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Abstract In this paper we complete the integration of the conformally flat pure
radiation spacetimes with a non-zero cosmological constant A, and 7 # 0, by consid-
ering the case A + 17 # 0. This is a further demonstration of the power and suitability
of the generalised invariant formalism (GIF) for spacetimes where only one null direc-
tion is picked out by the Riemann tensor. For these spacetimes, the GIF picks out a
second null direction (from the second derivative of the Riemann tensor) and once this
spinor has been identified the calculations are transferred to the simpler GHP formal-
ism, where the tetrad and metric are determined. The whole class of conformally flat
pure radiation spacetimes with a non-zero cosmological constant (those found in this
paper, together with those found earlier for the case A + t7 = 0) have a rich variety
of subclasses with zero, one, two, three, four or five Killing vectors.

1 Introduction

The method of integration within the Geroch—Held—Penrose (GHP) formalism using
GHP operators [13] pioneered by Held [17,18] and developed by Edgar and Ludwig
[4,6,7,23] has been shown to be particularly useful and efficient in spacetimes where
two null directions are picked out by the geometry.

The generalised invariant formalism (GIF) of Machado Ramos and Vickers [28-30]
generalises the GHP formalism by building the null rotation freedom of the second
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null direction into the formalism, which means that the GIF is built around only one
spinor 04. An analogous integration method to that using GHP operators has been
developed using operators of the GIF, [8,9,11].

The first investigation using the GIF integration method was for the class of confor-
mally flat pure radiation spacetimes with zero cosmological constant [11]. The pure
radiation component of the Ricci tensor immediately picks out one null direction 04,
and a second intrinsic spinor I4 was obtained after a little manipulation in the GIF.
After some more manipulation in the GIF, the investigations were transfered into, and
completed in, the GHP formalism, by identifying the spinor I4 with the second dyad
spinor t4 of the GHP formalism. In [11], the part of the investigation in the GIF which
established the complete and involutive set of GIF tables was the most complicated;
in particular because of the repeated use of the complicated GIF commutators.

In fact, with the benefit of hindsight, it is now clear that it was not necessary to carry
out all of these GIF calculations in [11]: the crucial step in the GIF was to generate
explicitly this second intrinsic spinor I4 from within the GIF formalism. As soon as
this spinor was found and the GIF commutators applied to it, then I 4 could have been
identified as the second spinor t4 in the dyad for the GHP formalism; at this stage,
the investigation could have been immediately transferred to the GHP formalism. Had
this earlier transfer been made, the latter part of the complicated GIF calculations in
[11] could have been replaced with simpler GHP calculations.

In this paper, we wish to further develop the GIF operator method by generalising
this earlier derivation [11] of the metric for conformally flat pure radiation spaces to
include the case of a non-zero cosmological constant. In [9] we looked at the subclass
of these spacetimes for which we were unable to find a second unique intrinsic spinor
due to the presence of one degree of null isotropy freedom; in this paper we look at the
other subclass where there is no null isotropy freedom, and a second unique intrinsic
spinor I4 is quickly generated within the GIF. This means that we can quickly transfer
to the GHP formalism and so minimise the calculations.

These spacetimes will illustrate further refinements of our method, and they will
also be shown to have a rich Killing vector structure.

In Sect. 2 we summarise the most relevant facts of the GIF equations, and discuss
how to transfer from the GIF to the GHP formalism.

In the beginning of Sect. 3, we carry through the integration procedure, obtaining
a table for the crucial second spinor I4. As soon as we obtain this second unique
intrinsic spinor 14, and apply the GIF commutators to it, we translate all the results
into the GHP formalism; in the latter part of this section we show, by a straightfor-
ward relabelling and rearranging of some of the coordinate candidates and unknown
functions, that their GHP tables can be put into a much simpler form, so that we can
more easily complete the application of the commutators to these tables. Finally, from
these tables, we write down the tetrad and the metric explicitly.

The procedure in Sect. 3 is dependent on the condition that the four zero-weighted
scalars, to which we assign the role of coordinate candidates, are functionally inde-
pendent and hence can play the role of coordinates; indeed, if we make the assumption
that none of these scalars are constants, then a check of the determinant formed from
their four tables shows that all four scalars are in fact functionally independent. On
the other hand, it is found that although three of the four coordinate candidates cannot
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be constant, the other one may be; in addition, we make some other assumptions in
our calculations which exclude some other special cases. Hence the tetrad and metric
obtained in Sect. 3 are not the most general that can be obtained for this class of
spacetimes.

In Sect. 4, we extend our approach to include one of the special cases which were
excluded in the analysis in Sect. 3. In Sect. 5 we consider the remaining special case
and discuss in more detail the introduction and role of complementary coordinates,
and how to copy their tables; also in that section we put together all the subclasses and
present the most general form for the metric.

In Sect. 6 we summarise the methods and results of this paper together with those
of [9].

2 GIF equations and transfering from GIF to the GHP formalism

A full explanation of GIF is given in [28-30]. For the purpose of this paper, the
summaries given in [11] and especially [9] are sufficient.

