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Resumo 

Uma estratégia multi-escala baseada em homogeneização computacional é apresentada para a 

análise não linear material de estruturas de alvenaria simples para os regimes estático e 

dinâmico de ações. Duas escalas, meso e macro, são consideradas na análise. O modelo tem a 

capacidade de incorporar potenciais incertezas do sistema estrutural, recorrendo ao método de 

amostragem por hipercubo latino, com o objetivo de desenvolver análises de fragilidade sísmica.  

À mesoescala (nível dos componentes), dois modelos computacionais simples e eficazes de 

homogeneização são apresentados para realizar a caracterização do comportamento de um 

elemento representativo de volume (RVE) da alvenaria. Os meso-modelos utilizam elementos 

finitos (EFs) contínuos de placa e casca (teorias de Kirchhoff-Love e Mindlin-Reissner). Uma 

técnica de homogeneização periódica de primeira ordem com recurso a tensões de Cauchy é 

assumida. As unidades de alvenaria são modeladas com EFs quadriláteros lineares com um 

comportamento elástico. As juntas de argamassa são modeladas com EFs de interface de 

espessura nula com um comportamento inelástico. O domínio plástico das juntas é governado 

por um modelo multi-superfície que consegue reproduzir fratura por tração, esmagamento por 

compressão e deslizamento com atrito. É possível, assim, a previsão de modos de colapso de 

alvenaria designados por stepped, toothed ou de-bonding. 

À macroescala (nível da estrutura), a informação proveniente da caracterização mecânica da 

alvenaria à escala anterior é inserida num modelo discreto de EFs. EFs quadriláteros rígidos 

encontram-se ligados por interfaces, que representam a informação do material fictício 

homogeneizado através de um modelo de plasticidade com dano. Uma representação 

desacoplada entre os modos de deformação no plano e para fora-do-plano é assumida. As 

referidas interfaces reproduzem os regimes de pré- e pós-pico do material, a sua ortotropia, o 

efeito da velocidade de deformação e, dependendo do modelo usado à mesoescala, os efeitos 

tridimensionais de corte. A estratégia é implementada num software avançado de análise 

estrutural e, portanto, ferramentas numéricas poderosas estão disponíveis; como o arc-length, 

linesearch e métodos implícitos e explícitos para resolução do sistema de equações. 

A estratégia numérica é aplicada num conjunto representativo de casos de estudo. Os 

resultados demonstram que esta é: fiável na previsão do comportamento estático e dinâmico 

para fora-do-plano de estruturas de alvenaria; numericamente robusta; atrativa do ponto de 

vista do tempo de processamento, quando comparada às estratégias tradicionais de EFs; e 

apropriada para o estudo da fragilidade sísmica de estruturas de alvenaria simples. 
 

Palavras-chave: Alvenaria, fora-do-plano, hipercubo latino, Homogeneização, multi-escala. 
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Abstract 

A two-step numerical strategy using homogenization is proposed for the nonlinear analysis of 

Unreinforced masonry (URM) structures for both static and dynamic regimes. It comprises two-

scales of analysis, i.e. the meso and the macro. It is suitable to account with the structural system 

uncertainties’ by making use of a Latin Hypercube Sampling method aiming the development of a 

seismic fragility assessment study. 

At a meso-scale (level of components) two simple and reliable homogenized models are presented 

for the characterization of the masonry behavior via a representative volume element (RVE) defined 

at the structural level. A finite element (FE) meso-modelling approach within plate formulation 

assumptions (Kirchhoff-Love and Mindlin-Reissner theory) using Cauchy continuum hypotheses 

and a first-order periodic homogenization technique is adopted. Brick units are considered elastic 

and modelled through quadrilateral FEs with linear interpolation. Mortar joints are assumed to be 

inelastic and reduced to zero-thickness interface FEs. A multi-surface plasticity model governs the 

strength envelope of mortar joints. It can reproduce fracture, frictional slip and crushing along the 

interface elements, hence making possible the prediction of a stepped, toothed or de-bonding failure 

pattern of masonry. 

At a macro-scale (structural level), the material and mechanical characterization of the masonry 

deduced from the mesoscopic model is employed via a discrete finite element strategy. On 

homogenized interfaces, between adjoining quadrilateral rigid FEs, a model governed by uncoupled 

in- and out-of-plane behaviors with damage and plasticity is adopted. Such homogenized interfaces 

can represent the material pre- and post-peak regimes, the material orthotropy, the material load 

rate-dependency, and depending on the resulting data from the used meso-model account by three-

dimensional shear effects. It is implemented in an advanced structural analysis software and, 

therefore, it is possible to use powerful built-in features such as the arc-length method, line-search 

algorithm and implicit or explicit solver schemes within a wide range of applications. 

The application of the numerical framework covers a representative repertoire of case studies. 

These demonstrated that the approach can reproduce with good accuracy the out-of-plane static 

and dynamic behavior of masonry structures. It proved to be robust, computationally attractive 

when compared with traditional FE strategies, and suitable to be used in seismic fragility studies 

of URM structures. 

 

Keywords: Homogenization, Latin Hypercube Sampling, Masonry, multi-scale, out-of-plane. 
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Chapter 1 
1 Introduction 

1.1 Unreinforced masonry (URM) structures 

Masonry is an ancient but still widely used material (M. Tomaževič 1999). Its usage has been 

mainly fostered by the simplicity of this type of construction, where masonry units are laid 

together with or without the use of bonding mortar. Features such as its durability, aesthetics, 

low maintenance, adaptability, good sound and thermal insulation properties (Hendry 2001) 

are also important allowing masonry to continuously find application. 

Unreinforced masonry (URM) buildings are a relevant part of the worldwide building stock. 

These include stone, brick, adobe or earthen masonry structures and represent in countries such 

as Mexico, Pakistan and Peru, more than 75% over its total buildings’ inventory. In other 

countries as Iran, Australia, Indonesia or Italy, the relative percentage is higher than 50% 

(Frankie et al. 2013). A similar trend is found for the case of Portugal, with a value ranging 

the 50% according to the Portuguese Census of Population and housing. Note that the latter is 

expectable to be higher in urban historical centers (M. Tomaževič 1999), as stated by Cóias e 

Silva (2001) for Lisbon (the capital of Portugal). By being spread in urban historical centers, 

URM structures can have an important economical and societal role, being still used for 

commercial, services or housing purposes. Besides its functional character, these buildings tend 

to aggregate an intrinsic historic and cultural value (M. Tomaževič 2010) and hence 

symbolically be part of a societal identity. 

The widespread of most of this built heritage has been achieved based on empirical 

knowledge passed by generation to generation and, therefore, URM structural behavior was 

often ill-understood. These constructions have been typically made to withstand vertical loads 

only being rather vulnerable to horizontal load actions. To carry out maintenance and 

strengthening measures over this type of buildings is of prime importance, especially evident in 

seismic prone areas where the need to reduce the probability of a potential collapse and 

associated consequences is a priority. 

1.2 Seismic vulnerability of URM structures 

Natural events had caused a considerable number of disasters in the last decades. The World 

Bank (IEG 2007) reported that the number of disasters increased, between 1975 and 2005, from 

an approximated number of 100 to more than 400 events. 



Chapter 1 

2 

In this scope, earthquakes are one of the most serious threats and challenges to humankind, 

since these represent almost 60% of all the natural disasters fatalities according with the 

International Disaster Database (2009). If the current trend continues it is predictable that 

global fatalities caused by earthquakes will augment, at the current century, to a value of 

2.57±0.64 million (Holzer and Savage 2013). These inevitably leads to economic impacts (Noy 

2009) but mainly to human losses. The World Bank (IEG 2007) have also identified the rise of 

population as a key issue. The phenomena of urbanization may endanger the situation because 

urban areas increase their population by a rate of 67 million people per year, being expected 

that 60% of the estimated global population will live in urban areas by the end of 2030 

(Pickett et al. 2011); the consequence is the creation of the so-called ‘megacities’, which are 

prone to higher casualties. These issues had been addressed in the last decades by Degg (1992) 

and Parker and Tapsell (1995). 

The report released in 2014 by the United Nations (U.N. 2014) strongly connects human 

development with both the populations’ vulnerability and buildings’ resilience to the occurrence 

of natural and human-induced disasters. This approach explicitly advocates the priority role of 

a vulnerability assessment in the risk mitigation. As stated by Calvi et al. (2006), the prediction 

of both the economic impact and seismic risk can be, for a given region, tackled by an 

earthquake loss model. Therefore, making a logical extension, a vulnerability study towards a 

buildings' capacity assessment is fundamental for an earthquake loss model and is, as important, 

as the model itself. Vulnerability studies play a key role for authorities, decision makers, 

stakeholders (e.g. insurance companies) and to the community itself. On one hand, these studies 

could minimize future economic impacts and reduce human losses; and, on the other hand, 

these studies could help to prevent the collapse of cultural heritage buildings.  

Existing URM buildings are known to be vulnerable to collapse when subjected to a seismic 

action. These generally have a low strength/mass ratio which, in cases where a dynamic 

horizontal load is applied, makes hard to withstand the inertial forces due to the reduced 

strength. The poor out-of-plane capacity, which is directly associated with the low tensile 

strength of URM, can be a limitation of these construction type. Other reasons can explain the 

vulnerability as: (i) the lack of capacity to dissipate the kinetic energy transmitted by the 

earthquake; (ii) the lack of proper connections between structural elements which hinders the 

so-called box-behavior (Bruneau 1994); (iii) the flexibility of the floors; and (iv) the 

deterioration of materials over time (Cardoso et al. 2005). The above reasons explain why URM 

structures are especially prone to experience out-of-plane failure modes 

(Griffith and Magenes 2003) as several post-earthquakes damage surveys by Kaplan et al. 

(2010); D’Ayala and Paganoni (2010); Dizhur et al. (2011); Silva (2013); Sorrentino et al. (2013) 
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have reported. The excessive earthquake vulnerability can be controlled through strengthening 

actions whose viability and adequacy can be assessed, at least in theory, if a proper structural 

assessment is carried out beforehand.  

1.3 Research scope and focus 

The former section addressed the importance of carrying out urgent measures in the URM built 

stock. Yet, intervening in these constructions is a complex process, as stated by 

Lourenço (2002), due to the lack of structural information and due to their high importance. A 

scientifically based process is less susceptible to inadequate actions and thus, in order to avoid 

damaging measures, the adopted methodology should be incremental, including studies such as 

an historical literature review, inspections, monitoring actions, and structural analysis 

(Croci 1998; Binda et al. 2000). In this way, an intervention should be carried out after a careful 

diagnosis and evaluation of the safety of the structure in its present state, as defined by the 

ICOMOS recommendations (2005), where the numerical modelling is a valuable contribution. 

In the scope of the structural analysis of the URM structures behavior, the prevailing design 

rules or the analytical approaches still are, within engineering practice, the most useful. These 

pose, however, several well-identified limitations that may lead to potential unrealistic or 

conservative results (Theodossopoulos and Sinha 2013). Other simplified procedures, as the 

story-mechanism (M. Tomaževič 1999) and the equivalent frame-based models (Lagomarsino 

et al. 2013; Quagliarini et al. 2017) can also be found in the literature but hardly consider the 

out-of-plane failure modes, which are disregarded in most study cases. More suitable and yet 

conceptually simple procedures as the rigid-body approaches (Konstantinidis and Makris 2007; 

D’Ayala and Shi 2011) or the well disseminated kinematic methods (Griffith and Magenes 2003; 

D’Ayala and Speranza 2003; Calvi et al. 2006) are useful to provide closed form solutions under 

dynamic excitations but are very complex for walls subjected to two-way bending. 

More advanced computational strategies have been developed in the last twenty years. 

Conversely to concrete and steel structures, the design guidelines for masonry did not go always 

hand in hand with the application of innovative methods. Still, it is nowadays well accepted 

that sophisticated strategies, mainly based on the finite element (FE) method, constitute 

important tools (Lourenço 2002) and are the ones which deserve more attention from the 

scientific community, where three main modelling strategies can be put together, namely: (i) the 

direct simulation or the meso-modelling; (ii) the macro-modelling simulation; and (iii) the 

multi-scale computational simulation. 
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In the meso-modelling approach, both masonry components (units and mortar joints) are 

explicitly represented. These are certainly capable of well reproducing both in- and out-of-plane 

orthotropic nonlinear behavior of masonry but are characterized by long processing times, being 

only recommended for limited size structural problems (Lotfi and Shing 1994; Giambanco et al. 

2001; Lemos 2007; Sejnoha et al. 2008; Adam et al. 2010; Macorini and Izzuddin 2011, 2013; 

Sarhosis et al. 2014). The macro-modelling strategies smear out the heterogeneous assemblage 

of mortar and bricks into a fictitious homogeneous anisotropic material. The use of closed-form 

laws to represent the complex phenomenological behavior and damage of the masonry may be 

cumbersome and require a calibration step (usually achieved by thorough experimental 

campaigns). However, this approach allows studying large-scale structures without the 

drawbacks exhibited by meso-modelling (Dhanasekar et al. 1985; Lourenço et al. 1997; Berto 

et al. 2002; Roca et al. 2013). 

Multi-scale FE (or FE2) methods are in-between the latter two FE modelling schemes. The 

framework is being used to investigate the response of composites with different natures, see 

Kouznetsova et al. (2001) and Spahn et al. (2014), but is also useful for the study of masonry 

structures. It typically relies on a meso and macro transition of information and is, therefore, 

designated as two-scale or FE2 approaches. Full continuum based FE2 approaches result in a 

good compromise between solution accuracy and computational cost. Nevertheless, these 

methods still constitute a challenge if one desires to account for the material non-linearity 

(Geers et al. 2010; Otero et al. 2015), hence are seldom used for dynamic purposes. 

The last scientific community effort over the set of advanced FE numerical approaches 

highlights the gap which remains unsolved in multi-scale strategies. Such strategies constitute 

a promising alternative between the meso- and macro- FE strategies, but the classical FE2 relies 

on a continuum description of the material at both scales, which can be hardly applied in the 

dynamic assessment study of URM structures due to the involved computational costs. A FE2 

strategy which can reproduce the orthotropy and full non-linearity of the masonry is a valuable 

tool, especially when facing a low computational demand. Such strategy can be used for the 

out-of-plane assessment of masonry walls due to horizontal actions, such as earthquake loading 

and, furthermore, to carry seismic vulnerability assessment by developing vulnerability or 

fragility functions on a URM case study (or building typology). 

1.4 Objectives 

This dissertation addresses the analysis of URM structures using a two-scale FE2 strategy based 

on homogenization principles. The main scope is the study of the quasi-static and dynamic 



Chapter 1 

5 

mechanical behavior and failure of masonry. A focus on the out-of-plane behavior is especially 

stressed, since less research has been conducted when compared to the in-plane case. The 

methodology is developed to permit a broader application, as the use within the framework of 

a seismic vulnerability assessment of URM structures.  

The key reason for developing such strategy originates from the computational burden of 

the existing continuous FE2 methods. It is known that the use of advanced computational tools 

is of unequivocal importance and can be ensured, in the scope of conventional design or in 

large-scale structures assessment, only if time and costs are maintained as relatively low. 

Therefore, the objectives of this study are: 

 To discuss the existing methodologies for the structural analysis of masonry structures 

and prove the adequacy of two-scale strategies; 

 To develop a strategy at a meso-scale, within a homogenization scheme, able to account 

for the masonry orthotropy and softening, and to be able to reproduce the tensile, shear 

and compression failure modes; 

 To develop a simplified discrete macro-model, based on a Rigid Body Spring Mass 

(RBSM) model, able to receive the homogenization material data obtained at a foregoing 

scale; 

 To incorporate both levels within a simplified FE2 approach and conduct its validation 

using experimental and numerical data available in the literature; 

 To apply the simplified FE2 approach to undertake a probabilistic-based study aiming at 

the derivation of seismic fragility functions, which are of prime importance in earthquake 

loss models. 

It is noteworthy to address that the methodology is implemented within a commercial FE 

software. The goal is to allow the dissemination of its use by academia and professional peers. 

The versatility of the strategy may be also pointed out as, depending on the model used in the 

homogenization process (at a meso-level), allows different materials to be studied apart from 

masonry - following the trend of the homogenized-based methods application, i.e. oriented for 

composite materials in general. 

1.5 Thesis outline 

The thesis introduces a numerical two-scale approach for the prediction of the masonry 

response, its validation and application within a seismic fragility assessment of an URM 

structure. These tasks are presented throughout the seven chapters of the document, as 

represented by the flowchart of Figure 1.1. The structure of each chapter is alike, except for 
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the Chapters 1 and 7, and includes an introductory note preceding the body of the text and 

closes with a brief summary. The content of each chapter is described next: 

In ‘Chapter 1 - Introduction’, the motivation, brief background and objectives of the research 

work are presented. The outline of the thesis is also addressed. 

In ‘Chapter 2 - ‘Masonry modelling and vulnerability assessment’, a literature review is 

conducted aiming to evaluate three topics. First, the scales of interest when analyzing the 

mechanical behavior of masonry structures. Second, the main current numerical strategies 

developed to predict the structural response of masonry, which undergoes from the analytical 

to the more advanced ones, with a focus on the out-of-plane behavior. Third, the existing 

numerical frameworks to assess the seismic fragility and vulnerability of URM structures. 

In Chapter 3, ‘Multi-scale analysis of masonry: meso-scale level’, three numerical strategies 

based on homogenization concepts are presented to characterize, at a meso-scale, the in-plane 

and out-of-plane behavior of running-bond and English-bond masonries. The models differ on 

both complexity and computational time costs. A meso-scale validation on its accuracy is 

performed accounting with the masonry elastic properties, the masonry orthotropic features for 

one- and two-way bending, and the effect of potential pre-compression states. At last, the 

models are applied to study an English-bond masonry aiming to derive its homogenized out-of-

plane quantities but, as well, to conclude on the differences between the proposed meso-scale 

approaches.  

In Chapter 4, ‘Multi-scale analysis of masonry: macro-scale level’, a discrete FE-based 

strategy whose formulation relies on a rigid-body-spring-mass model is presented at a macro-

scale. It is developed on an advanced FE software and able to read homogenized in-plane 

(stress-strain curves) and out-of-plane (moment-curvature curves) quantities aiming to predict 

the nonlinear static and dynamic behaviors of masonry structures. Its validation is conducted 

at both linear and nonlinear ranges and the main computational features stated. 

In Chapter 5, ‘Multi-scale out-of-plane static and dynamic analysis of masonry: applications’, 

the proposed two-scale strategy is applied for the study of the nonlinear behavior of masonry 

structures. A set of case studies is selected to assess the capability of the strategy within both 

static and dynamic (seismic load and impact load) ranges. The obtained results are compared 

with existing experimental and numerical data in terms of predicted displacements and damage 

maps. A mesh dependency study is also conducted and the computational time costs evaluated. 

In Chapter 6, ‘Seismic fragility assessment of an URM structure’, the proposed deterministic 

two-scale strategy is extended to account with the probabilistic (viz. uncertainty) nature of 
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masonry. A full parametrization of the material, mechanical and geometrical variables is 

ensured and the resulting stochastic model integrated within a performance-based methodology. 

The presented framework is applied to assess the seismic fragility of a masonry structure 

through fragility functions for different performance limit states. 

In Chapter 7, ‘General summary and conclusions’, the general summary, main conclusions 

and recommendations of the research study are referred together with the presentation of 

further developments and works. 

 
Figure 1.1 – Flowchart of the thesis outline. 
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Chapter 2 
2 Masonry modelling and vulnerability assessment 

 

2.1 Scales of interest for masonry structures 

Natural or manufactured heterogeneous materials with a random or periodic arrangement, such 

as composites made of material matrices with embedded inclusions (e.g. metal alloys, polymeric, 

ceramic or porous composites) or granular materials (e.g. masonry or concrete) may have several 

analysis’ scales of interest (Mosby and Matouš 2015). The physical behavior of these materials 

is hard to predict, since it is highly dependent on the volume, shape and spatial distribution of 

the heterogeneities. In fact, since the pioneer investigation by Griffith (1921) where the 

molecular role on the material failure and the importance of the surface energy on the material 

strength have been addressed, topics such as material fracture and strength still constitute 

standing research issues due to the inherent complexity. Nowadays, the breakage of the 

intermolecular links (van-der-Waals forces) is widely accepted to explain the occurrence of the 

material failure and the following formation of a representative damage zone, see Berry (1961), 

DelRio et al. (2005) and Novoselov et al. (2016), generally defined through a crack-band or 

crack-characteristic length, hereafter referred as lcrack. 

On one hand, the knowledge of the lcrack localization is, for a given material and for a given 

problem, important because it defines the required scale-level of analysis to properly understand 

the phenomenon. Experimentally measuring such lcrack is hard as it demands sophisticated 

equipment and, therefore, theoretical approaches are gaining an increasing relevance. The 

theoretical study by Volokh is a good case, where by relating the volumetric and surface fracture 

energies, the characteristic failure crack length has been obtained, e.g. lcrack ~ 10 μm for steel 

(Volokh 2012), lcrack ~ 102 μm for natural rubber (Volokh 2011) and lcrack ~ 104 μm for concrete 

(Volokh 2013). On the other hand, the material modelling at these scales is a thorough process 

and may be unfeasible from a structural engineering standpoint. In this scope and particularly 

for the masonry field, it is recognizable that two scale levels are of interest when analyzing its 

structural behavior (Lourenço 2009; Roca et al. 2010): the macro- and the meso-scale (see 

Figure 2.1). Micro-scale modelling, with an order of millimeter, is generally accounted only for 

non-structural problems (Geers et al. 2010), such as transport mechanism (thermal or moisture) 

or chemical action cases (Wu et al. 2016).  
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Figure 2.1 – Representation of the three scales considered for the study of the masonry: macro-scale, 

meso-scale and micro-scale. 

The finer scale adopted in the literature for the structural analysis of masonry is designated 

hereafter as meso-scale. Mesoscopic1 models discretize the media at a components level, in the 

order of centimeters, and seem to offer an accurate prediction of the masonry behavior 

(Lourenço 2002). Brick units and mortar joints are explicitly modelled being the stress and 

strain quantities representative of the analysis scale. This allows to easily embody masonry 

heterogeneity (anisotropy feature) and better track both the damage evolution and the 

damaged-induced anisotropy effect. As stated before, mesoscopic models demand a larger set of 

material parameters and are suitable only for small structures. 

The coarser scale used for the study of the masonry behavior is designated as macro-level 

(order of meters), where the geometrical features of the structure are accounted. The study of 

structures with larger dimensions may allow the representation of the material using a broader 

domain that, in some cases, can be enough to catch the phenomenological features of interest. 

The underlying assumption is that the interaction between brick units and mortar joints can 

be neglected for the global structural behavior, and hence are valid if the difference between 

the macro- and meso-scales is sufficiently large; it is usually referred that a ratio smaller than 

10 to 100 is questionable for periodic masonry (Mistler et al. 2007). The heterogenous masonry 

media is then replaced by an equivalent homogeneous material where stress and strain variables 

are taken as average quantities. This requires complex phenomenological formulations to 

reproduce material orthotropy and follow the damage onset and propagation. In this endeavor, 

the FE-based macroscopic strategies are the most spread in the literature where two frameworks 

                                           
1 From a structural standpoint, only two-scales are of interest in the study of the masonry behavior. Thus, 
some authors (see Lourenço (2002)) may use the designation of macroscopic and microscopic models. To avoid 
the readers’ confusion, it is herein stressed that microscopic and mesoscopic models are, in the field of masonry 
structural analysis, equivalent. 
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have arisen to catch failure, i.e. using a discontinuity where cracks are explicitly modelled using 

the so-called cohesive zones (Barenblatt 1959; Xu and Needleman 1994; Belytschko et al. 2001) 

or in a continuous way using smeared-cracking models (De Borst 1987; Lourenço et al. 1997; 

de Borst 2002). The damage representation may lack detail at the crack level, but it is known 

that these numerical models are still adequate for the study of concrete, concrete-like and 

masonry materials at a structural level. The riddle is thus the definition of the most suitable 

modelling approach, according to the dimension and purpose of the study, bearing in mind that 

a trade-off between accuracy and practicability (also in terms of computational time) is present. 

2.2 Modelling strategies: out-of-plane analysis of masonry 

Several modelling strategies exist and are eligible to be used in the analysis of URM structures. 

A critical review, with a closer look on the out-of-plane (OOP) behavior, is presented next. 

Given the different theoretical backgrounds and varying complexity levels, the modelling 

approaches are grouped in two sections, namely analytical and advanced methods. The main 

advantages and drawbacks of each approach are addressed to sustain its capabilities and enforce 

the potential scope of application. Acknowledging the advantages and disadvantages of the 

modelling techniques available in the literature is of utmost importance. If the sentence by 

Box and Norman (1987) is extended for the problem of URM structures analysis, i.e. ‘essentially 

all models are wrong, but some are useful’, the latter is easily postulated. This highlights 

potential existing gaps aiming to develop innovative research, but it also raises awareness of 

practitioners over the most adequate strategy for the problem at hand. 

2.2.1 Analytical methods 

Analytical models are divided according to its underlying formulation, i.e. force-based approach 

(FBA) or displacement-based approach (DBA), as in Ferreira et al. (2014) and 

Sorrentino et al. (2017). Throughout this section, a general overview on the analytical models, 

recalled as graphical, limit analysis-based (static and kinematic theorems), flexural or rigid 

body methods, is addressed. 

Force-Based Approach (FBA) 

The first studies on the equilibrium concept by Stevin (1586) in the 16th century, where the 

parallelogram rule has been described graphically through force vectors (see Figure 2.2), 

fostered the start of equilibrium analysis and the advent of rational force-based approaches 

(FBA). Robert Hooke published in 1675 the principle of the inverted catenary, followed by the 
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development of the graphical catenary-based methods by Rankine in the 18th century and 

Moseley in 1833 (see Benvenuto (1991)). 

Graphical approaches have been largely applied for the stability verification of vaults, arches 

and buttresses. Software based on such formulation has been developed, e.g. by 

Greenwold et al. (2003) and later enhanced by Block et al. (2006). Yet, by disregarding the 

possibility of local failures to occur, as local crushing, cracking and sliding effects, these tend 

to overestimate the structural capacity and may lead to non-conservative results. 

Graphical methods appear to have become outdated, since more accurate strategies are being 

developed – intrinsic consequence of the progressive improvement and capacity of computer 

technology (Lourenço 2002). Also, the OOP behavior of URM structures has been somehow 

disregarded (Lourenço 2008), even if its importance was firstly documented two centuries ago 

by Rondelet (1802). This author recalled the interest of studying the behavior of masonry walls 

when subjected to horizontal loads, underlying the importance of the stability role rather than 

strength. FBA have thus been developed through the introduction of the limit analysis theory, 

viz. static methods and kinematic methods. Limit analysis based on a rigid-body behavior allows 

the determination of the collapse load factor which activates a given failure mechanism. An 

FBA is within this theoretical frame of reference of application, meaning that the latter load 

factor can be achieved using the virtual work principle. 

 

 

 

 

 

 
(a) (b) 

Figure 2.2 – Drawings by: (a) Stevin (1586) concerning the force equilibrium of hanging weights on 

a string in 1586; (b) Varignon (1725) concerning the analysis of a funicular shape in 1725. 

Drucker et al. (1952) were among the first authors proposing and developing the limit 

analysis theory in the 1950’s for standard elastic-perfectly plastic three-dimensional continua. 

Afterwards, the relation between limit analysis and thrust lines has been introduced by 

Kooharian (1952). The latter led to the field of static approaches based on thrust lines and to 

limit state theories for masonry structures analysis (Heyman 1966). Yet, the use of thrust-line 

methods for the analysis of historical construction is difficult to apply; in opposition, the works 

of Heyman (1966) on kinematic limit analysis have been largely applied. This author accounted 
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for some simplifications, such as: the non-tensile masonry strength, infinite compressive 

strength and non-occurrence of sliding between elements.  

After Heyman, other authors presented FBAs for the analysis of failure mechanisms. 

Giuffrè (1990) introduced the concept of analyzing each possible failure mechanism for historic 

masonry structures according with the mechanism features, i.e. geometry and boundary 

conditions. The lack of proper connections between the different structural parts of an existing 

URM building promote the use of such assumptions. The related drawback is its individual 

character, which means that an analytical formulation must be derived for each possible failure 

mechanism and for the associated loading and geometric conditions. Still, a limit analysis based 

formulation, where sub-structures are defined as macro-elements, has been extended by 

Giuffrè and Carocci (1993) for the seismic vulnerability study of masonry buildings. Inspired 

by such contribution, several authors have extended its application and developed ad-hoc 

expressions for other different OOP failure cases. For instance, Hobbs et al. (1994) analyzed 

the OOP failure of masonry walls subjected to a point load (case of an impact); and 

Felice and Giannini (2001) accounted for the existence of transversal walls’ connections to 

study the OOP seismic vulnerability of URM walls. 

A well-known and detailed work has been presented by D’Ayala and Speranza (2003). A set 

of twelve typical collapse-failure mechanisms for existing or vernacular URM buildings, see 

Figure 2.3, have been presented.  

 

Figure 2.3 – Kinematic out-of-plane failure mechanisms collected for URM buildings (adapted from 

by D’Ayala and Speranza (2002)). 

For each failure, a simple algebraic formula is given to obtain the limit horizontal load 

factor, i.e. the horizontal force that corresponds to the equilibrium limit of the geometric 

configuration. The analytical model accounts for connections, loading and restraint effect of 

horizontal structures (as the existence of ties or ring beams). It is also relevant to note the 

works by Casapulla (2008) and Casapulla et al. (2014), in which the work of 
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D’Ayala and Speranza (2003) has been considered but accounting with the friction effect 

(Coulomb friction). 

Likewise, Restrepo-Vélez (2004) presented an analytical mechanics-based procedure for the 

seismic risk assessment of URM structures at a territorial scale following the works from 

D’Ayala and Speranza (2003). New analytical equations have been derived, through 

experimental data of dry-stone specimens, to calculate the collapse load multiplier of OOP 

mechanisms. The considered mechanisms are more complex than the preceding study and, at 

least for this case, the authors concluded that friction has a negligible role. A relatively recent 

and promising work has been presented by Milani and Tralli (2011) within an upper-bound 

theory. Under homogenization concepts, considering full nonlinearity on mortar joints and an 

associated flow rule, the behavior of two-way bending masonry walls has been studied. The 

authors were able to target with a good approximation both the experimental structural 

capacity and softening behavior. 

The OOP study of URM structures through a set of homogeneous macro-elements is, from 

a computational point of view, very attractive. This strategy is very simple and can replace 

more complex numerical analysis. Several computational tools are being developed for this 

purpose. For instance, the software Block by Orduña (2004) (see Figure 2.4) where bi- and    

tri-dimensional limit analysis can be performed in a CAD-oriented environment. Its reliability 

is, however, only assured in the range of small displacements and rotations. In general, 

kinematic approaches are very practical and effective requiring the information of very few 

material parameters, which is important in the case of historical masonry structures due to the 

difficulty of their determination (Orduña 2003). 

 

Figure 2.4 – Block software applied for the analysis of the transversal failure mechanisms of an 

URM Chapel (adapted from Orduña and Preciado (2008)). 

Models based on the rocking of monolithic walls, i.e. macro-block approaches, can allow good 

estimations of the collapse load factor, as seen in Orduña and Lourenço (2005), 

Gilbert et al. (2006), and de Felice (2011). Still, the main drawbacks of these strategies are 
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threefold: (i) need to know the possible collapse mechanisms beforehand, because failure 

interfaces have to be defined; (ii) an expert-based decision is required to place numerical 

interfaces, since these may be properly aligned to represent potential and representative failure 

mechanisms; and (iii) a non-conservative solution may be found once the failures modes are 

incorrectly defined. 

Displacement-based Approach (DBA) 

Although force-based approaches (FBA) are often used for the analysis of URM structures, as 

these are naturally associated to have a low ductility degree, a displacement-based approach 

(DBA) may be a better choice in a seismic study context. On one hand, a DBA is more 

representative in the OOP study of traditional masonry elements, because such behavior is 

more related to velocity (energy-based) or displacement demand, rather than acceleration (i.e. 

force-based). It is also known that the maximum obtained displacements are a key feature in 

the overall structural stability (Abrams et al. 1996), so a DBA is also more suitable for ultimate 

limit cases. On the other hand, DBA approaches are generally associated with a flexural or 

rigid-body motion, easily handled by a single- and multi-degree-of-freedom (hereafter SDOF 

and MDOF, respectively) system. The extension to the dynamic field is paramount, since static 

approaches preclude important response phenomena. URM structures can usually resist forces 

higher than their quasi-static capacity, i.e. the concept of dynamic stability applies 

(Bruneau 1994; Doherty et al. 2002). 

Doherty et al. (2002) presented a simplified linearized DBA, where a tri-linear force-

displacement relationship to characterize the OOP behavior of masonry walls has been defined, 

see Figure 2.5a. The authors used the so-called ‘substitute structure’ methodology introduced 

by Shibata and Sozen (1976), which allows to simplify the problem of representing nonlinear 

systems in a DBA framework. The effective secant stiffness for the URM system is obtained as 

illustrated in Figure 2.5b, through the defined limit displacements relationship. The 

displacement parameters values’ ∆φ, ∆ϵ, ∆ϯ (see Figure 2.5) are associated with the material 

properties and mortar joints degradation (Doherty et al. 2002). These were obtained after an 

experimental campaign of fourteen simply supported walls, relating each limit displacement 

∆φ, ∆ϵ, ∆ϯas ‘new’, ‘moderate’ or ‘severely’ degraded state, respectively (Doherty et al. 2002). 

Griffith and Magenes (2003) performed several analyses using the same trilinear force-

displacement relationship approach and made important remarks. The lateral static strength 

and ultimate displacement of an URM wall out-of-plane loaded could be idealized as a SDOF 

system and are mainly dependent on its geometry, boundary conditions and pre-compression 



Chapter 2 

16 

state. Conversely, the initial stiffness and compressive strength of masonry have a lower relative 

importance. More recently, Derakhshan et al. (2011) performed a sensitivity study upon the 

procedure from Doherty et al. (2002). The results showed that the latter model overestimates 

both the wall instability displacement and lateral capacity. This approach is still a good 

alternative to the quasi-static force-based procedures, since it is a straightforward method able 

to predict the dynamic behavior of URM walls. However, as referred by Doherty et al. (2002), 

the determination of the limit states displacement is highly subjective and should rely on an 

extensive experimental campaign which can be a major drawback. 

 

(a) (b) 

Figure 2.5 – Description defined by Doherty et al. (2002) of: (a) Simplified tri-linear force vs. 

displacement curve; (b) Effective secant stiffness Ks-eff definition for semi-rigid walls. 

Lagomarsino (2014) proposed a new procedure concerning the seismic rocking of masonry 

structures. The results from rigorous and approximate procedures have been compared. The 

former models account with the nonlinear dynamic response of rigid blocks and the latter 

models may be adopted in more complex study cases. Hence, an extensive range of masonry 

structures was covered, between rocky structures (archaeological remains, obelisks, columns, 

trilithons), arch-piers systems (e.g. triumphal arches, belfries), out-of-plane mechanisms of walls 

(standing out walls, façades in buildings or churches etc.) or artistic assets prone to overturn 

(pinnacles, statues etc.). The performance assessment by Lagomarsino (2014) upon this set of 

masonry structures was accomplish through a DBA following an incremental limit analysis. The 

incremental limit analysis allowed to obtain the capacity curve for several configurations of the 

model, allowing to consider the effect of geometric nonlinearity. Also, four levels of damage 

have been defined. 

A common approach to study the masonry OOP behavior of walls is through a DBA using 

rigid body motion models, since masonry structures tend to behave as rigid parts subject to 

rocking. Based on such experimental evidence, SDOF models dealing with the free rocking 

motion of monolithic walls have been proposed in the recent past, following the pioneering idea 

by Housner (1963), see Figure 2.6a. Housner (1963) presented the behavior of a rigid block 
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under a constant horizontal acceleration, under a single sine pulse and under an earthquake 

type excitation. Several conclusions were put forth, as the existence of a scale effect and loading 

type influence. The former explains why geometrically larger blocks are more stable than smaller 

ones with the same geometrical ratio, due to the higher proportion of energy that is dissipated 

on impact. The author addressed, through observation, that a slender block is more stable 

under a random earthquake excitation than under a constant acceleration excitation; and that 

successive smaller pulses cause more damage than a larger one. These conclusions are somehow 

related with the concept of dynamic stability. 

An important precursor study was Yim et al. (1980). The authors developed a computer 

program to describe the nonlinear motion of a rigid block on a base under both horizontal and 

vertical ground motions. Yim et al. (1980) stressed that the rocking response is quite sensitive 

to the rigid body size, slenderness ratio and to the ground motion features. Also, the block 

probability of exceeding a response level increases with its slenderness ratio or ground motion 

intensity and when its size decreases. A computer program with the same purpose was also 

developed by Ishiyama (1982), which noted that the rigid block motion is greatly influenced by 

the normal and tangent restitution coefficients. Makris and Konstantinidis (2003) compared 

the response of a SDOF oscillator (regular pendulum) and the rocking motion of a slender rigid 

body (inverted pendulum), see Figure 2.6b. 

 

(a) (b) 

Figure 2.6 – Description of: (a) Rigid block by Housner (1963); (b) Comparison between an 

oscillatory system and a slender rigid block response by Makris and Konstantinidis (2003). 

The authors stated that the above systems are independent and different; highlighting that 

one should not be used to study the other. Additionally, the authors proposed a rocking 

spectrum to be used along with the response spectrum to be able to draw conclusions about 

the kinematic features of the ground motion and their effect on the response of the slender rigid 

block. Other important studies regarding the SDOF motion of rigid blocks in a two-dimensional 

Cartesian system can be named, for instance Hogan (1989), Makris and Konstantinidis (2003), 
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Costa et al. (2013), and Konstantinidis and Makris (2007) or Di Egidio et al. (2014) that tried 

to extend the concepts to a three-dimensional system. The studies from Sorrentino et al. (2008) 

and Shawa et al. (2012) are also noteworthy. These address the problem of real URM façades 

as one-sided rocking motion systems. The dynamic rocking model of the former is 

noteworthy, given the influence of transversal walls for geometrical imperfections, i.e. the 

potential out-of-plumb of the wall allows modelling the system in an asymmetric manner. In 

both studies, restitution coefficients have been experimentally obtained.  

A deep investigation of the OOP behavior of URM structures by means of rigid-body based 

strategies within a multi-degree of freedom (MDOF) system is still lacking. The pioneer work 

by Psycharis (1990) analyzed the dynamic response of two stacked rigid blocks, in which both 

the blocks sliding and the uplift (rigid floor) are neglected. Psycharis (1990) outlined four 

possible patterns of response and impact to characterize the rocking motion of the system under 

vertical and horizontal ground motion, assuming a conservation of the angular momentum. 

Nonetheless, the approach demonstrated high complexity when assessing the rocking response, 

requiring the definition of equations of motions and energy dissipation for every possible mode. 

Based on this work, Spanos et al. (2001) extended the formulation to a more generic problem. 

Following the non-sliding and rigid foundation assumptions, the authors derived the nonlinear 

equations for each response pattern configuration. A computation tool has been developed to 

define the system behavior under an arbitrary base excitation. 

D’Ayala and Shi (2011) developed an analytical approach to represent the OOP behavior of 

masonry walls through a multiple rigid body system. Three different failure patterns, based on 

different relative rotations between two stacked rigid blocks, have been analyzed whose 

nonlinear equations of motion have been programmed and solved using two commercial 

software’s. An extensive experimental campaign data ensures the validation of the model, in 

terms of peak displacements, frequency and energy. Gabellieri et al. (2013) explored the effect 

of flexible diaphragm in the dynamic behavior of the external walls of URM historic buildings 

subjected to one-way bending. The walls were modelled as two rigid blocks within a 2DOF 

system. The main conclusion found was that the diaphragm stiffness has a strong effect on the 

displacement demand of the walls. It is however stated that defining a general analytical 

formula to predict such demand is not possible without performing dynamic analyses. Recently, 

Landi et al. (2015) proposed a model for the OOP simulation of slender external URM walls 

with flexible floors. The flexible floors are simulated through a spring element and the damping 

modelled by a restitution coefficient. Likewise, two degrees-of-freedom have been considered 

and the numerical OOP behavior validated by experimental data. The authors showed the 
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importance of considering the flexibility of diaphragms being the results, as expected, highly 

dependent on the stiffness of the spring. 

The dynamic motion of SDOF rigid blocks has been widely studied. Limited research is, 

however, available on the response of multi-block structures, i.e. MDOF approaches. The main 

cause is related to the high complexity of the problem, which explains in part why most of 

these studies relies upon the behavior of systems with two rigid blocks only. While such studies 

may be useful to provide closed-form solutions under complex dynamic excitations and may fit 

well, in selected cases, experimental evidence, its utilization is very complex for walls subjected 

to two-way bending and for unknown collapse mechanisms. Furthermore, by assuming the 

system to move as a rigid body system, the mechanism is governed by velocity fields rather 

than stress fields. Accordingly, these strategies typically lead to an upper-bound or unsafe 

solution which can be a contentious issue. 

2.2.2 Advanced numerical methods 

Prevailing design rules or analytical approaches are, within engineering practice, still most 

useful. These pose, however, several well-identified limitations that may lead to potential 

unrealistic or conservative results (Theodossopoulos and Sinha 2013). A plethora of other 

simplified procedures, conceptually more complex, can be found in the literature. The 

development of these practical analysis tools has been motivated by the need of performing a 

nonlinear seismic structural assessment and/or proper repair interventions on URM buildings. 

The story-mechanism approach by Tomaževič (1978) is one of the first studies on the matter. 

