𝑘, (J𝜋K𝑘)𝑀(𝑤, 𝑢) ≤ ∑
𝑢∈𝐵(𝑢)

(J𝜋K𝑘)𝑀′(𝑤′, 𝑢′), by Fzig. Hence,

∑
𝑘≥0

(J𝜋K𝑘)𝑀(𝑤, 𝑢)

≤ { (89)}

∑
𝑘≥0

( ∑
𝑢′∈𝐵(𝑢)

(J𝜋K𝑘)𝑀′(𝑤′, 𝑢′))

= { (25) and (26)}

∑
𝑢′∈𝐵(𝑢)

( ∑
𝑘≥0

(J𝜋K𝑘)𝑀′(𝑤′, 𝑢′))

= { definition of ∗}

∑
𝑢′∈𝐵(𝑢)

(J𝜋∗K)𝑀′(𝑤′, 𝑢′)

Next result establishes the well-known word bisimulation result on this weighted setting. This result reduces

the invariance property of formulas involving compound programs in Prog to the one involving just the set of

atomic programs Prog0. In other words, it reduces the modal invariance problem of a generated dynamic

logic to the modal invariance of the underlying logic.

Theorem 5.4.1 (Modal invariance). Let Δ be a data signature, A a linear complete action lattice,

𝑀 = (𝑊,𝑉, 𝐸) and𝑀′ = (𝑊′, 𝑉′, 𝐸′) two Γ(A)-models forΔ, and𝐵 ⊆ 𝑊×𝑊′ a bisimulation from

𝑀 to 𝑀′. Then, for any 𝑤 ∈ 𝑊, 𝑤′ ∈ 𝑊′ such that 𝑤 ∼ 𝑤′ and for all formulas 𝜌 ∈ FmΓ(A)(Δ),

(𝑀,𝑤 ⊧Γ(A) 𝜌) = (𝑀′, 𝑤′ ⊧Γ(A) 𝜌)

Proof.

We prove this result by induction on the structure of formulas.

For the invariance of the formula⊤, note that (𝑀,𝑤 ⊧Γ(A) ⊤) = ⊤ = (𝑀′, 𝑤′ ⊧Γ(A) ⊤) and similarly
for the formula ⊥.
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Invariance of 𝑝 ∈ 𝑇𝑃(𝑋) is a direct consequence of (Atoms),

(𝑀,𝑤 ⊧Γ(A) 𝑝) = J𝑝K𝑀𝑤 = J𝑝K𝑀′

𝑤′ = (𝑀′, 𝑤′ ⊧Γ(A) 𝑝)

For the invariance of formulas 𝜑 ∧ 𝜓, we observe that

(𝑀,𝑤 ⊧Γ(A) 𝜌1 ∧ 𝜌2) = (𝑀,𝑤 ⊧Γ(A) 𝜌1) ⋅ (𝑀,𝑤 ⊧Γ(A) 𝜌2) =𝐼.𝐻.

(𝑀′, 𝑤′ ⊧Γ(A) 𝜌1) ⋅ (𝑀′, 𝑤′ ⊧Γ(A) 𝜌2) = (𝑀′, 𝑤′ ⊧Γ(A) 𝜌1 ∧ 𝜌2)

The proofs for the invariance of formulas 𝜌1 ∨ 𝜌2 and 𝜌1 → 𝜌2 are similar.

Now it just remains to prove formulas ⟨𝜋⟩𝜌 and [𝜋]𝜌. Since A is linear, we have, by Proposition 5.4.1
that it is enough to prove the invariance for formulas involving atomic programs 𝜋0 ∈ Prog0. For the
invariance of a formula ⟨𝜋0⟩𝜌, we observe that, by (Fzig), we have

∀𝑢∈𝑊 , J𝜋0K𝑀0 (𝑤, 𝑢) ≤ ∑
𝑢′∈ 𝐸[{𝑢}]

J𝜋0K𝑀′

0 (𝑤′, 𝑢′) = J𝜋0K𝑀′

0 (𝑤′, 𝑢′
𝑢), for some 𝑢′

𝑢 ∈ 𝑊′ (93)

Since ∀𝑢∈𝑊 , 𝑢′
𝑢 ∈ 𝐵[{𝑢}], we have 𝑢 𝐵 𝑢′

𝑢. By I. H., we have

(𝑀, 𝑢 ⊧Γ(A) 𝜌) = (𝑀′, 𝑢′
𝑢 ⊧Γ(A) 𝜌) and, by (93),

∀𝑢∈𝑊 , J𝜋0K𝑀0 (𝑤, 𝑢) ⋅ (𝑀, 𝑢 ⊧Γ(A) 𝜌) ≤ J𝜋0K𝑀′

0 (𝑤′, 𝑢′
𝑢) ⋅ (𝑀′, 𝑢′

𝑢 ⊧Γ(A) 𝜌)

In particular,

∑
𝑢∈𝑊

(J𝜋0K𝑀0 (𝑤, 𝑢) ⋅ (𝑀, 𝑢 ⊧Γ(A) 𝜌)) ≤ ∑
𝑢′𝑢∶𝑢∈𝑊

(J𝜋0K𝑀′

0 (𝑤′, 𝑢′
𝑢) ⋅ (𝑀′, 𝑢′

𝑢 ⊧Γ(A) 𝜌)) (94)

Since {𝑢′
𝑢 ∶ 𝑢 ∈ 𝑊} ⊆ {𝑢′ ∶ 𝑢′ ∈ 𝑊′} we have ∑{𝑢′

𝑢 ∶ 𝑢 ∈ 𝑊} ≤ ∑{𝑢′ ∶ 𝑢′ ∈ 𝑊′} and, by
(94),

∑
𝑢∈𝑊

(J𝜋0K𝑀0 (𝑤, 𝑢) ⋅ (𝑀, 𝑢 ⊧Γ(A) 𝜌)) ≤ ∑
𝑢′∈𝑊′

(J𝜋0K𝑀′

0 (𝑤′, 𝑢′) ⋅ (𝑀′, 𝑢′ ⊧Γ(A) 𝜌))

i.e. (𝑀,𝑤 ⊧Γ(A) ⟨𝜋0⟩𝜌) ≤ (𝑀′, 𝑤′ ⊧Γ(A) ⟨𝜋0⟩𝜌). Similarly we can prove
(𝑀,𝑤 ⊧Γ(A) ⟨𝜋0⟩𝜌) ≥ (𝑀′, 𝑤′ ⊧Γ(A) ⟨𝜋0⟩𝜌) by using (Fzag) condition.

For the invariance of formulas [𝜋0]𝜌, with 𝜋0 ∈ Prog0, since 𝑤 𝐸 𝑤′ we have, by (Fzig),

∀𝑢∈𝑊 , J𝜋0K𝑀0 (𝑤, 𝑢) ≤ ∑
𝑢′∈ 𝐸[{𝑢}]

J𝜋0K𝑀′

0 (𝑤′, 𝑢′) = J𝜋0K𝑀′

0 (𝑤′, 𝑢′
𝑢), for some 𝑢′

𝑢 ∈ 𝑊′ (95)

Since ∀𝑢∈𝑊 , 𝑢′
𝑢 ∈ 𝐵[{𝑢}], we have 𝑢 ∈ 𝑊, 𝑢 𝐵 𝑢′

𝑢. Hence, by I.H.

(𝑀, 𝑢 ⊧Γ(A) 𝜌) = (𝑀′, 𝑢′
𝑢 ⊧Γ(A) 𝜌) (96)

103



It follows from the definition of 𝐼 that 𝑥0 ≤ 𝑥1 implies 𝐼(𝑥0, 𝑦) ≥ 𝐼(𝑥1, 𝑦). Then, from (95) and (96),

we have

∀𝑢∈𝑊 , 𝐼(J𝜋0K𝑀0 (𝑤, 𝑢), (𝑀, 𝑢 ⊧Γ(A) 𝜌)) ≥ 𝐼(J𝜋0K𝑀′

0 (𝑤′, 𝑢′
𝑢), (𝑀′, 𝑢′

𝑢 ⊧Γ(A) 𝜌))

and, in particular,

⋀
𝑢∈𝑊

(𝐼(J𝜋0K𝑀0 (𝑤, 𝑢), (𝑀, 𝑢 ⊧Γ(A) 𝜌))) ≥ ⋀
𝑢′𝑢∶𝑢∈𝑊

(𝐼(J𝜋0K𝑀′

0 (𝑤′, 𝑢′
𝑢), (𝑀′, 𝑢′

𝑢 ⊧Γ(A) 𝜌))) (97)

Since {𝑢′
𝑢 ∶ 𝑢 ∈ 𝑊} ⊆ {𝑢′ ∶ 𝑢′ ∈ 𝑊′}, we have ⋀{𝑢′

𝑢 ∶ 𝑢 ∈ 𝑊} ≥ ⋀{𝑢′ ∶ 𝑢′ ∈ 𝑊′}.
Hence

⋀
𝑢∈𝑊

(𝐼(J𝜋0K𝑀0 (𝑤, 𝑢), (𝑀, 𝑢 ⊧Γ(A) 𝜌))) ≥ ⋀
𝑢′∈𝑊′

(𝐼(J𝜋0K𝑀′

0 (𝑤′, 𝑢′), (𝑀′, 𝑢′ ⊧Γ(A) 𝜌))) (98)

and therefore (𝑀,𝑤 ⊧Γ(A) [𝜋0]𝜌) ≥ (𝑀′, 𝑤′ ⊧Γ(A) [𝜋0]𝜌). The proof for
(𝑀,𝑤 ⊧Γ(A) [𝜋0]𝜌) ≤ (𝑀′, 𝑤′ ⊧Γ(A) [𝜋0]𝜌) is analogous.
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Part II

W E I G H T E D MU LT I - F L OW C OM P U TAT I O N S



Con t e x t

A specific type of system where the notion of weight plays a major role is fuzzy control systems [Zad65].

Built on the rules of fuzzy logic, they emerged essentially as a formalisation of knowledge for expressing

properties that cannot be evaluated in simple terms of “true” and “false”.

Programs for those systems adopt a distinct interpretation of conditional statements from classic im-

perative programming languages. What we mean is that their execution is not nondeterministic, adopting

instead a weighted parallel behaviour, as shown in Example 1.3.2. Programs for fuzzy control systems are

implemented using fuzzy control languages, with applications e.g. in medical diagnosis and robotics. One

example of the former is the Fuzzy Arden Syntax (FAS) [VMA10], an extension to Arden Syntax (AS) [Hri94]

to cater for vague or uncertain information often arising in clinical situations. One example of the later is

jFuzzyLogic, implemented in [CA12] in one case study to analyse the behaviour of a robot in a labyrinth.

Due to their intuitiveness, being very close to natural language, FAS and jFuzzyLogic are used to design

knowledge-based components in medical decision support systems [ACB+18, SFdBA12, SHJ+94], and

in artificial intelligence [CAf13], respectively.

Thus rigorous semantics structures and logics for reasoning about this class of programs are highly

required. The concept of binary multirelation, formalised as a (crisp) relation between a state and a set

of states, points towards this direction [Rew03]. In this reference, authors explore more deeply these

relations, by doing an extensive algebraic characterisation, as well as defining composition, union and

intersection operators over them. Although it appeared initially in the context of game logics, the concept

was used to give semantics to concurrent propositional dynamic logic (CPDL), an extension to PDL to

reason about programs running in parallel [Pel87].

O v e r v i ew

Dynamic logics such as CPDL are intended to capture programs with a parallel behaviour, but still not able

to capture weighted “multi-flow” computations, as arising in FAS. In fact, there is an absence of rigorous

ways for reasoning about such class of programs. In this direction, we contribute, in Part 2 of this thesis,

with semantic structures (algebras and logics) for ℱ2-programs interpreted as “multi-flow” computations,

endowed with a family of dynamic logics for their formal verification.

First, in order to build these semantic constructions, we model the most basic notion of a program as a

weighted binary multirelation. Such a concept represents a generalisation of a binary multirelation [Rew03],

to model conditionals as parallel executions of two or more actions, each one endowed with a (possibly

different) weight. Taking this notion as the basic construction, we define an algebra of programs and prove

that it defines a proto-trioid, i.e. a variant of a semiring where parallel composition and union are associative

whereas the sequential composition is not, and where the later also does not left distribute over union

(both axioms are inequalities). The parallel composition is then taken as the core ingredient to recursively

define arbitrary (compound) programs as weighted “multi-flow” computations. A discussion about the

differences in the axiomatisation, when comparing with an idempotent semiring and a Kleene algebra,
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is also conducted. In particular we provide counter-examples showing that associativity of sequential

composition and its left distribution over union are not indeed equalities.

Second, the relational semantics is built analogously to what was done in Part 1, taking computational

states as weighted valuations of variables over a given domain, and programs as their modifiers. A com-

pound program is, as explained above, modelled as a weighted multirelation built from operations of the

defined program algebra.

Third, a family of dynamic logics is generated, parametric on a complete right residuated lattice, which,

depending on each instantiation, gives different meanings to the notion of a computation. To give seman-

tics to if-then-else and switch instructions, a proper notion of test is introduced. The ‘aggregation’ and

‘defuzzify’ operators, present in the syntax of fuzzy programming languages, are also captured using the

proposed semantics, to combine the multiple branches resulting from the parallel execution of the condi-

tionals. A set of dynamic logic properties are proved for the generated logics, which allow compositional

reasoning over ℱ2-programs.

This framework is illustrated by two examples in which some properties of simple fuzzy programs are

proved: one using fuzzy Arden syntax, the other written in jFuzzyLogic.

R o a dmap

Part 2 is organised as follows. Chapter 6 presents the algebraic construction to capture ℱ2-programs.

First, Section 6.1 recaps the concept of binary multirelation. Then, Section 6.2 introduces weighted binary

multirelation, which, together with proper generalisations of sequential and parallel compositions of binary

multirelations, form the program algebra to model weighted “multi-flow” computations. Based on such a

structure, a semantics for ℱ2-programs is presented including, naturally, program variables and assign-

ments, in Chapter 7. Chapter 8 introduces a family of dynamic logics for the verification of ℱ2-programs.

Finally, the framework is illustrated by proving some properties of two simple programs: the first (Section

8.3), written is FAS, revisits Example 1.3.2; the second (Section 5.3) corresponds to a fuzzy control system

for controlling a container crane, written in JFuzzyLogic.
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6

A L G E B R A S O F W E I G H T E D MU LT I - F L OW C OM P U TAT I O N S

We follow the same steps as in Part1 by presenting, first, in this chapter, an algebra to interpret programs.

We resort to the theory of binary multirelations, generalised to capture fuzziness, to develop such an

algebraic structure. As enhanced in the introduction, the concept of binary multirelation may act as an

input-output semantics for describing the execution of a program from a single input state to a set of output

states. The generalisation to the weighted case goes even further, and gives us the framework that we

need to capture the computations designated by weighted “multi-flow”. Additionally, by defining some

operators, we intend to define a suitable algebra of programs to collect these computations. Unlike the

structure obtained in Part 1, however, such an algebra is not a Kleene algebra. This limitation is in part,

as we will see, due to the definition of sequential composition which, due to the nature of the mathematical

object over which they operate, is not associative and does not left distribute over union.

6.1 P r e l im i n a r i e s : b i n a r y mu l t i r e l a t i o n s

Definition 6.1.1 (Binary multirelation [Rew03]). Let 𝑊 be a set. A binary multirelation is a subset of

the cartesian product 𝑊 × 2𝑊 , i.e. a set of ordered pairs (𝑢,𝑈), where 𝑢 ∈ 𝑊 and 𝑈 ⊆ 𝑊.

The space of binary multirelations over 𝑊 is denoted 𝑀(𝑊).
Given multirelations 𝑅, 𝑆 ∈ 𝑀(𝑊), the union of 𝑅 and 𝑆, 𝑅 ∪ 𝑆, is simply the set union, and the

parallel composition [FS16] is given by

𝑅||𝑆 = {(𝑤,𝑈 ∪ 𝑉) ∣ (𝑤,𝑈) ∈ 𝑅 ∧ (𝑤,𝑉) ∈ 𝑆} (99)

The operator indicates a parallel run of a program leading from a state 𝑤 to a set of states in𝑈∪𝑉 ⊆
𝑊, “combining” the arriving states of 𝑅 and 𝑆 into 𝑊.

To illustrate better the differences between operators ∪ and ||, let us consider the following example.

Example 6.1.1. Consider the multirelations 𝑅 = {(𝑤0, {𝑢1, 𝑢2})} and 𝑆 = {(𝑤0, {𝑣1})}. The

union of 𝑅 and 𝑆 is the set {(𝑤0, {𝑢1, 𝑢2}), (𝑤0, {𝑣1})}, which carries the standard interpretation of

conditionals as nondeterministic choice between {𝑤0, {𝑢1, 𝑢2}} and

{(𝑤0, {𝑣1})}. On the other hand, the parallel composition 𝑅||𝑆 represents a single execution

{(𝑤0, {𝑢1, 𝑢2, 𝑣1})} from state 𝑤0 going simultaneously to states 𝑢1, 𝑢2 and 𝑣1.
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As mentioned in the introduction, the literature presents three distinct sequential composition operators

for binary multirelations: Kleisli, Peleg and Parikh. The former is the relational generalisation of the

standard composition on the Kleisli category of the powerset monad [Mac71]. The Peleg composition is

used in the semantics of CPDL [Pel87], and thus its motivations arise from program logics. The Parikh

sequential composition, on the other hand, has very distinct motivations, being introduced for the first time

in [Par83] in the context of game logics. For this reason we left the discussion of the latter for the future,

presenting instead, in this section, the definitions of Kleisli and Peleg compositions for the classic case,

and in the next section, their generalisations for the weighted case, accompanied by a simple example.

Definition 6.1.2 (Kleisli sequential composition). Let 𝑊 be a set. Consider two binary multirelations 𝑅,

𝑆 ∈ 𝑀(𝑊). The Kleisli sequential composition of 𝑅 and 𝑆 is defined as

𝑅 # 𝑆 = {(𝑤,𝑈) ∣ ∃𝑉 ⋅ (𝑤,𝑉) ∈ 𝑅 ∧ 𝑈 = ⋃𝑆(𝑉)}

A pair (𝑤,𝑈) is in 𝑅 # 𝑆 if 𝑤 is related by 𝑅 with some intermediate set 𝑉 and 𝑈 is the union of all

the images of 𝑉 by 𝑆.
To illustrate the operator, let us consider the binary multirelations

𝑅 = {(𝑎, {𝑎, 𝑏}), (𝑎, {𝑎}), (𝑏, {𝑎})} and 𝑆 = {(𝑎, {𝑎}), (𝑎, {𝑏})}. Their Kleisli composition 𝑅 # 𝑆 is

computed as

(𝑎, {𝑎, 𝑏}) ∈ 𝑅 # 𝑆 ⇔
∃{𝑎} ⋅ (𝑎, {𝑎}) ∈ 𝑅 ∧ {𝑎, 𝑏} = ⋃𝑆({𝑎})

But ⋃𝑆({𝑎}) = 𝑆(𝑎) = {𝑎} ∪ {𝑏} = {𝑎, 𝑏}. Hence (𝑎, {𝑎, 𝑏}) ∈ 𝑅 # 𝑆.
(𝑏, {𝑎, 𝑏}) ∈ 𝑅 # 𝑆 ⇔
∃{𝑎} ⋅ (𝑏, {𝑎}) ∈ 𝑅 ∧ {𝑎, 𝑏} = ⋃𝑆({𝑎})

And ⋃𝑆({𝑎}) = 𝑆(𝑎) = {𝑎} ∪ {𝑏} = {𝑎, 𝑏}. Therefore (𝑎, {𝑎, 𝑏}) ∈ 𝑅 # 𝑆. On the other hand,
(𝑎, {𝑎}) ∈ 𝑅 # 𝑆 ⇔
∃{𝑎, 𝑏} ⋅ (𝑏, {𝑎}) ∈ 𝑅 ∧ {𝑎} = ⋃𝑆({𝑎, 𝑏})

But ⋃𝑆({𝑎, 𝑏}) = 𝑆(𝑎) ∪ 𝑆(𝑏) = {𝑎} ∪ {𝑏} ∪ {} = {𝑎, 𝑏} ≠ {𝑎}. Hence (𝑎, {𝑎}) ∉ 𝑅 # 𝑆, and
analogously, we can observe that (𝑎, {𝑏}), (𝑏, {𝑎}), (𝑏, {𝑏}) ∉ 𝑅 # 𝑆.