In this section, we will list only those equations in GIF to which we will make
direct reference. Although the definition of the GIF differential operators (P, P, a.p)
appears quite complicated, the fact that they take symmetric spinors to symmetric
spinors means that one can write down the equations in a more compact and index
free notation. In this compacted notation we have the following useful identities for
scalars of weight {p, ¢},

W) 5= 2(@') — T} )
®n)-0= %{(377) — pTn} )
@n) - 0= %{(Pn) — pRn} 3)
@) -5 = 5((n) — gRn) @
®'n)-0-0= i{(Pn) — pRy — gRp) (5)

For a valence (1,0)-spinor n4 of weight {p, q} we get
1
®'n) 0= 2{P'(n-0) + @) — (p— DT} (©)
and

1 _
@'n)-0= g{P’(n -0) + (@) — qTn} )
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The GIF commutators (applied to a general symmetric spinor 5 of weight {p, q}
and with N unprimed and N’ primed indices) are

(PP —PP)y = (Td+18)p+ (p— N)An+(q— N)Ay ®)
(P8 — aP)y = 2A(n - 0) 9
(P — 3P)y = 2A(y - 0) (10)
(33 —8'd)n =—(p— N)An+(q— N')An (11)
P'3—38P)y) = —tP'p— d(1 - 0) (12)
Py —3P)p=—-7P'n— Dy 0) (13)

where ( - 0) is the (N — 1, N’) -spinor ”A]....ANAL..‘AN/OAN ,and (n - 0) is the
(N, N — 1)-spinor NAy . AyAL..Ay 0¥, and if the contraction is not possible then
these terms are set to zero.

To perform the translation from GIF to the GHP formalism we use the links between
the GIF operators and the GHP operators P, 37, 3/, P/, and in the case of a scalar field
this gives

®'Magarp = (P'0)04050405 — (3'n — gT1)04050ATp
—(dn — ptn)0atp)040p + (P11 — ppn — qpn)0ALE)OALp)
—POLALBOA/OR — qGOAOBLA/LE

“rpICLALBa(A/IB/) + qEO(AtB)ZA/ZB/ (14)

@m)apar = (31040504 — (P — pp1)O(ALB)OA/
+g0040BLa — pKLALBOAr — qEO(ALB)ZA/ (15)

(@) aa'p = (37)04040p — (P — qp1)0404'Lp)
+Pp0oLs040p — PKLAOALRy — GKOALA/Lp (16)
(Pn)aa = (Pn)040p + prLaOs — gik0aLa (17)

For the subsequent calculations we will need the GHP commutator equations, which
can be obtained from [13] (specialised to this class of spacetimes),

(b — P'D)y = ((f — Y+ (1 — )3 + p(rT’ + A) + (T + A))r;
Pd —ob)np = —7'Py
@0 =90y = (7' = PP = pA+gA )

(V' — op')y = (,0/3 +6'8 — TP — &P — g7’ — pp’r)n

(18)

where 7 is an arbitrary scalar of weight {p, ¢}.

Of course now we encounter the problem that the GHP formalism involves the spin
coefficients t/, o’, i/, k¥’ which are missing from the GIF. However, assuming that we
have obtained a table for I in our GIF analysis, once we have identified I with the
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second dyad spinor ¢, we can use this table to obtain directly these additional four spin
coefficients as follows

' = —8D (p) = =P p) = =BT P (1p)
o
p' = =BT 8cop (up)
19)
/ B,C,D-C' &y (
o' = =217 B0 per (L)
el /
K" = =B CPICTPY cperp (p)

3 The integration procedure: the generic case
3.1 Preliminary rearrangement

We are concerned with the Petrov type O pure radiation spaces with non-zero Ricci
scalar, and since the equations for these spaces were given in [9], we will not repeat
them here.

The Riemann tensor & and the spin coefficient t supply three real scalars, and it
will be convenient to rearrange slightly these three scalars, and use instead the real

zero-weighted scalar
1

V2TT

A=

(20)

and the weighted scalars'

T VO
= | — = 21
P ,/2?, 0 s (21)

where P is a complex scalar of weight {1, —1}, with PP = %; and Q is a real scalar

of weight {—1, —1}. (As well as ® = %2 # 0 # A, we are assuming 7 = P/A # 0,
and so each of A, P, Q, will always be defined and different from zero.)
These particular choices enable us to replace the Ricci equations with

PA=0, §A=-2P(AA>+1/2)=—-2P%k &§A=-2P(AA>+1/2)=-2P%
(22)

P(PQ)=0, 8(PQ)= %QAA, dPQ) = —3QF2AA (23)

1 We have retained the notation P, O which was used in [11] for these two weighted scalars; note the
slightly different definitions compared with P, Q used in [9] when considering the case A + 77 = 0.
Care needs to be taken when comparing with the various quantities labelled with P, Q (sometimes p, q)
in [1,2,8,14,32] and other references.
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where we now have,?
k=AA’+1)2 (24)

In [9] we considered the subclass k = 0O; in the present paper we consider the
remaining subclass k # 0

At various steps in the sequel it will be obvious that we are assuming ¥ # 3/2;
however, this is not an additional restriction since we can deduce from the partial table
(22) for A that this condition must always be satisfied.

3.2 Constructing a table for I and applying commutators to I

For our integration procedure we begin by completing the partial table (23) for the
{—2, 0} weighted scalar P Q,

P(PQ)=0, 3(PQ)= %AAQ, §(PQ) = —3AAQP", P(PQ)=] (25

where we have completed the table with some spinor J, which is as yet undetermined.
We know from (1) and (2) that

P'(PQ)-0=0(PQ) (26)
P'(PQ)-0=3(PQ)+2tPQ =38(PQ)+ % (27)
Substituting (25) we can then write
J— _(9 +1AAQ)I+3AAQF2i (28)
A 2
where
I-0=0, T-o=-1 29)

Hence I'is a (1, 0) valence spinor, and from

0 1 _ —2-  _
:———AA)Ioo/o/3AA P°T, 46510405 (30
ABA'B (A+2 Q)L105)040p + QP Iy0p)0405 (30)

(p'Po)
we conclude that its weight is {—1, 0}.