It has been continuously improved and follows a ‘story-mechanism’ approach, i.e. each story is 

represented by different non-linear inter-story shear displacements (M. Tomaževič 1999). The 

method can simulate the shear-diagonal in-plane failure mechanisms of URM structures being 

governed by the masonry piers, which are idealized as elastic-plastic shear elements with limited 

ductility. Its conceptual simplicity and practical nature are strong points for the dissemination 

among practitioners, but the inability of reproducing the OOP behavior hinders its application 

in most of the cases. 

The equivalent-frame based methods have been further developed where masonry walls are 

described as the assemblage of piers, spandrels and rigid nodes. Noteworthy examples are the 

works on the SAM (Simplified Analysis of Masonry) method by Magenes and Calvi (1997), 

Magenes and Della Fontana (1998), and Magenes et al. (2000), where the frame-type structure 

is modelled through rigid and deformable elements. Piers and spandrels are assumed to rule the 

structure’s deformation through an elastic-plastic behavior with limited deformation. A larger 
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set of failures modes is accounted by the introduction of flexural or rocking failure and the 

possibility, even in a simplified manner, of forces redistribution after reaching the element 

failure threshold.  

The application of the equivalent-frame method is well ensured through the development of 

software’s, such as TREMURI (Lagomarsino et al. 2013). This software can perform nonlinear 

pushover and dynamic analysis of whole URM buildings when only the in-plane response is 

considered. Other works on the enrichment of the macro-elements, which constitute the 

geometric features of URM structures (such as walls, piers and spandrels), are being gradually 

developed. Brencich and Lagomarsino (1998) developed a three-layer macro-element that 

accounts for the in-plane bending and shear deformation. Employing such element within a 

frame-based approach can be conducted using rigid or deformable elements in-between. 

Furthermore, a nonlinear macro-element model has been introduced by Penna et al. (2014) to 

characterize, on the basis of mechanical assumptions, the bending-rocking and shear-sliding 

(with friction) mechanisms (and their interaction) of a whole masonry wall. In another study, 

Addessi et al. (2015) presented a frame model based on an enriched 2D macro-elements 

formulation (beam description), able to account for both stiffness and strength degradation, for 

the pushover study of regular masonry buildings. 

The inherent simplicity of the equivalent-frame based methods make them suitable for the 

study of large-scale structures, due to the reduced number of degree-of-freedom involved. The 

material non-linearity effect of the masonry can be accounted, but these approaches suffer from 

a macro-element discretization-bias, demand proper strength criteria for different structural 

macro-elements and, more importantly, hardly consider the OOP failure modes. Besides, since 

they are based on the assemblage of macro-elements, the methods are particularly oriented for 

some classes of URM structures, i.e. with a regular openings’ arrangement. For a detailed review 

on such methods, the reader is referred to (Quagliarini et al. 2017). In this context, the need 

of more general methods encouraged the development of advanced numerical methods. A brief 

overview on the FE-based models and on the discrete element model (DEM) is addressed next. 

Finite-Element models (FEM) 

Sophisticated strategies, mainly based on the finite element (FE) method, are the ones which 

deserve more attention from the scientific community (Lourenço 2002). FE-based methods have 

a broad range of application because they can be employed in complex geometric structural 

configurations and within static and dynamic ranges. Furthermore, the method allows to easily 

combine different modelling strategies and considering non-linear material constitutive models. 
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These are usually classified according to the followed modelling strategy, namely: (i) the direct 

simulation or the meso-modelling approach; (ii) the macro-modelling approach; and (iii) the 

multi-scale computational approach. The latter groups are described next in which both 

continuous and discrete FE-based models are presented. 

 
(a) (b) (c) 

Figure 2.7 – Modelling strategies to represent the behavior of masonry: (a) detailed meso-modelling; 

(b) simplified meso-modelling; (c) macro-modelling (Lourenço 2008). 

Meso-modelling strategy 

Meso-modelling considers masonry as a two-phase material in which the masonry components, 

brick and mortar joints. are explicitly and individually discretized. Two strategies can be 

pursued, i.e. a detailed and a simplified modelling. In the former, brick units and mortar joints 

are modelled as continuum FE’s being the mortar-brick interface modelled through 

discontinuous elements (interface FE’s). In the latter, brick units are modelled as continuous 

FE’s but, as simplification, mortar joints are replaced by discrete interface FE’s, which try to 

represent the behavior of both mortar joints and brick-mortar interaction. 

From the current set of eligible advanced FE-based strategies to study URM masonry 

behavior, the detailed meso-modelling is probably the most accurate tool. Yet, it demands more 

input data to characterize the behavior of the masonry components and lead to more degrees 

of freedom (Tzamtzis and Asteris 2003). An intensive computational effort is expected which 

can be, in part, lessened if a simplified meso-modelling is adopted (Roca et al. 2010). Taking 

into account that joints are the major contributors for the nonlinear response of masonry 

structures (Lourenço 1996), research tends to focus on the unit-joint interface elements 

characterization. Defining the brick-mortar interaction law is usually quite complex and only 

possible for calibration studies restricted to very small scale numerical analysis, as the study 

from Shieh-Beygi and Pietruszczak (2008) and Andreotti et al. (2018). Bearing in mind that 

failure tends to occur in the planes of weakness defined by the mortar joints (for weak joints 
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masonry), most of the research in the meso-modelling field tries to simulate masonry using the 

latter simplified approach. One of the pioneer studies has been introduced by Page (1978) in 

which a simplified mesoscopic model has been proposed for the in-plane analysis of clay masonry 

walls, with brick units assumed as elastic continuum elements and mortar joints as linkage 

elements. The latter work has been afterwards extended by Ali and Page (1988) for local high 

stress and strain gradients problems, i.e. able to account for concentrated loads. Developments 

have been implemented by the formulation of interface elements (with zero thickness) associated 

with plasticity concepts (Lourenço et al. 1997; Giambanco et al. 2001). In the work of 

Lourenço and Rots (1997) the interface elements are able to represent cracking, slip and 

crushing of the material in presence of the dilatancy effect, since non-associated flow rules are 

combined with Coulomb friction laws. An important achievement is the adoption of a 

compressive cap on the yield surface aiming to represent the crushing failure mode. The 

simplified mesoscopic model has been validated through comparison with experimental data 

from in-plane URM tests and latter extended to the three-dimensional case by Zijl (2000) being, 

therefore, suitable for the OOP analysis of URM structures. 

Other important works have been presented on the application of such modelling strategy 

(Gambarotta and Lagomarsino 1997; Senthivel and Lourenço 2009; Vandoren et al. 2013). The 

research from Macorini and Izzuddin (2011) may be also highlighted, where a three-dimensional 

model including both the in- and out-of-plane behavior is developed; and then further extended 

to blast loading field, see Macorini and Izzuddin (2014). In this matter, one should address the 

research by Rafsanjani et al. (2015) where a strain-rate dependency formulation has been 

implemented within the multi-surface plasticity model by Lourenço and Rots (1997) and from 

Zijl (2000) aiming to study the behavior of URM parapets subjected to a blast load. For further 

works on simplified meso-modelling the reader is referred to Tzamtzis and Asteris (2003) and 

Theodossopoulos and Sinha (2013). In general, FE-based meso-models allow accurate results 

being reliable for the seismic study of URM structures. Lumping the material non-linearity on 

the interface elements allow to achieve a well-posed numerical problem upon the onset of 

cracking. A three-dimensional model is certainly capable of well reproducing both the in- and 

the out-of-plane orthotropic nonlinear behavior of masonry and capturing well the nonlinear 

deformation and cracking. However, the demand of long processing times makes the approach 

recommendable only in limited size structural problems and, consequently, its use in the 

dynamic range is hardly feasible. 
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Macro-modelling strategy 

Macro-modelling strategies consider masonry as a one-phase material, meaning that the 

heterogeneous assemblage of mortar and bricks is smeared out into a continuous and fictitious 

homogeneous anisotropic material. Representing the phenomenological behavior of the 

equivalent material is a complex task but brings the advantage of reaching a quite 

straightforward procedure. The thorough modelling stage required by a meso-approach is 

avoided, since the FE mesh can be defined by a mesh generator algorithm disregarding the need 

of an explicit discretization of both joints and units. 

A pioneer macroscopic model has been presented by Saw (1974), where the masonry is 

idealized as an equivalent isotropic elastic material. This strategy might be useful for the 

analysis of deformations at low stresses, but such formulation leads to conservative solutions 

by not accounting for nonlinearities. Other studies as Ganju (1977) or Samarasinghe (1982) 

also defined the homogeneous material based on average properties but considering the 

possibility of tracing local failures. Dhanasekar et al. (1985) presented a nonlinear 

macroscopic model for in-plane analysis, whose material average properties have been defined 

through bi-axial tests on masonry panels. The model is unsuitable for high stress-strain gradient 

problems (Tzamtzis and Asteris 2003). Lourenço (1996) and Lourenço et al. (1998) introduced 

a macroscopic approach with a nonlinear constitutive material model for the in-plane analysis 

of masonry walls, with the possibility of assuming different hardening and softening responses 

according to the material axis direction (masonry orthotropy). The model is based on the 

plasticity theory with a Hill-type yield criterion for compression and a Rankine-type yield 

criterion for tension. Concerning the importance of the OOP behavior of masonry, 

Lourenço (2000) extended the formulation to represent masonry as an anisotropic continuum 

model accounting for softening behavior and suitable for the study of plates, shells and 3D 

elements. A comparison between the numerical results and the experimental data available 

from Gazzola and Drysdale (1986) and Guggisberg and Thürlimann (1990) has been performed 

and good results achieved. Berto et al. (2002) also developed an orthotropic damage model for 

the analysis of quasi-brittle materials; for the masonry analysis, the angles between bed and 

head joints are defined to be able to reproduce the elastic and inelastic properties along each 

orientation. 

The advantages of macroscopic models are well noticed in the literature. Its mesh 

discretization independency, with respect to the masonry texture, makes the strategy to be 

practical-oriented and suitable for the seismic analysis of both small and large URM structures, 

see Martínez et al. (2006), Lourenço et al. (2011, 2012), Betti and Vignoli (2011), Araujo (2012), 
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Pelà et al. (2013a), Roca et al. (2013) and Silva et al. (2018). The approach is, amid the 

advanced FE strategies and within continuous FE assumptions, the one which allows to achieve 

a better trade-off between the results accuracy and time to perform the analysis. 

Nonetheless, the way that damage is represented still constitutes a drawback of classical FE 

macro-modelling strategies. It is known that in URM damage should be concentrated or locally 

distributed following typical failure patterns (Griffith and Magenes 2003; Roca et al. 2010). 

Smeared-crack models tend, however, to smear out the displacement (strain) jump over a mesh 

region, the so-called localization band. Several works have been developed aiming to, in the 

macroscopic model context, localize such damage within a narrow band and improve the 

directional mesh-bias issue independence through the implementation of tracking algorithms. 

In order to further localize the damage to a single row of finite elements and increase its real 

representation, Clemente et al. (2006) presented a macroscopic damage model with a novel 

crack-tracking algorithm. It has been modified Pelà et al. (2013b) to account for the masonry 

orthotropy. The reader is referred to Saloustros et al. (2018) for an extensive review on such 

approaches  

It is important to stress, however, that there are still some important concerns pending. For 

instance, the adopted geometrical modelling simplifications, the type of FE used and the mesh 

refinement level chosen may play an important role in the required time to perform the analysis 

(Lourenço 2002). The use of closed-form laws to represent the complex phenomenological 

behavior and damage of the masonry is cumbersome and may require a calibration step. Such 

consideration calls for the use of constitutive models able to predict the behavior of masonry 

and account for failure of the homogeneous material, in which input data can be obtained by 

conducting thorough experimental campaigns. This may be prohibitive in most study cases due 

to the involved costs and time being an alternative to conduct the experimental tests on the 

masonry individual components and employ the derived data in a multi-scale strategy through 

the homogenization technique (Benedetti et al. 2008). 

Multi-scale strategy 

Homogenization methods, within a multi-scale framework, are in-between the latter two FE 

modelling schemes and constitute a promising alternative. The framework is being used to 

investigate the response of composites with different natures, see Feyel and Chaboche (2000), 

Kouznetsova et al. (2001), Miehe and Koch (2002), Mercatoris and Massart (2011), 

Spahn et al. (2014), Yamanaka et al. (2015), van den Eijnden et al. (2016), but is also useful 
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for the study of masonry structures. It typically relies on a meso and macro transition of 

information and is thus designated as a two-scale (FE2) approach.  

The first strategies regarding masonry homogenization tried to substitute the complex 

geometry into a simplified one aiming to achieve a closed-form solution in the elastic range. 

Studies by Pande et al. (1989), Maier et al. (1991), and Pietruszczak and Niu (1992) are, within 

the so-called ‘two-step homogenization’, important to recall. It refers to the process of geometry 

simplification that is performed in two steps: firstly, the homogenization is performed 

considering the vertical joints and leading to a horizontal layered material; secondly, the final 

equivalent material is obtained through the horizontal layered material by taking out the 

horizontal joints. The accuracy of the derived properties is dependent on the order that the 

homogenization steps are performed. Significant errors are expected to occur in the non-linear 

range, since the regular geometrical offsets of the vertical mortar joints are not accounted 

(Lourenço et al. 2007). Other strategies, based on the unit-cell theory, have been firstly 

proposed in the elastic range by Hashin and Rosen (1964) and in the nonlinear range by 

Dvorak and Teply (1985), through the use of the so-called hexagonal array model. Closed-form 

expressions are derived at a meso-scale from both equilibrium and compatibility conditions at 

the Representative Volume Element (RVE). After being solved or formulated these can provide 

the homogenized quantities or describe phenomenologically the constitutive equations at a 

macro-scale, see Zucchini and Lourenço (2002), Taliercio (2014), and Drougkas et al. (2015). 

The use of closed-formed solutions is, however, less feasible in the non-linear range, in complex 

loading cases or in cases where geometrical and physical changes can occur. 

A more rigorous strategy in obtaining the homogenized elastic parameters of masonry is 

through an asymptotic model. For instance de Felice (1995) and Cecchi and Sab (2002a) 

formulated a meso-model considering cohesive zero thickness interface elements to solve the 

asymptotic problem, meaning that mortar is infinitely deformable in respect to the brick unit. 

An OOP extension of such asymptotic model has been presented in (Cecchi and Sab 2002b). 

These works are oriented to find the in- or the out-of-plane elastic stiffness values and, therefore, 

its application in the non-linear range may be careful analyzed. Furthermore, 

Cecchi and Sab (2002a) have assumed units as deformable elements in which a solution of the 

analytical problem fails to be formulated being, instead, derived from a FE model. To 

circumvent such limitation, units were considered by de Felice (1995) to be rigid blocks with 

the pitfall of a loss in the output accuracy, accentuated in the case of smaller stiffness ratios 

between the unit and mortar elastic stiffnesses. 

The individual character and accuracy issues of closed-form homogenized-based techniques 

can be overcome using the FE method. Anthoine (1995) proposed a novel framework in which 
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the in-plane characteristics of masonry are obtained in just one step. The pioneer work used 

the FE-method to solve the homogenization Boundary Value Problem (BVP) for both stacked 

and running-bond masonry, but it is only set to obtain the elastic material homogenized 

properties. Pegon and Anthoine (1997) and Massart et al. (2004) introduced material 

constitutive laws of the masonry components to conduct analysis with a non-linear associated 

to the problem. Other approaches may be mentioned, as the meso-mechanical homogenization 

approach by Zucchini and Lourenço (2002) and Luciano and Sacco (1997) whereas, again, a 

running-bond texture is presumed. Nevertheless, the accuracy of these methods could 

be lessened if unexpected damaged states occur (Lourenço et al. 2007). Although general FE 

unit-cell models may lead to reasonably accurate and effective solutions, its integration within 

full continuum based FE2 approaches is still a challenge, especially if material non-linearity is 

accounted as demonstrated in (Geers et al. 2010; Otero et al. 2015). In fact, the constant need 

of data between the macro- and meso- scales constitute a contentious issue, because a new BVP 

must be solved numerically for each load step and in each Gauss integration point. This 

compromises the utility of the approach, due to the involved computational time and thus full 

continuum based FE2 approaches are seldom used for dynamic purposes and for complex 

structural analysis (Lourenço et al. 2007). 

Bearing in mind the unequivocal importance of using advanced computational tools, several 

authors tried to address simplifications on two-scale frameworks to keep the time-costs as 

relatively small. For instance, the polynomial stress field expansion by Milani et al. (2006d), as 

discussed by Lourenço et al. (2007b) on the recent advances concerning homogenization tools. 

An adequate possibility is the use of a kinematic theorem of limit analysis at a macro-level to 

obtain the homogenized failure surfaces with a very limited computational effort (de Buhan 

and de Felice 1997; Milani et al. 2006b; Cecchi and Milani 2008). Such methods give a lower 

or upper bound estimate on the failure collapse load which, in some cases, can be scarce. The 

use of discrete FE-based methods at a macro-level is a promising alternative. Casolo (1999) 

defined a flexural-torsional kinematics-based model that uses quadrilateral Kirchhoff-Love 

plates with springs in its interfaces to study the OOP behavior of masonry façades. Milani and 

Tralli (2011) adopted a macro-model based on a FE-mixed formulation, where rigid triangular  

constant stress finite elements (from the works of Herrmann (1967)) with bending behavior 

lumped on its interface is used to carry the homogenized information. Discrete FE-based macro-

models are very practical due to the decrease of the number of degrees-of-freedom (comparing 

to a continuous approach) and are especially useful to perform dynamic analysis. Several studies 

have shown the clear advantages of this process, since it allows a good trade-off between 

consumed time and results’ accuracy, and enables the study of real scale buildings. The latter 
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is even more clear if simplifications are further assumed at both macro- or meso-scales, as 

observed in Milani et al. 2006b (2007), Milani and Venturini (2011), 

Akhaveissy and Milani (2013) and Casolo and Milani (2013). 

Discrete Element Models (DEM) 

Continuum finite element-based methods are nowadays very powerful. However, FE methods 

may not be so efficient for problems in which several discontinuous exists in the media. 

Specifically, when several distinct bodies exhibit large relative movements and, consequently, 

contact conditions vary during the analysis. Some attempts to combine FE methods in a 

discrete-element approach can be found in the literature, as the study by 

Mamaghani et al. (1999) where a discrete-fashion model has been developed, in which masonry 

units are idealized as rigid elements and joint interfaces as discontinuities modelled through 

contact elements. Such discontinuities can sustain small deformations and thus represent the 

split and separation between units. However, the approach was used only for simple 2D 

problems and, according to the author, its extension to more complex studies requires more 

experimental data to face the problem of the constitutive characterization of the contact 

elements. 

The Discrete (or Distinct) Element Method (DEM) presents several advantages in 

comparison to the traditional FE methodologies and, therefore, a brief recall should be 

addressed. On one hand, bearing that masonry is the assemblage of units separated by mortared 

or dry joints, the method allows to represent masonry as a discontinuous media, whereas 

masonry units are considered as the ensemble of distinct bodies connected by contact surfaces 

that represent joints. On the other hand, DEM still unfolds, in such context, several modelling 

and analysis possibilities, as: (i) masonry units can be modelled as rigid or deformable blocks; 

(ii) the method is suitable to account for the nonlinear behavior of its components; (iii) the 

method is suitable for large displacement problems, and for static or dynamic analyses. 

Since the first DEM model proposed by Cundall and Hart (1971) and the discontinuous 

deformation analysis (DDA) introduced by Shi and Goodman (1988), both investigations 

oriented for rock engineering field, several studies have been introduced and developed to 

contemplate other engineering fields (Lemos 2007). Focusing on masonry structures, the DDA 

model was applied by Ma et al. (1996), wherein masonry units are considered as deformable 

blocks and joints as rigid contact elements. DEM is widely applied to simple blocky structures 

(Roca et al. 2010), for instance in the analysis of arches to assess the collapse load (Gilbert and 

Melbourne 1994); static and dynamic analysis of masonry walls (Baggio and Trovalusci 1995; 
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Schlegel and Rautenstrauch 2004; Lemos et al. 2011; Giamundo et al. 2014; Sarhosis et al. 2016) 

and rocking motion of stone blocks (Peña et al. 2007). 

At last, it is important to refer studies performed on classical temples, whereas the masonry 

units are very large and thus its idealization through rigid blocks seems to be adequate. For 

instance, the seismic assessment of a column-architrave of the Parthenon (Psycharis et al. 2003) 

and the Roman Temple of Évora (Nayeri 2012). More recently, Tran et al. (2014) used the 

DEM to model the behavior of a stone bridge during the phase of formwork removal. The 

conducted analysis allowed to obtain the displacement pattern that was validated in-situ. 

Software based on the formulation is being continuously presented, see Itasca (2004) and 

Cascini et al. (2018). 

Although the inherent advantages of DEM, the modelling of 3D complex or large structures, 

where a high number of block elements is expected, can turn the computational time of the 

analysis unacceptable. Besides, simplifications concerning the mesh discretization may 

compromise the accuracy and thus may be taken with care. As stated by Lemos (2007), the 

accuracy for the OOP study of masonry is quite dependent on the number of contact points in 

the thickness direction. Regardless of the latter, DEM is still barely applied for 3D structures 

within dynamic analysis. 

2.3 Seismic vulnerability assessment of masonry structures 

Earthquakes are, among the set of natural events, one of the most serious threats and challenges 

to humankind. Seismic events represent almost 60% of all the fatalities caused by natural 

disasters (International Disaster Database (2009)) being predictable that the death toll will 

augment, at the current century, to a value of 2.57±0.64 million (Holzer and Savage 2013).  

The seismic vulnerability can be defined as the susceptibility that a community faces to 

suffer damage or any type of loss (e.g. economic or human loss) if an earthquake occurs. If 

vulnerability is accounted together with the seismic hazard and exposition for a given territory, 

one may refer to the associated seismic risk. Since the seismic hazard is, in principle, immutable, 

vulnerability and exposure are of prime importance if one aims to control the associated risk. 

Different consequences can arise depending on the vulnerability of the community, meaning 

that physical, political and social conditions are variables affecting such predisposition to 

damage or loss (Barbat et al. 2010). This reveals the importance and the multidisciplinary 

character of a seismic risk mitigation process which henceforth brings the need of developing 

urban emergency management plans; of conducting seismic vulnerability assessment studies 
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over the existing building stock; and of raising the populations awareness over hazards and 

over the proper emergency response measures (UNDRO 1979). 

A seismic vulnerability assessment is part of a loss model upon the built environment. A 

consistent evaluation of the seismic risk of a building structure or typology may undertake 

vulnerability analyses, loss assessment estimations and an evaluation of potential repair costs, 

since these support a well-established decision. Steps as the definition of hazard, definition of 

limit states, characterization of the structural state and the construction of fragility or 

vulnerability curves are fundamental to accomplish it.  

Two main methodologies can be pursued, i.e. an empirical or analytical one; with a third 

option possible, designated as hybrid methods, when simultaneously considered (Calvi et al. 

2006). Empirical and analytical strategies exist in the literature and aim at the prediction of 

the expected level of damage in a structure subjected to a given intensity measure (IM), 

according to pre-defined limit states. The former methods generally collect the structural 

damage data from conducting in-situ surveys, through statistical information or empirical 

knowledge; whilst, in the latter methods, a structural analysis, using simplified or more complex 

advanced numerical models, is performed. In this context, the way that damage is predicted 

constitutes the most relevant difference between the approaches. 

Empirical Methods 

Empirical methods are practical and widely used in the assessment of buildings at a territorial 

scale. Such practicability is retrieved with the cost of introducing subjectivity in the process. 

The works by Whitman et al. (1973) served as basis to the development of such methods, in 

which the authors proposed damage probability matrices (DPM) to allow the damage prediction 

for a building through observation. Both structural and non-structural damage are 

acknowledged and extrapolated for buildings with similar features (i.e. same typology) having 

into consideration a macro-seismic intensity scale (MSK)(Medvedev 1977) to describe the 

earthquake loading. Later, Braga et al. (1982) proposed a binomial distribution to define the 

damage pattern of a building considering, again, the MSK scale. More recently, 

Giovinazzi and Lagomarsino (2004) presented a macro-seismic method based on the EMS-98 

scale (Grünthal 1998). The method considers six vulnerability classes of buildings, with seismic 

intensity levels ranging from V to XII and five damage levels. Likewise, other studies such as 

from Rota et al. (2008) have followed the same methodology yet assuming the peak ground 

acceleration (PGA) as the seismic IM. Empirical approaches based in the attribution of a 

vulnerability index has been also proposed, for instance by Benedetti and Petrini (1984). In 
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this study, the vulnerability index is calculated for each building through a survey form where 

eleven pre-defined building parameters need to be collected. The final index is obtained 

considering the relative weight of each parameter which, after normalization, is calibrated to 

relate the vulnerability index with a damage global factor defined for the same building 

typology and macro-seismic intensity or PGA. 

Both DPM and ‘Vulnerability Index’ empirical approaches have been largely applied in the 

risk assessment of urban areas, see Vicente et al. (2011). The former approach is useful to derive 

vulnerability curves for well-defined typologies of buildings, especially when empirical damage 

information is available (Rota et al. 2008). The latter approach has a broader target, since its 

application does not limit the building to be part of a given typology (Calvi et al. 2006), but 

the definition of the proper grades and weights upon the survey parameters may be 

questionable. Moreover, both input parameters (i.e. macro-seismic scale and vulnerability index 

level) are gathered through observation thus presenting some level of subjectivity. Although 

these steps can be processed through different manners, this still constitutes a clear drawback, 

because the results accuracy is highly dependent on the expert’s team judgement. 

Analytical Methods 

In the context just defined, analytical methods are being developed in the last decades to give 

a more rational sense to probabilistic earthquake assessment of buildings. The introduction of 

spectral ordinates (displacements and accelerations) instead of macro-seismic intensities scales 

widens the analysis possibilities and permits to reduce the intrinsic subjectivity associated with 

empirical methods. Spectral ordinates allow researchers to explore new procedures in the 

derivation of ground-motions equations and, so, reach fragility or vulnerability curves in which 

the building’s capacity is studied through spectral response (Calvi et al. 2006). 

Few studies exist in the literature on analytical procedures for the assessment of URM 

buildings. Some can be still recalled as the work by Park et al. (2009), where an analytical 

method is adopted to generate fragility curves for a typical two-story URM building located at 

the central and southern regions of United States of America. To account with the high 

nonlinear behavior of URM structures when subjected to dynamic loads, a simple structural 

spring-based model has been idealized aiming, essentially, to reach low computational times. 

The occurrence of OOP failures is included, as well as uncertainty in both seismic excitation 

and material properties. The main conclusion is that the analyzed URM building type presents 

high seismic vulnerability and that the OOP stiffness contribution should not be disregard in 

the risk assessment. 
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Rota et al. (2010) proposed a new analytical framework to obtain fragility curves for masonry 

buildings prototypes using a simplified equivalent-frame model (TREMURI software by 

Lagomarsino et al. (2013)). The major improvement is the adoption of a detailed 3D structural 

modelling, whereas all the mechanical properties have been considered as random variables with 

a normal probability density function distribution. A total of one thousand Monte-Carlo 

simulations allowed to achieve multiple sets of input variables. The damage states threshold 

(viz. limit states) have been achieved through nonlinear static analysis thus transferring more 

objectivity in its definition. The authors performed dynamic analyses, for several levels of 

ground motion, to determine the probability density function of the displacements demand. 

Lognormal fragility curves have been derived by convolution of the complementary cumulative 

distribution of displacements demand and the probability density function of each damage state 

(Rota et al. 2010). The procedure follows the traces of recent proposed methodologies, as the 

PEER framework (Günay and Mosalam 2013), but it does not take in consideration the OOP 

behavior of masonry walls. It restricts the application of the method to a building typology 

whose connections between orthogonal walls and floors are good and in the presence of a rigid 

diaphragm; this means URM buildings with a box behavior. Other studies can be addressed 

within the same line of investigation, i.e. by using simplified analytical or numerical models, as 

Erberik (2007), Pasticier et al. (2007), and Kappos and Papanikolaou (2016). In fact, the seismic 

analytical assessment has, obviously, an enormous dependency on the approach used in the 

analysis. The use of equivalent frame-based methods allows to study URM buildings but 

precludes the consideration of OOP mechanisms rather essential in the seismic behavior. 

Other analytical methodologies allow a better insight of such behavior, as the collapse 

mechanism-based methods, capacity spectrum-based methods and fully displacement-based 

methods. 

Regarding the collapse mechanism-based methods it is possible to state the VULNUS and 

the FaMIVE (Failure mechanism identification and vulnerability evaluation method) 

procedures. These try to conduct the vulnerability assessment by using collapse load multipliers 

according to mechanical assumptions. VULNUS has been developed by Bernardini et al. (1990) 

to study an individual or group of URM buildings and uses the fuzzy-set theory and the 

calculation of two collapse multipliers and a third index. The in-plane (IP) behavior parameters 

are computed as the ratio of shear strength of the system (two directions) and the total weight 

and represent the strength parameters for both directions at mid-story height of the ground 

floor. The OOP collapse multiplier is calculated by the ratio of the OOP strength and the total 

weight. This index must be calculated for each single wall and failure mode, as overturning, 

flexural tension and arch crushing (Bernardini et al. 1990; Restrepo-Vélez 2004). A third index 
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is required beforehand being obtained through the evaluation of seven vulnerability factors and 

respective weights. A qualitative judgement approach is followed to retrieve these parameters 

and, so, VULNUS has a hybrid character. The three indexes allow to follow the fuzzy set theory 

in order to compute the vulnerability value of the study case and allow, as well, the comparison 

with a safety criterion (see Bernardini et al. (1990) for more detail). 

The FaMIVE is an analytical procedure based on the collapse-mechanics approach by 

D’Ayala and Speranza (2003) and has been extensively used, see for instance Sepe et al. (2008),  

and Basset-Salom and Guardiola-Víllora (2014). The method relies on limit analysis to obtain 

the collapse load factors of expectable IP and OOP collapse modes. The collapse multiplier is 

thus obtained through an equivalent static approach and hence converted in a vulnerability 

value. The advantages and disadvantages of the methodology are implicitly related with the 

analytical approach, i.e. static methods may not be sufficiently representative of a building 

behavior subjected to a dynamic excitation. 

Aiming at the development of a national-scale methodology for loss earthquake estimation, 

the Federal Emergency Management Agency proposed a seismic loss estimation framework, 

namely HAZUS (Hazard U.S.) (Whitman et al. 1973; HAZUS 1999). HAZUS is frequently 

referred as a capacity-spectrum based method, since it defines the design or performance point 

of the building. The latter is obtained by the intersection of two curves: the first bears the 

ground motion information of a given scenario registered as a spectral response curve, that is 

scaled to account the effects of damping and duration effects; the second corresponds to the 

capacity curve of the building under study, typically obtained through nonlinear static analysis. 

Then, the building fragility curves are generated considering a lognormal distribution; whereas 

the distribution parameters adopted are the median capacity and damage variability (Calvi et 

al. 2006). HAZUS defined four limit states in a qualitative way according to the maximum drift 

ratio. The last could be a drawback, because even if the decision upon the damage limit states 

tries to cover prior experimental knowledge, it is still based on expert judgement. 

Fully Displacement-Based Methods 

Furthermore, strategies based on a DBA have been also investigated. Calvi (1999) firstly 

presented a DBA for the seismic vulnerability assessment for in-plane failure mechanisms. Three 

damage levels have been considered, using as limit state thresholds the inter-story drifts 

suggested by Magenes and Calvi (1997). These are presented as uniform probabilistic variables 

to introduce the associated uncertainty. The displacement demand may be obtained by an 

elastic response spectrum which could represent a nonlinear response simply by scaling the 
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spectral ordinate by a reduction factor, to account for energy dissipation of the structure. The 

probability of displacement exceedance is simply computed by integrating the Joint Probability 

Density Function for the given period and with the demand response spectrum. However, both 

the displacement and period of the structure are assumed as independent variables. 

Bearing with the limitations of the study from Calvi (1999), Restrepo-Vélez (2004) 

proposed a mechanics-based approach to overcome the non-consideration of the OOP behavior 

and the non-independence relation between displacement (∆) and period (T). For the OOP 

behavior, the capacity is obtained for a given building by applying lateral forces proportional 

to the stories mass. Instead, the required demand is obtained through a displacement response 

spectrum, which could be selected using the current seismic design codes. Analytical methods 

based on a displacement formulation (generally based on SDOF or MDOF systems) have an 

inherent simplicity which brings the advantage of being computationally effective. 

Hybrid Methods 

The disadvantages of analytical vulnerability curves are mainly twofold, namely: (i) the 

computational time cost associated with the structural analysis which leads to disregard its use 

in studies at an urban-scale, and (ii) the absence of a proper calibration, in most of the studies, 

on the analytical damage levels. To overcome these limitations, analytical and empirical 

methods have been combined resulting in the so-called hybrid methods. 

Even if oriented to reinforced concrete structures, a pioneer study has been presented by 

Singhal and Kiremidjian (1996), in which the probability of each damage state has been defined 

through empirical knowledge and so overcoming the lack of calibration pointed out for rational 

methods. For masonry, the investigation conducted by Kappos et al. (1998) followed a 

vulnerability index procedure where data from past earthquakes has been used and 

complemented with the results of nonlinear dynamic analysis to construct DPMs. The approach 

has been applied in the analysis of Greek buildings with loss estimations in terms of repair cost. 

Likewise, Barbat et al. (1996) applied a vulnerability index procedure within a hybrid method 

to study the vulnerability of urban areas in Spain. Kappos et al. (2006) derived vulnerability 

curves considering the PGA and the spectral displacement. The authors combined available 

statistical data with processed results from nonlinear dynamic or static analyses aiming to 

extrapolate the data to PGA and spectral displacement levels where information is lacking. The 

vulnerability curves have been derived for several damage states and applied to buildings types 

located in southern Europe. Other noteworthy contribution was made by 
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Lagomarsino and Giovinazzi (2006) and the reader is referred to Calvi et al. (2006) and Kappos 

and Papanikolaou (2016) for an extensive overview of the hybrid methods application.  

Herein, it is of utmost importance to stress the key advantage of the method. In fact, the 

method makes possible to use analytical models calibrated through past-earthquakes 

information that, eventually, are useful to process information for intensity seismic levels in 

which there is still a lack of damage data. In short, the method allows to achieve a calibrated 

analytical model and to reduce the required time needed to complete a set of analytical 

vulnerability curves of DPMs. Yet, the calibration process can be hard to carry out due to the 

multiple sources of uncertainty in the input of the models and, therefore, the assumptions 

adopted throughout the framework may be arguable, as discussed by 

Bommer and Crowley (2006a). 

2.4 Summary 

Some of the most important investigations carried out in two different masonry research fields 

have been briefly addressed: (i) strategies to study the structural behavior of URM structures; 

and (ii) methods to assess the seismic vulnerability of URM structures. 

The behavior of masonry structures is difficult to predict due the inherent phenomenological 

complexity of the material. The overview demonstrated that the selection of the more 

adequate tool can be debatable. Simplified procedures are frequently designated as force- or 

displacement-based approaches. The former aggregates strategies as the graphical and the limit 

analysis methods whilst the latter aggregates strategies based on the flexural or rigid body 

motion (SDOF or MDOF systems) of blocky elements. It is noticeable that simplified methods 

are useful as they allow reaching solutions within reduced times, but the accuracy levels may 

be compromised and thus are conceived for ad-hoc structural problems.  

In this scope, researchers are focusing in the advance of more sophisticated strategies, 

typically based on the FE-method and designated according to the followed modelling strategy, 

as: (i) direct numerical simulation or meso-modelling approach; (ii) macro-modelling approach; 

and (iii) multi-scale approach. The possibility of adopting different constitutive material laws, 

failure criterions and modelling assumptions make such methods quite interesting. Despite this, 

it has been seen that a direct numerical simulation may demand prohibitive computational 

costs for professional applications in both the pre- and processing stages (Lourenço 2002). 

Macro-modelling approaches are nowadays adopted for the study of large-scale structures, but 

the damage representation is still an open issue. They tend to smear out the damage over a 

mesh region (the so-called localization band) which goes against how this is generally found in 
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URM structures, i.e. concentrated or locally distributed following typical failure patterns 

(Griffith and Magenes 2003; Roca et al. 2010). In this regard, multi-scale approaches (usually 

two-scales or FE2) are in-between the latter FE-modelling strategies. These rely on the 

homogenization principle, in which the behavior of the masonry material is characterized at a 

meso-scale and transferred to the macro-scale. Although seemingly very promising, the use of 

full-continuum FE strategies at both scales is still computationally prohibitive when material 

nonlinearity is accounted. This comes from the fact that a new BVP must be solved numerically 

for each load step, in each Gauss integration point. The adoption of simplifications at a meso- or 

a macro-scale can be a good way to overcome the latter problem. 

Furthermore, a brief review over works in the field of the vulnerability assessment of masonry 

structures has been presented. The ideal methodology appears to be a combination between an 

empirical and an analytical approach, i.e. the so-called hybrid approach. Still, few analytical 

methods able to accurately predict the structural behavior of URM structures exist in the 

literature and, when it is the case, tend to focus on the application of structures with box 

behavior. Such structures possess a rigid diaphragm and a proper connection between 

transversal walls which allows to preclude the occurrence of OOP failures and the adoption of 

nonlinear static analysis to perform the seismic assessment of the structure which is, in fact, 

very convenient. Nonetheless, the preceding features tend to be lacking in the case of existing 

URM structures.  

Selecting a proper computational model of the structure is essential to derive reliable fragility 

(or vulnerability) analytical curves (Dumova-Jovanoska 2000). So, the development of an 

advanced FE-approach able to be inserted within an analytical methodology for the seismic 

fragility (or vulnerability) assessment of URM structures is a significant achievement. This is 

especially prescribed if the procedure is suitable to: (i) study the OOP behavior of URM 

structures; (ii) account for the system and seismic load uncertainties; (iii) render a low 

computational effort when dynamic analyses are performed; (iv) allow a proper calibration 

between numerical and real damage levels; and (v) guarantee that the results have good 

accuracy. Therefore, the development of a simplified two-scale FE-approach to cope with these 

issues is an interesting and innovative stream of research. On this behalf, a novel FE2 strategy 

is presented in this work where, aiming to effectively achieve improved running-times (in respect 

to the existing advanced FE modelling approaches), a Rigid Body Spring Mass (RBSM) model 

is developed at a macro-scale and implemented in the commercial software ABAQUS (2013) 

which has powerful built-in procedures. At a meso-scale, the data derived from different 

presented and validated unit-cell homogenized models is to be used. 
 



36 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(vacate page) 
 



 

37 

Chapter 3 
3 Multi-scale analysis of masonry: meso-scale level 

3.1 Introduction 

The analysis of the masonry behavior in terms of strength and deformation is still a challenge. 

Such complexity arises from: (i) the material heterogeneity, because of the staggering between 

units and mortar joints; (ii) the non-linearity of the material components; and (iii) the existence 

of planes of weakness which tend to govern the behavior and damage, because mortar joints 

are typically less stiff and resistant than masonry units (Lourenço 2009). 

The approach proposed in this thesis belongs to the so-called multi-scale methods 

based on the homogenization theory. Homogenization is an averaging procedure performed at 

a meso-scale upon a Representative Volume Element (RVE). On the RVE, a Boundary Value 

Problem (BVP) is formulated allowing an estimation of the expected average response to be 

used as constitutive relations at macro-level. This framework has been used to investigate the 

behavior of composites with different natures (Feyel and Chaboche 2000; Kouznetsova et al. 

2001; Miehe and Koch 2002; Mercatoris and Massart 2011; Spahn et al. 2014; Yamanaka et al. 

2015; van den Eijnden et al. 2016) but is also useful for the study of masonry structures (Pande 

et al. 1989; Anthoine 1995; Papa 1996; Luciano and Sacco 1997; Zucchini and Lourenço 2002; 

Mistler et al. 2007; Milani et al. 2007). The macro-behavior of masonry is derived by smear out 

the meso-scale features via a homogenization step, and thus considering its texture, components 

properties and expected meso-failure modes. In this way, the computational burden (in terms 

of CPU) is significantly reduced if compared with a fully meso-mechanical description of the 

material, as demonstrated in Otero et al. (2015). 

The multi-scale finite element computational homogenization methods typically rely on a 

meso and macro transition of information and are thus designated as two-scale or FE2 

approaches, see Ghosh et al. (1995); Smit et al. (1998); Feyel and Chaboche (2000); 

Kouznetsova et al. (2001); Valenta et al. (2010); Mercatoris and Massart (2011); Sýkora et al. 

(2013). The classical models are based on a first-order homogenization scheme and, as its 

formulation relies on the first gradient of the kinematics field, two main limitations arise. The 

first limitation is related to the principle of separation of scales, which enforces the 

assumption of uniformity upon the macroscopic fields attributed to each RVE. It is known that 

in macro-regions where high deformation gradients are present, the latter assumption is not 

totally effective. The second limitation is related to the fact that the lengths of the two scales 

are not intrinsically considered in this classical formulation and, therefore, mesh-sensitivity 
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issues and loss of ellipticity of the equilibrium (Bažant and Oh 1983) tend to appear when 

softening behavior of the material is present (Geers et al. 2010). The latter demands a 

regularization process, for instance, based on the fracture energy (Petracca et al. 2016), to 

guarantee the problem objectivity. In this scope, several extensions of the homogenization 

process were developed trying to overcome these issues. Some authors extended the classical 

method to a second-order homogenization (Kouznetsova et al. 2004; Bacigalupo and 

Gambarotta 2012), in which the constitutive behavior is derived from the classic part and a 

higher gradient part, thus, linking the length scales. Other researchers developed techniques 

that permit the enrichment of the kinematical constraints but still allowing for the use of 

classical constitutive forms. This is achieved preferably through the use of Cosserat continuum 

models (Forest et al. 2001; Casolo 2006; Addessi et al. 2010). The well-posedness of the 

macroscale solution is thus achieved independently of the used mesh, even if the assumption of 

the separation of scales is lost.  

