
Universidade do Minho
Escola de Engenharia

João André Correia Queiroga Pereira

Human-like Motion Generation Through
Waypoints for Collaborative Robots
in Industry 5.0

Outubro de 2021U
M

in
ho

 |
 2

02
1

H
um

an
-li

ke
 M

ot
io

n
G

en
er

at
io

n
Th

ro
ug

h
W

ay
po

in
ts

 fo
r

C
ol

la
bo

ra
tiv

e
Ro

bo
ts

in

 In
du

st
ry

 5
.0

Jo
ão

 A
nd

ré
 C

or
re

ia
 Q

ue
ir

og
a

Pe
re

ir
a

João André Correia Queiroga Pereira

Human-like Motion Generation Through
Waypoints for Collaborative Robots
in Industry 5.0

Dissertação de Mestrado
Mestrado Integrado em Engenharia Eletrónica Industrial e
Computadores

Controlo, Automação e Robótica

Trabalho efetuado sob a orientação da
Professora Doutora Estela Guerreiro G. S. Bicho

Universidade do Minho
Escola de Engenharia

Outubro de 2021

DIREITOS DE AUTOR E CONDIÇÕES DE UTILIZAÇÃO DO TRABALHO POR TERCEIROS

Este é um trabalho académico que pode ser utilizado por terceiros desde que respeitadas as regras e

boas práticas internacionalmente aceites, no que concerne aos direitos de autor e direitos conexos.

Assim, o presente trabalho pode ser utilizado nos termos previstos na licença abaixo indicada.

Caso o utilizador necessite de permissão para poder fazer um uso do trabalho em condições não

previstas no licenciamento indicado, deverá contactar o autor, através do RepositóriUM da

Universidade do Minho.

Licença concedida aos utilizadores deste trabalho

Atribuição-NãoComercial-SemDerivações
CC BY-NC-ND

https://creativecommons.org/licenses/by-nc-nd/4.0/

ii

Acknowledgments

This dissertation represents many hours of effort and dedication, and this so important achievement

would not be possible without the contribution of several people who accompanied and encouraged me

during this journey.

First of all, I would like to thank my supervisor, Professor Estela Bicho, for all the support and availability

provided throughout this dissertation, as well as all the trust placed in me. I also thank the opportunity

to work and be part of the Mobile and Anthropomorphic Robotics Laboratory of the University of Minho,

where I learned so much.

I would like to express a very special thanks to Gianpaolo Gulleta, who was crucial to accomplish the

objectives of this dissertation. I learned a lot from you, thank you for guiding me and for always being

available. I really admire your work. Grazie mille, Gianpaolo!

I would also like to thank my friends and colleagues with whom I shared my struggles to write such a

demanding and challenging dissertation. Thank you for all your support and motivation.

Finally, I thank my parents and brothers for giving me unconditional support, encouragement and

inspiration to make this journey possible.

iii

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have not used

plagiarism or any form of undue use of information or falsification of results along the process leading to

its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho.

iv

Resumo

Geração de Movimentos Humanos através de Waypoints em Robôs Colaborativos na

Indústria 5.0

A Indústria 4.0 temmotivado a comunidade científica a inovar soluções para garantir que as empresas

mantenham os níveis de competitividade e satisfaçam as exigências dos clientes, cada vez mais em relevo

devido à customização em massa [Villani et al. (2018)]. Os robôs precisam de mais flexibilidade, métodos

de programação intuitivos e de fácil utilização, de modo a que estes sejam facilmente reprogramados

para novas tarefas. Assim, surgiram os robôs colaborativos, que são mais pequenos, seguros e, acima

de tudo, são capazes de partilhar o espaço de trabalho com operadores humanos [Villani et al. (2018)].

Além disso, já existem previsões relativamente à Indústria 5.0, onde humanos e robôs irão coexistir nas

suas tarefas diárias [Schaal (2007)].

Esta dissertação propõe um planeamento de trajectórias que respondem às necessidades acima

mencionadas. Este método permite aos operadores programar facilmente o robô para uma nova tarefa,

definindo posições obrigatórias da trajectória. Os waypoints podem ser definidos através da manipulação

física do robô ou através da utilização do joystick incorporado no painel de controlo do robô. Acrescenta-

se que a trajectória gerada é baseada no modelo minimum-jerk de Flash and Hogan (1985), garantindo

características humanas quantitativas e qualitativas. Tais propriedades tem impacto muito positivo no

bem-estar e produtividade dos operadores [Koppenborg et al. (2017),El Zaatari et al. (2019)].

O método proposto é validado num cenário de inspecção de qualidade no contexto da indústria.

Especificamente, o utilizador define pontos de passagem, que correspondem à melhor perspectiva para

inspeccionar as placas, e posteriormente o robô manipula-as através dos pontos obrigatórios de uma

forma humana. O planeador permite a realização de movimentos suaves, fluentes e intuitivos através

dos pontos de passagem. Apesar dos movimentos resultantes possuírem características humanas, não

podemos afirmar absolutamente que são movimentos humanos, uma vez que não há experiências em

humanos com waypoints.

Palavras-chave: waypoints; human-like; geração de trajetórias; controlo ótimo; restriçoes de pontos

interiores; robôs colaborativos; UR10; indústria 4.0; indústria 5.0

v

Abstract

Human-Like Motion Generation Through Waypoints for Collaborative Robots in Industry 5.0

Industry 4.0 has motivated the scientific community to innovate solutions to ensure that companies

maintain levels of competitiveness andmeet customer demands, which are increasingly higher due tomass

customization [Villani et al. (2018)]. Robots need more flexibility, intuitive and user-friendly programming

methods so that they can be easily reprogrammed for new tasks. Thus, collaborative robots have emerged,

which are smaller, safer, and most importantly, are able to share the workspace with human operators

[Villani et al. (2018)]. Moreover, there are already predictions regarding Industry 5.0, where humans and

robots will coexist in their daily routines [Schaal (2007)].

This dissertation proposes a trajectory planning method that addresses the above needs. This method

allows operators to easily program the robot for a new task by defining mandatory positions -waypoints- of

the trajectory. Waypoints can be defined by physically manipulating the robot or by using the joystick built

into the teach pendant robot. The generated trajectory is based on the minimum-jerk model introduced

by Flash and Hogan (1985), which guarantees both quantitative and qualitative human characteristics.

Such properties have a very positive impact on operators’ well-being and productivity [Koppenborg et al.

(2017),El Zaatari et al. (2019)].

The proposed method is validated in a quality inspection scenario in an industry context. Specifically,

the user defines waypoints, which correspond to the position of the eye angle to inspect the plates, and

subsequently the robot manipulates them through the mandatory points in a human-like manner. The

planner allows smooth, fluent, and intuitive movements through the waypoints. Although the resulting

movements have human characteristics, we cannot absolutely claim that they are human movements,

since there are no experiments on humans with waypoints.

Keywords: waypoints; human-like; trajectory generation; optimal control; interior-point constraints;

collaborative robots; UR10; industry 4.0; industry 5.0

vi

Contents

I Dissertation Structure 1

1 Introduction 2

1.1 Evolution of Robotics . 2

1.1.1 Collaborative Robots . 4

1.2 Motivation and Objectives . 7

1.3 Structure of the Dissertation . 8

II State of the Art 9

2 Programming Methods 10

2.1 Introduction . 10

2.2 Kinesthetic Teaching . 11

2.3 Teach Pendant programming . 12

3 Trajectory Generation 14

3.1 Overview of Trajectory and Path . 14

3.1.1 Path Planning Methods . 17

3.1.2 Optimal Trajectory Planning . 22

3.2 Trajectory Generation through waypoints in Robotics 24

3.3 Human-like Arm Motion Generation . 30

3.3.1 Human-like Arm Motion Characteristics . 30

3.3.2 Human-like Arm Motion Computational Models 33

3.4 Human-like Trajectory Generation through waypoints 35

3.5 Discussion . 40

vii

III Materials and Methods 42

4 Collaborative Robot: UR10e 43

4.1 Introduction . 43

4.2 Specification . 44

4.2.1 Singularities . 46

4.3 Kinematic Model . 47

4.3.1 Forward Kinematics . 49

4.3.2 Vacuum End-effector . 53

4.3.3 Inverse Kinematics . 54

5 Optimal Control 56

5.1 Introduction to Optimal Control . 56

5.1.1 Lagrange multiplier . 58

5.2 Optimal Control Problems . 59

5.2.1 Equality Interior-point Constraints in State Variables 61

IV Design and Implementation 64

6 Trajectory Planning 65

6.1 Problem statement . 65

6.1.1 Problem solving . 67

6.1.2 Final trajectory equation t0 ≤ t ≤ T . 72

6.1.3 Lagrange multiplier . 77

6.1.4 Waypoints time . 82

6.2 Time parametrization . 84

6.2.1 Total time . 84

6.2.2 Number of steps . 85

6.2.3 Time step . 85

V Validation of the Trajectory Planning 87

7 Human-like Trajectory Planningwithwaypoints in aHuman-Robot Collaboration Scene 88

7.1 Validation Architecture . 88

viii

7.2 Human-likeness Evaluation . 90

7.3 Task: Quality inspection . 91

7.3.1 Task Description . 93

7.3.2 Waypoints definition . 94

7.4 Movements and Results Achieved . 96

7.4.1 Pick Movement . 97

7.4.2 Show Movement . 101

7.4.3 Place Movement . 107

7.4.4 Task Results . 115

7.5 Discussion . 116

VI Conclusion 119

8 Conclusion and Future Work 120

8.1 Future Work . 122

Appendices 131

A Revisiting Universal Robot’s Kinematics 132

ix

List of Abbreviations

C-free Free Configuration Space.

C-space Configuration Space.

CFRP Carbon Fiber Reinforced Polymer.

CNS Central Nervous System.

Cobot Colaborative Robot.

CPU Center Processing Unit.

DOF Degrees of Freedom.

EA Evolutionary Algorithm.

FDM Forward Dynamics Model.

GMP Gradient Projection Method.

GUI Graphical User Interface.

HRC Human-Robot Collaboration.

HRI Human-Robot Interaction.

HUMP Human-like Upper-limb Motion Planner.

IDM Inverse Dynamics Model.

IFR International Federation of Robotics.

IPOPT Interior-Point Optimizer.

x

NJS Normalised Jerk Score.

NMU Number of Movement Units.

PRM Probabilistic Roadmap Method.

RRT Rapidly-exploring Random Trees.

UI User Interfaces.

UR Universal Robots.

xi

List of Figures

1.1 Evolution of robotics from the first to the fifth generation 4

1.2 On the left, cobot UR3 in a collaborative gluing application [Bloss (2016)]; On the right

conventional industrial robot in a non-collaborative workspace [Tsarouchi et al. (2016)]. . 5

1.3 Collaborative robots – MRK-Systeme KR SI, Fanuc CR-35iA, ABB YuMi, UR5, KUKA LBR

iiwa [Vysocky and Novak (2016)] . 6

2.1 User manipulating a Baxter robot during the teaching process[Carfì et al. (2019)] 11

2.2 Robot teach pendants: a) the MOTOMAN NX100 teach pendant; b) the ABB IRC5 teach

pendant that incorporates a joystick; c) teach pendant from KUKA Robotics incorporating

a 6D mouse; d) wireless teach pendant from COMAU Robotics; e) FANUC robot tech

pendant[Neto et al. (2010)] . 12

3.1 C-space, C-free and C-obs for an articulated robot with two joints [Gasparetta et al. (2015)] 15

3.2 Brief framework of general trajectory planning [Lu et al. (2020)] 16

3.3 PRM Learning phase [Short et al. (2016)] . 18

3.4 PRM Query phase [Short et al. (2016)] . 19

3.5 Procedure in RRT algorithms [Elbanhawi and Simic (2014)] 20

3.6 RRT approach for searching the free space and avoiding obstacles (left), after 500 itera-

tions. The root of the trees is represented as a green circle. Image taken from [Elbanhawi

and Simic (2014)] . 20

3.7 Typical trajectories obtained from different movement laws: a) constant acceleration; b)

minimum-jerk c)limited jerk; d) harmonic jerk; [Aggogeri et al. (2020)] 23

3.8 Trajectory with a set of waypoints [Lynch and Park (2017)] 24

3.9 Spline trajectory with multiple polynomial segments of degree p [Kucuk (2017)] 25

xii

3.10 Profile of a cubic spline trajectory with zero velocity in the waypoints in t = 2 and

t = 4. In the figure, one can see the evolution of the joint angle position, velocity and

acceleration, respectively [Spong et al. (2006)] . 26

3.11 The comparison of seven-order B-spline with quintic B-spline and cubic spline method

[Lan et al. (2020)] . 27

3.12 Trajectory that interpolates waypoints based on parabolic blends [Kunz and Stilman (2011)]. 28

3.13 Robot path without stopping at the pre-defined waypoints [Pilz and KG (2019)]. 29

3.14 Trajectory profile of the robot position, velocity and acceleration [Pilz and KG (2019)]. . . 29

3.15 The kinematic model of human arm [Zanchettin et al. (2011)]. 31

3.16 In solid line is represented the predicted movement from the mathematical model of a

typical point-to-point movement. In dashed line is illustrated the evolution of the real

movement. The velocity, acceleration and jerk are similarly illustrated in subfigures b),

c) and d), respectively [An adaptation from Flash and Hogan (1985)]. 32

3.17 Simulated reach-and-grasp movement [Rosenbaum et al. (2001)]. 33

3.18 Minimum-jerk model motion experiments with an animate human [Abdel-Malek et al.

(2006)]. 36

3.19 Smooth transition between two motions using the minimum-jerk model and its adjust-

ment to respect the constraints [Sung et al. (2015)] 36

3.20 Algorithm for extracting waypoints based on the minimisation of the square of the error

between the given trajectory and generated trajectory [Wada and Kawato (1995)]. 37

3.21 Algorithm for producing the trajectory through waypoints by the FIRM model [Wada and

Kawato (1995)]. 38

3.22 Experiment of handwritten task. On the left show the trajectory for ’abc’ and on the right

for ’def’ letters [Wada and Kawato (1995)]. 39

3.23 Human arm reaching movement with waypoints. In Task 1 and Task 2 was performed a

reaching movement with one waypoint and in Task 3 with 2 waypoints [Saito et al. (2006)]. 39

3.24 Waypoints estimated by Wada & Kawato’s method and local minimum of tangential ve-

locity [Saito et al. (2006)]. 40

4.1 Collaborative robots models from Universal Robots: UR3, UR5, UR16 and UR10 respec-

tively. 44

4.2 Shoulder singularity, wrist singularity and elbow singularity of a Robot from Universal

Robot [Adapted from FarzanehKaloorazi and Bonev (2018)]. 46

xiii

4.3 Relation between the forward kinematics and inverse kinematics. 47

4.4 Joints designation of robots from Universal Robot [Universal Robots (2015)]. 48

4.5 UR10e mechanical structure . 49

4.6 Reference frames along the UR10e structure. 50

4.7 Robotic system mechanical structure and reference frames (UR10e with the UniGripper) 53

4.8 8 possible joint configurations for a desired end-effector pose [Oosterwyck (2018)]. . . . 54