The Klesili composition is the multirelation 𝑅 # 𝑆 = {(𝑎, {𝑎, 𝑏}), (𝑏, {𝑎, 𝑏})}.
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Definition 6.1.3 (Peleg sequential composition [FS16]). Consider two binary multirelations

𝑅, 𝑆 ∈ 𝑀(𝑊). The Peleg sequential composition of 𝑅 and 𝑆 is given by

𝑅 ∘ 𝑆 = {(𝑤,𝑈) ∣ ∃𝑉 ⋅(𝑤,𝑉) ∈ 𝑅 ∧ ∃𝐹∶𝑉→𝑊 ⋅(∀𝑣∈𝑉 ⋅(𝑣, 𝐹(𝑣)) ∈ 𝑆) ∧ 𝑈 = ⋃𝐹(𝑉)}

A pair (𝑤,𝑈) is in 𝑅 ∘ 𝑆 if 𝑤 is related by 𝑅 with some intermediate set 𝑉 and each element in 𝑉 is

related by 𝑆 to a set 𝐹(𝑉) such that 𝑈 = ⋃𝐹(𝑉).
Let us consider, again, themultirelations𝑅 = {(𝑎, {𝑎, 𝑏}), (𝑎, {𝑎}), (𝑏, {𝑎})} and 𝑆 = {(𝑎, {𝑎}), (𝑎, {𝑏})}.

The Peleg composition of 𝑅 and 𝑆 is computed the following way.

(𝑎, {𝑎}) ∈ 𝑅 ∘ 𝑆 ⇔
∃{𝑎, 𝑏} ⋅ (𝑎, {𝑎, 𝑏}) ∈ 𝑅 ∧ ∃𝐹∶𝑉→𝑊 ⋅ (𝑎, 𝐹(𝑎)) ∈ 𝑆 ∧ {𝑎} = ⋃𝐹({𝑎})

making 𝐹 such that 𝐹(𝑎) = {𝑎}. Therefore, (𝑎, {𝑎}) ∈ 𝑅 ∘ 𝑆.

(𝑎, {𝑏}) ∈ 𝑅 ∘ 𝑆 ⇔
∃{𝑎} ⋅ (𝑎, {𝑎}) ∈ 𝑅 ∧ ∃𝐹∶𝑉→𝑊 ⋅ (𝑎, 𝐹(𝑎)) ∈ 𝑆 ∧ {𝑏} = ⋃𝐹({𝑎})

with 𝐹 such that 𝐹(𝑎) = {𝑏}. Thus, (𝑎, {𝑏}) ∈ 𝑅 ∘ 𝑆.

(𝑏, {𝑎}) ∈ 𝑅 ∘ 𝑆 ⇔
∃{𝑎} ⋅ (𝑏, {𝑎}) ∈ 𝑅 ∧ ∃𝐹∶𝑉→𝑊 ⋅ (𝑎, 𝐹(𝑎)) ∈ 𝑆 ∧ {𝑎} = ⋃𝐹({𝑎})

with 𝐹 such that 𝐹(𝑎) = {𝑎}. Hence, (𝑏, {𝑎}) ∈ 𝑅 ∘ 𝑆.

(𝑏, {𝑏}) ∈ 𝑅 ∘ 𝑆 ⇔
∃{𝑎} ⋅ (𝑏, {𝑎}) ∈ 𝑅 ∧ ∃𝐹∶𝑉→𝑊 ⋅ (𝑎, 𝐹(𝑎)) ∈ 𝑆 ∧ {𝑏} = ⋃𝐹({𝑎})

with 𝐹 such that 𝐹(𝑎) = {𝑏}. We conclude (𝑏, {𝑏}) ∈ 𝑅 ∘ 𝑆.
Hence we obtain the composition𝑅∘𝑆 = {(𝑎, {𝑎}), (𝑎, {𝑏}), (𝑏, {𝑎}), (𝑏, {𝑏})}, and we conlude that

𝑅 # 𝑆 = {(𝑎, {𝑎, 𝑏}), (𝑏, {𝑎, 𝑏})} ≠ 𝑅 ∘ 𝑆 = {(𝑎, {𝑎}), (𝑎, {𝑏}), (𝑏, {𝑎}), (𝑏, {𝑏})}

As described in the Introduction, the semantics of ℱ2-programs is based on the concept of weighted

multirelation, which we introduce below.

110



6.2 I n t r o d u c i n g we i g h t e d mu l t i r e l a t i o n s

Definition 6.2.1 (Weighted binary multirelation). Let 𝑊 be a set and L a complete right residuated

lattice. A weighted binary multirelation is a set 𝑅 ⊆ 𝑊 × L𝑊 .

We denote by 𝑀L(𝑊) the space of L-valued weighted binary multirelations over a set 𝑊.

Note, particularly, how this definition generalises the concept of binary multirelation (Definition 6.1.1),

replacing L by 2, thus supporting a wider range of truth values. Therefore, a program modelled as a

weighted multirelation represents an execution with multiple “arrows” leaving a state into a set of states in

parallel, with (possible different) weights associated with each “arrow”. Note also that if L is the Boolean

lattice 2, any weighted binary multirelation 𝑅 ⊆ 𝑊 × 2𝑊 is a binary multirelation. Since the goal of

this chapter is still to model programs as binary input-output relations, only the binary case is considered,

i.e. weighted multirelations defined as 𝑅 ⊆ 𝑊 × L𝑊 , and thus we always refer to weighted binary

multirelations simply as weighted multirelations.

We now define the operators of union, parallel and sequential compositions for weighted multirelations,

as generalisations of the correspondent classical definitions. Given weighted multirelations 𝑅 and 𝑆, their
union 𝑅 ∪ 𝑆 is just the set union. Their parallel composition is given by

𝑅 ⊎ 𝑆 = {(𝑤, 𝜑𝑅 ∪ 𝜑𝑆) ∣ (𝑤, 𝜑𝑅) ∈ 𝑅 ∧ (𝑤, 𝜑𝑆) ∈ 𝑆} (100)

where (𝜑𝑅 ∪ 𝜑𝑠)(𝑤) = 𝜑𝑅(𝑤) + 𝜑𝑆(𝑤), for each 𝑤 ∈ 𝑊, with symbol + on the right hand side

being the sum on lattice L (as in Definition 3.4.1). The resulting multirelation 𝑅⊎𝑆 collects pairs from 𝑅
and 𝑆 whose first component is the same in both relations. Note that this definition generalises the one

given above for binary multirelations.

Definition 6.2.2 (Kleisli sequential composition for the weighted case). Let us consider two weighted

multirelations 𝑅, 𝑆 ∈ 𝑀L(𝑊). The Kleisli sequential composition of 𝑅 and 𝑆 is defined as

𝑅 # 𝑆 = {(𝑤, 𝜑) ∣ ∃𝜑′ ⋅ (𝑤, 𝜑′) ∈ 𝑅 ∧ 𝜑(𝑢) = ∑
(𝑣,𝜓)∈𝑆

(𝜑′(𝑣); 𝜓(𝑢))} (101)

To illustrate the operator, let us consider the weighted multirelations

𝑅 = {(𝑎, 𝜑1), (𝑎, 1∘), (𝑏, 𝜑2)}, where 𝜑1(𝑎) = 𝛼, 𝜑1(𝑏) = 𝛽, 𝜑2(𝑎) = 𝛾 and 0 otherwise, and the

weighted multirelation 𝑆 = {(𝑎, 1∘), (𝑎, 𝜑3)}, where 𝜑3(𝑏) = 𝛿 and 0 otherwise, with 𝛼, 𝛽, 𝛾, 𝛿 ∈ L.

The Kleisli composition 𝑅 # 𝑆 results in

𝑅 # 𝑆 = {(𝑎, 𝜙), (𝑎, 𝜙′), (𝑎, 𝜌), (𝑎, 𝜌′), (𝑏, 𝜎), (𝑏, 𝜃), (𝑎, 𝜔), (𝑎, 𝜔′), (𝑏, 𝜏)}

with
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(𝑎, 𝜙) ∈ 𝑅 # 𝑆 ⇔
∃1∘

⋅ (𝑎, 1∘) ∈ 𝑅 ∧ 𝜙(𝑎) = 1∘(𝑎); 𝑆(𝑎)(𝑎)
= 1∘(𝑎); 1∘(𝑎)
= 1; 1
= 1

(𝑎, 𝜙′) ∈ 𝑅 # 𝑆 ⇔
∃𝜑1

⋅ (𝑎, 𝜑1) ∈ 𝑅 ∧ 𝜙′(𝑎) = 𝜑1(𝑎); 𝑆(𝑎)(𝑎) + 𝜑1(𝑏); 𝑆(𝑏)(𝑎)
= 𝜑1(𝑎); 1∘(𝑎) + 𝜑1(𝑏); 0
= 𝛼

(𝑎, 𝜌) ∈ 𝑅 # 𝑆 ⇔
∃1∘

⋅ (𝑎, 1∘) ∈ 𝑅 ∧ 𝜌(𝑏) = 1∘(𝑎); 𝑆(𝑎)(𝑏)
= 1∘(𝑎); 𝜑3(𝑏)
= 1; 𝛿
= 𝛿

(𝑎, 𝜌′) ∈ 𝑅 # 𝑆 ⇔
∃𝜑1

⋅ (𝑎, 𝜑1) ∈ 𝑅 ∧ 𝜌′(𝑏) = 𝜑1(𝑎); 𝑆(𝑎)(𝑏) + 𝜑1(𝑏); 𝑆(𝑏)(𝑏)
= 𝜑1(𝑎); 𝜑3(𝑏) + 𝜑1(𝑏); 0
= 𝛼; 𝛿

(𝑏, 𝜎) ∈ 𝑅 # 𝑆 ⇔
∃𝜑2

⋅ (𝑏, 𝜑2) ∈ 𝑅 ∧ 𝜎(𝑎) = 𝜑2(𝑎); 𝑆(𝑎)(𝑎)
= 𝜑2(𝑎); 1∘(𝑎)
= 𝛾; 1
= 1
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(𝑏, 𝜃) ∈ 𝑅 # 𝑆 ⇔
∃𝜑2

⋅ (𝑏, 𝜑2) ∈ 𝑅 ∧ 𝜃(𝑏) = 𝜑2(𝑎); 𝑆(𝑎)(𝑏)
= 𝜑2(𝑎); 𝜑3(𝑏)
= 𝛾; 𝛿

(𝑎,𝜔) ∈ 𝑅 # 𝑆 ⇔
∃𝜑1

⋅ (𝑎, 𝜑1) ∈ 𝑅 ∧ 𝜔(𝑎) = 𝜑1(𝑎); 𝑆(𝑎)(𝑎) + 𝜑1(𝑏); 𝑆(𝑏)(𝑎)
= 𝜑1(𝑎); 1∘(𝑎) + 𝜑1(𝑏); 0
= 𝛼; 1
= 𝛼

∧ 𝜔(𝑏) = 𝜑1(𝑎); 𝑆(𝑎)(𝑏) + 𝜑1(𝑏); 𝑆(𝑏)(𝑏)
= 𝜑1(𝑎); 𝜑3(𝑏) + 𝜑1(𝑏); 0
= 𝛼; 𝛿

(𝑎,𝜔′) ∈ 𝑅 # 𝑆 ⇔
∃1∘

⋅ (𝑎, 1∘) ∈ 𝑅 ∧ 𝜔′(𝑎) = 1∘(𝑎); 𝑆(𝑎)(𝑎)
= 1∘(𝑎); 1∘(𝑎)
= 1

∧ 𝜔′(𝑏) = 1∘(𝑎); 𝑆(𝑎)(𝑏)
= 1∘(𝑎); 𝜑3(𝑏)
= 1; 𝛿 = 𝛿

(𝑏, 𝜏) ∈ 𝑅 # 𝑆 ⇔
∃𝜑2

⋅ (𝑏, 𝜑2) ∈ 𝑅 ∧ 𝜏(𝑎) = 𝜑2(𝑎); 𝑆(𝑎)(𝑎)
= 𝜑2(𝑎); 1∘(𝑎)
= 𝛾; 1
= 𝛾

∧ 𝜏(𝑏) = 𝜑2(𝑎); 𝑆(𝑎)(𝑏)
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= 𝜑2(𝑎); 𝜑3(𝑏)
= 𝛾; 𝛿

Definition 6.2.3 (Peleg sequential composition for the weighted case). Let us consider two weighted
multirelations 𝑅 and 𝑆 over 𝑊. The Peleg sequential composition of 𝑅 and 𝑆 is defined as

𝑅 ∘ 𝑆 = {(𝑤, 𝜑) ∣ ∃𝜑′ ⋅(𝑤, 𝜑′) ∈ 𝑅 ∧ (∃𝐹∶𝑊→L𝑊 ⋅∀𝑣∈𝑊 ⋅(𝑣, 𝐹(𝑣)) ∈ 𝑆)

∧ 𝜑(𝑢) = ∑
𝑣∈𝑊

(𝜑′(𝑣); 𝐹(𝑣)(𝑢))} (102)

This definition is close to the one presented for probabilistic multirelations [Tsu12], however, with distinct

motivations. In that case, the notion of multirelation is adapted to give semantics to probabilistic pro-

grams, namely to cater for the representation of probabilistic choice. Consequently the two operators

have naturally different semantics and intuitions.

The Peleg sequential composition is then computed as follows

(𝑎,Φ) ∈ 𝑅 ∘ 𝑆 ⇔
∃𝜑′⋅(𝑎, 𝜑′) ∈ 𝑅 ∧ ∃𝐹∶𝑊→L𝑊 ⋅∀𝑢∈𝑊⋅(𝑢, 𝐹(𝑢)) ∈ 𝑆 ∧Φ(𝑤′) = ∑

𝑢∈𝑊
𝜑′(𝑢); 𝐹(𝑢)(𝑤′)

and thus (𝑎, 𝜙), (𝑎, 𝜌) ∈ 𝑅 ∘ 𝑆 with weighted sets 𝜙 and 𝜌 defined, respectively, as

𝜙(𝑎) = 1∘(𝑎); 1∘(𝑎) = 1

𝜌(𝑏) = 1∘(𝑎); 𝜑3(𝑏) = 1; 𝛿 = 𝛿

Moreover,

(𝑏, Σ) ∈ 𝑅 ∘ 𝑆 ⇔
∃𝜑′⋅(𝑎, 𝜑′) ∈ 𝑅 ∧ ∃𝐹∶𝑊→L𝑊 ⋅∀𝑢∈𝑊⋅(𝑢, 𝐹(𝑢)) ∈ 𝑆 ∧ Σ(𝑤′) = ∑

𝑢∈𝑊
𝜑′(𝑢); 𝐹(𝑢)(𝑤′)

and thus (𝑏, 𝜎), (𝑏, 𝜃) ∈ 𝑅 ∘ 𝑆 with weighted sets 𝜎 and 𝜃 respectively defined as

𝜎(𝑎) = 𝜑2(𝑎); 1∘(𝑎) = 𝛾; 1 = 𝛾

𝜃(𝑏) = 𝜑2(𝑎); 𝜑3(𝑏) = 𝛾; 𝛿

We obtain 𝑅 ∘ 𝑆 = {(𝑎, 𝜙), (𝑎, 𝜌), (𝑏, 𝜎), (𝑏, 𝜃)} ≠ 𝑅 # 𝑆.
We use the same notation of Peleg composition to make a clearer comparison between weighted sets.

Note that 𝜙′ and 𝜌′ are additional weighted sets that are in 𝑅 # 𝑆 and are not in 𝑅 ∘ 𝑆. This is because
a pair only belongs to Peleg composition if there exists a ‘path’ through both elements 𝑎 and 𝑏, formally
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∀𝑢∈𝑊 ⋅ (𝑢, 𝑆(𝑢)(𝑤′)) ∈ 𝑆, while Kleisli composition is weaker. In the former, it is forced that both 𝑎
and 𝑏 have to be related with some weighted set in 𝑆, which is not the case (only 𝑎 is related with some
set), and thus the path through 𝜑1 does not occur in the computation. In the latter, every ‘path’ should

be considered and that is why 𝜑1(𝑎) is taken as an additional path in the computation, resulting in the

additional weighted sets 𝜙′ and 𝜌′. The pair (𝑎,𝜔) appears also as an additional path in the Kleisli

composition, since the computation allows a ‘path’ through 𝜑1 to construct a weighted set 𝜔 such that

𝜔(𝑎),𝜔(𝑏) > 0. An analogous reasoning can be done for 𝑤′ and 𝜏.
Considering that we follow similar motivations as Peleg on the use of binary multirelations as a semantics

for dynamic logics, the framework that we introduce in Part 2 uses our generalisation of Peleg sequential

composition (102). Form now on, we refer to this composition simply as the sequential composition of

weighted multirelations.

The set𝑀L(𝑊) of weighted multirelations over L, together with a set of operators (including ∘ and⊎),

provide a suitable semantic structure for ℱ2 computations.

Definition 6.2.4 (Algebra of weighted multirelations). Given a set 𝑊 and a complete right residuated

lattice L, the algebra of weighted multirelations over L is the structure

M = (𝑀L(𝑊),∪, ∘, ⊎, ∅, 1∘, 1⊎)

where:

• ∪ is the binary set union;

• ∘ and ⊎ correspond to sequential (102) and parallel (100) compositions of weighted multirelations,

respectively;

• 1∘ = {(𝑤, 𝛿𝑤) ∣ 𝑤 ∈ 𝑊} is the identity of ∘, with 𝛿𝑤 ∶ 𝑊 → L defined as

𝛿𝑤(𝑤′) =
⎧{
⎨{⎩

⊤ if 𝑤′ = 𝑤
⊥ otherwise

• 1⊎ = {(𝑤, 0) ∣ 𝑤 ∈ 𝑊} is the identity of ⊎, where 0 ∶ 𝑊 → L is the weighted set defined as

0(𝑤) = ⊥, ∀𝑤∈𝑊 ;

In general, notation 𝑙 stands for the constant function that returns 𝑙 ∈ L for every input.

In the context of program semantics, multirelation 1∘ can be regarded as the semantics of program

statement skip, a common constructor in imperative programming languages.

In Part 1 we proved that the algebra of weighted relations is a Kleene algebra. On the other hand, for

the case of weighted multirelations, we mentioned before that some axioms of Kleene algebra do not hold,

and thus, the algebra of Definition 6.2.4 does not define such a structure. Our next result establishes that it

defines, instead, a weaker version of a semiring called proto-trioid, i.e. a structure where (𝑀L(𝑊),∪, ∅)
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and (𝑀L(𝑊),⊎, 1⊎) are two monoids, and (𝑀L(𝑊), ∘, 1∘) is a structure such that ∘ is not required

to be associative neither distribute over ∪.

Theorem 6.2.1. For any complete right residuated lattice L, M is a proto-trioid, i.e. an algebra satisfying

the following axioms:

𝑅 ∪ (𝑆 ∪ 𝑇) = (𝑅 ∪ 𝑆) ∪ 𝑇 (103)

𝑅 ∪ 𝑆 = 𝑆 ∪ 𝑅 (104)

𝑅 ∪ 𝑅 = 𝑅 (105)

𝑅 ∪ ∅ = 𝑅 (106)

(𝑅 ∘ 𝑆) ∘ 𝑇 ⊆ 𝑅 ∘ (𝑆 ∘ 𝑇) (107)

𝑅 ∘ 1∘ = 1∘ ∘ 𝑅 = 𝑅 (108)

(𝑅 ∘ 𝑆) ∪ (𝑅 ∘ 𝑇) ⊆ 𝑅 ∘ (𝑆 ∪ 𝑇) (109)

(𝑅 ∪ 𝑆) ∘ 𝑇 = (𝑅 ∘ 𝑇) ∪ (𝑆 ∘ 𝑇) (110)

𝑅 ∘ ∅ = ∅ ∘ 𝑅 = ∅ (111)

𝑅 ⊎ (𝑆 ⊎ 𝑇) = (𝑅 ⊎ 𝑆) ⊎ 𝑇 (112)

𝑅 ⊎ 𝑆 = 𝑆 ⊎ 𝑅 (113)

𝑅 ⊎ 𝑅 = 𝑅 (114)

1⊎ ⊎ 𝑅 = 𝑅 (115)

𝑅 ⊎ (𝑆 ∪ 𝑇) = (𝑅 ⊎ 𝑆) ∪ (𝑅 ⊎ 𝑇) (116)

Proof.

Let (𝑀L(𝑊),∪, ∅) be a semilattice with least element ∅, thus satisfying axioms (103)-(106). The
proofs of axioms (107)-(111) are not straightforward and require particular attention.