The main advantages of the classical FE2 approaches are twofold: (i) flexibility to be used 

at a meso-scale, which can be based on the FE-method (Mercatoris and Massart 2011), Fourier 

series (Moulinec and Suquet 1998; Vondřejc et al. 2014) or on the Voronoi method (Ghosh et 

al. 1995), among others; (ii) it does not require any macro-constitutive relation, because the 

macro-behavior is totally dependent on the homogenized response derived on the foregoing 

scale. Nevertheless, the classical FE2 approaches (in particular the full continuum-FE methods) 

are still a challenge in the non-linear range (Geers et al. 2010; Otero et al. 2015). The 

advantages are especially obvious when linear elastic behavior is assumed, but obtaining a 

meso-scale solution at each load step of a non-linear process for each Gauss point may turn the 

problem prohibitive from a computational point of view. These strategies still have a higher 

computational cost if compared with a macro-modeling one. It is the author’s belief that if one 

intends to use homogenization strategies for the study of large or more complex structures, the 

development of techniques to speed up the processing running times is critical. 

Some assumptions may be undertaken which can significantly reduce the computational cost 

of an FE2 approach. The use of homogenization methods based on the unit-cell theory, first 

proposed in the elastic range by Hashin and Rosen (1964) and in the nonlinear range by 

Dvorak and Teply (1985) through the use of the so-called hexagonal array model, is a 

possibility. In these methods (see Aboudi (1991)), closed-form expressions are derived at a 

meso-scale from both equilibrium and compatibility conditions at the RVE. After being solved 

or formulated, these can provide the homogenized quantities or describe phenomenologically 

the constitutive equations at a macro-scale, see Zucchini and Lourenço (2002), Taliercio (2014) 

and Drougkas et al. (2015). The use of closed-formed solutions is, however, not so feasible in 
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the non-linear range, in complex loading cases or in cases where geometrical and physical 

changes can occur. Another strategy is the use of the so-called adaptive multi-scale methods 

(Ghosh et al. 2001; Lloberas-Valls et al. 2012; Greco et al. 2016), which take advantage of the 

best of the first-order theory and meso-modeling approach. A first-order homogenized model 

represents initially the masonry behavior until a threshold criterion is reached. Such a criterion 

may be able to account for the onset of damage propagation or another high-gradient 

source. After reaching the threshold, the area of interest is replaced and kept by an 

explicit meso-structural description able to represent the high localized deformation without 

the ill-posedness of the first-order theory, see Greco et al. (2016) for the masonry field 

application. These numerical models could be a valuable tool due to their computational 

attractiveness. Many current studies on unreinforced masonry focus on in-plane cases and for 

quasi-static loading of running-bond masonry and, therefore, more research is required on 

structural models with other masonry textures and loading conditions, as out-of-plane loads or 

seismic excitations. 

From the above considerations, the general aim of the present chapter is to formulate two 

unit-cell homogenized models oriented for both in- and out-of-plane analysis of unreinforced 

periodic masonry structures which may be linked with a proper macro-scale model. For the 

sake of avoiding a full three-dimensional discretization of the masonry, both homogenized 

strategies follow plate (but different) element formulations. Its validation is conducted 

considering experimental and numerical data available in the literature.  

The majority of the existing research on masonry deals with running-bond texture within a 

single-wythe walls case (Pande et al. 1989; Lee et al. 1996; Zucchini and Lourenço 2002; 

Milani et al. 2007; Ghiassi et al. 2012a,b; Taliercio 2014), being the study of English-bond 

textures somehow under-investigated (Cecchi and Milani 2008; Casolo and Milani 2013). 

The novelty of this work is to present two homogenized-based models oriented for both 

in- and out-of-plane analysis of English-bond masonry structures. Conclusions on the influence 

of three-dimensional shear stresses and the effect of discontinuities/transversal joints along the 

masonry thickness are given. In the analysis, both linear and non-linear ranges are accounted 

for, in which masonry orthotropy and full softening behavior are reproduced (material 

nonlinearity lumped on mortar joints). 

At last, the procedures are fully integrated within the commercial software DIANA (2019) 

by exploiting its programming features. These are ready to be combined with a FE2 approach 

but, noticing the raised issues of full FE-continuum homogenized strategies, especially suitable 

to be linked with a discrete-FE macro model aiming to obtain reliable results with an attractive 

computational cost. 
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3.2 Outline of the approach proposed 

Retrieving models at a meso-scale which are both accurate and implementable on simplified 

two-step procedures is of utmost importance. Here, two meso-scale homogenized models based 

on the theory of plates are presented aiming at the characterization of the behavior of masonry 

at a cell level. The accuracy of the results is evaluated through the out-of-plane (OOP) 

quantities only. To avoid redundancy the in-plane behavior of the elementary cell is not detailed 

since it is intrinsically considered to derive the OOP quantities. 

Three main steps compose the classical procedure of a first-order homogenization scheme 

(Suquet 1987; Mistler et al. 2007): (i) the definition and solution of the meso-scale problem; 

(ii) the meso-to-macro transition; and (iii) the macro-scale problem solution. The present 

chapter focuses on the meso-level, being the formulation and solution of the mesoscopic problem 

herein presented. Thus, the macro-quantities which serve as input to solve the mesoscopic 

problem are considered as known in the theoretical formulation, as depicted in Figure 3.1. The 

general homogenization principles followed are exposed next. 

 

Figure 3.1 – Work-flow of the proposed unit-cell homogenized models. 

3.3 Mesoscopic boundary value problem 

The theoretical background for the development of the homogenized models is presented in 

what follows and directly applicable. The numerical models rely on a direct homogenization 

approach, which involves solving a meso-mechanical problem and deriving average field 

variables. The information is then carried out to the macro-scale so that it constitutively 

describes the behavior of the structure.  

The definition of a proper RVE is essential, as it may be statistically representative of the 

body under study. It may accurately embody the heterogeneities of the material and be with a 

scale length sufficiently small to guarantee the validity of a first-order multi-step procedure. In 

the case of regular masonry, like running or English bond textures, periodicity is observed at 

both scales. When masonry components do not follow a random distribution but instead a 

periodic one, it is possible to define only one RVE. The RVE will be discussed next for each 
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considered texture and is herein denoted as Ωֈ. The kinematical description of the homogenized 

based-models for the in-plane case relies on the assumption that the macroscopic strain tensor 

E is obtained as the volume average of the mesoscopic strain field 𝜀ֈ = 𝜀ֈ(𝑦) at each point 

over the associated RVE: 

𝛦 =
1

𝑉ֈ

௷ 𝜺۪
ᆾՒ

𝑑𝑉 (3.1) 

where 𝑉ֈ is the volume of the RVE. The mesoscopic strain field can be decomposed into a 

macro-scale and meso-scale contribution. The latter is referred as an additive decomposition of 

the mesoscopic strain tensor 𝛿𝜺۪ = 𝛿𝜺۪(𝑦), given as: 

𝛿𝜺۪ = 𝛿𝜠 + 𝛻 ֎𝑢ֈ (3.2) 

where δ𝚬 is the applied constant strain tensor over the RVE and ∇sum is the gradient of the 

fluctuation displacement field. Taking into account that 𝝈۪ is the mesoscopic stress field, upon 

RVE equilibrium, the homogenized generalized stress can be derived. The Hill-Mandell principle 

is based on an energetic equivalence between the macroscopic and mesoscopic work, as follows:  

𝜮: 𝛿𝜠 =
1

𝑉ֈ

௷ 𝝈۪: 𝛿𝜺۪
ᆾՒ

𝑑𝛺 (3.3) 

in which 𝚺 is the macroscopic stress tensor. According to the assumed additive decomposition 

of the mesoscopic strain tensor of Eq. (3.2), it allows obtaining the macro-homogeneity principle 

as:  

𝜮: 𝛿𝜠 =
1

𝑉ֈ

௷ 𝝈۪: 𝛿𝜠
ᆾՒ

𝑑𝛺 +
1

𝑉ֈ

௷ 𝝈۪:𝛻 ֎𝛿𝑢ֈ
ᆾՒ

𝑑𝛺 (3.4) 

for any kinematical admissible 𝛿𝑢ֈ. Periodic boundary conditions are assumed to solve the 

BVP. Such consideration is extensively found in homogenization procedures (Blanco et al. 2016) 

also for the particular case of masonry structures (Cecchi and Sab 2002b; Milani et al. 2006a; 

Otero et al. 2015). The periodic boundary conditions lead to a kinematical field that 

enforces anti-periodicity of the tractions to occur. The latter is depicted in Figure 3.2a,b for 

the mode-I and horizontal bending mode, which can be mathematically described for any pair 

of boundaries {𝜕𝑌֓
−, 𝜕𝑌֓

+} ∈ 𝑑Ωֈ as: 

𝑢̃ЈӴֈ(𝜕𝑌֓
+, 𝑡) = 𝑢̃ЈӴֈ(𝜕𝑌֓

−, 𝑡) , for the in-plane mode-I/IV 

w࣪0,m(∂Yx
+,t) = w࣪0,m(∂Yx

-,t) , for the horizontal bending of a Kirchhoff-plate theory (3.5) 

𝜃ֈ̃(𝜕𝑌֓
+, 𝑡) = 𝜃ֈ̃(𝜕𝑌֓

−, 𝑡) , for the horizontal bending of a Mindlin-plate theory 
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in which w is a transversal displacement and 𝜃 a rotation term, as depicted in Figure 3.2. Due 

to the periodicity of the displacement fluctuations on the boundaries, the minimal kinematic 

constraint required to obtain an admissible mesoscopic generalized displacement fluctuation is 

given by Eq. (3.6): 

௷ ∇֎𝛿𝑢ֈ
ျՒ

𝑑Ω = 0 (3.6) 

In this way, Eq. (3.4) can be simplified and expressed as: 

𝚺: δ𝚬 =
1

𝑉ֈ

௷ 𝛔ֈ: δ𝚬
ျՒ

𝑑Ω,    ∀δε (3.7) 

Thus, the corollary of the Hill-Mandell principle is that the homogeneous macroscopic stress 

tensor 𝚺can be written as the volume average of the mesoscopic stress field 𝝈۪ = 𝝈۪(𝑦) over 

the RVE: 

𝚺 =
1

𝑉ֈ

௷ 𝛔ֈ
ျՒ

𝑑Ω (3.8) 

The variational principle and the use of periodic boundary conditions allow concluding that the 

external surface traction and body force field in the RVE are reactive terms over the imposed 

kinematical conditions. These kinematical boundary conditions are dependent on the 

deformation modes considered at the meso-mechanical level. Thus, the in-plane static 

equilibrium of the RVE is reached, for each kinematic constraint considered, without any 

external surface traction and body force terms, see Figure 3.2c. 

The variational principle holds when accounting for the out-of-plane quantities to assure the 

energy consistency between scales. The difference lies in the replacement of generalized stresses 

through moment and force terms, as seen in Eq. (3.9): 

𝑵:𝛿𝜠 + 𝑴: 𝛿𝝌 =
1

𝑉ֈ

௷ 𝝈ֈ𝛿𝜺۪
շՒ

𝑑𝑉ֈ (3.9) 

Where N, M, and 𝛘 are the macroscopic membrane force, bending moment and curvature 

tensors, respectively and 𝛘 is given by Eq. (3.10): 

𝝌 = −
1

𝑉ֈ

௷ 𝑢֕
ᆾՒ

𝑑𝑉 (3.10) 

Note that 𝑢֕ is the projection of the out-of-plane displacement vector defined by the periodic 

constraints applied to the RVE. Likewise, to consider the out-of-plane shear contribution, the 

term 𝐓δ𝛄 may be added to the left-hand side of the variational principle of Eq. (3.9), where 𝐓 

is the macroscopic transverse shear force tensor and 𝛄 is the transverse shear strain vector. 
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(a) (b) 
 

 
 

(c) 

Figure 3.2 – Notation adopted at a meso-scale for a fictitious honeycombed RVE with double-
symmetry: (a) for the in-plane mode-I, (b) for the horizontal bending deformation mode, and (c) 
representation of the boundary conditions and homogenized strain tensor components 𝐸քք for the 
in-plane deformation modes. 

3.4 Nonlinear unit-cell homogenized models 

The classical first-order homogenization theory is extended to develop two meso-mechanical 

models within a strain-driven formulation. Both models have been developed in DIANA (2019) 

by exploiting the software programming capabilities and making use of the available FE library 

and constitutive material models. A python script has been developed to provide a fully 

automatic procedure between the modeling, processing and post-processing stages. The 

proposed homogenized procedures try to cover three features: (i) be capable of studying a RVE 

of a given periodic masonry texture; (ii) be accurate on estimating its mesoscopic linear and 
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nonlinear behavior, in terms of deformation, stresses and damage propagation; (iii) be adaptable 

to a FE2 approach with the aim of estimating the macro-behavior of a given structure. 

The numerical strategies that adopt FE-homogenization schemes typically consider the use 

of a direct numerical simulation. Plate models based on a plane-stress theory for 

membrane loading and within a Kirchhoff-Love or Mindlin-Reissner plate theory for out-of-

plane load cases are very attractive (Cecchi et al. 2007; Milani et al. 2007; 

Cecchi and Milani 2008; Otero et al. 2015; Petracca et al. 2016). These strategies allow 

reducing the RVE three-dimensional problem to a two-dimensional one, in which the middle 

plane of the plate 𝜔 is considered, hence obtaining solutions with low computational processing 

times. Nonetheless, assuming the media as an infinitely thin membrane may not be the best 

procedure for problems where three-dimensional shear effects play an important role. Likewise, 

if discontinuities are present along the thickness direction (as it is the case of an English 

masonry bond), considering the material to be homogeneous over the thickness is not 

representative. In this context, this chapter tries to also give a contribution about the range of 

validity of the latter framework and if these can replace a full component description of the 

material. 

To accomplish the purpose just stated, two homogenized–based approaches are presented in 

what follows for the in- and out-of-plane behavior characterization. One derives from the 

Kirchhoff-Love and the other from the Mindlin-Reissner plate theory, see Figure 3.3b. For the 

sake of conciseness, these models will be designated hereafter as KP and MP model, respectively, 

and an exposition of the key features will be briefly presented. For extended details on the 

theoretical background regarding the plates kinematics and constitutive response, the reader is 

referred to E. Reissner (1975); Hughes and Tezduyar (1981); and Zienkiewicz and Taylor (2000). 

Both KP and MP models are geometrical linear, meaning that the reference plane remains with 

the initial relative configuration. Instead, material nonlinearity (including cracking) is 

considered. 



Chapter 3 

45 

 
(a) 

 
(b) 

Figure 3.3 – (a) General assumptions and failure modes considered for the comparative study 
between the unit cell homogenization procedures. (b) A brief description of the Kirchhoff-Love and 
Mindlin-Reissner plate elements and the deformation modes assumed. 

3.4.1 The Kirchhoff-Love plate KP homogenized model 

The KP model assumes that, at the meso-scale level, masonry behaves as a planar 2D continuum 

according to a Kirchhoff-Love plate. This is driven by the assumption that the plane section 

remains normal and straight in relation to the deformed reference plane. The out-of-plane 

displacement does not vary in the thickness direction and it is assumed that the out-of-plane 

direct stress component 𝜎֕֕ is negligible. Such hypothesis follows the plane-stress condition. 

The KP model is thus based on a decoupled characterization between the membrane and 

bending behavior, achieved respectively through a plane-stress coupled with a Kirchhoff plate 

bending model. The generalized displacement vector for a point of the plate is given as 

𝑢 = [𝑢֓ 𝑢֔ 𝑢֕] յ  where 𝑢֓, 𝑢֔ are the in-plane and 𝑢֕ the out-of-plane displacement quantity. 

The normal strains 𝜀֕֕ are negligible and disregarded. The terms 𝜃֓ and 𝜃֔ are rotations about 

the global coordinate system. Basically, according to the elasticity theory, the vector with the 

unknown quantities of the associated strains is given by 𝜀 = [𝜀֓֓ 𝜀֔֔ 𝛾֓֔ 𝜅֓֓ 𝜅֔֔ 𝜅֓֔]յ . 
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Here, the in-plane strains are defined as 𝜀֓֓ = ᇝ֐՝

ᇝ֓
, 𝜀֔֔ =

ᇝ֐՞

ᇝ֔
, 𝛾֓֔ = ᇝ֐՝

ᇝ֔
+

ᇝ֐՞

ᇝ֓
 and the curvature 

terms of the deflected reference mid-plane as 𝜅֓֓ =
ᇝᇆ՞

ᇝ֓
, 𝜅֔֔ = ᇝᇆ՝

ᇝ֔
, 𝜅֓֔ =

ᇝᇆ՞

ᇝ֔
− ᇝᇆ՝

ᇝ֓
 , see Figure 

3.2a.  

The transverse shear strains are neglected, being 𝛾֓֕, 𝛾֔֕ = 0. The constitutive relation of 

the homogeneous equivalent material of the RVE is obtained for each in-plane deformation 

mode considered (Figure 3.3b), i.e. for the tension (mode-I), in-plane shear (mode-II) and 

compression (mode IV). The condition of null out-of-plane shear strains 𝛾֓֕ and 𝛾֔֕ imposed 

by the Kirchhoff plate theory leads to disregarding their effect on the resultant moments. 

However, the out-of-plane shear forces Qx and Qy are not totally omitted once their contribution 

is implicitly necessary to fulfil the equilibrium equation of the plate. This highlights why the 

comparison described next in section §3.6 is performed in terms of coupled stresses-curvature 

relations. 

3.4.2 The Mindlin-Reissner plate MP homogenized model 

It is well known that in cases where the structure follows a planar behavior or when the 

thickness is not relevant (usually referred as 1/10 of the structural dimension), analyzing the 

problem within a two-dimensional approach as the thin plate theory is appropriate. 

Nevertheless, for out-of-plane loading and in presence of a thick or moderately thick structural 

element, an enrichment of the latter theory is necessary (E. Reissner 1975; 

Hughes and Tezduyar 1981; Zienkiewicz and Taylor 2000; Arnold et al. 2002). Such 

observations are drawn upon a macro-scale level, as for instance Arnold et al. (2002) and 

Cecchi and Milani (2008) for the behavior of masonry structures. Nevertheless, the investigation 

over the difference between a three-dimensional model and two-dimensional one (as are the KP 

and MP models) is still lacking at a meso-scale. Even if the analyses are performed at different 

scales, the physical behavior is the same and thus identical conclusions are expected. Still, it is 

intended to carry such study to investigate the difference between strategies due to the presence 

of three-dimensional effects. 

In this scope, a strategy based on the first-order shear deformation theory is presented (MP 

model) which allows including three-dimensional effects, even if in a simplified manner through 

the out-of-plane shear components and, consequently, increasing the results accuracy for thick 

and moderately thick plates. Similarly, the membrane behavior follows a plane-stress element 

formulation, yet the primary stresses are derived through moments and forces rather 

than Cauchy stresses. The bending behavior is decoupled from the latter and follows the 

Mindlin-Reissner theory. The in-plane strain quantities (𝜀֓֓ ,𝜀֔֔ , 𝛾֓֔) vary in a linear way 
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through the masonry thickness and the transverse shear strains are accounted and derived as 

𝛾֓֕ = ᇝ֐՟

ᇝ֓
+ 𝜃֔ ; 𝛾֔֕ = ᇝ֐՟

ᇝ֔
− 𝜃֓. 

Such quantities vary in a parabolic way over the thickness but, for numerical convenience, 

are assumed to be constant within the classical adjustment approach (E. Reissner 1975). A 

shear correction factor equal to 𝑆֍ = 1.2 affects these quantities, so that the equivalent constant 

shear stress diagrams have a shear strain energy similar to the actual parabolic behavior on the 

area under reference. So, the generalized strain vector is composed by eight unknown 

parameters in which the mesoscopic generalized displacement fluctuation field is decomposed 

in the membrane, bending and out-of-plane shear components. 

For both KP and MP models, the homogenization technique is followed 

and, by solving the internal static RVE equilibrium using a classical FE-procedure, the 

homogenized Σ and Ε quantities are derived. Furthermore, the macro-stress couples are 

obtained by through-the-thickness integration of the homogeneous macro-stresses according to 

Eq. (3.11). The numerical integration is performed accounting only the mid-plane reference 

surface. The obtained homogenized moment-curvature relations are defined per unit of length. 

𝑀֓֓ = ௷ 𝝈ֈӴ֓֓𝑧 𝑑𝑧

֕
ϵ⁄

−֕
ϵ⁄

 ( ) 

𝑀֔֔ = ௷ 𝝈ֈӴ֔֔𝑧 𝑑𝑧

֕
ϵ⁄

−֕
ϵ⁄

(3.11) 

𝑀֓֔ = ௷ 𝝈ֈӴ֓֔𝑧 𝑑𝑧

֕
ϵ⁄

−֕
ϵ⁄

   ,   𝑀֓֔ = 𝑀֔֓ (3.11c) 

3.4.3 RVE definition and FE-modelling assumptions 

The definition of the RVE being analyzed at a meso-scale is required. It is generally accepted 

that the RVE needs to be statistically representative of the macro-scale level. It may contain 

a sufficient number of heterogeneities which possibly reproduces well the macro-behavior 

(Hill 1965) and sufficiently small to respect the principle of scales separation of a first-order 

homogenization theory. In the case of running- and English-bond masonry walls, the choice of 

a proper RVE is somehow simplified due to the regular and periodic disposal of the constituents’ 

arrangement. Even so, there are several RVE possibilities but, for both the analyzed textures, 

the recommendations by Anthoine (1995) are followed and presented in Figure 3.4a.  

 



Chapter 3 

48 

 
(a) 

 
(b) 

Figure 3.4 – Meso-modelling of the running- and English-bond masonry RVE considered for the: (a) 
KP and MP models; (b) DNS models. 

In the modeling process, brick units are considered elastic and discretized as quadrilateral 

FE-plate elements with linear interpolation and a 2x2 Gauss-quadrature. A fine refinement has 

been adopted for both models, even if coarser meshes with few degrees of freedom seem adequate 

to assess the kinematic study of a regular and periodic RVE; as demonstrated by the simplified 

model of Milani et al. (2006c) and by closed-form based solutions by Taliercio (2014). Mortar 

joints are modeled as zero-thickness line interface elements which concentrate the material 

nonlinearity. Such a hypothesis seems to increase the efficiency of the framework by avoiding 

convergence issues related to distorted quadrilateral elements. However, the numerical 

consequences of using a strain-softening constitutive model may not be avoided, as stated in 

the application section §3.6, for the MP model in which five integration points (Simpson rule) 

have been defined in the thickness direction. A three-dimensional meso-model (direct numerical 



Chapter 3 

49 

simulation, DNS model) is also developed for the meso-mechanical validation described in 

section §3.5. In order to allow a numerical comparison and draw consistent conclusions, the 

DNS model follows the same modeling assumptions, i.e. in terms of material properties, 

plasticity model for joints and mesh-size (in the plane) with six elements in the thickness 

(Figure 3.4b).  

To characterize the full masonry behavior, i.e. to capture the post-peak regime, nonlinear 

analyses need to be performed. The BVP is solved using the software DIANA (2019), where a 

line search algorithm has been used simultaneously with a secant BFGS method to deal 

with softening, see Crisfield (1981) and the DIANA (2019) documentation for more details. An 

arc-length procedure with a normal plane update is also at disposal, yet theoretically 

unnecessary within the scope of the present KP and MP homogenized schemes to find the 

converged solution.  

3.4.4 Plasticity model for joint interfaces 

Aiming at the decrease of the computational effort, the material nonlinearity is assumed to 

be lumped in the joints. This seems to be adequate for strong block masonry structures, since: 

(i) in absence or even in presence of small levels of any pre-compression state, cracking or 

crushing of bricks is unlikely to happen; (ii) the obtained behavior seems in agreement with 

experimental data, in which crack onset and propagation tend to follow a zigzag pattern along 

joints and between bricks (Sinha 1978; Herbert et al. 2014). 

A multi-surface plasticity model from Lourenço and Rots (1997) (the so-called composite 

interface model) is considered for the interface elements used for the KP strategy. For the MP 

and DNS strategies, the model from by Zijl (2000) is adopted, which is an extension of the 

latter to allow its use in a three-dimensional media, see Figure 3.4b. The plasticity models can 

reproduce fracture, frictional slip and crushing along the interface elements. 

The constitutive interface model is defined by a convex composite yield criterion with three 

individual functions, i.e. a tension cut-off (Eq. (3.12)), a Mohr-Coulomb criterion for shear 

(Eq. (3.13)) and a cap in compression (Eq. (3.14)). Softening behavior is represented in all the 

modes. The tensile criterion (Figure 3.5b) reads: 

𝑓֏(𝝈, 𝜅֏) = 𝝈 − 𝜎࣓࣒࣒࣑ ֏(𝜅֏)  𝑎𝑛𝑑  𝜎࣓࣒࣒࣑ ֏ = 𝑓֏exp (−
𝑓֏

𝐺ց
ժ
𝜅֏)                      (3.12) 

The shear criterion (Figure 3.5c) is given as: 

𝑓֎(𝝈, 𝜅֎) = |𝜏| + 𝝈𝑡𝑎𝑛𝜙 − 𝜎࣓࣒࣒࣑ ֎(𝜅֎)  𝑎𝑛𝑑  𝜎࣓࣒࣒࣑ ֎ = 𝑐 exp (−
𝑐

𝐺ց
ժժ

𝜅֎)               (3.13) 
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For the compressive yield function (Figure 3.5d):  

𝑓վ(𝝈, 𝜅վ) = 1
2ੲ (𝝈յ 𝑷𝝈) + 𝒑յ 𝝈 − 𝜎࣓࣒࣒࣑ վ

ϵ(𝜅վ) (3.14) 

Here, 𝝈 is the generalized stress, 𝜙 is the friction angle; P is a projection diagonal matrix and 

p a projection vector based on material parameters; Gf
I, Gf

II and Gf
IV are the mode-I, mode-II 

and the compressive fracture energy terms, respectively; 𝜎࣓࣒࣒࣑ ֏, 𝜎࣓࣒࣒࣑ ֎ and 𝜎࣓࣒࣒࣑ վ are the effective stresses 

of each the adopted yield functions, governed by the internal scalar variables 𝜅֏, 𝜅֎ and 𝜅վ, 

respectively. Note that the typical compressive hardening/softening law 𝜎࣓࣒࣒࣑ վ(𝜅վ) is composed by 

three branches as observed in Figure 3.5d. The model follows the laws 𝜎࣓࣒࣒࣑ φ(𝜅վ), 𝜎࣓࣒࣒࣑ ϵ(𝜅վ) and 𝜎࣓࣒࣒࣑ ϯ(𝜅վ) 

defined by Lourenço and Rots (1997) and Zijl (2000). 

 
(a) 

 
(b) (c) (d) 

Figure 3.5 – Mortar joints: (a) adopted multi-surface plasticity model for the line 
(Lourenço and Rots 1997) and surface (Zijl 2000) interface FEs; Behavior of quasi-brittle materials 
under (b) tensile loading (mode-I, 𝑓֏ is the tensile strength); (c) shear loading (mode-II, c is the 
cohesion) accounting with a potential pre-compression level; and (d) compressive load (𝑓վ is the 
compressive strength; p and m are the peak and medium values, respectively). 

It may be highlighted that a penalty approach is not followed by the adopted interface FEs 

to phenomenologically represent the behavior of masonry crushing. Such strategy is usually at 

disposal in advanced FE software’s (e.g. ABAQUS (2013)), to model the physical contact 
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between units where impenetrability is enforced. Here, penetration and overlapping between 

neighboring brick units can occur which does not blur the accuracy of the in- and out-of-plane 

quantities derived; particularly if noted that a weak mortar masonry is being studied and so 

low compressive levels of stress are expected. 

3.5 Meso-mechanical validation: OOP behavior of masonry 

Three masonry failure modes are suitable to be represented. The first one is the debonding, 

toothed (line) and stepped (diagonal) failures, as denoted in Figure 3.3a. The debonding mode 

is dependent on the vertical bending moment faced by the masonry (one-way bending). It can 

occur in cases where a given wall is supported at its upper and bottom edges and laterally 

unrestrained. This is, for periodic bonds as the running- and English textures, the direction 

with lower flexural capacity since torsion plays a negligible role; hence very dependent on the 

level of axial compressive loading and on the boundary conditions.  

The toothed and stepped type of failures are related to the horizontal bending behavior. 

These are typically associated with strong masonry, meaning that masonry units present much 

higher strength values than mortar bonds. Such assumption precludes the manifestation of units 

crushing. Toothed failure follows a vertical alignment defined by cracking on the head and half 

of the bed joints, which is generally caused by one-way bending. Torsional shear has a key role 

in converse to vertical flexural movements. So, the horizontal flexural strength (around head 

joints), torsional shear, residual friction (post-ultimate), and compressive axial loading rule the 

observed behavior and capacity (Lawrence 1995). 

Finally, the stepped failure is associated with two-way bending leading to diagonal cracking 

and is thus more complex. It involves the vertical, horizontal and torsional moments actions 

and so both the flexure tensile and torsional capacities of the bed and head joints contribute 

for the ultimate strength. In this scope, the ability of the homogenization models to represent 

the OOP behavior of masonry is addressed next. Three main constitutive key features for 

numerical models aiming at the analysis of masonry are herein approached: (i) the correct 

representation of the elastic stiffness properties; (ii) the masonry orthotropic 

behavior due to the arrangement of the units and joints; and (iii) the role of the vertical 

membrane pre-compression states, typically due to masonry self-weight and gravity loads in 

general. 



Chapter 3 

52 

3.5.1 Masonry homogenized elastic stiffness 

The homogenized quantities of a running-bond masonry RVE, in terms of elastic stiffness 

components, are derived next. The evaluation of the proposed KP and MP approaches is set 

through the results of a detailed FE meso-model and data from a simple closed-form solution 

by Zucchini and Lourenço (2002). A running bond RVE with dimensions equal to 

210×100×52 mm3 and mortar joints of 10 mm of thickness is studied. The considered material 

elastic properties are the following ones: 𝐸ս֍քվֆ = 20,000 𝑀𝑃𝑎; vbrick=0.15; 𝐸ֈ֊֍֏ռ֍ = 𝐸ս֍քվֆ/𝑟 and 

𝑣ֈ֊֍֏ռ֍ =  0.15. The elastic homogenized stiffness parameters (Young’s and Shear modulus) are 

assessed for several ratios 𝑟 = 𝐸ս֍քվֆ 𝐸ֈ֊֍֏ռ֍⁄ , ranging from 1 to 1000. Such broad range allows 

to represent the potential different stiffness ratios both in the elastic and in the inelastic range, 

in which the tangent and secant stiffness degradation of mortar joints occur. 

Note that the linear elastic relation between the generalized stresses and strains of the 

interface FEs is given by the classical constitutive equation of Hooke’s law, 𝜎 = 𝐷𝜀. Considering 

a line FE interface (for the adopted plate theories KP and MP models), the elastic stiffness 

matrix D is given as 𝐷 = 𝑑𝑖𝑎𝑔{𝑘։, 𝑘֎}. The values of the normal (kn) and shear (ks) mortar 

joints stiffness terms can be easily computed. One possibility is to neglect the contribution of 

the brick-mortar interface and to compute these parameters as 𝑘։Ӵφ = 𝐸ֈ֊֍֏ռ֍ 𝑡օ֊ք։֏⁄  and 𝑘֎Ӵφ =

𝐺ֈ֊֍֏ռ֍ 𝑡օ֊ք։֏⁄ , where 𝐺ֈ֊֍֏ռ֍ = 𝐸ֈ֊֍֏ռ֍ (2(1 + 𝜈ֈ֊֍֏ռ֍)⁄  is the mortar shear modulus. Another 

possibility is to follow the suggestions given in CUR (1994) in which, under the assumption of 

a stack bond where a serial chain connection represents the masonry components (with uniform 

stress distributions in both unit and mortar joints), the latter stiffnesses’ values read: 

𝑘։Ӵϵ =
𝐸ս֍քվֆ𝐸ֈ֊֍֏ռ֍

𝑡օ֊ք։֏(𝐸ս֍քվֆ − 𝐸ֈ֊֍֏ռ֍)
 (3.15) 

𝑘֎Ӵϵ =
𝐺ս֍քվֆ𝐺ֈ֊֍֏ռ֍

𝑡օ֊ք։֏(𝐺ս֍քվֆ − 𝐺ֈ֊֍֏ռ֍)
(3.16) 

In this study a mean value of both approaches has been considered, meaning that 𝑘։ and 𝑘֎ 

are given as 0.5(𝑘։Ӵφ + 𝑘։Ӵϵ) and 0.5(𝑘֎Ӵφ + 𝑘֎Ӵϵ), respectively. 

An accurate detailed (interfaces explicitly modeled) FE meso-model (DNS model) is set as 

a reference. The use of this numerical model as a validation tool is clear since the elastic 

homogenized masonry stiffness calculation does not offer a complex problem nor novelty from 

a numerical standpoint. Such a procedure is also convenient because a numerical study 

encompassing a wide range of components stiffness ratios is easily carried out. Reproducing the 

same data experimentally would require a thorough and expensive campaign. The obtained 
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results are reported in Figure 3.6 and it can be observed how both the KP and MP plate models 

estimate well the elastic homogenized stiffness parameters. The agreement is very good 

according to the DNS model, being the error less than 5%. Some differences may be found with 

the model proposed by Zucchini and Lourenço (2002) especially for the Shear modulus (see 

Figure 3.6b), but still, a good agreement is achieved with a meso-mechanical procedure based 

on a closed-form solution. 

 
(a) (b) 

Figure 3.6 – Comparison between the homogenized in-plane elastic properties obtained with a 
detailed FE meso-model (DNS 3D model), the KP and MP models and from the closed-form solution 
by Zucchini and Lourenço (2002): (a) Young’s modulus; (b) Shear Modulus. 

3.5.2 Masonry orthotropic behavior: one- and two-way bending 

Masonry is known to present a well-marked anisotropic behavior. The complexity increases 

because joints constitute planes of weakness which, depending on the stiffness ratio between 

mortar and brick constituents, may have a strong effect. Accounting for the non-linear behavior 

of masonry is of prime importance as it can have an impact on the structural overall behavior, 

energetic dissipation and mechanisms creation. 

Two experimental campaign datasets are considered to validate the proposed homogenized 

models, i.e. the studies from Pluijm (1999) and Gazzola et al. (1985). The former is herein 

firstly addressed and focuses on the experimental test of several small panels in four-point 

bending, in which the bed joint angle with the normal assumes the values of 0, 30 and 90 

degrees (defined as vertical, inclined and horizontal bending respectively). No pre-compression 

states are considered neither the post-peak information is available. Yet, both elastic limit and 

peak strength values are accessible within a curvature-bending moment diagram, which still 

constitutes a good source of information. 
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The panels were built with standard Dutch bricks, with dimensions 200×52×100 mm3, and 

mortar joints with 10 mm of thickness. The elastic material properties assumed are the following 

ones: 𝐸ս֍քվֆ = 11,000 𝑀𝑃𝑎; 𝑣ս֍քվֆ =  0.20; 𝐸ֈ֊֍֏ռ֍ = 4,000 𝑀𝑃𝑎 and 𝑣ֈ֊֍֏ռ֍ =  0.20. The inelastic 

mechanical parameters for mortar joint interfaces are given by 𝑓֏ = 0.25 𝑀𝑃𝑎, 𝐺ց
ժ = 0.006 𝑁/𝑚𝑚, 

𝑐 = 0.60 𝑀𝑃𝑎, 𝐺ց
ժժ = 0.035 𝑁/𝑚𝑚, 𝜙 = 30 degrees, 𝑓վ = 20.0 𝑀𝑃𝑎 and 𝐺ց

ժշ = 4.0 𝑁/𝑚𝑚. The latter 

values follow the average experimental values (Pluijm 1999), and include missing parameters 

by inverse fitting. The comparison between numerical and experimental results are summarized 

in Figure 3.7 in terms of bending moment vs. curvature curves. Data available from an elastic-

plastic model for mortar joints by Milani and Tralli (2011) is also used for comparison purposes.  

 
(a) (b) 

  
(c) 

Figure 3.7 – Comparison between the experimental data (using boxplots) from Pluijm (1999) and 
the numerical results obtained from the homogenized procedures proposed in terms of 
moment vs. curvature curves: (a) moment with a 𝜗=90 degrees; (b) moment with a 𝜗=0 degrees; 
and (c) moment with a 𝜗=30 degrees. 

The different proposed homogenized procedures derive similar results. Thus, the three-

dimensional shear effects seem to be negligible in this case, because the maximum relative 
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difference found is about 3% (for the vertical bending moment peaks) between the DNS model 

and MP or KP models. One may also conclude that, despite the existent experimental data 

dispersion, the models reproduce well the orthotropy of masonry and its elastic bending 

stiffness. The second set of experimental data used to study the material orthotropic behavior 

derives from the research of Gazzola et al. (1985) and Gazzola and Drysdale (1986). This will 

be achieved by comparing the experimental peak flexural strength values. This represents a 

good indicator to analyze the orthotropic behavior of masonry when subjected to OOP loading 

and within a de-bonding (vertical moment), stepped (inclined moment) or toothed (horizontal 

moment) failure pattern of masonry. The authors tested 25 wallets of hollow concrete block 

masonry, with different dimensions, within a running-bond texture in four-point bending. The 

bed joints angle with the loading direction 𝜗 were considered to vary between 0,15,45,75 and 

90 degrees. The units’ dimensions are 390×190×150 mm3 and the mortar joints have a thickness 

equal to 10 mm. The elastic material properties assumed are the following: 𝐸ս֍քվֆ = 10,000 𝑀𝑃𝑎; 

𝑣ս֍քվֆ =  0.20; 𝐸ֈ֊֍֏ռ֍ = 4,000 𝑀𝑃𝑎 and 𝑣ֈ֊֍֏ռ֍ =  0.25; and the inelastic mechanical parameters 

for mortar joint interfaces are given by: 𝑓֏ = 0.15 𝑀𝑃𝑎, 𝐺ց
ժ = 0.018 𝑁/𝑚𝑚, 𝑐 = 0.38 𝑀𝑃𝑎,      

𝐺ց
ժժ = 0.04 𝑁/𝑚𝑚, 𝜙 = 30 degrees, 𝑓վ = 20.0 𝑀𝑃𝑎 and 𝐺ց

ժշ = 4.00 𝑁/𝑚𝑚.  

Only tensile flexural strength peaks are at disposal and so the latter nonlinear material 

properties of mortar joints were tuned to fit the values of the horizontal (𝜗 = 90 degrees) and 

vertical (𝜗 = 0 degrees) flexural strengths 𝑓֏ֈ, given by 0.92 MPa and 0.37 MPa respectively. 

The elastic material properties, even if assumed, are not relevant as these have a minor influence 

upon the moment capacity. The peak flexural strength is computed for each bed joint angle 𝜗 

and the comparison between numerical and experimental data is showed in Figure 3.8. 

 

Figure 3.8 – Comparison between the experimental data from Gazzola et al. (1985) and 
Gazzola and Drysdale (1986) and the numerical results obtained from the proposed homogenized 
procedures in terms of peak flexural strengths according to the angle 𝜗 with the bed joint. 
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No significant differences can be reported among the proposed homogenization approaches and, 

therefore, these are merged in Figure 3.8 as one dataset and labelled as proposed homogenized 

models. Additionally, information regarding the anisotropic macro-model by Lourenço (2000), a 

simple elastic-plastic homogenized model by Milani and Tralli (2011) and a kinematic-based 

homogenized model by Casolo and Milani (2010) are also presented. It is possible to see that all 

the homogenized models seem capable to reproduce well the masonry orthotropy and provide 

accurate results. 

3.5.3 Pre-compression state condition 

The previous section demonstrated that masonry orthotropy is evident for walls exhibiting a 

regular texture. Masonry units staggering is responsible for a horizontal bending (i.e. with 

rotation along a vertical axis) stiffer and more resistant than the vertical one (i.e. with rotation 

along a horizontal axis), as the bed joint contributes in torque to increase stiffness and strength. 

This implies that tangential stresses acting on bed joints play a significant role in the horizontal 

bending increase, while they are not relevant in vertical bending. In this scope, the effect of 

pre-compression states on the ultimate torsional moment and horizontal bending capacity is 

assessed here.  

A vertical membrane pre-compression, typically due to masonry self-weight and gravity loads 

in general, plays a fundamental role in the increase of the ductility and OOP strength, as shown 

by Milani and Tralli (2011). Two strategies can be pursued to account for this effect in the 

obtained homogenized curves. One is to compute the generalized pre-compression stress σ֑ and 

invoke it within the interface Mohr-Coulomb shear criterion term 𝜎֑𝑡𝑎𝑛𝜙 in Eq. (3.13); the 

other is during the integration of the Σ − Ε curves by enforcing an organic force balance given 

by ∑𝐹𝑜𝑟𝑐𝑒𝑠 = −𝜎֑𝑡 (t is the thickness of the wall). Both strategies are suitable, but the former 

is considered due to its practicability. 

The experimental program performed by Willis et al. (2004) is herein used for the third and 

last validation key point. Firstly, the effect of pre-compression on the torsional moment 

capacity and residual friction are analyzed. Values of σϾ = 0.25 MPa and σϾ = 0.50 MPa are 

assumed. The test arrangement is depicted in Figure 3.9, wherein only half length of the clay 

brick units has been considered with the bedding mortar (only C4 batch is adopted for 

conciseness, see Willis et al. (2004)). The aim is to represent the overlapping between adjacent 

brick courses for running-bond masonry. The clay brick units have nominal dimensions of 

230×65×114 mm3 (𝑙𝑒𝑛𝑔𝑡ℎ × ℎ𝑒𝑖𝑔ℎ𝑡 × 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠) and the mortar joints have 10 mm of thickness. 
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The adopted material properties have been calibrated to respect the experimental tensile 

flexural strengths in a uniaxial direction. 