5.1 Original Euler’s representation of calculus of variations [Hanc (2017)]. 57

5.2 Illustration of the necessary conditions to minimise the objective function f(x), subject

to equality constraints h(x) = 0 [Chachuat (2016)]. 58

6.1 Joint trajectory from an initial joint position θinit to a final joint position θtar that passes

through N waypoints in unspecified time [t1, t2, ..., tN] 66

6.2 Joint trajectory from the initial joint position θinit to the first waypoint θwp1, time interval

t0 < t < t1. 69

6.3 Joint trajectory from the first waypoint θwp1 to the second θwp2 (time interval t1 < t < t2). 70

6.4 Joint trajectory from a waypoint n, θwpn, to the next waypoint θwpn+1 (or final joint

position), time interval tn < t < tn+1 or tN < t < tf 71

6.5 Denominator equations of the Lagrange multiplier π1 in case of 1,2 and 3 waypoints,

respectively. 76

6.6 Numerator equations of the Lagrange multiplier π1 in case of 1,2 and 3 waypoints,

respectively. 76

7.1 The validation of the generated trajectory is achieved by using the following modules:

simulator CoppeliaSim; Polyscope; Motion Manager and Motion Planner. 89

7.2 Quality inspection scene . 91

7.3 Quality inspection scene with human-robot collaboration 92

7.4 Universal Robots Graphical Programming Environment 95

7.5 Motion Manager Environment for defining waypoints 96

7.6 Posture where the robot starts and returns in each task cycle 97

7.7 Waypoints sequence of the pick movement . 98

7.8 Position and velocity of the hand during the pick movement. The waypoint position is

marked by the dashed line. 99

xiv

7.9 Joint position(black line), velocity(red line) and acceleration(blue line) profile during the

pick movement. The waypoint is marked with a dashed line. 100

7.10 Waypoints sequence of the show movement . 103

7.11 Position and velocity of the hand during the show movement. 104

7.12 Joint position(black line), velocity(red line) and acceleration(blue line) profile during the

show movement. The waypoints are marked by dashed lines. 105

7.13 Waypoints sequence of the place approved movement 108

7.14 Position and velocity of the hand during the Place Approved movement. 109

7.15 Joint position (black line), velocity (red line) and acceleration (blue line) profile during the

Place Approved movement. The waypoint θwp2 is marked by a dashed line. 110

7.16 Waypoints sequence of the place approved movement 112

7.17 Position and velocity of the hand during the Place Faulty movement. 113

7.18 Joint position (black line), velocity (red line) and acceleration (blue line) profile during the

Place Faulty movement. The waypoint θwp2 is marked by a dashed line. 114

7.19 Position and velocity of the hand during the task . 115

7.20 Position and velocity of the hand during the task . 116

xv

List of Tables

4.1 UR10 robot technical details . 45

4.2 UR10e link distances and joint limits . 49

4.3 UR10e Denavit-Hartenberg transformations between reference frames. 51

4.4 Robotic system Denavit-Hartenberg parameters (d7 = 101 mm). 53

7.1 Home posture of the UR10 robot for the task 7.3.1 96

7.2 Waypoints to accomplish the show movement in the task 7.3.1 97

7.3 Results of the movement pick planning . 99

7.4 Comparison between the expected and the calculated robot hand pose at the waypoints . 101

7.5 Comparison between the expected and the calculated robot joints values at the waypoints 101

7.6 Waypoints to accomplish the show movement in the task 7.3.1 102

7.7 Results of the movement pick planning . 102

7.8 Comparison between the expected and the calculated robot hand pose at the waypoints . 106

7.9 Comparison between the expected and the calculated robot joints values at the waypoints. 107

7.10 Waypoints to accomplish the Place Approved movement in the task 7.3.1 108

7.11 Planning results of the movement place . 109

7.12 Comparison between the expected and the calculated robot hand pose at waypoint θwp2

of the Place Approved movement. 111

7.13 Comparison between the expected and the calculated robot joints values at waypoint

θwp2 of the Place Approved movement. 111

7.14 Waypoints to accomplish the Place Faulty movement in the task 7.3.1 111

7.15 Planning results of the movement Place Faulty 113

7.16 Comparison between the expected and the calculated robot hand pose at waypoint θwp2

of the Place Faulty movement. 113

7.17 Comparison between the expected and the calculated robot joints values at waypoint

θwp2 of the Place Faulty movement. 115

xvi

Part I

Dissertation Structure

1

Chapter 1

Introduction

The industry has evolved tremendously over the past few years, and it promises not stopping here. The

new technologies developed are increasingly human-oriented, and in this way the industry is implementing

collaborative robots and promoting collaborative workspaces. This chapter briefly describes the evolution

of robotics from its inception to collaborative robots and, consequently, to human-robot collaboration.

However, it also presents some factors that affect the efficiency of human-robot interaction. In particular,

the performance of a trajectory in a human-like manner. At the end of this chapter, the structure of this

dissertation is presented.

1.1 Evolution of Robotics

The designation ”Robot” and ”Robotics” appeared for the first time, respectively, in 1921 and 1942.

The former comes from the Czech word ”Robota”1, that means ”forced labour”. The latter 2 was introduced

by Asimov, where he defined rules about robots’ behaviour and its interaction with humans, to prioritise

the well-being of humanity. In particular, the main rule states: A robot may not injure humanity, or,

through inaction, allow humanity to come to harm. Since then, Asimov’s laws of robotics have

impacted on the ethics of robotics and artificial intelligence.

Over the last decades, robotics research has focused on the improvement of the human’s quality of

life, relieving humans from carrying out repetitive and heavy tasks, thus making the concept of Capek’s

a reality. Robots are used to perform mechanical labour in factories: removing workers from hazardous

environments and increasing productivity and efficiency [Hockstein et al. (2007), Zamalloa et al. (2017)];

however, in recent applications, robots can also perform collaborative tasks with human operators in the

1Established by Karel Capek in his novel ”Rossum’s Universal Robots” [Karel (1920)]
2Introduced by Isaac Asimov (1920-1992) in his story ”Runaround”[Clarke (1994)]

2

same environment: improving the ergonomics of the worker (e.g. reduction of diseases of the limbs

from long-term) [Tlach et al. (2019),Vysocky and Novak (2016)]. Furthermore, the authors in [Gladden

(2019),Zamalloa et al. (2017), Schaal (2007)] predicted a fifth generation of the robotics - the coexistence

of robots and humans- where the robot also takes an active part on the daily routine of the human, such as:

medical assisting robots, playmate robots in child education, personal robots for elderly, domestic robots,

surveillance and protection. The definition of the word ”robot” will change, transforming it in a concept

of an ideal human companion [Nahavandi (2019)]. Robots will be capable of understanding and feeling

the goals and expectations of a human collaborator. Nahavandi (2019) even anticipates that industry 5.0

will be suitably placed to make a positive impact on the environment and increasing the sustainability of

human civilisation by reducing pollution and waste generation. However, since robotics inception, there

are still four generations.

The first robotic generation had endured from 1950 to 1967. The earliest robot 3 was designed to

enhance the productivity, and automate industrial processes, which encourage the research community

to dedicate their work on robotics field [Zamalloa et al. (2017)]. In the following generation, robots handled

more complex tasks, due to the introduction of many sensory systems, enabling the assembly line that

had led to a mass production era. These first robots were characterised by an absence of information re-

garding the surrounding environment and elementary control algorithms, being considerably complicated

to be reprogrammed. The robots of the third generation (1978-1999) had dedicated controllers and were

reprogrammable - although, very difficult and expensive - for new tasks, as a result of the improvements

on the hardware and software [Zamalloa et al. (2017),Gasparetto and Scalera (2019)]. The main char-

acteristics of these robots are efficiency, repetitive accuracy and high-speed operations. However, these

robots are enormous and dangerous for humans that they are mandatory to work inside of cages and no

direct contact with humans is allowed [Boesl and Liepert (2016), Villani et al. (2018)].

During the mentioned robotics generations, the focus was on enhancing the production lines, with the

highest speed and maximum of accuracy. However, these features hindered the robots from being flexible

and versatile tools [Boesl and Liepert (2016)].

Nowadays, we are living the fourth industrial revolution, which has already resulted in a decrease of

10− 30% production and logistics costs [Nahavandi (2019)]. One of the most significant contributions for

the emergence of industry 4.0 is the rise of mass customisation and the need to meet the consumer de-

mands [Kurt (2019), El Zaatari et al. (2019)]. According to [Deloitte (2005)], more than 50% of costumers

expressed interest in affording customised products and 1 in 4 consumers are willing to pay more for a

3George Devol and Joe Engleberger introduced the first industrial robot named UNIMATE

3

Figure 1.1: Evolution of robotics from the first to the fifth generation

personalised item. Therefore, the industries need more autonomy and flexibility, since re-programming a

traditional industrial robot requires a specialised engineer considering the difficulty and time-consuming

of the task. Hence, to maintain their competitive edge, the manufacturers need novel solutions and

systematically improve production efficiency. To accomplish these demands, the research community

has proposed the development of robotic platforms, named collaborative robots, capable of collaborating

and sharing the workspace with human operators, enhancing the Human-Robot Collaboration (HRC) and

Human-Robot Interaction (HRI) [(El Zaatari et al., 2019; Tsarouchi et al., 2016)].

1.1.1 Collaborative Robots

As described in the above section, the scientific research, during the past decades, has culminated

on a robotic platform - collaborative robot - that aims to improve the quality of life of human operators.

Collaborative robots are designed to collaborate and interact with humans in the same workspace.

These robots gather essential capabilities from humans and industrial robots to ensure more flexibility

in many applications. The traditional industrial robots are ordinarily large and perform accurate, precise

and high-speed motions, being capable of maintaining high efficiency, repeatability and accuracy for mass

production [Vysocky and Novak (2016),El Zaatari et al. (2019)]. However, they are limited by their program-

ming and are dangerous, since they are not aware of their surroundings. To prevent any accident, they are

obligated to work inside of cages, where there is no interaction with operators [Boesl and Liepert (2016),

Villani et al. (2018), Vysocky and Novak (2016)]. On the other hand, humans are capable of dealing with

uncertainties, flexibility and variability in the workspaces due to their dexterity and cognitive skills [Villani

et al. (2018)].

4

Figure 1.2: On the left, cobot UR3 in a collaborative gluing application [Bloss (2016)]; On the right con-

ventional industrial robot in a non-collaborative workspace [Tsarouchi et al. (2016)].

The Human-Robot Collaboration (HRC) combines the above mentioned advantages of industrial au-

tomation and human capabilities, allowing the rise of a safe environment for a collaboration between

humans and robots, where the robot performs the non-ergonomic, repetitive and dangerous tasks; and

the humans execute the cognitive ones [(El Zaatari et al., 2019; Vysocky and Novak, 2016)]. Hence, an

efficient human-robot interaction is crucial for the productivity and flexibility of production lines [Tsarouchi

et al. (2016)].

Since the humans work side by side with robots, without any barriers among them, the human’s

safety and physical integrity must be ensured as a priority [Villani et al. (2018)]. Therefore, there are

imperative safety standards to be followed, such as the requirements for integration of industrial robots

(EN ISO 10218-2) and collaborative robots and work environments (ISO/TS 15066) [Tlach et al. (2019),

Villani et al. (2018)]. Among these requisites stands out the force and speed limitations, no sharp edges

and a system to avoid collisions and minimise the damage in case of an impact.

The collaborative robots bring countless advantages for humans that address their health and working

satisfaction: the risk of injuries and the long term diseases are significantly decreased since the humans are

removed from the uncomfortable, repetitive and tedious tasks [Vysocky and Novak (2016)]. Furthermore,

in Bloss (2016) is mentioned that a collaborative task provides many benefits in robotic applications, which

are maximised when a human and a robot work together at the same task.

Moreover, to fully exploit the human’s skills, the robots must own user interfaces based on human-

centred design. An intuitive user interface is the key for an easy-to-use and easy-programming methods

with the primary goal to simplify the way the user interacts with the robot. As a result, production speed

and product quality are increased, and costs are reduced that even small companies increase their com-

petitiveness [Vysocky and Novak (2016)].

5

Figure 1.3: Collaborative robots – MRK-Systeme KR SI, Fanuc CR-35iA, ABB YuMi, UR5, KUKA LBR iiwa [

Vysocky and Novak (2016)]

All these characteristics enhance the adoption of collaborative solutions by small and recognised com-

panies that address a wide range of industrial applications 4 [Villani et al. (2018), El Zaatari et al. (2019)].

In addition to these advantages, the adoption of shared workspaces has a positive effect on labour

demand, which contributes to an increase in job opportunities instead of the replacement of workers [Villani

et al. (2018)].

In Figure 1.3 are illustrated some collaborative robots already implemented in factory floors. The

first and second robot are conventional robots equipped with passive and active safety elements. The

last three robots have safety functionalities incorporated on the robot itself. For instance, BMW Group

has already introduced cobots for doors assembly process improving the operators’ ergonomic [Giles and

Hatzel (2013)] and Audi has added a UR3 cobot in the assembly line to install Carbon Fiber Reinforced

Polymer (CFRP) on cars 5. The operator first implements a CFRP roof to a rotary table and tilts the table.

Then the cobot precisely applies the adhesive over the roof and then the operator with the aid of a handling

device installs it in the car. During this process, the safety of the human is taken as an absolute priority.

The operator is always in control of the application and can halt the process at any time. Moreover, the

cobot does not requires a protective fence, due to the intelligent sensory programming, which saves space

at assembly line.

According to the International Federation of Robotics6 estimation, by 2020 there were already

2.7 million industrial robots operating in factories around the world. Similarly, a study conducted by

Mordor Intelligence projects an increase of collaborative robots installations by 23% per year from

2020 to 2025 [Intelligence (2020)].

4https://www.universal-robots.com/applications/
5https://www.springerprofessional.de/en/manufacturing/production—production-technology/human-robot-cooperation-at-

audi/14221870
6https://ifr.org/ifr-press-releases/news/record-2.7-million-robots-work-in-factories-around-the-globe

6

1.2 Motivation and Objectives

A few studies have shown that most of the human operators’ cognitive interaction effort is related to

programming a task [Villani et al. (2018)]. Therefore, intuitive programming and easy-to-use interfaces

facilitate users’ interaction with the robot that even a non-expert operator is capable of programming it.

Thus, novel programming approaches, such as kinesthetic teaching or learning by demonstration, and

interaction modes - gestures or speech, and augmented reality - play an essential role in the human-robot

interaction [Villani et al. (2018), El Zaatari et al. (2019)]. Besides that, these approaches enable a situation

awareness needed by humans to comprehend the current system behavior and facilitate intervention in

unforeseen situations.

In [Fischer et al. (2016)] was concluded that the Programming by Demonstration method that maxi-

mizes the efficiency and performance of the robot control is a manual guidance approach. In particular,

walk-through programming allows the user to physically move the robots’ end-effector through the desired

positions, and the robot controller records these points for later interpolation. Thus, with this approach,

no explicit physical correspondence is needed, since the user demonstrates the skill with the robot’s own

body. Despite this subject being already advanced in the research area, the current collaborative robots

are still not autonomous enough to enable a complete human-robot interaction [Tsarouchi et al. (2016)].

The main challenging research topics are the perception of human intent, learning by demonstration and

observation, and optimization of the robots’ behavior to improve human comfort and trust [El Zaatari et al.

(2019)]. In this regard, Bortot et al. (2013) and Koppenborg et al. (2017) mentioned some robot’s features

that affect the efficiency and performance of Human-Robot Interaction (HRI), such as the design of the

robot and the speed of a robotic movement. These authors concluded that co-workers’ well-being and

confidence increase as long as they can predict the following motion behaviour. Similarly, high-speed

movements influence an operator’s visual attention, since it increases their anxiety and instability, leading

to lower performance or an elevated mental workload. Hence, the performance of human-like movements

by the robot plays a crucial part in an efficient, safe, and productive HRI. During the cooperation, it is

expected that the robot performs smooth, fluent, and collision-free movements in a human-like manner,

making these easily understandable and foreseeable by human operators [Garcia et al. (2019), Koppen-

borg et al. (2017)].

In order to meet the requirements of industries 4.0 and 5.0, particularly mass customisation, full

coexistence and interaction between robots and humans, both in human routine and on the factory floor,

this project presents an easy-to-use and intuitive robot programming method that enables the performance

7

of an understandable and predictable trajectory. More specifically, a planning method is presented that

allows a collaborative robot to execute a human-like trajectory through multiple waypoints. Firstly, the

waypoints can be set manually by physically manipulating the robot or set using a joystick embedded in

the user interface panel. This method takes inspiration from easy-to-use programming methods, such as

kinesthetic teaching and walk-through programming. Thus, a flexible, intuitive, and easy-to-use approach

is addressed to the planning method to allow ordinary operators to easily re-program a new task. Secondly,

the human-like trajectory takes inspiration from kinematic features observed in human arm movements,

particularly the minimum jerk model [Flash and Hogan (1985)], which guarantees the production of the

smoothest possible movement of the arm. Thus, human satisfaction, well-being, and productivity are

enhanced by the performance of human-like movements during the task.

The proposed method will be validated in the context of a quality inspection task with human-robot

interaction, handled by a collaborative robot UR10 and an operator. The main goal is to analyse the

human-likeness of the trajectory executed through the waypoints selected. Additionally, the advantages of

the usability of waypoints are discussed.

1.3 Structure of the Dissertation

This dissertation is divided into fifth parts and eight chapters, each one organized to give a coordinate

thought from problem presentation to its solution, implementation and validation.

In Part I is described the evolution of robotics and its future, specifically the main challenges that

from there up-come, which are the main motivation of this project. Afterwards, is presented the state of

art in, Part II, referred to: programming methods (Chapter 2) used in collaborative robots; and trajectory

generation (Chapter 3), focused in two points: Human-like characteristics and waypoints.