(107):

Let (𝑎, 𝜑) ∈ (𝑅 ∘ 𝑆) ∘ 𝑇. Then,

∃𝜑′⋅ (𝑎, 𝜑′) ∈ (𝑅 ∘ 𝑆) ∧ ∃𝐹∶𝑊→L𝑊 ⋅∀𝑏∈𝑊⋅ (𝑏, 𝐹(𝑏)) ∈ 𝑇 ∧ 𝜑(𝑢) = ∑
𝑏∈𝑊

𝜑′(𝑏); 𝐹(𝑏)(𝑢)

and, similarly,

∃𝜑″⋅ (𝑎, 𝜑″) ∈ 𝑅 ∧ ∃𝐹′∶𝑊→L𝑊 ⋅∀𝑎′∈𝑊⋅ (𝑎′, 𝐹′(𝑎′)) ∈ 𝑆 ∧ 𝜑′(𝑏) = ∑
𝑎′∈𝑊

𝜑″(𝑎′); 𝐹′(𝑎′)(𝑏)
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Thus,

𝜑(𝑢) = ∑
𝑏∈𝑊

( ∑
𝑎′∈𝑊

(𝜑″(𝑎′); 𝐹′(𝑎′)(𝑏)); 𝐹(𝑏)(𝑢))

= ∑
𝑏∈𝑊

( ∑
𝑎′∈𝑊

(𝜑″(𝑎′); 𝐹′(𝑎′)(𝑏); 𝐹(𝑏)(𝑢)))

= ∑
𝑎′∈𝑊

( ∑
𝑏∈𝑊

(𝜑″(𝑎′); 𝐹′(𝑎′)(𝑏); 𝐹(𝑏)(𝑢)))

= ∑
𝑎′∈𝑊

(𝜑″(𝑎′); ( ∑
𝑏∈𝑊

(𝐹′(𝑎′)(𝑏); 𝐹(𝑏)(𝑢))))

= ∑
𝑎′∈𝑊

(𝜑″(𝑎′); 𝐹″(𝑎′)(𝑢))

where 𝐹″ ∶ 𝑊 → L𝑊 is defined by

𝐹″(𝑎′)(𝑢) = ∑
𝑏∈𝑊

(𝐹′(𝑎′)(𝑏); 𝐹(𝑏)(𝑢))

Clearly (𝑎′, 𝐹″(𝑎′)) ∈ 𝑆 ∘ 𝑇 entails (𝑎, 𝜑) ∈ 𝑅 ∘ (𝑆 ∘ 𝑇).

(108):

Case 1: 1∘ ∘ 𝑅 ⊆ 𝑅.
Suppose (𝑎, 𝜑) ∈ 1∘ ∘ 𝑅. Then,

(∃𝜑′⋅ (𝑎, 𝜑′) ∈ 1∘) ∧ ∃𝐹∶𝑊→L𝑊 ⋅∀𝑏∈𝑊⋅ (𝑏, 𝐹(𝑏)) ∈ 𝑅 ∧ 𝜑(𝑢) = ∑
𝑏∈𝑊

𝜑′(𝑏); 𝐹(𝑏)(𝑢)

⇔
(∃𝜑′⋅(𝑎, 𝜑′) ∈ 1∘) ∧ ∃𝐹∶𝑊→L𝑊 ⋅∀𝑏∈𝑊⋅ (𝑏, 𝐹(𝑏)) ∈ 𝑅 ∧ 𝜑(𝑢) = 𝐹(𝑎)(𝑢)

because

𝜑(𝑢) = ∑
𝑏∈𝑊

𝜑′(𝑏); 𝐹(𝑏)(𝑢)

= 𝜑′(𝑎); 𝐹(𝑎)(𝑢)
= ⊤; 𝐹(𝑎)(𝑢)
= 𝐹(𝑎)(𝑢)

with (𝑎, 𝐹(𝑎)) ∈ 𝑅. Thus, (𝑎, 𝜑) ∈ 𝑅.

Case 2: 𝑅 ⊆ 1∘ ∘ 𝑅:

Conversely, let (𝑎, 𝜑) ∈ 𝑅, and define 𝐹 ∶ 𝑊 → L𝑊 as 𝐹(𝑏) =
⎧{
⎨{⎩

𝜑 if 𝑏 = 𝑎
0 otherwise
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such that (𝑏, 𝐹(𝑏)) ∈ 𝑅. Thus, 𝜑 is a function defined as follows

𝜑(𝑢) = ∑
𝑏∈𝑊

(𝜑′(𝑏); 𝐹(𝑏)(𝑢))

= ∑
𝑏∈𝑊

(𝛿𝑎(𝑏); 𝐹(𝑏)(𝑢)),

with (𝑎, ∑
𝑏∈𝑊

(𝛿𝑎(𝑏); 𝐹(𝑏)) ∈ (1∘ ∘ 𝑅)

Thus, (𝑎, 𝜑) ∈ 1∘ ∘ 𝑅. Let us now prove 𝑅 ∘ 1∘ = 𝑅.

Case 1: 𝑅 ∘ 1∘ ⊆ 𝑅:
Suppose (𝑎, 𝜑) ∈ 𝑅 ∘ 1∘. Then,

∃𝜑′⋅ (𝑎, 𝜑′) ∈ 𝑅 ∧ ∃𝐹∶𝑊→L𝑊 ⋅∀𝑏∈𝑊⋅ (𝑏, 𝐹(𝑏)) ∈ 1∘ ∧ 𝜑(𝑢) = ∑
𝑏∈𝑊

(𝜑′(𝑏); 𝛿𝑏(𝑢))

⇔
∃𝜑′⋅(𝑎, 𝜑′) ∈ 𝑅 ∧ ∃𝐹∶𝑊→L𝑊 ⋅∀𝑏∈𝑊⋅ (𝑏, 𝐹(𝑏)) ∈ 1∘ ∧ 𝜑(𝑢) = 𝜑′(𝑏)

because

𝜑(𝑢) = ∑
𝑏∈𝑊

(𝜑′(𝑏); 𝛿𝑏(𝑢))

= 𝜑′(𝑏); 𝛿𝑏(𝑏)
= 𝜑′(𝑏); ⊤
= 𝜑′(𝑏)

with (𝑎, 𝜑′) ∈ 𝑅. Thus (𝑎, 𝜑) ∈ 𝑅.

Case 2: 𝑅 ⊆ 𝑅 ∘ 1∘:
Let (𝑎, 𝜑) ∈ 𝑅, and define 𝐹 ∶ 𝑊 → L𝑊 as 𝐹(𝑏)(𝑢) = 𝛿𝑏(𝑢). Following an argument similar to the
one above,

𝜑(𝑢) = ∑
𝑏∈𝑊

(𝜑(𝑏); 𝐹(𝑏)(𝑢)) = ∑
𝑏∈𝑊

𝜑(𝑏); 𝛿𝑏(𝑢)

with (𝑎, ∑
𝑏∈𝑊

𝜑(𝑏); 𝛿𝑏) ∈ (𝑅 ∘ 1∘).

(109):

Assume (𝑎, 𝜑) ∈ (𝑅 ∘ 𝑆) ∪ (𝑅 ∘ 𝑇). Then, (𝑎, 𝜑) ∈ 𝑅 ∘ 𝑆 ∨ (𝑎, 𝜑) ∈ 𝑅 ∘ 𝑇. Thus,
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∃𝜑′⋅(𝑎, 𝜑′) ∈ 𝑅 ∧ (∃𝐹∶𝑊→L𝑊 ⋅∀𝑏∈𝑊⋅ ((𝑏, 𝐹(𝑏)) ∈ 𝑆 ∨ (𝑏, 𝐹(𝑏)) ∈ 𝑇))

∧ 𝜑(𝑢) = ∑
𝑏∈𝑊

(𝜑′(𝑏); 𝐹(𝑏)(𝑢))

⇔
∃𝜑′⋅(𝑎, 𝜑′) ∈ 𝑅 ∧ (∃𝐹∶𝑊→L𝑊 ⋅∀𝑏∈𝑊⋅ (𝑏, 𝐹(𝑏)) ∈ 𝑆 ∪ 𝑇)

∧ 𝜑(𝑢) = ∑
𝑏∈𝑊

(𝜑′(𝑏); 𝐹(𝑏)(𝑢))

⇔
(𝑎, 𝜑) ∈ 𝑅 ∘ (𝑆 ∪ 𝑇)

(110):

We start by proving (𝑅 ∪ 𝑆) ∘ 𝑇 ⊆ (𝑅 ∘ 𝑇) ∪ (𝑆 ∘ 𝑇). Let us assume (𝑎, 𝜑) ∈ (𝑅 ∪ 𝑆) ∘ 𝑇. Then

∃𝜑′⋅(𝑎, 𝜑′) ∈ (𝑅 ∪ 𝑆) ∧ ∃𝐹∶𝑊→L𝑊 ⋅∀𝑏∈𝑊⋅ (𝑏, 𝐹(𝑏)) ∈ 𝑇
∧ 𝜑(𝑢) = ∑

𝑏∈𝑊
(𝜑′(𝑏); 𝐹(𝑏)(𝑢))

⇔
∃𝜑′⋅((𝑎, 𝜑′) ∈ 𝑅 ∨ (𝑎, 𝜑′) ∈ 𝑆) ∧ ∃𝐹∶𝑊→L𝑊 ⋅∀𝑏∈𝑊⋅ (𝑏, 𝐹(𝑏)) ∈ 𝑇
∧ 𝜑(𝑢) = ∑

𝑏∈𝑊
(𝜑′(𝑏); 𝐹(𝑏)(𝑢))

⇔
(∃𝜑′⋅(𝑎, 𝜑′) ∈ 𝑅 ∧ ∃𝐹∶𝑊→L𝑊 ⋅∀𝑏∈𝑊⋅ (𝑏, 𝐹(𝑏)) ∈ 𝑇 ∧ 𝜑(𝑢) = ∑

𝑏∈𝑊
(𝜑′(𝑏); 𝐹(𝑏)(𝑢)))

∨ (∃𝜑′⋅(𝑎, 𝜑′) ∈ 𝑆 ∧ ∃𝐹∶𝑊→L𝑊 ⋅∀𝑏∈𝑊⋅ (𝑏, 𝐹(𝑏)) ∈ 𝑇 ∧ 𝜑(𝑢) = ∑
𝑏∈𝑊

(𝜑′(𝑏); 𝐹(𝑏)(𝑢)))

⇔
((𝑎, 𝜑) ∈ 𝑅 ∘ 𝑇) ∨ ((𝑎, 𝜑) ∈ 𝑆 ∘ 𝑇)

⇔
(𝑎, 𝜑) ∈ (𝑅 ∘ 𝑇) ∪ (𝑆 ∘ 𝑇)

Conversely, assume (𝑎, 𝜑) ∈ (𝑅 ∘ 𝑇) ∪ (𝑆 ∘ 𝑇). Then

(𝑎, 𝜑) ∈ 𝑅 ∘ 𝑇 ∨ (𝑎, 𝜑) ∈ 𝑄 ∘ 𝑇
⇔

(∃𝜑′⋅(𝑎, 𝜑′) ∈ 𝑅 ∧ ∃𝐹∶𝑊→L𝑊 ⋅∀𝑏∈𝑊⋅ (𝑏, 𝐹(𝑏)) ∈ 𝑇 ∧ 𝜑(𝑢) = ∑
𝑏∈𝑊

(𝜑′(𝑏); 𝐹(𝑏)(𝑢)))
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∨ (∃𝜑′⋅(𝑎, 𝜑′) ∈ 𝑆 ∧ ∃𝐹∶𝑊→L𝑊 ⋅∀𝑏∈𝑊⋅ (𝑏, 𝐹(𝑏)) ∈ 𝑇 ∧ 𝜑(𝑢) = ∑
𝑏∈𝑊

(𝜑′(𝑏); 𝐹(𝑏)(𝑢)))

⇔
∃𝜑′⋅((𝑎, 𝜑′) ∈ 𝑅 ∨ (𝑎, 𝜑′) ∈ 𝑆) ∧ ∃𝐹∶𝑊→L𝑊 ⋅ ∀𝑏∈𝑊⋅ (𝑏, 𝐹(𝑏)) ∈ 𝑅 ∧ ∑

𝑏∈𝑊
(𝜑′(𝑏); 𝐹(𝑏)(𝑢))

⇔
∃𝜑′⋅(𝑎, 𝜑′) ∈ 𝑅 ∪ 𝑆 ∧ ∃𝐹∶𝑊→L𝑊 ⋅∀𝑏∈𝑊⋅ (𝑏, 𝐹(𝑏)) ∈ 𝑇 ∧ ∑

𝑏∈𝑊
(𝜑′(𝑏); 𝐹(𝑏)(𝑢))

⇔
(𝑎, 𝜑) ∈ (𝑅 ∪ 𝑆) ∘ 𝑇

(111):

Let us prove ∅ ∘ 𝑅 ⊆ ∅. Suppose (𝑎, 𝜑) ∈ ∅ ∘ 𝑅. Then,

∃𝜑′⋅(𝑎, 𝜑′) ∈ ∅ ∧ ∃𝐹∶𝑊→L𝑊 ⋅(𝑏, 𝐹(𝑏)) ∈ 𝑅 ∧ 𝜑(𝑢) = ∑
𝑏∈𝑊

(𝜑′(𝑏); 𝐹(𝑏)(𝑢))

But ∄𝜑′⋅(𝑎, 𝜑′) ∈ ∅, since ∅ is the empty set. So there is no (𝑎, 𝜑) ∈ ∅ ∘ 𝑅, and thus (𝑎, 𝜑) ∈ ∅.
To prove that 𝑅 ∘ ∅ ⊆ ∅, assume (𝑎, 𝜑) ∈ 𝑅 ∘ ∅. Then,

∃𝜑′⋅(𝑎, 𝜑′) ∈ 𝑅 ∧ ∃𝐹∶𝑊→L𝑊 ⋅∀𝑏∈𝑊⋅ (𝑏, 𝐹(𝑏)) ∈ ∅ ∧ 𝜑(𝑢) = ∑
𝑏∈𝑊

(𝜑′(𝑏); 𝐹(𝑏))

But there is no (𝑏, 𝐹(𝑏)) ∈ ∅ since ∅ is the empty set. Hence (𝑎, 𝜑) ∈ ∅. The two converse inclusions
are trivial.

(112)-(114):

These axioms come directly from (100) and the properties of ∪ on right residuated lattices.

(115):

Consider an arbitrary weighted multirelation 𝑅 over a set of states 𝑊. Then,

𝑅 ⊎ 1⊎
= { definition of ⊎ (100) and 1⊎}

{(𝑎, 𝜑𝑅 ∪ {(𝑎, ∅) ∣ 𝑎 ∈ 𝑊}) ∣ (𝑎, 𝜑𝑅) ∈ 𝑅}
= { for any 𝑎 ∈ 𝑊, 𝜑𝑅(𝑎) + 0 by (40)}

{(𝑎, 𝜑𝑅) ∣ (𝑎, 𝜑𝑅) ∈ 𝑅}
= { identity}

𝑅

(116):
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First we prove 𝑅 ⊎ (𝑆 ∪ 𝑇) ⊆ 𝑅 ⊎ 𝑆 ∪ 𝑅 ⊎ 𝑇. Assume (𝑎, 𝜑) ∈ 𝑅 ⊎ (𝑆 ∪ 𝑇). Then,

∃𝜑1,𝜑2
⋅(𝑎, 𝜑1) ∈ 𝑅 ∧ (𝑎, 𝜑2) ∈ 𝑆 ∪ 𝑇 ∧ 𝜑 = 𝜑1 + 𝜑2

⇒
∃𝜑1,𝜑2

⋅(((𝑎, 𝜑1) ∈ 𝑅 ∧ (𝑎, 𝜑2) ∈ 𝑆) ∨ ((𝑎, 𝜑1) ∈ 𝑅 ∧ (𝑎, 𝜑2) ∈ 𝑇)) ∧ 𝜑 = 𝜑1 + 𝜑2

⇒
((𝑎, 𝜑) ∈ 𝑅 ⊎ 𝑆) ∨ ((𝑎, 𝜑) ∈ 𝑅 ⊎ 𝑇)

⇒
(𝑎, 𝜑) ∈ (𝑅 ⊎ 𝑆) ∪ (𝑅 ⊎ 𝑇)

Conversely, suppose that (𝑎, 𝜑) ∈ (𝑅 ⊎ 𝑆) ∪ (𝑅 ⊎ 𝑇). Then,

(𝑎, 𝜑) ∈ 𝑅 ⊎ 𝑆 ∨ (𝑎, 𝜑) ∈ 𝑅 ⊎ 𝑇
⇒

∃𝜑1,𝜑2
⋅(((𝑎, 𝜑1) ∈ 𝑅 ∧ (𝑎, 𝜑2) ∈ 𝑆) ∨ ((𝑎, 𝜑1) ∈ 𝑅 ∧ (𝑎, 𝜑2) ∈ 𝑇)) ∧ 𝜑 = 𝜑1 + 𝜑2

⇒
∃𝜑1,𝜑2

⋅((𝑎, 𝜑1) ∈ 𝑅 ∧ ((𝑎, 𝜑2) ∈ 𝑆 ∨ (𝑎, 𝜑2) ∈ 𝑇)) ∧ 𝜑 = 𝜑1 + 𝜑2

⇒
∃𝜑1,𝜑2

⋅((𝑎, 𝜑1) ∈ 𝑅 ∧ (𝑎, 𝜑2) ∈ 𝑆 ∪ 𝑇) ∧ 𝜑 = 𝜑1 + 𝜑2

⇒
(𝑎, 𝜑) ∈ 𝑅 ⊎ (𝑆 ∪ 𝑇)

Note that due to the definition of sequential composition (102), axioms (107) and (109) are weaker

than the usual equalities of associativity and left distributivity which characterise a semiring embedded

in a Kleene algebra. The next counter examples show precisely 𝑅 ∘ (𝑆 ∘ 𝑇) ⊈ (𝑅 ∘ 𝑆) ∘ 𝑇 and

𝑅 ∘ (𝑆 ∪ 𝑇) ⊈ (𝑅 ∘ 𝑆) ∪ (𝑅 ∘ 𝑇).
First, to prove 𝑅 ∘ (𝑆 ∘ 𝑇) ⊈ (𝑅 ∘ 𝑆) ∘ 𝑇, consider the weighted multirelation

𝑅 = {(𝑎, 𝜑1), (𝑎, 1∘), (𝑏, 𝜑2)}, where 𝜑1(𝑎) = 𝛼, 𝜑1(𝑏) = 𝛽, 𝜑2(𝑎) = 𝛾 and 0 otherwise, and the

weighted multirelation 𝑆 = {(𝑎, 1∘), (𝑎, 𝜑3)}, where 𝜑3(𝑏) = 𝛿 and 0 otherwise, with 𝛼, 𝛽, 𝛾, 𝛿 ∈ L.