It is important to note two crucial properties of the new spinor I. Firstly, for this
whole class of spaces, I can never be zero, nor parallel to 0. Secondly, for the subclass
under consideration in this paper, the spinor I is given uniquely in terms of the elements
of the GIF formalism and so is an intrinsic spinor; this can be seen when we solve for
I from (30) and its complex conjugate remembering that % # O in this paper.

2 This quantity % is closely related to the quantity « in [32] and to & in [14]; any of these quantities can
be used to classify the conformally flat pure radiation spaces (as well as more general Petrov types) into
different subclasses.
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It will be useful in the sequel to have separate tables for P and Q

2P%% k-
I-—-1 @3
A

PP =0, 3P = —2AAP?, §P=AA, PP=

PO =0, 80=—-AAQP, dQ=—AAQP,
QPG —H), QPG —H:

PQ=-—
Q A A

(32)

Our first mission is to find the table for I which should follow from applying the
GIF commutators to the table for (P Q); but first of all we will need to complete the
partial table (22) for A. We obtain

PA=0, 8A=—-2P%k &8A=-2Pk DPA=C (33)

where we have completed the table with a spinor C, which is as yet undetermined. It
follows from (1) and (2) that

C= %C?‘c2+2P7‘cI+2Fﬁ (34)

and so C is a Hermitian (1, 1) type spinor of weight {2, 2}, with C a zero-weighted
real scalar, as yet undetermined. We have introduced specific factors alongside the
unknown scalar C for subsequent simplicity in presentation and to ensure that C is
zero-weighted.

We are now able to apply the GIF commutators to the table for (P Q) which yields
a partial table for the spinorl; we obtain

3AAP
1=
(5 —%)
a1 — AQCk(1 —4AA%)  3AAP i
4% G —%
g 3ACOE  3MAP (35)
S 8P23-h 3 -%
PI=W

where we have completed the table with some spinor W as yet undetermined. In a
similar manner as for previous tables, but this time, using (6) and (7) we find that

PO? A 1 —4AA? A _ AAP _
_Fe w OCK )1 SNOCK I 3 kn (36)

W —
A 43 - % 8P2(3 — %)

P12+
Y 3
A G-

where W is a zero-weighted complex scalar, as yet undetermined.
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We next apply the GIF commutators to A and obtain the partial table for C,

PC = —%
QG —%)
2 —_ —
s — _PAACS(SAA 2) 34 :
(5 —%) 0z — %)
- 2 37
¥ — _PAAC3(5AA 2, 34 .
(5 —%) 0z — %)
PC =L

where L is a Hermitian (1, 1) type spinor of weight {2, 2} determined, from (1) and
(2), to be:

2 _ D 2 _
L— QL n (PACA%(SAA 2))I+ (PACAESAA 2))I
G- G-

Bt

where L is a zero-weighted real scalar, as yet undetermined.
The theory requires that we also apply the GIF commutators to the table for I, which
yields a partial table for complex W,

ACGAA? +4) %>
PW — ( +4)

2
0G—%)
A2C2AT (—8A2A% +28AA% +7 3AAW AAW
aW = —2P + (_ +2 +7 — .
8P (3 -1 2P(z =% P
39
AKL(1 — 4AA?) AC#@AA2+@i (39)
4P =) 0G-n
am}_3A%ﬂA#MAA2+5) AAKW  3ALK AC#GAA2+4H
8P(3 —1)’ PG-% 4PG-%H 03 -1

So we have obtained the core element required in our GIF analysis: a new spinor
I, its table, and the results of applying the GIF commutators to this table. Since I is
uniquely defined in terms of intrinsic elements of the GIF, we can now transfer these
tables into the GHP formalism.
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Type O pure radiation metrics with a cosmological constant 1757

3.3 Transfering to the GHP formalism

We now identify this spinor I with the second dyad spinor ¢ of the GHP formalism.
Then the two tables for the zero weighted A, C can be immediately translated into the
ordinary GHP scalar operators,

PA=0, A= —2P% §A=-2P%k DPA= %Ckz (40)
4
PC=——Fp—
0 —%)
PAAC(5AA?% —2)
aC = — 3
(5 —%)
, PAAC(5AA% —2) @D
3C =— 3
(5 —%)
0
pc==L
A

This translation is carried out using (14), (15), (16), (17), and is especially simple
since the operators are acting on scalars. The table for complex W can also be easily
rewritten in GHP operators, but it will be more convenient to write down two tables
for the real and imaginary parts of W by putting,

1 _ ; _
M= S(W+W) - A, B:%(W—W) (42)
which gives,

_ ACK (5AA’ +4)

bM 3
03 —%

2AA2PE  APPACYI(-AA’+ L) APLE  3aAPM

oM = — + -
G —% G-’ G-® G-

i2kAABP

(43)
(3 -%

2AA?PE . NPACYK (—AA2+ 1) APLE®  3AAPM
G- G-n’ G-%  G-%

M = —

i2kAABP
G —%
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and

PB =0
9B = i(—2P7‘< — A2PAC*® — APL% — 2AAPM) (44)

JB = —i(—zﬁ — AYPAC*%* — APL% — 2AAFM)

In the table (35) for I we will now make the substitution W = A + M — i B: this table
is needed to calculate T/, p’, o/, k at the end of this section. From (25) and (14), (15),
(16), (17), the GHP tables for the weighted scalars P, Q, are

PP =0, 9P =—-2P?AA, dP=AA, PP=0 (45)
PO =0, 30=0QPAA, IQ=—QPAA, P Q=0 (46)

The zero-weighted scalars A, C, M, B suggest themselves as the four coordinate
candidates. Then, providing that these scalars are functionally independent, they can
be adopted as coordinates. It will be easier to check for this functional independence
after we have simplified the structure of the tables and after we have also completed
the calculation by applying the commutators to all four candidates.