In Part III are analysed the materials and methods used along the development of this disserta-

tion. Specifically the UR10 robotic platform from Universal Robots in Chapter 4, and some fundamental

concepts of optimal control theory in Chapter 5.

In Part IV, composed by Chapter 6, the design of the proposed trajectory generation through way-

points method and its implementation in a collaborative robot are thoroughly described.

Part V, composed by Chapter 7, specifies a collaborative task used to validate the proposed tra-

jectory generation method. In this chapter is presented a human-robot collaboration scene, where the

main task is the quality inspection of boards from different eye angles. Lastly, Part VI, and Chapter 8,

discusses the main achievements and key conclusions of the dissertation, and also proposes future work.

8

Part II

State of the Art

9

Chapter 2

Programming Methods

2.1 Introduction

The rise of customers demands have led to higher product variant and shorter product life cycles. To

tackle these requirements, smart factories have adapted the production process by giving more flexibility,

autonomy and versatility to robots. For instance, to reprogram a robot for a new task, more easy-to-use and

user-friendly programming approaches are mandatory [Vysocky and Novak (2016),El Zaatari et al. (2019)].

There are two main approaches considered in robot programming: online programming and offline

programming. When using online programming, the robot is used during the teaching process; while using

offline programming, the robot is programmed remotely using a computer by simulating the complete

robot task in the 3D model. Additionally, the modelling functions allow graphical representation and give

immediate feedback to the user. However, each robot manufacturer has its own software, which is normally

very expensive and requires high programming effort. Also, the time required to program a robot task is

remarkably long [Villani et al. (2018)].

The online programming method provides a direct interaction between human and robot. Thus, the

teaching process is more natural since the operator has close perception and constantly observes the robot

action [Mansour and Waldemar (2004)]. Moreover, teaching a robot new behaviours with this approach

is time effective, easy and intuitive since visual perception and low-level computer programming skills are

needed [Fischer et al. (2016)].

In Fischer et al. (2016), an interesting study about different online programming methods was con-

ducted. The first was Manual Guidance, or Kinesthetic Teaching, where the robot’s joints are man-

ually moved into the goal posture. Secondly, the operator can manipulate each joint by itself, which is

achieved through a graphical user interface (GUI), normally called teach pendant. Lastly, the operator

10

demonstrates the movements remotely by teleoperation. The experiments were carried out in a UR5 robot

by Universal Robots where 51 participants explored three different methods in terms of efficiency, effec-

tiveness, accuracy, and usability. The results show that the kinesthetic teaching method is superior to

the other two methods in terms of success rate and speed. However, it is less accurate than the teach

pendant method. Although kinesthetic teaching is the fastest method of teaching a robot, the large

size of the robot arm and its temperature may make it less comfortable to manipulate. Regarding the

teach pendant method, the participants considered it easy to use and felt precise control in the robot’s

movements, which resulted in highly accurate results. On the other hand, this method was considered too

slow, tired, and exhaustive when programming an entire task.

In this regard, to give the best experience to the operator when programming a task, this project allows

the definition of waypoints using Kinesthetic Teaching and Teach Pendant approaches.

2.2 Kinesthetic Teaching

Kinesthetic Teaching is one of the easiest and intuitive teaching methods. As illustrated in Figure 2.1,

the operator sets the robot in a free movement mode and controls it manually through the desired path,

while the robot records the joints coordinates into controlled memory for further playback [(Gupta et al.,

2015; Carfì et al., 2019)]. Thus, the robot can be intuitively programmed, and no experience in program-

ming languages is required. However, the lack of knowledge of the workplace and robot kinematics may

lead to a low-quality teaching process [Carfì et al. (2019)]. Nevertheless, since the human physically ma-

nipulates the robot, the correspondence problem is avoided and the demonstrations are restricted to the

kinematics limits of the robot [Akgun et al. (2012)].

Figure 2.1: User manipulating a Baxter robot during the teaching process[Carfì et al. (2019)]

11

Obviously, in this scenario, safety issues related to physical human-robot interaction are important.

The operator is more exposed in the workplace due to the physical control of the robot movements, and,

therefore, appropriate strategies to improve operator safety are mandatory [Villani et al. (2018)]. For

instance, a typical approach to accommodate the forces applied by the operator is to mount a force/torque

sensor on the robot wrist.

According to Carfì et al. (2019), the best practices for using the kinesthetic teaching method require

following a sequence of operations. First, the robot must be notified when the teaching procedure starts.

Secondly, the user manipulates the robot through the desired path or even through a series of waypoints

and presses the proper button to be recorded. Then, if necessary, the end-effector should be manually

activated or deactivated. Lastly, the robots must be notified when the teaching process ends.

2.3 Teach Pendant programming

Many characteristics distinguish a collaborative robot from a traditional robot, for instance, its weight

and size, velocity, and incorporated safety sensors. However, the most differentiating factor is probably

the User Interface (UI). The UI’s of most collaborative robots bring many additional features as real-time

joints and sensor state control panel, and most importantly, allow modular symbolic programming. All

these features turn the robots into intuitive and user-friendly platforms [El Zaatari et al. (2019)]. A teach

pendant, Figure 4.1, is a hand-held control device with a UI incorporated for robot programming by remotely

moving the robotic arm to the desired positions for later playback. The teach pendant also allows constant

monitoring operations.

Figure 2.2: Robot teach pendants: a) the MOTOMAN NX100 teach pendant; b) the ABB IRC5 teach

pendant that incorporates a joystick; c) teach pendant from KUKA Robotics incorporating a 6D mouse; d)

wireless teach pendant from COMAU Robotics; e) FANUC robot tech pendant[Neto et al. (2010)]

An essential function of the teach pendant is to program a task by recording waypoints along the path,

12

when a specific button in the UI is pressed. Then, a trajectory that interpolates the defined waypoints is

generated by the methods presented in the section 3.2. Since the user controls the robot within the working

area, for safety reasons, the teach pendant has a palm-activated switch, which immediately stops the robot

when pressed. Furthermore, during this teaching process, the robot joints’ velocities are constrained.

The teaching pendant is simple, user-friendly and easy to program, which makes it accessible to non-

experienced operators. However, teaching trajectories to the robot may be a tedious and time-consuming

task [Fischer et al. (2016),Gupta et al. (2015),Villani et al. (2018)]. Additionally, this method may be

unattainable for small production batches due to the time-consuming and the need to stop the production

line while programming. Therefore, the demanded time consuming and the task complexity must be

considered when defining the programming method. Hence, some companies as Universal Robots have

the teach pendant UI available for offline programming and simulation, which allows to first program the

task with the teach pendant logic and then just run it in the robot.

13

Chapter 3

Trajectory Generation

This chapter presents the state of the art of trajectory generation in robotic manipulators with a par-

ticular interest in generating human-like trajectories. In section 3.1, an extensive overview of the trajectory

generation concept is presented. Section 3.2 describes the current trajectory generation methods through

waypoints in robotics. Subsequently, section 3.3 presents a full review concerning human-like arm mo-

tion generation in robotics. Section 3.4 analyses the current methods of human-like trajectory generation

through waypoints. Finally, this chapter ends with a discussion regarding the limitations of the current

methods and how the research in this project improves them.

3.1 Overview of Trajectory and Path

One requirement in the emerging industry is the easiness of reprogramming a robot for different tasks.

Different tasks require different motions, i.e., the capability to move from an initial configuration, qi, to

a final configuration, qf , in a collision-free path. Moreover, the trajectory must be smooth and carefully

planned. For instance, high operating speed may hinder the accuracy and repeatability of a robot’s motion.

This section highlights the path and trajectory planning algorithms that assume massive importance in

robotics.

To perform a trajectory from an initial to a final configuration, the robot geometry or configuration, q,

must be provided. This problem is typically solved in the configuration space, C-space, which is the space

of all possible robot configurations. The C-space is defined by the space that represents the obstacles

(C-obs) and the free C-space (Cfree), which is a set of robot configurations that do not intersect any

obstacles (Figure 3.1). In Lozano-Perez (1990) was concluded that C-space is a useful way to abstract

planning problems since a complex robot geometry can be represented with a single point in the C-space

14

as a vector of n joint positions.

Figure 3.1: C-space, C-free and C-obs for an articulated robot with two joints [Gasparetta et al. (2015)]

The problem of finding a collision-free path θ(s) : [0, 1] from an initial configuration, qi, to a final

configuration, qf , without concerning the dynamics, duration of motion or its constraints is named path

planning. Hence, a path θ(s) maps a parameter s ∈ [0, 1] to a point in the robot’s configuration

space,Θ (equation3.1), and as s increases to 1, the robot moves along the path [Lynch and Park (2017)].

θ(s) : [0, 1]→ Θ (3.1)

Besides this configuration, the path, θ(s) can be scaled with respect to time t, where a s value is assigned

to each time t ∈ [0, T], equation 3.2.

s(t) : [0, T]→ [0, 1] (3.2)

Thus, a time-scaled path connecting two points in the robot’s configuration space (C-space) is known as

a trajectory, equation 3.3.

θ(s(t)) : [0, T]→ [0, 1] (3.3)

As the Figure 3.2 illustrates, a trajectory planner receives as an input the path description, the path

constraints, and the kinematic and dynamics constraints. In contrast, the outputs are the end-effector or

joint trajectories in terms of a time sequence of the values attained by position, velocity and acceleration

[Lu et al. (2020)].

15

Figure 3.2: Brief framework of general trajectory planning [Lu et al. (2020)]

Cartesian space trajectories are directly related to task properties, allowing direct visualization of the

generated path. For a simple motion like a hand over an object, a trajectory planned in Cartesian space

can produce a straight-line movement, which is not easy to guarantee while planning in joint space.

The trajectory planning can be carried out in the operational space or in the joint space. In the former,

although being directly related to the properties of the task, which allows direct visualization of the gener-

ated path, this would easily lead to complex problems such as kinematic singularities and manipulative

redundancy. Conversely, the latter, after a kinematic inversion of the given geometric path, allows the

avoidance of such problems and involves less computational costs. However, the motion performed is not

easily foreseeable due to the non-linearities introduced by the computation of the forward kinematics to

obtain the position of the end-effector [Huang et al. (2018)].

A trajectory is classified as a point-to-point trajectory or multipoint trajectory. In the former,

the robot generates a motion between two points; the trajectory is commonly defined by a polynomial

function, where only the initial and final boundary conditions are considered. A complex motion is obtained

by joining several point-to-point trajectories. The latter considers multiple points where the robot must pass

through them. Not only the initial and final boundary conditions are considered, but also the specification

of intermediate points, called waypoints. These intermediate points may be then interpolated through

piecewise polynomials [Lynch and Park (2017)].

Furthermore, the trajectory generated must be executed in a coordinated movement by all robot joints.

To accomplish such coordination, all joints are normalized by a factor that influences their movement

speed. Thus, every joint starts and stops its motion simultaneously [Niku (2020)].

As already explained, path planning refers to the design of kinematic specifications of the robot’s

position and orientation, whereas trajectory planning also includes the design of the linear and angular

16

velocities. Thus, path planning is a subject of trajectory planning. Therefore, in the subsection 3.1.1, some

of the most popular path planning algorithms are briefly discussed. Then, the most significant approaches

for trajectory planning, considering no obstacles in the workspace, are thoroughly analyzed.

3.1.1 Path Planning Methods

Path planning, one of the most studied subjects in robotics, is known to be a hard problem to solve

due to its computational cost. The emergence of practical planners came around with the cell decomposi-

tion [Brooks and Lozano-Perez (1985)] and potential field [Khatib (1986)]. These planners demonstrated

high efficiency in some applications, although they are not so suitable for complex problems with several

dimensions [Karaman and Frazzoli (2011)]. Therefore, sampling-based algorithms capable of dealing with

complex problems, such as high dimensions, were proposed.

The main idea of the sampling-based planners is to avoid explicit construction of C-obs, searching

in the C-space by a sampling scheme [LaValle (2006)]. The most common sampling-based algorithms

are the Probabilistic Roadmap Method (PRM) (section 3.1.1) and Rapidly-exploring Random Trees (RRT)

(section 3.1.1). These methods have different methods for connecting the sampled points. The PRM is a

multiple-query method that first executes a learning phase, where the roadmap is built, and then a query

phase that connects the samples in order to define a free path. By contrast, the RRT method is a single-

query method, which do not build a road map and avoid the connection of thousands of configurations.

Both approaches are probabilistically complete, which means that they cover all possible configurations

as the number of iterations tends to infinity. In other words, if a solution exists, the planner finds it given

the sufficient runtime; however, it could be in an infinite runtime [Elbanhawi and Simic (2014)].

These approaches have been applied in many robotic applications, which most require an optimal

path. Therefore, more recently, aiming to reduce the costs of the planned path, the algorithms PRM

and RRT were modified by Karaman and Frazzoli (2011), whereby the methods PRM∗and RRT ∗ were

presented, which guarantee asymptotically optimal (the cost of the returned solution converges to the

optimum)[Karaman and Frazzoli (2011)].

As mentioned above, the most common path planning methods are based on sampling-based al-

gorithms, mainly PRM (section 3.1.1) and RRT (section 3.1.1). Hence, these two methods are clearly

explained in the following sections.

17

Probabilistic Roadmap Method (PRM)

The Probabilistic Roadmap Method (PRM), presented by Kavraki et al. (1996), consists of finding a

finite set of collision-free configurations in the C-space, from an initial qinit position to a final qgoal position,

which are applied to build a roadmap.

Probabilistic planners represent a class of methods with remarkable speed and efficiency to solve

complex problems, specifically ones involving high-dimensional C-space. The dimension of the C-space is

defined by the number of joints of the robot [Geraerts and Overmars (2004)]. Furthermore, it also handles

problems with many different constraints, such as kinematic and dynamic constraints [Hsu et al. (2002)]

and closed-loop kinematics [Han and Amato (2001)].

The PRM proceeds according to two phases: a learning phase and a query phase. In the learning

phase (Figure 3.3), a probabilistic roadmap is constructed by repeatedly generating random configurations

free of collisions in the C-space (Figure 3.3a). After every new sample, a local planner is used to connect

it to the nearest one (Figure 3.3b)[Short et al. (2016)].

(a) The learning phase: a random

sample, denoted by X is generated.

(b) A local planner is used to connect the new sample to

nearby roadmap vertices.

Figure 3.3: PRM Learning phase [Short et al. (2016)]

To validate a sampled robot configuration, a collision detection algorithm is executed and responds to

whether the objects collide or not. When the configuration is free of collisions, that sample is added to the

roadmap.

In the query phase, the given start and goal configuration, are implemented into the roadmap (Fig-

ure 3.4a). Thereafter, as represented in Figure 3.4b, a graph search algorithm is used to connect the start

and goal through the roadmap by the shortest path [Short et al. (2016)].

18

(a) The query phase: the start and

goal configurations are added to the roadmap.

(b) A graph search algorithm is used to connect the start

and goal through the roadmap.

Figure 3.4: PRM Query phase [Short et al. (2016)]

The PRM assumes a fully known environment, so with the evolution of robotics systems, the necessity

of expanding this method for dynamic environments has emerged. Moreover, the research presented

in Hsu and Sun (2004) stated that more than 90% of planning time is spent in the collision checking

processing. In Short et al. (2016) and Elbanhawi and Simic (2014) are it presented some variations that

aim to improve the traditional sampling-based methods. For instance, Bohlin and Kavraki (2000) presented

a Lazy PRM that minimizes collision checking.

Although the PRM approach is being costly because it connects thousands of random configurations by

a local planner’s action, this process may be suitable for multi-query planning and point-to-point motions

[LaValle and Kuffner Jr (2000)]. However, this method is not convenient for problems with differential

constraints. To address this drawback, LaValle (1998) developed the technique Exploring Random Tree

(RRT).

Rapidly-Exploring Random Tree (RRT)

The Rapidly-Exploring Random Tree approach incrementally constructs a search tree that randomly

improves the resolution towards unexplored space. The tree grows from the initial configuration to the goal

configuration (Figure 3.5). As one can see in Figure 3.5(a), the first step of this process is the generation

of a random configuration, qrand, by a uniform probability distribution in the C-free. Then, Figure 3.5(b),

the planner searches for the nearest node, qnear, which is attempted to connect to qrand by the local

planner. A new configuration qnew may be returned whether qrand is not reachable, which in these cases

is discarded, Figure 3.5(c). A collision checking is then performed to ensure the collision-free path between

qnear and qnew. Finally, if succeeded, qnew is added to the tree as shown in, as show the Figure 3.5(d).

19

The search ends when the qnew = qgoal , if the number of iterations or the specified time period is

exceeded [Elbanhawi and Simic (2014)].