The results of this first validation are gathered in Figure 3.9. Although the experimental 

variability is relevant, the behavior predicted by the proposed homogenized models is in good 

agreement with the experimental mean one. This is especially clear for the peak moment 

capacity with results within 5% difference for σϾ = 0.00 MPa and σϾ = 0.25 MPa, and 10% 

difference for σϾ = 0.50 MPa. The experimental post-peak region has been identified by a 

descending branch and a horizontal plateau identifying the ultimate strength. The sharp 

strength deduction obtained after peak indicates a poor control of the tests and the numerical 

results do not have such a steep slope as the experimental mean curve. Nonetheless, the 

numerical curve is, for all the cases, in-between the experimental data.  

 

Figure 3.9 – Torsional moment capacity test: comparison between the results from the experimental 
torsional moment test by Willis et al. (2004) (mean curve) and the ones obtained with the proposed 
homogenized models. 

The second experimental test used intends to study the horizontal bending moment capacity 

when different levels of pre-compression 𝜎௩ exist. Twenty-five brickwork panels were subjected 

to a two-point type of loading, and the load-deflection behavior was collected for four levels of 

σϾ (0.00, 0.0075, 0.15 and 0.25 MPa). The reader is referred to Willis et al. (2004) for details 

about the experimental setup. The experimental range of the horizontal flexural tensile strength 

is 0.61-0.71 N/mm2, wherein a value of 0.66 N/mm2 has been considered. The adopted material 
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properties were tuned to respect the latter value but, as well, the previous torsional capacity, 

especially to what concerns the shear criterion parameters (𝑐, 𝜙, 𝐺ց
ժժ). The elastic properties 

are given as 𝐸ս֍քվֆ = 15,000 𝑀𝑃𝑎; 𝑣ս֍քվֆ =  0.15; 𝐸ֈ֊֍֏ռ֍ = 2,000 𝑀𝑃𝑎 and 𝑣ֈ֊֍֏ռ֍ =  0.20; and the 

inelastic mechanical parameters for mortar joint interfaces are given by: 𝑓֏ = 0.10 𝑀𝑃𝑎, 

𝐺ց
ժ =  0.01 𝑁/𝑚𝑚, 𝑐 = 0.15 𝑀𝑃𝑎, 𝐺ց

ժժ = 0.035 𝑁/𝑚𝑚, 𝜙 = 30 degrees, 𝑓վ = 20.0 𝑀𝑃𝑎 and 

𝐺ց
ժշ =  4.00 𝑁/𝑚𝑚. The results retrieved from the homogenization computations are gathered 

in Table 3.1. A good agreement with the experimental peak forces is found. Some deviations 

are noticeable for the peak displacement that may be justified by the high coefficient of 

variation (CoV) values found (not so successful experimental control). The case with lower 

experimental uncertainty concerns the test with σϾ = 0.15 MPa. In fact, from the experimental 

data, this was the only test where it was possible to derive the full bending moment-curvature 

path. 

Table 3.1 – Experimental and numerical maximum load factor and deflection found for the 
horizontal bending test by Willis et al. (2004). 

Pre-compression (MPa)  = 0.00v   = 0.075v   = 0.15v   = 0.25v  

Parameters maxP  

(kN) 

 maxu  

(mm) 
maxP  

(kN) 

 maxu  

(mm) 
maxP  

(kN) 

 maxu  

(mm) 
maxP  

(kN) 

 maxu  

(mm) 

Experimental 
(COV value) 

12.96 
(12%) 

0.333 
(22%) 

15.57 
(12%) 

0.370 
(40%) 

14.21 
(8%) 

0.374 
(14%) 

15.57 
(19%) 

0.443 
(22.5%) 

Homogenized models 
(difference with mean) 

10.43 
(24%) 

0.38 
(14%) 

12.46 
(25%) 

0.43 
(16%) 

14.45 
(2%) 

0.52 
(40%) 

16.97 
(9%) 

0.66 
(33%) 

Casolo et. al (2010) - - - - 14.05 0.45 - - 

Figure 3.10 gathers the experimental curve which allows the comparison with the derived 

numerical output. The results from another numerical discrete approach from 

Casolo and Milani (2010) are presented. The homogenized models predict with good accuracy 

the elastic bending stiffness and the post-peak regime, hence indicating that the torsional 

calibration performed before has been well achieved. In any case, it is worth mentioning that 

the model is again able to reproduce well the behavior of masonry at failure in the presence of 

a pre-compressive state for weak mortar joints and toothed failure mechanisms. 



Chapter 3 

59 

 
Figure 3.10 – Horizontal bending capacity test: comparison between the experimental results from 
Willis et al. (2004) and the numerical obtained with the proposed homogenized models and by the 
simplified model of Casolo and Milani (2010). 

3.6 Application: English-bond pattern 

After the validation tests, the proposed homogenized models are extended to characterize the 

OOP behavior of an English bond masonry structure. The English-bond masonry benchmark 

was experimentally tested by Candeias et al. (2016). Here, only the geometry and the material 

properties of the masonry components are required and described. 

The majority of the existing research on masonry deal with running-bond texture within a 

single-wythe walls case (Pande et al. 1989; Lee et al. 1996; Zucchini and Lourenço 2002; Milani 

et al. 2007; Taliercio 2014). The analysis of the effect of potential discontinuities on the masonry 

thickness, when two- or three-wythes of masonry are present; the effect of three-dimensional 

shear stresses; and the study of other periodic textures, as the English-bond, are somehow 

under-investigated. 

Still, some studies have been reported. In the context of simplified multi-scale methods, 

Casolo and Milani (2013) studied the behavior of three-leaf masonry walls and proposed, at a 

meso-scale, two simple unit cell homogenization models to compute the OOP homogenized 

quantities. One is a FE-based procedure, where bricks are assumed to be elastic and joints are 

reduced to interface elements, and the other is based on an analytical approach. Even if both 

models are accurate and relatively fast, the former does not consider the softening behavior of 

interfaces and the latter is an ad-hoc procedure thus demanding its extension to other 

components arrangements. Moreover, Cecchi and Milani (2008) characterized the meso-scale 

behavior of an English-bond masonry wall through a simple homogenization model. Masonry 

units are considered as rigid blocks and joints are modeled as 2D Reissner-Mindlin plate 

elements to explicitly reproduce the out-of-plane shear effects. Still, conclusions upon its 

influence are drawn at a structural level only through the comparison with a full FE mesoscopic 

model. It is also noteworthy to mention the research from Massart et al. (2005) in the field of 
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full-FE homogenization approaches. Even if applied to a running-bond masonry and within in-

plane loading case, three-dimensional effects are reproduced through the implementation of a 

two-dimensional generalized plane state formulation. In this context, the experimental study 

upon an English-bond masonry structure benchmark constitutes an important step. The data 

may encourage and drive studies of different numerical strategies towards a better 

understanding of the latter effects. Accordingly, the current analysis tries to conclude about 

the effect of three-dimensional shear stresses and the role played by joints discontinuities along 

the thickness direction. 

An English-bond masonry RVE is analyzed, see Figure 3.4a. The brick units have in-plane 

dimensions of 235×70×115 mm3 (𝑙𝑒𝑛𝑔𝑡ℎ × ℎ𝑒𝑖𝑔ℎ𝑡 × 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠) and the bed and head mortar 

joints have a thickness 𝑡օ֊ք։֏ = 15 𝑚𝑚. When laid and bound together in an English-bond 

texture the wall yields a thickness of 235 mm. The mechanical properties adopted are collected 

in Table 3.2 and follow the values available both from the experimental data and literature 

studies on the same benchmark (Mendes et al. 2014). Note that the suggestion given in CUR 

(1994) has been followed in this application study, and thus the computation of the normal and 

shear elastic stiffness terms of the interface elements are employed according to Eq. (3.15) and 

Eq. (3.16), respectively. The algorithm used for the application of the meso-scale strategies (KP 

and MP models) is briefly reported next in Figure 3.11. 

Table 3.2 – Material properties adopted for the English bond masonry following literature values 
(Mendes et al. 2014). 

Elastic  
Properties 

 Elastic and Inelastic  
Properties 

Brick units  Mortar joints 

brickE  brick   E joints
 

nk  sk  tf  cf  c  I
fG  II

fG  IV
fG    

11,000 
N/mm2 

0.25 
(-) 

 2,200 
N/mm2 

183 
N/mm 

72.6 
N/mm 

0.105 
N/mm2 

2.84 
N/mm2 

0.20 
N/mm2 

0.012 
N/mm 

0.05 
N/mm 

3.97 
N/mm 

30 
(degrees) 

 

Four values are considered for the RVE thickness, namely 𝑡 = 470𝑚𝑚, 𝑡 = 235𝑚𝑚,

𝑡 =  141𝑚𝑚 and 𝑡 = 70.5𝑚𝑚. The results obtained with the simulations from the KP and MP 

models are compared with the ones derived with a three-dimensional meso-model (DNS model), 

as done for the previous validation steps, and depicted in Figure 3.12. Several conclusions can 

be put together. Firstly, and as expected, no considerable differences regarding the peak 

moments (𝑀֓֓,𝑀֔֔,𝑀֓֔) are found, between the MP and the DNS models, for all the studied 

thicknesses. The MP model can capture well the out-of-plane shear effects. Yet, it is important 

to recall that for the MP model, with the increase of the thickness value, some convergence 
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problems have been experienced when developing the post-peak branch due to snap-back issues. 

It is known that when interface elements employ a softening type of damage model, convergence 

problems can be experienced after the cracking onset and propagation (De Borst 1987; 

Hellweg et al. 1994). Thus, the issues found lead, in theory, to the requirement of improved 

solving techniques, see Hellwega and Crisfield (1998), or the imposition of constraints equations 

upon the interface nodes (De Borst 1987). 

 

1  Modeling stage. Input call: 
2  - Selecting the masonry texture being analyzed (running or English-bond) 
3  - Definition of the geometrical parameters and material data: 

(
unit unit unit head joint bed joint

l ,h , t , t ,t ) and (  
brick

I II IV

brick n s t c f f fE , , k , k , f , f , c, G , G , G , ) 4 

5 
6 

 - Define the type of analysis 
(If type of analysis = nonlinear static; Activate analysis controls described in §3.4.3; end 

7  Processing stage: 
8 IP: for the KP and MP models: 
9 
10 
11 
12 
13 
14 
15 
16 
17 

 

Within a strain-driven formulation, apply the periodic planar displacement increments 0,mu , 
and compute: 

for each in-plane deformation mode depicted in Figure 3.2: 
for each applied increment: 

Solve the BVP using the FE strategy (DIANA 2019); 
Compute and store the average strain   and stress   quantities (Eq. (3.1)-(3.8)); 

end; end 
Obtain the 5 in-plane homogenized curves:  xx xx

 (tension and compression); 
yy yy   

(tension and compression); 
xy xy yx yx      . end 

18 OOP: for the KP model: 
19 
20 

 
Within a curvature driven formulation, apply the periodic displacement increments 0,mw , and 
compute: 

21  for each out-of-plane deformation mode depicted in Figure 3.3b: 
22 
23 
24 
25 
26 

 

for each applied increment: 
The integral over the thickness of the in-plane homogenized   quantities (lines 8-
17) and store. See Eq. 3.11. 

end; end 
Obtain the 3 out-of-plane homogenized curves xx xxM ;

yy yyM  ;
xy xyM  . end 

27  for the MP model: 
28 
29  Within a curvature driven formulation, apply the periodic rotation increments 0,m

 , and 
compute: 

30  for each out-of-plane deformation mode depicted in Figure 3.3b: 
31 
32 
33 
34 
35 
36 

 

The solution of the BVP using the FE strategy (DIANA 2019); 
Obtain the in-plane and transverse shear strains  xz  and  yz  and stresses. 
Integrate these quantities over the thickness, holding the variational principle of Eq. (3.9), 
and store. 

end; end 
Obtain the 3 out-of-plane homogenized curves xx xxM ;

yy yyM  ;
xy xyM  . end 

Figure 3.11 – Algorithm adopted for the meso-scale application on an English-bond masonry wall. 
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Figure 3.12 – Homogenized moment vs. curvature curves for the four RVE thickness values of the 
English-bond masonry texture obtained with the proposed numerical strategies: DNS 3D model, 
Kirchhoff plate model, and Mindlin plate model. 

No convergence issues are reported for the KP model. This is based on an in-plane 

identification within a plane-stress formulation, from which the OOP quantities are simply 

obtained through the integration on wall thickness. The computational time required by the 

KP model to derive all the in- and out-of-plane homogenized quantities 

(Σ֓֓, Σ֓֔, Σ֔֔,M֓֓,M֓֔,M֔֔) is around 81 seconds, which is significantly less than the MP (154 

seconds) and the three-dimensional DNS (246 seconds) models. So, the KP model seems the 
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most suitable procedure to be integrated within a fully automatic FE2 procedure, albeit its 

inability to reproduce the out-of-plane shear stresses can lead to considerable errors depending 

on the thickness of the RVE being analyzed. Figure 3.12 clearly shows the latter where, for a 

thickness of 235 mm (real dimensions) and 470 mm, an error of 14% and 23% is found, 

respectively. Another important feature is that the observed differences for the peak moment 

values are especially critical in the case of Mxx and Mxy and not relevant for the vertical bending 

Myy. This is easily understandable from a physical standpoint. Bearing that for Myy a typical 

de-bonding failure is achieved, see Figure 3.3a, this is mainly dependent on the tensile strength 

value of the horizontal joints, being the shear effect of the vertical interfaces irrelevant. 

Concerning the effect of the mid-thickness vertical joint of English-bond masonry walls, two 

DNS models are considered. One does not take into account the discontinuity along the 

thickness; the other considers it, meaning that it is explicitly modeled and with a thickness of 

17 mm. Figure 3.13 shows the obtained results. Again, the presence of the discontinuity has a 

marginal effect on the vertical bending behavior Myy of the RVE. On the contrary, the model 

with the discontinuity manifests a lower capacity for both horizontal Mxx and torsional Mxy 

moments, with differences ranging 33% and 17%, respectively. Additionally, if the KP model 

results are considered, an error of 52% is expected for the horizontal bending moment case. 

Such results prove the importance of addressing the mortar discontinuities along the thickness 

of a masonry wall and the need to choose carefully the modeling strategy for a given case study. 

 

Figure 3.13 – Comparison between the homogenized moment vs. curvature curves of the English-
bond masonry texture (thickness of 235mm) obtained using two DNS 3D models: one that considers 
and the other that excludes the existent vertical joint on the mid-thickness. Deformed configurations 
at the peak and ultimate post-peak point are plotted for both models. 
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3.7 Summary 

Two mesoscopic FE-models, based on a first-order homogenization theory and within a strain 

driven formulation, have been formulated to characterize the behavior of masonry subjected to 

out-of-plane loading. A Kirchhoff-Love and Mindlin-Reissner plate theory have been adopted 

and designated as KP and MP models, respectively. In both strategies, a representative volume 

element (RVE), aimed at representing masonry by repetition, was modeled through the 

assemblage of quadrilateral elements with linear interpolation for bricks and line interface 

elements with zero-thickness for mortar joints. By solving a BVP upon the defined RVE, both 

the in-plane stresses and out-of-plane stress-couples were derived from the mesoscopic level. 

With bricks assumed to be elastic and with interface elements carrying the inelastic material 

information within a multi-surface plasticity model (Lourenço and Rots 1997) (an assumption 

plausible for strong blocks), stepped, toothed and de-bonding (straight) masonry failure 

patterns are suitably reproduced. 

The meso-level validation of the KP and MP models has been performed. Reference available 

experimental data together with the results obtained via a three-dimensional meso-mechanical 

model (DNS model) were adopted. Three main constitutive key features have been addressed: 

(i) the correct representation of the elastic stiffness properties (Zucchini and Lourenço 2002); 

(ii) the masonry orthotropic behavior due to the arrangement of the units (Gazzola et al. 1985; 

Pluijm 1999); and (iii) the role of vertical membrane pre-compression states (Willis et al. 2004). 

The validation proved to work well, with homogenized results fitting accurately the reference 

data. 

The application of the mesoscopic FE-homogenized based models was carried out for a real 

case study of an English-bond masonry mock-up tested by Candeias et al. (2016). The analyses 

were performed using data derived numerically, namely the homogenized out-of-plane quantities 

Mxx, Mxy and Myy, which depend on the in-plane behavior of the masonry. Four values for the 

RVE thickness were adopted aiming at studying the out-of-plane shear stresses effect. The MP 

model follows an out-of-plane shear deformation theory and thus was able to provide similar 

results to the ones from the DNS model. The simplified KP model proved good accuracy for 

the cases where the thickness has a value which is similar or lower than the RVE dimensions 

(i.e. its height or length). It is worth noting that the KP strategy allows faster computations 

with no-convergence issues reported. Insomuch, in order to test the effect of the presence of a 

mortar layer on the RVE thickness (present in an English-bond texture), two mesoscopic models 

were further analyzed. The conclusions demonstrate that the discontinuity plays an important 
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role in the decrease of the horizontal bending (around 33%) and torsional moment capacities 

(around 17%), whereas the influence on vertical bending is minimal. 

The above meso-mechanical homogenized models are characterized by several 

advantages, mainly related to their versatility. By exploiting the use of plate theory 

assumptions, the strategies allow replacing the three-dimensional mesoscopic continuum into a, 

mostly, two-dimensional one. Such procedures are quite convenient, due to the simplicity of 

application, accuracy and low computational effort required. Moreover, these are suitable to be 

integrated within a FE2 approach, especially with simplified discrete methods at a macro-scale, 

as done in Casolo (1999) and Milani and Tralli (2011). 
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Chapter 4 
4 Multi-scale analysis of masonry: macro-scale level 

4.1 Introduction 

A two-step numerical framework using a novel homogenization procedure is described with an 

emphasis on the structural (macro) level. The main aim is its application aiming a better insight 

into the dynamic behavior of masonry structures. The proposed technique can determine the 

structural load capacity, represent the damage evolution and collect the time-history 

displacements. The relevance of such numerical procedure is particularly noted by current 

design codes, as the Eurocode 8 (2004), in which the assessment of the seismic vulnerability of 

masonry structures and the knowledge of the expected residual loading capacity are required 

after the occurrence of an earthquake. 

The classical continuum FE2 approaches still demand high computational costs 

(Otero et al. 2015) and, therefore, assumptions which permit the decrease of such cost without 

compromising the accuracy are welcomed. Besides the assumptions undertaken at a meso-scale 

(§Chapter 3), there is also the possibility of using simplified but still accurate methods that 

can be implemented at a macro-scale. This is especially convenient when the macro-model is 

suitable to receive the meso-scale homogenized output. Hence, the integration of these models 

within a meso to macro homogenized formulation, i.e. where the material constitutive 

information is transferred in one step from the meso- to the macro-scale, can be very promising 

especially for the dynamic study of masonry structures.  

Some proposals can be found in the literature, as the use of limit analysis 

(Milani et al. 2006b) or the use of discontinuous or discrete FE-models instead of the classical 

macroscale continuum-FE strategies. Several works demonstrate the accuracy and 

computational efficiency of limit analysis when applied to in-plane (Milani et al. 2006b) and 

out-of-plane loaded masonry (Casolo 2006; Milani and Tralli 2011; Milani and Venturini 2011) 

but, as well, for masonry structures subjected to dynamic loads (Casolo and Milani 2013). The 

author believes that the use of advanced computational tools is of unequivocal importance and 

especially assured if time-costs are maintained as relatively low. Accordingly, the goal here is 

to prove that the proposed approach is, in the set of the more accurate advanced FE strategies, 

attractive from a computational burden standpoint. On this behalf, a novel FE2 strategy is 

presented where, aiming to effectively achieve improved running-times (in respect to a 

FE macro-modeling approach), a Rigid Body Spring Mass (RBSM) model is developed at a 



Chapter 4 

68 

macro-scale and implemented in the commercial software ABAQUS (2013) which has available 

powerful built-in procedures. 

The present chapter is organized as follows: (i) a description of the proposed approach with 

focus on the macro-scale level; (ii) a description of the discrete RBSM macro-model; (iii) a 

validation of the unit cell of the RBSM macro-model; (iv) a description of important remarks 

from a computational standpoint; and (v) main conclusions. 

4.2 Outline of the proposed approach 

A two-step numerical procedure is introduced with the aim of predicting with accuracy the 

dynamic behavior of masonry structures. The strategy makes use of a classical first-order 

homogenization scheme and is formed by three steps (Suquet 1987; Mistler et al. 2007): (i) the 

definition and solution of the meso-scale problem; (ii) the implementation of the meso-to-macro 

transition; and (iii) the solution of the macro-scale problem. The present chapter focuses on 

the macro-level, so that the meso-macro transition and the macro-scale problem solution steps 

are addressed. A discrete FE model, hereafter designated as RBSM, is applied to represent the 

macro-structural behavior. The methodology is briefly described in Figure 4.1. 

 

Figure 4.1 – Methodology of the proposed two-step numerical procedure. 

Here, the meso-scale output is considered at disposal in terms of homogenized stress-strain 

(Σ −  Ε) and moments-curvature (M − χ) curves. This information, obtained through a unit 

cell homogenized procedure, is employed at a macro-level following an upward transfer of 

information, whereas the URM structural analysis is conducted. The application of a discrete 
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system may be questionable in cases where multiphase couplings can occur, as when thermal 

or hydro-mechanical effects exist. Still, the latter can often be disregarded in structural oriented 

problems and is, therefore, eligible for the present research scope. 

Two steps are developed to achieve a correct upscaling, i.e. the scaling and regularization of 

the homogenized quantities. These appear to be critical to assure that the macro-input is 

independent of the macro-mesh. The governing conditions are referred to in the next section, 

after the introduction of the adopted macro-unit cell and the constitutive material model. 

4.3 Macroscopic unit-cell 

At a macro-scale level, the theoretical background of the RBSM model stems from the works 

of (Kawai 1977, 1978, 1991) and has been implemented in the advanced software 

ABAQUS (2013). The strategy is especially suited for the study of planar elements, i.e. for a 

three-dimensional body Ωծ ⊆ ℜϯ with one dimension much smaller than the other 

two − typically the thickness. Such an assumption is also postulated when studying a given 

structure with plate or shell FE’s and, therefore, the modelling using the RBSM approach tries 

to describe the structure using the mid-surface of the body Ωծ . Given the cartesian space and 

for the undeformed configuration it is assumed that the thickness t of the structure develops in 

the z direction (𝑧 = [− 𝑡 2⁄ ,+ 𝑡 2⁄ ]) and that the two planar coordinates are defined through the 

global coordinates x and y - see Figure 4.2. Such an assumption is important to recall bearing 

the Cartesian system adopted at a meso-scale, because an uniformization between the allowable 

macro-deformation modes and the respective meso-scale ones is convenient. As depicted in 

Figure 4.2, the horizontal bending moment M֓֓ produces a rotation along the y-axis; the 

vertical bending moment M֔֔ produces a rotation along the x-axis; an horizontal in-plane force 

F֓֓ produces a deflection in the plane 𝑧 = 0 following a path on the x-axis; and a vertical in-

plane force F֔֔ produces a deflection in the plane 𝑧 = 0 following a path on the y-axis. 
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(a) (b) 

Figure 4.2 – Macro-unit cell and kinematics of the RBSM model for: (a) the out-of-plane case; and 
(b) the in-plane case. 

The macroscopic unit-cell is composed by the assemblage of discrete quadrilateral rigid plate 

elements interconnected, at its interfaces, through a set of rigid and deformable FE truss-beams. 

The rigid plates are modeled as four linear quadrilateral elements within a finite-membrane 

strain formulation (designated as S4 element in ABAQUS). Full integration is adopted to 

preclude hourglass modes. The rigid linear elements are defined as three-dimensional 

Timoshenko FE beams (designated as B31 in ABAQUS). In this scope, the deformation and 

damage of the structure are restricted to three-dimensional two-node FE truss-beams 

(designated as T3D2 in ABAQUS), see Figure 4.3. These are comparable with spring elements 

since have just one DOF; are directly integrated; and their stiffness matrix is defined only by 

axial stiffness terms, given by 𝑑𝑖𝑎𝑔(զբ
խ

, զբ
խ

), where E is the Young’s modulus, A is the cross-

section area of the truss element and L is its length. The macro-deformation is hence governed 

only by the truss-beam elements allowing to mimic the presence of the in- and out-of-plane 

failure modes considered in Figure 4.2, within a decoupled approach. 

xxyy
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Figure 4.3 – Adopted FE truss beam with description of the in-plane (left) and out-of-plane (right) 
kinematic representation. 

Furthermore, these elements must incorporate the material information of the meso-scale 

homogenized step and thus represent the masonry texture via an equivalent continuum medium. 

Both orthotropy and full softening behavior can be accounted by properly defining the 

properties of the different truss-beam for each interface side.  

Regarding the OOP behavior, the macroscopic cell is composed of a set of four flexural and 

torsional truss-beam systems. The flexural trusses are positioned at the mid-center of 

each interface and the torsional trusses are positioned at each node of the squared rigid-plate. 

Mid-span hinges placed on interfaces allow fixing the axis of rotation for torsion movements 

without compromising the deformed shape. Regarding the IP behavior, truss-beams 

representing the axial and shear behaviors have been assumed. For the former, a total of three 

axial truss-beams per interface (two located in the edges and the other in the center) and a 

total of two shear truss-beams (defining the shear for each half length of the interface) have 

been assumed. The present study novelty focuses on the OOP characterization and the IP 

characterization is in agreement with Bertolesi et al. (2016). 

Inertial forces are paramount for describing the dynamic behavior of a structure; hence the 

mass of the system needs to be modeled. Two approaches can be pursued, i.e. a direct lumped 

mass matrix or a consistent mass matrix. The former requires the computation of the 

representative mass for each rigid-plate and its introduction through nodal mass elements on 

each of the rigid plate nodes. Here, the latter has been adopted because it allows a more 

straightforward modeling stage and is the one typically adopted for FE-based strategies. The 

mass of the system is embodied by the quadrilateral rigid plates using an equivalent material 

density which, following a linear displacement interpolation assumption, allows to achieve 

a consisted mass matrix. Still, a comparison between both strategies will be assessed in the 

macro-validation section §4.4.1. The computation of the system density 𝜌֎֔֎֏րֈ is given as 
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𝑡. 𝜌ֈռ֎֊։֍֔ 𝑡ր֌⁄ , where t is the thickness of the structure, 𝜌ֈռ֎֊։֍֔ is the density of the masonry 

and 𝑡ր֌ the thickness attributed to the rigid plates (defined as 10 mm). 

At last, it may be noticed that, since the RBSM model has been implemented using a Finite 

Element-based software, a stiffness matrix [𝛫] ∈  ℜ։×։ (n is the number of DOFs of the 

problem) has to be assembled for a given structure to compute the displacements vector 

[𝑢] ∈  ℜ։ in respect to the action of a vector of external forces [𝑓] ∈ ℜ։, through [𝛫][𝑢] = [𝑓]. 

In this scope, the plates are enforced to be rigid (for both the axial and bending cases) by 

defining a high Young’s modulus given by 10φЈ MPa (and a thickness of 10 mm). Likewise, the 

rigid linear elements are defined to have a high Young’s modulus given by 10φϵ MPa (and a 

section area of 0.1 mm2). The definition of the latter values may be questionable, as it leads 

that flexible elements of the system are connected with disproportionately stiffer ones. This can 

turn [𝛫] ill-conditioned (Kannan et al. 2014). Nonetheless, this author reports that such values 

have been properly defined having in mind such issue and that, for the stiffness values typically 

associated with concrete like materials, these can be used with no further concern. 

4.3.1 Macroscopic material constitutive law 

In classical continuum FE2 homogenized approaches (see Smit et al. (1998), Feyel 

and Chaboche (2000), Kouznetsova et al. (2001), and Mercatoris and Massart (2011)), the 

macro-material information is derived from the meso-scale at each load step. The use of a 

simplified homogenized-based approach within an upward transfer of information 

between scales, processed only once, allows reducing the processing times. Therefore, a proper 

macro-constitutive relation must be assigned to the elements which govern both the deformation 

and inelastic response of the discrete model interfaces. 

The constitutive model defined at the interfaces tries to mimic the material information 

obtained at a foregoing scale. The model should be capable to allocate the mechanical 

information and effectively represent the elastic and inelastic response of the defined masonry 

RVE. Here, an orthotropic behavior with softening is reproduced, because it derives from the 

presented homogenization strategies. This leads to the fundamental character that each phase 

has in the two-step framework. Several models can be adopted in ABAQUS (2013) as, for 

instance, the smeared crack concrete model, the brittle crack concrete model and the concrete 

damage plasticity model. These are all suitable for concrete and other quasi-brittle materials 

and eligible to be used to characterize the homogenized truss-beam systems. The concrete 

damage plasticity (hereafter, CDP) model is selected, given the better representation of the 

inelastic laws. The model combines a stress-based plasticity with a strain-based scalar damage. 
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It can reproduce several macroscopic properties for tension and compression regimes, such as: 

(i) different yield strengths; (ii) different stiffness degradation values; (iii) different recovery 

effect terms; and (iv) rate sensitivity, which can increase the peak strength value depending on 

the response strain rate. Moreover, it does consider the latter in the presence of interfaces 

dynamic and/or cyclic loading and is integrated using the backward Euler method. A general 

overview of the main features of CDP for the rate independent model are presented next, being 

the reader referred to e.g. Lubliner et al. (1989) and Lee and Fenves (1998) for further details. 

Effective stresses govern the plastic part of these models (Grassl and Jirásek 2006) and the 

stress-strain relationship is ruled, as referred, by an isotropic damage scalar affecting the elastic 

stiffness of the material. According to Eq. 4.1 the nominal stress tensor 𝝈 reads:  

𝝈 = (1 − 𝑑)𝐸Ј
րև(𝜺 − 𝜺όΰ) = E ∶ (𝜺 − 𝜺όΰ) (4.1) 

where E0
 el  is the initial elastic stiffness of the material; d is the damage parameter, which 

defines the stiffness degradation (0 for an undamaged and 1 for a fully damaged material), and 

is designated as dt and dc for tension and compression regimes, respectively; ε is the total strain 

tensor; εpl is the plastic strain tensor, and E is the initial elastic stiffness of the material affected 

by the damage parameters (the degraded initial stiffness given by E = (1 − 𝑑)E0
el ). 

Regarding the softening variables, Eq. (4.2) describes the law ℎ that express their evolution, in 

which ε̇pl is the plastic multiplier (assuming a non-associated potential flow), and ε̃pl and 𝝈࣓࣒࣒࣑  the 

equivalent plastic strain tensor and the effective stress tensor, respectively. 

𝜀 ̃֋̇և = h(𝛔࣓࣒࣒࣑, 𝛆̃֋և)ε̇όΰ (4.2) 

The CDP model uses a yield function based on the works of Lubliner et al. (1989) and Lee 

and Fenves (1998). A hardening variable 𝐾վ controls the meridians shape of the yield shape, in 

which a 𝐾վ= 2 3⁄  is assumed, leading to an approximation of the Mohr-Coulomb criterion. Three 

other dimensionless parameters need to be defined, i.e. the dilation angle Ψ, the eccentricity e, 

and the viscosity parameter. The dilation angle Ψ is measured in the p-q plane and gives the 

inclination angle of the failure surface in respect to the hydrostatic axis; from a physical 

standpoint, it represents the internal friction angle of the material. Here, a value of 30 degrees 

has been defined. The eccentricity parameter e modifies the flow potential rule, being a straight 

line if e = 0 and a hyperbola if e = 0.1. The default value, i.e. e = 0.1, has been assumed. The 

viscosity parameter is introduced to enhance the results convergence in the presence of material 

and/or geometrical nonlinearities, through a viscoplastic regularization by Duvaut and Lions 

(1972). This parameter should be treated with care as it can misrepresent the obtained results. 
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For the present RBSM model, the default value of 0 (zero) has been adopted, even though it 

has been noticed that within a quasi-static pushover analysis a value of 1 × 10−Κ can decrease 

the computational cost without apparently affecting the results. 

Since truss beams define the material behavior of the macro-interfaces, the system will 

undergo only uniaxial loading conditions and, therefore, the plastic strain rates in tension, ε̇t
pl, 

and compression, ε̇c
pl, are a function of the uniaxial plastic strain rate  ε̇11

pl , and read as: 

ε̇t
pl = ε̇11

pl   and  ε̇c
pl = −ε̇11

pl (4.3) 

Likewise and, even if the CDP has been extended for the general multiaxial conditions 

(Lee and Fenves 1998), the uniaxial character of the system may also be adopted for the cyclic 

loading analysis, which simplifies to a great extent its follow-up validation. In such cases, the 

recovery of the elastic stiffness when the sign of the imposed load changes is an important 

aspect to consider. The so-called ‘unilateral effect’ holds both in tensile and compressive sides 

of the cycle, in which, for uniaxial conditions, the damage parameter variable d is given as: 

(1 − d)=(1 − stdc)(1 − scdt) , st≥0 , sc≤1 (4.4) 

Here, 𝑠֏ and 𝑠վ are functions of the stress state which represents the referred stiffness recovery 

with the related stress reversals and are defined as: 

⎩৖
⎨
৖⎧

sϬ =  1 − ωϬr
∗(σ࣓࣒࣒࣑φφ)

sͩ  =  1 − ωͩॕ1 − r∗(σ࣓࣒࣒࣑φφ)ॖ

 (4.5) 

Here, ωt and ωc are weight factors and assumed as input material parameters for the CDP 

model and limited by 0 ≤ ωt ≤ 1 and 0 ≤ ωc ≤ 1; and r*(σ11࣓࣒࣒࣑) = 1 if σ11࣓࣒࣒࣑ > 0 or r*(σ11࣓࣒࣒࣑) = 0 if 

σ11࣓࣒࣒࣑  <  0. In concrete structures, the effect is more marked when the material is in a compression 

regime (σφφ < 0), because tensile cracks tend to close (Lee and Fenves 1998). Nevertheless, the 

aim here is to fully reproduce the homogenized behavior in both regimes and so the Bauschinger 

effect is not reproduced. Therefore, tensile and compressive elastic stiffnesses have a full 

recovery effect, which is the same than defining ωt =  1 and ωc = 1. 

To fulfill the input requirements of the CDP model in ABAQUS, information regarding the 

post-failure behavior may be introduced for each element that features material nonlinearity, 

i.e. the truss beams, in terms of stress and inelastic strain 𝜀 ̃վֆ values. The latter must be 

obtained for each point of the post-peak homogenized curve by Eq. (4.6): 

ε̃ͩή = ε − επ
΄ΰ (4.6) 
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where 𝜺۬
ۢ۩ is the elastic strain corresponding to the undamaged material and 𝜺 is the total axial 

strain of the multi-linear stress envelope. If the damage parameters 𝑑 are introduced, the 

plasticity model is thus coupled with a damage description and is suitable for the cyclic behavior 

description of the material. The plastic strain values 𝜀֋և are calculated, for each point of the 

curve, as: 

𝜀֋և = 𝜀վ֍ −
𝑑

(1 − 𝑑)

𝜎ձ

𝐸Ј
րև

 (4.7) 

Since the permanent plastic strain can be just positive or null, the latter can constitute a good 

checkpoint to foresee if the damage parameters have been properly computed. Figure 4.5 

illustrates the input used for ABAQUS, where it can be seen that several steps need to be 

undertaken to guarantee the correct readiness of the material curves by the CDP model and, 

likewise, to assure the well-posedness of the macroscale solution. Note that, for simplification 

reasons, multi-linear curves with 5-nodes beyond the peak are introduced in ABAQUS. Also, a 

small plateau near the peak strength of the curve is considered, to circumvent an abrupt 

stiffness loss and avoid potential convergence and run time problems. The adequacy of such 

approximation will be discussed in section 4.4. 

 

Figure 4.4 – Hysteretic curve adopted for the out-of-plane truss-beams (NOTE: for the in-plane truss 
beams, the tensile and compressive behaviors have different shapes which stem from the in-plane 
homogenized curves). 

4.3.2 Meso-to-macro transition 

The CDP constitutive model demands the use of stress-strain relationships as input for the 

elements which govern the behavior of the macro-model interfaces, i.e. the FE truss-beams. 
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Bearing this in mind, ad-hoc meso-to-macro transition steps are carried out with the target of 

correcting the material input to be used by these interfaces in ABAQUS, see Figure 4.5. Such 

transition is, however, only conducted after the preparation of the computational model, 

because it is dependent on the size of the used discrete mesh, particularly, on the values of H, 

e, L, t, defined below. Furthermore, squared rigid elements are assumed and so only two 

different angles are considered for the interfaces: 0 and 90 degrees. The material orthotropy is 

reproduced at a structural level because the approach offers the possibility to reproduce 

different input stress-strain relationships according to the trusses plane. For the in-plane 

behavior, the stress quantities are directly derived from the macroscopic homogenized values. 

For the out-of-plane system, the macroscopic homogenized moment values are adapted (so-

called conversion, in Figure 4.5) to follow representative stress values for the bending and 

torsional truss beams through Eq. (4.8) and (4.9): 

𝜎սր։տք։ւ ֏֍֐֎֎ =
𝑀

(𝑒.𝐴գյ֍֐֎֎)
 (4.8) 

𝜎֏֊֍֌֐ր ֏֍֐֎֎ =
𝑀

(𝐻.𝐴յյ֍֐֎֎)
 (4.9) 

Here, M is the bending moment per unit of interface length; H is the size of each square 

rigid element or plate; t is the thickness of the wall, 𝐴գյ֍֐֎֎ is the bending truss area; and 

𝐴յյ֍֐֎֎ is the torque truss area; 𝑒 is the gap between the rigid plates, which ideally should be 

zero but in practice is assumed small enough to be able to place trusses between the elements. 

 

Figure 4.5 – Schematic representation of the followed methodology to convert the homogenized 
material curves as eligible input for the CDP model in ABAQUS. 
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After the previous stage, the stress-strain curves are regularized by defining the elastic 

stiffness and fracture energy terms. The regularization step is necessary to properly 

identify the elastic stiffness of each truss beam and to guarantee the input independence from 

the macro-mesh and thus its objectivity in the nonlinear range. This is, somehow, related with 

the mesh size sensitivity issue for continuous macroscopic FE models, where the fracture energy 

terms need to be regularized by a crack bandwidth parameter 𝑙վ֍ռվֆ, as firstly documented by 

Bažant and Oh (1983). 

Through assuring the elastic energy equivalence between the discrete model and a continuum 

homogeneous plate, it is possible to derive the so-called regularization factor fr – this scaling 

operator affects the strain values of the curves that serve as input for the truss beams. Within 

a decoupled behavior, the latter is performed separately for the in-plane, axial (mode-I and 

mode-IV) and shear (mode-II) deformations, and out-of-plane modes, i.e. both flexural and 

twisting movements. In this way and, as demonstrated next in section §4.3.4, four different fr 

operators can be derived, which allow holding the energy equivalence assumption. 

4.3.3 Definition of the in-plane model 

The definition of the discrete RBSM model has two purposes, i.e. to properly identify the elastic 

stiffness of the truss-beams of the system and to eliminate any trace of mesh dependency when 

material softening exists. As stated before, the regularization of the trusses input is 

accomplished though the computation of regularization factors fr. The regularization factor is, 

for a specific truss set, given as the relation between the elastic stiffness of the associated 

homogenized meso-scale curve and the calibrated Young’s modulus. This parameter affects all 

the strains of the homogeneous stress-strain curves of the corresponding trusses. Figure 4.6 

presents the two directions of the in-plane system, i.e. the x- and y-directions; the respective 

tributary areas of each IP truss required to assess the aforementioned regularization factor; and 

the associated IP deformation modes accounted at a macro-scale.  
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Figure 4.6 – In-plane unit cell: tributary area for each truss and kinematics of each allowable 
deformation mode. 

Let us consider that 𝐸ք̅ք is the elastic modulus of the equivalent homogeneous material (࣓࣒࣒࣒࣒࣑ ) 

is the average operator and i is the corresponding axis x or y), 𝐺̅֓
֔ the shear modulus of the 

equivalent homogeneous media, V the volume of the region under study and ∆ a displacement 

increment under the studied direction. For the in-plane case, the total strain energy density is 

generically given by Eq. (4.10): 

 𝑈 =
1

2
௷{Σ}յ {𝐸} ⋅ 𝑑V
շ

 (4.10) 

Here, {Σ}յ = {Σ֓֓ Σ֔֔ Σ֓֔} and {𝐸} = {𝐸֓֓ 𝐸֔֔ 𝐸֓֔} are the homogenized stress and 

strain quantities, respectively, obtained at a meso-scale. For the mode-I, the calibrated elastic 

stiffness of each in-plane truss is derived through the stored strain energy in the volume V of 

both the discrete UͷЏϣͩϝ΄Ϭ΄
ζπͷ΄−Φ and the continuum homogenized media UͩπμϬЏμϷϷζ

ζπͷ΄−Φ . 

𝑈վ֊։֏ք։֐֐ֈ
ֈ֊տր−ժ =

𝜎𝜀

2
𝑉 =

𝐸ք̅ք𝜀
ϵ

2
𝑉 =

𝐻. 𝑡.𝐸ք̅ք

2

∆ϵ

2𝐿 + 𝑒
(4.11) 

𝑈տք֎վ֍ր֏ր
ֈ֊տր−ժ = 𝑉

𝜎𝜀

2
=

𝐻. 𝑡.𝐸քք
ք։−֋ևռ։ր ռ֓քռև ֏֍֐֎֎

2

2∆ϵ

𝑒
(4.12) 

If both energies are equated, the Young’s modulus of the in-plane axial trusses of a macro-unit 

cell for each plane direction (if orthotropy is considered) are derived and reads as: 
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𝐸֓֓
ք։−֋ևռ։ր ռ֓քռև ֏֍֐֎֎ =

𝐸̅֓
֓𝑒

4𝐿 + 2𝑒
 (4.13) 

𝐸֔֔
ք։−֋ևռ։ր ռ֓քռև ֏֍֐֎֎ =

𝐸̅֔
֔𝑒

2(𝐻 + 𝑒)
 (4.14) 

The same methodology is followed for the mode-II trusses, namely the in-plane shear trusses. 