For subsequent calculations we will require the GHP commutators, which in turn
require the missing four GHP spin coefficients. These four GHP spin coefficients
follow immediately from (20) and the table for I (35), and are given by

, 3AAP
T = —I,BLCZC pCC’ (tp) = ———
(3 — %)
ey AQCE(1 —4AA?)
p/:_LBLCLCLD dccp (tg) = 4(3—‘]6)
3AC2Qk “n
o = =B Py ) = ———
cpp' \*'B 8P2(% — %

"y PQ?
K = —iBCPIETP Pcpep () = TQ(A + M —iB)

and of course T = P/A; these should now be substituted into the GHP commutators
(18).

3.4 Simplifying and completing the tables in the GHP operators

We have already obtained a GHP table (40) for the real zero-weighted scalar A, and via

the commutators we have also obtained a GHP table (41) for the real zero-weighted
scalar C; when we apply the GHP commutators we obtain the partial table for the real
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zero-weighted scalar L,

—18A2CA%%
PL= —
0(G—%
AC2PFA(11AA2 —2) ALAPM@AA?—1) 4p _
L = — > - 3 +— (A+M +iB)
G- % (3 —%) (5 —%)
) ACZPT*(11AA2 —2) ALAPMAAA% 1) 4P .
JL =— ; 5 — ) + = (A+M —iB)
(53 — %) (5—% (5 —%)

(48)

So we can adopt C as a second coordinate candidate and add the partial table for L
to our equations.

We would next like to complete the partial tables for two of M, B, L, and then apply
the commutators to each to exploit them as two more coordinate candidates. However,
it will be easier if we first do a little rearranging and relabelling. The simpler the form
which we can obtain for our tables for the four coordinate candidates, the simpler the
form will be for the associated metric.

A direct substitution of M by T via

3 1
1 AK29%k + 4 AAK?
T=—"M-— Ok +9) 2 _ L (49)
V2% 82 2V2
enables the complicated partial table for M to be replaced with
%4
pPT =0, 8T =0, 9T =0, P'T = Q F (50)

which we have completed in the usual way for the, as yet undetermined, zero-weighted
scalar function F. So we decide to replace M with T as a third coordinate candidate.
It now remains to get a simpler replacement for the rather complicated tables (44)
and (48), for B and L, respectively.
Making a direct substitution of L with S in (44) via

S =k + A2AC?E + ALK +2AAM)/A %'? (51)
gives the simpler form

PB=0, 9B=—iPA%’*S, 9B =iPA%’S (52)
as well as replacing the complicated partial table for L with the simpler partial table

for § 1 1
PS =0, 3S=4iPk?B, 3S=—4iPk’B (53)
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The term in L in the table (41) for C will now be replaced, using (51) and (49), with

1/2 2 43,243/2
2% 9A2A3C2% 3
L:(S+2I2AT— —+ ; )/78/2 (5—73) (54)

These two partial tables (52) and (53) are much simpler in appearance than (44) and
(48), but unfortunately, because of the coupled nature of B and S in the two tables (52)
and (53) the subsequent application of the commutators to such an arrangement gets
very complicated; therefore it is more convenient to make one more rearrangement.

So we make a substitution of B with V by

V =2B/S (55)

and we shall assume S # 0 in the remainder of this section; we shall later have to look
at the special case S = 0 separately.

This means that now a comparatively simple table for V replaces the partial table
(52) for B,

1
PV =0, dV=—2iPk 2(V>+A),

QK

2
T(V + A)H (56)

gV = 21'?15%(V2 +A), PV=
which we have completed in the usual way with the, as yet undetermined, real zero-
weighted scalar function H.

In order to obtain a still simpler form for this table, we can now divide across the
whole table by (V2 + A) and by integration define an alternative coordinate candidate
to V with a simpler table.

However, it is important to note that in order to integrate with respect to V we have
made the assumption that V % constant; this assumption also ensures that V2+ A # 0.
Hence we will need to consider separately V = constant as a special case.

