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Abstract Using the generalised invariant formalism we derive a special sub-
class of conformally flat spacetimes whose Ricci tensor has a pure radiation and
a Ricci scalar component. The method used is a development of the methods
used earlier for pure radiation spacetimes of Petrov types O and N, respec-
tively. In this paper we demonstrate how to handle, in the generalised invariant
formalism, spacetimes with isotropy freedom and rich Killing vector structure.
Once the spacetimes have been constructed, it is straightforward to deduce
their Karlhede classification: the Karlhede algorithm terminates at the fourth
derivative order, and the spacetimes all have one degree of null isotropy and
three, four or five Killing vectors.

1 Introduction
1.1 Conformally flat pure radiation spacetimes

As pointed out in [1] there are a number of interesting aspects to the complete
class of conformally flat pure radiation spacetimes which have been presented
in [8,9]. Firstly, these spacetimes are of interest in their own right, having explicit
physical interpretation, which has been investigated in [17]. Secondly, the com-
plete class of these spacetimes was found by a new integration procedure [9]
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within the GHP formalism [16]; this GHP approach supplied an alternative,
and, in some senses, simpler approach compared to the more complicated NP
methods [30] of finding exact solutions which require keeping track of a lot of
gauge and coordinate transformations. (A previous investigation of this class
of spaces using the NP formalism had overlooked this general case, and only
identified a subclass of these spaces (the Wils spacetime [35])).

Thirdly these spacetimes have provided interesting laboratories to test com-
puter algebra programmes, such as those used in implementing the Karlhede
algorithm [22,23] for classifying spacetimes. The Wils spacetime [35] was the
first spacetime whose Karlhede algorithm required the determination of the
Riemann tensor’s fourth covariant derivative [25], and although the complete
class of all conformally flat pure radiation spacetimes did not require higher
than fourth order derivatives for its classification, Skea [34] has emphasised
the non-trivial didactic value of this complete class. The classification by Skea
[34] via the Karlhede algorithm of the complete class revealed a mistake in
the CLASSI programme, [36] when dealing with a rather subtle aspect of the
freedom of a one-parameter group of null rotations; in addition, the classifi-
cation of the complete class in [34] provided a finer subdivision using discrete
information than had been exploited before, and sugggested the possibility of
a refinement of the Karlhede classification algorithm, in general. Moreover,
when this class of spacetimes was also used to demonstrate the GRtensor [19]
implementation of the Karlhede algorithm, the result was in error [33]; this was
because that programme also failed to successfully interpret a one-parameter
group of null rotations [1].

Another interesting aspect of these spacetimes is that they provided the first
demonstration of an integration method [14] involving the generalised invari-
ant formalism (GIF) of Machado Ramos and Vickers [27-29]. Furthermore, it
was demonstrated that, having generated the spacetimes in GIF, it was quite
straightforward to deduce directly, by hand, their Karlhede algorithm from the
existing calculations [14].

In [34], Skea argues, from theoretical reasons, that conformally flat pure
radiation fluids are among the most likely spacetimes to require high-order
derivatives in their classification, and so it would appear natural to investigate
some closely related classes in a search for other spacetimes requiring higher
derivatives; adding a Ricci scalar term suggests itself as the most obvious gener-
alisation. In some classes of spacetimes the addition of a cosmological constant
makes little significant difference, e.g. the Robinson-Trautman class, but in a
variety of spacetimes investigated recently its introduction creates a significant
difference.

Such a generalisation is appealing for other reasons too: such spaces will
still have a physical interpretation within a theory which includes the cos-
mological constant, and they will complement those recent investigations of
spacetimes of Petrov types D, II, III and N with a cosmological constant
[2-6,15,17,18,26,31,32] such spaces will also provide further, and possibly even
stiffer, tests of the computer programmes for the Karlhede algorithm; in addi-
tion, such spaces will provide opportunities for a deeper understanding of how
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to exploit the GIF formalism and its associated techniques, including its use-
fullness for the Karlhede algorithm.

1.2 GIF integration procedure

The GIF integration procedure [11,14] is a generalisation to the GIF [27-29] of
an integration method originally proposed by Held [20,21] and developed by
Edgar and Ludwig [7,9,10] in the GHP formalism [16]. It consists of manipu-
lating all the equations of the formalism in an attempt to construct a complete
and involutive set of tables involving first derivative GIF spinor operators. The
‘optimal situation’ to be sought is for this complete and involutive set to include

e atable for each of four real zero-weighted scalars,

e atable for one complex (non-trivially-) weighted scalar

e atable for a second spinor I4 (which is not parallel to the first dyad spinor
04); such a spinor should emerge naturally from the calculations.

An important element in this method is to recognise that much information
resides in the GIF commutator equations (as well as in the GIF Ricci and Bian-
chi equations) and in order that all this information is extracted it is essential
that the commutators should be applied explicitly to these five scalars, as well
as to the new spinor I [14].

Of course, we can extract all the information by applying the commutators to
different (but essentially equivalent) combinations of these scalars and spinor;
however the particular choices above are best suited to our integration proce-
dure since the four {0, 0} weighted real scalars will become the coordinates, the
complex weighted scalar gives the spin and boost gauge, while the spinor I will be
identified with the second dyad spinor ¢ in the GHP formalism. Once these tables
have been found, and the new spinor I identified with the second dyad spinor
t, the problem can be reduced to a purely scalar one in the GHP formalism.