Figure 3.5: Procedure in RRT algorithms [Elbanhawi and Simic (2014)]

The Figure 3.6 illustrates the result of RRT approach after 500 iterations in a environment totally free

and another with an obstacle to avoid. Furthermore, one can see that the tree uniformly covers the four

corners of the square. As the number of iterations increases, the planner reaches arbitrarily all points in

the space [LaValle (2006)].

Figure 3.6: RRT approach for searching the free space and avoiding obstacles (left), after 500 iterations.

The root of the trees is represented as a green circle. Image taken from [Elbanhawi and Simic (2014)]

Compared to PRM, the RRT based planners are faster for single query problems, since there is no

learning phase to build a roadmap, which is computationally challenging [LaValle (1998)]. Moreover, a

key advantage of RRT over PRM is the integration of motion parameters as system dynamics [Short et al.

(2016)].

During the past years, many variations of RRT based planners have been proposed to reduce the

solution cost or planning time [Elbanhawi and Simic (2014)]. Therefore, Kuffner and LaValle (2000)

20

presented the RRT-Connect method that combines the RRT with a simple greedy heuristic. This method

uses a second tree to perform a bidirectional search - one starting from qinit and another from qgoal - which

grows towards each other, ending when both are connected. Thus, providing significant improvements in

search efficiency. Moreover, similarly to RRT and PRM, RRT-connect is probabilistically complete, which

means that if there is a solution, the probability to finds it approaches one, as the number of iterations

increases [Kuffner and LaValle (2000)].

21

3.1.2 Optimal Trajectory Planning

The trajectory planner returns a trajectory defined by a time sequence of the joint values. The inter-

polation of joint configurations is generally determined by polynomials, splines, or trigonometric functions,

which meet the imposed kinematic constraints. Cubic splines are commonly used due to the assurance

of continuous velocity and acceleration and prevent large oscillations of the trajectory resulting from high-

order polynomials. However, it does not allow the continuity of the jerk (the derivative of the acceleration)

[Perumaal and Jawahar (2013)].

Almost every technique found in the scientific literature on the trajectory planning problem is based

on optimizing some objective function. For instance, the duration of a task or movement to increase

productivity [Gasparetto and Zanotto (2008)]; the energy consumption to reduce costs, where robots have

a high impact since 8% of the electrical energy in production processes is consumed by them [Liu et al.

(2018)]; and movements vibration to increase the life span of the robots and increase the naturalness

of movements and reduce operator’s psychological stress [Rojas et al. (2019)]. Thus, the most common

optimization approaches are the minimum-jerk, minimum-torque, minimum energy, and minimum-time

models.

In Bobrow et al. (1985) was presented a method that minimizes the execution time, maximizing the

velocity of the manipulator along a given path using a switching curve in the phase plane. However, it

generates discontinuities in the acceleration profile, leading to undesired effects such as decreasing the

accuracy and creating high-frequency vibrations that can damage the robot structure [Gasparetto and

Zanotto (2008)]. To overcome these issues, Constantinescu and Croft (2000) introduced limits on the

actuator jerks, with the drawback that the trajectory returned is not precisely time optimal. In Liu et al.

(2018) was presented a multi-objective optimization approach where the energy is measured by the sum

of the square joints’ accelerations, resulting in a reduction of 6.1% of energy consumption. Lately, Liu

introduced an approach to minimize the energy along with the execution time [Liu et al. (2020)].

In [Gasparetto and Zanotto (2008)] is presented an approach that minimizes the jerk and execution

time, taking into account kinematic constraints as velocity, acceleration, and jerk. However, there is a

trade-off between both terms in the objective function; the higher weight of the jerk term leads to slower

trajectories, and the higher weight of the time term leads to faster but not so smooth trajectories. Further-

more, it has been established that minimizing the jerk, defined as the time derivative of the acceleration,

reduces the manipulator wear and improves accuracy and speed [Kucuk (2017)]. Kyriakopoulos and

Saridis (1988) confirmed that the joint position error is decreased as the jerk decreases. It also reduces

the resonant frequencies of the robot, which could cause severe damage to the robot structure. Thus,

22

increasing the lifetime of the manipulator [Gasparetto and Zanotto (2008)]. An exciting characteristic of

the jerk minimization model introduced by Flash and Hogan (1985) is the description of voluntary human

arm movements. Thus, the minimum-jerk model has been used to obtain a natural and coordinated robot

motion. Bearee et al. (2005) compared the minimum-jerk approach with other jerk-laws (constant accel-

eration; limited jerk and harmonic jerk). Figure 3.7 compares the typical trajectories obtained from these

models, and the results show that the minimum-jerk model performs the smoothest movements. This

model is formulated as the square time integral of the jerk (the third derivative of the joint position), which

results in a fifth-order polynomial to describe the joints’ evolution in time (equation 3.4).

θ(t) = a0t+ a1t
2 + a2t

3 + a4t
4 + a5t

5 (3.4)

The coefficients (a0, ..., a5) are normally determined given the boundary conditions of the position,

velocity, and acceleration. Generally, the velocity and acceleration of the initial and final position are zero

since the movement is stationary in those points. After successive derivatives of joint evolution over time,

one can achieve the equations for velocity, acceleration, and jerk (Figure 3.7(b)).

Figure 3.7: Typical trajectories obtained from different movement laws: a) constant acceleration; b)

minimum-jerk c)limited jerk; d) harmonic jerk; [Aggogeri et al. (2020)]

23

3.2 Trajectory Generation through waypoints in Robotics

A trajectory that passes through waypoints is defined as multipoint trajectory, or trajectory with

path constraints. In these trajectories, Figure 3.8, not only the initial and final boundary conditions need to

be specified, but also the intermediate points where the robot must pass [Biagiotti and Melchiorri (2008)].

Figure 3.8: Trajectory with a set of waypoints [Lynch and Park (2017)]

The problem of computing a trajectory passing through N waypoints can be solved by a single poly-

nomial function. For instance, let us consider an example of a trajectory that passes through a single

waypoint. In addition to the constraint of the waypoint position, to perform a smooth trajectory, con-

straints in the position, velocity and acceleration at the initial and final point should be imposed. Thus,

there are a total of 7 constraints that can be satisfied with a sixth-order polynomial (equation 3.5).

θ(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5 + a6t
6 (3.5)

As one can conclude, although this approach is easily described and attend the constraints imposed

in the waypoint, the degree of the polynomial depends on the number of constraints, which turns out many

disadvantages: the computation costs, vibrations and numerical error increases as the polynomial order

increases [Biagiotti and Melchiorri (2008)].

An alternative to a single polynomial is the spline function, which is a function subdivided in multiple

segments of low order polynomials between the waypoints. In general, as one can observe in Figure 3.9, for

the interpolation ofn+1 given waypoints (θwp1, θwp2, ..., θwpn+1), n polynomials (x1(t), x2(t), ..., xn(t))

of degree p are considered.

24

Figure 3.9: Spline trajectory with multiple polynomial segments of degree p [Kucuk (2017)]

Among the polynomial splines, the cubic splines defined in equation 3.6 are the preferred since they

provide continuous velocity and acceleration with the lowest degree and the lowest possible jerk peak

[Kucuk (2017)].

x(t) = {x(t), t ∈ [tk, tk+1], k = 1, ..., n},

xk(t) = ak0 + ak1(t− tk) + ak2(t− tk)2 + ak3(t− tk)3
(3.6)

Note that the time when the robot must pass through the waypoints may or not be defined. If the time

is not specified, a common technique to calculate it is defined by the equation 3.7 [Biagiotti and Melchiorri

(2008)].

tk = tk−1 +
dk
d

with d =
n+1∑
k=1

dk (3.7)

There are some possible ways to define dk, according to the result that is expected. One can define

dk = 1
n−1

, to achieve highest speed; or dk = |θk+1 − θk|
1
2 , known as centripetal distribution, normally

used to reduce the accelerations [Biagiotti and Melchiorri (2008)].

In the research community, many approaches have adopted the cubic splines. Piazzi and Visioli (2000)

presented an interpolation of waypoints based on a sequence of cubic splines, despite the high computa-

tional demands. Then, in Craig (1986) two third-order polynomials were used to move the robot from an

initial to a final configuration passing through a via point. The cubic spline function presents continuous

velocity and acceleration; however, it is not possible to define the initial and final acceleration. Therefore,

the velocity and acceleration profile is characterised by discontinuities (Figure 3.10). Although commonly

used, according to Williams (2013), these methods must be avoided due to the infinite jerk spikes created

by the discontinuities of the acceleration, which results in many problems for the robot structure such as

25

unacceptable noise, wear, reduced life and bad dynamics [Barre et al. (2005)].

Figure 3.10: Profile of a cubic spline trajectory with zero velocity in the waypoints in t = 2 and t = 4.

In the figure, one can see the evolution of the joint angle position, velocity and acceleration, respectively

[Spong et al. (2006)]

With the aim to address the above-mentioned problems, different algorithms have been proposed. For

instance, Kucuk (2017) developed an approach that avoids the acceleration ripples of a cubic spline in

the first and last waypoints by interpolating the cubic splines with a seven-order polynomial. Thus, the

first three derivatives of joint positions at the boundary points can be constrained and zero jerk at the

beginning and endpoints were guaranteed. Comparing to 5th and 9th-degree polynomials, the 7th-degree

polynomial presents a lower linear and angular jerk.

In the scientific literature, another common approach is based on B-spline functions. B-spline function,

or basic-spline, is a efficient technique for the computation of splines. The reason of the name B-spline

is that a generic spline can be obtained through linear combination of a set of basis functions, the B-splines

(Bp
j (u))

s(u) =
m∑
j=0

pjB
p
j (u) umin ≤ u ≤ umax (3.8)

26

where the coefficient pj, j = 0, ...,m, called control points, define the curve of the spline. Lan

et al. (2020) used seven-order B-spline functions to construct join trajectory with a continuous position,

velocity, acceleration and jerk of each joint. The experiments were conducted in a collaborative robot AUBO-

I5, a robot with six degrees of freedom. Firstly, 8 waypoints from the operational space were obtained

arbitrarily and then converted into joint space by the inverse kinematics algorithm. Then, the trajectory

to be performed by the robot is determined by a seven-order B-spline. The authors also compared the

smoothness of seven-order B-spline with cubic spline and quintic B-spline. The results, in Figure 3.11,

show that the jerk curve of the cubic spline is not continuous, and the quintic B-spline present non-smooth

and jerk pikes at the beginning and end of the movements. Conversely, the seven-order B-spline ensures

smoothness, however, with more high values of jerk. Intending to limit the initial and final value of the

jerk at the boundaries of the trajectory with a quintic B-spline function, Huang et al. (2018) introduced two

virtual points at the second and the second-last position of the waypoints. The experiments proved the

smoothness and continuity of the jerk along the entire trajectory.

Figure 3.11: The comparison of seven-order B-spline with quintic B-spline and cubic spline method [Lan

et al. (2020)]

In addition to the above methods, another approach for the interpolation of a set of waypoints is based

in trigonometric splines, which are convenient to use for trajectories that represents a periodic motion

θ(t+T) = θ(t). The trigonometric spline performs smooth trajectories due to the continuous derivative

of sin and cos expressions, which thus guarantees steady velocity, acceleration, and jerk, even in the first

and last waypoint [Biagiotti and Melchiorri (2008)]. Simon et al. (1991) demonstrated that this approach

demands less computational cost and handles more constraints in the trajectory than algebraic splines.

27

However, practical applications with trigonometric splines have shown more pronounced oscillations with

higher values of acceleration and jerk than algebraic splines [Biagiotti and Melchiorri (2008)].

An interesting approach was presented by Sung et al. (2013), where the author used a waypoint

representation to specify conditions for the achievement of a kicking motion. The generated trajectories

follow the minimum-jerk model, which is represented by a fifth-order polynomial. This polynomial only

takes into account the position, velocity and acceleration in the initial and final points. Therefore, to deal

with the constraints imposed, the problem was solved as a nonlinear optimisation with equality constraints,

which are defined by the waypoints position and velocity. However, the time where the trajectory passes

through the waypoints must be given.

Kunz and Stilman (2011) used parabolic blends to generate a trajectory that follows a path with con-

straints on position, velocity and acceleration. The waypoints correspond to path constraints and are

connected through straight line segments. The velocity and acceleration at the edge of the trajectory and

at the waypoints are established as zero and arbitrary, respectively. The trajectory generation consists

in a linear phase followed by parabolic blend phase. During the linear phase, the velocity is constant,

acceleration is zero and the position is linear in time. During the parabolic blend phase, the acceleration

is constant, velocity is linear, and the position is quadratic, and therefore, parabolic in time. The results

show that the method follows the waypoints satisfying the velocity and acceleration constraints. However,

it can only approximate and not interpolate the waypoints. Additionally, the authors could not guarantee

that the resulting trajectory is optimal.

Figure 3.12: Trajectory that interpolates waypoints based on parabolic blends [Kunz and Stilman (2011)].

28

A similar approach to generate blending trajectories is used in the MoveIt library 1 to concatenate

multiple linear trajectories and plan a trajectory at once. As illustrated in Figure 3.13, the robot has to pass

by a sequence of waypoints, denominated as P0 to P4. Considering that direct trajectories between every

two waypoints are already defined, a blend_radius sphere is established for each waypoint, and thus,

the robot is able to perform a single trajectory without stopping at the waypoints [Pilz and KG (2019)].

Figure 3.13: Robot path without stopping at the pre-defined waypoints [Pilz and KG (2019)].

The blend_radius enables the transition between the trajectories, and its magnitude defines the

distance to the waypoint where the robot initialises the blend motion. Lastly, when the trajectory is outside

of the blend_radius sphere around the waypoint, the robot returns to the trajectory that it would have

taken without blending.

Figure 3.14: Trajectory profile of the robot position, velocity and acceleration [Pilz and KG (2019)].

The results, Figure 3.14, show that the trajectory transition at the waypoints, for instance, t∈ [4, 6],

is smooth and the robot can perform a single trajectory without stopping at the waypoints. However, the

trajectory only approximates to these positions and the acceleration has multiple discontinuities that cause

jerk pikes and, thus, may hinder the robot.
1https://ros-planning.github.io/moveit_tutorials/doc/pilz_industrial_motion_planner/pilz_industrial_motion_planner.html

29

3.3 Human-like Arm Motion Generation

3.3.1 Human-like Arm Motion Characteristics

In the industry 5.0 is expected to have humans and robots coexistence in the same environment and

work together to improve the human’s quality of life [Gulletta et al. (2020)]. Recognised by the scientific

community, a human-like motion has a substantial positive impact on human-robot collaboration. Such

a motion ensures an easily predictable and understandable movement from a human’s point of view

since humans are familiar with those movements and, therefore, they may adjust their behaviour to avoid

possible collisions or enhance the collaboration [Garcia et al. (2019)]. To perform movements with these

features, the knowledge about humans’ upper-limb motions must be passed to robotics.

In Figure 3.15 is illustrated a human arm, which has a total of seven revolute joints. The first three joints

(q1, q2, q3) represent the shoulder; the elbow is the fourth joint, q4, and the last three joints (q5, q6, q7)

symbolise a spherical wrist. However, only 6 degrees of freedom of the musculoskeletal system are

required to move in free space. This property is called redundancy, i.e., there are more DOFs than those

necessary to perform a movement, which allows the selection of an ideal posture for a particular task

[Burdet et al. (2013)].

Although there are infinitely joint configurations to reach and grasp an object in a workspace, humans

can perform a movement in a completely natural and effortless way [Burdet et al. (2013),Wolpert and

Ghahramani (2012)]. Nevertheless, the ability to perform complex actions without stereotyped effort is

still not well understood [Meirovitch et al. (2016),Tsuzuki and Ogihara (2018)]. Thus, understanding how

humans resolve such problems is a challenge addressed by many researchers. Based on behavioural

observations, Fitts (1954) stated that movements are generated in a stereotypical way, which enhanced

the human motion study and the development of computational approaches.

In order to analyse human-like movements, it is important to have a insight in the most relevant prin-

ciples and metrics of human-like motion in robotics. According to Gulletta et al. (2020) study, the vast

majority of studies regarding human-like movements consider the principles: biomimetics, uni-modal bell-

shaped hand velocity profile, quasi-straight hand path, repeatability, trajectory smoothness. The most

common principle is based on biomimetics, which consists on the extraction of bio-markers and of phys-

ical regularities from recorder human movements in order to then mimic arm trajectories. Although this

method is intuitive and preferred, it requires sophisticate and expensive motion capture systems. More-

over, qualitative assessment is relatively common in human-like metrics, specifically the notions of legibility

30

Figure 3.15: The kinematic model of human arm [Zanchettin et al. (2011)].

and predictability. For instance, a movement is categorized as predictable when the target of the robot

matches human expectations, and legible when a human observer can easily infer the correct goal [Gulletta

et al. (2020)].