So we define

X—/ av_ _ 1 tan[h] ! (L) (57)
) VEPeA o VAT VIA]

where we have introduced this compact notation

—tanh_l(L) for A <0
tanfh] ! (——) = =R

(58)
1, V_
VIA] tan (JX) for A >0
and we have now the table
1
1 —_1 Q%*
PX =0, 90X =-2iP%k?, X =2iP%k?, PX= o H (59)
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Since this table turns out to be more manageable, we will adopt X as the fourth
coordinate candidate.
The partial table for S is now modified to

pPS =0
8S:=2iPk%SwﬂA|mnmN3MA|X) (60)
WS::—%?%%&MAJmMMQMA|Xy

where

—tanh(v/—Ax) for A <O
tan[h](v/|A] x) = 61
an[hl(VA]x) tan(vA x) for A >0 61
Earlier, we postponed applying the GIF commutators to the two real scalars B, M,
so we need to apply the GHP commutators equivalently to their replacements, the
two real zero-weighted scalars 7', X: this gives the simple partial tables for ¥ and H
respectively,

PF=0, 9F =0, dF=0 (62)
PH =0, dH=0, dH=0 (63)

The rather extensive relabelling and rearranging which we have just carried out
was in order to obtain such simple and manageable forms. Clearly the gradient vector
V F is parallel to VT'; this means that the scalar function F is an arbitrary function of
only the one coordinate candidate 7. Similarly, from (63) the function H is also an
arbitrary function of only the one coordinate candidate 7. The function S in (60) has
a more complicated structure; we shall find it as the solution of a partial differential
equation when we translate into explicit coordinates.

So we have completed the formal integration procedure for these spaces; all the
information has been extracted in the generic case, by which we mean the case where
we have assumed that the four zero-weighted real scalar functions, A, C, T, X are
functionally independent; these are our coordinate candidates which we intend to
adopt as coordinates.

In the remainder of this section we will obtain the coordinate version of the tetrad
vectors, and hence the metric.

As we emphasised in the last subsection, before we can adopt the coordinate can-
didates as coordinates, we must confirm that they are functionally independent. First
of all we check on the possibility of these four scalars being constant: since we are
assuming in this section that & # 0, then none of A, C, X can be constant, but 7 may
be. From the tables if follows that 7 is constant iff 7/ = 0. Hence, in this section, the
additional assumption that F' # 0 is sufficient to ensure that none of the coordinate
candidates are constant. Moreover, when we assume that none of the coordinate can-
didates are constant, a check of the determinant formed from their four tables (50),
(41), (40), (59), confirms that the four coordinate candidates are indeed functionally
independent — providing F' # 0. Hence we will complete this section for the generic
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case with the additional assumption F' # 0 ensuring that the coordinate candidates
A, C, T, X can be adopted as explicit coordinates.

In addition, we must not forget that in order that X could be a coordinate candi-
date, we made the additional assumptions that V = constant, and S # 0. We will
look separately at the special cases V = constant, and F = 0 = S in the following
sections.

3.5 Using coordinate candidates as coordinates
If we now make the obvious choice of the coordinate candidates as coordinates

t=T, ¢c=C, a=A, x=X (64)

the above four tables for the zero-weighted scalars enable us to immediately write
down the tetrad vectors in the coordinates ¢, ¢, a, x,

o 4
i==(0. =5——. 0, 0)
Q (5 —%)
AGBGAa® =2 1
m' = P (o, _AGAGT = Hac g 21
(5 —%) 65)
S AGBGAa® -2 1
= P(o, _AGAG = 2ac -, 2i7‘c2)
(3 - %)
1
. 1 H%*
nt = g(Fk“, L, kzc, )
a

where the function L is given in terms of S by (54), the functions S, H, F are
respectively solutions of the partial tables (60), (63), (62), % is given by (24).

As noted in the last section, F and H, respectively will be arbitrary functions of
only the one coordinate 7, so we will write —4F = a» () and —2H = «3(¢t) — subject
to the restrictions made in the calculations in this section that F # 0 which implies
that oz () # O (note there is no restriction on «3(¢), which is a completely arbitrary
function of ¢, including the zero function).

The partial table (60) for S now becomes, via the tetrad, a system of partial differ-
ential equations in the chosen coordinates,

N
2 -0
dc

3 19S ! (66)
k- + 2k o= = ~2i% S/ Al tan(h] (V]A )
a X

which shows that S is independent of the coordinates ¢ and a, and we easily find the
solution using (57)

S(t, x) = ay(t) cos[h](v/|A] x) (67)
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where cos[h](y/|A| x) is given by

h(s/— fe 0
0= [ i

and () is an arbitrary function of 7, excluding the zero function, since we are
assuming S # 0 in this section.
It follows immediately from the equation

g =21"n)) — 2mlim) (69)

that the metric g/, in the coordinates ¢, ¢, a, x, is given by

1/4

a0
0 ey 0 0
SO 8 _2kGAZa e a0
. a(3-t) at'? (3 k)2 a(3 k) a(3—k)
g = 24 (70)
_2k(5A%at e 442
0 Talin 4% 0
M as () B
0 e 0 4%
where % is given by (24) and Z is given in terms of S from (54) by,
1/2 2,.3.243/2 1/2 02 2 2,32
2% 9A % % "A*(5Aa” -2
Z = S+2v2at - et 4 GAa” - 2)a’e
4 8
172 24172 3 2 2,4 2
2% Ak '"a’cc(25A“a” —2Aa” + 13
= a1 (t)cos[h](+/|A|x) + 24/ 2at — + ( 2 )
(71)

where cos[h](v/]Alx) is given by (68), and a3 (¢) is completely arbitrary.

We must remember that we have assumed that a>(t) # 0, and o (¢) # O; further-
more we have assumed at certain stages in our calculations that V' # constant. So this
metric is not necessarily the most general form for this class of spacetimes.

In the following sections we will first look at the excluded cases separately, and
then obtain a more general form of the metric which will include all such previously
excluded cases.