We emphasise that it is essential to have all of these scalars and the spinor
I, and to apply the commutators explicitly to all of them in turn, in order to be
sure we have the complete information in the field equations. In the ‘optimal
situation’, all of these scalars and the spinor I will be intrinsic to GIF, and will be
generated directly by manipulations and rearrangements of intrinsic elements
of the GIF formalism; the generic class of conformally flat pure radiation space-
times provided an example of this [14]. In less than optimal situations, some
of the scalars and/or the spinor I cannot be generated directly within the GIF
formalism; in such cases, it is essential that we create these ‘missing’ quantities,
and so they have to be introduced indirectly, via their tables, and since they are
not intrinsic, we will refer to them as complementary. The special non-generic
subclass of the conformally flat pure radiation spacetimes provided an exam-
ple of this [14] since only three intrinsic coordinate candidates were generated
directly, and a fourth coordinate candidate had to be introduced indirectly via
its table.

This technique of introducing a ‘missing’ coordinate candidate indirectly by
its table had earlier been developed in the closely related integration procedure
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within the GHP formalism [9,10,24] where it was understood that the absence
of such a coordinate candidate is associated with the presence of a Killing
vector. We often do not have to rely on guesswork to deduce such tables; in
situations where the ‘missing’ coordinate candidates has a counterpart in the
generic case, we can ‘copy’ the table structure of the intrinsic coordinate can-
didate in the generic case, but ensure that our new complementary coordinate
candidate is free from direct links with any other elements of the formalism. On
other occasions, we may not have the advantage of a generic case from which
we can get hints, and in such cases we will need to carefully study the structure
of the other equations, especially the commutators, to guess, and then check to
confirm the validity of, an appropriate table; this was the approach in [11].

In GIF we can also encounter the situation where the second spinor I fails
to be generated directly and uniquely in terms of intrinsic elements of GIF;
this will happen in spacetimes which have one or two degrees of null isotropy
freedom.

We wish to obtain more experience in GIF of ’copying’ tables in spacetimes
rich in Killing vector structure, as well as in spacetimes with isotropy, and the
spacetimes we will now investigate provide us with these possiblities.

So, in this paper we investigate a special class of conformally flat spaces whose
Ricci tensor has a Ricci scalar as well as a pure radiation component; equiv-
alently these can be considered as conformally flat pure radiation spacetimes
with a cosmological constant. Specifically we concentrate on a particular sub-
class (with 7t + A = 0 and hence A < 0) which has some interesting properties,
and whose derivation and classification will require additional techniques and
provide additional insights compared to the analysis of conformally flat pure
radiation spacetimes without the cosmological constant in [14]; in particular,
unlike the latter, we will find that the spacetimes identified in this paper have
the isotropy freedom of a one-parameter group of null rotations, as well as a
richer Killing vector structure.

2 GIF

In this section we will give summaries from [28] of the relevant parts of the
GIF which are needed in this paper. The philosophy and general techniques of
the GIF operator integration procedure have been described in [11,14] so we
will not repeat these discussions here, but rather we refer the reader to these
references.

In the GIF the role of the spin coefficients k, o, p and 7 is taken up by spinor
quantities K, S, R and T given by

K=«
Spg =004 —kly (1)

R4 = pog —kiy
Taa = 10404 — POALy — OLAOA + Klaly
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Under a transformation of the spin frame given by

o't Al a0t ©)

these are therefore invariant under null rotations and have weight {p, q} under
spin and boost transformations given by

K — %7K © (3,1}

Sp )»3SA/ : (3,0}

Ra— AARs  © {2,1)
Taa > A2Tax (2,0} (3)

The GIF differential operators P, @, P’ and @', which act on properly weighted
symmetric spinors to produce symmetric spinors of different valence and weight,
may all be defined in terms of an auxiliary differential operator D4p4’p Which
is defined by

DABA'B"lcl...CNC’l...c;V, = 0404/ VBB NC,..CyC...Cl,

— (poa'Vpp0a + qO4 VBB’BA’)’TCL.‘CNC’“.C;V, 4

where 7 has weight {p, q}.
The GIF operators are obtained by contraction with o and o, and symme-
trizing.

BB
®mac,..cyacy.cy, = ZO 0" DABA'BNC,...CNC)..Cl, (§))
sym
B
@M acy..cyaBc;..c, = ZO DaaBNcy..cxC;..Cl, (6)
sym
/ —B’
@M agc,..cyacy..c, = Do Dapapne,..cyc..c, )
sym
/
®mapc,..cyamcy.c,, = ZDABA’B”Tcl...CNC’l...C;V, 8)
sym

where >

indices.
In our calculations, we will need to know the result of contracting P'n with o

and o respectively, as well as analogous contractions on the other operators. In

sym 1ndicates symmetrization over all free primed and unprimed

the case of a scalar field 5, contracting (8) with i gives
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1
—B — — —
®'napap0” = 5{ (@M aBa — q(TOA0B0A — POALB)OA/
—0040BLA +KOULB)LA)N}

1 _
= E{(a/n)ABA’ —qTaa0B)n) )

Although the definition of the differential operators appears quite complicated,
the fact that they take symmetric spinors to symmetric spinors means that one
can write down the equations in a more compact and index free notation. In
the compacted notation (9) becomes

@) 5= (@)~ qTn) (10)
Similar calculations give
®n)-0= %{(317) - pTn} (11)
@n-0= %{(Pn) — pRn} (12)
@n) 0= %{(Pn) —qR) (13)
®'n)-0-0= %{(Pn) — pRy — qRy} (14)

For a spinor n the above contractions become more complicated. For example
for a valence (1,0)-spinor 4 of weight {p, q} we get

1
®n-o= g{P/(n -0) 4 (@n) — (p — DTy} (15)
and
1 _ _
@P'n)-0= g{P’(n -0) + (3'n) — qTn} (16)

An alternative way to define the GIF operators is via the GHP operators
D,0,9,P’, and we can write equation (4) in the form