The stored strain energies of the continuum and discrete model are: 

𝑈վ֊։֏ք։֐֐ֈ
ֈ֊տր−ժ =

𝐻. 𝑡.𝐺̅֓
֔

4

∆ϵ

2𝐿 + 𝑒
(4.15) 

𝑈տք֎վ֍ր֏ր
ֈ֊տր−ժժ =

𝑒. 𝑡.𝐸֓֔
ք։−֋ևռ։ր ֎փրռ֍ ֏֍֐֎֎∆ϵ

𝐻
(4.16) 

And, consequently, the Young’s modulus of the in-plane shear trusses are given by: 

𝐸֓֔
ք։−֋ևռ։ր ֎փրռ֍ ֏֍֐֎֎ =

𝐺̅֓
֔𝐻

ϵ

4𝑒(2𝐿 + 𝑒)
 (4.17) 

For more details regarding the IP formulation, the reader is referred to Bertolesi et al. (2016). 

Again, the main novelty of this work focuses on the OOP formulation and its proper integration 

with the IP case. 

4.3.4 Definition of the OOP model 

As for the IP model, the variational principles of energy conservation and virtual displacements 

were followed to derive the discrete elastic stiffnesses. The regularization factor of the OOP 

truss beams system is then obtained as the ratio between the strain bending energies of the 

discrete (UͷЏϣͩϝ΄Ϭ΄
ͣ΄μͷЏμΜ) and continuum (UͩπμϬЏμϷϷζ

ͣ΄μͷЏμΜ ) plate media. The UͩπμϬЏμϷϷζ
ͣ΄μͷЏμΜ  is derived from 

Eq. (4.18): 

𝑈 =
1

2
௷

𝑀ϵ

𝐸𝐼
և

𝑑𝑙 (4.18) 

and given by: 

𝑈վ֊։֏ք։֐֐ֈ
սր։տք։ւ =

1

2
ि𝐸ք̅ք𝐼ी𝜒ϵ(𝐻 + 𝑒) =

𝐸ք̅ք𝐻𝑡ϯ

24(1 − 𝜈ϵ)
(𝐻 + 𝑒) (4.19) 

The stored strain bending energy of the discrete system is derived through an ad-hoc 

formulation. Bearing that the strain of the axial out-of-plane truss-beams is 𝜀 = 𝜃𝑒
𝑡ੲ  and 𝜃 =

𝜒(𝐻 + 𝑒), UͷЏϣͩϝ΄Ϭ΄
ͣ΄μͷЏμΜ is given as (see Figure 4.7): 

𝑈տք֎վ֍ր֏ր
սր։տք։ւ =

1

2
𝑀𝜃 =

1

2

𝐸քք
սր։տք։ւ ֏֍֐֎֎𝐴֏𝑒

𝑡
𝜃ϵ (4.20) 
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By equating UͩπμϬЏμϷϷζ
ͣ΄μͷЏμΜ = UͷЏϣͩϝ΄Ϭ΄

ͣ΄μͷЏμΜ the correct Young’s modulus of the OOP flexural trusses is 

calculated according to Eq. (4.21): 

𝐸քք
սր։տք։ւ ֏֍֐֎֎ =

𝐸ք̅ք𝑡
Κ𝐻

24𝑒(1 − 𝜈ϵ)(𝐻 + 𝑒)𝑒𝐴֏

 (4.21) 

For the twisting movement, the same procedure is followed. Briefly, the stored strain torsional 

moment energies of the discrete and continuum homogeneous media are given by Eq. (4.22) 

and (4.23), as follows: 

𝑈վ֊։֏ք։֐֐ֈ
֏֊֍֎ք֊։ռև =

𝐺𝐻̅𝑡ϯ𝜃ϵ

24(2𝐿 + 𝑒)
 (4.22) 

𝑈տք֎վ֍ր֏ր
֏֊֍֎ք֊։ռև =

𝐸֏֊֍֎ք֊։ռև ֏֍֐֎֎𝑒𝐻ϯ𝜃ϵ

16𝑡
(4.23) 

where 𝐺̅ is the homogenized shear Modulus given directly by the slope of the shear meso-scale 

homogenized curve. Thus, by respecting the energy equivalence between the systems, the 

correct Young’s modulus of the torque trusses is defined through Eq. (4.24). 

𝐸֏֊֍֎ք֊։ռև ֏֍֐֎֎ =
2𝐺𝑡̅Κ

3𝐻ϵ𝑒(2𝐿 + 𝑒)
 (4.24) 

Consider, for instance, that 𝚬࣪ = [𝜀φ 𝜀ϵ  ⋯ 𝜀։−φ 𝜀։] and 𝚺ࣴ = [𝜎φ 𝜎ϵ  ⋯ 𝜎։−φ 𝜎։] are the 

n-dimensional sets which define, respectively, the stress-strain homogenized curve being 

regularized (n is the number of points of the curve). The correct elastic stiffness value, obtained 

through the energy equivalence demonstration, is computed for the point of the curve which 

has one third of the peak stress value, designated as point p. So, the regularization factor is 

generally given as 𝑓֍ = 𝜎֋ (𝜀֋𝐸վ֊֍֍րվ֏րտ)⁄ . Here, 𝐸վ֊֍֍րվ֏րտ is the corrected Young’s modulus 

obtained for each truss type. This procedure is followed and, consequently, four regularization 

factors are derived. By correcting the strain axis to calibrate the elastic stiffness value, the 

operator affects, as well, the post-peak curve strains and so, in an implicit way, the fracture 

energy itself. 

Figure 4.7 represents the OOP basic cell of the macro-scale system. The geometrical 

parameters and the respective tributary areas for each of the flexural and torque trusses are 

given. Also, the kinematics of each allowable deformation mode is associated with a 

homogenized moment quantity.  
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Figure 4.7 – Out-of-plane unit cell: the tributary area for each truss and kinematics of each allowable 
deformation mode. 

4.4 Macro-mechanical validation: OOP behavior of masonry 

The mechanical validation of the macro-unit cell for the study of the OOP behavior of masonry 

is presented next. Since the seminal works of Irons (1966), Irons and Razzaque (1972), and 

Irons and Loikkanen (1983), conducting patch tests become a regular step when presenting 

novel finite elements, see Macneal and Harder (1985), Zienkiewicz and Zhu (1992), 

Hughes et al. (2005), Taylor et al. (2018) and Rao and Shrinivasa (2001) for a review. 

Zienkiewicz and Taylor (2000) stated that, in plate problems, the ‘importance of the patch test 

in both design and testing of the elements is paramount and this should never be omitted’.  

Even if patch tests may be a trivial formality for standard finite elements, because of the 

shape functions continuity requirements, one may note their usefulness as a debugging step for 

code implementation. In this sense, some tests of comprehensiveness are employed over the 

novel macroscopic unit-cell discrete RBSM element aiming to assess the reliability and 

convergence of the solution in elastic and inelastic problems for static and dynamic ranges. 

4.4.1 Linear range 

Performance tests have been conducted to attest the ability of the model in (i) elasticity 

problems, and (ii) in vibration analysis, through the eigen-modes frequencies and deformed 

shapes. 
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Elasticity Problems 

Concerning elasticity problems, the test addresses simple structural examples, namely a squared 

plate subjected to different loading and boundary conditions. The convergence of the discrete 

macro-model has been assessed by comparing the maximum elastic displacement obtained 𝑤 

with the exact solution 𝑤ր֓ռվ֏ for different mesh refinement levels N.  

The squared plate benchmark with size L belongs to the set of patch test proposed by Rao 

and Shrinivasa (2001). Aiming to especially serve as a reference test for plate bending elements, 

a thickness equal to 𝐿/100 is assumed which approximates well thin-plate solutions. Two 

squared plates, one with pinned (PPPP) and the other with clamped supports (CCCC) at its 

edges, are subjected to a point and a pressure load. The maximum deflection obtained at the 

center of the plate is, for each case, normalized with the exact theoretical solution and presented 

in Figure 4.8. Although the discrete element apparently behaves better in the presence of simply 

supported edges, which is to be expected given the lower gradients of curvature, the load type 

seems to have a further extent on the solution accuracy. In fact, the model can better reproduce 

the point load behavior due to its localized effect; this goes in favor with the data from the 

RBSM model developed by Kawai (1977). Globally, a refinement of 𝑁 = 15 (𝐻 = 𝐿/15) is a 

proper choice allowing estimations within 10% of maximum deflection error.  

 
Figure 4.8 – Convergence study conducted for the squared plate test. 

The plate benchmark test is inexpensive to carry out and, therefore, a time-cost analysis has 

been disregarded. The value of the errors found are admissible and in agreement with typical 

simplified mixed-FE strategies, as the RBSM by Kawai (1977) and the Hermann-Hellan 

constant-stress-triangular elements adopted by Turco and Caracciolo (2000). Hence, it has been 

considered that the discrete element passed the elastic patch tests. Besides the simplification 

adopted for the decoupled flexural-torsional behavior, it may be emphasized that the deviations 
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found, especially when clamped supported edges exist, are expected. Quadrilateral elements are 

adopted which restrains the model adaptability and deformability near cornered regions. A 

mesh-bias exist near the supports which explains why the model gives stiffer responses for the 

clamped edges cases; i.e. no deformation exists within a distance from the border given by the 

mesh size H. Moreover, the analyses can give a good indicator of the more appropriate 

refinement level adopted for the discrete mesh. A higher refinement is recommended for clamped 

edges (𝑁 = 𝐿/16) than simply supported edges (𝑁 = 𝐿/12). 

Vibration Analysis 

Free vibration analysis is conducted in a simply supported squared plate. The plate is isotropic 

and exhibits uniform thickness t and mass density values𝜌. The free harmonic vibration of a 

thin plate is governed by the following differential equation: 

𝐷∇Κ𝑤(𝑥, 𝑦) − 𝜔ϵ𝜌𝑡𝑤(𝑥, 𝑦) = 0 (4.25) 

Here, 𝑤(𝑥, 𝑦) is a given mode in the cartesian space, ∇Κ is the biharmonic differential operator 

in Cartesian coordinates, i.e. 𝜕ϵ/𝜕𝑥ϵ + 𝜕ϵ/𝜕𝑦ϵ, and D is the bending stiffness given as 

𝐸𝑡ϯ/12/(1 − 𝜐ϵ). For the present example, a squared plate simply supported at its four edges, 

the solution of the vibration mode shapes has been formulated by Navier (1823): 

𝑤(𝑥, 𝑦) = 𝐴ֈ։sin ঁ
𝑚𝜋𝑥

𝑎
ং sin ঁ

𝑛𝜋𝑦

𝑎
ং  , (𝑚,𝑛 = 1,2,… ) (4.26) 

in which, 𝐴ֈ։ is the amplitude of vibration (which are the unknown coefficients), m is the 

number of half waves in the x-direction, n is the number of half waves in the y-direction, and 

𝑎 is equal to the length L of the squared plate side. By replacing the equation (4.26) in the 

differential equation (4.25), one obtains the exact solution for the vibration of frequencies in 

terms of the parameters m and n: 

𝜔 = ఌ
𝐷

𝜌𝑡
 ইঁ

𝑚𝜋

𝐿
ং

ϵ

+ ঁ
𝑛𝜋

𝐿
ং

ϵ

ঈ (4.27) 

By adopting different values for the integer parameters m and n, the theoretical and exact 

frequencies of the first 8 modes have been derived, see Table 4.1. For the discrete model, since 

it relies on a FE-based strategy, the natural frequencies and mode shapes have been obtained 

through the following matrix (weak) form equation: 

([𝐾] − 𝜔ϵ[𝑀]){𝑤} = 0 (4.28) 
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Here, [K] and [M] are the global stiffness and mass matrices. The mass of the discrete system 

is only carried by the rigid plate elements by providing a representative density value 𝜌֎֔֎֏րֈ. 

A uniform mass distribution is assumed to assemble [M], which can be achieved through a 

lumped or consistent strategy. The lumped strategy admits that the mass of the rigid plate is 

lumped in its nodes. Although only translational nodal mass elements are introduced in the 

system, disregarding thus the rotational inertias and mass coupling, the mass lumping allows 

obtaining a diagonal matrix. In the consistent strategy, mass is distributed in the rigid plates 

following a linear interpolation rule, as when computing the local stiffness matrix, and both 

translational and rotational inertias are accounted.  

Towards a convergence study, four mesh refinements have been considered: 𝑁 = 4, 𝑁 = 8,

𝑁 = 16 𝑎𝑛𝑑 𝑁 = 30. A thickness value of L/10 and a gap spacing between the discrete cells of 

𝑒 = 20 𝑚𝑚 have been admitted. Furthermore, the analysis is complemented with the results 

from a standard continuum FE model (with a mapped mesh, element size of 𝐿/30 and with a 

consistent mass matrix) designated as FEA. The results have been gathered in Table 4.1 in 

terms of the normalized solution with the associated exact analytical angular frequency. 

Table 4.1 – Convergence study: normalized natural frequencies (𝜔/𝜔ր֓ռվ֏) found for the proposed 
macro-model and for a standard FEA. 

M
od

e 

Proposed model  
(Lumped) 

Proposed model 
(Consistent) FEA 

N=30 
Exact 

(rad/s) 
m n 

N=4 N=8 N=16 N=30 N=4 N=8 N=16 N=30 

1 1.276 1.094 1.026 1.025 1.244 1.088 1.064 1.024 1.000 19.739 1 1 
2 1.382 1.085 1.037 1.037 1.302 1.069 1.064 1.034 1.000 49.348 1 2 
3 1.382 1.085 1.037 1.037 1.294 1.069 1.064 1.034 1.000 49.348 2 1 
4 1.499 1.129 1.036 1.028 1.371 1.103 1.073 1.031 1.001 78.957 2 2 
5 1.405 1.088 1.047 1.045 1.276 1.053 1.063 1.039 1.000 98.696 1 3 
6 1.475 1.084 1.046 1.045 1.218 1.049 1.061 1.039 1.000 98.696 3 1 
7 1.569 1.143 1.045 1.038 1.356 1.099 1.075 1.036 1.001 128.30 3 2 
8 1.569 1.143 1.045 1.038 1.355 1.099 1.075 1.036 1.001 128.30 2 3 

According to the h-refinement dependency verified in the elasticity problems considered 

before, higher mesh refinements inevitably lead to lower errors. Yet, a mesh size of L/16 

provides solutions with an error lower than 5% (lumped approach) and, therefore, seems to 

constitute a sufficient refinement choice for larger case studies. A consistent mass matrix 

strategy yields more accurate eigen-frequency contents than the lumped one; that is especially 

clear for coarser meshes in which significant differences have been found (higher than 20%). On 

the other hand, the modal deformed shapes depicted in Figure 4.9 indicate that all the 

discretization fit the FEA results up to the first four modes. After that, coarser meshes are 
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unable to catch higher modal responses, due to the implicit mechanical arrangement of the 

quadrilateral rigid elements. Nonetheless, the higher refinement (𝐿/30) reproduces well all the 

modal displacements. At last, it may be pointed out that the choice between the best approach 

to distribute the mass matrix is arguable, because the accuracy depends on the mesh refinement, 

but a consistent strategy is adopted hereafter. 

 Proposed Discrete FE model FEA 
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Figure 4.9 – Deformed shape of the first eight vibration modes obtained with the proposed model 
and in a FEA. 
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4.4.2 Nonlinear range 

The main purpose of this section is to briefly assess if the nonlinear homogenized curve that 

serves as input for the Concrete Damage plasticity (CDP) model is properly attributed. This is 

accomplished by attesting if the CDP adopted for the macro-interfaces leads to the expected 

static behavior but, as well, to verify the hysteretic behavior. An ad-hoc simple case study is 

used for both purposes, namely a vertical masonry wall simply supported in its bottom and top 

edges and subjected to a centrally prescribed displacement, as depicted in Figure 4.10a. 

 
 (a) (b) 

Figure 4.10 – Nonlinear validation of the macro-constitutive model with out-of-plane loaded wall: 
(a) discrete system representation; (b) displacement control for the uni- and bi-directional cyclic 
loading. 

Quasi-static (monotonic) nonlinear curve 

The first conceptual verification is performed through a quasi-static analysis where an OOP 

displacement has been applied at the center of the wall. The goal is to prove that the meso to 

macro transition is well performed and thus prevents mesh dependent results. The adopted 

homogenized in-plane curves Σ֔֔ − Ε֔֔ (designated as the principal quantities Σϵϵ − Εϵϵ) are 

depicted in Figure 4.11 and the homogenized vertical bending moment M22 (designated as the 

principal stress couple, equivalent to Myy) is obtained through-the-thickness integration of the 

wall using a Kirchhoff-plate theory.  
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Figure 4.11 – Procedure for integrating the homogenized vertical stress-strain curves on the masonry 
thickness aiming to obtain the homogenized vertical bending moment curve for the benchmark test. 

Following the meso-macro transitions steps addressed in section 4.3.2, the calibrated and 

regularized 𝜎 − 𝜀curves required for the vertical flexural truss beams have been identified for 

the present case study and gathered in Table 4.2. The quasi-static analysis allowed to reach 

the wall structural response whose capacity curve in terms of bending moment-curvature is 

represented in Figure 4.12 and compared with the expected one (M22 homogenized curved for 

an 𝐿 = 400 mm). The results have shown that the strategy is well implemented and that 

adopting a simplified 6-node curve is adequate, since the stored bending energy difference is, 

between the obtained and the theoretical curves, less than 1%.

 
Figure 4.12 – Quasi-static test: expected vs 
obtained bending moment capacity curve. 

 
Table 4.2 – Input 𝜎 − 𝜀curves for the CDP 
model. 

Cracking 
Strain (-) 

Stress 
(MPa) 

Damage scalar 
d (-) 

0.00E+00 9.61 0.0 
5.06E-05 9.41 0.20 
2.11E-04 5.57 0.42 
3.49E-04 4.03 0.58 
6.09E-04 3.36 0.65 
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Uni-directional cyclic loading 

In classical plasticity theory, three main features are of utmost importance, i.e. the 

yield criterion, the flow rule and the hardening/softening rule (Lubliner et al. 1989). Here, a 

Mohr-Coulomb yield failure envelope and a non-associated flow rule have been assumed. For 

the hardening rule, the model depends on the definition of cracking strains associated with 

given effective stresses. It is the purpose of the uni-directional cyclic test to verify if the latter 

is well reproduced for a cyclic type of loading. Towards the latter, the same case study of Figure 

4.10 has been used.  

The process of strength deterioration is itself the pure representation of the softening rule 

evolution (Lubliner et al. 1989). Figure 4.13 shows that the obtained skeleton curve using the 

CDP model fits the expected quasi-static curve. The masonry strain-softening is exhibited as 

needed for cohesive-frictional materials. 

 
(a) (b) 

Figure 4.13 – Uni-directional cyclic behavior: (a) comparison between a pure plasticity model and 
the damage plasticity (CDP) model; (b) damage scalar d evolution for the damage plasticity (CDP) 
model (NOTE: Only the positive moments are plotted, i.e. the part of the unloading branch for 
negative bending moments has been disregarded for the sake of readiness). 

Furthermore, a damage model is coupled with the plasticity one, i.e. the softening rule is 

interpreted through an isotropic damage variable d which is, by itself, function of the equivalent 

plastic strains and thus its value never decreases. Stiffness degradation of the material after 

cracking should be accounted for. Figure 4.13a shows a comparison between the present CDP 

model and a pure plasticity model with absence of stiffness degradation. On one hand, both 

phenomenological representations allow to achieve permanent material plastic deformations, 

but these are higher if a total plasticity model with initial unloading stiffness is adopted (known 

to be too conservative). On the other hand, the appearance of plastic strains is a manifestation 

of inelastic behavior and, as Figure 4.13b proves, its evolution follows the expected path 
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(see Table 4.2) reaching a constant value after the ultimate strain threshold limit, 

correspondent to a cracking strain of 6.09E-04, in which the residual strength is defined and 

thus damage remains constant. 

Bi-directional cyclic loading 

The last test covers the bi-directional cyclic loading response of the outlined case study of 

Figure 4.10. The goal is to see if the expected hysteretic behavior of the flexural truss-beams is 

properly reproduced. Both positive and negative vertical bending capacities are similar, hence 

both the truss-beams ft1 and ft2 (see Figure 4.10) need to trace the same behavior. This is, in 

fact, sustained by Figure 4.14a where the Cauchy stress 𝜎φφ faced in both flexural trusses are 

similar in magnitude and, owing to the binary of the bending force, have an opposite signal.  

Regarding the hysteretic behavior, after completion of the first cycle (A→F, 𝑡 = 2.25𝑠), as 

depicted in Figure 4.14c, the tensile peak is reached at A and the first tensile unloading branch 

initiates at B with a stiffness given by 𝐸գ = (1 − 𝑑֏
գ)𝐸Ј until C. The first compressive re-loading 

branch starts at C with a stiffness 𝐸Ј, since a value of 1 has been defined for the recovery 

parameter 𝜔վ and so, as predictable, the maximum compressive stress at D reaches the same 

magnitude than A, i.e. the maximum quasi-static envelope. In the same manner, the unloading 

branch (E→F) has a stiffness given by (1 − 𝑑վ
զ)𝐸Ј, and the first re-loading tensile branch (F→G) 

the same stiffness than the last unloading tensile branch (B→C). This is equivalent for the first 

reloading compressive regime I→J, which follows the same path than the last unloading phase 

E→F. It is also noticeable that H and L have the same (in magnitude) axial stress 𝜎φφ than the 

last point of the quasi-static envelope. The material constitutive behavior formulation defines 

as minimum stress, or the designated residual strength, to be the last effective stress given as 

input, see Table 4.2. Thus, after reaching the point H, the damage parameter remains stationary 

(Figure 4.14b). 

It has been demonstrated that the cyclic behavior is reproduced as it was expected and thus 

the proposed test has been passed. Both positive and negative vertical bending moments are 

represented (truss ft1 and ft2). It may be highlighted, again, that the latter holds true 

because total recovery effects have been defined for tensile and compressive regimes (𝜔֏ = 1 and 

𝜔վ = 1). Furthermore, the model exhibits the capacity of allocating in memory the damage 

variables, for both the preceding tensile and compressive cycle of each flexural truss-beam, 

allowing thus the calculation of the onward un(re)-loading cycle. 
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(a) (b) 

 
(c) (d) 

Figure 4.14 – Uniaxial cyclic loading: (a) Cauchy stress 𝜎φφ for the flexural truss beams; (b) Damage 
parameter d evolution for the flexural truss beams; (c) Vertical bending moment-curvature for the 
first cycle; and (d) Vertical bending moment-curvature for the second cycle. 

4.5 Computational features and CPU parallelization 

Selected computational features related to the RBSM model and its application on the advanced 

software ABAQUS are addressed next. It has been seen that the macro-scale behavior arises 

from the deformation of in- and out-of-plane truss beams which carry the information of the 

foregoing meso-scale. The advantages of restricting to linear elements the macro-response is 

especially related to its simplicity and one-dimensionality of the constitutive equations, cyclic 

behavior, strength domain, inelastic strain evolution laws, and damage evolution and tracking 

(closure-opening crack states).  

The use of an advanced structural analysis software at a macro-scale, such as ABAQUS, 

brings clear benefits. In cases where a given instability renders a not purely positive definite 

stiffness matrix, the traditional equation solving strategies (as the Newton-Raphson, modified 

Newton-Raphson or secant methods) are unable to give a solution. In such situations, the 

software is robust because a modified Riks method (based in the works of Riks (1979, 1984)) is 
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at disposal. Such strategy combines a linear equation solver method as the Newton-Raphson 

algorithm with an arc-length algorithm (Crisfield 1981; Powell and Simons 1981) to overcome 

snap-back and snap-through issues; especially important for the present study when conduction 

quasi-static analysis in which material non-linearities are active. 

A remark on the effectiveness of the FE static equation solver in terms of time costs and 

required RAM memory is also important to be stated. The bandwidth dimension of the global 

stiffness matrix [K], i.e. the number of columns from the diagonal to the last non-zero value 

along a row, has a high influence on the latter. Its minimization by using sparse matrixes is 

well-documented since the last century (Bathe and Wilson 1973; Collins 1973) with several 

algorithms being developed (Cuthill and McKee 1969; Bathe and Wilson 1974; Amestoy et al. 

2004; Mafteiu-Scai 2014; Pop et al. 2014). A brief test consisting of a masonry wall subjected 

to a distributed load, and within a linear elastic analysis, has been developed. A refined mesh 

of 21 × 47 rigid quadrilateral elements represents the wall. Two algorithms for the mesh 

renumbering have been employed: (i) a geometric-based algorithm, whereas the mesh nodes are 

numbered according to a defined direction vector (length with higher dimension); and (ii) a 

tree-structured sparsity algorithm, in which the connectivity between adjacent elements is 

considered. The results are gathered in Table 4.3, whereas the differences between the models 

with and without a node reordering focus on the required physical memory. The computational 

time difference is negligible. Yet, the difference of 0.1𝑠 could be more relevant within a nonlinear 

quasi-static analysis, since several steps (and iterations) need to be solved. 

Table 4.3 – Performance test on a masonry wall model (21 × 47 elements) for two mesh numbering 
algorithms. 

Numbering algorithm None Geometric Tree  
CPU total time (s) 4.3 4.2 4.2 

Optimum physical memory RAM (Mbytes) 18.4 16.2 16.1 

Exploring the issue of the most efficient algorithm available in the literature is especially 

convenient for very large-scale structures; where powerful pre-processors software as 

ANSA (2017) can be used. Here, even if the performed test is simple, it aims to raise the reader 

awareness (or the discrete-model FE user) for the importance of using a renumbering strategy 

after the modeling stage. To cope with the concern of improving computational efficiency, 

ABAQUS offers a renumbering algorithm based on a geometrical method. This seems suitable 

for the dimension of the structural problems involved in the present thesis and in cases where 

a dominant length direction exists. 



Chapter 4 

92 

For dynamic analysis, the macro-system equilibrium can be solved using an implicit or 

explicit scheme, because both are eligible to be used in the software. Here, two main reasons 

support the selection of an implicit procedure. The first concerns the modeling of the inertial 

mass system which is achieved by assigning a representative density value for the rigid-plates 

only. In opposition to an implicit scheme, which can handle such assumption, an explicit solver 

demands the insertion of density values for all the elements, which would in one side turn the 

modelling more complex and, in the other, compromise the stability and representativeness of 

eigenvalues problems due to the local modal effects if truss-beam elements have an associated 

mass.  

The second reason is linked to the intrinsic nature of each procedure. The explicit solver 

requires the use of considerable small time increments to avoid a system misrepresentation, i.e. 

suffers from a time-step solution bias. Its use is largely recommended for many problems due 

to its stability, as fast-dynamic problems or when interfaces contact exist (Hilber et al. 1977; 

Belytschko et al. 1984; Burnett et al. 2007a; Rafsanjani et al. 2015a). Bearing that the general 

scope of the approach is the seismic study of masonry structures, the earthquakes have a signal 

in the range of seconds. In case an explicit solver is used, it may lead to long and prohibitive 

processing times and, as well, the demand of a larger disk storage space. Conversely, an implicit 

procedure allows larger time increments with the setback that a converged solution must be 

found for each iteration. 

Finally, the code is also adapted to calculate the macro-level response within parallel 

computing and on graphical processing units (GPU). This has a special interest to speed-up 

the processing times for dynamic or large-scale problems (Kruis et al. 2016; Krejčí et al. 2017) 

but obviously depends on the machine at disposal. Here, only the former has been explored as 

it will be described in the next chapter. 

4.6 Summary 

The present chapter focus on the macro-scale formulation of the proposed two-step strategy in 

the software (ABAQUS 2013). The coupling between the meso-scale models with the discrete 

FE-based strategy (namely, RBSM or Rigid-Body-Spring-Mass) has been also referred. The 

RBSM strategy is composed by quadrilateral rigid plates interconnected at its interfaces by a 

set of in- and out-of-plane FE truss-beam systems. More care has been given to the OOP (Out-

Of-Plane) behavior since the IP (In-Plane) one derives from an already existing study. One 

dimensional elements only (the truss FE-beams), through a concrete damage plasticity model, 

can mimic the homogenized material data and govern the macro-deformation and damage of 
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the media. The well-posedness of the solution found is guaranteed by a regularization step 

which corrects the fracture energies of the stress-strain input curves according to the defined 

macro-mesh dimensions. 

Validation and convergence tests have been performed to ascertain that the RBSM 

macroscopic model fulfills the requirements for: (i) elastic problems; (ii) eigenvalue problems; 

and (iii) nonlinear problems for monotonic and cyclic loading cases. The tests proved that the 

discrete model responds well to the convergence tests in both static and dynamic ranges. 

Likewise, it has been concluded that a refinement level given by L/15 (L is the length of the 

wall side being meshed) seems a reasonable choice for the mesh size to conduct a structural 

analysis if a sensitivity test is not performed. Computational recommendations have been also 

very briefly addressed, as the use of the arc-length method for nonlinear quasi-static tests and 

a renumbering algorithm to take full advantage of the computational capacity. 

Lastly, it is worth noting that a decoupled characterization of flexural and torsional actions 

is adopted. Whilst such decoupling is certainly an approximation, it proved to be reliable, at 

least for levels of membrane pre-compression lower than the masonry compressive strength. In 

cases where pre-compression states are considerable, the results should be analyzed with more 

care, due to its potential non-conservative character. Furthermore, the procedure possesses a 

ubiquitous feature at a macro-scale, noting that the RBSM model can be implemented in any 

FE software, to any structural application and, more importantly, to be used by both 

professionals and researchers. 
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Chapter 5 
5 Multi-scale out-of-plane static and dynamic analysis 

of masonry: applications 

5.1 Introduction 

This chapter addresses the application of the two-scale numerical procedure for the analysis of 

Unreinforced Masonry (URM) structures. The two levels of analysis described in §Chapter 3 

and §Chapter 4, i.e. the meso- and macro-scales, are herein coupled. Accordingly, the behavior 

characterization of the complex morphology of masonry is performed in a scaled-down model 

via a homogenization process. The computed data, which is able to represent the material 

anisotropy and full-softening regime, is used to represent the structural behavior of the masonry 

through a discrete Rigid Block Spring and Mass (RBSM) model.  

The numerical strategy may provide an accurate prediction of the masonry behavior with a 

very attractive computational time cost. Since URM structures are rather vulnerable to undergo 

failure due to out-of-plane (OOP) mechanisms, several case studies have been carefully 

selected aiming to demonstrate the capability of the strategy. In this regard, the application of 

the two-scale numerical procedure is presented next and with the following outline: (i) static 

analysis of OOP loaded masonry walls in two-way bending; (ii) static and dynamic analysis of 

a URM structure subjected to a unidirectional seismic input; and (iii) the dynamic analysis of 

a URM parapet subjected to a vehicle-type impact load.  

A brief overview of the problem is given for each of the selected case studies. The modelling 

and material assumptions considered are also detailed and the treatment of the results is carried 

out to allow a comparison with the experimental data at disposal. Results from other numerical 

frameworks are, when possible, used to complement the study. 

5.2 Quasi-static analysis 

5.2.1 Overview 

Quasi-static analyses are performed next accounting for available experimental data of 

windowed and full panels in two-way bending. The panels from the studies of 

Gazzola and Drysdale (1986) at the University of McMaster and Chong et al. (1994) at the 

University of Plymouth are discussed here to show the capabilities of the procedure proposed. 

These traditional experimental tests for the study of the out-of-plane behavior of masonry 

panels use air-bags to apply the load. A constant normal pressure is thus transferred to the 



Chapter 5 

96 

masonry and, since it is gradually incremented, a quasi-static type of numerical analysis can be 

employed. Global pressure-displacement curves and crack patterns are available from the 

experimental campaigns. Numerical data from other numerical strategies is also at disposal.  

5.2.2 McMaster university panels 

The first masonry panels being analyzed are built with hollow concrete blocks with a      

running-bond texture and belong to the experimental campaign performed at the University of 

McMaster by Gazzola and Drysdale (1986). Although a total of five panels have been 

experimentally tested, only the panels designated as WF, WII and WPI are covered here, see 

Figure 5.1. Panel WF is simply supported in three edges and free in its top edge. Panels WII 

and WPI are geometrically alike, but an in-plane confining pressure of 0.2 N/mm2 has been 

applied in the latter before and during the out-of-plane loading history.  

The dimensions of the bricks are 390 × 190 × 150 mm3 and the thickness of the joints is 

10 mm. Information concerning the assumed material and mechanical properties is reported in 

Table 5.1, which have been used at a meso-scale following a Kirchhoff-plate theory. The 

inelastic properties adopted for the masonry components have been derived from the composite 

material data reported by Gazzola and Drysdale (1986) (cf. section 3.5.2). The properties’ 

identification led to a horizontal and vertical flexural strength value of 𝑓֏֓  =  0.92 (N/mm2) 

and 𝑓֏֔ =  0.37 (N/mm2), respectively. The elastic properties are unavailable and thus assumed 

to be equal to the ones adopted by Lourenço (2000), with an orthotropy ratio of two and a 

Poisson’s coefficient of 0.2.  

 

Figure 5.1 – Description of the geometry and boundary conditions of the masonry panels out-of-
plane loaded at University of McMaster by Gazzola and Drysdale (1986). 
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Gazzola and Drysdale (1986) prepared three setups for each panel configuration, which have 

been out-of-plane loaded (uniform pressure p) until failure. Even though only the average 

collapse loads are reported in Gazzola and Drysdale (1986), the results’ discussion addresses 

also the obtained capacity curves for the panels WI, WII and WPI. Figure 5.2 illustrates a 

comparison over the global force-displacement curves obtained through the present model and: 

(i) the average experimental collapse load (McMaster university data), (ii) an anisotropic 

macroscopic model by Lourenço (2000) and (iii) an upper and lower bond limit analysis by 

Milani et al. (2006). 

Table 5.1 – Material properties adopted for the McMaster panel: elastic properties adopted for the 
homogeneous RVE and the inelastic properties of the mortar joints interfaces. 

Elastic properties of the homogeneous RVE 

Exx  Eyy  Gxy  xy
ν  

5000 
(N/mm2) 

10,000 
(N/mm2) 

3125 
(N/mm2) 

0.2 
(-) 

 
Inelastic properties (mortar joints interfaces) 

tf  cf  c  tan( )  Ψ 
I

fG  II

fG  IV

fG  

0.15 
(N/mm2) 

20.0 
(N/mm2) 

0.38 
(N/mm2) 

0.577 
(-) 

45.0 
(deg) 

0.018 
(N/mm) 

0.04 
(N/mm) 

4.00 
(N/mm) 

A refined mesh size of 100 mm has been adopted, with a total of 1196 discrete elements for 

each panel (each discrete element has 4 quadrilateral rigid plates). Table 5.2 resumes the 

identification of the Young’s modulus values for each macro-truss of the discrete model 

proposed.  

Table 5.2 – Elastic identification of the discrete macro-model for the McMaster panels with a refined 
mesh of 100 mm size. 

Elastic Parameters - Discrete macro-model (H=100 mm; e=20 mm) 

Eflexural truss xx Eflexural truss yy Etorque truss xy Etorque truss yx Aflexural truss ATorque truss 

457,763.67 
(N/mm2) 

915,527.34 
(N/mm2) 

43,945.31 
(N/mm2) 

43,945.31 
(N/mm2) 

1000 
(N/mm2) 

1000 
(N/mm2) 

The capacity curve calculated for a point located in the center of the free edge of the panel 

WF is observed in Figure 5.2a. An acceptable difference of 11% is reached between the obtained 

peak capacity and the experimental failure load. Moreover, a good agreement is found for both 

the elastic response and capacity, when compared with the results from the anisotropic model 

of Lourenço (2000). Nonetheless, the post-peak regime is rather different, being the response of 

the proposed model less ductile, possibly justified by the lower tensile fracture energies adopted. 
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The onset of cracking is initiated near the center of the panel at its bottom half. The cracking 

pattern at the peak is well marked by a horizontal crack and some damage due to torsion near 

the two bottom corners exist, see Figure 5.3a. In the post-peak branch there is a higher 

redistribution of stresses, being possible to catch a well-defined yield-line type of failure for a 

displacement of 20 mm, see Figure 5.3a. The observation of such pattern only in the post-peak 

region somehow justifies the difference found with the simplified upper bound limit analysis 

result from Milani et al. (2006), and the apparent inability of yield-line based methods for the 

analysis of quasi-brittle materials.  

 

(a) (b) 

 

(c) 

Figure 5.2 – Numerical and experimental curves of the panels tested by 
Gazzola and Drysdale (1986). Pressure load vs displacement for the panel: (a) WF; (b) WII; and 
(c) WPI. 
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The second panel being analyzed is referred as WII. Its response is significantly different 

from the previous panel (WF) due to the fact that now four supported edges exist allowing, 

therefore, to increase the collapse load by 40%. A difference ranging 5% is observed between 

the experimental data and the peak load reached with the present model. A similar result has 

been provided by the anisotropic model of Lourenço (2000), yet with a distinct pre-peak path. 

The two approaches match the initial stiffness but the latter demonstrates a considerable loss 

of stiffness after the onset of horizontal cracking (p = 3.3 kN/m2); not observable with the 

present numerical approach.  

Figure 5.3b shows the damage obtained at the peak, which is predominantly manifested on 

the mid-span area of the panel through two moderate horizontal cracks. On one hand there is 

low redistribution of the stresses, since residual torsional damage near the corners exist; on the 

other hand, the cracks orientation trails the typical response, i.e. tend to develop 

orthogonally to the shorter span which is also, for this case, the weaker direction (vertical 

bending). The so-called X-brace damage pattern, representing the yield-line type of failure, is 

only achieved for the post peak regime. The damage plot associated with a mid-span 

displacement of 10 mm shows two severe horizontal cracks at the center of the panel, and four 

cornered regions with damage concentration (mainly due to torsion movements, diagonal 

cracking).  

The last panel, denoted as WPI, has the same geometry and boundary conditions of the 

panel WII. As previously mentioned, the difference is that now a vertical pre-compression state 

of 0.2 N/mm2 is included. The confinement leads, theoretically, to an increase of both the 

capacity and ductility of the response, as seen in the section §3.5.2. Figure 5.2c corroborates 

the latter, as the experimental collapse load had an increase of 32%. The numerical solution 

matches well with the latter value (a difference below 2% of error). Considerations regarding 

the curve shape and its comparison with the one derived by Lourenço (2000) are alike with the 

ones addressed for the panel WII; likewise, subtle differences can be found concerning the 

damage map. Since the pre-compression state gives an extra-strength and ductility, it is 

observed that the damage at the peak is quantitatively less pronounced and more equally 

distributed. The same conclusion is drawn for the post-peak region, see Figure 5.3c, in which a 

yield-type of failure is now clear but still with the softening regions affected by a lower damage 

parameter. 
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Panel WF 

Deformed shape Damage patterns 

 

Peak Post-peak (p = 1.15 kN/m2) Peak Post-peak (p = 1.15 kN/m2) 

Panel WII 

Deformed shape Damage patterns 

 

Peak Post-peak (p = 2.05 kN/m2) Peak Post-peak (p = 2.05 kN/m2) 

Panel WPI 

Deformed shape Damage patterns 

 

Peak Post-peak (p = 4.50 kN/m2) Peak Post-peak (p = 4.50 kN/m2) 

Figure 5.3 – Numerical damage patterns of the McMaster panels obtained with the proposed 
macro- model. 

In general, a good agreement has been found between the different numerical strategies and 

the experimental data. The numerical model handles well the increase of both capacity and 

ductility in presence of an in-plane pre-compression load. 

5.2.3 Plymouth university panels 

The second set of out-of-plane experimental data is constituted by the panels tested at the 

University of Plymouth by Chong et al. (1994). Five panels in running bond masonry texture 

using solid clay bricks were tested and designated by SB (Chong et al. 1994; Southcombe et al. 

Damage 
scalar d
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1995). The panels SB01 and SB05 have the same geometry, hence only four panels (SB01-SB04) 

are considered and represented in Figure 5.4. The panels are simply supported at the lateral 

edges and fixed at the base. The experimental investigation aimed at a better insight on the 

role played by the openings size and shape. The panels have been loaded by air-bags until 

failure, and both the pressure and displacement at the middle span of the free edge monitored. 

Thus, the comparison is here done in terms of pressure load and displacement for each masonry 

panel. 

 

Figure 5.4 – Description of the geometry and boundary conditions for the masonry panels out-of-
plane loaded at University of Plymouth by Chong et al. (1994). 

The elastic and inelastic material properties adopted for the RVE characterization at a  

meso-scale, following a Kirchhoff-plate theory, are presented in Table 5.3. An isotropic behavior 

assumption is acceptable as referred by Chong et al. (1994), since the panels are built with 

solid brick masonry. Despite that, an orthotropic ratio of 1.2 has been derived for the composite 

material via homogenization process by assuming, respectively, a Young’s modulus of 

10,000 N/mm2 and 3,500 N/mm2 for brick units and mortar joints. Furthermore, the 

experimental data provides only the flexural tensile uniaxial strengths ftx and fty, given by 2.28 

and 0.97 N/mm2, respectively. Therefore, only inelastic tensile behavior is active and the 

mechanical properties adopted have been tuned in order to fit the latter values. The brick units’ 

dimensions are 215×65×102.5 mm3 and the thickness of the joints is 10 mm. 
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Table 5.3 – Material properties adopted for the McMaster panel: elastic properties adopted for the 
homogeneous RVE and the inelastic properties of the mortar joints interfaces. 