4 The integration procedure: special case V = constant, and combined case
4.1 The special case with V = constant

When we substitute the condition V = constant into (56) we find that this case can
only occur for a negative cosmological constant. So if we write

A==EV-A
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then we find V = A. The calculations in Sect. 3 up to (53) are still valid. Since neither
X, nor constant V', can be a coordinate as in the last section, we must find a replacement
coordinate candidate which is functionally independent of the other three A, C, T. We
shall continue to assume in this section that F' %= 0 # S.

Substitution of V = A into (55) modifies (53) to give the table for B for this special
case,

1 — 1 1
PB =0, 9B =2iPk*AB, 9B =—-2iPk’AB, P'B= —%T{M\BG (72)

The real zero-weighted scalar G—as yet undetermined—has been chosen to com-
plete the table in the usual manner.

This comparatively simple table suggests B as the replacement coordinate candi-
date; this of course will require that B # constant, but from (72) we then see that the
only possible constant value is B = 0. However, from (52) it follows that § = 0, and
this special class has been excluded from this section.

But an even simpler table is obtained by the substitution

e = |B| (73)

giving

Q9

2A
So preferring Y as our fourth coordinate candidate, we apply the commutators to

get

1 —_ 1 1
PY =0, dY = -2iP%k?, 'Y =2iP%k*, PY = k*G (74)

PG =0, dG=0, IG=0 (75)

The tables (40), (50), (41) respectively for the other three coordinate candidates
A, T, C and the partial table (62) for the function F, are unchanged. L is replaced in
(41) by S from (54), which in return is replaced by Y from

S =2B/)= 2,
A
from (73) (remembering there is a & included in our definition of A).

We have already noted that A and C cannot be constants, and although 7 may be,
we are excluding that possibility in this section (since F' # 0); furthermore, it is clear
that Y cannot be constant (remembering k # 0 # ). Moreover, an examination of the
determinant of the four tables (40), (41), (50) and (74) shows that the four scalars A,
C, T and Y are functionally independent and therefore can be chosen as coordinates.

So we now make the obvious choice of the coordinate candidates as coordinates,

Since the function G is a solution of the partial table (75) we can write —2G = B3(t),
and similarly —4F = B,(¢); both are arbitrary functions of ¢, but the latter has the
constraint that 8, (t) # 0.
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The metric in ¢, ¢, a, y coordinates is therefore given by

LS00
S YO 8 _2kG5A2at+ e kB0
_2kGATa" e
0 e 4% 0
SN0
0 ey 0 —4%
where
1/2 241/2 3 2 2.4 2
2 , 2% Ak 25A7a” —2A 13
7= 2o 42201 — + a’c (25A7a a1 g
A A 8
and % given by (24).
We emphasise again that this case only exists for negative A = —A2.

4.2 Generic case combined with special case, V = constant

We now combine the result in the previous section (with the cosmetic changes y — x,
and By(t) — aa(t), B3(t) — «3(t)) with the generic result in Sect. 3 to present the
metric in the coordinates ¢, c, a, x, given by

1/4
0 LA 0 0
a2
LSO 8 _2k(5A2a*+ e ka0
gi</— a(3—k) a3 )2 a(3—*k) a(3-%) (78)
0 _ 2%k(5A%a* 1) —47€2 0
a(3—%)
1/4
0 % 0 —4%
£

where «3(¢) is an arbitrary function of ¢ including the zero function, whereas a7 (¢) is
an arbitrary function of ¢ excluding the zero function, and % is given by (24).
There are two possibilities for Z:

1/2

() Z = a1 (t)cos[h](v/|Alx) + 23/ 2at — 2k

N A2%V203c2(25A2a% — 242 + 13)
8

(79)

from (71) where «1(¢) # 0 is an arbitrary function of ¢ excluding the zero function,
and cos[h](4/]Alx) is given by (68).
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1/2 241/2 3 2 2 4 2
) 2 2% A% 25A2a% — 2Aa? + 13
(i) Z= T +2v2ar - ——+ azc ( 8“ a ) (30)

from (77).
Note that case (i) exists for positive and negative cosmological constant, but case
(i) only exists for negative A, with A = £/ —A.

5 The most general form for the metric
5.1 Preliminaries to generalisations

We have not yet got the most general version of the metric because in Sect. 3 we
assumed that 7 was not a constant and that S # 0.

We begin with the excluded case where T is a constant. In such a situation, clearly
F = 0 so we cannot instead use F as a coordinate candidate, but we still have the
possibility of choosing H or S as a coordinate candidate. However, if neither of the
other functions H, S is functionally independent of the original three coordinates, then
it will not be possible to find a replacement candidate directly. In such a situation we
still need a replacement candidate in order to extract the remaining information from
the commutators. So rather than treating the special case F' = 0 separately, we will
extend the generic result to include this special case as well.

We shall now show, instead, that a complementary coordinate candidate to replace
T can easily be found, and then, using this coordinate, we will obtain a generalisation
of the metric (78) which includes all possible values for T, including a constant.

Secondly we consider the excluded case S = 0, and for this case we find that not
only can we not construct X (or V) as a coordinate candidate, but that we cannot
generate directly any replacement coordinate candidate. We shall now show, instead,
that a complementary coordinate candidate to replace X can easily be found, and then,
using this coordinate, we will first obtain this excluded case S = 0 separately; we will
then obtain a generalisation of the metric (78) which includes this additional special
case, S = 0.