Dapasnc,..cyc,..c,, = (P/flcl...ch’l...c;v,)OAOBBAfaB'
- (3/11C1_.,CNCQ_,_c;v,)OAOBaA'ZB'
= @n¢,..cxc;...cl, )0ALBOA OB
- (Pncl_.,ch’l.._c;V,)OAtBBA'iB/
+Pa0a Ty +qoals Topne, cyci.c,  (17)

where P, 3, 3 and P are the ordinary GHP operators applied to spinors.
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In the case of a scalar field this gives

®'Mapap = P'n)0408040p — (3'n — qT1n)04050A' L)
— (0n — ptN)OULB) 04 0p + (P — ppn — qpn)0ULB)OLE)
— POLALBOAOR — qGOAOBLA/ LR

+ pKLatBOA'LlR) + qkOALB) LA LE (18)

(@'mapa = (0'1)040p04 — (P — ppn)OALB)OA/
+ q0040BLs — pkialpOA — qkOALB)LA! (19)

@maap = (0N)04040p — (P — qpn)0A0/lp)
+ pmAEA/GB/ —pKI.Aa(A/ZB/) — qEOAZA/IB/ (20)
Pmaa = (Pn)0A0B + prta04 — qkOaly’ . (21)

These equations will enable us to transfer from GIF to GHP formalism.

The Ricci equations, Bianchi equations and the commutators in the GIF are
given in [28]. This complete system of equations is completely equivalent to
Einstein’s equations, and to find solutions to Einstein’s equations this system
will therefore have to be completely integrated. However, in view of the more
complicated nature of the operators in this formalism, some of the information
which resided in the Ricci equations in NP and/or GHP formalisms is contained
implicitly within the commutators in this formalism; in particular these com-
mutators contain inhomogeneous terms dependent on the weight and valence
of the spinor on which they act.

3 The equations
We are concerned with the Petrov type O pure radiation spaces with non-zero

Ricci scalar. In the usual way, we choose 04 to be aligned with the propogation
direction of the radiation, so that the Ricci spinor takes the form

®4pap = POL0B04 Op (22)

where ®(=®y;) is a real scalar field of weight {2,2}; all the other curvature
components, except the Ricci scalar A, vanish.

For this class of spaces the well known property of the vanishing of the spin
coefficients «, o, p means that in the GIF,L K=0, S =0, R =0, but

Taa = ‘EOABA/ (23)

Notice that T and &, are both invariant under the group of null rotations
so that they can be used instead of their GIF spinor equivalents; this gives a
considerable simplification in the GIF notation.
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The GIF equations are:

(i) GIF Ricci equations:
Dt =0, 8t =12, 8't = 1T + 2A. (24)
(ii) GIF Bianchi equations:
PO =0,00=1D, 3P =T, (25)
and
PA=0,0A=0,dA=0,PA=0. (26)

(iii) GIF commutators (applied to a general symmetric spinor  of weight
{p, q} and with N unprimed and N’ primed indices):

@Y —PP)yyp =7 +1d )+ (p—-N)An+(q—-N)Ayp (27)

P3 —aP)yp =2A(n-0) (28)
P —3'P)yp =2A(y -0) (29)
(3" —3'd)n=—(p—N)An+(q—N)Ay (30)
P —-aP )y =—1P'yp—d@-0) (31)

@ —P)p=—7P'yp— P(y-0) (32)

where ( - 0) is the (N — 1, N’)-spinor "Al....ANAl....AN/OAN ,and (n - 0) is the
(N,N" — 1)-spinor 04, _aya,... Ay 04~ and if the contraction is not possible
then these terms are set to zero

These GIF equations contain all the information for the type O pure radiation
metrics with non-zero Ricci scalar. We emphasize that we assume throughout
that constant A # 0 as well as t # 0.

3.1 The two subclasses

For this class of spaces, the GIF formalism supplies directly only the complex
spin coefficient t and the real Ricci tensor component ®;; (as well as constant
A). Their respective tables (24) and (25) lack the P't and P’ ®,; components; it
is from these components that we were able to deduce the second spinor I in
[14]. From (10) and (11) we obtain

Pr.o=9t+17T=2(A+17)

Pr.0o=98r—-12=0 (33)
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and

Pdy-0=90yn —2tdy = —7dx»

34
Pdy-0=00»n —2tPpn = —1d2 (34)

Clearly there are two distinct subclasses here,

(i) when t7 + A # 0 we will be able to deduce the existence of a unique
intrinsic second spinor I from (33) as in [14].

(ii) when 7 + A = 0 we will not be able to deduce the existence of a unique
intrinsic second spinor I from (33) and (34) as in [14].

In this present paper we shall only be concerned with the second subclass where
T+ A=0 (35)

which of course means that we will only be considering a negative cosmological
constant, and it will be convenient to write A = £/ —A.
In a separate paper [12] (with summary in [13]) we consider the first subclass.

4 The integration procedure: the generic case
4.1 Preliminary rearrangement

The Riemann tensor and the spin coefficients supply three real scalars which
can easily be rearranged to give one real zero-weighted (r7) and two real
weighted scalars, ® and arg(7/7). In this special case, the real zero-weighted
scalar (7) = A2 and is constant; and in order for convenient presentation we
use the weighted scalars!

P=./= Q= (36)

IR

where P is a complex scalar of weight {1, —1} and PP = 1; Q is a real scalar of
weight {—1,—1}. (As well as ® = Q% # 0 # A, we are assuming 7 = AP # 0,
and so each of P, Q, will always be defined and different from zero.)

These particular choices enable us to replace the Ricci and Bianchi equations
with the one equation

P(PQ) =0
APQ) = —1Q/2
3(PQ) = 3107 )2 37)

bearing in mind that A is constant.

I Note that we are labelling the weighted scalars by P and Q to emphasise the slightly different
definitions from the weighted scalars P and Q in [12,14].
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These spacetimes are clearly a very good example of a situation where very
little explicit information is given via the Ricci and Bianchi equations; but, on
the otherhand, we will find that a lot of additional information is given implicitly
via the commutators (27)—(32), and can be extracted by their manipulation.