We show 𝑅 ∘ (𝑅 ∘ 𝑆) ⊈ (𝑅 ∘ 𝑅) ∘ 𝑆. First let us compute 𝑅 ∘ 𝑅.
We know, by (102),

(𝑎,Φ) ∈ 𝑅 ∘ 𝑅 ⇔
∃𝜑′⋅(𝑎, 𝜑′) ∈ 𝑅 ∧ ∃𝐹⋅∀𝑢∈𝑊⋅(𝑢, 𝐹(𝑢)) ∈ 𝑅 ∧Φ(𝑤′) = ∑

𝑢∈𝑊
𝜑′(𝑢); 𝐹(𝑢)(𝑤′)
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and thus (𝑎, 𝜙), (𝑎, 𝜌) ∈ 𝑅 ∘ 𝑅 with weighted set 𝜙 defined such that

𝜙(𝑎) = 𝜑1(𝑎); 1∘(𝑎) + 𝜑1(𝑏); 𝜑2(𝑎) + 1∘(𝑎); 1∘(𝑎)
= 𝛼; 1 + 𝛽; 𝛾 + 1; 1
= 𝛼 + 𝛽; 𝛾

and 𝜌 such that

𝜌(𝑎) = 𝜑1(𝑎); 𝜑1(𝑎) + 𝜑1(𝑏); 𝜑2(𝑎) + 1∘(𝑎); 𝜑1(𝑎)
= 𝛼; 𝛼 + 𝛽; 𝛾 + 1; 𝛼
= 𝛼; 𝛼 + 𝛽; 𝛾 + 𝛼

𝜌(𝑏) = 𝜑1(𝑎); 𝜑1(𝑏) + 1∘(𝑎); 𝜑1(𝑏)
= 𝛼; 𝛽 + 1; 𝛽
= 𝛼; 𝛽 + 𝛽

Analogously,

(𝑏, Σ) ∈ 𝑅 ∘ 𝑅 ⇔
∃𝜑′⋅(𝑏, 𝜑′) ∈ 𝑅 ∧ ∃𝐹⋅∀𝑢∈𝑊⋅(𝑢, 𝐹(𝑢)) ∈ 𝑅 ∧ Σ(𝑤′) = ∑

𝑢∈𝑊
𝜑′(𝑢); 𝐹(𝑢)(𝑤′)

and thus (𝑏, 𝜎), (𝑏, 𝜃) ∈ 𝑅 ∘ 𝑅 with 𝜎 and 𝜃 respectively defined as

𝜎(𝑎) = 𝜑2(𝑎); 1∘(𝑎) = 𝛾; 1 = 𝛾

and

𝜃(𝑎) = 𝜑2(𝑎); 𝜑1(𝑎) = 𝛾; 𝛼
𝜃(𝑏) = 𝜑2(𝑎); 𝜑1(𝑏) = 𝛾; 𝛽

Hence 𝑅 ∘ 𝑅 = {(𝑎, 𝜙), (𝑎, 𝜌), (𝑏, 𝜎), (𝑏, 𝜃)}.
To compute (𝑅 ∘ 𝑅) ∘ 𝑆, we know

122



(𝑎,Φ) ∈ (𝑅 ∘ 𝑅) ∘ 𝑆 ⇔
∃Φ⋅(𝑎,Φ) ∈ 𝑅 ∘ 𝑅 ∧ ∃𝐹⋅∀𝑢∈𝑊⋅(𝑢, 𝐹(𝑢)) ∈ 𝑆 ∧ Φ(𝑤′) = ∑

𝑢∈𝑊
Φ(𝑢); 𝐹(𝑢)(𝑤′)

an therefore (𝑎, 𝜑), (𝑎, 𝜚) ∈ (𝑅 ∘ 𝑅) ∘ 𝑆 with 𝜑, 𝜚 respectively defined as

𝜑(𝑎) = 𝜙(𝑎); 1∘(𝑎) = (𝛼 + 𝛽; 𝛾); 1 = 𝛼 + 𝛽; 𝛾

and

𝜚(𝑏) = 𝜙(𝑎); 𝜑3(𝑏) = (𝛼 + 𝛽; 𝛾); 𝛿

And analogously,

(𝑏,Σ) ∈ (𝑅 ∘ 𝑅) ∘ 𝑆 ⇔
∃Φ⋅(𝑏,Φ) ∈ 𝑅 ∘ 𝑅 ∧ ∃𝐹⋅∀𝑢∈𝑊⋅(𝑢, 𝐹(𝑢)) ∈ 𝑆 ∧Σ(𝑤′) = ∑

𝑢∈𝑊
Φ(𝑢); 𝐹(𝑢)(𝑤′)

and thus (𝑏, 𝜍), (𝑏, 𝜗) ∈ (𝑅 ∘ 𝑅) ∘ 𝑆 with weighted sets 𝜍, 𝜗 respectively defined as

𝜍(𝑎) = 𝜎(𝑎); 1∘(𝑎) = 𝛾; 1 = 𝛾

and

𝜗(𝑏) = 𝜎(𝑎); 𝜑3(𝑏) = 𝛾; 𝛿

Hence (𝑅 ∘ 𝑅) ∘ 𝑆 = {(𝑎, 𝜑), (𝑎, 𝜚), (𝑏, 𝜍), (𝑏, 𝜗)}.
To compute 𝑅 ∘ (𝑅 ∘ 𝑆), we already obtained, from the example above,

𝑅 ∘ 𝑆 = {(𝑎, 𝜙), (𝑎, 𝜌), (𝑏, 𝜎), (𝑏, 𝜃)}, with 𝜙(𝑎) = 1, 𝜌(𝑏) = 𝛿, 𝜎(𝑎) = 𝛾, 𝜃(𝑏) = 𝛾; 𝛿.
Now, to compute 𝑅 ∘ (𝑅 ∘ 𝑆), we know

(𝑎,Φ) ∈ 𝑅 ∘ (𝑅 ∘ 𝑆) ⇔
∃𝜑′⋅(𝑎, 𝜑′) ∈ 𝑅 ∧ ∃𝐹⋅∀𝑢∈𝑊⋅(𝑢, 𝐹(𝑢)) ∈ 𝑅 ∘ 𝑆 ∧ Φ(𝑤′) = ∑

𝑢∈𝑊
𝜑′(𝑢); 𝐹(𝑢)(𝑤′)

and therefore (𝑎, 𝜑), (𝑎, 𝜚′), (𝑎, 𝜀) ∈ 𝑅 ∘ (𝑅 ∘ 𝑆) with weighted sets 𝜑, 𝜚′ and 𝜀 defined as

𝜑(𝑎) = 1∘(𝑎); 𝜙(𝑎) + 𝜑1(𝑎); 𝜙(𝑎) + 𝜑1(𝑏); 𝜎(𝑎) = 1; 1 + 𝛼; 1 + 𝛽; 𝛾 = 𝛼 + 𝛽; 𝛾
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𝜚′(𝑏) = 1∘(𝑎); 𝜌(𝑏) + 𝜑1(𝑎); 𝜌(𝑏) + 𝜑1(𝑏); 𝜃(𝑏)
= 1; 𝛿 + 𝛼; 𝛿 + 𝛽; (𝛾; 𝛿)
= 𝛿 + 𝛼; 𝛿 + 𝛽; (𝛾; 𝛿)

and

𝜀(𝑎) = 𝜑1(𝑎); 𝜙(𝑎) + 𝜑1(𝑏); 𝜎(𝑎) = 𝛼; 1 + 𝛽; 𝛾 = 𝛼 + 𝛽; 𝛾
𝜀(𝑏) = 𝜑1(𝑎); 𝜌(𝑏) + 𝜑1(𝑏); 𝜃(𝑏) = 𝛼; 𝛿 + 𝛽; (𝛾; 𝛿)

Additionally,

(𝑏,Σ) ∈ 𝑅 ∘ (𝑅 ∘ 𝑆) ⇔
∃𝜑′⋅(𝑎, 𝜑′) ∈ 𝑅 ∧ ∃𝐹⋅∀𝑢∈𝑊⋅(𝑢, 𝐹(𝑢)) ∈ 𝑅 ∘ 𝑆 ∧Σ(𝑤′) = ∑

𝑢∈𝑊
𝜑′(𝑢); 𝐹(𝑢)(𝑤′)

and therefore (𝑏, 𝜍), (𝑏, 𝜗) ∈ 𝑅 ∘ (𝑅 ∘ 𝑆) with weighted sets 𝜍 and 𝜗 defined as

𝜍(𝑎) = 𝜑2(𝑎); 𝜙(𝑎) = 𝛾; 1 = 𝛾
𝜗(𝑏) = 𝜑2(𝑎); 𝜌(𝑏) = 𝛾; 𝛿

Hence,

𝑅 ∘ (𝑅 ∘ 𝑆) = {(𝑎, 𝜑), (𝑎, 𝜚′), (𝑎, 𝜀), (𝑏, 𝜍), (𝑏, 𝜗)} ⊈ {(𝑎, 𝜑), (𝑎, 𝜚), (𝑏, 𝜍), (𝑏, 𝜗)} = (𝑅 ∘ 𝑅) ∘ 𝑆

Now let us discuss axiom (109). Consider multirelation𝑅 = {(𝑎, 𝜑1)} where 𝜑1(𝑎) = 𝛼, 𝜑1(𝑏) = 𝛽
and 0 otherwise, multirelation 𝑆 = {(𝑎, 1∘)} and 𝑇 = {(𝑏, 1∘)}. We prove
𝑅 ∘ (𝑆 ∪ 𝑇) ⊈ (𝑅 ∘ 𝑆) ∪ (𝑅 ∘ 𝑇). By (102),

(𝑎,Φ) ∈ 𝑅 ∘ (𝑆 ∪ 𝑇) ⇔
∃𝜑′⋅(𝑎, 𝜑′) ∈ 𝑅 ∧ ∃𝐹⋅∀𝑢∈𝑊⋅(𝑢, 𝐹(𝑢)) ∈ 𝑆 ∪ 𝑇 ∧Φ(𝑤′) = ∑

𝑢∈𝑊
𝜑′(𝑢); 𝐹(𝑢)(𝑤′)

and thus 𝑆 ∪ 𝑇 = {(𝑎, 1∘), (𝑏, 1∘)}, and 𝑅 ∘ (𝑆 ∪ 𝑇) is obtained, using (102), as a multirelation with
weighted set 𝜙 defined as follows
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𝜙(𝑎) = 𝜑1(𝑎); 1∘(𝑎) = 𝛼; 1 = 𝛼
𝜙(𝑏) = 𝜑1(𝑏); 1∘(𝑏) = 𝛽; 1 = 𝛽

i.e. 𝑅 ∘ (𝑆 ∪ 𝑇) = {(𝑎, 𝜙)} = {(𝑎, 𝜑1)} = 𝑅.
On the other hand, 𝑅 ∘ 𝑆 = 𝑅 ∘ 𝑇 = {} and therefore (𝑅 ∘ 𝑆) ∪ (𝑅 ∘ 𝑇) = {}, from which we

conclude 𝑅 ∘ (𝑆 ∪ 𝑇) ⊈ (𝑅 ∘ 𝑆) ∪ (𝑅 ∘ 𝑇).
A possible and obvious continuation to this study is to define the Parikh sequential composition [FKST17],

and compare it with the ones of Kleisli and Peleg. Even if approached, at least in a first attempt, as a

mere theoretical exercise, such a study would have potential to enrich the research path that we pursue

in Part 2 of this thesis, by giving intuitions to the different definitions in the program semantics that we

present in the next chapter. Even if a discussion on the differences between Kleisli and Peleg was started,

a more extensive study on their properties, as well as the inclusion of Parikh composition, is lacking. In

[FKST17], the authors state that Kleisli composition is associative, contrary to the one of Peleg, but does

not have unit. On the other hand, Parikh composition is not associative, although it is associative for a

specific class of multirelations. It is this kind of study that we intend to make in the future for weighted

multirelations.
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7

A W E I G H T E D MU LT I - F L OW S E M A N T I C S

The second component, the formal semantics of weighted “multi-flow” computations, is given, as in Chap-

ter 4, by interpreting of expressions in the language ℱ2, generated by grammar of Table 4, over states.

We parametrize such a semantics by a complete right residuated lattice, which plays a double role, to

interpret programs and to give meaning to variables. Let us fix a complete right residuated lattice L, and

a set of variables 𝑋. Program states are graded valuations of variables, i.e. functions

𝑤 ∶ 𝑋 → LR

We denote the set of all states by L𝑋
R
.

Analogously to Chapter 4, to simplify reasoning about ℱ2-programs at a later stage, it is useful to

decompose conditional and switch statements into more elementary operators, namely tests, as well as

parallel and sequential composition of programs. Such operators, although not explicitly part of the syntax,

can easily be added to the language through an additional rule:

𝜋 ∶∶= skip | 𝜋0 | 𝜌? | 𝜋; 𝜋 | 𝜋||𝜋 (117)

where 𝜋0 ∈ Prog0, and 𝜌? stands for a notion of a test. The latter depends, of course, on the space

of truth values considered in the semantics, i.e. on the particular choice of the right residuated lattice L.

Hence, a conditional statement

if 𝑝 then 𝜋1 else 𝜋2 endif

is encoded as

𝑝?; 𝜋1||(𝑝 → ⊥)?; 𝜋2

where 𝑝 → ⊥ denotes the “negation” of predicate 𝑝. Similarly to what was done in Part 1, in order

to support a weighted truth space to evaluate a predicate, negation is not explicitly denoted, but defined

instead in terms of the operator → and the least element of L. The formal definition of tests, together

with the semantics of operator →, will be given in the next chapter when defining satisfaction relation

for a suitable dynamic logic. Note that in the encoding of the conditional above the parallel composition

plays the role usually assigned to the choice operator + in the decomposition of conditionals in classical
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imperative languages. The motivation for this definition is to suitably capture the behaviour of conditionals

in ℱ2-programs, as intuitively explained in the Introduction.

To illustrate the proposed semantics we will resort, along the next chapters, to an excerpt of a FAS

program, taken from [VMA10].

Example 7.0.1.

O2_low:=FUZZY SET((70,0),(75,1),(85,1),(90,0))

if O2 is in O2_low then PIP_inc:=5 else PIP_inc:=0

The program represents an excerpt of a module of a medical fuzzy control system which supports mechan-

ically ventilated patients after cardiac surgery. Operationally, it suggests a value for the peak inspiratory

pressure (PIP) based on the𝑂2 level measured in a patient after a cardiac surgery. The code instantiates,

in the first line, the variable O2_low to a weighted set, as will be explained below. The next instruction

defines a fuzzy control rule, encoded in a if-then-else statement. Depending on the oxygen level of

a patient, the rule makes a modification to the peak inspiratory pressure (PIP_inc).
In this setting, functional and predicate terms are interpreted as follows.

Definition 7.0.1 (Interpretation of functional terms). Let 𝐹 be a set of function symbols and 𝑋 a set of

variables. The interpretation of terms 𝑡 ∈ 𝑇𝐹(𝑋) in a state 𝑤 ∈ 𝑊 ⊆ L𝑋
R
is given by the map

J_K𝑤 ∶ 𝑇𝐹(𝑋) → LR

recursively defined as follows:

• J𝑥K𝑤(𝑟) = 𝑤(𝑥)(𝑟)

• JcK𝑤(𝑟) = 𝛿𝑐(𝑟) =
⎧{
⎨{⎩

⊤ if 𝑟 = 𝑐
⊥ otherwise

• J(𝑡1,… , 𝑡𝑛)K𝑤(𝑟) = ∑
𝑖∈𝐼

{
𝑛
∏
𝑗=1

J𝑡𝑗K𝑤(𝑟𝑖𝑗) ∣ 𝑓 (𝑟𝑖1,… , 𝑟𝑖𝑛) = 𝑟}

where 𝐼 is the cardinality of the set of all possible solutions of 𝑓 (𝑟𝑖1,… , 𝑟𝑖𝑛) = 𝑟 in R, with each 𝑓 of arity

𝑛 being interpreted as a function on real numbers R𝑛 → R (e.g. +, ×, 2 , √ , …), 𝑥 ∈ 𝑋.

Let us illustrate this semantics resorting to Example 7.0.1, and choosing L as the complete right resid-

uated lattice G of Example 2.2.7.

The statement

O2_low:=FUZZY SET((70,0),(75,1),(85,1),(90,0))
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assigns a fuzzy set to the variable O2_low. The notation used means that O2_low is defined, in a

given state, as a weighted set, linear on the open intervals ]70, 75[, ]75, 85[, ]85, 90[ and constant on
] − ∞, 70[ and ]90,+∞[, and for each 𝑟 ∈ R, O2_low(𝑟) coincides either with the left limit or the

right limit of O2_low at 𝑟. Formally,

JO2_lowK𝑤0
(𝑟) = 𝑤0(O2_low)(𝑟) =

⎧{{{{
⎨{{{{⎩

r/5 − 14 if 70 ≤ 𝑟 ≤ 75
1 if 75 ≤ 𝑟 ≤ 85
−r/5 + 18 if 85 ≤ 𝑟 ≤ 90
0 otherwise

where 𝑤0 is the attribution state of O2_low defined above, and for each 𝑟 ∈ R, as plotted in Figure 11.
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Figure 11: Representation of the variable O2_low

Intuitively it gives, for each oxygen value, a degree which measures how “low” such value actually is.

In other words, it defines numerically what it means for the variable to represent a low level of oxygen

concentration.

Consider now computing the value of term O2_low+5 in state 𝑤0. According to Definition 7.0.1, the

term 5 is defined as

J5K𝑤0
(𝑟) = 𝑤0(5)(𝑟) =

⎧{
⎨{⎩

1 if 𝑟 = 5
0 otherwise

The semantics of term O2_low+5 in state 𝑤0 is computed as follows:

JO2_low+5K𝑤0
(𝑟) = ∑

𝑖∈𝐼
{JO2_lowK𝑤0

(𝑟𝑖1); J5K𝑤0
(𝑟𝑖2) ∣ 𝑟11 + 𝑟22 = 𝑟}
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= JO2_lowK𝑤0
(𝑟11); J5K𝑤0

(𝑟12)

where, for concrete values of (𝑟11, 𝑟12), the vertices are computed as

JO2_low+5K𝑤0
(75) =JO2_lowK𝑤0

(70); J5K𝑤0
(5) = min{0, 1} = 0JO2_low+5K𝑤0

(80) =JO2_lowK𝑤0
(75); J5K𝑤0

(5) = min{1, 1} = 1JO2_low+5K𝑤0
(90) =JO2_lowK𝑤0

(85); J5K𝑤0
(5) = min{1, 1} = 1JO2_low+5K𝑤0

(95) =JO2_lowK𝑤0
(90); J5K𝑤0

(5) = min{0, 1} = 0

For an intermediate value of 𝑟, e.g. 𝑟 = 77, we have

J02_low+5K𝑤0
(77) = JO2_lowK𝑤0

(72); J5K𝑤0
(5) = min{0.4, 1} = 0.4

Note that, in this scenario, for each one of the intermediate 𝑟 in the interval ]70, 90[, there is only one
solution (𝑟11, 𝑟12) (i.e. 𝑖 = 1) to the equation 𝑟 = 𝑟𝑖1 + 𝑟𝑖2. For example, for 𝑟 = 75, another possible
solution (𝑖 = 2) to the equation 75 = 𝑟21 +𝑟22 could hypothetically be (𝑟21, 𝑟22) = (65, 10), but obviouslyJO2_lowK𝑤0

(65); J5K𝑤0
(10) = 0; 0 = 0. Moreover, for other values of 𝑟, e.g. 𝑟 = 70, it is easy to

verify that there is no pair (𝑟𝑖1, 𝑟𝑖2) such that JO2_low+5K𝑤0
(70) = JO2_lowK𝑤0

(𝑟𝑖1); J5K𝑤0
(𝑟𝑖2) > 0.

Therefore JO2_low+5K𝑤0
(𝑟) = 0 for 𝑟 ∉]70, 90[. Note that the interpretation of the term O2_low+5

in 𝑤0 is given by a horizontal translation of the graph of O2_low, as depicted in Figure 12.
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Figure 12: Graph O2_low (blue line) and O2_low+5 (red line)

Definition 7.0.2 (Interpretation of predicate terms). Let 𝑃 be a set of predicate symbols and 𝑋 a set of

variables. The interpretation of a predicate 𝑝 ∈ 𝑇𝑃(𝑋) in state 𝑤 ∈ 𝑊 is given by the map

J_K𝑤 ∶ 𝑇𝑃(𝑋) → L

defined by
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J𝑝(𝑡1,… , 𝑡𝑛)K𝑤 = ∑
𝑖∈𝐼

{
𝑛
∏
𝑗=1

J𝑡𝑗K𝑤(𝑟𝑖𝑗) ∣ 𝑝(𝑟𝑖1,… , 𝑟𝑖𝑛)}

where 𝐼 is the cardinality of the set of all possible values (𝑟𝑖1,… , 𝑟𝑖𝑛) ∈ R𝑛 satisfying 𝑝(𝑟𝑖1,… , 𝑟𝑖𝑛), with
𝑝 of arity 𝑛 interpreted as a predicate.

As an example, let us compute the interpretation of the predicate O2_low≤ 75 in the state 𝑤0 described

previously, according to Definition 7.0.2.

JO2_low ≤ 75K𝑤0
= ∑

𝑖∈𝐼
{

2
∏
𝑗=1

J𝑡𝑗K𝑤0
(𝑟𝑖𝑗) ∣ 𝑟𝑖1 ≤ 𝑟𝑖2}

= ∑
𝑖∈𝐼

{JO2_lowK𝑤0
(𝑟𝑖1); J75K𝑤0

(𝑟𝑖2) ∣ 𝑟𝑖1 ≤ 𝑟𝑖2}

= JO2_lowK𝑤0
(75); J75K𝑤0

(75) + …+ JO2_lowK𝑤0
(70); J75K𝑤0

(75)
= 1; 1 + … + 0; 1
= max{min{1, 1},… ,min{0, 1}} = 1

Note that the values of terms in … are lower than 1.
Let us consider another example, consisting of the variation of the human body temperature along a

24h period [HWL+08, MW81] of two groups of individuals: the first group is composed by individuals with

standard sleep schedule, from 0ℎ to 7ℎ (blue line), while the second is composed by subjects which a

reduced sleep time, from 0ℎ to 4ℎ (red line). The functions corresponding to each group are, respectively,
the polynomials of degree 5

temp(𝑡) = −0.000019484𝑡5 + 0.00117855𝑡4 − 0.0256008𝑡3 + 0.233205𝑡2 − 0.706115𝑡 + 37

and

temp_red(𝑡) = −0.0000131385𝑡5 + 0.000755533𝑡4 − 0.015809𝑡3 + 0.143592𝑡2 − 0.491162𝑡 + 37

obtained by doing a polynomial interpolation on a data set of values obtained from [HWL+08, MW81].

Their plots are represented by the figure below.

We can observe that, in general, the temperature is lower in individuals who were tied to an altered

sleep rythm. Suppose now that we want to evaluate, using the semantics introduced in this chapter, the

predicate temp ≤ temp_red, i.e. how normal is the temperature during the interval when the predicate

is ‘classically’ true. Such period corresponds precisely to the sleeping period of the second group of

individuals.

130



0 5 10 15 2036

36.5

37

37.5

38

temp(𝑡)

temp_red(𝑡)

time (h)

te
m
pe
ra
tu
re
(°
C)

temperaure/24h

Figure 13: Human body temperature variation in a 24h period

In order to adapt the variables to the introduced semantics, so we can evaluate the predicate in one

of the lattices presented before, it is necessary make a correspondence from the interval [35, 38] to the
real interval [0, 1]. A temperature below 35°C is considered Hypothermia and above 37.5°is considered
Hyperthermia or fever. Hence, in the presented semantics, on the one hand 0means that the temperature
is close to Hypothermia, and a value close to 0 is considered a low temperature; on the other hand, a

value close to 1 is considered fever. Naturally, the values in between mean a normal temperature, which

varies in function of the hour of the day.