Elastic properties of the homogeneous RVE 

Exx  Eyy Gxy xy
ν  

9700 
(N/mm2) 

8000 
(N/mm2) 

4993 
(N/mm2) 

0.2 
(-) 

 

Inelastic properties (mortar joints interfaces) 

tf  cf  c  tan( )  Ψ 
I

fG  II

fG  IV

fG  

0.30 
(N/mm2) 

4.00 
(N/mm2) 

0.36 
(N/mm2) 

0.57 
(-) 

45.0 
(deg) 

0.015 
(N/mm) 

0.025 
(N/mm) 

1.00 
(N/mm) 

A refined mesh with 100 mm of size has been defined with a total of 987 discrete elements 

for panel SB01/05, 797 elements for panel SB02, 862 elements for panel SB03 and 834 elements 

for panel SB04. Table 5.4 resumes the identification of the Young’s modulus values for each 

macro-truss of the discrete model proposed. 

Table 5.4 – Elastic identification of the discrete macro-model for the Plymouth panels with a refined 
mesh of 100 mm size. 

Elastic Parameters - Discrete macro-model (H=100 mm; e=20 mm) 

Eflexural truss xx Eflexural truss yy Etorque truss xy Etorque truss yx Aflexural truss ATorque truss 

193630.37 
(N/mm2) 

159695.15 
(N/mm2) 

15309.27 
(N/mm2) 

15309.27 
(N/mm2) 

1000 
(mm2) 

1000 
(mm2) 

Figure 5.5 shows the comparison between the numerical and experimental results from 

Chong et al. (1994) taking into consideration the pressure load and displacement at the middle 

node of the free edge. In addition to the present model other results are gathered, namely: 

(i) an anisotropic macro-model (Lourenço 2000); (ii) an elastic perfectly-plastic homogenized 

model designated as EPP-model (Milani and Tralli 2011); (iii) a simplified deteriorating 

homogenized model designated as SD model (Milani and Tralli 2011), based on a limit analysis 

approach to define the failure mechanism; and finally (iv) a simplified quadratic programming 

elastic-plastic model by Milani and Tralli (2011) and designated as EPD, in which the 

deterioration of interfaces (ultimate bending moment) is considered. 

The first panel being analyzed has no opening and is designated as SB01/05. The obtained 

capacity curve is plotted in Figure 5.5a. Both the elastic stiffness and the peak load are in 

agreement with the results found experimentally, with a difference of about 5% concerning the 

latter. A steep loading decrease around the 20mm of out-of-plane displacement indicates the 

loss of strength and consequent failure of the panel. The damage onset occurs due to vertical 

bending and occurs near and parallel to the fixed base of the wall, as seen by the cracking 
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pattern at the peak load (Figure 5.6a). After the peak, two well marked vertical cracks are 

formed from the center to the free edge of the panel. Extensive damage due to torsion 

movements occur near the lateral supports which define a diagonal failure developed from the 

bottom corners of the panel. The latter is in agreement with the experimental findings, in which 

the typical yield-line type of failure has been obtained. 

For the second panel, designated as SB-02 (see Figure 5.5b), a slightly lower capacity is 

observed when compared with the SB01 one. This is expected since the SB-02 panel has an 

opening with dimensions 2260×1125 mm2. A loss of stiffness occurs for a load given by p = 

2.20 kN/m2 and the peak is reached for p = 2.48 kN/m2. Although the load-displacement curve 

at the control node has the same shape than the experimental one, a relative difference of about 

19% exists between the peak load values. Figure 5.6b shows that the damage at the peak stage 

surrounds the bottom corners of the opening with the formation of diagonal cracks towards the 

lateral supports of the panel. This is even more evident in the post-peak side (p = 1.70 kN/m2), 

being also possible to observe a vertical crack in the top of the opening due to horizontal 

bending. 

The third panel studied here is denoted as SB03 and has a windowed type of opening 

(2935×525mm2). An alike behavior is observed with the panel SB02. A good agreement in terms 

of the peak load can be seen in Figure 5.5c with a deviation of 4%. The experimental curve 

does not possess a well develop post-peak path, still it can be noted that the shape of the 

numerical curve is comparable with the one from the macroscopic model by Lourenço (1997). 

Figure 5.6c shows that the damage at the peak is focused near the corners with slight damage 

at its base. Again, the post-peak behavior is characterized by the formation of diagonal cracks 

at the sides of the opening in the direction of the lateral supports. Likewise, the formation of 

the vertical crack above the opening is detected. 

At last, the analysis of the panel SB04 has been carried out. A door type of opening with 

910×2025 mm2 exists. A reasonable agreement has been found between the numerical and 

experimental capacity curves, with a relative error of about 4% regarding the peak load. Figure 

5.6d shows that the damage tends to initiate, again, near the base and parallel to the fixed 

support. The damage at the post-peak region for p = 1.72 kN/m2 indicates that the failure 

occurs due to the development of a vertical crack above the opening (horizontal bending) and 

comprises damage due to torsional movements around the lateral supports. 
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Figure 5.5 – Numerical and experimental curves for the panels experimentally tested by 
Chong et al. (1994): pressure load vs displacement. 

In general, the comparison allows concluding that the presented numerical procedure features 

a good agreement for all the panels studied in the quasi-static range, both in terms of collapse 

load and displacements prediction. Although stemming from a simplified discrete model at a 

macro-scale, the proposed model can retrieve similar results to sophisticated continuum FE 

based strategies, such as the one presented by Lourenço (1997). Moreover, the last is especially 

highlighted if the results are compared with other simplified strategies that consider also a 

homogenization process, as the EPP, the EPD and SD models from Milani and Tralli (2011). 

However, in converse with these strategies that use limit analysis, the present model accounts 

with the full softening behavior of the material within a FE formulation without compromising 

the computational burden, as reported in the next section. 
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Panel SB01 
Deformed shape Damage patterns 

 
Peak 
(p = 2.62 kN/m2) 

Post-peak 
(p = 1.75 kN/m2) 

Peak 
(p = 2.62 kN/m2) 

Post-peak  
(p = 1.75 kN/m2) 

Panel SB02 
Deformed shape Damage patterns 

 
Peak 
(p = 2.48 kN/m2) 

Post-peak 
(p = 1.70 kN/m2) 

Peak 
(p = 2.48 kN/m2) 

Post-peak 
(p = 1.70 kN/m2) 

Panel SB03 
Deformed shape Damage patterns 

 
Peak 
(p = 2.43 kN/m2) 

Post-peak  
(p = 1.78 kN/m2) 

Peak 
(p = 2.43 kN/m2) 

Post-peak  
(p = 1.78 kN/m2) 

Panel SB04 
Deformed shape Damage patterns 

 
Peak 
(p = 2.29 kN/m2) 

Post-peak  
(p = 1.72 kN/m2) 

Peak 
(p = 2.29 kN/m2) 

Post-peak  
(p = 1.72 kN/m2) 

Figure 5.6 – Damage patterns obtained from the numerical analyses (mesh H=100 mm). 
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5.2.4 Mesh sensitivity and computation time of the solution 

A mesh sensitivity study of the solution at a macro-scale is performed. This is an inevitable 

issue when dealing with the strain softening (and/or hardening) of materials. It has been stated, 

in a foregoing section (§4.3.3 and §4.3.4), that the macro-model accounts with a regularization 

factor aiming to remove the mesh bias of the material input given for each of the macro-trusses. 

Such factor is purely geometrical, meaning that is dependent only on the size of the 

quadrilateral squared elements and on the existing space between them; comparable with the 

traditional crack-band theory used for continuous FE models (Bažant and Oh 1983), in which 

the regularization factor is dependent on the finite element area. The study is performed on the 

Plymouth panels only, whereas the analyses are repeated with two less refined meshes of 

H=200mm and H=450mm (with respect with the brick size). The goal is to evaluate the mesh 

dependency in terms of results accuracy and analyze the incurring running times.  

The comparison in terms of load-displacement curves is depicted in Figure 5.7. Regarding 

the peak loads, the differences range the 10% for the panel SB-01/05 and 5% for the panels 

SB02, SB03 and SB04. Some differences may be noted in the post-peak behavior and, even 

though are acceptable, it is well known that rigid elements, where nonlinearity is concentrated 

on interfaces, intrinsically suffer from limited mesh dependence on softening. In general, the 

results show the capacity of the model to obtain good representations of the peak and nonlinear 

behavior in panels with complex geometries, using several mesh refinements. Figure 5.7 

demonstrates that the mesh dependency is low for the selected refinements, as the obtained 

difference on the pressure-displacement curve is less than 10%, which seem to be adequate 

within engineering applications.  

In addition, it is worth noting that the required computational time is impressively reduced 

for the coarse mesh (only 18seconds), but still reasonable for a strong mesh refinement, see 

Figure 5.8 (an exponential reduction trend is observable with the increase of the mesh size). 

The deformed shapes of panel SB-01/05 for the three refinement levels are also presented in 

Figure 5.8. Note that a laptop with an i7-4710MQ CPU, 16 GB of RAM (DDR2) and with an 

SSD disk with a writing velocity of 512 Mbytes/s has been used. 
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Figure 5.7 – Mesh dependency study of the solution for the Plymouth panels studied. 

 

 

Figure 5.8 – The computation time demand to perform the quasi-static analyses for the panel 
SB - 01/05 using three mesh refinements. Plot of the respective deformed shapes at the peak load 
points of the associated curves. 
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5.3 Dynamic analysis: seismic loading 

5.3.1 Overview 

Experimental research still constitutes a crucial source of knowledge in the field of structural 

dynamics. The present study can contribute to enrich the available literature on the existing 

numerical strategies with a particular focus on the multi-scale type of analysis. The case study 

reports an English-bond masonry mock-up tested in the National Laboratory of Civil 

Engineering at Lisbon (LNEC) by Candeias et al. (2016) which, by itself, may comprise a good 

basis for numerical investigations since few studies still exist on such brickwork when the 

material nonlinearity is being assumed, for instance the works by Cecchi and Milani (2008) and 

Milani (2008). 

This section demonstrates the ability of the procedure to reproduce the dynamic macro 

behavior of a complex three-dimensional masonry structure and see if similar conclusions are 

drawn with the previous studies on the same benchmark. The main novelties are twofold: (i) the 

ability of the procedure to reproduce the effect of three-dimensional effects on the macro-stress 

out-of-plane quantities; and (ii) the ability of the procedure to reproduce the effect of the 

presence of thickness discontinuities, as it is the case of the English-bond texture. 

The section is organized as described next: (i) the introduction of the case study; (ii) the 

description of the presented numerical procedure with emphasis on the macro-level application; 

(iii) the application of the procedure through quasi-static and dynamic analyses, wherein the 

results are compared with experimental data and complemented with results from a well 

validated macroscopic total strain crack model in the software DIANA (2017); and, at last, 

(iv) the discussion of the main conclusions. 

5.3.2 LNEC Brick house mock-up 

The selected case study is gathered from the experimental work performed in LNEC by 

Candeias et al. (2016). The case study has been developed to make possible a blind test 

prediction by different invited authors using several advanced numerical procedures. The main 

results and differences between approaches, as well as open issues, are addressed in 

Mendes et al. (2017). The aim was to assess the collapse acceleration of the structure when 

subjected to a one-directional seismic input. 

Two unreinforced masonry structures were tested. One mock-up is made with an English-

bond brick masonry and another is made from an irregular stone masonry texture. As the 

principle of the scale’s separation is assumed between the meso- and macro-levels, only the 
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study of the former benchmark is carried out. In fact, the adoption of the present strategy to 

the stone mock-up would be obviously possible but theoretically unfeasible, due to the large 

dimensions of the stone units (which define the size of the RVE) in respect to the structure 

ones. 

The studied brick structure is composed of three walls in a U-shaped plan arrangement. The 

main façade (East plan) presents a gable wall and is linked with two transversal walls which 

act as abutments (North and South plans). These are constructed with a clay brickwork in an 

English-bond arrangement of 235 mm of thickness (slenderness ratio about 1:10). The clay brick 

units have nominal dimensions of 235x115x70 mm3 and are laid and bound together by mortar 

joints with a thickness ranging from 15 to 18 mm. The geometrical features are seen in Figure 

5.9a. The brick mock-up was tested up to collapse in a shaking table under a unidirectional 

seismic loading. The seismic input is applied in a perpendicular direction (E-W) to the main 

façade and derives from the N64E strong ground motion component associated with the 

February 21 of 2011 earthquake occurred in Christchurch, New Zealand. After the filtering and 

cropping of the original signal, the base input has 27 seconds of duration, 0.28g m/s2 of PGA 

(Peak Ground Acceleration), 0.236 m/s PGV (Peak Ground Velocity), and 0.0258 meters of 

PGD (Peak Ground Displacement). The latter time signal served as a reference for the seismic 

input generation, whereas eight accelerograms have been derived and appended. These have 

been obtained from a scaling process through different increasing factors, starting from one up 

to three, due to the apparatus limitation. The input signal considered in the dynamic analysis 

is displayed in Figure 5.9b. 

The structure collapsed during the last excitation (accelerogram number eight, acc08) for a 

PGA value of 1.27g, and the obtained failure mechanisms are depicted in Figure 5.10. The 

partial out-of-plane overturning of the gable wall and its tympanum has been registered, with 

the formation of diagonal cracks spreading from the window opening (east plan). An in-plane 

failure has been also obtained at the north returning wall with a well demarked horizontal 

cracking line defined by the bottom base of the existing opening. 

For a detailed explanation regarding the assumptions that had been taken in the selection 

of the strong motion component, in the filtering process of the signal, the limitations of the 

seismic table apparatus (nominal capacity of the transverse actuator of the LNEC 3d shake 

table), the processing and scaling steps of the input signal, as well as information of the 

normalized response spectrum of the seismic action, the reader is referred to 

Candeias et al. (2016). 
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(a) 

 

(b) 

Figure 5.9 – Brick house mock-up studied: (a) geometry (dimensions in meters) (Candeias et al. 2016); 
(b) the experimental input seismic signal. 

 

Figure 5.10 – Experimental failure mechanisms observed (adapted from Mendes et al. (2017)). 

Modelling assumptions 

Two macro-models are considered and designated as discrete KP and DNS models. Both have 

been previously described in section 3.6 (§Chapter 3). Its distinction is on the background 
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theory used for the homogenizing step performed at a meso-scale. The former adopts a 

Kirchhoff-Love plate theory and, the latter, a three-dimensional model using volume finite 

elements which accounts for the existent vertical discontinuity.  

A refined discrete mesh with 200 mm of size has been adopted as depicted in Figure 5.11. 

The analyzed discrete models are designated as: (i) KP model 200, with a 200x200 mm2 

quadrilateral mesh within a Kirchhoff-plate theory at a meso-scale; and a (ii) DNS model 200, 

with a 200x200 mm2 quadrilateral mesh within a three-dimensional direct numerical simulation 

at a meso-scale (see Figure 5.11). A DIANA macro-model, largely applied in structural problems 

(Lourenço 1997; Creazza et al. 2002; Araujo 2012; Silva et al. 2018), is also defined to 

complement the analyses. This represents masonry as an isotropic material and follows a total 

strain rotating crack constitutive material model, whereas an exponential and parabolic law is 

adopted, respectively, for the tensile and compressive behaviors. An approximated mesh size of 

100 mm was defined using 3D finite elements, and such fine discretization intends to minimize 

numerical problems faced during the computations performed (specifically for the quasi-static 

analyses).  

(a) (b) (c) 

Figure 5.11 – (a) The geometry of case study; (b) modelling assumptions and the discrete model 
with H=200 mm adopted for the case study; and (c) the DIANA macroscopic model used to 
complement the analyses.  

Along with the modelling options, two issues can be stated. Firstly, both the IP and OOP 

truss systems are applied to all the benchmark walls. Secondly, due to the overlapping of the 

brick staggering between the side walls and the main façade, the corners are expected to be 

stiffer. A perfect connection between walls is hence presumed being the corners modelled as 

X

Z

Continuous FE model 
(mesh size ≅ 100 mm) 
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two rigid beam columns. The latter means that bending and torsional moments are fully 

transmitted between contiguous walls (see Figure 5.11b). At the base, the supports of the 

structure are considered to be pinned connections. 

Material and mechanical properties 

Experimental investigations on the mechanical strength characterization of the studied English-

bond masonry have been carried out and reported in Candeias et al. (2016). A total of six 

masonry wallets were built but only three samples are defined as valid for the determination of 

the masonry stiffness and strength values. Briefly, it was observed that the specific mass is 

given by 1890 kg/m3; the Young modulus for the masonry brickwork is equal to 5170 MPa; the 

compressive strength is 2.48 MPa and the tensile strength is 0.105 MPa. The latter data is 

summarized in Table 5.5, as well as the associated coefficients of variation. One may note the 

small number of representative samples, which may raise questions about the objectivity of the 

defined average values. Yet, this information has been given to the invited authors that 

conducted the blind test prediction over the benchmark (Candeias et al. 2016) and is thus, 

accordingly, also used here to perform the numerical analyses. 

The data required to define the macro-scale constitutive CDP material model rely on the 

homogenized quantities resulting from the foregoing scale. Bearing the existing link between 

scales and its associated character, the followed experimental data and the resultant meso-scale 

properties are shown in Table 5.5. The homogenized elastic properties of Table 5.5 (𝐸̅֓
֓ and 

𝐸̅֔
֔) are used to compute the elastic stiffness of each truss-beam and determine the 

regularization factors for the homogenized curves obtained and depicted in Figure 5.12. These 

are ready to serve as macro-input after the processing of the meso-to-macro transition steps. 

Note that both IP and OOP homogenized quantities are displayed and interpreted by the truss 

beam systems (also according with the trusses plane direction). It is noticeable that the DNS 

model has a significantly lower capacity than the KP model for the Σ֓֓,𝑀֓֓, Σ֓֔ and 𝑀֓֔ 

curves. It is thus clear that the three-dimensional shear stresses and the vertical discontinuity 

in the thickness of the walls lessens the strength capacity of the masonry. Hence, it is expectable 

that the KP model, unable to reproduce such effects, may feature an overstrength response 

prediction. 
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Table 5.5 – Material and mechanical information obtained via experimental works (Candeias et al. 
2016) given for the blind test prediction; assumed in the homogenization step at a meso-scale and 
assumed at the macro-scale.  

Experimental data (for the blind test prediction) 
ρ  = 1890 Kg/m3 

(CoV=3%) 
Emasonry = 5170 MPa 

(CoV = 29%) 
 c  = 2.48 MPa 

(CoV=14%) 


t
 = 0.105 MPa 
(CoV=19%) 

 

Numerical data - Meso-Scale 
Elastic Properties (Brickwork) Inelastic Properties (Mortar joints) 

Ebrick  tf  cf  c I

fG  II

fG  IV

fG   

11000  
N/mm2 

0.20  
(-) 

0.105 
N/mm2 

2.48 
N/mm2 

0.20 
N/mm2 

0.012 
N/mm 

0.05 
N/mm 

3.97 
N/mm 

30 
degrees 

Numerical data - Macro-scale 
Homogenized Elastic Properties  Homogenized Inelastic Properties 

Exx  Eyy   
Homogenized curves - see Figure 5.12.  6400 

N/mm2 
3600 

N/mm2 
0.20 
(-) 

 

 

Figure 5.12 – Homogenized curves used at a macro-scale to assign the nonlinear material properties 
of each truss-beam system: (a) In-Plane, and (b) Out-of-Plane. 
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Results and discussion (blind test prediction scope) 

The computations performed on the brick house mock-up are here reported. Again, the two 

ad-hoc models derived from the proposed framework are considered and designated as 

KP model 200 and DNS model 200. The selection of the KP and DNS models makes possible 

to draw conclusions on the effect that a Kirchhoff-Love plate theory, usually employed to 

simplify the analysis, brings in the macro-response of an English bond masonry 

structure. Despite these have been seen at a meso-scale (in section 3.6), remarks on the effect 

of the non-consideration of both the OOP shear stresses and the vertical discontinuity are still 

important to report within the macro-response. Quasi-static (pushover) and dynamic analyses 

have been performed. The results are compared with the available experimental information 

and complemented with a macroscopic model using DIANA (2017). To guarantee the 

comparison objectivity, the material properties used in the latter follow the data from Table 

5.5, i.e. 𝐸ֈռ֎֊։֍֔ = 5170 MPa;𝜈 = 0.2; tensile strength of 0.105 MPa; 𝑓վ = 2.48 MPa. 

Quasi-static (pushover) type of analysis is usually not so representative and accurate in the 

evaluation of the seismic behavior of an unreinforced masonry structure, but can provide a 

reasonable estimate of the capacity. Even if being intrinsically incapable to reproduce dynamic 

effects, it may be an appropriate alternative to time costly dynamic analysis. In this case, 

pushover analyses are carried out to give some useful information as: (i) backtrack the origin 

of potential numerical problems; (ii) understand if the structural behavior and the observed 

failure collapse mechanisms are the expected ones; (iii) conclude on the role and the significant 

effect that the non-consideration of vertical discontinuities has on the English-bond masonry 

walls response. Analyses with a mass proportional load have been conducted for both positive 

(pushing) and negative (pulling) directions and their results are presented in Figure 5.13. To 

solve the system of nonlinear equations a Quasi-Newton technique improved with a line search 

algorithm and an arc-length procedure has been adopted. The experimental collapse load is also 

plotted, as well as the results from the DIANA macroscopic model that serves as a reference 

for the continuous FE-based models.  

In general, a good agreement is found between all the presented numerical strategies, but 

some deviations are obtained in the negative direction. For each direction, all the displayed 

numerical approaches exhibit a similar post-peak response. The transversal walls seem to cause 

the differences found, which emphasizes their key role on the overall behavior. Such finding is 

easily corroborated by the structure deformed shape and failure patterns depicted in Figure 

5.14 and Figure 5.15. 
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(a) (b) 

Figure 5.13 – Pushover curves obtained: (a) for the negative (pulling) direction, and (b) for the 
positive (pushing) direction. 

The negative direction has a capacity that is 6% to 14% higher than the positive one (for 

both the KP and DNS models). In the former direction, both transversal walls behave like 

abutments, in which the internal compressive and shear behavior give an extra resistance 

by allowing a better and effective load distribution. The OOP failure is thus postponed to a 

higher applied load than the one observed for the positive direction. In the latter, the response 

is governed by the OOP response of the East façade only, which leads to tensile stresses 

at the walls’ connection and on the North wall piers that can be hardly withstand due to the 

self-nature of unreinforced masonry, see Figure 5.14d and Figure 5.15d. Such behavior can also 

justify the reduced dispersion observed between the numerical curves of Figure 5.13b. Hence, 

and with a focus on the negative direction, two findings may be addressed: (i) the KP and the 

DIANA macro-model lead to analogous results; (ii) conversely, owing to the lower horizontal 

bending capacity of the DNS model, this is the more conservative strategy.  

It is important to refer that a good agreement is equally observed concerning the observed 

failure mechanisms for the DNS model. In fact, these resemble to be alike to the ones 

experimentally reported: horizontal and vertical cracking near the gable wall (Figure 5.15b,d); 

uplift, due to tensile stresses, of the more exterior pier in the North façade (Figure 5.15d); and 

shear damage in the more interior pier located in the North façade (Figure 5.15d). 
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Deformed shapes 

Direction -Y Direction +Y 

 

Peak 
Base shear coefficient 0.97g 

Post-peak 
Base shear coefficient 0.41g 

Peak 
Base shear coefficient 0.92g 

Post-peak 
Base shear coefficient 0.43g 

(a) (b) (c) (d) 

Figure 5.14 – Quasi-static (pushover) deformed shapes for the DNS model 200: (a) Direction -Y 
(peak); (b) Direction -Y (post-peak, displacement of -20mm); (c) Direction +Y (peak); and (d) 
Direction +Y (post-peak, displacement of 20 mm).  

 

 
(a) (b) 

 
(c) (d) 

Figure 5.15 – Quasi-static (pushover) numerical damage patterns for the DNS model 200: (a) 
Direction -Y (peak); (b) Direction -Y (post peak, displacement of -20 mm); (c) Direction +Y (peak); 
and (d) Direction +Y (post-peak, displacement of 20 mm). 
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The seismic assessment of the brick mock-up using dynamic analysis is now reported. A set 

of eight seismic input signals were experimentally applied to the benchmark. Since the structure 

collapsed during the last accelerogram (acc08), only the results concerning the first seven 

accelerograms are considered here. To solve the dynamic equations of the system, an implicit 

procedure within a Hilber-Hughes-Taylor (HHT) time integration scheme and with a -operator 

value of -0.05 (the reader is referred to Hilber et al. (1977) for further details of the method) 

has been assumed for this study. To avoid a needless computational effort, an available 

automatic time stepping algorithm is used and complemented with a maximum initial step 

control set to 0.005, i.e. equal to the input signal frequency. No convergence difficulty has been 

found to what concerns the use of the RBSM model. Such finding may stand on the fact that 

only one-dimensional FE rules the material non-linearity and damage. The material damping 

was defined via the practical approach of the equivalent Rayleigh damping (Chopra 2017). The 

Rayleigh parameters were computed by considering a 3% damping ratio and with a damped 

range of frequencies of 7-40 Hz. 

The comparison between the numerical and experimental data is reached through the time 

history of the displacements recorded for the node located at the center of the gable wall. Figure 

5.16a depicts the displacement evolution during the seven earthquakes applied. The application 

of the first six accelerograms led to minor damage as the response is predominantly elastic, in 

coherence with the experimental output. Yet, Figure 5.16b makes clear that none of the KP, 

DNS and DIANA numerical curves fit the experimental data for the last accelerogram (acc 7). 

Such evidence could, in a first glance, invoke the inability of the proposed framework to 

represent the dynamic behavior of masonry structures. The latter may be recognizable as a 

false negative type of error if one refers that, similarly to what occurred for the quasi-static 

analysis, the KP model derives an almost coincident output when compared with the well 

validated DIANA macroscopic model. In this context, several reasons can be put together to 

justify the results deviation.  

An inaccurate modelling of the structure could be a possible source of error, but it cannot 

justify such larger differences. Conversely, an incorrect material damping assumption can 

totally lead to significant misrepresentations of the dynamic structural behavior. A value of 3% 

seems a rational choice and, even with a higher damping value masonry (Costa 2002; 

Doherty et al. 2002; Elmenshawi et al. 2010; Rabinovitch and Madah 2011; Sorrentino et al. 2011), 

a decrease of the peak displacements would be expectable and hence against the reported 

experimental values. On the other hand, defining no material damping could be a strategy but 

it lacks objectivity and is thus disregarded. Still, these indications are valid if the assumed 

average values for the material properties are correct. It is known that these derive from an 
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experimental campaign completed on the same brickwork but, bearing the coefficients of 

variation reported in Candeias et al. (2016) (see Table 5.5), the question of its 

representativeness can be raise.  
 

 
(a) 

 
(b) 

Figure 5.16 – Time-history displacements for: (a) the accelerograms 1 to 7; and (b) accelerogram 7. 

In fact, a closer look to the response obtained by the numerical procedures under the acc 7 

support this idea. Figure 5.17 depicts the numerical damage found by the DNS model after the 

occurrence of the latter accelerogram (time t=160 seconds). A dominant elastic structural 

behavior prevails for the transversal walls, being only noteworthy the existence of a well-marked 

vertical crack in the gable wall. Therefore, the current use of higher strength values for the 

masonry brickwork is a convincing point. This can justify why the obtained results are so 

different from the real response and, likewise, why analogous observations were collected by 

several other authors on the same brick-house mock-up. In fact, the blind test predictions 

performed by literature peers (using advanced methods, from the FE-based to discrete element 

strategies) led to an average deviation of 50%, see Mendes et al. (2017). 

The difference between the KP and DNS models can be barely noted from the discrepancies 

obtained for the last accelerogram (Figure 5.16b). Both KP and DNS models consider the 

masonry orthotropy and the full non-linear softening behavior, but the latter does account it 

in the presence of the vertical mortar discontinuity in the English bond-masonry thickness and 
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taking in the effect of out-of-plane shear stresses. Thus, the DNS model seems to be the more 

representative one and is used next to conduct further investigations. 

 
Figure 5.17 – Damage at the instant t = 160 seconds for the DNS model 200 (minor cracking).  

Dynamic analysis (with post-blind prediction data) 

The use of biased experimental values for the elastic stiffness and strength parameters hinders 

a proper fit between the numerical and the experimental response. Therefore, an inverse fitting 

step is conducted by exploiting the scatter of the experimental material values and the modal 

identification data made available after the post-blind prediction exercise (Mendes et al. 2017). 

The DNS model 200 and the DIANA total strain rotating crack model, using volumetric FE’s, 

have been considered (since the KP model follows similar assumptions with the DIANA, similar 

results have been found and so not introduced for better readiness). The brickwork input 

properties have been changed towards a better numerical response by affecting: (i) its elastic 

Young’s modulus, and (ii) its strength parameters. The value of damping was kept equal. 

The calibration of the elastic brickwork stiffness has been reached by accounting with the 

modal identification data made available. The experimental and numerical frequencies 

(obtained with the RBSM model) of the first three modes are depicted in Table 5.6. All the 

modes are global and with well-marked flexural movements, in which the first two follow the 

transversal direction (N-S) and the third the longitudinal one (E-W). Such modes are the most 

representative ones and characterize the OOP failure of both the transversal walls and East 

façade as the most prone to occur. Neglecting the second mode in the fitting step, due to the 

lack of agreement found, it is seen that the original numerical model leads to significant 

differences of 22% and 17% for the first and third mode frequencies, respectively. In this 

context, reducing the average stiffness value by 40% enabled to fit the first mode frequency 

and reduce the error for the third one to 4%. The stiffness ratio between the horizontal and 

Damage 
scalar d

DNS model 200
t = 160 seconds
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vertical axis (viz. the orthotropic ratio), obtained at a meso-scale, was kept and provide the 

calibrated values to be 𝐸֓֓ = 3840 𝑀𝑃𝑎, 𝐸֔֔ = 2160 𝑀𝑃𝑎 and 𝐺֓֔ = 1600 𝑀𝑃𝑎. 

Table 5.6 – Experimental and numerical frequencies for the first three vibrational modes. 
  1st mode 2nd mode* 3rd mode 
Experimental modal identification  10.69 Hz 15.01* Hz 21.29 Hz 
Proposed model (blind test prediction – mean values)  13.71 Hz 14.43* Hz 25.67 Hz 
Proposed model (calibrated)  10.63 Hz 11.03* Hz 20.45 Hz 
*The second mode has been neglected due to lack of agreement. 

A similar reduction strategy was followed for the strength parameters. The tensile strength 

and cohesion properties have been affected with a 19% reduction factor. i.e. by following the 

coefficient of variation reported in Table 5.5. The compressive behavior seems to have, as 

expected, an irrelevant role and thus the experimental average value was followed. Likewise, 

the parameters that control the material curves beyond the peak were kept the same, namely 

the fracture energies, because these refer to typical masonry literature values and no 

experimental reference is known. The obtained results for the accelerogram seven (acc 7) is 

addressed in Figure 5.18. It immediately allows concluding that the displacements are now 

comparable. The comparison is, for the acc 7, promising as a good agreement between the 

calibrated model and the experimental time-history displacements is found. Even if slight 

differences are visible for the peak displacements, the DNS model accurately reproduces also 

the residual displacement. 

On the other hand, the macroscopic DIANA model seems to overestimate the structure 

capacity. The response is, for the acc 7 as depicted in Figure 5.18, far for being alike with the 

behavior reproduced by the proposed DNS procedure, despite sharing both the same material 

and mechanical input. The non-consideration of the masonry orthotropy and, more importantly, 

the disregard of the existent vertical discontinuity are key details. In fact, the latter is 

paramount once, when present, it decreases significantly the bending and torsional capacities. 

Furthermore, the DIANA (2019) macroscopic approach makes use of a hysteretic behavior with 

secant unloading-reloading branches, a feature that leads to the underestimation of the energy 

absorption and incapable to record permanent plastic deformations. 
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Figure 5.18 – The obtained time-history displacements after inverse fitting for the last analyzed 
accelerogram (acc 7). 

Additionally, Figure 5.19 reports the observed experimental and numerical damage maps. 

From the DNS model, a vertical crack in the gable wall (due to horizontal bending) is observed, 

as well as the onset of cracking due to torsional movements in the east plan opening towards 

the corners. Moderate damage is captured in the east-north corner, even if this is not clear from 

the experimental observations. Some in-plane damage around the north piers is also registered. 

In general, a reasonable agreement has been found. 

 

Figure 5.19 – Observed damage: (a) after the experimental series of seven accelerograms (from acc 
1 to acc 7); and (b) for the calibrated DNS 200 model at the instant t = 160 seconds. 

Finally, the author stresses that the KP model (or related simplified strategy) and the 

DIANA macroscopic approach, in which the material is modelled as homogeneous in the 
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thickness direction, need to be used carefully. For one-leaf walls as the running-bond case, no 

issues are expected yet, as concluded before, in cases where discontinuities are present, 

inaccurate and unconservative solutions are expected to be found due to cracks within the 

thickness of the wall. 

5.3.3 Mesh sensitivity and computation time of the solution 

An insight into the macro-mesh dependency of the results is addressed next for the dynamic 

range only. A coarser refinement given by H=400 mm has been defined and the dynamic 

analysis performed within the post-blind prediction scope repeated. Two discrete models are 

thus considered, the DNS model 200 with a 200x200 mm2 mesh and the DNS model 400 with 

400x400 mm2 mesh. Figure 5.20a shows the time-history displacement for the control node. 

Though a more flexible response is achieved with the DNS model 400, the maximum recorded 

displacements are under the experimental envelope during all the intense phase of the 

accelerogram (acc 7).  

 
(a) 

 

(b) 

Figure 5.20 – Mesh dependency study: (a) the obtained time-history displacement for the last 
analyzed accelerograms (acc 7); and (b) the observed damage after the experimental series of seven 
accelerograms for the calibrated DNS 400 model (at the instant t = 160 seconds). 
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It is noticed, however, that some differences between the two refinement levels exist, as the 

obtained residual displacement (deviation of 67%). Such deviation is relevant, even if it is 

important to stress that 400 mm is a substantial large mesh for the problem at hand.  

Figure 5.20b shows the damage pattern for the DNS model 400 after the series of seven 

accelerograms. The potential inability of coarser meshes to catch the onset of more localized 

cracking is visible. For instance, the vertical crack registered in the gable wall is positioned in 

the center of the façade, indicating that torsion has an uncertain role; clearly different than the 

higher refinement response addressed in Figure 5.19. The study over the mesh-bias is 

determinant in the results output, in respect to the accuracy of both OOP displacement and 

damage representation. In this regard, bypassing a coarser macro-model discretization seems to 

be more important within the dynamic range than within the quasi-static one. Nevertheless, 

the processing costs required for a finer refinement is still very promising, as seen in Figure 

5.21.  

Figure 5.21 graphically outlines the processing times and the disk storage usage demanded 

by each numerical approach. A laptop with an i7-4710MQ CPU, 16 GB of RAM (DDR2) and 

with an SSD disk with a writing velocity of 512 Mbytes/s has been used. The presented 

proposed strategies demand a significantly lower computational cost than a continuous FE 

macroscopic approach. In terms of the required disk space, the difference is also significant. 

However, one may note that the disk space refers to both displacement and damage field 

variable outputs (it is always dependent on the amount of output data required). In this 

context, it can be highlighted that the proposed goal was attained, i.e. the present approach 

demands significantly lower computational times than the traditional macroscopic one used for 

the study of large-scale structures.  
 

 

Figure 5.21 – Information of the required processing times and storage disk space for each numerical 
analyzed procedure. 
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5.4 Dynamic analysis: high strain-rate loading 

5.4.1 Overview 

In recent decades, a great deal of effort has been made to develop solutions to reduce destructive 

damage and casualties due to blast loads and impacts (also in light of a stronger protection of 

the built heritage against terrorist attacks). Needless to say, masonry structures are in the 

majority of the cases rather vulnerable to explosions and impacts. In this regard, the scientific 

community is eager to share advanced numerical studies conceived for a better understanding 

of the blast/impact structural response of masonry walls, for instance see Wang et al. (2009),  

Wei and Stewart (2010), Macorini and Izzuddin (2014), and Rafsanjani et al. (2015a). This is 

achieved in conjunction with a quantitative insight into the behavior of the masonry material 

at high strain rates, see Beak et al. (1994), Dennis et al. (2002), Davidson et al. (2004), 

Eamon et al. (2004), Wei and Stewart (2010), Pereira and Lourenço (2016a), also in regard of 

an optimal strengthening with innovative materials allowing for a safety increase (Pereira and 

Lourenço 2016b). 

The city bombing event in Oklahoma (1995) addressed the importance to carry on such 

studies, being the target the decrease of potential casualties and buildings damage. 

Experimentation is still nowadays at a higher level than numerical modelling in this field. Even 

if more attention was devoted to concrete (Yon et al. 1992; Ross et al. 1995; Luccioni et al. 2004) 

and steel structures (Soroushian and Choi 1987; Balden and Nurick 2005), some different 

experimental campaigns are also available for masonry. For instance, some works regarding 

masonry panels subjected to blast loads (Varma et al. 1996; Flanagan and Bennett 1999; Eamon 

et al. 2004; Wesevich and Oswald 2005), and impacts (Middleton 1994; Gilbert et al. 2002a) 

are worth mentioning. 

It is known that URM walls subjected to dynamic loads can resist accelerations higher than 

their static strength, the so-called dynamic stability (Bruneau 1994; Doherty et al. 2002). 

Additionally to the fact that the use of static or quasi-statics approaches preclude the 

consideration of important dynamic phenomena, see Doherty et al. (2002), existing research 

proved that assuming static material properties could lead to an underestimation of the bearing 

capacity of structures (Burnett et al. 2007a; Hao and Tarasov 2008). Therefore, material 

properties may exhibit a dynamic enhancement according to the applied load strain-rate, as 

seen in Burnett et al. (2007b) which is of utmost importance for fast dynamic loads. 

Thorough experimental campaigns are difficult to carry out due to the involved costs. This 

brings the need of developing numerical models that may predict with accuracy the dynamic 
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response of structures. In this context and bearing in mind that few numerical models have the 

capability of accounting with such phenomenological material characteristic, the present section 

addresses the application of the two-step procedure for the analysis of the masonry response 

under high-rate loading. Firstly, a general insight describing its extension to account with the 

strain-rate sensitivity in the masonry response is achieved. Then, the two-step model with 

strain-rate dependency is used for the out-of-plane dynamic analysis of a parapet masonry wall 

subjected to a vehicle impact type of load.  

5.4.2 Strain-rate dependence 

Existing research proves that the use of static strength properties can lead to unreliable results 

for the masonry behavior under fast dynamic actions. Static strength material properties may 

exhibit an enhancement according to the strain rate level of the applied load. Research mainly 

focusing on concrete-like materials can be found in the literature, where assumptions 

intrinsically related with material effects are present to explain the phenomena, such as the 

lateral inertial confinement, end support friction and scale-effect (Le Nard and Bailly 2000; Hao 

et al. 2013; Hao and Hao 2013). 

Several numerical strategies can be found in the literature to represent this phenomenological 

feature. The use of viscoplastic models aiming a strain-rate regularization seems adequate (Sluys 

and De Borst 1992; Georgin and Reynouard 2003). The plastic-damage (CDP) model adopted 

by the proposed framework at a macro-scale has been developed introducing the well-known 

Duvaut and Lions (1976) model. It embeds viscoplastic concepts into the inelastic strain and 

damage scalar parameter (Lee and Fenves 1998), thus linking the rate of damage with the 

loading strain rate. Even if numerically convenient, especially when an implicit scheme is used 

to solve the system of equations, the definition of the viscosity regularization parameter  

(designated as relaxation time) lacks objectivity and requires extensive sensitivity studies. 

Another possible strategy is the use of dynamic increase factors (DIFs). This is a useful and 

practical way to numerically represent the material properties change, since such factors 

directly affect the static material properties adopted. The use of DIFs is found suitable to study 

masonry structures subjected to fast loading applications (Burnett et al. 2007a; Hao and 

Tarasov 2008) and is herein followed.  

The proposed two-step framework is eligible to receive deterministic or DIF laws (dependent 

on the strain rate) at a meso-scale only; therewith the homogenized-based models (cf. section 3) 

can compute the material input properties required to solve the unit-cell problem. The 

parameters that define the strength envelope of the unit cell, i.e. that directly rule the plasticity 
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model of the mortar interfaces, are strain-rate dependent: as the bond strength of the mortar 

𝑓֏, cohesion c, compressive strength 𝑓վ and the associated 𝐺ց
ժ , 𝐺ց

ժժ and 𝐺ց
ժշ  fracture energies. 

In converse, the elastic properties of the masonry are considered to be rate independent. This 

simplification (reads limitation) is enforced by the macro-constitutive model adopted.  

Briefly, the DIFs can be introduced in the framework via: (i) a strain-rate law, typically a 

logarithmic curve, for each selected parameter; or (ii) a discrete DIF value, independent from 

the strain rate level, which is a priori assumed and adopted as constant. The former may yield 

more realistic values, but the latter is straightforward, simple and more aligned with normative 

proposals. If these data are at disposal, homogenized in- and out-of-plane curves can be derived 

at a meso-scale for several a-priori established loading strain-rate values. The values of the 

material properties are obtained through the product between the quasi-static property values 

and the associated DIF, Eq. (5.1): 
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ժ
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ժժ

𝐺ց
ժշ = 𝐷𝐼𝐹ըցժշ × 𝐺ց

ժշ

             (5.1) 

At a macro-scale, the constitutive material CDP model in ABAQUS (2013) has built-in 

procedures able to handle with the peak strength value rate-sensitivity. For that, it strictly 

requires, however, the tabulated form of the effective stress-inelastic strain relationship for, at 

least, two different strain rate levels. It is thus sufficient to provide a lower bond curve, given 

by the quasi-static data (strain rate in the range of 10-5 s-1), and an upper-bond curve, given by 

the maximum expectable strain rate value. The CDP model performs, for the strain rates which 

are in-between the defined interval, a linear interpolation to define the associated reference 

material constitutive behavior. A reasonable upper-bound reference value can be set, for several 

types of dynamic loads and for concrete-like materials, according to Bischoff and Perry (1991). 