The first experiments by Flash and Hogan (1985) demonstrated that upper-limb movements follow

the minimum jerk principle. Particularly, it was discovered that in point-to-point trajectories, or reaching

trajectories, the arm executes a movement in a straight line, however, slightly curved, where the velocity

match a bell-shaped profile. Therefore, the speed of the arm increases gradually and reaches its peak

around the middle of the movement. Furthermore, there is an inverse relationship between speed and

curvature in extemporaneous drawing movements, a property known as 2/3 power law [Todorov and

Jordan (1998)]. In Figure 3.16, one can see a comparison of the position, velocity, acceleration and jerk

between a human point-to-point movement and the prediction from the minimum-jerk model.

Some researchers stated that the human Central Nervous System (CNS) decomposes a movement into

several sub-movements [Dehghani and Bahrami (2020)]. For instance, Kang and Ikeuchi (1994) defined

temporal segmentation of grasping tasks sequences based on human motion. Specifically, the author

specified three phases in a task: pre-grasp, grasp and manipulation. For instance, in a pick-and-

place task where a human needs to pick an object from a position and place it into another: the pre-grasp

31

Figure 3.16: In solid line is represented the predicted movement from the mathematical model of a typical

point-to-point movement. In dashed line is illustrated the evolution of the real movement. The velocity,

acceleration and jerk are similarly illustrated in subfigures b), c) and d), respectively [An adaptation from

Flash and Hogan (1985)].

phase represents the planning of the trajectory and its execution so that the object is successfully grasped;

the following phase, grasp, is a transition from the pre-grasp tomanipulation phase, where the object

is picked and is ready to be moved. Next, the manipulation phase deals with the transportation of the

object from the previous position to the goal position and, in the end, the object is released (For more

details, see Martins de Sá (2018)).

Similarly, a common characteristic of human movements is that the hand preshape is affected by the

object size and orientation, and object distance only influences hand transportation. This is known as the

isochrony principle, which is a phenomenon of motor control, whereby the speed of the hand increases as

its trajectory distance increases [Yokoyama et al. (2018)]. According to Martins de Sá (2018) and Gulletta

et al. (2021), one can assume that every movement can be classified as pick, place or move, and is

composed by the phases above mentioned.

Another research of interest was handled by Rosenbaum et al. (1995) that describes human’s reach-

ing movements planning. The author claimed that it is possible to specify the movement duration en-

dogenously: the goal postures are selected considering the stored postures and are planned before the

movement execution. Afterwards, in Rosenbaum et al. (2001), the same author improved the previous

model to deal with grasping tasks. Analysing Figure 3.17, is interesting to note that the hand aperture

increases gradually and it is adjusted when the hand velocity is low; the arm takes less time for speed-

ing up than for slowing down; the angular velocity profiles of the elbow and shoulder are bell-shaped. In

case of presence of obstacles a back-and-forth movement is summed to the direct movement, and a

free-collision trajectory is achieved.

32

Figure 3.17: Simulated reach-and-grasp movement [Rosenbaum et al. (2001)].

3.3.2 Human-like Arm Motion Computational Models

According to Nguiadem et al. (2020), the human’s movements characteristics already described can

be achieved by data-based models and optimisation-based models. In the former, also called Learning by

Demonstration, consists of two stages: (i) empirical behavioural data is gathered to construct a database

for a specific motion; (ii) reproduction of similar motion using appropriate control models. However, the

efficiency of this approach relies on the learning phase [Emadi Andani and Bahrami (2012)]. For instance,

Park and Kim (2010) constructed an optimal database of human-like arm motion using an imitation learn-

ing algorithm to learn the arm motion primitives for real-time human-like trajectory planning. Specifically,

imitation learning constructs a motion database that contains human-likeness derived from human arm

motions, which is optimised by an Evolutionary Algorithm (EA) that selects minimal joint torques trajec-

tories. The human’s arm motion data are clustered according to the task-related conditions. The results

proved that the proposed method is capable of learning minimal torque arm trajectories and generating

human-like arm motion in real-time. However, the performance decreases as the size of the clusters

increases.

More recently, Garcia et al. (2019) conducted an approach to endow an anthropomorphic dual-robot

system, composed of two UR5 robots with 6 DOF’s from Universal Robots, with natural human-like move-

ments in a manipulation task. Specifically, the movements of a human operator solving a manipulation

task are captured by using magnetic trackers and gloves with sensors. The demonstrated trajectories are

converted into attractive potential fields over the C-space. Then, the motion planning problem is solved

using an RRT*-based algorithm with a stochastic gradient descent method to minimise the path-cost func-

tion. The human-likeness is achieved by the algorithm that navigates through the potential field and biases

the three growths towards the human-like movements.

Regarding the optimisation-basedmodels, a cost function representing a particular task is minimised to

33

get an optimal solution for that goal. This technique is commonly used to describe and reproduce voluntary

human movements, e.g. hand jerk, which is the third time-derivative of hand position [Flash and Hogan

(1985)], joint jerk [Piazzi and Visioli (2000)] or even a combination of several cost functions [Albrecht et al.

(2011)]. Flash and Hogan (1985) developed a computational model, known as minimum-jerk model, that

minimises the variation of the hand acceleration and aims to find the smoothest possible movement. The

results showed that the model predicts qualitative features and quantitative details observed experimentally

in human movements. Albrecht et al. (2011) used video sequences of humans performing everyday

manipulation tasks to extract the posture of the human in each frame. This data was then clustered

regarding the characteristics of human sub-movements, and a cost function that describes the human

arm movement best was obtained. To select the cost function out of the hand jerk [Flash and Hogan

(1985)], joint jerk[Piazzi and Visioli (2000)], and torque change[Uno et al. (1989)], a bi-level optimisation

algorithm analyses the clustered data and determines a weight that corresponds to the cost function that

most accurately represents the human movement. The optimal trajectories transferred to an iCub robot,

a 53 degrees of freedom humanoid robot, allowed the performance of human-like motions.

Zhao et al. (2014) studied methods to plan human-like reaching and grasping movements for robotic

arms. More specifically, the minimum-jerk model is used to obtain a reaching human-like end-effector

trajectory. Then, employing a Gradient Projection Method (GPM), the total potential energy is optimised,

and the human-like joint trajectory is generated. In grasping movements, besides the position, the orienta-

tion is also considered, however, its trajectory is unknown. Thus, the author proposed a novel human-like

based planner that combines the RRT method with the Gradient Projection Method (GPM-RRT). The RRT

planner defines a trajectory for the end-effector orientation and biases the construction of a tree with op-

timal configurations provided by the GPM. Specifically, the end-effector trajectory is obtained by the goal

biasing algorithm, and the human-like joint trajectory is generated by the GPM-RRT planner that minimises

the synthesis of total potential energy and wrist discomfort.

Moreover, Wang et al. (2019) investigated patterns in human reaching and reach-to-grasp movements

to solve the redundancy problem of an exoskeleton robot. The observations were conducted through a

six-camera optical motion tracking system that captured the participant’s arm motion. Then, statistical

analysis revealed that the swivel angle could be constrained to a mean value in resolving the redundancy

problem. Lastly, the minimum-jerk model integrated with the swivel angle generated well-accepted refer-

ence trajectories of all joints, with low error compared to the real movements.

34

3.4 Human-like Trajectory Generation through waypoints

The minimum-jerk model has demonstrated to be capable of generating a straight path between

two points with null boundary conditions. However, this is considered a limitation in human-like motion,

specifically, in presence of obstacles. Thus, some approaches have been proposed to tackle this limitation.

Specifically, Flash and Hogan (1985) introduced a waypoint to replicate curve human movements and to

deal with obstacle avoidance. To generate curve motion, it is assumed that the hand is required to pass

through a specified point between the initial and final points. The time to pass through this waypoint is not

known, however, is derived from an optimisation model. Such a problem is known as a dynamic optimisa-

tion problem with interior point equality constraints. To guarantee smoothness in the entire movement the

velocity and acceleration at the waypoint must be continuous. Then, Abdel-Malek et al. (2006) extended

this approach and introduced a methodology for predicting the path generated by humans in a natural

motion of the torso and upper extremity (Figure 3.18). First, the path of the human hand in Cartesian

space is determined through an extended minimum-jerk model. Then the correspondent joint values are

calculated using B-splines with an optimisation based algorithm that aims to minimise the joint displace-

ment, non-consistency, non-smoothness and non-continuity. Considering curved and obstacle-avoidance

movements, Figure 3.18b, an artificial intelligence algorithm provides a waypoint that meets the kinematic

constraints and, thus, the hand passes through that position and avoids collisions. The results show the

prediction of smooth and pleasant movements of the upper body for point-to-point and curve paths. Fur-

thermore, the hand moves slower at the beginning and the end than in the middle of the movement. This

is known as the bell-shape velocity profile, which is a property of a smooth and natural human arm motion

[Abdel-Malek et al. (2006)].

Besides, Sung et al. (2015) used the minimum-jerk with a waypoint approach to generate a humanoid

smooth transition between motions, Figure 3.19a. The purpose of the waypoint is to establish the limits

of some constraints as, for instance, the joint angle range, joint torque limits, and collision avoidance.

The joint trajectory in the transition motion is achieved by the minimum-jerk model. However, the initial,

final and waypoint time must be first calculated. More specifically, the initial and final transition times are

determined by an optimisation problem that minimises the maximum value of the sum of squared torques.

Then, the time of the waypoint is determined according to the calculation of the optimisation problem,

which defines the time when the value of the square torque is a maximum. Once the time and trajectory

are defined, if the constraints imposed are violated, the waypoint position is optimised using Semi Infinite

Programming (SIP) [Hettich et al. (2009)]. As the Figure 3.19b illustrates, the calculated position was

35

(a) Point-to-point straight trajectory.
(b) Curve motion generation for obstacle avoidance

through a waypoint.

Figure 3.18: Minimum-jerk model motion experiments with an animate human [Abdel-Malek et al. (2006)].

above the joint upper limit, therefore the waypoint position must be optimised so that the trajectory meets

the constraints. The experiments confirmed a smooth transition between walking and kicking motions of

a humanoid robot. Unfortunately, the optimisation of the waypoint position requires a large computation

time, which is a relevant limitation for motion planning problems in human environments.

(a) Smooth transition between two motions. (b) Optimisation of the waypoint position so the imposed

constraints are satisfied.

Figure 3.19: Smooth transition between two motions using the minimum-jerk model and its adjustment to

respect the constraints [Sung et al. (2015)]

The research community has also used waypoints to mimic complex movements, such as writing and

drawing. For instance, Wada and Kawato (1995) extracted waypoints from human movements and were

able to reproduce handwritten characters. However, the problem of extracting optimal waypoints from

a given trajectory is complex, since there is an infinite number of possible positions. Thus, the authors

proposed an approach called waypoint estimation algorithm to estimate the waypoints position and time.

36

This model is formulated to find the minimum number of waypoints necessary to reproduce the given

trajectory within an error bound. Given the waypoints, the model can generate a complete trajectory using

the FIRM model, which is based on an approximate minimum torque-change model. First, the torque is

calculated from the joint angle trajectory, satisfying the terminal conditions, using an Inverse Dynamics

Model (IDM). The terminal condition errors are founded and the torque is smoothed by a Forward Dynamics

Model (FDM). Then, a compensatory trajectory which cancels the terminal condition errors is determined.

Computing this algorithm cyclically, a smooth trajectory that passes through waypoints and attends the

robots dynamics is generated.

Figure 3.20 explains the process to estimate a minimal number of waypoints from a given trajectory.

Firstly, a direct trajectory from the starting point and the final point is created by using the minimum-jerk

model. Secondly, the point on the given trajectory with the maximum error value, lower than an established

threshold, between the given trajectory and the generated trajectory is selected as a waypoint candidate.

Then, a trajectory based on the minimum-jerk model from the start point to the end point passing through

a waypoint is generated and added to the previous trajectory. By repeating the previous steps a set of

waypoints is found.

Figure 3.20: Algorithm for extracting waypoints based on the minimisation of the square of the error

between the given trajectory and generated trajectory [Wada and Kawato (1995)].

After having the estimation of the position of the waypoints, the compensatory trajectory through

the waypoints is determined by the FIRM method, which is based on the minimum commanded torque

change model. However, when the arm dynamics are linearly approximated to equation 3.9, the trajectory

generation is equivalent to the minimum-jerk model.

τ j = Ij θ̈j (j = 1, ...,M) (3.9)

37

where τ j is the torque generated by the jth actuator. Ij and θ̈j are the link’s inertia and the jth joint’s

angle acceleration, respectively.

Illustrated in Figure 3.21, the compensatory trajectory generation through waypoints consists in 4

steps. The first, similarly to the waypoints extraction algorithm, is the generation of a direct trajectory

from the initial point to the end point using the minimum-jerk model. Then, from the waypoints previously

extracted, is selected the one which minimises a smooth criteria, and a trajectory passing through the

waypoint is generated also using the minimum-jerk model and added to the previous generated trajectory.

Specifically, in the third step, is generated a trajectory, which starts from the previous waypoint V 4 and

ends in final point V f passing through the selected waypoint V 5, and it is added to the trajectory obtained

in step 2. The same process is continuously repeated and a trajectory that interpolates the minimum

number of waypoints that guarantees smoothness is obtained. The results show that the experiments

were successfully reproduced to estimate the minimum number of waypoints necessary for the task,

Figure 3.22.

Figure 3.21: Algorithm for producing the trajectory through waypoints by the FIRM model [Wada and

Kawato (1995)].

Since in Wada and Kawato (1995) method, when extracting waypoints both position and time are

obtained, the generation of slow and fast movements for the same motion is not possible. Thus, in Wada

and Kawato (2004), the method FIRM was extended to do not need prior temporal information about

via-points. More specifically, a cost function is optimised on the condition that waypoint time average of

the integration of the square of the smoothness of the motor command between each via-point is equal.

Therefore, the time optimisation model decides the waypoint time that minimises the commanded torque

change, equation 3.10.

38

Figure 3.22: Experiment of handwritten task. On the left show the trajectory for ’abc’ and on the right for

’def’ letters [Wada and Kawato (1995)].

Cvia
i =

1

ti − ti−1

∫ ti

ti−1

K∑
k=1

(
dτ ki
dt

)2

dt (3.10)

where i is the indices of the waypoints (i = 1, 2, ..., n); ti is the time in the waypoint i; τ k is the

commanded torque of joint k and K is the number of joints.

Afterwards, Saito et al. (2006) evaluated the same method in human arm reaching movements with

waypoints. More specifically, the author investigated whether the human’s Central Nervous System (CNS)

generates a complex trajectory in order to equalise the average duration of the commanded torque changes

between each waypoint interval. Therefore, to validate this concept, 30-40 trials composed of two reaching

tasks with one waypoint and one reaching task with two waypoints, Figure 3.23, were evaluated.

Figure 3.23: Human arm reaching movement with waypoints. In Task 1 and Task 2 was performed a

reaching movement with one waypoint and in Task 3 with 2 waypoints [Saito et al. (2006)].

To calculate the value waypoint time average,Cvia
i , equation 3.10, the waypoints time of the measured

trajectories are estimated by the algorithm developed in Wada and Kawato (1995), and the waypoint

39

locations are estimated by the locations of the local minimum of tangential velocity [Saito et al. (2006)].

Furthermore, the trajectories which include some correction movements, a local minimum velocity lower

than 5% of maximum velocity and did not have a local minimum in the velocity profile were rejected. The

results of the waypoints estimation are shown in Figure 3.24.

Figure 3.24: Waypoints estimated by Wada & Kawato’s method and local minimum of tangential velocity

[Saito et al. (2006)].

3.5 Discussion

A systematic literature review on the most used techniques of human-like arm motion generation and

trajectory generation through waypoints has been presented.

Currently, the most used techniques to generate trajectories through waypoints are based on polyno-

mials, splines and blends functions. The polynomial method is easily described to attend the waypoints

constraints, however, more constraints demands higher polynomial degree, which results in high compu-

tation costs, vibrations and numerical error [Biagiotti and Melchiorri (2008)]. An effective alternative is the

usage of splines. Cubic splines are commonly used due to the assurance of continuous velocity and ac-

celeration and prevent large oscillations of the polynomial trajectories, but also contains jerk (derivative of

the acceleration) spikes. Many researchers consider that such methods that do not avoid the jerk spikes,

created by the discontinuities of the acceleration, should be avoided to prevent severe problems of the

robot structure such as unacceptable noise, wear and bad dynamics [Williams (2013)].