Note that there is a small period that the temperature is slightly above 37.5°C for individuals on the first

group, but rapidly decreases. Even though we could consider a temperature above 37.5°C to be fever,

the values represented may be slightly different each day, and vary from person to person, and thus such

a small variation may not be considered a fever condition.

Consider the state𝑤0 as the state where variables temp and temp_red are the polynomials of degree
5 defined above. The evaluation of the predicate temp ≤ temp_red in 𝑤0 corresponds, according to

Definition 7.0.2, to the following computation

Jtemp≤ temp_redK𝑤0
≝∑

𝑖∈𝐼
{

2
∏
𝑗=1

J𝑡𝑗K𝑤0
(𝑟𝑖𝑗) ∣ 𝑟𝑖1 ≤ 𝑟𝑖2}

=∑
𝑖∈𝐼

{JtempK𝑤0
(𝑟𝑖1); Jtemp_redK𝑤0

(𝑟𝑖2) ∣ 𝑟𝑖1 ≤ 𝑟𝑖2}

=JtempK𝑤0
(3.61685); Jtemp_redK𝑤0

(3.61685)+

…+ JtempK𝑤0
(0); Jtemp_redK𝑤0

(0)

=max{min{JtempK𝑤0
(3.61685), Jtemp_redK𝑤0

(3.61685)},

… ,min{JtempK𝑤0
(0), Jtemp_redK𝑤0

(0)}}

=JtempK𝑤0
(0)
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By solving the equation temp(𝑡) = temp_red(𝑡), we obtain 𝑡 ≈ 3.61685 as one of the relevant

solutions. It is possible to observe that the local maximum in the interval [0, 3.61685] is at 0ℎ, and
therefore the truth degree of the predicate is JtempK𝑤0

(0), which corresponds to temp(0) = 37°C.
Let us consider now another example, which the introduced semantics is also able to capture, consisting

on alterations in diurnal variation in diastolic blood pressure in hypertensive patients, which consume

alcohol regularly. The comparison was made between a control period (without alcohol consumption) and

a period with regular alcohol consumption. The data, measured once each two hours, was obtained from

[KAK+96], and is depicted in Figure 14.
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Figure 14: Blood pressure variation in a 24 hour period

It can be observed that the blood pressure is higher for the alcohol period in the first hours of the morning

(from 0ℎ until around 2ℎ), and lower in the period between the early evening (around 16ℎ) to late night
(24ℎ), being identical for the remaining hours. As the study concludes, the average blood pressure is

equal for both groups. Suppose now that we intend to evaluate the predicate bp_control ≥ bp_alc,
which corresponds intuitively to evaluate ”how greater” is the blood pressure for the control group, when

comparing with the alcohol group. Analogously to the previous example, it is necessary to make a corre-

spondence between the values of the diastolic blood pressure and the [0, 1] interval, where values close to
0 correspond to low blood pressure and values close to 1mean a high blood pressure. Consider𝑤0 as the

state where variables bp_control and bp_alc are the functions represented in Figure 14. According to
the semantics of Definition 7.0.2, and computing the values 𝑟 ∈ R such that bp_control ≥ bp_alc,
we formalise such a computation as
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Jbp_control ≥ bp_alcK ≝∑
𝑖∈𝐼

{
2

∏
𝑗=1

J𝑡𝑗K𝑤0
(𝑟𝑖𝑗) ∣ 𝑟𝑖1 ≥ 𝑟𝑖2}

=∑
𝑖∈𝐼

{Jbp_controlK𝑤0
(𝑟𝑖1); Jbp_alcK𝑤0

(𝑟𝑖2) ∣ 𝑟𝑖1 ≥ 𝑟𝑖2}

=Jbp_controlK(0); Jbp_alcK𝑤0
(0)+

…+ Jbp_controlK𝑤0
(53); Jbp_alcK𝑤0

(53)

+ Jbp_controlK𝑤0
(134); Jbp_alcK𝑤0

(134)+

…+ Jbp_controlK𝑤0
(24); Jbp_alcK𝑤0

(24)

=max{min{Jbp_controlK(0), Jbp_alcK𝑤0
(0)},

… ,min{Jbp_controlK𝑤0
(53), Jbp_alcK𝑤0

(53)},

min{Jbp_controlK𝑤0
(1167 ), Jbp_alcK𝑤0

(1167 )},

… ,min{Jbp_controlK𝑤0
(24), Jbp_alcK𝑤0

(24)}}

=max{min{Jbp_controlK𝑤0
(1167 ), Jbp_alcK𝑤0

(1167 )}}

=Jbp_controlK𝑤0
(1167 )

One of the solutions of bp_control(𝑡) = bp_alc(𝑡) is 𝑡 = 116
7 ≈ 16.5714, which corresponds

to the supremum of the values for which the predicate bp_control ≥ bp_alc holds. Hence, the truth

degree of the predicate is Jbp_controlK𝑤0
(116

7 ).
Let us return to FAS and to the example below Definition 7.0.1, and consider the same state𝑤0. Another

example of a predicate is O2 is in O2_low, whose interpretation in 𝑤0 is the function

JO2 is in O2_lowK𝑤0
(𝑟) =

⎧{
⎨{⎩

𝑤0(O2_low, 𝑟) for the only 𝑟 such that JO2K𝑤0
(𝑟) = ⊤

⊥ otherwise

We are now able to introduce the semantics of atomic ℱ2-programs, that gives meaning to a weighted

execution of a variable assignment.

Definition 7.0.3 (Interpretation of atomic programs). Let𝑊 ∶ L𝑋R
be a set of states. The interpretation

of atomic programs is a map

J_K0 ∶ Prog0 → 𝑀L(𝑊)

where 𝑀L(𝑊) = {(𝑤, L𝑊)}, defined as

J𝑥 ∶= 𝑡K0 = {(𝑤, 𝜑(𝑤, 𝑡)) ∣ 𝑤 ∈ 𝑊}
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where

𝜑(𝑤)(𝑡) = 𝜆𝑤′ .
⎧{{{
⎨{{{⎩

⊤ if ∀𝑥,𝑥′⋅𝑥′≠𝑥,𝑟∈R . 𝑤′(𝑥′)(𝑟) = 𝑤(𝑥′)(𝑟)
∧ 𝑤′(𝑥)(𝑟) = J𝑡K𝑤(𝑟)

⊥ otherwise

Note that although the variables involved may be weighted, the assignment itself boils down to a binary

multirelation on the set of states. Concretely, an assignment 𝑥 ∶= 𝑡 connects any state 𝑤 with a set of

states 𝑤′ such that the weight of 𝑥 in 𝑤′ is the value of term 𝑡 in 𝑤. In Example 7.0.1, the assignmentJPIP_inc:=5K attributes the term 5 to the variable PIP_inc, formally

JPIP_incK𝑤1
(𝑟) = J5K𝑤0

(𝑟), ∀𝑟 ∈ R

Defined the semantics of atomic programs, we are now in conditions to introduce the semantics of

composition programming operators, given directly in terms of the operators ∘ and⊎ on L-valued weighted

multirelations in 𝑀L(𝑊).

Definition 7.0.4 (Interpretation of non atomic programs). Let 𝑊 be a set of states. The interpretation

of a program 𝜋 ∈ Prog is a map J_K ∶ Prog → 𝑀L(𝑊)

recursively defined as

• JskipK = 1∘

• J𝜋0K = J𝜋0K0, for each 𝜋0 ∈ Prog0

• J𝜋1; 𝜋2K = J𝜋1K ∘ J𝜋2K
• J𝜋1||𝜋2K = J𝜋1K ⊎ J𝜋2K
How can this semantics be extended to include conditional statements? Actually, to capture if-then-

else and switch statements requires the introduction of a suitable notion of a test. This will be defined

in the next Chapter, since it relies on the satisfaction relation of the generated family of logics.
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8

D Y N AM I C L O G I C S FO R W E I G H T E D MU LT I - F L OW C OM P U TAT I O N S

We saw in Chapter 5 that the syntax and the semantics of the family of the generated dynamic logics for

weighted “single-flow” computations, Γ(L), is built over a non-empty set of variables𝑋, terms over𝑋 and a

data domain R, for each complete right residuated lattice L. We propose in this chapter a similar approach,

for weighted “multi-flow” computations. Each complete right residuated lattice L induces a ∗-free dynamic

logic to reason about ℱ2 computations interpreted as weighted “multi-flow” computations. The result is

a ∗-free equational variant and a generalisation of concurrent propositional dynamic logic (CPDL) [Pel87].

On the one hand, its semantics include weights in the execution, and assertions to evaluate formulæin

a weighted truth space, as introduced in Chapter 7. On the other hand, instead of considering abstract

programs and propositions, the family of logics is defined over a non-empty set of variables 𝑋, terms over

𝑋 and a data domain R.

We call this family of logicsΩ(L). The signature, formulæand satisfaction relation are presented below.

8.1 G e n e r a t i o n o f ∗- f r e e mu l t i - v a l u e d e qu a t i o n a l d y n am i c l o g i c s

Once a language for programs is fixed (3), the set of formulæ of Ω(L) introduces, as expected, the

universal and existential modalities over programs. Formally,

Definition 8.1.1. A signature for Ω(L), built over a set of variables 𝑋, is a tuple

Δ = ((𝐹, 𝑃)),Π)

where (𝐹, 𝑃) is a data signature composed by functional and predicate symbols and Π ⊆ Prog0. The

set of formulæ for Δ, denoted by FmΩ(L)(Δ), is generated by

𝜌 ∶∶= ⊤ |⊥ | 𝑝(𝑡1,… , 𝑡𝑛) | 𝜌 ∨ 𝜌 | 𝜌 ∧ 𝜌 | 𝜌 → 𝜌 | ⟨𝜋⟩𝜌

for 𝑝(𝑡1,… , 𝑡𝑛) ∈ 𝑇𝑃(𝑋) and 𝜋 ∈ Prog.

Definition 8.1.2 (Satisfaction relation). Let L be a complete right residuated lattice, the graded satis-

faction relation for Ω(L) consists of a function

⊧Ω(L) ∶ 𝑊 × FmΩ(L)(Δ) → L
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recursively defined by

• (𝑤 ⊧Ω(L) ⊤) = ⊤

• (𝑤 ⊧Ω(L) ⊥) = ⊥

• (𝑤 ⊧Ω(L) 𝑝(𝑡1,… , 𝑡𝑛)) = J𝑝(𝑡1,… , 𝑡𝑛)K𝑤
• (𝑤 ⊧Ω(L) 𝜌 ∧ 𝜌′) = (𝑤 ⊧Ω(L) 𝜌) ⋅ (𝑤 ⊧Ω(L) 𝜌′)

• (𝑤 ⊧Ω(L) 𝜌 ∨ 𝜌′) = (𝑤 ⊧Ω(L) 𝜌) + (𝑤 ⊧Ω(L) 𝜌′)

• (𝑤 ⊧Ω(L) 𝜌 → 𝜌′) = (𝑤 ⊧Ω(L) 𝜌) → (𝑤 ⊧Ω(L) 𝜌′)

• (𝑤 ⊧Ω(L) ⟨𝜋⟩𝜌) = ∑
𝜑∈𝜋2𝜋2𝜋2(J𝜋K) ( ∑

𝑢∈𝑊
(𝜑(𝑢); (𝑢 ⊧Ω(L) 𝜌)))

The (graded) satisfaction of (𝑤 ⊧Ω(L) ⟨𝜋⟩𝜌), in particular, is given by the weight of some state 𝑢 on

some weighted set 𝜑 which is related to state𝑤 by some weighted multirelation, and the weight of formula

𝜌 on 𝑢.

Some properties of Ω(L)

Now we establish some properties of Ω(L). The following two lemmas, the second one establishing

auxiliary properties, are proved by using quasi-equational reasoning from the axiomatisation of L, resorting

to similar arguments to the proofs presented in reference [MNM16]. The remaining results resort to the

semantics previously introduced.

Lemma 8.1.1. Let L be a complete I-right residuated lattice. Then

(𝑤 ⊧Ω(L) 𝜌 → 𝜌′) = ⊤ iff (𝑤 ⊧Ω(L) 𝜌) ≤ (𝑤 ⊧Ω(L) 𝜌′) (118)

(𝑤 ⊧Ω(L) 𝜌 ↔ 𝜌′) = ⊤ iff (𝑤 ⊧Ω(L) 𝜌) = (𝑤 ⊧Ω(L) 𝜌′) (119)

Lemma 8.1.2. The following properties hold for any complete right residuated lattice L:

𝑎 ≤ 𝑏 & 𝑐 ≤ 𝑑 ⇒ 𝑎 + 𝑐 ≤ 𝑏 + 𝑑 (120)

𝑎; (𝑏 ⋅ 𝑐) ≤ (𝑎; 𝑏) ⋅ (𝑎; 𝑐) (121)

For 𝐼 finite, we also have

∑
𝑖∈𝐼

(𝑎𝑖 ⋅ 𝑏𝑖) ≤ ∑
𝑖∈𝐼

𝑎𝑖 ⋅∑
𝑖∈𝐼

𝑏𝑖 (122)
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Lemma 8.1.3. Let L be a complete I-right residuated lattice. The following are valid formulæ in any

Ω(L):

⟨𝜋⟩(𝜌 ∨ 𝜌′) ↔ ⟨𝜋⟩𝜌 ∨ ⟨𝜋⟩𝜌′ (123)

⟨𝜋⟩(𝜌 ∧ 𝜌′) → ⟨𝜋⟩𝜌 ∧ ⟨𝜋⟩𝜌′ (124)

⟨𝜋1; 𝜋2⟩𝜌 ↔ ⟨𝜋1⟩⟨𝜋2⟩𝜌 (125)

⟨𝜋⟩⊥ ↔ ⊥ (126)

⟨𝜋1||𝜋2⟩𝜌 ↔ ⟨𝜋1⟩𝜌 ∨ ⟨𝜋2⟩𝜌 (127)

Proof.

(123):

𝑤 ⊧Ω(L) ⟨𝜋⟩(𝜌 ∨ 𝜌′))
= { definition of ⊧Ω(L)}

∑
𝜑∈𝜋2𝜋2𝜋2J𝜋K ( ∑

𝑢∈𝑊
(𝜑(𝑢); (𝑢 ⊧Ω(L) 𝜌 ∨ 𝜌′)))

= { definition of ⊧Ω(L)}
∑

𝜑∈𝜋2𝜋2𝜋2J𝜋K ( ∑
𝑢∈𝑊

((𝜑(𝑢); ((𝑢 ⊧Ω(L) 𝜌) + (𝑢 ⊧Ω(L) 𝜌′))))

= { (29)}
∑

𝜑∈𝜋2𝜋2𝜋2J𝜋K ( ∑
𝑢∈𝑊

(𝜑(𝑢); (𝑢 ⊧Ω(L) 𝜌) + 𝜑(𝑢); (𝑢 ⊧Ω(L) 𝜌′)))

= { by (25) and (26)}
∑

𝜑∈𝜋2𝜋2𝜋2(J𝜋K) ( ∑
𝑢∈𝑊

(𝜑(𝑢); (𝑢 ⊧Ω(L) 𝜌))) + ∑
𝜑∈𝜋2𝜋2𝜋2(J𝜋K) ( ∑

𝑢∈𝑊
(𝜑(𝑢); (𝑢 ⊧Ω(L) 𝜌′)))

= { definition of ⊧Ω(L)}
(𝑤 ⊧Ω(L) ⟨𝜋⟩𝜌) + (𝑤 ⊧Ω(L) ⟨𝜋⟩𝜌′)

= { definition of ⊧Ω(L)}
(𝑤 ⊧Ω(L) ⟨𝜋⟩𝜌 ∨ ⟨𝜋⟩𝜌′)

Therefore, by (119), ⟨𝜋⟩(𝜌 ∨ 𝜌′) ↔ ⟨𝜋⟩𝜌 ∨ ⟨𝜋⟩𝜌 is valid.

(124):
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(𝑤 ⊧Ω(L) ⟨𝜋⟩(𝜌 ∧ 𝜌′))
= { definition of ⊧Ω(L)}

∑
𝜑∈𝜋2𝜋2𝜋2(J𝜋K) ( ∑

𝑢∈𝑊
(𝜑(𝑢); (𝑢 ⊧Ω(L) 𝜌 ∧ 𝜌′)))

= { definition of ⊧Ω(L)}
∑

𝜑∈𝜋2𝜋2𝜋2(J𝜋K) ( ∑
𝑢∈𝑊

(𝜑(𝑢); ((𝑢 ⊧Ω(L) 𝜌) ⋅ (𝑤′ ⊧Ω(L) 𝜌′))))

≤ { by (121) and (120)}
∑

𝜑∈𝜋2𝜋2𝜋2(J𝜋K) ( ∑
𝑢∈𝑊

((𝜑(𝑢); (𝑢 ⊧Ω(L) 𝜌)) ⋅ (𝜑(𝑢); (𝑢 ⊧Ω(L) 𝜌′))))

≤ { by (122) }
∑

𝜑∈𝜋2𝜋2𝜋2(J𝜋K) ( ∑
𝑢∈𝑊

(𝜑(𝑢); (𝑢 ⊧Ω(L) 𝜌))) ⋅ ∑
𝜑∈𝜋2𝜋2𝜋2(J𝜋K) ( ∑

𝑢∈𝑊
(𝜑(𝑢); (𝑢 ⊧Ω(L) 𝜌′))))

= { definition of ⊧Ω(L)}
(𝑤 ⊧Ω(L) ⟨𝜋⟩𝜌) ⋅ (𝑤 ⊧Ω(L) ⟨𝜋⟩𝜌′)

= { definition of ⊧Ω(L)}
(𝑤 ⊧Ω(L) ⟨𝜋⟩𝜌 ∧ ⟨𝜋⟩𝜌′)

Therefore, by (118), ⟨𝜋⟩(𝜌 ∧ 𝜌′) → ⟨𝜋⟩𝜌 ∧ ⟨𝜋⟩𝜌′ is valid.

(125):

(𝑎, 𝜑) ∈ J𝜋1; 𝜋2K
⇔

∃𝜑′∈𝜋2𝜋2𝜋2(J𝜋1K) ∧ ∃𝐹∶𝑊→L𝑊 ⋅∀𝑏⋅(𝑏,𝐹(𝑏))∈J𝜋2K ∧ 𝜑(𝑢) = ∑
𝑏∈𝑊

(𝜑′(𝑏); 𝐹(𝑏)(𝑢)), ∀𝑢∈𝑊

Then, this yields
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(𝑤 ⊧Ω(L) ⟨𝜋1; 𝜋2⟩𝜌)
= { definition of ⊧Ω(L) and J_K}

∑
𝑢∈𝑊

(( ∑
𝑏∈𝑊

(𝜑′(𝑏); 𝐹(𝑏)(𝑢))); (𝑢 ⊧Ω(L) 𝜌))

= { (26)}
∑

𝑏∈𝑊
(( ∑

𝑢∈𝑊
(𝜑′(𝑏); 𝐹(𝑏)(𝑢))); (𝑢 ⊧Ω(L) 𝜌))

= { (30)}
∑

𝑏∈𝑊
( ∑
𝑢∈𝑊

(𝜑′(𝑏); 𝐹(𝑏)(𝑢); (𝑢 ⊧Ω(L) 𝜌)))

= { (29)}
∑

𝑏∈𝑊
(𝜑′(𝑏); ( ∑

𝑢∈𝑊
(𝐹(𝑏)(𝑢); (𝑢 ⊧Ω(L) 𝜌))))

But since (𝑤, 𝜑′) ∈ 𝜋2𝜋2𝜋2(J𝜋1K) and (𝑏, 𝐹(𝑏)) ∈ J𝜋2K, ∀𝑏∈𝑊 we have

∑
𝑏∈𝑊

(𝜑′(𝑏); ( ∑
𝑢∈𝑊

(𝐹(𝑏)(𝑢); (𝑢 ⊧Ω(L) 𝜌)))) = (𝑤 ⊧Ω(L) ⟨𝜋1⟩⟨𝜋2⟩𝜌)

Hence, by (119), ⟨𝜋1; 𝜋2⟩𝜌 ↔ ⟨𝜋1⟩⟨𝜋2⟩𝜌 is valid.