4.2 Constructing a table for I and applying commutators to I

For our integration procedure we begin by completing the partial table (37) for
the {—2,0} weighted scalar PQ,

P(PQ) =0
d(PQ) = —19/2
(_Q) Q_/2 (38)
' (PQ) =3.QP )2
P'(PQ) =PQJ

where we have completed the table with some spinor J, which is as yet undeter-
mined; the additional factors are simply to shorten the subsequent presentation.
We know from (10) and (11) that

P (PQ)-0=29(PQ) (39)
P'(PQ)-0=08(PQ) +2tPQ=08(PQ) +21Q (40)

Substituting (38) we can then write
J = -3A(PI+PI)/2 (41)
where we have introduced the spinor I with the following simple properties
I-o=0, and I-0=-1 (42)

Hence I'is a (1,0) valence spinor, and from
JaBap = —(3)»P/2)I(AOB)6A/63/ — (3)»7_3/2)1(14/63/)01403 (43)

we conclude that its weight is {—1, 0}.

It is important to note two properties of the new spinor I. Firstly, I can never
be zero, nor parallel to 0. Secondly, it is emphasised that the spinor I, as defined
above, is not given uniquely in terms of the elements of the GIF formalism
and so is not an intrinsic spinor; I is only defined up to the freedom of a one
dimensional null rotation

I->1+icPo (44)

where € is an arbitrary real zero-weighted scalar.
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It will be useful to have separate tables for P and Q,

PP =0
_ 2
P =P (45)
P = -1
PP=0
PO =0
00 =AQP/2
dQ=21QP/2 (40)
Po-= —%(PH?D

When we apply the commutators (27) — (32) to the table for P they are
identically satisfied, and when we apply them to the table for Q we obtain

PPI+PI) = -2x
d(PI+PI) = AP(PI+ PI) (47)
3 (PI+PI) = AP(PI+PI)

We can complete this table with
P'(PI+PI =K (48)

where the spinor K is as yet undetermined. Following the same procedure as
for the table for PQ, we find

K = Q’K — A(PI+ PI)? (49)

where K is a zero-weighted real scalar, as yet undetermined.

Therefore we do not obtain directly a table for I which we require in order to
apply the commutators to I; and there is clearly no other way that we can sup-
plement this information on I directly, by manipulation or rearranging. (This is a
different situation from the analysis in [14] where by applying the commutators
to the table for PQ we obtained a partial table —for operators P, 8, 8’ —directly.)

However, it is essential that we do obtain a table for a second spinor; there-
fore we introduce one particular spinor ¥ from the class of spinors I (which we
noted were defined up to the freedom (44)), by its partial table

PI= )P
ol =PI (50)
31 =71

This table is clearly consistent with (47); moreover, we can confirm that it
satisfies the relevant commutators (28)—(30).
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We can seek to complete this table with
PI=W (51)

where the spinor W is as yet undetermined. o
Following the same procedure as for the table for PQ, and again using (16)
and (15), we construct the completed table for ¥

PI= 1P

ol =PI

, — (52)
ot =71

DY = PO W — AP¥ — A PH

where W is a zero-weighted complex scalar, as yet undetermined. This table is
clearly also consistent with (48) and (49) with K = W 4+ W.

The theory requires that we apply the commutators to the table for %, which
yields a partial table for W,

PW =0, aW=-P(1-xW+W)., aW=0 (53)

This partial table satisfies the relevant commutators (28) — (30), so therefore the
table (52) for ¥ is completely compatible with the remainder of the equations,
and so we can adopt ¥ as the second spinor. However, as emphasised earlier,
this spinor ¥ is not defined uniquely in terms of intrinsic elements of the GIF
formalism, and so is not intrinsic to the spacetime.

So we have obtained two of the core elements required in our analysis—a
weighted scalar PQ and a new spinor ¥ which is not parallel to o—and con-
structed their tables; in addition, we have applied the commutators to these
tables in order to extract additional information which was implicit in the
commutators.

4.3 Completing all the tables and applying the commutators
We also need tables for four zero-weighted real scalars. Putting
W=M-—iB+1/2x (54)

the partial table for (complex) W (53) yields partial tables for (real) M and B
respectively; we complete in the usual way to get

PM =0
M = . PM s
M = \PM (53)

P'M = OM3/2R — \PMI — \PMA
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PB =0

3B = ixPM

) - (56)
3B = —iAPM

P'B = OM'>(G + RB) — ixPM¥ + ixPM¥

where R and G as usual are real zero-weighted scalars, as yet undetermined.
(Once again, we have chosen the particular form and factors on these terms to
shorten subsequent presentation.)

When we apply the commutators to the above tables for M and B we obtain
the following partial tables for R and G respectively

PR=0, 3R=0, dR=0 (57)
PG=0, 3G=0, 3G =0 (58)

Since the P component is zero in all four tables, it is clear that these four
scalars, M, B, R, G are not functionally independent; however the possibility of
the three scalars M, B, R being functionally independent is not obviously ruled
out. Therefore tentatively adopting M, B, R as our three coordinate candidates,
we complete the table for R in the usual way with the zero-weighted scalar Y,
as yet undetermined,

PR=0, d8R=0, dR=0, P'R=QYM'/? (59)
Application of the commutators to R gives
PY=0, aY=0, 3Y=0 (60)

It is clear that we have extracted all the information which is available directly
from the tables for P, Q and ¥; we have applied the commutators a number of
times ending up with identical partial tables for R, G, Y which means that their
gradient vectors are parallel, and hence they are functionally dependent on
each other; moreover, no further amount of rearranging nor manipulation with
the commutators on the tables of the intrinsic elements will yield a fourth scalar
functionally independent of the three coordinate candidates M, B, R. Clearly
we need a table with a non-zero P component. (In [14] we were able to get
a hint as to the structure of the ‘missing’ table from a comparison with the
generic case, when a fourth table was generated directly; no such comparison is
available in this paper.)