For impact or blast loads, a strain-rate value over 100 s-1 is typically found. Yet, aiming to 

reduce the epistemic error of a linear interpolation to a negligible margin, several input curves 

for several strain-rates may be processed.  
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5.4.3 Sheffield university parapet wall: low velocity impact test 

Experimental data available from the research reported by Gilbert et al. (2002a) is used to 

assess the ability of the present model to represent its behavior due to a low-velocity impact 

load. A total of 21 full-scale unreinforced masonry parapets have been experimentally tested. 

These differ in both wall dimensions (length range between 5.75 and 20.0 m) and brickwork 

texture (running, English and English garden bonds). Here, only the running bond pattern is 

considered. The selected parapets are designated as C6 and C7 and are replicates. Their 

assemblage was executed with strong concrete blocks and weak mortar (class iii mortar 

according to BS-5628). The walls and brick dimensions are 9150 x 1130 x 215 mm3 and 

440 × 215 × 215 mm3, respectively. The density of the brickwork composite is 2295 kg/m3. 

At the walls’ base, the surface was coated with epoxy sand to reproduce the roughness of a 

given street floor. For the lateral supports, two abutment blocks connected to the walls through 

epoxy mortar were used. Numerically, the boundary conditions are considered to be fixed for 

each lateral edge and simple supported at the base of the walls. For the sake of simplicity, the 

base-roughness was not reflected. Aiming to model a vehicle-like impact at both mid-height 

and length of the walls, a triangular out-of-plane load was applied through a steel plate. The 

load is idealized as a triangular time-history distribution, in which the peak value is equal to 

110 kN. The masonry parapets representation as well as the applied force-time history for the 

numerical simulations are described in Figure 5.22. The deformation of the studied parapets 

was recorded in a node located 580 mm above the base and deviated 250 mm from the center. 

 

 

Figure 5.22 – Geometry of the running bond masonry parapets C6 and C7 tested by 
Gilbert et al. (2002a). 
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Several studies on the masonry parapets tested by Gilbert et al. (2002a) are found in the 

literature. For instance, the same authors proposed in Gilbert et al. (2002b) an analytical 

simplified approach to evaluate the response of the masonry parapets due to an impact load. 

This strategy allows a quick analysis, but demands the knowledge of the critical failure 

mechanisms beforehand. Also, the failure modes rely on a macro-block definition and may, by 

themselves, preclude the analysis of more general modes. Moreover, Burnett et al. (2007a) 

presented a simplified FE mesoscopic model that represents mortar joints with interface 

elements. This type of models allows a greater flexibility in the failure definition, having as 

limitation the increased computational time. Nevertheless, both the strategies considered by 

the authors are strain-rate independent, ergo their accuracy is highly dependent on the material 

properties adopted. The use of static strength properties instead of dynamic ones may mislead 

the user, i.e. an underestimation of the collapse load may occur. The study of the dynamic 

properties involves the definition of DIFs, which may turn the response highly subjective if 

valid experimental data is unavailable. 

The numerical simulation of the parapet wall using the two-scale framework is accomplished 

next. Firstly, the homogenization step at a meso-scale is performed to mechanically characterize 

the running bond masonry behavior. The static material properties required are gathered in 

Table 5.7 and the rate-dependency issue is addressed. Hao and Tarasov (2008) studied the 

experimental dynamic behavior of a series of brick and mortar specimens under uniaxial 

compressive tests through a tri-axial static-dynamic apparatus. The analytical expressions 

required to describe the value of the DIFs derive from the latter research and are given by Eq. 

5.2-5.4. It may be noted that the study from Rafsanjani et al. (2015b), which covers the current 

masonry parapets, used the same hereby presented laws to define the strain-rate dependency 

of masonry interfaces using a continuous mesoscopic modelling strategy. The regression 

equations for the ultimate compressive strength of mortar 𝜎վЈϺֈ֊֍֏ռ֍ used are: 

 
⎩৖
⎨
৖⎧

𝐷𝐼𝐹 = 0.0372𝑙𝑛𝜀 ̇+ 1.4025 𝑓𝑜𝑟 𝜀 ̇ ≤ 13𝑠−φ

𝐷𝐼𝐹 = 0.3447𝑙𝑛𝜀 ̇+ 0.5987 𝑓𝑜𝑟 𝜀 ̇ > 13𝑠−φ

   (5.2) 

The regression equation for the compressive fracture energy 𝐺ց
ժշ : 

DIF = 0.15231lnε̇ + 2.6479 (5.3) 

The regression equations for the ultimate compressive strength of the brick 𝜎վЈϺս֍քվֆ: 
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⎩৖
⎨
৖⎧

𝐷𝐼𝐹 = 0.0268𝑙𝑛𝜀 ̇+ 1.3504 𝑓𝑜𝑟 𝜀 ̇ ≤ 3.2𝑠−φ

𝐷𝐼𝐹 = 0.2405𝑙𝑛𝜀 ̇+ 1.1041 𝑓𝑜𝑟 𝜀 ̇ > 3.2𝑠−φ

   (5.4) 

As information regarding the strain-rate effects on tensile and shear masonry properties is 

lacking, the DIF regression equations for both tensile ultimate strength 𝜎֏ЈϺֈ֊֍֏ռ֍, mode-I 

fracture energy 𝐺ց
ժ , cohesion c and mode-II fracture energy 𝐺ց

ժժ is assigned to be equal to the 

compressive one. Table 5.7 shows the computed DIF values for the five strain-rate levels 

accounted.  

Table 5.7 – Material properties and dynamic incremental factors adopted for the study of the 
masonry parapets subjected to an impact load. 

Elastic static properties of the homogeneous RVE 

Exx  Eyy Gxy xy
ν  

17500 
(N/mm2) 

8750 
(N/mm2) 

6500 
(N/mm2) 

0.2 
(-) 

 

Inelastic static properties (mortar joints interfaces) 

tf  cf  c  tan( )  Ψ 
I

fG  II

fG  IV

fG  

0.45 
(N/mm2) 

30.00 
(N/mm2) 

0.63 
(N/mm2) 

0.57 
(-) 

45.0 
(deg) 

0.012 
(N/mm) 

0.059 
(N/mm) 

1.00 
(N/mm) 

 

Dynamic incremental factors (DIF’s values) 

Strain rate 
(s-1) 

Eunit 

(N/mm2)

Emortar 

(N/mm2)
mortar

(-) 
tf  

(N/mm2)
cf  

(N/mm2)
c  

(N/mm2)
tan( )  



Ψ 
(deg) 

I

fG  

(N/mm) 

II

fG  

(N/mm) 

IV

fG  

(N/mm) 

2×10-5 1 1 1 1 1 1 1 1 1 1 1 
0.01 - - - 1.23 1.23 1.23 - - 1.95 1.95 1.95 
10 - - - 1.49 1.49 1.49 - - 3.00 3.00 3.00 
100 - - - 2.18 2.18 2.18 - - 3.35 3.35 3.35 
200 - - - 2.42 2.42 2.42 - - 3.45 3.45 3.45 

 

The implementation of such laws in the homogenized model allows deriving the stress-strain 

rate-dependent homogenized curves and, since the KP model is adopted here, the moment vs. 

curvature relationships are simply derived by the integration of the latter stress-strain curves 

through the thickness of the wall following a Kirchhoff-plate theory. 
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(a) (b) (c) 

Figure 5.23 – Strain-rate dependent homogenized curves used for the study of masonry parapets 
subjected to impact load: (a) horizontal bending moment; (b) vertical bending moment; and (c) torsional 
moment. 

Figure 5.24 reports the simulation results of the two-step framework in terms of displacement 

magnitude with respect to time. A numerical model with a mesh size of 100 mm has been 

adopted at a macro-scale (the calibrated elastic Young’s modulus of the macro-trusses are given 

in Table 5.8). The comparison is achieved through the experimental results (Gilbert et al. 

2002b) and complemented with two other numerical strategies: (i) the model by Burnett et al. 

(2007a), (ii) the model by Rafsanjani et al. (2015b). Figure 5.24 shows that the curve from 

(Burnett et al. 2007a) leads to excessive displacements (and understiff response) because it 

considers quasi-static values for the material parameters. Conversely, both the present and the 

mesoscopic model by (Rafsanjani et al. 2015b) are reasonably accurate in predicting the peak 

displacement, with a relative error of around 10%. Regarding the post-peak behavior, it is 

noticeable that the structure displacement restitution of the present numerical model is 

practically inexistent. Yet, similarly to the experimental results, the latter is not entirely 

reproduced by the other two numerical models under comparison, presenting both an out-of-

plane displacement that slightly decreases in post-peak after the time instant of 180 mm. This 

is possibly due to the irreversible displacements computed (permanent plastic strains) within 

the cyclic behavior of the model, as seen in the deformed shape at t=300ms plotted in Figure 

5.24. The response is still remarkable. 

Table 5.8 – Elastic identification of the discrete macro-model for the parapet C6/C7 with a refined 
mesh of 100 mm size. 

Elastic Parameters - Discrete macro-model (H=100 mm; e=20 mm) 

Eflexural truss xx Eflexural truss yy Etorque truss xy Etorque truss yx Aflexural truss ATorque truss 

6762358.21 
(N/mm2) 

3381179.10 
(N/mm2) 

771604.39 
(N/mm2) 

771604.39 
(N/mm2) 

1000 
(mm2) 

1000 
(mm2) 
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'= 1e-06 .s-1

'= 0.01 .s-1

'= 10 .s-1

'= 100 .s-1

'= 200 .s-1

'= 1e-06 .s-1

'= 0.01 .s-1

'= 10 .s-1

'= 100 .s-1

'= 200 .s-1

'= 100 .s-1

'= 10 .s-1

'= 1e-06 .s-1

'= 0.01 .s-1

'= 200 .s-1



Chapter 5 

131 

 

Figure 5.24 – Time history of the out-of-plane displacement obtained for the control node of the 
parapets C6 and C7 and deformed shapes observed with the proposed model for the time instants 
0.5ms, 1.41ms, 25ms and 300 ms. 

Figure 5.25 indicates the observed damage pattern. Vertical cracks are clear around both 

the central area and the two supported edges. Also, horizontal cracks spread from the center 

along the height of the masonry parapet. As expected, it is evident that damage tends to 

concentrate on the impact zone. This was implicitly concluded in the experiments tests by 

Gilbert et al. (2002a), whereas the lateral supports effect decreases with the increase of the 

parapet length. Thus, the central localization of the damage leads to a critical plastic deformed 

area that can explain the results.  

 
(a) 

 
(b) 

Figure 5.25 – Damage pattern for the parapet C6/C7: (a) observed after the experimental campaign 
(adapted from Gilbert et al. (2002a)); and (b) for the applied load wall side, horizontal cracks and 
vertical cracks. 
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5.4.4 Mesh sensitivity and computation time of the solution 

A mesh sensitivity study at a macro-scale is conducted for the parapet C5/C6 subject to a low 

velocity load. The goal is to evaluate its dependency in terms of accuracy and computational 

time required. For this purpose, two less refined quadrilateral meshes were considered, i.e. 200 

mm and 400 mm. Once a uniform quadrilateral mesh pattern is specified, higher mesh 

dimensions could lead to important geometrical misrepresentations and thus unnecessary errors. 

Figure 5.26 reports the results of the mesh sensitivity analysis. 

Bearing as reference the curves obtained with the maximum refinement level, Figure 5.26 

shows that mesh dependency is moderate from an engineering standpoint. In fact, maximum 

relative errors of 16% and 25% between peak curves values are found. An alike shape of the 

time-history displacement curves is also collected, meaning that the pre- and post-peak behavior 

is well captured and not perturbed with the mesh change, at least for the present control node. 

This is easily observed through the deformed shape presented in Figure 5.26, whereas the 

displacement field is smoother between adjoining discrete elements with the increase of the 

mesh refinement. Coarser meshes may lead to an inaccurate representation of the damage 

pattern due to the limited number of elements that govern it (deformable trusses). 

 

Figure 5.26 – Mesh sensitivity study in terms of time history of the out-of-plane displacement 
obtained for the control node of the parapets C6 and C7 with three mesh refinements, H=100, 
H=200 and H=400 mm. Obtained deformed shapes observed the time instant 50 ms. 

On the other hand, the computational time required at a macro-scale is significantly 

decreased with mesh size, as seem in Figure 5.27. In this regard, the author highlights that a 

proper mesh size discretization is of relevance. It may minimize the errors due to possible rough 

geometrical modelling by the use of coarse elements, but, account also for the needed output 

information. For instance, if one wants to obtain a clear and accurate structural behavior in 
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terms of displacement and damage fields, a finer mesh is the better solution. If one is interested 

in obtaining a quick evaluation of the structure peak displacement or perform a thorough 

parametric study, a coarser mesh at a structural scale could be a possibility. 
 

 
Figure 5.27 – Registered computational time for the three mesh refinements studied. 

5.5 Summary 

The present chapter addressed the numerical assessment of OOP loaded masonry structures 

using the proposed two-step procedure. A series of different experimental campaigns have been 

selected to ensure a study encompassing three main regimes of application: an OOP load applied 

in a quasi-static fashion, a seismic dynamic excitation, and an impact load (fast dynamics). 

The first analysis has been carried out on solid and windowed running-bond URM panels 

subjected to two-way bending through the application of a pressure load using airbags.      

Quasi-static (pushover) analyses have been performed. The comparison between the numerical 

and experimental data proved that the two-scale strategy represents well the structure capacity, 

the post-peak behavior and the observed damage patterns. Although convenient due to its 

practicability, a quasi-static analysis typically leads to reduced stiffness and strength values 

when compared to a dynamic one. This issue is especially contentious in cases where high 

strainrate loads are applied, due to the enhancement effect observed on the material and 

mechanical properties.  

In this context, a seismic dynamic analysis upon a brick URM house with an English-bond 

has been achieved. The referred benchmark served to foster a blind test prediction program 

and the obtained results showed that, in agreement with preceding observation from several 

research peers, the traditional methods of analysis are unable to reproduce satisfactorily the 

experimental observations. In converse, the proposed two-scale framework based on a direct 

numerical simulation (DNS) at a meso-scale allowed obtaining a good resemble in terms of 

experimental OOP displacements-history and damage map. The results are unequivocal and 

prove that reproducing the existing mortar vertical discontinuity along the English-bond 
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masonry thickness is of utmost importance. In fact, this configuration leads to an anisotropic 

behavior which cannot be well represented by the simplified Kirchhoff-based model nor by a 

continuous FE-based macroscopic approach. Such feature seems to have more relative 

importance than the OOP shear stresses effect. Even so, the latter may be re-analyzed in cases 

where the masonry thickness is considerable or where torsional movements are especially 

dominant. In this context, the author does believe that in the study of English-bond masonry 

structures, precluding those effects may lead to inaccurate and unconservative solutions. The 

third case study focused on a running-bond masonry parapet subjected to an impact load. 

Again, the numerical procedure exhibits a noteworthy prediction, both in terms of the OOP 

displacement and damage map. The ability of the proposed framework in handling the       

strain-rate dependency of the masonry, via a dynamic incremental factor (DIF) approach, is 

demonstrated and certainly a key point. 

In general, although a limited (yet representative) repertoire of case studies has been 

considered, it has been seen that the numerical framework can reproduce with a reasonable 

agreement the OOP behavior of masonry structures. Insomuch, by being integrated within an 

advanced computer software as ABAQUS, it proved to be robust and computationally very 

attractive. The possibility of executing the calculations using a parallel computing system is 

paramount. This circumstance together with the simple numerical nature of the procedure 

appears to speed-up the computations and reach quite attractive running-times. As initially 

aimed, it can be affirmed that the presented framework demands a significantly lower 

computational cost than a macroscopic one, i.e. around 10 times less. Even so, despite the 

regularization step that corrects the fracture energies of the stress-strain input curves, it may 

be pointed out that: (i) the use of rigid elements, with concentrated nonlinearity on its 

interfaces, intrinsically suffer from limited mesh dependency on softening; (ii) discrete-based 

models where rigid elements are employed per se, may suffer from a perpetual geometrical 

limitation due to the misrepresentation that may occur when openings exist; and (iii) the 

discrete macro-model is not able to directly follow diagonal yield lines (zig-zag instead). Yet, 

the use of a refined quadrilateral mesh allows to overcome such limitation. In this context, the 

mesh size definition should always include the latter concerns. The mesh sensitivity studies 

performed seem to sustain that for practical applications the use of a coarser mesh can be 

appropriate. This is especially clear if one notices the improved running times achieved. 

Nevertheless, the results showed that bypassing a finer macro-model discretization seems to be 

more appropriate within the static range than within the dynamic one. 
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Chapter 6 
6 Seismic fragility assessment of an URM structure 

6.1 Introduction 

Performance-based earthquake engineering (PBEE) is a methodology in which a structure is 

designed to reach the desired performance state given a seismic excitation level (Ghobarah 2001; 

Günay and Mosalam 2013). The first adoption of this philosophy dates from the Uniform 

Building Code (PCBO 1927) being still incorporated in current design guidelines; for instance, 

the FEMA 356 (2000) and ASCE/SEI 41-17 (2017), which provides the maximum probability 

of a structure collapse according to the level of ground motion intensity; and, at the same line, 

the Eurocode 8 (2004) sets the returning period of the seismic event to be considered 

conditioned by the type of class of the building, for both the near collapse, significant (or 

severe) damage, and damage limitation cases. 

The 1994 M6.7 Northridge and 1995 M7.2 Hanshin-Awaji (Kobe) earthquakes showed that 

code-compliant design allows structures to behave well from a non-collapse requirement, but 

are unable to control the observed damage that led to unacceptable high downtime and repair 

costs. To cope with this, improvements have been introduced by PBEE frameworks whereas 

additional performance requirements considering direct loss and downtime costs have been 

presented (Welch et al. 2014). For instance, SEAOC (1995), ATC 40 (1996), FEMA 273 (1997) 

were developed, which aimed to be seismic provisions for building codes. Nonetheless, design 

codes feature a semi-probabilistic character, i.e. although the definition of the system variables 

is based on a simplified probabilistic estimation through safety factors, the final verification is 

purely deterministic because it relies on a ratio between the capacity and demand for each 

structural element. Such cut and dry approach do not guarantee the liability of engineers owing 

the uncertain nature of earthquakes, as seen (witnessed) in the 2011 great East Japan 

earthquake which caused 16,000 deaths and a total cost of $120 billion USD for building 

recovery activities (Norio et al. 2011). 

Aiming a better control of the structural performance, reliability methods have been 

implemented within the PBEE frameworks; leading to the so-called second generation methods, 

as the PEER-PBEE developed by the Pacific Earthquake Engineering Research center, see K.A. 

Porter (2003). The PEER methodology introduced uncertainty in all the four stages of the 

seismic loss assessment: (i) hazard analysis (seismic action); (ii) structural analysis; (iii) damage 

analysis; and (iv) decision analysis (consequences). It is important to recall that such a 

framework can be applied for both new and existing structures and at a structural or at a 
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territorial level. In any case, this is a key tool in the decision process, as when applied to a new 

or existing structure, it can indicate the best design or retrofit solutions, respectively, to face 

a future seismic event considering both economic and downtime costs established by the owner 

and designer. Also, when applied at a territorial scale, the method can orient, through loss 

estimations in terms of economic and social impact, the most convenient solution for political 

and private (insurance companies) stakeholders but, as well, indicate the existence of vulnerable 

building stock and foster potential risk mitigation strategies. 

Although the methodology is being disseminated through straightforward procedures 

(Günay and Mosalam 2013), its multi-disciplinarily character, complexity and computational 

burden still preclude its use in common engineering practice. Bearing that the structural 

analysis stage represents a considerable amount of time, novel probabilistic-based tools of 

assessment, which can be combined in such a framework have been presented in recent years. 

This chapter is thus intended towards the modification of the latter framework for the seismic 

assessment of a URM structure, yet focusing on the damage assessment and precluding, so far, 

the hazard and loss assessment steps. Considering the latter concerns, the proposed numerical 

two-step strategy is adopted for the analysis stage, because it allows fast computations even 

within a nonlinear dynamic analysis. The study is integrated with variables parametrization to 

account for the propagation of uncertainty.  

6.2 Case study & outline of the stochastic framework 

A methodology appropriate for the seismic vulnerability assessment of URM structures is herein 

described and applied next for the English-bond brick-house mock-up tested in LNEC by 

Candeias et al. (2016), which has been addressed in Chapter 5 (section §5.3). The probabilistic-

based methodology covers two out of four PEER-PBEE approach steps, i.e. the structural and 

damage analyses. The final output is the computation of the probability of exceeding (POE) 

defined damage states, whose results may be gathered and plotted through fragility functions 

(viz. fragility curves). The framework aims to be general and practical, hence several 

assumptions are addressed to increase its computational efficiency. The main features are 

addressed next and presented in Figure 6.1. Each step is detailed during the application for the 

selected case study. 
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Figure 6.1 – Flow-chart of the probabilistic framework adopted for the seismic vulnerability 
assessment of an URM structure.  

Structural analysis 

Seismic fragility curves constitute a state-of-art approach when assessing the seismic risk of a 

structure and require the definition of both an intensity measure (IM) and an engineering 

demand parameter (EDP). These can be derived from the so-called capacity spectrum method 

(CSM) (ATC 40 1996) or through an Incremental Dynamic Analysis (IDA) (eventually seismic 

vulnerability curves if loss estimation was also appraised). The CSM is based on a static-type 

of loading and suffer, inevitably, from the perpetual limitations of static approaches, as it may 

mislead the energy dissipation, resulting forces and the overturning moments. The reader is 

referred to Krawinkler and Miranda (2004) for a further discussion concerning the CSM. In 

converse, the IDA brings several advantages as, besides the fact that the predicted response is 

the outcome from a dynamic analysis, it provides the capability of employing different 

Engineering Demand Parameters (namely displacement-, acceleration- or energy-based) for 

different earthquake Intensity Measures (such as PGA, the spectral acceleration, etc.). So, the 

IDA method is employed in this study. 

The stochastic character of the framework is assured by incorporating uncertainty in the 

system variables. At a meso-scale, the material, and geometrical variables 𝑋ք are parametrized 

to account for probability-based concepts. Since the assessment is conditioned by the extent of 

system uncertainties assumed, a sensitivity study is performed to conclude on the most 
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important variables for the masonry response. As a result, tornado diagrams may be plotted to 

evaluate the less relevant system variables and, therefore, identify the ones which entail a 

deterministic and non-deterministic nature (read, random variables RVs) aiming to increase 

the computational efficiency. Afterwards, a Latin Hypercube (LH) strategy is adopted to 

generate the random sampling of the meso-scale input, being the BVP solved 𝑁֎քֈ֐և times using 

the DNS homogenized model (see section §3.6) to obtain the random homogenized quantities.  

The propagation of uncertainty between the meso and macro-scales is conducted by the 

upscaling of a set of 𝑁֋֍֊֋ռւռ֏րտ stress-strain and moment-curvature quantities which represent 

the whole probabilistic sample. This step intends to reduce the required number of IDAs 

performed at a macro-scale, since 𝑁֋֍֊֋ռւռ֏րտ ⊂ 𝑁֎քֈ֐և. Note that the loading uncertainty is also 

acknowledged by providing different ground motions scaled for each IM analyzed. 

Damage analysis 

The computation of the fragility functions follows an analytical approach, meaning that the 

data collected from the IDA curves are used. To accomplish this goal, it is still necessary to 

define damage regions and the corresponding limit state (LS) levels. The structure’s response 

represented by the IDA curves is given in terms of EDP values for each ground motion IM. 

Hence, it is likewise customary to describe the LS in terms of fixed EDP values (Günay and 

Mosalam 2013) (possibly with an associated coefficient of variation, CoV), since it allows to 

easily compute, through a binomial distribution approach, the number of events that surpassed 

or not the aforementioned limits; accordingly, it is possible to simply compute the associated 

POE of each LS. Finally, the construction of the fragility curves is here achieved by fitting the 

discrete data using a lognormal probabilistic distribution. The use of a cumulative lognormal 

function to express the seismic fragility curve of structures has proven to be a suitable and 

appropriate choice (Krawinkler and Miranda 2004). 

6.3 Structural analysis (meso-scale level) 

6.3.1 Sensitivity study of the input parameters 

Uncertainties are commonly interpreted in engineering decision fields according to its origin 

and, therefore, differentiated as physical (in the sense of nature), statistical or modelling 

uncertainties (Nowak and Collins, R. 2012). Its representation is achieved by defining the 

system variables as non-deterministic or, as typically designated in the literature, as random 

variables (RVs) (Faber and Stewart 2003; Faber et al. 2007). Complex methods as the 

nonstationary stochastic processes allow to represent these RVs (Stewart and Melchers 1997; 
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Melchers 1999), yet the definition of simple statistical distribution functions is appropriate in 

the majority of the structural problems. This fact is well addressed in the probabilistic model 

code JCSS (2011), which puts together several valuable suggestions for a probabilistic structural 

design. Recommendations on the statistical distributions and the associated statistical 

parameters values are presented for several construction materials like concrete, timber, and 

masonry. Variables concerning the loading input, the material properties of the masonry and 

the geometry of the structure can carry the uncertainty of the system.  

A proper selection of the number of RVs of the system 𝑋 = {𝑋φ,𝑋ϵ,𝑋ϯ,… ,𝑋ք+φ} is of utmost 

importance, as it has a direct effect on the required computational processing time. Table 6.1 

depicts the variables that serve as meso-scale input for the homogenized 3D DNS model. The 

expected values and the CoV terms follow the experimental data addressed in section §5.3 and 

the recommendations from JCSS (2011), when applicable.  

Table 6.1 – Statistical properties of the system variables to conduct the sensitivity study. 

iX  
Statistical 

distribution iE X    iCoV X    

Ebrick (N/mm2) LN 11000 29 % (Candeias et al. 2016) 
Emortar (N/mm2) LN 3000 25 % (JCSS 2011) 
fc,mortar (N/mm2) LN 2.48 17 % (JCSS 2011) 
ft,mortar (N/mm2) LN 0.105 *25 % 

IV
fG  (N/mm) LN 3.97 *17 % 
I
fG  (N/mm) LN 0.012 *25 % 
II
fG  (N/mm) LN 0.05 *25 % 

c (N/mm2) LN 0.2 40 % (JCSS 2011) 
Φ  (degrees) LN 30 19 % (JCSS 2011) 

t (mm) N 235 5 % (Candeias et al. 2016) 
tjoint (mm) N 15 20 % (Candeias et al. 2016) 

*  
i

CoV X  value assumed by the author. 

A sensitivity analysis is hereafter conducted to attest the relative significance that each one 

of the eleven parameters has upon the OOP homogenized quantities; specifically, on the 

horizontal (𝑀֓֓), vertical (𝑀֔֔) and torsional (𝑀֓֔) bending moment-curvature relationships. 

Note that, following the low experimental variability registered by Candeias et al. (2016), both 

the masonry density 𝜌 and Poisson coefficient 𝜐are given as deterministic variables. In this 

regard, two meso-scale homogenization problems are solved for each studied variable 𝑋ք one 

whereas 𝑋ք adopts a lower bound value defined to be the 5% percentile; and, the other, where 

𝑋ք adopts an upper bound value defined to be the 95% percentile. The remaining random 
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variables are given, for both the cases, by the respective median values (50% percentile). Since 

this process is repeated for each of the eleven 𝑋ք, a total of 23 analyses have been developed 

(𝑋ք × 2 + 1); note, again, that one is provided by the reference 𝑀֓֓, 𝑀֔֔ and 𝑀֓֔ curves 

retrieved when all the variables possess its median value. It is recalled that other truncation 

which respects the equidistance to the median is possible. This holds true because the same 

conclusions on the relative importance of a given variable would be found. 

The latter data is assembled into tornado diagrams as seen in Figure 6.2. In this type of 

charts, the variables are positioned in the ordinates and the bar length represents the 

consequence of changing the variable to a lower and upper bound with respect to the base 

(median). The tornado diagrams place the most influential variables in the top of the chart, 

following a descending order and thus allowing to draw faster conclusions on its relative impact. 

Having into account that both material and geometric parameters are considered as RVs, it is 

expected that differences can be accountable not only on the maximum moment capacity but, 

as well, on the 𝑀 − 𝜒 curve shape (especially in the post-peak regime). Thus, the sensitivity 

study has been driven for a local and global control parameter of the 𝑀֓֓, 𝑀֔֔ and 𝑀֓֔ curves, 

i.e. the peak moment value and the curves stored energy, respectively. 

 

(a) 
 

 

(b) 

Figure 6.2 – Tornado diagrams for the eleven RVs of the system (phi = 𝛷): (a) local parameter 
given by the curves’ peak; and (b) global post-peak parameter given as the stored bending energy. 
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The results of the tornado diagrams have shown that some parameters, as cohesion (c), 

tensile strength (𝑓֏) and thickness (t) unequivocally govern both the local (peaks) and global 

(energy) meso-response. On the other hand, it can be also stated that the parameters concerning 

the compressive regime seem to have a lower effect for this case study. These findings are in 

agreement with the experimental evidences, i.e. in the case of weak mortar masonry, the tensile 

and shear regimes tend to govern the behavior of weak mortar masonry (Willis et al. 2004). 

Hence both the compressive strength and fracture energy terms are defined to be deterministic 

variables. The remaining variables seem to have a significant effect on the homogenized 

quantities derived and, therefore, a total of nine variables are considered to be random and 

carry the aleatoric uncertainty of the system: 

𝑋 = ृ𝐸ս֍քվֆ ,𝐸ֈ֊֍֏ռ֍ , 𝑓֏ ,𝐺ց
ժ  , 𝑐 ,𝐺ց

ժժ , 𝑓վ , 𝑡օ֊ք։֏ , 𝑡ॄ 

6.3.2 Probabilistic sampling (Latin Hypercube method) of the input  

In some cases, where uncertainty is considered, the failure probability can be evaluated solving 

the integral of the given limit state function (Faber 2009). In other cases, rather complex and 

within a multivariate space, the determination of the solution is necessarily achieved using an 

approximate strategy, as the response surface method (Bucher and Bourgund 1990) or through 

a trial and error approach using sampling methods, as the Monte Carlo (MC) or the Latin 

Hypercube (LH). 

The MC and LH sampling techniques are widely spread in several engineering fields and 

follow similar methodologies, i.e. the formulation of four main steps: (i) the definition of a 

probability distribution function (PDF) and associated statistical parameters for each RV; (ii) 

the generation of a sample of the RVs, according to its distribution, potential correlation, and 

the number 𝑁֎քֈ֐և of desired simulations; (iii) finding the solution of the problems using each 

of the latter generated sample of variables; thus repeating the process 𝑁֎քֈ֐և times; (iv) reaching 

the failure probability through the ratio between the number of solutions that respect the limit 

function and the total of 𝑁֎քֈ֐և simulations number. The key difference between MC and LH 

is the way that the sampling process is performed. Both suffer from a dimensionality curse, i.e. 

the accuracy of the solution strongly depends on the number of simulations performed. The 

former approach has been developed first by Metropolis and Ulam (1949) and is conceptually 

more straightforward, as it uses a simple random algorithm to define the set of RVs. Still, it 

brings the disadvantage of demanding a high computational cost if an acceptable confidence 

limit is desirable. The latter technique stems from the MC method, but it adopts a rational 

selection of the RVs set through a stratified sampling technique which allows avoiding the 
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existence of overlapped simulations (McKay et al. 1979). The computational effort is thus 

lessened when compared to crude MC techniques (Stein 1987). 

For the present application, an LHS method within an inverse transform method is chosen. 

The sampling process has been performed in MATLAB and intends to derive a set of 

𝑁֎քֈ֐և =  2000 grouped values, for each RV of the array X, to allow investigate the masonry 

response variability. It matters recalling that some of the input variables may be dependent 

and, therefore, a non-identity correlation matrix has been considered. The goal is to obtain a 

meaningful sample of values and guarantee that only plausible physical behaviors are simulated. 

The built-in LHS tool of MATLAB makes use of a correlation measure based on the Person 

product-moment coefficient 𝜌քӴօ (subscripts i and j denote two given variables). Table 6.2 

reports the parameters adopted (namely the covariance matrix, see McKay et al. (1979)), which 

are fully-based on expert judgment. Only null (independent variables) and positively correlated 

variables are considered. On the other hand, no spatial variability has been accounted for.  

Table 6.2 – Target correlation matrix adopted between the input random variables. 

 brick
E  

mortar
E  

t
f  I

f
G  c  II

f
G  Φ  joint

t  t  

brick
E  1.0 0.4 0.2 0.2 0.2 0.2 0.2 0.0 0.0 

mortar
E   1.0 0.8 0.6 0.6 0.4 0.2 0.0 0.0 

t
f    1.0 0.6 0.6 0.4 0.2 0.0 0.0 

I

f
G     1.0 0.6 0.4 0.2 0.0 0.0 

c      1.0 0.6 0.2 0.0 0.0 
II

f
G   sym    1.0 0.2 0.0 0.0 

Φ        1.0 0.0 0.0 

joint
t         1.0 0.2 

t          1.0 

 

The theoretical statistical distribution and the histograms obtained after the LH sampling 

are shown in Figure 6.3 for each RV. It is clear that a good match has been found between the 

generated and expected distribution curves. 
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Figure 6.3 – Distribution of the generated samples of each RV after performing a LH sampling with a 
dimension equal to 𝑁֎քֈ֐և = 2000. 

6.3.3 Propagation of uncertainty (meso-to-macro scale) 

The process of determining the sample of values that covers the input for the 3D DNS 

homogenized model has been achieved through the Latin Hypercube (LH) sampling technique. 

A total of 𝑁֎քֈ֐և = 2000 simulations have been performed and the derived samples ensure the 

variability of the different system material, mechanical and geometrical parameters. Each 

generated sample serves as input for the BVP that needs to be solved at a meso-scale and, 

by repeating this process for every sample, a total of 2000 homogenized stress-strain and 

moment-curvature curves are derived, as depicted in Figure 6.4. It is clear the large variability 

of the meso-scale response, partly explained by the adopted high CoV values for the most 

critical parameters, which proves the importance of considering the material uncertainty for 

URM structures.  
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(a) 

 

(b) 

Figure 6.4 – Homogenized moment-curvature curves after the performed 𝑁֎քֈ֐և = 2000 simulations for 
the: (a) in-plane 𝛴 − 𝛦 curves; (b) out-of-plane 𝑀 − 𝜒 curves. 

A convergence test has been performed to assess the adequacy of the number 𝑁֎քֈ֐և. Figure 

6.5 shows that the mean peak values of the generated homogenized 𝑀 − 𝜒 curves are practically 

stationary after a 𝑁֎քֈ֐և = 500 and remains below the defined tolerance of 5% (in respect to 

the last simulated mean value). This behavior is consistent for all the 𝑀֓֓, 𝑀֔֔ and 𝑀֓֔ curves 

and, therefore, the 𝑁֎քֈ֐և = 2000 seems an appropriate choice (the 𝑀 − 𝜒 curves are directly 

derived from the 𝛴 − 𝛦 curves; hence the latter results are not plotted here).  

The suite of generated stress and moment curves, developed using a LH technique and 

computed from the DNS homogenized model, carry the system uncertainty and make possible 

the probabilistic analysis of the masonry behavior at a macro-scale.  
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Figure 6.5 – Convergence tests performed for the obtained peak values of the 𝑀֓֓, 𝑀֓֔ and 𝑀֔֔ 

quantities during the 2000 simulations performed. 

The dimension of the available data is large and, in order to reduce the number of simulations 

performed at a macro scale, it has been decided to seek representative homogenized material 

curves. So, data from each quantity has been filtered to retrieve the five principal percentiles. 

The main purpose is the definition of five deterministic models that holistically represent Nsimul 

different samples of material, mechanical and geometric parameters. However, combining the 

percentiles found for each of the homogenized quantities and blindly assuming that these 

constitute five macro models may be erroneous. In other words, the sample that originates the 

maximum 𝑀֓֓ peak can differ from the one which originates the maximum 𝑀֓֔ and/or 𝑀֔֔ 

values. This is especially critical in a multivariate system, whereas the relative importance of 

each variable is more diluted and thus an obvious correspondence between models is hardly 

found. A similar strategy has been adopted by Günay and Mosalam (2013) but focusing only 

on one 𝑀 − 𝜒 curve input and, therefore, without the present complexity. Bearing this in mind, 

a correlation test between the homogenized quantities being combined is mandatory. The 

correlation assessment has been conducted via q-q plots and the results are addressed in Figure 

6.6.  

A local and a global parameter that characterizes the OOP homogenized quantities are 

accounted, namely the curve’s peak value and the stored bending energy. Again, only the 

OOP quantities have been considered to avoid redundancy, as the 𝑀֓֓ − Σ֓֓, 𝑀֓֔ − Σ֓֔ and 

𝑀֔֔ − Σ֔֔ are correlated. Note that the 𝑀 − χ curves are a function of the IP quantities, i.e. 

𝑀֓֓ = 𝑀֓֓(Σ֓֓), 𝑀֓֔ = 𝑀֓֔िΣ֓֔ी and 𝑀֔֔ = 𝑀֔֔िΣ֔֔ी. Additionally, a Kolmogorov-Smirnov 

(KS) test confirmed that the statistical distribution of the logarithms of both the peaks and 

energies for each the 𝑀֓֓, 𝑀֓֔ , and 𝑀֔֔ curves are normally distributed within a confidence 

interval of 95%. This allows concluding that the latter OOP homogenized curves follow a 

lognormal distribution.  
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(a) 

 
(b) 

Figure 6.6 – Correlation assessment through q-q plots, between the obtained homogenized 𝑀 − 𝜒 
quantities from the 2000 simulations, in terms of (a) peak values of the curves (local parameter); (b) 
bending energy of the curves (global parameter). The samples have been truncated within the 95% 
confidence level margins. 

In this regard, it is noteworthy to state that the q-q plots have confirmed that the 

homogenized quantities are quasi-perfect positive correlated (Pearson linear correlation 

coefficient of 0.99) within a confidence level of 95%. So, this supports the assumption of filtering 

directly five models from the sample’s percentiles. The propagation of the modeling 

uncertainties between the meso- to the macro-scale is guaranteed by the five representative 

models plotted in Figure 6.7. These are designated according to the quantiles that represent, 

i.e. model P5%, model P25%, model P50%, model P75% and model P95%. Note that such an 

assumption is especially convenient as it allows reducing drastically the computational cost at 

a macro-scale, without losing the representativeness of the simulations performed at a meso 

scale.  
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(a) 

 
(b) 

Figure 6.7 – Definition of the five models that represent the simulated sample of 2000 curves: 
(a) in−plane Σ − Ε curves; (b) out-of-plane 𝑀 − 𝜒 curves. 

6.4 Structural analysis (macro-scale level) 

6.4.1 Load random input: artificial accelerograms 

Current code guidelines, such as Eurocode 8 (2004), acknowledge the use of real and artificial 

accelerograms. An earthquake engineer should choose in conformity according to the nature of 

the application and the information at disposal. In regions where a significant set of ground 

motion records of damaging earthquakes is unavailable, the use of real earthquakes is difficult. 

Also, each record has its own features in terms of wave characteristics contents (as frequency, 

duration, amplitude, etc.), which makes unlikely that a similar seismic event occurs again. 

Bearing this in mind, artificial accelerograms compatible with the elastic response spectrum 

defined through design codes are used here. This is convenient once a significant number of 

random artificial motion records, compatible with the code design response spectrum, can be 

easily generated through existing tools already at disposal, as the software SIMQKE_GR 

(Gelfi 2006) or RASCAL (Silva and Lee 1987). For a detailed comparison between existing 

tools, see Iervolino et al. (2010).  
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A total of seven stationary signals have been generated through the software SIMQKE_GR 

(Gelfi 2006), which is the minimum number according to the Eurocode 8 (2004) for which a 

representative mean response is acceptable. The non-stationary signals (non-stationary in both 

amplitude and frequency content) are produced considering a trapezoidal shape for the envelope 

function (Gasparini and Vanmarke 1976). A total duration of 35 seconds has been defined, in 

which the intense phase is given to be 30seconds and the rise and decay phases are given 

altogether with a 5seconds duration. The signals have been high-passed in the range of 

frequencies of 0.2 Hz to 40 Hz and filtered using a cosine function to attenuate potential 

accelerations drifts. The resulting artificial accelerograms are compatible with the elastic 

response spectrum for an earthquake type 1 (far-fault earthquake) defined by Eurocode 8 (2004) 

with a returning period Pn of 475 years and for a 3% viscous damping (ξ = 3%) coefficient 

(following the value identified in section §5.3.2), as demonstrated in Figure 6.8. The suggested 

parameters by the Portuguese National Annex for the region of Lisbon have been followed, i.e. 

an importance factor I equal to 1.0 (Class B buildings); a value of agr = 1.5 m/s2; and a soil 

type A (rock, soil factor S=1). Note that these values have been taken from the code by making 

some assumptions aiming to apply the framework. Therefore, these are not representative of 

any territory nor building. 

 
Figure 6.8 – Pseudo-acceleration response-spectrum: elastic spectrum according to Eurocode 8 (2004); 
response spectrum of the artificially generated earthquakes and mean spectrum of the seven artificial 
earthquakes. 