(126):

(𝑤 ⊧Ω(L) ⟨𝜋⟩⊥)
= { definition of ⊧Ω(L)}

∑
𝜑∣(𝑤,𝜑)∈J𝜋K ( ∑

𝑢∈𝑊
(𝜑(𝑢); (𝑢 ⊧Ω(L) ⊥)))

= { definition of ⊧Ω(L)}
∑

𝜑∣(𝑤,𝜑)∈J𝜋K ( ∑
𝑢∈𝑊

(𝜑(𝑢);⊥)) ∑
𝜑∣(𝑤,𝜑)∈J𝜋K ( ∑

𝑢∈𝑊
⊥)

= { by (40)}
⊥

Therefore, by (119), ⟨𝜋⟩⊥ ↔ ⊥ is valid. (127):
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(𝑤 ⊧Ω(L) ⟨𝜋1||𝜋2⟩𝜌)

= { definition of ⊧Ω(L)}
∑

𝜑∈𝜋2𝜋2𝜋2(J𝜋1||𝜋2K) ( ∑
𝑢∈𝑊

(𝜑(𝑢); 𝑢 ⊧Ω(L) 𝜌))

= { definition of J_K}
∑

𝜑1∪𝜑2∈𝜋2𝜋2𝜋2(J𝜋1||𝜋2K) ( ∑
𝑢∈𝑊

((𝜑1 ∪ 𝜑2)(𝑢); (𝑢 ⊧Ω(L) 𝜌)))

= { definition of ∪ (3.4.1)}
∑

𝜑1∈𝜋2𝜋2𝜋2(J𝜋1K)
∨𝜑2∈𝜋2𝜋2𝜋2(J𝜋2K)

( ∑
𝑢∈𝑊

((𝜑1(𝑢) + 𝜑2(𝑢)); (𝑢 ⊧Ω(L) 𝜌)))

= { (29)}
∑

𝜑1∈𝜋2𝜋2𝜋2(J𝜋1K)
∨𝜑2∈𝜋2𝜋2𝜋2(J𝜋2K)

( ∑
𝑢∈𝑊

(𝜑1(𝑢); (𝑢 ⊧Ω(L) 𝜌) + 𝜑2(𝑢); (𝑢 ⊧Ω(L) 𝜌)))

= { (25), (26) and definition of ||}
∑

𝜑1∈𝜋2𝜋2𝜋2(J𝜋1K) ( ∑
𝑢∈𝑊

(𝜑1(𝑢); (𝑢 ⊧Ω(L) 𝜌)) + ∑
𝜑2∈𝜋2𝜋2𝜋2(J𝜋2K) ( ∑

𝑢∈𝑊
(𝜑2(𝑢); (𝑢 ⊧Ω(L) 𝜌)))

= { definition of ⊧Ω(L)}
𝑤 ⊧Ω(L) ⟨𝜋1⟩𝜌 + 𝑤 ⊧Ω(L) ⟨𝜋2⟩𝜌

= { definition of ⊧Ω(L)}
𝑤 ⊧Ω(L) ⟨𝜋1⟩𝜌 ∨ ⟨𝜋2⟩𝜌

Therefore, by (119), ⟨𝜋1||𝜋2⟩𝜌 ↔ ⟨𝜋1⟩𝜌 ∨ ⟨𝜋2⟩𝜌 is valid.

8.2 B a ck t o t h e we i g h t e d mu l t i - f l ow s eman t i c s

In order to capture conditional operators if-then-else and switch, we need a notion of test, whose syntax

is, as mentioned in the previous chapter, 𝜌?, for a formula 𝜌 ∈ FmΩ(L)(Δ), for each signature Δ. Its
interpretation is as follows:

t e s t .

J𝜌?K = {(𝑤, 𝜑) ∣ 𝜑(𝑤′) =
⎧{
⎨{⎩

𝑤 ⊧Ω(L) 𝜌 if 𝑤 = 𝑤′, 𝑤, 𝑤′ ∈ 𝑊
⊥ otherwise

}}

We can now give semantics to if-then-else statements, as follows:

140



Conditional.

Jif 𝜌 then 𝜋1 else 𝜋2K
=J𝜌?; 𝜋1||(𝜌 → ⊥)?; 𝜋2K
=J𝜌?K ∘ J𝜋1K ⊎ J(𝜌 → ⊥)?K ∘ J𝜋2K

The associativity of operator ⊎ allows also to define a semantics for a generalised conditional, as follows.

Switch.

Jswitch (𝜌𝑖, 𝜋𝑖),… , (𝜌𝑛, 𝜋𝑛)K
=J𝜌1?; 𝜋1|| … ||𝜌𝑛?; 𝜋𝑛K = ⨄

𝑖
(J𝜌𝑖?K ∘ J𝜋𝑖K)

Intuitively, both operators relate a state 𝑤 to a weighted set of states 𝑤′, which assigns a weight to the

execution of each 𝜋𝑖. Each one of these weights is the value of the evaluated predicate corresponding to

the branch in which 𝜋𝑖 is executed.

Although in standard imperative programming languages, the semantics of conditionals is expressed

through choice (union), conditionals in FAS do not represent a choice, but a form of parallel evaluation.

The parallel composition ⊎ suits better the idea that we want to capture, since the execution of those

commands in FAS do not represent a choice.

Consider the following simple example. Let 𝑊 = {𝑤0, 𝑤1, 𝑤2} be a set of states and consider

weighted multirelations 𝑅 = {(𝑤0, 𝜑1)}, with 𝜑1 such that 𝜑1(𝑤1) = 0.4, and 𝑆 = {(𝑤0, 𝜑2)}, with
𝜑2 such that 𝜑2(𝑤2) = 0.6. The union of 𝑅 and 𝑆 is the set {(𝑤0, 𝜑1), (𝑤0, 𝜑2)}, which carries

the standard interpretation of conditionals as a nondeterministic choice between (𝑤0, 𝜑1) and (𝑤0, 𝜑2).
On the other hand, the parallel composition 𝑅⊎ 𝑆 represents a single execution {(𝑤0, 𝜑1 ∪𝜑2)} from
state 𝑤0 going simultaneously to states 𝑤1 and 𝑤2.

Let us now illustrate the suitability of the proposed semantics by computing the interpretation of the
conditional fragment of our reference example (Example 7.0.1), choosing again L = G.

Jif O2 is in O2_low then PIP_inc:=5 else PIP_inc:=0 endifK
=J𝑝?; PIP_inc:=5 || (𝑝 → ⊥)?; PIP_inc:=0K
=J𝑝?K ∘ JPIP_inc:=5K ⊎ J(𝑝 → ⊥)?K ∘ JPIP_inc:=0K
={(𝑤, 𝜑1) ∣ ∃𝜑′

1
⋅(𝑤, 𝜑′

1) ∈ J𝑝?K ∧ ∃𝐹1∶𝑊→L𝑊 ⋅∀𝑏∈𝑊 ⋅ (𝑏, 𝐹1(𝑏)) ∈ JPIP_inc:=5K
∧ 𝜑1(𝑢) = ∑

𝑏∈𝑊
(𝜑′

1(𝑏); 𝐹1(𝑏)(𝑢))}

⊎ {(𝑤, 𝜑2) ∣ ∃𝜑′
2
⋅(𝑤, 𝜑′

2) ∈ J(𝑝 → ⊥)?K ∧ ∃𝐹2∶𝑊→L𝑊 ⋅∀𝑏∈𝑊 ⋅ (𝑏, 𝐹2(𝑏)) ∈ JPIP_inc:=0K
∧ 𝜑2(𝑢) = ∑

𝑏∈𝑊
(𝜑′

2(𝑏); 𝐹2(𝑏)(𝑢))}

= {(𝑤, 𝜑1) ∣ 𝜑1(𝑢) = 𝜑′
1(𝑤); 𝐹1(𝑤)(𝑢)} ⊎ {(𝑤, 𝜑2) ∣ 𝜑2(𝑢) = 𝜑′

2(𝑤); 𝐹2(𝑤)(𝑢)}
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= {(𝑤, 𝜑1) ∣ 𝜑1(𝑢) = J𝑝K𝑤; 1} ⊎ {(𝑤, 𝜑2) ∣ 𝜑2(𝑢) = J𝑝 → ⊥K𝑤; 1}
= {(𝑤, J𝑝K𝑤)} ⊎ {(𝑤, J𝑝 → ⊥K𝑤)}

where 𝑝 𝑎𝑏𝑣= O2 is in O2_low.

Introducing aggregation and defuzzification

Consider again the conditional statement of Example 7.0.1. Its execution can be finished considering two

distinct possibilities:

(A) The branches remain separated, and further instructions are executed in parallel. The information

from different branches is taken into account by the user;

(B) The information is combined, which results in a single output.

The semantics presented for the if 𝜌 then 𝜋1 else 𝜋2 statement captures the parallel behaviour of op-

tion (A). On the other hand, the execution of option (B) is described by if 𝜌 then 𝜋1 else 𝜋2 aggregate.

The command instructs the aggregation of the multiple variables obtained from the branching into a single

variable. The resulting variable is computed in terms of the operators of the complete right residuated

lattice L, as follows:

aggregate

Jif 𝜌 then 𝜋1 else 𝜋2 aggregateK = {(𝑤, 𝜑(𝑤′)) ∣ 𝑤, 𝑤′ ∈ 𝑊}

where

𝜑(𝑤′) = 𝜆𝑤′.
⎧{{{
⎨{{{⎩

⊤ if ∀𝑥′⋅𝑥′≠𝑥,𝑟∈R ⋅ 𝑤′(𝑥′)(𝑟) = 𝑤(𝑥′)(𝑟)
∧ 𝑤′(𝑥)(𝑟) = ∑

𝑢∈𝑊
(𝜋2𝜋2𝜋2(J𝜌?K)(𝑢); 𝑢(𝑥)(𝑟)) + ∑

𝑢∈𝑊
(𝜋2𝜋2𝜋2(J(𝜌 → ⊥)?K)(𝑢); 𝑢(𝑥)(𝑟))

⊥ otherwise

where 𝑤′ is the “aggregated” state, i.e. the state where the multiple variables merge into one single

variable 𝑥.
Intuitively, the command with aggregation represents a crisp execution, relating state𝑤 with the “aggre-

gated” state 𝑤′. In such state the weight of 𝑥 is calculated pointwise in terms of the weights of formulas 𝜌
and 𝜌 → ⊥, and of the weights of 𝑥 in the branching states. The other variables declared in the program

(𝑥′ ≠ 𝑥) keep, of course, the same weights of state 𝑤 after the execution of the controller.
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Let us now illustrate the semantics of aggregation applied to our reference example, i.e. to the program

Example 8.2.1.

O2_low:=FUZZY SET((70,0),(75,1),(85,1),(90,0))

if O2 is in O2_low then PIP_inc:=5 else PIP_inc:=0

endif aggregate

The semantics is given by

Jif O2 is in O2_low then PIP_inc:=5 else PIP_inc:=0 endif aggregateK
={(𝑤, 𝜑(𝑤′)) ∣ 𝑤, 𝑤′ ∈ 𝑊}

with

𝜑(𝑤′) =
⎧{{{
⎨{{{⎩

⊤ if 𝑤′(PIP_inc)(𝑟)
= ∑

𝑢∈𝑊
(𝜋2𝜋2𝜋2(J𝑝?K)(𝑢) ; 𝑢(PIP_inc)(𝑟)) + ∑

𝑢∈𝑊
(𝜋2𝜋2𝜋2(J(𝑝 → ⊥)?K)(𝑢); 𝑢(PIP_inc)(𝑟))

⊥ otherwise

where 𝑤′ has the same meaning as before and 𝑝 𝑎𝑏𝑣= O2 is in O2_low.

The variable PIP_inc in the aggregate state 𝑤′ is defined as

𝑤′(PIP_inc)(5) = 𝜋2𝜋2𝜋2(J𝑝?K)(𝑢1); 𝑢1(PIP_inc)(5) +𝜋2𝜋2𝜋2(J(𝑝 → ⊥)?K)(𝑢2); 𝑢2(PIP_inc)(5)
= 𝜋2𝜋2𝜋2(J𝑝?K)(𝑢1); ⊤ +𝜋2𝜋2𝜋2(J(𝑝 → ⊥)?K)(𝑢2); ⊥
= 𝜋2𝜋2𝜋2(J𝑝?K)(𝑢1)

𝑤′(PIP_inc)(0) = 𝜋2𝜋2𝜋2(J𝑝?K)(𝑢1); 𝑢1(PIP_inc)(0) +𝜋2𝜋2𝜋2(J(𝑝 → ⊥)?K)(𝑢2); 𝑢2(PIP_inc)(0)
= 𝜋2𝜋2𝜋2(J𝑝?K)(𝑢1); ⊥ +𝜋2𝜋2𝜋2(J(𝑝 → ⊥)?K)(𝑢2); ⊤
= 𝜋2𝜋2𝜋2(J(𝑝 → ⊥)?K)(𝑢2)

and ⊥ for other 𝑟 ∈ R

Note that the output variable, weighted by nature, carries uncertainty on the PIP_inc itself. Therefore,
in order to obtain a crisp value from the execution of the fuzzy controller, an additional command needs
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to be applied. Such a command is 𝑦 ∶= defuzzify 𝑥, allowing to convert the variable 𝑥 obtained from

aggregation 𝑥 into a crisp output 𝑦. The literature offers a wide variety of methods to compute such a value,
e.g. weighted average or center of gravity, among others. In this thesis, however, for illustration purposes,

we chose the first option. For more details in this topic see reference [NW05]. Such a semantics is given by

defuzzify

J𝑦 ∶= defuzzify 𝑥K = {(𝑤, 𝜓(𝑤′)) ∣ 𝑤, 𝑤′ ∈ 𝑊}

where

𝜓(𝑤′) = 𝜆𝑤′.
⎧{{{{{
⎨{{{{{⎩

⊤ if ∀𝑦′⋅𝑦′≠𝑦,𝑟∈R ⋅ 𝑤′(𝑦′)(𝑟) = 𝑤(𝑦′)(𝑟)

∧ 𝑤′(𝑦)(𝑟) =
⎧{{
⎨{{⎩

⊤ if 𝑟 =
⨁
𝑖
(𝑟𝑖×𝑤(𝑥)(𝑟𝑖))

⨁
𝑖
𝑤(𝑥)(𝑟𝑖)

, 𝑖 ∈ N

⊥ otherwise

⊥ otherwise

where 𝑤 is the state of the aggregated variable 𝑥, and ⊕ is the arithmetic sum.

We interpret the defuzzify operator as a special type of assignment, which assigns to the weight of a

variable 𝑦 the weight of a variable 𝑥 resulting from aggregation, and after applies the weighted average

method for defuzzification.

Let us illustrate this semantics resorting again to Example 7.0.1, by applying the defuzzify operator.

Example 8.2.2.

O2_low:=FUZZY SET((70,0),(75,1),(85,1),(90,0))

if O2 is in O2_low then PIP_inc:=5 else PIP_inc:=0

endif aggregate;

def_PIP:=defuzzified PIP_inc

The semantics is computed as follows
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Jif O2 is in O2_low then PIP_inc:=5 else PIP_inc:=0 endif aggregate;

def_PIP:=defuzzified PIP_incK
={(𝑤, 𝜓(𝑤″)) ∣ 𝑤, 𝑤″ ∈ 𝑊}

with

𝜓(𝑤″) =
⎧{{{
⎨{{{⎩

⊤ if 𝑤″(def_PIP)(𝑟) =
⎧{
⎨{⎩

⊤ if 𝑟 = 5×𝑤′(PIP_inc)(5) ⊕ 0 ⊕ … ⊕ 0 ⊕ 0×𝑤′(PIP_inc)(0)
𝑤′(PIP_inc)(5) ⊕ 0 ⊕ … ⊕ 0 ⊕ 𝑤′(PIP_inc)(0) , 𝑤′ ∈ 𝑊

⊥ otherwise

⊥ otherwise

where 𝑤′ ∈ 𝑊 is the state of the aggregated variable PIP_inc. Hence the variable def_PIP in state

𝑤″ is defined as

𝑤″(def_PIP)(𝑟) =
⎧{
⎨{⎩

⊤ if 𝑟 = 5×𝑤′(PIP_inc)(5)
𝑤′(PIP_inc)(5) ⊕ 𝑤′(PIP_inc)(0) , 𝑤

′ ∈ 𝑊
⊥ otherwise

Lemma 8.2.1. Let L be a complete H-right residuated lattice. The following formula is valid in any

Ω(L).

⟨𝜌?⟩𝜌′ ↔ (𝜌 ∧ 𝜌′)

Proof.

(𝑤 ⊧Ω(L) ⟨𝜌?⟩𝜌′)
= { definition of ⊧Ω(L)}

∑
𝜑∈𝜋2𝜋2𝜋2(J𝜌?K) ( ∑

𝑢∈𝑊
(𝜑(𝑢); 𝑢 ⊧Ω(L) 𝜌′))

= { definition of J_K}
(𝑤 ⊧Ω(L) 𝜌); (𝑤 ⊧Ω(L) 𝜌′)

= { L isH}
(𝑤 ⊧Ω(L) 𝜌) ∧ (𝑤 ⊧Ω(L) 𝜌′)

= { definition of ⊧Ω(L)}
(𝑤 ⊧Ω(L) 𝜌 ∧ 𝜌′)

Hence, by (119), (𝑤 ⊧Ω(L) ⟨𝜌?⟩𝜌′) ↔ (𝑤 ⊧Ω(L) 𝜌 ∧ 𝜌′).
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8.3 A n i l l u s t r a t i o n w i t h f u z z y a r d e n s y n t a x

To illustrate the application of our framework let us resort to our reference example 7.0.1, i.e. the conditional

𝜋 𝑎𝑏𝑣= if O2 is in O2_low then PIP_inc:=5 else PIP_inc:=0

Let us also assume that, in an initial state 𝑤0, the patient has a 𝑂2 level of 89 1. Our goal is to verify

how ‘normal’ the 𝑂2 level of the patient becomes after running the controller from state 𝑤0. Formally,

this problem corresponds to computing the truth degree of the following Ω(L) formula

𝑤0 ⊧Ω(L) ⟨𝜋⟩𝜌

where 𝜌 𝑎𝑏𝑣= O2 is in O2_normal.
In order to shorten the proof, we use the encoding defined in Chapter 7 to represent program 𝜋 as

𝑝?; 𝜋1||(𝑝 → ⊥)?; 𝜋2

where

𝜋1
𝑎𝑏𝑣= PIP_inc:=5

𝜋2
𝑎𝑏𝑣= PIP_inc:=0

𝑝 𝑎𝑏𝑣= O2 is in O2_low

The weight of

𝑤0 ⊧Ω(L) ⟨𝑝?; 𝜋1||(𝑝 → ⊥)?; 𝜋2⟩ 𝜌 (128)

is obtained from the satisfaction relation established in Definition 8.1.2, as follows 2.

1 Note that the system only suggests a modification to the value of PIP_inc and this always depends on the manual action of
some health professional.

2 Although the lattice chosen to instantiate the problem was the G lattice, and thus ; = min, the semantics is the same for the
other instantiations and P, since 1; 𝑙 = 𝑙, for all 𝑙 ∈ L
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𝑤0 ⊧Ω(L) ⟨𝑝?; 𝜋1||(𝑝 → ⊥)?; 𝜋2⟩ 𝜌
= { Lemma 8.1.3}

𝑤0 ⊧Ω(L) ⟨𝑝?⟩⟨𝜋1⟩ 𝜌 + 𝑤0 ⊧Ω(L) ⟨(𝑝 → ⊥)?⟩⟨𝜋2⟩ 𝜌
= { definition of ⊧Ω(L)}

∑
𝜓1∈𝜋2𝜋2𝜋2(J𝑝?K) ( ∑

𝑢∈𝑊
𝜓1(𝑢); ( ∑

𝜑1∈𝜋2𝜋2𝜋2(J𝜋1K) ( ∑
𝑣∈𝑊

𝜑1(𝑣); 𝑣 ⊧Ω(L) 𝜌)))

+ ∑
𝜓2∈𝜋2𝜋2𝜋2(J(𝑝→⊥)?K) ( ∑

𝑢∈𝑊
𝜓2(𝑢); ( ∑

𝜑2∈𝜋2𝜋2𝜋2(J𝜋2K) ( ∑
𝑣∈𝑊

𝜑2(𝑣); 𝑣 ⊧Ω(L) 𝜌)))

= { definition of J_K}
(𝑤0 ⊧Ω(L) 𝑝); (𝜑1(𝑣1); 𝑣1 ⊧Ω(L) 𝜌) + (𝑤0 ⊧Ω(L) 𝑝 → ⊥); (𝜑2(𝑣2); 𝑣2 ⊧Ω(L) 𝜌)

= { definitions of J_K}
(𝑤0 ⊧Ω(L) 𝑝); (⊤; 𝑣1 ⊧Ω(L) 𝜌) + (𝑤0 ⊧Ω(L) 𝑝 → ⊥); (⊤; 𝑣2 ⊧Ω(L) 𝜌)

= { (28)}
(𝑤0 ⊧Ω(L) 𝑝); (𝑣1 ⊧Ω(L) 𝜌) + (𝑤0 ⊧Ω(L) 𝑝 → ⊥); (𝑣2 ⊧Ω(L) 𝜌)

In several situations, as the one of Example 7.0.1, some contextual assumptions must be taken into

account. Thus, to verify a formula inΩ(L), we assume the validity of a set of contextual rules Γ. Notation

(Γ, 𝑤 ⊧Ω(L) 𝜌)

stands for the value of (𝑤 ⊧Ω(L) 𝜌) assuming Γ, i.e. given that (𝑤 ⊧Ω(L) Γ) = ⊤.