So we will try and introduce a real zero-weighted scalar N via a table
which is consistent with the commutators. Beginning by checking the simplest
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possibilities we are led to

M3/2
PN=—
Q
M3/2_
M3/2
IN=——
Q

which we can confirm satisfies the relevant commutators (28)—(30); so we com-
plete the table as

M3/2
PN =—
Q
M32_
I (62)
IN=—-—-1
Q
QMl/Z M3/2 _
P'N = U+ —H
2 + Q
where U is a real zero-weighted scalar, as yet undetermined.
Applying the remaining commutators gives the partial table for U,
3M3/2
PU =
Q
3 3/2 _
dU = —2PM(M +iB +1/2)) — RY (63)

3/2

_ 3M
dU = —2PM(M — iB +1/22) — RE

When the relevant commutators (28)—(30) are applied to U it is found that they
are identically satisfied. Therefore the introduction of N via its Table (62) is
completely compatible with the remaining equations and so N can be taken as
our fourth coordinate candidate.

In summary, we note that we have now applied the commutators to the four
zero-weighted scalars M, B, R, N in addition to the weighted scalar PQ and
the spinor ¥. Therefore we have obtained all the information about this class
of spacetimes in the form of explicit equations. Clearly our tables for the four
zero-weighted scalars M, B, R, N, the weighted scalar PQ and the spinor ¥, are
not complete and involutive by themselves since they also contain the addi-
tional zero-weighted scalars G, Y, U. However, the requirement of applying
the commutators to the four coordinate candidates ensured that we also have
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the constraint equations given by the partial Tables (58), (60), (63) for those
additional scalars, which taken together with the Tables (55), (56), (59), (62),
(45), (46), (52), supply a complete and involutive system.

4.4 The tables in GHP scalar operators

If we identify the spinor ¥ with the second dyad spinor ¢ of the GHP formalism,
then the above tables for M, B, R and N, together with the additional constraint
equations, (58), (60), (63) can all be translated, using (18)—(21), into the GHP
formalism with the usual GHP scalar operators:

PM =0
oM = APM
, = (64)
M = APM
P'M = QRM?/?
PB =0
0B = iAPM
, = (65)
9'B = —iAPM
V'B = O(G + RB)M!/2
PR=0
IR =0 66
YR=0 (66)
P'R = QYM!/?
M3/2
PN = —
Q
oON =
67
AN =0 67)
M1/2
P'N = Q U
2
where
PG=0, 9G=0, 9G=0 (68)
PY =0, Y =0, dY=0 (69)
3M3/2
pU = 0 R
(70)

AU = —2PM(M +iB +1/2))
U = —2PM(M —iB+1/2))
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For completeness we add the separate GHP tables for P and Q,

PP =0
_ 2

8/77 = AP (71)
AP =—Ar
PP=0
PO =0
09 =A 2

Q= 10QP/ o)
9'Q = 2QP/2
POo=0

Before we can adopt the coordinate candidates as coordinates, we must confirm
that they are functionally independent. Assuming that M # 0, we can easily
confirm that B, R, N cannot be constant; an examination of the determinant
formed from the four tables (64), (65), (66) and (67) shows that the four coordi-
nate candidates are indeed functionally independent—providing M # 0 # Y.
In the remainder of this section we will consider the case M # 0 # Y, while
in the next section we will consider the case M # 0 = Y (and more generally
M #0,all Y). The case M = 0 (and more generally, all M, all Y) will be looked
at separately in Sect. 6.

4.5 Using coordinate candidates as coordinates and constructing a metric

Assuming for this subsection that M # 0 # Y, we make the obvious choice of
the coordinate candidates as the coordinates

r=R, n=N, m=M, b=B

Note that the coordinates r, m, b have direct and unique identification with the
intrinsic elements R, M, B, unlike n, because N is introduced indirectly via its
table.

We can now write down the tetrad vectors in these coordinates by means of
the Tables (64), (65), (66) and (67),

1
Q
m = P(O, 0, Am, ikm) (73)
i =P(0, 0, am, —irm)

nt = Q(le/z, Um1/2/2, rm/2, (rb + G)ml/z)

I= —(0, m’?%, 0, 0)

@ Springer



Obtaining a class of Type O pure radiation metrics using invariant operators 555

where the equations (68), (69) and (70) give the constraints for G, Y and U
respectively in the chosen coordinate system.

It is clear from (68) and (69) that the functions G and Y are independent of
all coordinates except r, and hence we have Y = vy (r) and G = v,(r) where vy (r)
is a completely arbitrary function of r, whereas vy (r) is an arbitrary function of
r excluding the zero function.

From (70), in this coordinate system, we get the following differential
equations

U, =3r
L . (74)
MWy +idUp = =2(m+ib+1/21)
from which we find
b2 2
U=3rn—7—mT—%+v3(r) (75)
where v3(r) is a completely arbitrary function of r.
It follows immediately from the equation
gij = 219D — 2 m))
that the metric g7, in r, n, m, b coordinates, is given by
0 V1 (r) 0 0
igjo__ .2 vy (r) U mr (rb + vz(r))
£="10 mr —232 0 (76)
0 (rb+wn@) 0 —222

where U is given by (75).

5 The integration procedure: extending the generic case
5.1 Preliminaries

We ruled out Y = 0 in the previous section, since in that case, from (66), R is a
constant and therefore we cannot adopt R as a coordinate. On the otherhand,
we still have the possibility of getting a fourth coordinate candidate from G or
U. Once we make such a choice, then we could continue in a similar manner
as in the last section, building our tables, and hence the tetrad, around the four
coordinate candidates.