The filtered signals compliant with the Eurocode 8 (2004) spectrum are depicted in Figure 

6.9. A total of seven earthquakes, with a PGA tuned to 1m/s2, serve as a reference for the 

scaling process. It is noteworthy to stress that the scaling of the earthquakes is performed 

considering an intensity measure (IM) that represents each ground motion content; this is 

necessary aiming to guarantee the consistency of the performed incremental dynamic analysis. 
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Figure 6.9 – Artificial generated accelerograms scaled to a maximum peak acceleration of 1m/s2 to 
perform the incremental dynamic analysis (IDA).  

6.4.2 Incremental dynamic analysis (IDA) 

Incremental dynamic analysis (IDA) is an intensive method which allows obtaining a better 

evaluation of the seismic response of a given structure. A series of scaled accelerograms are 

used to perform multiple nonlinear dynamic analyses and check the response of the structure 

according to a defined engineering demand parameter (Vamvatsikos and Cornell 2002; 

Vamvatsikos and Fragiadakis 2010). Besides the selection of a proper set of ground motions, 

the construction of IDA curves demands the definition of (i) an appropriate strong motion 

intensity measure (IM); and (ii) an appropriate engineering demand parameter (EDP). The 

data gathered by the IDA analyses offer a comprehensive insight into the seismic response of 

the studied system and allow constructing important decision-tools, as seismic fragility curves 

or seismic vulnerability curves (if the losses are estimated). Notice that the construction of 

fragility curves is, in fact, the ultimate goal of the present chapter. 

Intensity measure (IM) 

The decision over the optimal IM is important for the IDA carried out as it may retrieve a 

lower dispersion on the IDA results. Consequently, the number of ground motions required to 
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optimized. Briefly, Mackie and Stojadinoviić (2005) referred that an optimal IM may feature a 

character of: (i) practicability, in the sense that is a quantity easily understood from an 

engineering perspective; transversal (meaning at disposal, for instance, from hazard curves) 

between different seismology fields; and has a direct correlation to known engineering structural 

parameters; (ii) sufficiency, as it allows reducing the statistical dependence on the results 

concerning the ground motion characteristics, as magnitude and source distance; (iii) 

effectiveness, by allowing the computation of a closed-form law to derive the mean annual POE 

of an EDP for a given IM level; (iv) efficiency, as is retrieves a lower dispersion of results. An 

efficient IM requires less computational effort since a smaller number of dynamic analyses are 

needed to capture the predicted structural behavior; and (v) robustness, meaning that its 

efficiency is maintained for different structural scenarios. 

The set of potential IMs is extensive and one can mention the PGA, PDV, PGD, the Arias 

intensity IA, the Housner Intensity IH, among others. The selection of the most adequate IM is 

still debatable. Its identification should encompass concerns related to the adopted hazard 

model, the system (structural or no-structural) under analysis and the data at disposal 

(Pitilakis 2014). Still, there are several studies, as Luco and Cornell (2007), 

Tothong and Luco (2007), and Mehanny (2009), which directly report different optimal IM to 

be used within a performance-based analysis for both new and existing structures. In this 

context, presumably, the most appropriate IM for the present study case is the spectral 

acceleration given at the first structure’s period, Sa(T1) (Vamvatsikos and Cornell 2004), since 

the first vibration mode of the LNEC brick benchmark is associated with the out-of-plane 

translation of the west façade. This is, in fact, the dominant failure mode and wherein the 

control node is positioned. Such IM is practical, as it can be available from seismic hazard 

curves (as de U.S. Geological Survey) or easily derived from the response spectrum, and more 

efficient than the classical structure-independent PGA measure (Kazantzi and Vamvatsikos 

2015; Eads et al. 2016), specifically for structures with a low fundamental period. Still, the 

period of a rocking structure depends on the displacement and may be unsuitable for the out-

of-plane collapse of existing masonry structures. 

Ground specific intensity measures as the PGA (or related PGV and PGD fields) are likewise 

practical, but may constitute an inefficient choice for long-period structures (lacks robustness). 

Even though, the PGA has been defined to be the one used as IM. On one hand, this is a 

traditional option that has been largely applied, also in agreement with the existing design 

codes wherein is included, for instance, in both the hazard definition and in motion attenuation 

relationships. On the other hand, and perhaps more importantly, such IM has been adopted 

during the input scaling of the experimental data (section §5.3). The use of the PGA as IM is 
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thus convenient, as prior knowledge of the structure response is somehow known beforehand. 

The IDA impose the scaling of a ground motion set in terms of PGA that may cover the elastic 

and inelastic behavior of the structure. Hence, even if this suite of earthquakes is different in 

terms of frequency, duration and amplitude contents, the use of PGA as IM is still helpful as 

it pertains a crude reference of comparison with the experimental PGA values of 

Candeias et al. (2016). Here, IM levels equally spaced of 0.1g have been set, starting from a 

PGA of 0.1g up to 0.7g. For a better comprehension on the response of the models P75% and 

P95%, the maximum IM has been defined to be 0.9g and the spacing equal to 0.05g. 

Engineering Demand Parameter (EDP) 

A series of nonlinear dynamic analyses may be carried out considering different IM levels aiming 

to plot the final IDA curves. This goal is only accomplishable if an adequate parameter, 

designated in the literature as Engineering Demand Parameter (EDP), is established to assess 

the response of the system. As referred by Krawinkler and Miranda (2004), the EDP selection 

depends on the performance target and on the type of system under investigation.  

The present study focuses on the structure only, being the non-structural sub-components 

of the building disregarded. In such a context, the selected EDP may give direct information 

about the masonry structural behavior and, therefore, carry the uncertainty of the system: 

aleatory, namely the material and mechanical properties derived at a meso-scale (only from the 

masonry ones, since no-other material nor the soil-foundation have been considered) and 

epistemic, namely the modelling-related assumptions, the drawback of scaling only the 

amplitude (PGA) and not the frequency content of the ground motions, and the potential 

prediction inaccuracy of the two-scale numerical framework.  

Possible EDPs include story drifts; rotation values; total or inelastic deformations; floor 

accelerations or velocities; internal forces of elements; strength degradation or energy 

dissipation values, among others. Here, the total deformation given by the maximum out-of-

plane displacement component obtained at the top of the gable wall (EDP) has been assumed. 

It should be mentioned that a displacement-based parameter is typically adopted within 

analytical frameworks to derive the seismic fragility curves of URM structures, as 

Calvi et al. (2006), Park et al. (2009), Rota et al. (2010), Frankie et al. (2013), and/or given 

in seismic URM buildings seismic provisions, as FEMA 368 (2001).  
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Incremental Dynamic Analysis (IDA) curves 

The IDA curves are given by plotting IM-EDP curves after performing a series of dynamic 

analyses (Vamvatsikos and Cornell 2002). Here, seven artificial seismic records have been 

assumed and scaled to comprise seismic intensity measures ranging the 0-0.9g (PGA levels). 

These have been only applied in the longitudinal direction of the LNEC brick house. The 

propagation of the material and geometrical uncertainty traced back at the meso-scale is 

represented by the usage of five macro-models with corresponding Σ − Ε and 𝑀 − 𝜒 capacities: 

model P5%, model P25%, model P50%, model P75% and model P95%. Accordingly, a total of 

266 analyses have been performed which, in practice, cover a total of 2000 samples with different 

material and geometrical inputs. A confidence interval of 95% is assured by the lower (model 

P5%) and upper (model P95%) limits. The continuous IDA curves obtained for each macro-

model are presented in Figure 6.10, whereas a linear interpolation between the discrete result 

pairs (IM,EDP) from the dynamic analyses is assumed. 

These allow concluding that for the models that represent the percentile 5%, percentile 25% 

and median of the homogenized material curves, the structure shows a steep increase of the 

displacements after a PGA of 0.4g, 0.5g, and 0.6g, respectively. After these PGA levels, it is 

clear the development of a degrading plateau. On the other hand, the two models that have 

higher strength values (percentile 75% and percentile 95%) do not present any significant 

difference in the displacements found for these PGAs. The onset of the degrading effects is only 

visible after an IM of 0.7g. The conditional dispersion of the results in terms of IM and EDP, 

i.e. EDP|IM, is higher for the model P5%. Such finding is somehow expected since the model 

P5% is the one associated with low strength values and hence the one which is more sensitive 

to the variability of the ground motion characteristics. At last, focusing on the model P50%, 

as it is the one comparable with the numerical model studied in section §5.3, it is noticeable 

that the inelastic phase is especially visible after a PGA of 0.7g. This is consistent with the 

results found experimentally and numerically, as no visible damage was obtained until a PGA 

of 0.56g (acc 6, see section §5.3).  
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Figure 6.10 – Incremental dynamic analyses (IDA) curves obtained for each of the defined five 
macro−models. 

6.5 Damage analysis (macro-scale level) 

The damage analysis is a key step of PBEE methodologies, in which it is intended to develop 

seismic fragility curves (Günay and Mosalam 2013). Fragility curves give the conditional 

distribution of the probability of exceeding a specific performance state limit (or demand 

parameter) as a function of an IM of hazard. It constitutes a noteworthy base of information 

for the stakeholders involved in the decision-making process of a structural intervention and/or 

design.  

Several frameworks exist to develop fragility curves, which goes from the expert-judgment, 

empirical, analytical or hybrid methods. Here, an analytical approach has been followed based 

on the data that results from the IDA performed. However, it is still necessary to describe the 

demand parameters in terms of performance levels of the structure, usually associated with the 

observed damage and hence designated as damage limit states (LS). 

6.5.1 Performance levels of the structure 

Performance levels can be expressed by targeting discrete thresholds for the EDP on the 

structure’s response. Such levels or limit states (LS) separate different damage regions, which 

can be further on associated with different retrofitting and/or repair actions (and costs) to 

bring it to the original (undamaged) state. The connection between realistic damage states and 

quantitative EDPs represents the main struggle of the process and, when accomplished, fragility 
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curves on the probability of reaching/exceeding a damage level according to a seismic IM can 

be drawn. 

Although the selection of the EDP that better correlates with the structural damage level is 

questionable, the adoption of a displacement-based parameter (usually drift values) tends to be 

generally used by guidelines (SEAOC 1995; ATC 40 1996; FEMA 273 1997; FEMA 306 1998; 

HAZUS 1999; FEMA 356 2000; Eurocode 8 2004; ASCE/SEI 41-17 2017; NZSEE 2017) and in 

literature-related works (Calvi et al. 2006; Rota et al. 2010; Kappos 2016). Again, this supports 

the decision over a displacement quantity to serve as EDP. A comprehensive overview of the 

seismic performance code provisions in terms of drift-ratio values is addressed by Petry and 

Beyer (2014). For instance, one may highlight FEMA 356 (2000), which instructs the use of 

maximum drift ratios of 0.3%, 0.6% and 1.0% to bound, respectively, the performance damage 

states in terms of Immediate Occupancy, Life Safety, and Collapse Prevention. Also, the 

Eurocode 8 (2004) proposes three LS, i.e. the Damage Limitation associated with the drift-ratio 

for the first-yielding displacement of the global capacity curve of the structure; the maximum 

limit for the Significant Damage region has associated a drift-ratio of 0.4% if a shear failure 

occurs or 0.8% H0/L if a flexure failure occurs (H0 is the effective height and L the length of 

the wall); and Near Collapse whose limit drift-ratio is computed to be 4/3 higher than the 

previous LS. 

Guidelines data are especially suitable for in-plane failure modes and a better insight into 

the safety margin due to out-of-plane collapses is still needed. This concern has been recently 

addressed in the standard ASCE/SEI 41-17 (2017), in which the masonry provisions suffered 

some updates concerning the out-of-plane actions for URM structures. Moreover, existing URM 

buildings, in which a box-type of behavior is not present, are typically conditioned by the 

fragility of a component rather than the global system one. In this scope, such traditional URM 

structures feature a fragility whose associated seismic response is hardly consistent with the 

provisions met by standards Eurocode 8 (2004) and ASCE/SEI 41-17 (2017). For the present 

case study, three damage regions have been defined following the states preconized by 

Eurocode 8 (2004): damage limitation (DL), significant (or severe) damage (SD) and near 

collapse (NC). The performance limit states are attained by the results from the nonlinear 

static pushover analyses conducted for the DNS model 200 with the median material parameters 

(model P50%), as depicted in Figure 6.11 and expressed in Table 6.3. Note that: 

 The DL region implies that the building is safe to be occupied after the earthquake. 

The limit state is described as 𝛿եխ and is given by the yielding point of the capacity 

curve; 
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 The SD region implies that the building shows clear damage, but still retains a seismic 

safety margin. The limit state is described as 𝛿մե and it is equal to 0.75𝛿կդ as denoted 

in Eurocode 8 (2004) (𝛿կդ is the NC limit state); 

 The NC region implies that the building is severally damaged and, even though it still 

shows support under gravity loads, it has no seismic safety margin. The limit state is 

described as 𝛿կդ and is given as the post-peak displacement for which the structure 

loses 20% of the peak strength capacity (according to Rota et al. (2010)). 

So, instead of using full code-based LS, which are formulated to give a reasonable generic 

solution, the bespoke LS states thresholds exhibit higher representativeness. Uncertainty is, 

however, being introduced in the system, since the most appropriate strategy would demand 

the computation of nonlinear static pushover analyses for all the five macro-systems (models 

P5%, P25%., P50%, P75% and P95%). To cope with the lack of practicability of conducting 

the latter identification, a CoV value of 15% (within a normal probabilistic distribution) has 

been assumed for each of the LSs parameters. The variability of the LS thresholds may also 

dilute the epistemic uncertainties, regarding the scaling process of the ground motions and 

intrinsic inaccuracy of the homogenized two-scale model of reproducing the real displacements.  

 
(a) (b) 

Figure 6.11 – Nonlinear pushover curves and the definition of the performance limit states (LS): 
direction -Y; and (b) direction +Y. 

Different performance limits have been accounted for each longitudinal direction of the 

structure as seen in Table 6.3, as its behavior differs due to the lack of symmetry. In this 

regard, the weakest link theory is considered, meaning that the overall damage state of the 

structure is given by the limit value exceeded first according to the displacement 𝛿զեձ  sign.  
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Table 6.3 – Structural performance levels adopted (longitudinal direction only). 

Limit State (LS) 
Negative direction (-Y) Positive direction (+Y) 
EDP (mm) CoV (%) EDP (mm) CoV (%) 

DL -0.66 15% 0.45 15% 
SD -3.94 15% 2.65 15% 
NC -5.24 15% 3.53 15% 

 

6.5.2 Displacement-based seismic fragility curves 

The last step of the followed framework is the generation of seismic fragility curves which allows 

assessing the seismic vulnerability of the masonry structure. According to the defined 

performance limit states, and with the structural response information for a series of ground 

motions, it is possible to define fragility expressions. These relate the probability of exceeding 

(POE) a given damage threshold as a function of the IM of the strong ground motion. 

Mathematically, one can refer as follows: 

𝐹𝑟𝑎𝑔(𝐼𝑀; 𝛿զեձ ) = 𝑃[𝐸𝐷𝑃 ≥ 𝛿զեձ |𝐼𝑀] (6.1) 

where 𝐹𝑟𝑎𝑔(𝐼𝑀; 𝛿զեձ ) is the fragility at a given 𝐼𝑀 and for a limit state which as an associated 

EDP limit 𝛿զեձ . Several analytical functions can be used to estimate the fragility curves, being 

herein assumed that these follow a cumulative lognormal distribution, as commonly seen in 

field-related literature (Krawinkler and Miranda 2004; Porter et al. 2007; Baker 2014). A 

lognormal fragility curve determined for a generic LS, with an associated EDP limit given as 

𝛿զեձ  reads as: 

𝑃 [𝐶|𝐼𝑀 = 𝑥] = Φৃ
ln५𝑥

𝜃⁄ ६

𝛽
ৄ (6.2) 

where 𝑃[𝐶|𝐼𝑀 = 𝑥] is the probability of the structure to reach or exceeds the LS when subjected 

to a given ground motion with an 𝐼𝑀 = 𝑥; Φ(. ) is the standard normal cumulative distribution 

function; 𝜃 is the median and 𝛽 is the standard deviation of 𝑙𝑛(𝐼𝑀). The estimation of the 

lognormal parameters of each LS curve can be achieved using different methodologies: by the 

method of moments; by the minimization of the weighted sum of the squared error; and by the 

maximum likelihood method. While the former may be disregarded for the problem at hand, 

since few IMs levels have been studied, the last two are eligible. Even though, the maximum 

likelihood method has been assumed, as it seems to give accurate estimations of 𝜃 ̂ and 𝛽 ̂

(^ denote an estimated parameter) (Baker 2014). 
  



Chapter 6 

157 

The maximum likelihood estimation method 

The method computes the estimated moments 𝜃 ̂and 𝛽 ̂through a maximization problem on the 

likelihood of the predicted data in fitting with the expected one (numerical discrete points). 

Prior to the optimization step itself, the computation of the number of events 𝑛վ (out of the 

total 𝑁ր֑ր։֏ ) whose EDP value exceeded the limit value 𝛿խմ is needed, for each defined LS and 

accounting with all the IM levels. Hence, following a binomial distribution, the probabilities of 

collapse can be easily computed: 

𝑃(𝑛վ 𝑜𝑢𝑡 𝑜𝑓 𝑁ր֑ր։֏֎|𝐼𝑀 = 𝑥) = ঁ
𝑁ր֑ր։֏֎

𝑛վ
ং𝑝։Ո(1 − 𝑝ք)

կՊ՛ՊՓՙ՘−։Ո (6.3) 

in which p is the probability of reaching/exceeding the LS at 𝐼𝑀 = 𝑥. After repeating this 

process for all the IM values, the likelihood of the entire set of analysis is given as the product 

of the individual likelihoods. In this regard, the optimization function is written over the total 

likelihood (the sum of the individual likelihoods) and, owing to a mathematical convenience, in 

the logarithmic form and so reads (Baker 2014): 

९𝜃,̂ 𝛽॰̂ = arg max
ᇆӴᇀ

ం

⎣
⎢
⎡𝑛վ ln

⎝

⎜⎜
⎛

Φ ৃ
ln५𝑥

𝜃⁄
६

𝛽
ৄ

⎠

⎟⎟
⎞

+ (𝑁ր֑ր։֏֎ − 𝑛վ) ln

⎝

⎜⎜
⎛

1 − Φ ৃ
ln५𝑥

𝜃⁄
६

𝛽
ৄ

⎠

⎟⎟
⎞

⎦
⎥
⎤

ֈ

օ=φ

(6.4) 

This process has been performed in MATLAB (through the use of function fminsearch) for 

each LS and the estimated lognormal distribution parameters 𝜃 ̂and 𝛽 ̂are depicted in Table 

6.4. In general, one may note that the median values 𝜃 ̂of the fragility curves are between 0.15g-

0.29g, 0.37g-0.73g and 0.44g-0.84g for the DL, SD and NC states, respectively. The relative 

difference between the P95% and P5% results of the median 𝜃 ̂ is, for all the damage states, 

approximated and is in the range of 200%. This is a relevant value and may be explained by 

the considerable variability of the macro-input, which propagates from the material and 

mechanical uncertainties of the system. Also, in Table 6.4 it is shown that the standard 

deviation values are particularly high for the DL state. In fact, steeper curves are found for the 

SD and NC states, as seen in Figure 6.12, which is in agreement with the low energy dissipation 

capacity that URM structures possess when damage is active. 

The analysis led concluding with a 100% probability, and within a 95% confidence level, 

that: (i) the yielding of the structure will occur for a PGA equal or higher than 0.4g; the 

structure will suffer significant damage for a PGA equal or higher than 0.8g; and that the 

structure will collapse for a PGA equal or higher than 0.9g. Such results are in agreement with 

the experimental campaign, as residual damage has been witnessed for a PGA of 0.56g (acc 5); 
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moderate damage has been witnessed for a PGA of 0.84g (acc 7), and the collapse of the 

structure has been witnessed for a PGA of 1.27g (acc 8). 

Table 6.4 – Fitted Lognormal distribution parameters of the fragility curves representing the 
response of the five macro-models studied foe each defined limit state. 

Limit States (LS) 
Model P5% Model P25% Model P50% Model P75% Model P95% 

θ̂  ̂  θ̂  ̂  θ̂  ̂  θ̂  ̂  θ̂  ̂  
DL 0.15 0.06 0.17 0.28 0.18 0.25 0.25 0.22 0.29 0.16 
SD 0.37 0.13 0.43 0.06 0.59 0.06 0.63 0.04 0.73 0.04 
NC 0.44 0.02 0.52 0.05 0.64 0.05 0.72 0.03 0.84 0.04 

 

 

Figure 6.12 – Fragility curves obtained for each of the macro-models defined at for each damage state: 
(a) damage limitation (DL) state; (b) significant damage (SD) state; and (c) near collapse (NC) state.  

At last, and aiming a clear comparison between the fragility curves of each damage state, 

the mean fitted lognormal distributions are calculated and the associated statistical parameters 

given in Table 6.5. The median values found for the SD and NC states are less spaced when 

compared with the DL case. So, one may refer that the structure has low capacity to withstand 

damage, as it is foreseen that the structure can go from a situation of relevant damage to 

collapse situation with a PGA value increase of only 0.1g. An insight over the position of the 

performance targets 𝛿մե and 𝛿կդ (Table 6.3) leads to conclude that these are close to each 

other and a low ductility index exist, which allow understanding the fragile character of the 

masonry structure, also keeping in mind the steep shape of the fragility curves of Figure 6.13. 

Yet, the damage assessment results may be conservative because those LS are found through a 

static analysis. 

In this regard and for the present study case, the contriving of a strengthening scheme which 

can postpone the out-of-plane failure of the tympanum wall seems fundamental to reduce the 

human and economic losses in the aftermath of a seismic event. Nevertheless, such a decision 

should be made simultaneously with information from a hazard probability curve (which will 
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potentially be the output of a future work), as PGA values higher than 0.6g could have 

associated high seismic recurrence times (for the region of Lisbon) and thus hinder any action 

due to its unprofitable character from the investor perspective.  

 
Figure 6.13 – Mean of the fitted fragility curves 
for the three limit states defined.  

 

Table 6.5 – Mean fragility curves parameters 
for each defined limit state. 

Limit states (LS) θ̂  ̂  
DL 0.21 0.19 
SD 0.55 0.07 
NC 0.63 0.04 

 

 

6.6 Summary 

A stochastic framework aiming at the seismic performance evaluation of masonry structures 

has been proposed in this chapter. It has background on the existing PBEE approaches 

(Krawinkler and Miranda 2004) and, therefore, intends to give a broader insight into the 

masonry structural response. Although only the structural and damage analyses are conducted 

(hazard analysis and loss estimation and have been disregarded) it aims to influence the decision 

process over the need and/or comparison between retrofitting and/or design strategies. To 

attest its adequacy, the framework has been applied in the seismic performance investigation 

of a masonry structure. The case study is the English-bond brick house mock-up tested in 

LNEC by Candeias et al. (2016), which has been studied in §Chapter 5. The preceding 

observations of its dynamic response (only in the longitudinal direction) showed that the 

governing failure mode is given by the out-of-plane collapse of the tympanum of the gable wall. 

Hence, the seismic vulnerability is assessed accounting with such collapse mode.  

The framework relies on the two-step numerical procedure presented in §Chapters 3 and 4 

and, therefore, appends two levels of analysis: (i) at a meso-scale, in which the material, 

mechanical and geometrical variables are parametrized to carry the masonry uncertainty and 

compute the random homogenized quantities; and (ii) at a macro-scale, where the meso-scale 

uncertainty is propagated through the selection of representative Σ − Ε and 𝑀 − 𝜒 curves to be 

used within the RBSM model. Here, the loading uncertainty is also ensured by using several 

ground motions compliant with the Eurocode 8 (2004) elastic spectrum. The seismic 

vulnerability has been evaluated through the generation of fragility curves. Three damage 
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regions have been set following the Eurocode 8 (2004) recommendations, i.e. damage limitation, 

significant damage and near collapse states; and the performance targets, namely limit states 

(LS), defined accordingly but using the information from the quasi-static pushover curves 

obtained with the median values of the system variables. Analytical fragility functions have 

been derived from an incremental dynamic analysis (IDA), in which a successive set of ground 

motions (a total of seven) scaled for different intensity measures, here defined to be Peak 

Ground Acceleration, were applied to the structure. The structure response has been evaluated 

according to an engineering demand parameter (EDP) given by the out-of-plane displacement 

component of the top gable wall node. A total of 2000 homogenized curves have been collected 

at a meso-scale, whose sample served to perform 266 dynamic analyses at a macro-scale. Such 

extensive numerical data allowed the computation of three displacement-based lognormal 

fragility functions for the three damage states in which a 95% confidence level was acquired. A 

maximum-likelihood method has been used to estimate the fitted lognormal distribution 

parameters. 

The main remarks are: (i) the fragility curves that define the 95% confidence level envelope 

show, for all the damage states considered, a well distinct response. This highlights the relative 

effect that the system uncertainties have in the response; (ii) the observation supports the 

experimental campaign, as there are 100% of probability that the structure will suffer significant 

damage for a PGA higher than 0.8g; and that the structure will collapse for a PGA equal or 

higher than 0.9g; (iii) the structure shows low capacity to dissipate energy, as low standard 

deviation values have been identified for the significant and near collapse damage states. Lastly, 

it matters also addressing that even though the case study is not representative of any building 

typology, it has been suitable to prove that the framework is appropriate and applicable. This 

is especially important when connected with the level of detail and computational attractiveness 

that the procedure offers when compared with the existing advanced numerical strategies for 

the nonlinear dynamic study of masonry. Additionally, since the approach is based on an 

analytical methodology, there is further space for both improvement and investigation, namely: 

(i) the study the ideal number of simulations required at a meso-scale; (ii) the study the effect 

of performance limit states definition; (iii) the study on the relative effect of the loading 

uncertainty when compared with the material one; (iv) the adoption of other IM apart from 

the structure-independent PGA measure; (v) the use of a methodology within a broader 

application, perhaps in larger and complex structures, which is particular interesting if one 

notices that the results can be generalized if applied to a building typology; and (vi) the 

incorporation of hazard and loss analyses to the framework. 
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Chapter 7 
7 General summary and conclusions 

Experimentation is of utmost importance in all subjects of knowledge and surely necessary in 

the structural and dynamic analysis of masonry structures. This is fundamental to support the 

validation of theoretical hypotheses through observation but, additionally, to make data 

available that serve as ground validation for the development of computational methods. The 

inherent phenomenological complexity of masonry makes hard the prediction of the mechanical 

response of unreinforced masonry (URM) structures. The analysis of masonry using 

experimental campaigns only is thorough and difficult to carry out, bearing also in mind the 

involved costs and required time, which brings the need of developing proper numerical models 

to predict with accuracy the response of masonry structures. 

Computational methods have become daily instruments in both structural and dynamic 

engineering fields for both the professional and scientific communities. This is not the end of 

the story since open issues need to be solved and there is always space for further improvements. 

By recognizing the importance of such methods in offering solutions (even if approximated 

ones), together with the societal importance of the masonry-built heritage and its associated 

seismic fragility, the present research addressed the following two key points: 

(i) Proposal of a simplified two-step numerical framework, based on homogenization 

principles, aiming the study of the quasi-static and dynamic mechanical behavior and 

failure of masonry. The strategy allows obtaining adequate solutions with relatively low 

time-costs when compared to the existing advanced FE-based computational methods.  

(ii) Application of the proposed numerical strategy for the seismic fragility assessment of a 

URM structure.  

In such scope, the study tried to address an investigation on two different masonry research 

fields, one concerning the study of the structural behavior of URM structures and, the other, 

concerning the methods to assess the seismic performance of URM structures. A general 

summary is presented next following the logical order of the contents presented throughout the 

study. Lastly, some suggestions for future works are stated.  

The scope of the proposed multi-scale approach 

A set of different analytical and numerical strategies exist in the literature. The most simplified 

ones, typically designated as a force- and displacement-based approaches, are useful because 
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demand low computational effort, but its accuracy can be compromised being so especially 

conceived for ad-hoc structural problems.  

In contrast, the so-called advanced strategies are progressively being developed following the 

increase of computational power and are thus suitable to accurately study the mechanical 

behavior of masonry. Finite element techniques grasped special attention. are designated in the 

literature according to the level of modeling detail as (i) direct numerical simulation or meso-

modeling approach; (ii) macro-modeling approach; and (iii) multi-scale approach.  

Although a direct numerical simulation (meso-modeling) provides the most accurate 

solutions, it lacks practicability since it demands prohibitive computational costs even when 

used for the study of small structures. On the other hand, macro-modeling approaches assume 

masonry as a fictitious homogeneous material and are more indicated for the study of large-

scale structures. Yet, the damage representation is still physically poorly represented as it is 

based on FE smeared-crack models. Multi-scale methods based on computational 

homogenization schemes (usually two-scales or FE2 are considered for masonry) are in-between 

the latter FE-modelling approaches. These rely on the homogenization principle, in which the 

behavior of the masonry material is characterized at a meso-scale and transferred to the macro-

scale. Although seem to be very promising, the use of full-continuum FE strategies at both 

scales is still computationally prohibitive when material nonlinearity is accounted. This results 

from the fact that a new BVP must be solved numerically for each load step, in each Gauss 

integration point. To cope with this issue, the adoption of a simplified framework that makes 

use of a unit-cell model at a meso-scale integrated with a macro-scale model constitutes the 

main core of this thesis. 

Meso-scale level 

The accuracy of multi-scale approaches strongly depends on the mesoscopic constitutive models 

adopted. Two FE unit-cell mesoscopic models, based on a first-order periodic homogenization 

technique and within a strain-driven formulation, have been formulated to characterize the 

masonry behavior subjected to in-plane and out-of-plane loading. These were designated as KP 

and MP models following the assumed underlying plate theories, i.e. Kirchhoff-Love and 

Mindlin-Reissner theories, respectively. Both running-bond and English-bond are suitable to be 

studied and the models were fully implemented in advanced commercial software. The 

representative volume element (RVE) aimed at representing masonry by repetition was modeled 

with brick units composed by quadrilateral elements with linear interpolation and mortar joints 

with zero-thickness line interface elements. By solving a boundary value problem upon the 
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defined RVE, both the in-plane stresses and out-of-plane stress-couples are derived. Note that 

bricks are assumed to be elastic and the interface elements carry the inelastic material 

information within a multi-surface plasticity model (an assumption plausible for strong blocks). 

The meso-scale validation proved to work well and three main constitutive key features were 

addressed: (i) the correct representation of the elastic stiffness properties; (ii) the masonry 

orthotropic behavior due to the arrangement of the units; and (iii) the role of vertical membrane 

pre-compression states. A stepped, toothed and de-bonding (straight) masonry failure patterns 

are suitably reproduced.  

The models were applied for the mechanical study of the out-of-plane homogenized quantities 

of an English-bond masonry. The analyses allowed concluding that the simplified KP model 

allows faster computations with no-convergence issues reported. Yet, due to the inability of 

reproducing the effect of three-dimensional shear stresses, the KP model proved good accuracy 

for the cases where the thickness has a value similar or lower than the RVE dimensions (i.e. its 

height or length); a maximum of 15% deviation was found for the homogenized horizontal and 

torsional moments. In contrast, the MP model follows an out-of-plane shear deformation theory 

and was thus able to provide similar results to the ones derived from the DNS model.  

Insomuch, the investigation demonstrates that the mid-thickness mortar discontinuity of an 

English-bond masonry plays an important role in the decrease of the horizontal bending (around 

33%) and torsional moment capacities (around 17%), whereas the influence on vertical bending 

is minimal. Meso-mechanical homogenized-based models as the KP and MP, which exploit the 

use of plate theory assumptions to replace the three-dimensional mesoscopic continuum into a, 

mostly, two-dimensional one, are quite convenient. These are of a simple application, accurate 

and demand low computational effort, however, need to be used with care in cases where a 

discontinuity exists in the structure’s thickness.  

Macro-scale level 

The macro-scale formulation of the proposed two-step strategy resorts in a 

RigidBodySpringMass (RBSM) model. It is composed by quadrilateral rigid plates 

interconnected at its interfaces by a set of in- and out-of-plane FE truss-beam systems and was 

implemented in advanced commercial software. The system can mimic, in a decoupled fashion, 

the deformation modes established at a meso-scale. 

One-dimensional elements only (the truss FE-beams), through a concrete damage plasticity 

model, can mimic the homogenized material data and govern the macro-deformation and 

damage of the media. Furthermore, material anisotropy and full softening behavior are 
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represented. The linking steps between the meso-macro scales involve: the conversion of the 

homogenized Σ − Ε and 𝑀 − 𝜒 curves to stress-strain curves eligible to serve as input for the 

truss-FE beams; the identification of the Young’s modulus of the truss-FE beam elements 

according to energy principles; and a regularization step which corrects the fracture energies of 

the stress-strain input curves according to the defined macro-mesh dimensions. The obtained 

macro-input is representative of the obtained homogenized meso-scale elastic and inelastic 

properties and guarantees the well-posedness of the solution found, as it is independent of the 

macroscopic mesh adopted. 

The validation and convergence tests confirmed that the RBSM macroscopic model fulfills 

the requirements for (i) elastic problems; (ii) eigenvalue problems; and (iii) nonlinear problems 

for monotonic and cyclic loading cases. Likewise, the conducted mesh sensitivity studies allowed 

to conclude that a refinement level given by L/15 (L is the length of the wall side being meshed) 

seems a reasonable choice for the mesh size to conduct a structural analysis (if a sensitivity 

test is not performed beforehand). Computational recommendations have been also very briefly 

addressed, as the use of the arc-length method for nonlinear quasi-static tests and a 

renumbering algorithm to take full advantage of the computational capacity. 

Proposed two-step approach: application 

The application of the proposed two-step approach comprised three main regimes: (i) an out-

of-plane load applied in a quasi-static fashion; (ii) a seismic dynamic excitation; and (iii) an 

impact load (fast dynamics). Firstly, the two-scale model was applied for the analyses of solid 

and windowed running-bond URM panels subjected to two-way bending through the application 

of a pressure load using airbags. Quasi-static (pushover) analyses have been performed. The 

comparison between the numerical and experimental data proved that the two-scale strategy 

represents well the structural capacity, the post-peak behavior and the observed damage 

patterns. 

Secondly, the two-scale model was applied for the seismic dynamic analysis of a brick URM 

house with an English-bond. The referred benchmark served to foster a blind test prediction 

program and the obtained results showed that, in agreement with the preceding observations 

from several research peers, the traditional methods of analysis are unable to reproduce 

satisfactorily the experimental observations. In converse, the proposed two-scale framework 

based on a direct numerical simulation (DNS) at a meso-scale allowed obtaining a good resemble 

in terms of experimental out-of-plane displacements-history and damage map. The results are 

unequivocal and prove that reproducing the existing mortar vertical discontinuity along the 
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English-bond masonry thickness is of utmost importance. In fact, the English-bond 

configuration leads to an anisotropic behavior which cannot be well represented by the 

simplified Kirchhoff-based model nor by a continuous FE-based macroscopic approach. Such 

feature seems to have more relative importance than the out-of-plane shear stresses effect.  

Thirdly, the two-scale model was applied for the study of a running-bond masonry parapet 

subjected to an impact load. The procedure exhibits a noteworthy prediction, both in terms of 

the out-of-plane displacement and damage map. The ability of the proposed framework in 

handling the strain-rate dependency of the masonry, via a dynamic incremental factor (DIF) 

approach, is demonstrated and certainly a key point. 

Mesh sensitivity studies were performed for all the study cases. These sustain that for 

practical applications the use of a coarser mesh can be appropriate. This is especially clear if 

one notices the improved running times achieved. The study over the mesh-bias is determinant 

in the results output with respect to the accuracy of both out-of-plane displacement and damage 

representation. Nevertheless, the results showed that bypassing a finer macro-model 

discretization seems to be more appropriate within the static range than within the dynamic 

one. 

Lastly, it is worth noting that a decoupled characterization between the in-plane and out-

of-plane modes is adopted. Whilst such decoupling is certainly an approximation, it proved to 

be reliable, at least for levels of membrane pre-compression lower than the masonry compressive 

strength. In cases where pre-compression states are considerable, the results should be analyzed 

with more care, due to its potential non-conservative character (strength is overestimated). In 

general, although a limited repertoire of case studies has been considered, it has been seen that 

the numerical framework can reproduce with a reasonable agreement the out-of-plane behavior 

of masonry structures. Insomuch, by being integrated into advanced computer software, it 

proved to be robust and computationally very attractive. The possibility of executing the 

calculations using a parallel computing system is paramount. This circumstance together with 

the simple numerical nature of the procedure appears to speed-up the computations and reach 

quite attractive running-times. As initially aimed, it can be affirmed that the presented 

framework demands a significantly lower computational cost than a macroscopic one, i.e. 

around 10 times less.  

Probabilistic seismic fragility analysis 

The solution bias of computational methods stems from the inaccuracy (or inability) of the 

numerical description of the masonry physical behavior and ascertains, as well, on the aleatoric 
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randomness of the materials, geometrical, and loading parameters. To account with such 

variability, a stochastic framework aiming the seismic performance evaluation of masonry 

structures was proposed. The two-step approach was extended to include the possibility of a 

probabilistic description of the input variables. At a meso-scale, the material, mechanical and 

geometrical variables are parametrized to carry the masonry uncertainty. The computation of 

the random homogenized quantities is achieved using a Latin Hypercube Sampling (LHS) 

method to generate the input of the meso-scale problem. At a macro-scale, the uncertainty is 

propagated through the selection of a statistical representative Σ − Εand𝑀 − 𝜒 meso-scale 

homogenized curves to be used within the RBSM model. The loading uncertainty can be also 

ensured through the use of a number of real or artificial ground motions (if compliant with the 

normative requirements). 

The probabilistic two-step approach was applied in an English-bond brick house mock-up. 

Focusing on the structural and damage analyses only, the main aim was the seismic fragility 

assessment of the URM structure for different performance limit states; as typically preconized 

in Performance-Based Earthquake Engineering (PBEE) approaches. A total of 2000 

homogenized curves have been collected at a meso-scale, from which five representative macro-

models were selected. An incremental dynamic analysis (IDA) was performed accounting with 

a total of seven earthquakes (artificially generated records) that were scaled for several ground 

motion intensity measures (PGA) and a total of 266 IDA curves were obtained (macro-scale). 

Such extensive numerical data allowed the computation of three displacement-based lognormal 

fragility functions for three damage regions in which a 95% confidence level was acquired. The 

damage regions have been set following the Eurocode 8 (2004) recommendations, i.e. damage 

limitation, significant damage and near collapse states; and the performance targets, namely 

limit states (LS), defined using the information from the quasi-static pushover curves obtained 

with the median values of the system variables. A maximum-likelihood method has been used 

to estimate the fitted lognormal distribution parameters.  

Four main findings are important to recall here: (i) the use of a reduced number of macro-

models, which statistically represent a total of 2000 meso-scale simulations, is only possible 

because the homogenized quantities derived are correlated; (ii) a significant variability has been 

found for the fragility curves of each damage state, which highlights the relative effect that the 

system uncertainties have in the response; (iii) the numerical observation support the 

experimental data, as there is 100% of probability that the structure will suffer significant 

damage if subjected to an earthquake with a PGA higher than 0.8g; and that the structure 

collapse for a PGA equal or higher than 0.9g; (iv) the structure showed low capacity to dissipate 

energy, as a low standard deviation values have been identified for the significant and near 
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collapse damage states. This defers with the typical fragility associated with masonry structures 

when subjected to out-of-plane loading. Lastly, it matters also addressing that even though the 

case study is not representative of any building typology, it has been suitable to prove that the 

framework is appropriate and applicable. This is especially important when seen together with 

the level of detail and computational attractiveness that the procedure offers when compared 

with the existing advanced FE-based numerical strategies for the nonlinear dynamic study of 

masonry.  

Suggestions for future works 

The investigation attempted to provide a numerical tool to describe the nonlinear response of URM 

structures with a focus on the out-of-plane behavior. The seismic fragility assessment was also 

appraised and a stochastic framework proposed. Although the main objectives have been 

accomplished, there is still room for further works. Therefore, future developments are listed next:  

1. The incorporation, at a meso-scale, of interface elements embedded in the brick units to 

account with the masonry crushing failure mode (compression) for the case of strong mortar 

masonries. 

2. Extend the meso-scale models to automatically generate other periodic brick masonries, as 

stack and Flemish textures, or stone masonries, as ashlar and rubble textures. Yet, the priority 

should resort on the study of irregular masonry textures, as it seems an under-developed topic 

in the field. 

3. The application of the numerical framework in the analysis of other case studies. Examples 

comprise the infill-walls or larger structures, for instance, a typological or historical URM 

structure. Perhaps the seismic assessment of a larger structure seems the most convenient one, 

as it can clearly take advantage of the real potentialities of the procedure. i.e. the 

computational attractiveness in terms of processing time. 

4. The investigation on some aspects of the stochastic model proposed, namely: (i) study the ideal 

number of simulations required at a meso-scale; (ii) study the effect of performance limit states 

definition; (iii) study on the relative effect of the loading uncertainty when compared with the 

material one; and (iv) the adoption of other intensity measures (IM) apart from the structure-

independent Peak Ground Acceleration. 

5. The integration of the stochastic framework within a loss assessment methodology for URM 

structures. This may be an important achievement together with the practicability of such 

frameworks, as these may influence the decision process over the need and/or comparison 
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between retrofitting and/or design strategies. This is especially clear if the methodology is 

applied to an URM building typology, whose results can be further generalized. 

6. The procedure possesses a ubiquitous feature and, therefore, it may be of interest to implement 

the RBSM model in another FE software or within an open source-platform, especially that 

handles a non-scripted language. If so, this may largely foster its use by both professionals and 

researchers. 
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