In order to interpret our problem, we use a concrete evaluation environment encoded in the following

context rules

Γ =
⎧{
⎨{⎩

PIP_inc = 0 → O2 = 89
PIP_inc = 5 → O2 = 92

which describes the impact of acting on the ventilator’s PIP_inc, on the 𝑂2 level of the patient. The

increment of PIP_inc by 5 units results in an increase of the 𝑂2 from 89 to 92, whereas if no action is
performed, 𝑂2 does not suffer any modification. In turn, these new values for 𝑂2 entail a new weight for

the predicate (e.g. O2 is in O2_normal).
It is relevant to mention that the output of the program, which may be according to option (A) or option

(B), and the concrete decision of the health professional operating the system do not necessarily coincide.

The output of option (A), i.e. the function JO2_lowK𝑤 + JO2_lowK𝑤 → 0 (see Section 8.1), highlights

which branch is more relevant to execute in the concrete scenario. This way, if no aggregation is performed,

we are in presence of an uncertainty about which path will be chosen by the user. It is precisely over such

an uncertainty that the logic reasons about. The actual execution of the command, which will be decided

according to the weight of each branch, is not reflected in the logic.
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Assuming Γ we can discuss the problem instantiating lattice L with different complete right residuated

lattices, namely Ł, G and P. Starting with Ł, we obtain

0.2; 1 + 0.8; 0.8 = max{0.2, 0.6} = 0.6

The value 0.6 is interpreted as the truth degree that the execution of the fuzzy controller 𝜋 adjusts the𝑂2
level of the patient to ‘normal’. The formula (128) evaluates precisely the impact of the suggestion made

by the fuzzy controller on the𝑂2 level of the patient. Note, in particular, that the weights of the predicates

O2 is in O2_low, O2 is in O2_low → 0 and O2 is in O2_normal affect the value of the

formula, with the ‘else’ branch having a stronger impact due to its higher weight compared to the ‘then’

branch. Considering now the lattice G, it yields

max{min{0.2, 1},min{0, 0.8}} = max{0.2, 0} = 0.2

Finally, the instantiation with P entails

max{0.2 × 1, 0 × 0.8} = max{0.2, 0} = 0.2

Despite the strictness of the logic, the discrepancy between the values of the three lattices suggests that

the truth space for each concrete application context needs to be carefully selected by the user.

We have seen that aggregate combines the multiple variables, obtained from the diverse branches,

into a single variable. Therefore the application of the logic to a program with aggregation produces, in

practice, the same result of the program without aggregation, i.e. it reasons about which branch of the

fuzzy controller is more relevant to execute.

To illustrate the application of the logic to a program with defuzzify, consider the following program

𝜋″ 𝑎𝑏𝑣= if O2 is in O2_low then PIP_inc:=5 else PIP_inc:=0

endif aggregate;

def_PIP:= defuzzified PIP_inc

The goal is to verify how much the𝑂2 level of the patient becomes ‘normal’ after running such a controller,

from state 𝑤0. The Ω(L) formula which corresponds to this problem is

𝑤0 ⊧Ω(L) ⟨𝜋″⟩𝜌

considering the sequential composition of program

𝜋′ 𝑎𝑏𝑣= if O2 is in O2_low then PIP_inc:=5 else PIP_inc:=0
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endif aggregate

with assignment 𝜋3
𝑎𝑏𝑣= def_PIP:= defuzzified PIP_inc. Let us use again the encoding of

Chapter 7 to abbreviate program 𝜋″ as

𝜋′; 𝜋3

Thus the weight of

𝑤0 ⊧Ω(L) ⟨𝜋′; 𝜋3⟩𝜌 (129)

is calculated through the satisfaction relation of Definition 8.1.2 and by interpreting the program with

defuzzification as in Example 8.2.2, as follows.

𝑤0 ⊧Ω(L) ⟨𝜋′; 𝜋3⟩𝜌
= { (125)}

𝑤0 ⊧Ω(L) ⟨𝜋′⟩⟨𝜋3⟩𝜌
= { definition of ⊧Ω(L)}

∑
𝑢∈𝑊

(𝜋2𝜋2𝜋2(J𝜋′K)(𝑤0, 𝑢); ( ∑
𝑣∈𝑊

(𝜋2𝜋2𝜋2(J𝜋3K)(𝑢, 𝑣); 𝑣 ⊧Ω(L) 𝜌)))

= { definition of J_K}
∑

𝑢∈𝑊
(𝜑(𝑢); ( ∑

𝑣∈𝑊
(𝜓(𝑣); 𝑣 ⊧Ω(L) 𝜌)))

such that 𝜑(𝑢) =

⎧{{{{
⎨{{{{⎩

⊤ if 𝑢(PIP_inc)(𝑟) =

⎧{{{
⎨{{{⎩

J𝑝K𝑤0
if 𝑟 = 5J𝑝 → ⊥K𝑤0
if 𝑟 = 0

⊥ otherwise

⊥ otherwise

and 𝜓(𝑣) =

⎧{{{
⎨{{{⎩

⊤ if 𝑣(def_PIP)(𝑟) =
⎧{
⎨{⎩

⊤ if 𝑟 = 5×𝑢(PIP_inc)(5) ⊕ 0×𝑢(PIP_inc)(0)
𝑢(PIP_inc)(5) ⊕ 𝑢(PIP_inc)(0)

⊥ otherwise

⊥ otherwise

where ⊕ is the arithmetic sum.

Considering the same values for 𝑂2, and the context rules Γ, and instantiating with the usual three

lattices, the value of 𝑣(def_PIP)(𝑟), i.e. the application of command defuzzify to variable PIP_inc
is given by

Ł ∶ 1 for 𝑟 = 5 × 0.2 + 0 × 0.8
0.2 + 0.8 = 1

1 = 1 and 0 otherwise
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G ∶ 1 for 𝑟 = 5 × 0.2 + 0 × 0
0.2 + 0 = 1

0.2 = 5 and 0 otherwise

P ∶ 1 for 𝑟 = 5 × 0.2 + 0 × 0
0.2 + 0 = 1

0.2 = 5 and 0 otherwise

Let us consider now the additional context rule def_PIP = 1 → 𝑂2 = 89.5, which means that the
increment of PIP by 1 increases 𝑂2 from 89 in state 𝑤0 to 89.5 in the ‘defuzzified’ state 𝑣. Note that
for def_PIP = 5 we already assumed the rule PIP = 5 → 𝑂2 = 92. The final step is to compute the
weights of formula 8.3 using lattices Ł, G and P, in function of the calculated average for each lattice.

Ł ∶ 𝑣(def_PIP)(1); J𝜌K𝑢 = 1; 0.9 = max{0, 1 + 0.9 − 1} = 0.9
G ∶ 𝑣(def_PIP)(5); J𝜌K𝑢 = min{1, 1} = 1
P ∶ 𝑣(def_PIP)(5); J𝜌K𝑢 = 1 × 1 = 1

The interpretation of this example with defuzzification is that the logic formula reflects the effect that the

suggestion of increasing the PIP of the patient by 1 and 5 has in the 𝑂2 level. Note that, in particular

for lattices G and P, the weight 1 means that, by running the controller and incrementing PIP by the

suggested value, the 𝑂2 level of the patient becomes ‘completely normal’.

8.4 A n i l l u s t r a t i o n w i t h j Fu z z y L o g i c

In this section we provide another application of our framework to an instance of the language ℱ2, called

jFuzzyLogic [CAf13]. The language is an open source Java library, offering a complete implementation of

fuzzy inference systems. It comes with a programming interface and a plugin for the Eclipse IDE to write

and test code for fuzzy applications. Although jFuzzyLogic does not introduce any new feature relatively

to FAS, we intend to illustrate the versatility of the introduced semantics and dynamic logics in capturing

distinct application scenarios.

We illustrate the application of the logic with the following example, obtained from documentation of

jFuzzyLogic [jfu], of a fuzzy controller for a container crane.

Example 8.4.1.

VAR_INPUT

distance: REAL;

angle: REAL;

END_VAR

VAR_OUTPUT

power: REAL

END_VAR
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FUZZIFY distance

TERM too_far:=(0,1) (55,1) (0,0);

TERM zero:=(-5,0) (0,1) (5,0);

TERM close:=(0,0) (5,1) (10,0);

TERM medium:=(5,0) (10,1) (22,0);

TERM far:=(10,0) (22,1) (30,1);

END_FUZZIFY

FUZZIFY angle

TERM neg_big:=(-90,1) (-50,1) (-5,0);

TERM neg_small:=(-50,0) (-5,1) (0,0);

TERM zero:=(-5,0) (0,0) (5,0);

TERM pos_small:=(0,0) (5,1) (50,0);

TERM pos_big:=(5,0) (50,1) (90,1);

END_FUZZIFY

DEFUZZIFY power

TERM neg_high:=-26;

TERM neg_medium:=-8;

TERM zero:=0;

TERM pos_medium:=8;

TERM pos_high:=26;

END_DEFUZZIFY

RULEBLOCK

Rule1: IF distance IS medium AND angle IS pos_small

THEN power IS pos_medium

Rule2: IF distance IS medium AND angle IS zero THEN power IS zero

Rule3: IF distance IS far AND angle IS zero THEN power IS pos_medium

END_RULEBLOCK

END_FUNCTIONBLOCK

The system automates the control of the crane, by calculating the motor power to be applied, in function

of the crane head position (distance) and the angle of the container sway (angle).
Analogously to FAS, the program above is divided into distinct blocks: VAR_INPUT and VAR_OUTPUT

declare the input and output variables, respectively; the FUZZIFY and DEFUZZIFY blocks define a list of
weighted sets for each one of those variables. For example, the statement

TERM close:= (0,0), (5,1), (10,0) defines variable close, in a state 𝑤, as the weighted set
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JcloseK𝑤(𝑟) = 𝑤(close, 𝑟) =
⎧{
⎨{⎩

r
5 − 1 if 5 ≤ r ≤ 10
r
12 + 11

6 if 10 ≤ r ≤ 22

which assigns, to each (crisp) value of distance, a value in the real interval [0, 1] to evaluate how ‘close’

the container is to the target position. Figures 15 and 16 are the graphical representations of the variable

close, and the remaining weighted sets defined in program of Example 8.4.1.
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Figure 15: Graph distance between crane head and target position
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Figure 16: Graph angle of the container to the crane head

Note that variable power is defined as a constant, e.g. as

Jpos_mediumK𝑤(𝑟) =
⎧{
⎨{⎩

⊤ if 𝑟 = 8
⊥ otherwise
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Finally, the RULEBLOCK sets the fuzzy controller itself, i.e. the if-then rules which automate the control

of the container crane. In jFuzzyLogic, the logical connectives such as AND, and the ‘aggregation’ and

‘defuzzification’ methods are defined in the RULEBLOCK and the DEFUZZIFY block of the output variable,
respectively. Since our framework is parametric on a right residuated lattice, those operators and methods

will depend on the concrete lattice chosen. Analogously to previous examples, we will instantiate with the

three usual action latices Ł, G and P.

Let us consider an initial state 𝑤0 where the distance between the crane and the target is 12𝑚 and the

angle of the container to the crane head is 4°. We want to verify the certainty that, after running controller
from𝑤0, the container is ‘close’ to the target. To simplify the example, we opt to analyse only the distance,

not including the angle in the predicate to be evaluated. This corresponds to compute the Ω(L) formula

𝑤0 ⊧Ω(L) ⟨𝜋⟩𝜌

where 𝜋 is the program in the RULEBLOCK and 𝜌 𝑎𝑏𝑣= distance IS close.
In order to shorten the proof, we encode program 𝜋, resorting again to syntax given in Chapter 7, as

(𝑝1 ∧ 𝑝3)?; 𝑞1?||(𝑝1 ∧ 𝑝4)?; 𝑞2?||(𝑝2 ∧ 𝑝4)?; 𝑞1?

where

𝑝1
𝑎𝑏𝑣= distance IS medium

𝑝2
𝑎𝑏𝑣= distance is far

𝑝3
𝑎𝑏𝑣= angle IS pos_small

𝑝4
𝑎𝑏𝑣= angle IS zero

𝑞1
𝑎𝑏𝑣= power IS pos_medium

𝑞2
𝑎𝑏𝑣= power IS zero

The weight of

𝑤0 ⊧Ω(L) ⟨(𝑝1 ∧ 𝑝3)?; 𝑞1?||(𝑝1 ∧ 𝑝4)?; 𝑞2?||(𝑝2 ∧ 𝑝4)?; 𝑞1?⟩𝜌 (130)

is obtained through the satisfaction relation 8.1.2, as follows:
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𝑤0 ⊧Ω(L) ⟨(𝑝1 ∧ 𝑝3)?; 𝑞1?||(𝑝1 ∧ 𝑝4)?; 𝑞2?||(𝑝2 ∧ 𝑝4)?; 𝑞1?⟩𝜌
= { (127)}

𝑤0 ⊧Ω(L) ⟨(𝑝1 ∧ 𝑝3)?⟩⟨𝑞1?⟩𝜌
+ 𝑤0 ⊧Ω(L) ⟨(𝑝1 ∧ 𝑝4)?⟩⟨𝑞2?⟩𝜌
+ 𝑤0 ⊧Ω(L) ⟨(𝑝2 ∧ 𝑝4)?⟩⟨𝑞1?⟩𝜌

= { definition of ⊧Ω(L)}
∑

𝜓1∈𝜋2𝜋2𝜋2(J(𝑝1∧𝑝3)?K) ( ∑
𝑢∈𝑊

(𝜓1(𝑢); ∑
𝜑1∈𝜋2𝜋2𝜋2(J𝑞1?K) ( ∑

𝑣∈𝑊
𝜑1(𝑣); 𝑣 ⊧Ω(L) 𝜌)))

+ ∑
𝜓2∈𝜋2𝜋2𝜋2(J(𝑝1∧𝑝4)?K) ( ∑

𝑢∈𝑊
(𝜓2(𝑢); ∑

𝜑2∈𝜋2𝜋2𝜋2(J𝑞2?K) ( ∑
𝑣∈𝑊

𝜑2(𝑣); 𝑣 ⊧Ω(L) 𝜌)))

+ ∑
𝜓3∈𝜋2𝜋2𝜋2(J(𝑝2∧𝑝4)?K) ( ∑

𝑢∈𝑊
(𝜓3(𝑢); ∑

𝜑1∈𝜋2𝜋2𝜋2(J𝑞1?K) ( ∑
𝑣∈𝑊

𝜑1(𝑣); 𝑣 ⊧Ω(L) 𝜌)))

= { definition of J_K}
(𝑤0 ⊧Ω(L) 𝑝1 ∧ 𝑝3); (𝑤0 ⊧Ω(L) 𝑞1); (𝑤0 ⊧Ω(L) 𝜌)
+ (𝑤0 ⊧Ω(L) 𝑝1 ∧ 𝑝4); (𝑤0 ⊧Ω(L) 𝑞2); (𝑤0 ⊧Ω(L) 𝜌)
+ (𝑤0 ⊧Ω(L) 𝑝2 ∧ 𝑝4); (𝑤0 ⊧Ω(L) 𝑞1); (𝑤0 ⊧Ω(L) 𝜌)

= { definition of ⊧Ω(L)}
((𝑤0 ⊧Ω(L) 𝑝1) ⋅ (𝑤0 ⊧Ω(L) 𝑝3)); (𝑤0 ⊧Ω(L) 𝑞1); (𝑤0 ⊧Ω(L) 𝜌)
+ ((𝑤0 ⊧Ω(L) 𝑝1) ⋅ (𝑤0 ⊧Ω(L) 𝑝4)); (𝑤0 ⊧Ω(L) 𝑞2); (𝑤0 ⊧Ω(L) 𝜌)
+ ((𝑤0 ⊧Ω(L) 𝑝2) ⋅ (𝑤0 ⊧Ω(L) 𝑝4)); (𝑤0 ⊧Ω(L) 𝑞1); (𝑤0 ⊧Ω(L) 𝜌)

Analogously to the illustration in FAS we assume a set of contextual rules to reason about logical prop-

erties.

Γ =
⎧{
⎨{⎩

power IS pos_medium → distance = 7
power IS zero → distance = 12

These rules model the impact that the motor power has in the position of the crane. If no action is

performed (power IS zero), the distance to the target is maintained. If a motor power of 8 kW is

applied (power IS pos_medium), at a certain instance, the distance is reduced to 7 yards. We then

evaluate predicate distance IS close in the ‘aggregated’ state. Instantiating with the three habitual

lattices, the weight of formula (130) is computed as

Ł ∶ (0.9 ⋅ 0.8); 1; 0.6 + (0.9 ⋅ 0.2); 1; 0 + (0.1 ⋅ 0.2); 1; 0.6
= max{max{0,min{0.9, 0.8} + 0.6 − 1}, 0,max{0,min{0.1, 0.2} + 0.6 − 1}}
= max{0.4, 0, 0}
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= 0.4
G ∶ max{min{min{0.9, 0.8}, 0.6},min{min{0.9, 0.2}, 0},min{min{0.1, 0.2}, 0.6}}
= max{0.6, 0, 0.1}
= 0.6
P ∶ max{min{0.9, 0.8} × 0.6,min{0.9, 0.2} × 0,min{0.1, 0.2} × 0.6}
= max{0.48, 0, 0.06}
= 0.48

These values represent the truth degree that the execution of the controller reduces the distance of the

container to the target from 12 to 5 yards.

We now exemplify the application of the logic to the program with defuzzification

𝜋″ 𝑎𝑏𝑣= IF distance IS medium AND angle IS pos_small THEN power IS pos_medium

IF distance IS medium AND angle IS zero THEN power IS zero

IF distance IS far AND angle IS zero THEN power IS pos_medium

aggregate;

power_def:= defuzzifed power

We compute the weight corresponding to how ‘close’ the container crane is to the target position after

running the controller, which corresponds to the Ω(L) formula

𝑤0 ⊧Ω(L) ⟨𝜋″⟩𝜌

where 𝜋″ = 𝜋′; 𝜋0 is the sequential composition of program

𝜋′ 𝑎𝑏𝑣= IF distance IS medium AND angle IS pos_small THEN power IS pos_medium

IF distance IS medium AND angle IS zero THEN power IS zero

IF distance IS far AND angle IS zero THEN power IS pos_medium

aggregate

with assignment 𝜋0
𝑎𝑏𝑣= power_def:=defuzzified power.

The weight of

𝑤0 ⊧Ω(L) ⟨𝜋′; 𝜋0⟩𝜌 (131)

is computed as
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𝑤0 ⊧Ω(L) ⟨𝜋′; 𝜋0⟩𝜌
= { (125)}

𝑤0 ⊧Ω(L) ⟨𝜋′⟩⟨𝜋0⟩𝜌
= { definition of ⊧Ω(L)}

∑
𝑢∈𝑊

(𝜋2𝜋2𝜋2(J𝜋′K)(𝑤0, 𝑢); ( ∑
𝑣∈𝑊

(𝜋2𝜋2𝜋2(J𝜋0K)(𝑢, 𝑣); 𝑣 ⊧Ω(L) 𝜌)))

= { definition of J_K}
∑

𝑢∈𝑊
(𝜑(𝑢); ( ∑

𝑣∈𝑊
(𝜓(𝑣); 𝑣 ⊧Ω(L) 𝜌)))

Let us compute the value of variable power in the aggregated state 𝑢, as follows:

𝑢(power)(8) = 𝜋2𝜋2𝜋2(J(𝑝1 ∧ 𝑝3)?K)(𝑢1); 𝑢1(power)(8)
+𝜋2𝜋2𝜋2(J(𝑝1 ∧ 𝑝4)?K)(𝑢2); 𝑢2(power)(8)
+𝜋2𝜋2𝜋2(J(𝑝2 ∧ 𝑝4)?K)(𝑢3); 𝑢3(power)(8)

= (𝑤0 ⊧Ω(L) 𝑝1 ∧ 𝑝3); ⊤ + (𝑤0 ⊧Ω(L) 𝑝1 ∧ 𝑝4); ⊥
+ (𝑤0 ⊧Ω(L) 𝑝2 ∧ 𝑝4); ⊤

= (𝑤0 ⊧Ω(L) 𝑝1 ∧ 𝑝3) + (𝑤0 ⊧Ω(L) 𝑝2 ∧ 𝑝4)
𝑢(power)(0) = 𝜋2𝜋2𝜋2(J(𝑝1 ∧ 𝑝3)?K)(𝑢1); 𝑢1(power)(0)

+𝜋2𝜋2𝜋2(J(𝑝1 ∧ 𝑝4)?K)(𝑢2); 𝑢2(power)(0)
+𝜋2𝜋2𝜋2(J(𝑝2 ∧ 𝑝4)?K)(𝑢3); 𝑢3(power)(0)

= (𝑤0 ⊧Ω(L) 𝑝1 ∧ 𝑝3); ⊥ + (𝑤0 ⊧Ω(L) 𝑝1 ∧ 𝑝4); ⊤
+ (𝑤0 ⊧Ω(L) 𝑝2 ∧ 𝑝4); ⊥

= (𝑤0 ⊧Ω(L) 𝑝1 ∧ 𝑝4)
and ⊥ otherwise

Hence, 𝜑 is defined as

𝜑(𝑢) =

⎧{{{{{
⎨{{{{{⎩

⊤ if 𝑢(power)(𝑟) =

⎧{{{
⎨{{{⎩

(𝑤0 ⊧Ω(L) 𝑝1 ∧ 𝑝3) + (𝑤0 ⊧Ω(L) 𝑝2 ∧ 𝑝4) if 𝑟 = 8

(𝑤0 ⊧Ω(L) 𝑝1 ∧ 𝑝4) if 𝑟 = 0

⊥ otherwise

⊥ otherwise
and 𝜓 as
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𝜓(𝑣) =

⎧{{{
⎨{{{⎩

⊤ if 𝑣(power)(𝑟) =
⎧{
⎨{⎩

⊤ if 𝑟 = 8×𝑢(power)(8) ⊕ 0×𝑢(power)(0)
𝑢(power)(8) ⊕ 𝑢(power)(0)

⊥ otherwise

⊥ otherwise

where ⊕ is the arithmetic sum.