However, if neither of the other functions G, U is functionally independent of
the original three coordinates, then it will not be possible to find a replacement
candidate directly; we emphasise that in such circumstances no additional inde-
pendent quantities can be generated by any direct manipulations of the tables
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and the commutators. In such a situation we still need a replacement coordinate
candidate in order to extract the remaining information from the commutators.
So, rather than treating the special case Y = 0 separately, we will extend the
generic result to include the special case as well.

We will now show that a replacement candidate for R can be found, and that
by defining this complementary coordinate candidate indirectly via its table, we
can obtain a metric which includes all possible values for R, including zero.

5.2 Finding a complementary coordinate candidate to replace R,
and constructing a metric

The results in the previous section apply; the only difference here is that we
interpret them differently. When we are interpretating our tables and choosing
our explicit coordinate candidates we will now consider only the three zero-
weighted real scalars M, B, N as coordinate candidates while the zero-weighted
scalar R is not now included as a coordinate candidate, which means that it is no
longer prevented from acquiring a constant value, even zero. A related change
is that although R is no longer a coordinate candidate, the result of applying the
commutators to the coordinate candidate M resulted in its partial table (57),
which must therefore be included

PR=0, aR=0, dR=0 (77)

So, clearly we do not have our full quota of four coordinate candidates, but
we do not wish to use any of the remaining quantities from the tables, since it
would involve the additional assumption of that quantity being non-constant.
So we have to introduce a complementary zero-weighted scalar, functionally
independent of the first three coordinate candidates, whose table is consistent
with the commutators. In fact, we get a strong hint from the previous subsection,
and consider the possibility of the existence of a real zero-weighted scalar R,
which satisfies the table

PR=0, aR=0, 3R=0, PR=0oM'? (78)

We have defined® our new coordinate candidate R by a table which has the
same essential structure as the table (59) for the coordinate candidate R which
it replaces; but, unlike R in the previous section, R has no direct links to any
other quantities in the equations. (In fact (59) has a slightly different structure
than (78); however, if we had retained an arbitrary function Y(R) in the table
(78) analagous to (59), the simple coordinate transformation R — [ Y(R)dR
reduces it to unity.)

2 For easy reference, in an extended case, we will label by X a complementary coordinate candidate
which replaces a coordinate candidate X in a generic case; but we emphasise this is not to imply any
direct link between the two quantities, it simply points us to the source of the hint which suggested
the table for the complementary coordinate candidate.
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This Table (78) is easily seen to satisfy all the commutators (27)-(32) and to
be compatible with the other tables.

The GHP table for R can be obtained from (78) by substituting the GIF
operators with the GHP scalar operators in the usual way,

PR=0, 9R=0, 9R=0, DP'R=QMm!? (79)

The GHP Tables (64), (65), (67), for the other three coordinate candidates
M, B, N respectively remain unchanged, as do the GHP partial tables (68) and
(70) for G and U.

It can now easily be seen from the determinant of the respective tables that
R, M, B and N are functionally independent and therefore can be chosen as
coordinate candidates. From (77), the GHP partial table for R becomes

PR=0, aR=0, 9R=0 (80)

which means that R is a function of only the one coordinate candidate, R.
Clearly from (68), G is also a function of only the one coordinate candidate, R.

Hence, by replacing the coordinate r and its table with the coordinate 7 and its
table, we are now able to generalise the metric form (76) given in the previous
subsection in the coordinates

r=R, n=N, m=M, b=B

Note that the coordinates m, b have direct and unique identification with their
respective intrinsic coordinate candidates M, B, whereas n and 7 are defined
indirectly by the tables for N and R, respectively.

The metric, in coordinates 7, n,m, b, is given by

0 1 0 0
. 1 U mv4(7) (bV4(7’) + 1)2(7’))
j_ 02 4
e N 232 0 (81)
0 (bvs(® +12() 0 —222
where U is obtained by solving (70) to obtain
b m* m -
U =3nvy(F) — Y + v3(r) (82)

and v2(7) (=G (7)), v3(7) and v4(7) (=R (7)) are all completely arbitrary functions
of 7, (including the zero function).

When we compare the metric (76) with the above metric (81), we can easily
see that the former is a special case of the latter, since the latter also includes
the special case corresponding to v4(7) being a constant function, which was
excluded from the former; in the case when v4(7) is not a constant function, by
taking r = v4(F) we can retrieve the previous result (76).
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6 The integration procedure: the special case M = 0 leading to the complete
solution

6.1 Preliminaries

When we substitute M = 0 into the two Tables (55) and (56) the first table
collapses completely, and the second reduces the scalar B to a constant func-
tion. Hence there only exists the tables for P, Q which are unchanged from (45)
and (46), as well as the Table (52) for ¥ which is simplified by the substitution
W = —iB + 1/2) where B is now a constant.

This is the only direct information that we obtain for this subclass, and no
further information can be generated by applying the commutators to these
tables; there is not even one explicit zero-weighted quantity to be a coordinate
candidate.

So we will need to introduce four complementary coordinate candidates indi-
rectly via their respective tables, and to ensure that these tables are compatible
with the commutators (27)—(32) and the other three tables (45), (46) and (52).

In the previous section when we wished to fill in a missing subclass corre-
sponding to a missing coordinate from the generic case, rather than treating
the special case separately, we found it easier to extend the generic result to
include the special case as well: to obtain a replacement coordinate we intro-
duced indirectly a complementary coordinate candidate via the structure of
the table for the corresponding coordinate candidate in the generic case, but
with the complementary coordinate independent of the other elements in the
formalism. The solution we obtained extended the generic case to include the
special missing subclass.