To address the discontinuities in the acceleration were presented B-splines methods, which are capable

to produce continuity in the position, velocity, acceleration and jerk. Despite the smoothness, it presents

high values of jerk. Another approach commonly used in industry is based on blends. For instance, the

MoveIt library provides the possibility to generate trajectories through waypoints using the blend approach.

However, this method is not accurate since it only approximates and not interpolates the waypoints.

40

A very interesting approach considering waypoints was presented by Flash and Hogan (1985). The

authors studied the coordination of voluntary arm movements and formulated a mathematical model ca-

pable of predicting qualitative and quantitative features observed in human movements. To reproduce

human curve movements and to avoid obstacles, the authors used the minimum-jerk model with con-

straints in position, a waypoint. Sung et al. (2013) used the same approach to perform a kicking motion

in a humanoid robot, specifying position and velocity constraints by using waypoints.

The most used techniques to generate trajectories are focused on the optimization of some criteria,

especially to improve productivity, efficiency and reduce costs. For instance, the minimization of the

duration of a task [Gasparetto and Zanotto (2008)], and the minimization of the energy consumption [Liu

et al. (2018)]. However, due to the emergence of industry 4.0 and 5.0, and consequent integration of

collaborative robots in workplace shared with human operators, the robotics research community has

changed the attention to methods capable of executing movements similar to those executed by humans,

which have positive effect in humans productivity and well-being [Gulletta et al. (2020), Bortot et al. (2013),

Koppenborg et al. (2017)].

From this literature review we conclude that there are no methods capable of completely attending the

needs of industry 4.0, and even less the upcoming industry 5.0. Currently, the methods in the industry are

focused on production and company goals, and take no attention to the humans needs, such as removing

them from tired, tedious and repetitive tasks, making them psychology and physically exhaustive, which

contributes for medium term diseases. Thus, to meet human needs is fundamental a coexistence and

interaction between humans and robots, accompanied by predictable, fluent and understandable robot

movements. This increases the safety and humans’ trust, which results in better and fluent human-robot

interaction, and therefore, production speed and quality increases.

In addition to this, Industry 4.0 also requires more autonomy and flexibility from the industry due to

the rise of mass customisation and the need to meet the consumer demands [Kurt (2019), El Zaatari et al.

(2019)]. Therefore, easy programming methods with intuitive and easy-to-use UI are absolutely important

for the upcoming years, so that all companies can maintain the competitive edge.

The existing methods that bring flexibility and allow companies to easily reprogram robots are not

capable of performing human-like movements. Thus, such methods do not accomplish the best possible

outcome.

For all the above mentioned reasons, a combination of easy programming methods, such as pro-

gramming through waypoints, with human-like movements is, from our perspective, a great solution that

attends, at the same time, humans and industry needs.

41

Part III

Materials and Methods

42

Chapter 4

Collaborative Robot: UR10e

This chapter analyses the UR10 robotics platform from Universal Robots and Uniggriper Co/Light

Regular, which are used in the implementation and validation of this project. First, a brief introduction to

the description of the robot and gripper is made. Then, some theoretical concepts related to forward and

inverse kinematics will be addressed. Finally, the kinetic model of the robot is thoroughly explored.

4.1 Introduction

The UR10 robot is one of the 4 available models of collaborative robots developed by Universal Robots,

which started the introduction of cobots in 2009 with the aim to automate and simplify repetitive and

monotonous processes in a more flexible, safe and easy-to-use way. The other models are UR3, UR5, and

UR16, where the number indicates the maximum payload in kg that the robot supports.

Universal Robots’ robots have a control box and a teach pendant with embedded software (Polyscope),

which is a user-friendly graphical user interface that makes programming new tasks in an intuitive and easy

to use management that makes them accessible for every operator, including those with less experience.

According to Universal Robots 1, their robots are suitable for many applications - assembly, dispens-

ing, finishing, machine tending, welding and quality inspection - in a wide variety of industries such as

automotive, electronics, food and beverage, medical and cosmetics.

1https://www.universal-robots.com/pt/aplicaciones/

43

Figure 4.1: Collaborative robots models from Universal Robots: UR3, UR5, UR16 and UR10 respectively.

4.2 Specification

The UR10 robot is a 6-DOF (Degrees of Freedom) serial robotic arm with six active rotational joints,

each with a 640º rotation range and a 120º/s - 180º/s speed limit. It can lift up a maximum payload of

10 kg, however, it decreases as long as the distance between the centre of the tool output flange and the

centre of gravity increases. Furthermore, it reaches an area of 1300mm from the base joint, however, the

positions in the cylindrical space directly above and under the base should be avoided due to singularities.

The robot can be controlled manually or autonomously. When controlled manually, the user can

move each joint separately or move all joints synchronously by setting a goal position for the end-effector

of the arm. The robot also has a Freedrive mode on the user interface Polyscope where it is the

user who controls physically the robot. In the automatic mode, the robot can only perform pre-defined

tasks, therefore theMove Tab and Freedrive Mode are unavailable in the teach pendant user interface.

Independent of the operation mode, in case of collision an emergency stop is automatically activated due

to force sensors embedded in all joints of the robot. A more detailed specification about the robot features

and control is presented in the table 4.1

44

Table 4.1: UR10 robot technical details

Specifications

Maximum Payload 10 kg

Reach 1300 mm

Degrees of Freedom 6

Footprint 190 mm

Weight 33.5 kg

Operate temperature 0-50°C

Performance

Safety 17 safety functions

Certifications EN ISO 13849-1, PLd Category 3, and EN ISO 10218-1

Force sensing - Range 100 N

Force sensing - Precision 5.0 N

Force sensing - Accuracy 5.5 N

TCP speed 1 m/s

Repeatability 0.05mm

Joint Range 360º

Control box

Weight 12 kg

Operating Temperature 0-50C

Digital input ports 16

Digital output ports 16

Analog input ports 2

Analog output ports 2

I/O power supply 24V 2A

Communication 500 Hz Control frequency; Modbus TCP;

PROFINET; Ethernet/IP

45

4.2.1 Singularities

Although the robot has a workspace of 1300 mm, there are some areas that are not advisable to reach,

and when that happens it is called that a singularity occurred. According to ISO-120218, a singularity is

defined as a ” condition caused by the collinear alignment of two or more robot axes resulting

in unpredictable robot motion and velocities” [FarzanehKaloorazi and Bonev (2018)]. Thus, the

robot has safety controllers that automatically check for singularities to prevent any damage. There are

three types of singularities: wrist, shoulder, and elbow singularities, Figure 4.2.

Wrist singularities: Happen when the axes of joints 4 and 6 are parallel, which corresponds to a spin

of 180 degrees instantaneously. This can be seen in the Universal Robots when θ5 = 0, θ5 = ±180 or

θ5 = ±360;

Elbow singularities: Happen when the exes of joints 2,3 and 4 are co-planar, inhibiting the elbow joint

to move. This can be seen in the Universal Robots when θ3 = 0;

Shoulder singularities: Happen when the intersection point of joints 5 and 6 aligns with the plane

passing through the axes of joints 1 and 2, causing joints 1 and 4 to spin 180 degrees instantaneously

θ3 = 0;

(a) Shoulder singularity (b) Wrist singularity (c) Elbow singularity

Figure 4.2: Shoulder singularity, wrist singularity and elbow singularity of a Robot from Universal Robot

[Adapted from FarzanehKaloorazi and Bonev (2018)].

46

4.3 Kinematic Model

The space in which the end-effector position and orientation is represented is of great relevance. In

this project, the user defines waypoints where the robot must pass during the movement, and they can

be provided in the joint space or in the operational space. The process to obtain the position of the joints

of the manipulator through the position of the end-effector is called Inverse Kinematics. On the contrary,

the process to obtain the position of the end-effector through the value of the joints is called Forward

Kinematics.

Figure 4.3: Relation between the forward kinematics and inverse kinematics.

The kinematic analysis is most commonly achieved through the Denavit-Hartenberg convention2,

where the robot is described kinematically by defining four parameters for each link. In essence, the

relation between two consecutive coordinate axis linki and linki+1 can be obtained through the applica-

tion of the four following transformations [Jazar (2008)]:

• the translation along the xi axis of a distance - ai−1;

• the rotation around the xi axis of an angle - αi−1;

• the translation along the zi axis of a distance - di;

• the rotation around the zi axis of an angle θi.

2A convention introduced by Jacques Denavit and Richard Hartenberg in 1955.

47

The transformations between the reference frames along the robot’s links results in the robot’s kine-

matic equations. However, before determining kinematics, it is indispensable to first analyse the robotic

manipulator’s mechanical structure. A manipulator can be schematically represented from a mechanical

viewpoint as a kinematic chain of rigid bodies (links) connected by means of rotational or prismatic joints

[Jazar (2008)].

The UR10e has 6 rotational joints that can rotate ±360°and ten displacements, refer to Figure 4.5

and table 4.2. This mechanical analysis was conducted using the documentation available in the Universal

Robots’ website 3. Across their documentation, joint 1 is referred as ”base”, joint 2 ”shoulder”, joint 3

”elbow”, joint 4 ”wrist 1”, joint 5 ”wrist 2”, and joint 6 ”wrist 3”.

Figure 4.4: Joints designation of robots from Universal Robot [Universal Robots (2015)].

3https://www.universal-robots.com/pt/

48

Figure 4.5: UR10e mechanical structure

Table 4.2: UR10e link distances and joint limits

Joints Value (degrees) d Value (meters) a Value (meters)

θ1 [−360; 360] d1 0.181 - -

θ2 [−360; 360] d2 0.088 - -

θ3 [−360; 360] d3 0.020 a3 0.613

θ4 [−360; 360] d4 0.001 a4 0.571

θ5 [−360; 360] d5 0.060 a5 0.060

θ6 [−360; 360] d6 0.117 a6 0.067

4.3.1 Forward Kinematics

To derive the forward kinematics, one must first position the manipulator in its home pose, and sec-

ondly attribute a reference frame {xi, yi, zi} for every joint. In this analyse, the manipulator’s home pose

is defined as all joint values equal to zero, which determine an upright pose.

The reference frames {0} to {6} are represented in Figure 4.6 (where the x, y and z components are

represented with red, green, and blue arrows respectively), as well as the robot’s home pose. To attribute

these reference frames, three basic rules were followed: a) the right-hand rule; b) the location of the frame

49

is the centre of the corresponding joint, e.g., reference frame {2} is located at the centre of joint 2; and c)

the z-axis must indicate the rotational axis of the joint [Ben-Ari et al. (2018)].

Reference frame {0} is the origin of the robot, and is located in the centre of its base. From henceforth,

reference frames [{1}, {2}, {3}, {4}, {5}, {6}] all follow the above stated rules. However, due to the order of

multiplication of the transformations in the modified Denavit-Hartenberg convention, it was necessary to

add two auxiliary reference frames: {4’}, and {5’} located at the centre of joint 5.

Figure 4.6: Reference frames along the UR10e structure.

After attributing the reference frames, it is possible to compute the transformations that occur between

them, using the Denavit-Hartenberg parameters mentioned previously, table 4.3.

50

Table 4.3: UR10e Denavit-Hartenberg transformations between reference frames.

i−1Ti αi−1 ai−1 di θi

{0} → {1} 0 0 d1 θ1

{1} → {2} −π/2 0 d2 θ2 − π/2

{2} → {3} 0 a2 d3 θ3

{3} → {4} 0 a3 d4 θ4

{4} → {4′} 0 a4 d5 π/2

{4′} → {5} π/2 0 0 θ5

{5} → {5′} −π/2 0 0 −π/2

{5′} → {6} 0 a5 d6 θ6

Using a set of multiplications of Denavit-Hartenberg matrices and a table of Denavit-Hartenberg pa-

rameters, the final result is a transformation matrix of a final system of coordinates in relation to the initial

one [Jazar (2008)].

The modified Denavit-Hartenberg homogeneous transformation i−1Ti, from frame i−1 to i is defined

in equations 4.1, 4.2, and 4.3.

i−1Ti = Rotx(αi−1) ∗ Transx(ai−1) ∗ Transz(di) ∗Rotz(θi) (4.1)

i−1Ti =

1 0 0 0

0 cos(αi) − sin(αi) 0

0 sin(αi) cos(αi) 0

0 0 0 1

1 0 0 ai−1

0 1 0 0

0 0 1 0

0 0 0 1

cos(θi) − sin(θi) 0 0

sin(θi) cos(θi) 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 di

0 0 0 1

(4.2)

i−1Ti =

cos(θi) − sin(θi) 0 αi−1

sin(θi) cos(αi−1) cos(θi) cos(αi−1) − sin(αi−1) − sin(αi−1)di

sin(θi) sin(αi−1) cos(θi) sin(αi−1) cos(αi−1) cos(αi−1)di

0 0 0 1

 (4.3)

51

This matrix is composed by the rotation and translation matrix that generate the required motion from

frame i− 1 to frame i:

i−1Ti =

i−1Ri(3x3)

∣∣∣∣∣ i−1P i(3x1)

0

∣∣∣∣∣ 1

 (4.4)

In equation 4.4, i−1Pi(3x1) represents the translation from reference frame i−1 to reference frame i,

and matrix i−1Ri(3x3) represents the rotation matrix in relation to the same frame. For instance, knowing

the matrix 0T6, which is the transformation matrix of the end-effector in relation to the base, it is possible to

determine the end-effector orientation: Roll(ϕe), Pitch (ψe) and Yaw (θe); through the sub-matrix 0Rot6,

and the end-effector position (xe, ye, ze) through the matrix 0P6.

Considering the first line of the table 4.3, the transformation between the origin frame and the first

joint is defined by the matrix 4.5.

0T1 =

cos(θ1) −sin(θ1) 0 0

sin(θ1) cos(θ1) 0 0

0 0 1 d1

0 0 0 1

 (4.5)

Having the homogeneous transformation matrices defined along the robotic arm, the transformation

from the robot base to robot end-effector is given by:

0T6 =
0T1

1T2
2T3

3T4
4T4′

4′T5
5T5′

5′T6 (4.6)

Using the same process as in equation 4.6, it is also possible to determine the transformation matrices

of the other joints in relation to the base (equations 4.7 - 4.12).

0TBase =
0T1 (4.7)

0TShoulder =
0T2 (4.8)

0TElbow = 0T3 (4.9)

0TWrist1 =
0T4 (4.10)

0TWrist2 =
0T5 (4.11)

0TWrist3 =
0T6 (4.12)

52

4.3.2 Vacuum End-effector

An important aspect to be mentioned is the end-effector that is used to validate the proposed method.

The considered end-effector is the UniGripper Co/Light Regular 4, which is a collaborative vacuum gripper.

The gripper has a height of 101 mm, which means the robot’s tip is dislocated an additional 101 mm

(Figure 4.7a). Kinematically it is necessary to add a new reference frame, Figure 4.7b, and alter the

Denavit-Hartenberg parameters (4.3) by adding a new line that corresponds to a translation on the z-axis,

table 4.4.

(a) Mechanical structure (b) Reference frames

Figure 4.7: Robotic system mechanical structure and reference frames (UR10e with the UniGripper)

Table 4.4: Robotic system Denavit-Hartenberg parameters (d7 = 101 mm).

i−1Ti αi−1 ai−1 di θi

{6} → {7} 0 0 d7 0

In terms of forward kinematics this means that there will be an additional transformation, 6T7:

6T7 =

1 0 0 0

0 1 0 0

0 0 1 d7

0 0 0 1

 (4.13)

4https://www.unigripper.com/en/colight.html

53

Additionally, it is necessary to compute a new complete transformation matrix 0T7, that is given by:

0T7 =
0T6 × 6T7 (4.14)

4.3.3 Inverse Kinematics

In this section, a brief and concise inverse kinematics of the UR10 robot is introduced. The literature

found on the UR robot’s kinematics was not very clear and detailed [Kebria et al. (2017); Andersen (2018);

Hawkins (2013); Sun et al. (2017)]. This lack of research was the motivation to present a paper with an

extension and more detailed approach of Universal Robots kinematics, which can be found in the Appendix

A.