5.2 Finding a complementary coordinate candidate to replace T

The results in Sect. 3 up to the end of Sect. 3.4 apply as before; the only difference
here is that we interpret them differently. When we are interpreting our tables and
choosing our explicit coordinate candidates we will now consider only the three zero-
weighted real scalars A, C, X as coordinate candidates while the zero-weighted scalar
T is not now included as a coordinate candidate, and so there is now no hindrance to
it acquiring a constant value, even zero. A related change is that since T is no longer
a coordinate candidate, we no longer need its complete table, nor the resulting partial
table for F'; however we still need the partial table for T since it is a result of applying
the commutators to I, and so is still a crucial component of the analysis,

PT =0, T =0, T =0 (81)
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So, clearly we do not have our full quota of four coordinate candidates, but we do
not wish to use any of the remaining intrinsic quantities from the tables.

Itis now very important to note that all the direct information which can be obtained
from the intrinsic elements of the GHP formalism is in these tables. On the otherhand,
we require a fourth zero-weighted scalar — functionally independent of the other
three A, C, X — which will be the fourth coordinate candidate. Since there is no such
intrinsic zero-weighted scalar which we can generate directly in the GHP formalism,
we introduce it indirectly via its table, which will have to be consistent with all the
explicit equations in the GHP formalism, and in particular with the GHP commutators.

In fact, we get a strong hint from Sect. 3.4, by looking at the table (50) for the
coordinate T (which is the missing coordinate candidate in this case); so we consider
the possibility of the existence of a real zero-weighted scalar T, which satisfies the
table?

~ ~ ~ ~ 1
PT =0, dT =0, IT =0, P'T = —4=7%* (82)

A

So we have chosen a zero-weighted real scalar T defined by its table (82), whose
structure we have ‘copied’ from the table structure (50) of T'.

It is important to appreciate the different natures of 7 and 7. In Sect. 3, T was
defined directly in terms of intrinsic elements of the formalism, and so was itself an
intrinsic coordinate candidate, and the table (50) was a consequence of its definition;
on the otherhand, the complementary coordinate candidate T is not defined in terms
of intrinsic quantities of the formalism, but rather as the integral of the table (82).
Hence, the introduction of the coordinate candidate f”, via the table (82 ), is structur-
ally different from the usual direct identification of coordinates with elements of the
formalism: C, A, X are intrinsic coordinate candidates, while Tisa complementary
coordinate candidate.

It is straightforward to confirm that this choice of table (82 ) is consistent with the
GHP commutators (18) and creates no inconsistency with the other tables.

So, compared to Sect. 3, we have simply replaced the fourth intrinsic coordinate
candidate T with the complementary coordinate candidate T defined via its table (82)
whose structure was ‘copied’ from the table (50) for T'; in addition we remember that
the real zero-weighted quantity 7 now satisfies (81). Clearly T now is a function of
only the one coordinate candidate T,ie., T(T).The remaining tables are unchanged.

5.3 Finding a complementary coordinate candidate to replace X

The results in Sect. 3 up to the end of Sect. 3.3 apply as before; and we shall also
assume the results up to Eq. (54).

When we make the substitution S = 0 into (53) we find that the table collapses
giving B = 0. This means that the table for B, (44) also collapses. At this stage we are
left with only the GHP tables for the three coordinate candidates A, C, T and the GHP

3 For easy reference, in an extended case, we will label by T a complementary coordinate candidate which
replaces an intrinsic coordinate candidate 7 in the corresponding generic case; but we emphasise this is
not to imply any direct link between the two quantities, it simply points us to the source of the hint which
suggested the table for the complementary coordinate candidate.
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tables for the weighted scalars, P, Q. So, in a similar manner to the last subsection,
we introduce a complementary coordinate candidate indirectly via its table.

Also, as in last section, we get a strong hint from Sect. 3.4, by looking at the table
(59) for the coordinate X (which is the missing coordinate candidate in this case); so
we consider the possibility of the existence of a real zero-weighted scalar X, which
satisfies the table

~ ~ 1 ~ — 1
PX =0, 9X=—-2iP%k%, IX=2iPk?, PX=

H (83)

where we also assume H (¢).

Again we have adopted the convention of labelling by X a complementary coordi-
nate candidate which replaces an intrinsic coordinate candidate X in the corresponding
generic case.

It is straightforward to confirm that this choice of table (83) is consistent with the
GHP commutators (18) and creates no inconsistency with the other tables.

Furthermore, we note since X is a complementary coordinate candidate which does
not occur except in its own table, that we could have made an even simpler choice of
table, by choosing H = 0 (which can easily be confirmed by a coordinate transfor-
mation X — X + f (H (t)/4)dt.) However, we shall not make that simplification, for
presentation reasons.

We can therefore present this special case in the coordinates ¢, ¢, a, X, as

% e (0)
0 ERY 0 0
SO 8 _2k(5A2a*+ e ka3

gl = a(3-%) at'?(3 k)2 a(3—k) a(3—k) 84)
0 _2KGAZattDe 442 0
a(3—%)

% a3 )

0 TeRey 0 4%

where % is given by (24), and Z is given by,

1/2 241/2 3 2 2.4 2
2%k Ak 25A —2A 13
z=2vaa - 2y a”e( _ a”+ 19 (85)

and o3 (¢) is completely arbitrary, while > (¢) is arbitrary, except for the zero function.
It is clear that this special case simply fills the gap in our original case (70), (71)
by now including the case o1 () = 0 which was excluded there.