In this section we will follow the same principles: we will introduce indirectly,
via their tables, four complementary coordinates, none of which occur directly
in any other parts of the formalism. The solution then obtained will be a further
extension of the extended version found in Sect. 5 (which was itself an extension
of the generic case in Sect. 4), since it will also include the subclass M = 0; in
fact it will be the complete solution to the class of spacetimes we have been
investigating.

6.2 Finding four complementary candidates, and constructing the complete
metric

Taking the hint from the respective table structures in sects. 4 and 5, (55), (56),
(62), (78), we introduce the complementary candidates M, B, and N via the
three tables

PM =0

oM = APM

M= 2PN (83)
oM = \PM

P'M = OQM3/2R — A\PMI — \PMX
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PB=0
9B = i\PM
~ . (84)
OB = —iPM
P'B = OMY2RB — ixPME + i>PMX
- B2
PN =—
Q
. M3/2_
=51
i (85)
wo My
N =———
Q
v oM\/2 32
2 Q
and R as before
PR=0, 8R=0, ¥R=0, P R=0M"? (86)

(Table (56) has a slightly different structure than (84); however, if we had
retained an arbitrary function G(R) in the table (84), the simple coordinate
transformation

B — B+ exp(R*)2) / G(R) exp(—R?/2)dR

reduces it to zero.)

Note that the scalar quantity R has been left undetermined (as in the extended
case in Sect. 5) rather than equating it to the coordinate candidate R as was
done in the generic case, since we are seeking to extend further the generic
result’s extension, given in the last section.

Alongside these are the original three Tables (45), (46) and (52) [with M and
B substituting for W via (54)] for P, O, %, respectively; it is emphasised that the
scalar functions M and B in the Table (52) for ¥ have no direct link with the
complementary coordinate candidates M, B.

Applying the commutators to P, Q gave the Table (52) for 4, and applying
the commutators to ¥ gives the partial tables for the unknown functions,

PM =0, aM=1PM, &M=iPM (87)
PB=0, 8B =iAPM, 98B=—iAPM (88)

and so we must retain these partial tables.
It remains to apply the commutators to the four complementary coordinate
candidates M, B, R, N, defined by their tables above, and the only non-trivial
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results are,
PR=0, aR=0, dR=0

3M3/2
PV = R
Q
- 3 V32
aV = —2PM(M +iB +1/2)) — RI
=13/2

. 3M
AV = —2PM(M —iB +1/2) — R

(89)

(90)

The relevant commutators (28)—(30) are consistent when applied to the partial
tables for R and V, and so our choices of the four complementary coordinate

candidates M, R, B, N is permissable.

Once again, when all the tables and partial tables are considered, we have a

complete and involutive set of equations.

We next translate all of these equations into their GHP versions in the usual

way,
PM =0
oM = APM
M = )\PM
P'M = OM3/’R
PR=0
AR=0
FR=0
p/R — QM]/Z
PB=0
9B = ixPM
3B = —iAPM

P'B = OQM'Y2BR

Ny ek
py_ 5
AN =0
N =0
VN = 22y

alongside the GHP partial tables for R, M, B and V respectively

PR=0, aR=0, 9¥R=0
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PM =0, OM=rPM, 3M=IPM (96)
PB=0, 8B=ixPM, 3'B=—iAPM (97)
3M32
PV = 3
(98)

V = —2PM(M + iB + 1/21)
'V = —2PM(M — iB +1/2))

Checking the determinant of the four Tables (91), (92), (93), (94), confirms that
these four scalars are functionally independent, and so we make the obvious
choice of the complementary coordinate candidates as the coordinates

F=R, n=N, m=M, b=B

Note that all of the coordinates are defined only up to an additive constant,
because they have been introduced indirectly via their tables.

We can now write down the tetrad vectors in these coordinates by means of
the tables (92), (91), (94) and (93),

|
==, m*?% 0,0
Q( )
m = 73(0, 0, A, mm)
S (99)
= P(O, 0, A, —i/\ﬁi)
n = Q(ml/z, vinl’2 2, Rin32, RBﬁal/z)
From (95) we know that R is a function of 7 only, and we will write R(F) = v4(F)

which is a completely arbitrary function of .
Solving the equations (96), (97) and (98), respectively, gives

M = s () (100)
B = bvs(F) + Avg(7)/2 (101)
V = 3in(P) — vs(® B2 + i) — ve(Pb — % + () (102)

where v3(7), v5(7), v6(7), are all also completely arbitrary functions of 7, and we
have introduced the factors A for brevity of presentation for V . Clearly we
could replace —A? with A, but we choose to retain the former to emphasise that
for this spacetime the cosmological constant must be negative.

It follows immediately from the equation

gij =21 — 2mlmh)
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that the metric g7, in 7, 71, /1, b coordinates, is given by

1 0 0

Vo mw@) bu@)
mva(F)  —2A2 0
bua(F) 0 —222

(103)

S O = O

where V is given by (102).

This is the complete metric. The special case M = 0 which was omitted in
Sect. 5 is given by vs(7) = 0, and the extended generic version (81) from Sect. 5
can be found when vs5(7) # 0 by a simple coordinate change.

7 Karlhede classification

The efficiency of the GIF for investigatng the Karlhede classification [22,23] of
a metric has been discussed in [14]; here we now apply to the class of space-
times constructed in this paper the same procedure as was developed in [14].
We consider the complete solution given by (103).

At zeroth order,

®=0° (104)
At first order,
Pe =0
a0

Po=-30API+PID

We can solve for Q at zeroth order and for P and (PI + PI) at first order;
therefore I is not uniquely determined, and it has clearly the gauge freedom of
a one parameter subgroup of null rotations.