There are two mains strategies for solving the inverse kinematics of a robotic manipulator: closed-

form solutions, which use an analytical approach and can be based on geometrical properties; and

numerical solutions, which use iterative techniques to determine the joint angles, however, it demands

more computational time. The strategy chosen for this project is the closed-form approach.

As demonstrated in Appendix A and illustrated in Figure 4.8, the Inverse Kinematics of the UR10 robot

present 8 possible joint configurations for a given robot end-effector pose.

Figure 4.8: 8 possible joint configurations for a desired end-effector pose [Oosterwyck (2018)].

Hence, the space in which the waypoints are defined is essential to accomplish the task and demands

the most attention from the user when selecting them. Specifically, if the user defines a waypoint in the

cartesian space, so there would exist 8 possibilities of joints configurations to achieve that pose (refer to

figure 4.8). In case the robot joints configuration is not important for the task, and only the end-effector

pose, the planner could automatically select the best possibility to accomplish that pose. However, if the

54

joints configuration defined by the user is mandatory, the user can not define the waypoints in the cartesian

space and must define in the joint space.

Therefore, in this dissertation the waypoints are obtained only in the joints space, and thus inverse

kinematics are avoided. In this way, we can guarantee that the configurations selected by the operator are

successfully accomplished.

55

Chapter 5

Optimal Control

In this chapter, some concepts of variational calculus and optimal control theory [Bryson and Ho

(1975); Pontryagin (1986)] are applied to find the trajectory that minimizes the criterion function, subject

to dynamic constraints imposed by the system differential equations and algebraic constraints. These

concepts are fundamental to understand chapter 6. Firstly, the emergence of optimal control from varia-

tions in the calculation is briefly introduced. Then, the simplest optimal control problem with no path or

end-points constraints is described by introducing the Hamiltonian function. The last section analyses op-

timal control problems with equality state variable constraints in unspecified time t1 ∈ [t0, tf]. A deeper

analysis of constrained optimal control is found in books Bryson and Ho (1975) and Pontryagin (1986).

5.1 Introduction to Optimal Control

The optimal control theory has emerged from a generalization of the calculus of variations over more

than three centuries [Liberzon (2011)]. The calculus of variations was introduced by Johann Bernoulli

who challenged other mathematicians to solve the brachistochrone problem: ”if a particle moves,

under the influence of gravity, which path between two fixed points enables the trip of shortest

time?” [Chachuat (2016)].

Considering a function L = L(t, x, ẋ), where t is an independent coordinate, x an dependent

coordinate and ẋ its derivative with respect to the independent coordinate. Euler formulated the problem by

determining the curve x = x(t)where a ≤ t ≤ z, whichmake the definite integral
∫ z

a
L(t, x(t), ẋ(t))dt

extremal. Euler’s solution included the division of the interval between x = a and x = z into multiple

small subintervals (Figure 5.1), each one with a width of ∆x; and the replacement of the given integral

by a sum
∑
L(t, x, ẋ)∆x. Euler demonstrated that by doing a variation in an arbitrary point (point n

56

Figure 5.1: Original Euler’s representation of calculus of variations [Hanc (2017)].

converted in point v), there are obvious changes in that point, but also in neighboring segments (segment

mn and no converted in mv and vo, respectively). All other points remain unchanged. This means that

only two terms in the integral sum
∑
L(t, x, ẋ)∆x are affected.

At this point, Euler’s solution was mainly geometric, however, Lagrange proposed a mathematical

approach that extends Euler’s method. The Lagrange method is based on the condition that, for the sum

to be stationary, there is a correspondent zero value of its derivative in that point, equation 5.1. The result

is called the Euler-Lagrange equation, and it expresses the first necessary condition for the existence

of an extremal value in the integral.

0 =
∂L

∂x
− d

dt

(
∂L

∂ẋ

)
a ≤ t ≤ z (5.1)

After the development of more approaches as the second-order necessary condition of optimality

by Legendre [Chachuat (2016)] and the reformulation of the Hamiltonian’s ”principle of least action” in

mechanics as a variational principle, extended later by Jacobi leading to the Hamilton-Jacobi equations

[LaValle (2006)], it followed the consideration of restrictions of admissible functions ẋ(.) to a set of equa-

tions

g(t, x(t), ẋ(t)) = 0 t ∈ [a, z], (5.2)

Which are recognized as a set of differential equations. The resulting problem is known as the Lagrange

problem, and is solved using Lagrange multipliers. This enhanced the optimal control problem where

the control variable u(t) emerges in place of ẋ(t) in the calculus of variations problems. Then, a decisive

breakthrough of the extension of the calculus of variations was achieved by Lev. Pontryagin with the

formulation of the Pontryagin Maximum Principle [Pontryagin (1986)]. Since then, optimal control has

been applied in many scientific fields, ranging from mathematics and engineering to biomedical sciences

[Chachuat (2016)].

57

5.1.1 Lagrange multiplier

The Lagrange multiplier approach aims to find the local extremum (minimum or maximum) of a

function subject to constraints, by transforming the constrained problem into an unconstrained problem.

The main concept of this idea is that in any extremum point of the function evaluated, the function’s

gradient can be defined as a linear combination of the gradients of the constraints, with the Lagrange

multipliers λ acting as coefficients (Figure 5.2).

∇f(x∗) + λT∇h(x∗) = 0 (5.3)

Considering that the objective function and the constraint function are continuously differentiable, and

x∗ is a local minimum, the objective function’s gradient is orthogonal to a tangent line in the local minimum

point x∗.

Figure 5.2: Illustration of the necessary conditions to minimise the objective function f(x), subject to

equality constraints h(x) = 0 [Chachuat (2016)].

Summarising, optimal control problems subject to equality or inequality constraints are dealt with

by introducing Lagrange multipliers, which allow to adjoin the imposed constraints to the objective func-

tion and, thus, transform a constrained optimization problem into an unconstrained problem [Chachuat

(2016)]. Additionally, Lagrange multipliers, λ, may be interpreted as the sensitivity of the objective func-

tion with respect to the constraints imposed and, thus, they can be seen as the rate that the optimal cost

function would change, if the constraints were ”perturbed” [Chachuat (2016)].

58

5.2 Optimal Control Problems

In optimal control problems, the evolution of state variables x = (x1, ..., xn) is dictated by control

variables u = (u1, ..., un), by means of a set of differential equations, equation 5.4.

To formulate an Optimal Control problem, it is necessary to define: the admissible control; describe

mathematically the system to be controlled; specify a performance criterion, and the physical constraints

that should be satisfied. Thus, the problem of optimal control can be stated as: ”Determine the control

signals that will cause a system to satisfy the physical constraints and, at the same time,

minimize (or maximize) some performance criterion. On the contrary, the calculus of variation

aims to find the optimal path for a state variable [Liberzon (2011)]. Clearly, once the optimal control path,

u∗(t) is found, the optimal state path, x∗, that corresponds to it, is also found.

The most important constraints in an optimal control problem are the ordinary differential equations

(ODE) in the state-space form, which link the state and control variables. The differential equations take

the form,

ẋ(t) = f(x(t),u(t), t) (5.4)

Where t ∈ R stands for the independent variable called time; the vector u(t) represents the control

variables at time instant t ; the vector x(t) represents the state variables, which characterize the behavior

of the system at any time instant t.

The performance criterion (also called cost function or performance index) must be specified for

evaluating the system’s performance quantitatively. For instance, considering that we want to transfer a

system from point A to point B in the minimum time possible, it clearly indicates that the total time is

the performance measure to be minimized. The performance of a system can be defined in the so-called

Lagrange,Mayer or Bolza form. However, interestingly, all formulations are theoretically equivalent (for

more details see Chachuat (2016) in section 4.2.3). Considering the Bolza form, defined by

J(u) = ψ(xtf , tf) +

∫ tf

t0

L(x(t),u(t), t)dt (5.5)

where t0 and tf are the initial and final time; J is the objective function to be minimized; L and ψ are

given functions, the performance index, and terminal cost, respectively. If there were no terminal cost

(ψ = 0), we would have the Lagrange formulation, and if there were no running cost (L = 0), we would

have the Mayer formulation.

To transform the problem of the objective function 5.5, subject to differential constraints (5.4), in an

59

unconstrained problem, adjoint functions, which can be interpreted as Lagrange multipliers, λ(t), are

added to the integrator (equation 5.6). The adjoint variables, λ, are functions of t because each constraint

in 5.4 must be satisfied at every point of time in the interval [t0, tf]. Thus, the equation 5.5 becomes the

following

J = ψ(x(tf), tf) +

∫ tf

t0

[L(t,x(t),u(t)) + λT (t){f(t,x(t),u(t)− ẋ}]dt (5.6)

After the definition of the performance criterion, the set of physical constraints to be satisfied, and the

set of admissible controls, one can then state the optimal control problem as follows: ”Find an admissible

control u∗ ∈ u[t0, tf] which satisfies the physical constraints in such a manner that the cost functional

J(u∗) has a minimum value”. Therefore, one shall say that the performance criterion assumes its

minimum value at u∗, provided that

J(u∗) ≤ J(u), (5.7)

To find the optimal value of control variables, necessary conditions were defined by the mathematician

Pontryagin in the Pontryagin Minimum Principle (PMP), which involves the concepts of the Hamiltonian

function and co-state variable. This principle overcomes the limitations of the variational approach, specif-

ically, constraints on inputs and differentiability of the Lagrangian [Kirk (1970)].

Hence, when considering a cost function as in equation 5.6, it is convenient to introduce a scalar

function Hamiltonian, H , as follows:

H(t,x,u,λ) = L(t,x,u) + λTf(t,x,u). (5.8)

Then, integrating the last term on the right side of equation 5.6 by parts, yields

J = ψ(x(tf), tf)− λT (tf)x(tf) + λT (t0)x(t0) +

∫ tf

t0

{H(t,x(t),u(t)) + λ̇T (t)x(t)}dt (5.9)

Now considering the variation in J (equation 5.9) due to variations in the control vector u(t) for fixed

times t0 and tf

δJ =

[(
∂ψ

∂x
− λT

)]
t=tf

+ [λT δx]t=t0 +

∫ tf

t0

[(
∂H

∂x
+ λ̇T

)
δx+

∂H

∂u
δu

]
dt (5.10)

It would be tedious to determine the variations δx(t) produced by a given δu(t), so a co-state function

λ(t) is defined to vanish the coefficients of δx in equation 5.10:

60

λ̇T = −∂H
∂x

= −∂L
∂x
− λT ∂f

∂x
(5.11)

with boundary conditions

λT =
∂ψ

∂x(tf)
(5.12)

Therefore, the equation 5.10 becomes:

δJ = λT (t0)δx(t0) +

∫ tf

t0

∂H

∂u
δudt (5.13)

where λT (t0) is the gradient of J with respect to variation in the initial conditions while holding u(t)

constant and satisfying equation 5.4. The adjoint functions λ(t) are the marginal valuation in the optimal

control problem of the state variable at time t. For instance, if there were a perturbation on the state

variable at time t and subsequently the control variable was modified optimally, the optimal cost value

would change at the rate λ(t).

Note also that the Hamiltonian function can be understood as an instantaneous increment of the

Lagrangian expression of the problem that is to be optimized over a certain period. Thus, the function

∂H
∂u

is called impulse response since each component of ∂H
∂u

represents the variation in J , due to an

impulse in the corresponding component of δu, while holding x(t0) constant and satisfying equation 5.4.

To find an extreme (minimum or maximum), δJ must be zero for arbitrary δu(t). Therefore, this

implies that
∂H

∂u
= 0, t0 ≤ t ≤ tf (5.14)

The necessary conditions to find the optimal control u∗, and consequently the triple (u∗, x∗, λ∗)

are achieved by equations 5.14, 5.10 and 5.4. The local minimum is such that the following expression is

verified for every time t ∈ [t0, tf].

H(t,x∗(t),u∗(t),λ∗(t)) ≤ H(t,x∗(t),u(t),λ∗(t)) (5.15)

Considering that the problem is autonomous, i.e the functions L or f does not depend explicitly

on time, t, the optimal Hamiltonian, H(t,x∗(t),u∗(t),λ∗(t)), the Hamiltonian evaluated along the

optimal path of x∗, u∗, and λ∗, have a constant value over time.

5.2.1 Equality Interior-point Constraints in State Variables

Consider the performance index of the form

ψ[x(tf), tf] +

∫ tf

0

L(t,x(t),u(t))dt, (5.16)

61

that is described by the following nonlinear differential equations ẋ(t)

ẋ(t) = f(t,x(t),u(t)) (5.17)

and : boundary conditions (5.18)

Note that this problem is similar to the one in the section 5.2, however, here the following constraints

in an intermediate time t1 ∈ [0, tf] are applied to the system.

N [x(t1), t1] = 0 (5.19)

Thus, we now have a three-point boundary-problem instead of a two-point boundary-value problem.

The equation 5.19 represents a set of terminal constraints for the part of the path from the initial point

t = 0 to the intermediate point t = t1. Let t−1 signify the time just before t1 and t+1 the time just after t1.

For the interior-point constraints be satisfied, they are adjoined to the performance index by a set of

Lagrange multipliers, π, which becomes the following:

J = ψ(x(tf), tf) + πN +

∫ tf

0

(H − λẋ)dt (5.20)

Thus, the first variation of the augmented performance index is, then,

δJ = δ[ψ(x(tf), tf) + πN] + δ

∫ tf

0

(H − λẋ)dt (5.21)

Dividing the integral into
∫ t1−
t0

+
∫ tf
t1+

and integrating by parts (allowing for possible discontinuities in

λ at t = t1), yields:

δJ =
∂ψ

∂x
δx

∣∣∣∣∣
t=tf

+ π
∂N

∂t1
dt1 + π

∂N

∂x(t1)
dx(t1)

−λδx

∣∣∣∣∣
tf

t1+

− λδx

∣∣∣∣∣
t1−

t0

+ (H − λẋ)

∣∣∣∣∣
t=t1−

dt1

−(H − λẋ)

∣∣∣∣∣
t=t1+

dt1 +

∫ tf

t0

[(
λ̇+

∂H

∂x

)
δx+

∂H

∂u
δu

]
dt

(5.22)

Next, using the relations

dx(t1) =

δx(t1−) + ẋ(t1−)dt1,

δx(t1+) + ẋ(t1+)dt1,

(5.23)

62

the terms δx(t1−) and δx(t1+) in equation 5.22 are eliminated, thus, we get:

δJ =

(
∂ψ

∂x
− λT

)
δx

∣∣∣∣∣
t=tf

+ λT (t+1)− λT (t−1) + πT ∂N

∂x(t1)
dx(t1)

+H(t−1)−H(t+1) + πT ∂N

∂t1
dt1 + λT δx

∣∣∣∣∣
t=t0

+

∫ tf

t0

[(
λ̇+

∂H

∂x

)
δx+

∂H

∂u
δu

]
dt

(5.24)

Finally, let us choose λ(t1−) and H(t1−) to cause the coefficients of dx(t1) and dt1 to vanish,

yielding

λT (t−1) = λT (t+1) + πT ∂N

∂x(t1)
(5.25)

H(t−1) = H(t+1)− πT ∂N

∂t1
(5.26)

Note that the Lagrange multiplier, π, only influences the constraints (5.19) indirectly by propagating

through the co-state equations via equation 5.25.

In addition, the time of the interior point, t1, is determined by the equation 5.26. The function N

represents the constraints in the state variables (equation 5.19), and its value is a constant that does

not explicitly depends on time t1. Thus, the second term of equation 5.26, ∂N
∂t1

is zero. This means that

Hamiltonian is continuous at time t1, and, therefore, the equation 5.26 results in:

H(t+1) = H(t−1) (5.27)

63

Part IV

Design and Implementation

64

Chapter 6

Trajectory Planning

The current chapter describes the design and implementation of the proposed trajectory planning

method that allows a collaborative robot to execute a human-like trajectory passing through multiple way-

points. This method is resultant from an extension of optimal control theory with interior point constraints

at state variables (chapter 5, section 5.2.1).

6.1 Problem statement

As this dissertation’s objective is to generate human-like trajectories in collaborative robots, the crite-

rion function used is based on the minimum-jerk model, i.e., the minimisation of the variation of joints’

acceleration. Thus, considering a robot with K joints, the cost function takes the form:

C =
1

2

∫ T

0

K∑
i=1

(
d3θi
dt3

)2

dt (6.1)

where T is the total duration of the movement and θi is value of the joint i.