5.4 The most general metric

The metric (78) gives the most general form of the metric for this class of spaces —
under the additional restrictions that no Killing vectors are present. This follows from
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the existence of four intrinsic coordinates; this is also confirmed in [ 10] where we con-
sider the detailed invariant Karlhede classification of this class of metrics. In Sect. 5.2
we saw how to generalise (78) to include the possibility of the coordinate 7 being a
complementary coordinate, so that this more general class also permits the existence
of a Killing vector. The special case (84) just deduced in Sect. 5.3 can also easily be
generalised in the same manner by replacing ¢ with a complementary coordinate ;
this special case could then be listed alongside the generalisation of (78). However it
is more convenient to simply incorporate (84) into the generalisation of (78) discussed
in Sect. 5.2, by just removing the restriction ¢y (t) 7# 0. It is easy to confirm that the
tables for the respective complementary candidates 7 and X are consistent with all
the other tables, and with each other.

Hence we generalise the combined metric form (78) given in the last section by
replacing the intrinsic coordinate candidate 7 and its table with the complementary
coordinate 7 and its table, and the intrinsic coordinate candidate X and its table with
the complementary coordinate X and its table, and finally obtaining the metric in the
coordinates

=T, c=2C, a=A, i:f(,

given by
Sy
0 iy 0 0
%!/ _ 8 C2k(5A2*+ D) k0
gl = a(3—k) akl/z(zgzk)Z a(3—k) a(3—k) (86)
0 _2kGA%atHDe g2 0
a(3—%)
(S0
0 Tehey 0 4%

where y3(f) is an arbitrary function of 7 including the zero function, and % is given
by (24). There are two possibilities for Z,

1/2

- - 2%k
() Z = y1(@)cos[hl(v/|AF) + 2+ 2ay (7) —

A2%V203c2(25A2a% — 242 + 13)
n _ (87)

where y; (f) and y, () are arbitrary functions of 7 including the zero function.

2%1/2 . A% V2332 (25A2a% — 24 + 13)
8

(i) Z = %e—” + 23 2ay: (f) —
(88)

where y;(f) is an arbitrary function of 7 including the zero function. The changes
ar(t) = y1(t), ax(t) = y2(t), az(t) — y3(t) are simply cosmetic.
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Note that case (i) exists for positive and negative cosmological constant, but case
(ii) only exists for negative A, with A = v/ —A.

When we compare the metric (78) where Z is given by (79) or (80) with the above
metric (86) where Z is given by (87) or (88), we can easily demonstrate that the former
is a special case of the latter, by making the coordinate transformation t = y»(7)/2+/2,
and identifying y1(7) = y1(y, '(2v21)) = a1(t) and y3(7) = y3(y; ' (2V20)) =
a3(t), we confirm that the former case is included in the latter. However the latter also
permits y»(7) to be constant, even zero; this is a possibility missing from the former.

It is trivial to confirm that the special subclass (84) is simply the special case of (i)
given by y; () = 0. We note that we have used the notation ¥ in this general form,
although it is obvious that this coordinate is in fact an intrinsic coordinate—except in
this very special case y(f) = 0. Finally, we note again that in this very special case
y1(f) = 0 a simple coordinate transformation gives y3(¢) = 0, but leaves everything
else unchanged.

6 Summary and discussion

The study of the class of conformally flat pure radiation spacetimes with a non-zero
cosmological constant which began in [9] and concluded in this paper has provided a
very good laboratory for developing techniques and increasing our experience in the
GIF formalism.

An important new development in this paper is the realisation that we do not need
to work the whole integration procedure in the GIF, but rather we can change to the
simpler GHP formalism once the GIF has generated a second unique intrinsic spinor
and its table.

This integration procedure within the GIF/GHP formalism is particularly suited to
spaces with four intrinsic coordinates; spaces with less than four intrinsic coordinates
may appear to pose more difficulties. Another important development in this paper
is a fuller understanding of how ‘generic’ results help to suggest additional special
cases; in the case where it is suspected that there exists additional special cases to the
generic case, the structure of tables for complementary coordinates can be ‘copied’
from the corresponding intrinsic coordinates.

The actual metrics which we have obtained have been confirmed with Maple.

It is clear from the most general form of the metric, and the fact that it is—as much
as possible—presented in essential coordinates, that there will be subclasses with
zero, one and two Killing vectors. There is in fact a rich symmetry structure in the
whole class of conformally flat pure radiation spacetimes with non-zero cosmological
constant, and the full details are presented in [10].

As well as increasing our experience and expertise in the GIF operator integration
method, this particular class of spaces is interesting in its own right. The analogous
spacetimes with zero cosmological constant investigated in [11] revealed some com-
plications and subtleties in the computer classification programmes [16,35]; it will
be interesting to see how the computer programmes handle these new spacetimes.
It will also be interesting to explore the physical interpretation of the spacetimes in
this paper and in [9], along the lines investigated in [14] for the spaces with zero
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cosmological constant; the wide variety of individual subclasses with a range from
zero to five Killing vectors give a rich area of investigation.

It may be suspected that the various examples of Type II, III and N spaces recently
investigated in [1,2, 14,32,33] will specialise in the conformally flat limit to the spaces
under consideration in this paper. However, that is not necessarily so, since, in at least
some of those investigations, properties of a non-zero Weyl tensor were built into the
analysis. Furthermore, even if the conformally flat limit does exist in some of the
investigations, the form of the metric may be much more complicated than in our
version where we have built the structure around the conformally flat properties from
the beginning. It remains to investigate the whole class of these spacetimes found
via GIF, considering in more detail the coordinate systems, and comparing with the
conformally flat limits of these various other investigations.
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