At second order, we find that the only non-zero expressions which give any-
thing other than terms in P and Q are

Pad = —30222P(PI+PI)

_ 106
PP o = —30%? (Zﬁzvs(?) +1 /Az) + 120222 (P1+ PD2 (106)

Providing vs(7) # 0, we can solve for a first essential coordinate (/71vs5(7)), but
the gauge freedom of I remains unchanged.
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At third order, we have the equation

PPP'® = 305202 (v(P) + vs(Pva(P)
+3Q%3 (15mvs(7) +7/22) (P1+ PT)
~ 60023 (P1+PI)° (107)

where vg(?) = %‘;S(r ). We can now solve for a second essential coordinate

(ﬁ13/ 2(vL(P) + vs (?)v4(7))), which is obviously functionally independent of the
first, in general; clearly m and 7 can be considered as essential coordinates, in
general. However, for all third order values, the gauge freedom of I still remains
unchanged.

At fourth order, we find, in general, that there are no new functionally
independent scalars generated; moreover, the gauge freedom of a one param-
eter subgroup of null rotations for I remains unchanged. Hence the algorithm
terminates at fourth order, in general, with two essential coordinates 1, 7.

However, there is a special case, at third order, since the second proposed

essential coordinate (1713/ 2(v§(7) + vs (7)v4(7))) is functionally dependent on
the first essential coordinate (772vs(¥)) in the case when (v(7) + vs(F)va(7)) =
~N\3/2 .
k(vs(7)™'", ie.,
v = (k(vs3) " = @) /v5(®) (108)

where k is a constant.

All the other derivatives at third order fail to generate any new essential
coordinate, and the gauge freedom of I still remains unchanged. Therefore, for
this case, the algorithm terminates at third order.

Finally, we note that when vs(7) = 0 there is no new information at second
order, and so the algorithm terminates there.

We can sum up as follows:

e When vs(7) # 0 and when v4(7) # (k(vs(?))3/ 2 (;)) /vs(F) , we need to
go to fourth order, and this subclass has two essential coordinates 7, 7, and
one degree of isotropy freedom and hence three Killing vectors.

o Ifvs(7) # 0and w(7) = (k(V5(?))3/2 - ug(?))/%(?) no new information is
given at third order, and the subclass has one essential coordinate mvs(7),
and one degree of isotropy freedom and hence four Killing vectors.

e If v5(7) = 0 no new information is given at second order, and the subclass

has no essential coordinates, and one degree of isotropy freedom and hence
five Killing vectors.

We note that there are no further subclasses depending on the values of the
arbitrary functions v3(7), vg(7) which are in (102). This means that the apparent
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freedom of these arbitrary functions is not actual; hence there must be a coor-
dinate transformation that can absorb these two arbitrary functions.

8 Summary and discussion

We have shown how the method in [14] which was used to investigate confor-
mally flat pure radiation spacetimes can be developed to investigate the more
complicated situation where, in addition, there is a non-zero cosmological con-
stant; in particular, we have found the subclass of conformally flat pure radiation
spacetimes with negative cosmological constant A = —t7.

This analysis has extended our experience and knowledge of the GIF, and
in particular we have seen in the GIF how to handle spacetimes with multiple
Killing vectors by ‘copying’ tables from the generic case, and also how to treat
the one dimensional isotropy freedom of a null rotation.

As in [14], having constructed the spacetime via GIF, we find it is easy to
deduce the Karlhede classification; also as in [14], we needed to go to the fourth
order in the derivatives of the Riemann tensor. The fact that, for these two
classes of spaces, we can carry out the Karlhede classification, by hand as a sim-
ple calculation, emphasises the power of the GIF operators which we are able
to use directly in place of the more complicated spinor calculations associated
with the computer programmes for the Karlhede algorithm. Moreover, we were
able to see directly how different aspects of the Karlhede algorithm, especially
regarding null isotropy, manifested themselves. In fact in [14] we could have
simplified the Karlhede classification calculation, by changing from GIF opera-
tors to the simpler GHP scalar operators; this is permissable in [14] because the
second dyad spinor ¢(= I), which enables us to translate from GHP formalism
to GIF, is intrinsic and invariant in the GIF. On the contrary, for the spacetimes
in this paper, we have seen that we do not get an intrinsic second spinor from
the GIF formalism; rather the spinor ¥ which we use has one degree of freedom
fixed in a non-intrinsic manner. Therefore if we try to carry out a similar analysis
as we did in the previous section using GHP tables and operators, we will not
get a valid Karlhede classification: the analysis will not go any further than the
second derivatives of @ [essentially the GHP tables for P and Q (71), (72)].

In view of the complications and subtleties which arose for the spacetimes
with zero cosmologiacal constant, it will be interesting to see how the computer
programmes [19,36], handle these spacetimes, and especially the existence of
one degree of null isotropy.

We have only given the discrete information regarding symmetries; using the
method in [10] we will be able to find explicit expressions for the Killing vectors,
and any homothetic Killing vectors present.

We have also used the GIF to construct the other spacetimes for this class—
those with the condition A # —t7; in this case there was no isotropy, but
the calculations were longer and we will present the results elsewhere [12].
These various calculations and results are enabling us gradually to build up our
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experience and skill in the GIF, with the ultimate goal of tackling even more
complicated situations in the future.

Although there have recently been a number of investigations of pure radia-
tion spacetimes with non-zero cosmological constant for different Petrov types
of Weyl tensors [2-6,17,18,26,31,32] these investigations generally seem to be
built around a non-zero Weyl tensor, and it is not clear whether the whole class
of conformally flat spaces are included as special cases; moreover, the confor-
mally flat limits do not seem to be easily deduced from the more general cases.
On the other hand, in this paper and in [12] we have investigated the spacetimes
with a formalism which is directly suited to the class, and the explicit metrics
found here are in simple form. It remains to investigate the whole class of these
spacetimes found via GIF, with the conformally flat limits of these various other
investigations.
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