Let us consider the values of distance and angle as above, and the context rules Γ. By instantiating
with the usual three right residuated lattices, we compute the weight of 𝑣(def_power)(𝑟), i.e. the

application of command defuzzify to variable power. Since ⋅ = min in the three instances Ł, G and

P, we obtain the same value for 𝑟 for those lattices:

𝑟 = 8 × max{min{0.9, 0.8},min{0.1, 0.2}} ⊕ 0 × min{0.9, 0.2}
max{min{0.9, 0.8},min{0.1, 0.2}} ⊕ min{0.9, 0.2} = 6.4

1 = 6.4

and thus

𝑣(power)(𝑟) =
⎧{
⎨{⎩

1 if 𝑟 = 6.4
0 otherwise

Let us assume now the additional contextual rule 𝑝𝑜𝑤𝑒𝑟 = 6.4 → 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 8.5, which means

that by setting the motor power to 6.4 kW, the distance of the container to the target position becomes

8.5 yards. Thus, the weight of (131), instantiated with the usual lattices, is given by:

Ł ∶ 𝑣(def_power)(6.4); J𝜌K𝑢 = 1; 0.3 = max{0, 1 + 0.3 − 1} = 0.3
G ∶ 𝑣(def_power)(6.4); J𝜌K𝑢 = min{1, 0.3} = 0.3
P ∶ 𝑣(def_power)(6.4); J𝜌K𝑢 = 1 × 0.3 = 0.3

The value 0.3 is the truth degree representing how ‘close’ the distance becomes after running this con-

troller, by applying def_power.
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9

C O N C L U S I O N S A N D O P E N P R O B L E M S

This section concludes this PhD thesis. We investigated algebras, semantics and logics for two classes of

weighted computation, that we designate by weighted “single-flow” and weighted “multi-flow”. They were

expressed by the imperative programming languages ℱ1 and ℱ2, respectively.

The approach was presented in two parts, one for type of computation. In a first step, we defined a

generic algebra to act as the equational theory of the computational paradigm at hand. Then we intro-

duced a semantics for programs and assertions, where the former is interpreted in terms of the operators

of the algebra. The final step was the development of a method, constructed on top of such a seman-

tics, for generating dynamic logics to reason about each class of programs, including a study of the the

axiomatisation.

The following two observations sum up the main contributions of the document.

Part 1 focused on the semantic structures, both syntactic and relational, and logics at a propositional

level, for weighted “single-flow” computations. We show that the obtained algebras indeed capture

weighted programs and assertions, by presenting semantic structures based on fuzzy set theory

[Zad65]. The bridge to verification is achieved through an encoding of both PCA’s and deductive sys-

tem of propositional Hoare logic in these structures, providing a quasi-equational way of reasoning

about weighted “single-flow” computations. The research path on the development of multi-valued

dynamic logics, initiated in [MNM16], is instantiated by considering programs as (weighted) as-

signments of terms to variables. The semantics of each logic models variables as weighted sets

and programs as weighted functions, taking values over a generic algebra to interpret the notion

of weight. Due to the parametric nature of our approach, we were able to instantiate logics to

verify programs interpreted as classic assignments, truth degrees and resources consumed in the

execution.

Part 2 studied the class of weighted “multi-flow” computations. We introduced a program algebra,

with an operator to model weighted parallel execution of programs, of which conditionals in FAS

and jFuzzyLogic are examples. The semantics of this kind of computations was given as weighted

binary multirelations, with the notion of weight introduced from a complete right residuated lattice.

A family of ∗-free dynamic logics was generated from this semantics, with modal operators adapted

from [Pel87] to consider weights in the execution of programs.
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We believe this work provides a solid framework which can serve as a basis for the design and verification

of programs interpreted in some sort of weighted domain. Although both kinds of single and multi-flow

computations live in such a weighted domain, their nature impose that distinct algebras and logics suitable

to each of them should be considered, exposing their singularities. Those distinctions are highlighted first,

at an abstract level, in the semantics structures and program interpretation for each kind of computation

and second, at a more concrete level, in the illustrations presented.

Despite of them, both frameworks resort in two central pillars. One is the proposed relational semantics

based on fuzzy set theory. The formalisation, however, follows distinct ways: in Part 1 programs are

modelled as weighted relations, intuitively binary “single flows” of execution; in Part 2 weighted sets are

the second element of an input-output pair of a binary multirelation, representing the (possible multiple)

weights of a parallel execution.

The other pillar is the parametric nature of both methods. By adopting a generic algebraic structure to

model both computations and assertions, we are able to interpret the weights of both components in a

variety of contexts.

Some results in the thesis were confirmed with the help of the automated theorem prover Prover9 [Pro]

and its counterexample generator Mace4. Concretely, Prover9 was used to verify the quasi-equational

proofs of sections 3.2 and 3.3, and the folk theorem illustration of Section 3.5. Mace4 was utilised to

generate the counterexamples discussed in Part 1. In such context, we refer to paper [HS07], where the

authors axiomatise diverse variants of Kleene algebras, including [MS06], and provide automated proofs of

Hoare, dynamic and temporal logics, and concurrency control. Other examples of theorem provers found

in the literature for quasi-equational reasoning of programs are KAT-ML [AHK06] and KAT+b! [GKM14],

which are specifically designed for reasoning with KAT. The later, in particular, extends KAT with the notion

ofmutable test, allowing to perform certain program transformations without the need to adopt a first-order

structure. Contrary to Prover9, which is fully automated, these two provers require some interaction by

the user.

There is a set of problems that remain open for future discussion. First of all the problem of defining

a notion of bisimulation and proving modal invariance for the logics introduced in Part 2, analogously to

what was done in Part 1, was not conducted and is also clearly in our research agenda. As we already

mentioned, continuing the analysis of the three typed of sequential composition for weighted multirelations

seems relevant enough to constitute a priority in the near future.

Along the entire document, we gave particular attention to the importance of the parametric nature of

our framework, more specifically in the illustrations presented. We believe that such generic approach may

benefit further research on fuzzy program analysis. Referring to Part 2, it would be possible to extend

the range of applications to other non trivial computational domains, such as resource management by

considering the tropical lattice of Example 2.2.11.

Note also that some alternatives could be taken regarding the mathematical structure chosen as pa-

rameter for the logic of Part 1. In particular, note that we choose the → operator to be applied only on

the subalgebra of tests instead of the whole algebra. The main reason was that we wanted to use such

an operator only to model the implication of the logic, and it had no practical purpose, in the context of
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this work, to be used on programs as well. An alternative approach could be the use, as a parameter,

an action algebra [Koz94b], where the residuation acts on the entire set. Which implications such a mod-

ification would have on the thesis, and to study the meaning of defining → for programs constitutes a

self-contained topic that we left for the future. Another alternative to the chosen structure could be the

use of the left residuation operator←, instead of→. We also believe that such an approach could lead to

some implications on the results on this thesis. For instance, property (81) holds from the left residuation,

and would not be necessary to impose it to prove the sequential composition of the box operator, as it

ocurred for Lemma 5.1.5.

Beyond the range of possible research directions specific to Part 1 or Part 2, we enumerate some

open problems that are transversal to the entire thesis and we believe that are shared by the two classes

of computations addressed. The discussion about those topics is done below.

Discussing Hoare logic in weighted computations

Although Hoare logic is seen as the cornerstone of program correctness, the complex nature of many

current systems, namely the ones which serve as the motivation for this thesis, entail the development of

novel logics for their rigorous design and verification. Literature provides diverse variants of Hoare logic to

reason about programs living in those settings [dHdV02, GMB17, RZ15]. However, in all these approaches,

even when some forms of structured computations are taken into consideration, the validity of assertions

is always stated in Boolean terms. We believe that it is possible to go a step further and discuss the validity

of such structured computation (eg. probabilistic, fuzzy) in a logic capturing itself its inherent behaviour.

The statement is supported by the research line already started in this direction [MNM16]. In particular,

the family of logics introduced in that reference allows to reason about the validity of modus ponens

𝜌1, 𝜌1 → 𝜌2
𝜌2

(132)

and necessity

𝜌1
[𝜋]𝜌1

(133)

as follows: for each generated multi-valued dynamic logic 𝒢𝒟ℒ(A) (Section 2.3), modus ponens is

sound iff for any 𝑤 ∈ 𝑊 (𝑤 ⊨ 𝜌1) = ⊤ and (𝑤 ⊨ 𝜌1 → 𝜌2) = ⊤ then (𝑤 ⊨ 𝜌2) = ⊤;

analogously necessity is sound iff (𝑤 ⊨ 𝜌) = ⊤ then (𝑤 ⊧ [𝜋]𝜌) = ⊤.

Note that the satisfaction relation of 𝒢𝒟ℒ(A) is defined as a function with codomain in an action

lattice A. The possibility of evaluating a logic formula as a value in a weighted truth space paves the

way to go even further and discuss, for example, the soundness of an inference rule in similar terms.

Generically, let us consider a signature Δ = (Prog0, Prop), a set of formulæ 𝜌1,… , 𝜌𝑛, 𝜌 in the set of

𝒢𝒟ℒ(A)-formulæ for Δ, Fm𝒢𝒟ℒ(A)(Δ), 𝑛 ∈ N and a rule of inference
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𝜌1,… , 𝜌𝑛
𝜌 (134)

Its soundness can be stated in various semantics: classically, as presented in [HKT00], and in a multi-

valued setting, as introduced by [MNM16], for a model 𝑀 in the set of 𝒢𝒟ℒ(A)-models over Δ,
Mod𝒢𝒟ℒ(A)(Δ), and a state 𝑤 ∈ 𝑊, as presented in tables 5 and 6.

Satisfied

𝑆1 ( ⋀
𝑖≤𝑛

(𝑀,𝑤 ⊧ 𝜌𝑖)) ⇒ 𝑀,𝑤 ⊧ 𝜌

𝑆2 (( ⋀
𝑖≤𝑛

𝑀,𝑤 ⊧ 𝜌𝑖) = ⊤) ⇒ ((𝑀,𝑤 ⊧ 𝜌) = ⊤)

𝑆3 ⋀
𝑖≤𝑛

(𝑀,𝑤 ⊧ 𝜌𝑖) ≤ 𝑀,𝑤 ⊧ 𝜌

Table 5: Satisfiability

Valid in 𝑀/Globally satisfied

𝑆𝐺1 ( ⋀
𝑖≤𝑛

(∀𝑤∈𝑊(𝑀,𝑤 ⊧ 𝜌𝑖))) ⇒ ∀𝑤∈𝑊(𝑀,𝑤 ⊧ 𝜌)

𝑆𝐺2 ( ⋀
𝑖≤𝑛

( ⋀
𝑤∈𝑊

𝑀,𝑤 ⊧ 𝜌𝑖) = ⊤) ⇒ ( ⋀
𝑤∈𝑊

𝑀,𝑤 ⊧ 𝜌 = ⊤)

𝑆𝐺3 ⋀
𝑖≤𝑛

( ⋀
𝑤∈𝑊

𝑀,𝑤 ⊧ 𝜌𝑖) ≤ ⋀
𝑤∈𝑊

𝑀,𝑤 ⊧ 𝜌

Table 6: Global satisfiability

Semantics 𝑆1 and 𝑆𝐺1 correspond to the classical case [HKT00], in which the formulæ are evaluated

in a Boolean logic. Their difference is explained as follows: a formula 𝜌 is said to be satisfied in a model

𝑀 at 𝑤 iff 𝑀,𝑤 ⊧ 𝜌; and globally satisfied in 𝑀, or alternatively, valid in 𝑀, if 𝑀,𝑤 ⊧ 𝜌 for all states

𝑤 ∈ 𝑊, written 𝑀 ⊧ 𝜌. Semantics 𝑆2 and 𝑆𝐺2 refer to the satisfiability stated in [MNM16]: the logic

formulæ are evaluated in an action lattice, but the soundness of a rule is stated in Boolean terms i.e. iff

they evaluate to ⊤ (representing true). Finally 𝑆3 and 𝑆𝐺3 use the evaluation of the logic formulæ to

express the soundness of the inference rule.

Intuitively, an inference rule is sound in 𝑆3 iff the truth degree of the infimum of the premises is less

that or equal than the truth degree of the conclusion. Soundness in 𝑆𝐺3 is stated by considering the

infimum of the truth degrees of the formula in all states of a model. In particular, the soundness of modus

ponens and necessity can be studied relatively to the semantics presented in tables 5 and 6.

We are mainly concerned, however, in extending semantics 𝑆3 and 𝑆𝐺3 to other application scenarios,

such as Hoare logic. As it is well known [HKT00], the validity of a Hoare triple {𝜌1}𝜋{𝜌2} corresponds,
in PDL, to the satisfiability of the formula 𝜌1 → [𝜋]𝜌2. Transposing such an encoding to 𝒢𝒟ℒ(A), the
value of

𝑀,𝑤 ⊨ 𝜌1 → [𝜋]𝜌2
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for an action lattice A, a model 𝑀 ∈ Mod𝒢𝒟ℒ(A)(Δ) and a state 𝑤 ∈ 𝑊 gives a truth degree for the

same Hoare triple. Intuitively, when the action lattice instantiating the logic is the one of examples 2.2.4,

2.2.6 or 2.2.7, we can interpret such a value as the “degree of correctness” of program 𝜋, i.e. the truth

degree that the program is correct.

In this semantics, the weights associated to the execution of a program and to assertions about the

states of a computation are reflected in the very notion of program correctness, expressed by a truth

value in the logic. Thus, it seems natural that the study of (weighted) soundness of modus ponens and

necessity could be extended to the deductive system of Hoare logic. Moreover, due to the parametric nature

of our framework, the weight obtained for a Hoare triple may be even given in other, more unconventional

contexts besides ‘uncertainty’. For example, by instantiating 𝒢𝒟ℒ(A) with action lattice 2.2.11, instead
of reasoning about the correctness of a program, a Hoare triple {𝜌1}𝜋{𝜌2} may represent the energy

consumed by running𝜋, limited by some sort of energy restrictions before (𝜌1) and after (𝜌2) its execution.

How to interpret those values in a real scenario of program verification, and how such an interpretation can

be used to expand the research about program correctness to unconventional contexts seems a challenging

research topic.

A predicate transformer semantics for weighted programs?

Following a similar approach, a future research path we may pursue is the discussion of 𝑤𝑙𝑝 semantics

in a weighted domain, due to its strict relation with partial correctness in Hoare logic. The general idea is

to define, for an action lattice A, the weighted weakest liberal precondition semantics (wwlp) as a function

𝑤𝑤𝑙𝑝 ∶ Prog × Fm𝒢𝒟ℒ(A) → A𝑊

defined as

𝑤𝑤𝑙𝑝(𝜋, 𝜌)(𝑤) = 𝑤 ⊧ [𝜋]𝜌

The weight of 𝑤 ⊧ [𝜋]𝜌 will be obtained, of course, using the satisfaction relation of 𝒢𝒟ℒ(A), given
in Chapter 2. An adaptation can be naturally made to include variables and assignments. The classic

𝑤𝑙𝑝 semantics is bundled with a set of properties which make it possible to construct valid deductions

of Hoare logic, for standard imperative programming constructs. Analogously to the Boolean case, the

discussion, in the 𝑤𝑤𝑙𝑝 semantics, of the validity of these properties, their interpretation, and relation

with partial correctness in Hoare logic is worth to be studied. A similar approach for generalising predicate

transformer semantics was taken in [CW08]. However, the truth space in which the weights are evaluated

there is restricted to the continuous interval [0, 1], while our approach intends to be, like the path pursued
in this thesis, parametric on a generic mathematical structure, such as an action lattice.

Another related study on predicate transformer semantics in this direction was taken by [MMS96,

MM01b], although oriented to probabilistic programs. The authors generalise pre and post conditions

to probabilistic predicates, i.e. real-valued expressions over a state space. Thus reasoning about the cor-
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rectness of a probabilistic program is given in terms of those (probabilistic) conditions. For example, for a

probabilistic program [MMS96]

(𝑛 ∶= 1) ⊕1
2
(𝑛 ∶= 2) (135)

the weakest-precondition (𝑤𝑝) formulation yields

𝑤𝑝.(𝑛 ∶= 1 ⊕1
2
𝑛 ∶= 2).(𝑛 = 1) = 1

2

where 1
2 is the probability that program (135) establishes 𝑛 = 1. The weighted nature of such a formali-

sation, and the corresponding intuitive interpretation constitute naturally also a reference for the approach

that we want to pursue, even if we target, obviously, a class of programs of a different nature. In our

framework, the value 1
2 could be, for instance, the truth degree with which a program reaches a given

state, or the cost (energy, time) of such an execution.

To sum up, we are interested in discussing generalisations of Hoare logic and predicate transformer

semantics for ℱ1 and ℱ2 programs, and study the implications of their weighted behaviour in these

formalisations and related properties.

A table revisited

We conclude this thesis with the table below, presenting a wrap up of the main formalisms introduced

along the document. We add to Table 2 some algebras and logics we want to explore in future work,

marked with brown-coloured 𝑋 marks.

As previously discussed, a Hoare logic and a predicate transformer semantics is missing for the majority of

the frameworks in the thesis. Following an analogous approach to Section 5.4, we want also to contribute

with a notion of bisimulation and study its modal invariance for Ω(L). Additionally, we are interested

to develop equational and weighted versions of classic CPDL. The former could be compared with proof

calculi for concurrent programs [HMSW11], while the latter may represent an abstraction of structure

Ω(L) introduced in this thesis. Note that, although not presented in this thesis, and thus marked with

brown-coloured X marks in the table, a weighted version of CPDL [Pel87] is documented in [Gom20].
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Prop Eq Rel MRel B W
Hoare Logic (HL) [Hoa69] X X X
Propositional HL (PHL) [Koz00] X X X
Predicate transformer (wlp) [Dij76] X X X X
Propositional Dynamic Logic (PDL) [FL77] X X X
First-order DL [HKT00] X X X
Kleene Algebra with Tests (KAT) [Koz97] X X X
Kleene Algebra with Domain (KAD) [DMS06] X X X

Probabilistic HL [dHdV02] X X X
Probabilistic wlp [MMS96] X X X
Probabilistic PDL [Koz85] X X X
Probabilistic KAT [QWWG08] X X X
Weighted PDL (𝒢𝒟ℒ(A)) [MNM16] X X X
GKAT /I-GKAT [GMB19] X X X
Weighted PHL [GMB17] X X X
Weighted Equational Dynamic Logic (Γ(A)) [GMJB19] X X X
Weighted HL X X X
Weighted wlp X X X
“Weighted” KAD [DS11] X X X

Algebra of binary multirelations [Rew03] X X X
Concurrent PDL (CPDL) [Pel87] X X X
Equational “Multi-flow” DL X X X
“Multi-flow” HL X X X X
“Multi-flow” wlp X X X
Concurrent KAT (CKAT) [JM16] X X X
Concurrent Dynamic Algebra [FS15] X X X

Probabilistic CKA [MRS13] X X X
Algebra of probabilistic multirelations [Tsu12] X X X
Algebra of weighted binary multirelations X X X
Weighted CPDL [Gom20] X X X
Weighted “multi-flow” dynamic logic (Ω(L)) X X X
Weighted “Multi-flow” HL X X X X
Weighted “Multi-flow” wlp X X X

Table 7: Taxonomy of related work, frameworks introduced in this thesis and additional ones we left for the future
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