The system we need to solve is characterised by a set of state variables s and a control variable u.

sT (t) = [x,v,a], uT (t) = [z] (6.2)

Where x is a vector of joints position; v is a vector of joints velocity, a is a vector of joints acceleration,

and z is a vector of joints jerk, or by other words, the variation of the joints acceleration. These variables

are vectors of dimension K, and defined by:

65

x = [θ1, θ2, ..., θK] (6.3)

v = ẋ = [θ̇1, θ̇2, ..., θ̇K] (6.4)

a = v̇ = ẍ = [θ̈1, θ̈2, ..., θ̈K] (6.5)

z = ȧ =
...
x = [

...
θ 1,

...
θ 2, ...,

...
θK] (6.6)

By means of the differential equations system (equation 6.7), the control variables u dictate the evo-

lution of the state variables x.

ṡ = f [s(t), u(t), t] (6.7)

where s(t) and u(t) are state and control functions, respectively. Besides, as already mentioned, this

problem aims to solve optimal control with interior point equality constraints in the state variables. These

constraints are designed as waypoints, which are positions that the robot must pass through during the

movement at an unspecified time (equation 6.8). In these points, the only restriction applied is in the

joints’ position, therefore, the velocity and acceleration must be computed.

ψ(s(t1), s(t2), ..., s(tN); t1, t2, ..., tN) = 0 (6.8)

Figure 6.1: Joint trajectory from an initial joint position θinit to a final joint position θtar that passes through

N waypoints in unspecified time [t1, t2, ..., tN]

.

As mentioned in section 5.2, the differential equations constraints are introduced in the cost function

by costate variables λ, which are functions over time, and are augmented to the cost function due to

66

the Hamiltonian function (equation 5.8). Furthermore, the interior constraints at an unspecified point are

augmented to the cost function by a Lagrange multiplier π. Thus, the cost functions take the form:

C = πTψ +

∫ T

0

(H − λT ṡ) (6.9)

where π is a Lagrange multiplier vector of dimension N , correspondent to the number of interior-point

constraints; λ is the co-state variable, which allows dealing with the nonlinear constraints and is introduced

in the cost function by the Hamiltonian function, H (equation 5.8).

6.1.1 Problem solving

The problem presented in this dissertation is defined by:

min : C = πTψ +

∫ T

0

(H − λT ṡ)

s.t. : ṡ = f [s(t), u(t), t]

and ψ(s(t1), s(t2), ..., s(tN); t1, t2, ..., tN) = 0

boundary conditions

(6.10)

This problem is solved using the method in 5.2.1 that relies on the Pontryagin’s minimum principle

is crucial since addresses the necessary conditions for the existence of a minimum (equation 5.11 and

5.14). The solution for such problem is obtained by allowing discontinuities in the costate functions (refer to

section 5.2.1). Therefore, we must analyse each trajectory segmentation individually and make a relation

between them. Let us consider the costate variable λ0 and Hamiltonian H0 for all time before the first

waypoint t0 ≤ t ≤ t1; and the costate variable λn and Hamiltonian Hn for the time after waypoint n

and before waypoint n+ 1, tn ≤ t ≤ tn+1.

According to equation 5.25, which defines the expression of costate variables that enable the transfor-

mation of the constrained problem into an unconstrained problem, the general costate expression at the

borders of a trajectory segmentation n is defined as:

λn−1(tn) = λn(tn) + πT ∂N

∂s(tn)
(6.11)

Since the only constraints applied to the problem are in the joint’s position, the term ∂N
∂s(tn)

is null

for the state variables v and a, and control variable z, which corresponds to velocity, acceleration and

jerk, respectively. Thus, from equation 6.11 we obtain the expression of the costate variables λ, for all

segments and waypoints (refer to Eq. 6.12).

67

λ0x(t1) = λ1x(t1) + π1

λ1x(t2) = λ2x(t2) + π2

...

λN−1
x (tN) = λNx (tN) + πN

λn−1
v (tn) = λnv (tn)

λn−1
a (tn) = λna(tn)

λn−1
z (tn) = λnz (tn)

(6.12)

Now, using equations 5.8 and 6.12, the Hamiltonian for the first trajectory segmentation, t0 ≤ t ≤ t1,

can be defined as

H0(t1) =
K∑
i=1

[
λ0xi

vi + λ0viai + λ0aizi +
1

2
zi

2

]
(6.13)

The Hamiltonian Hn of the trajectory segmentation n, such that tn ≤ t ≤ tn+1 is

Hn(tn) =
K∑
i=1

[
λnxi

vi + λnviai + λnaizi +
1

2
zi

2

]
(6.14)

Note that hamiltonian and costate equations have the same structure for every joint since they have

the same number of waypoints, i.e. the same constraints. Therefore, for simplicity sake, the problem is

structured and analysed for a single joint i.

68

Time interval t0 ≤ t ≤ t1

Figure 6.2: Joint trajectory from the initial joint position θinit to the first waypoint θwp1, time interval

t0 < t < t1.

From equation 5.11, which gives the necessary conditions for a minimum in the state variable, we

obtain:
∂H0

∂xi
= −λ̇0xi

⇒ λ̇0xi
= 0⇒ λ0xi

= c1

∂H0

∂vi
= −λ̇0vi ⇒ λ̇0vi = −λ

0
xi
⇒ λ0vi = −λ

0
xi
t− c2

∂H0

∂ai
= −λ̇0ai ⇒ λ̇0ai = −λ

0
vi
⇒ λ0ai = +λ0xi

t2 + c2t+ c3

(6.15)

Then, the necessary conditions for a minimum in the control variable are defined by equation 5.14:

∂H0

∂zi
= 0⇒ ∂H0

∂zi
= zi + λ0ai = 0⇒ zi = −

λ0xi

2
t2 − c2t− c3 (6.16)

These equations yield:

zi = −λ0
xi

2
t2 − c2t− c3

λ0xi
= c1(constant)

⇒ zi = −
c1
2
t2 − c2t− c3 (6.17)

Since the jerk is the third derivative of the joint position, we can clearly obtain the following expression

for the joint trajectory between the initial position and first waypoint:

0θ1(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5 (6.18)

where (a0, a1, a2, a3, a4, a5) ∈ ℜ.

69

Time interval t1 ≤ t ≤ t2

Figure 6.3: Joint trajectory from the first waypoint θwp1 to the second θwp2 (time interval t1 < t < t2).

From equation 5.11, which gives the necessary conditions for a minimum in the state variable, we

obtain:
∂H1

∂xi
= −λ̇1xi

⇒ λ̇1xi
= 0⇒ λ1xi

= c1

∂H1

∂vi
= −λ̇1vi ⇒ λ̇1vi = −λ

1
xi
⇒ λ1vi = −λ

1
xi
t− c2

∂H1

∂ai
= −λ̇1ai ⇒ λ̇1ai = −λ

1
vi
⇒ λ1ai = +λ1xi

t2 + c2t+ c3

(6.19)

Then, the necessary conditions for a minimum in the control variable are defined by equation 5.14:

∂H1

∂z
= 0⇒ ∂H1

∂z
= z + λa = 0⇒ z = −

λ1xi

2
t2 − c2t− c3 (6.20)

Then, from the relation of the costate equations at the waypoints (6.12):zi = −λ1
xi

2
t2 − c2t− c3

λ1xi
= λ0xi

− π1
⇒ zi = −

c1
2
t2 +

π1
2
t2 − c2t− c3 (6.21)

Since the jerk, z, is the third derivative of the joint position, we can clearly obtain the following expres-

sion for the joint trajectory between the first and second waypoint:

1θ2(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5 + π1
(t− t1)5

120
(6.22)

where (a0, a1, a2, a3, a4, a5) ∈ ℜ.

70

Time interval tn ≤ t ≤ tn+1

Figure 6.4: Joint trajectory from a waypoint n, θwpn, to the next waypoint θwpn+1 (or final joint position),

time interval tn < t < tn+1 or tN < t < tf .

From equation 5.11, which gives the necessary conditions for a minimum in the state variable, we

obtain:

∂Hn

∂xi
= −λ̇nxi

⇒ λ̇nxi
= 0⇒ λnxi

= c1

∂Hn

∂vi
= −λ̇nvi ⇒ λ̇nvi = λnxi

⇒ λnvi = −λ
n
xi
t− c2

∂Hn

∂ai
= −λ̇nai ⇒ λ̇nai = λnvi ⇒ λnai = λnxi

t2 + c2t+ c3

(6.23)

Then, the necessary conditions for a minimum in the control variable are defined by equation 5.14:

∂Hn

∂zn
= 0⇒ ∂Hn

∂zn
= zn + λnai = 0⇒ zn = −

λnxi

2
t2 − c2 − c3 (6.24)

Then, from the relation of the costate equations at the waypoints (6.12):

zn = −λn

xi

2
t2 − c2t− c3

λnxi
=

n−1∑
k=0

λkxi
− πn

⇒ zn = −c1
2
t2 +

n∑
i=1

πnt
2 − c2t− c3 (6.25)

Since the jerk is the third derivative of the joint position, we can clearly obtain the expression for the

joint trajectory between a waypoint n and waypoint (n+ 1), or target position θtar.

71

nθn+1(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5 +
n∑

i=1

πi(t− ti)5

120
(6.26)

where (a0, a1, a2, a3, a4, a5) ∈ ℜ.

6.1.2 Final trajectory equation t0 ≤ t ≤ T

After the individual analysis of each trajectory segmentation, we can determine the full expression for

the entire trajectory of a robot joint i that passes through N waypoints previously defined:

θi(t) =

a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5 (t0 ≤ t ≤ t1)

a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5 +
π1(t− t1)5

120
(t1 ≤ t ≤ t2)

...

a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5 +
N∑
k=1

πk(t− tk)5

120
(tN ≤ t ≤ T)

(6.27)

where πk is the Lagrange multiplier of the correspondent waypoint constraint.

Equation 6.27 has 6 + N parameters ((a0, a1, a2, a3, a4, a5) + (π1, ..., πN)). These pa-

rameters are determined by six boundary conditions and N conditions implied by the waypoints. The

constraints imposed in the boundary points are the initial and final joint values and null velocity and ac-

celeration at those points for a smooth trajectory.

initial point

θ(0) = θinit

θ̇(0) = 0

θ̈(0) = 0

(6.28)

final point

θ(T) = θtar

θ̇(T) = 0

θ̈(T) = 0

(6.29)

The waypoints define the interior points constraints in the joint position. Thus, for N waypoints, one can

describe the constraints as:

72

interior points

0θ1(t1) =
1 θ2(t1) = θwp1

1θ2(t2) =
2 θ3(t2) = θwp2

...

n−1θn(tN) =
n θT (tN) = θwpN

(6.30)

where 0θ1 represents the trajectory between the initial joint position and the first waypoint (equation 6.22);

1θ2 is the trajectory between the first waypoint and the second waypoint (equation 6.22); nθT is the

trajectory between the last waypoint, N , and the last joint position θtar (equation 6.26);

The conditions in 6.28, 6.29 and 6.30 result in the following system of equations:

boundary cond.

a0 = θinit

a1 = 0

a2 = 0

a3T
3 + a4T

4 + a5T
5 +

N∑
i=1

πi(T − ti)5

120
= θtar − θinit

3a3T
2 + 4a4T

3 + 5a5T
4 + 5

N∑
i=1

πi(T − ti)4

120
= 0

6a3T + 12a4T
2 + 20a5T

3 + 20
N∑
i=1

πi(T − ti)3

120
= 0

(6.31)

interior cond.

a3t
3
1 + a4t

4
1 + a5t

5
1 = θwp1 − θinit

a3t
3
2 + a4t

4
2 + a5t

5
2 +

π1(t2 − t1)5

120
= θwp2 − θinit

...

a3t
3
N + a4t

4
N + a5t

5
N +

N∑
i=1

πi(tN − ti)5

120
= θwpN − θinit

(6.32)

From these systems of equations, we can determine the expressions of the parameters (a0, a1, a2, a3, a4, a5),

73

resulting in the following:

a0 = θinit (6.33)

a1 = 0 (6.34)

a2 = 0 (6.35)

a3 =
10(θtar − θinit)

T 3
+

N∑
i=1

(
−10πi(T − ti)5

120T 3
+

20πi(T − ti)4

120T 2
− 10πi(T − ti)3

120T

)
(6.36)

a4 = −
15(θtar − θinit)

T 4
+

N∑
i=1

(
15πi(T − ti)5

120T 4
− 35πi(T − ti)4

120T 3
+

20πi(T − ti)3

120T 2

)
(6.37)

a5 =
6(θtar − θinit)

T 5
+

N∑
i=1

(
−6πi(T − ti)5

120T 5
+

15πi(T − ti)4

120T 4
− 10πi(T − ti)3

120T 3

)
(6.38)

Then, substituting the expressions of {a0, a1, ..., a5} into the system of equations 6.32 and 6.30, we

obtain the general equation of the joint trajectory at a waypoint k, θwpK , of a set of waypoints N.

(θtar − θinit)(10τ 3k − 15τ 4k + 6τ 5k)+

(−10τ 3k + 15τ 4k − 6τ 5k)
N∑
i=1

(
πiT

5(1− τi)5

120

)
+

(+20τ 3k − 35τ 4k + 15τ 5k)
N∑
i=1

(
πiT

5(1− τi)4

120

)
+

(−10τ 3k + 20τ 4k − 10τ 5k)
N∑
i=1

(
πiT

5(1− τi)3

120

)
+

k−1∑
i=1

πiT
5

120
(τk − τi)5 = θwpK − θinit

(6.39)

Note that (T − ti)k = T k(1− τi)k, where τi =
ti

T
.

Then, from the system 6.30 and consequently the general equation 6.39, the Lagrange multipliers can

be determined. The Lagrange multipliers expressions are not constant and get more complex accordingly

to the number of waypoints. Thus, we need to find a numerical approach capable to deal withN waypoints

and, therefore,N Lagrange multipliers. To give a precise description of how this method is obtained, let us

consider three examples. Firstly, considering a trajectory with only one waypoint, the respective Lagrange

multiplier, π1, takes the form:

π1 =
T 5

120

(θtar − θinit)(10τ 31 − 15τ 41 + 6τ 51)− (θwp1 − θinit)
(−10τ 31 + 15τ 41 − 6τ 51)(1− τ1)5 + (+20τ 31 − 35τ 41 + 15τ 51)(1− τ1)4

+(−10τ 31 + 20τ 41 − 10τ 51)(1− τ1)3
(6.40)

74

For trajectories with more waypoints, each Lagrange multiplier has a more complex expression and,

therefore it is helpful to consider the following notation: αik = (−10τ 3i + 15τ 4i − 6τ 5i)(1 − τk)
5 +

(+20τ 3i −35τ 4i +15τ 5i)(1−τk)4+(−10τ 3i +20τ 4i −10τ 5i)(1−τk)3, and βk = (θtar−θinit)(10τ 3k−

15τ 4k + 6τ 5k)− (θwpk − θinit). Hence, we can rewrite equation 6.40 as:

π1 =
T 5

120

β1
α11

(6.41)

Secondly, considering a trajectory with two waypoints, the Lagrange multipliers [π1, π2] correspondent

to the waypoints [θwp1, θwp2] are formulated as:

π1 =
T 5

120

−α22β1 + α21β2
−α22α11 + α12α21

(6.42)

π2 =
T 5

120

−α11β2 + α12β1
−α22α11 + α12α21

(6.43)

Lastly, regarding a trajectory with three waypoints, three Lagrange multipliers π = [π1, π2, π3] corre-

spondent to the waypoints [θwp1, θwp2, θwp3] are formulated as:

π1 =
T 5

120

α33

(
− α22β1 + α21β2

)
− α32

(
− α23β1 + α21β3

)
+ α31

(
− α23β2 + α22β3

)
α33

(
− α22α11 + α12α21

)
− α23

(
− α32α11 + α12α31

)
+ α13

(
− α32α21 + α22α31

)
(6.44)

π2 =
T 5

120

α33

(
− α11β2 + α12β1

)
− α31

(
− α13β2 + α12β3

)
+ α32

(
− α13β1 + α11β3

)
α33

(
− α22α11 + α12α21

)
− α23

(
− α32α11 + α12α31

)
+ α13

(
− α32α21 + α22α31

)
(6.45)

π3 =
T 5

120

α22

(
− α11β3 + α13β1

)
− α21

(
− α12β3 + α13β2

)
+ α23

(
− α12β1 + α11β2

)
α33

(
− α22α11 + α12α21

)
− α23

(
− α32α11 + α12α31

)
+ α13

(
− α32α21 + α22α31

)
(6.46)

Looking at equations 6.41, 6.42 6.44, a pattern can be observed as the number of waypoints in-

creases. To demonstrate it more clearly, the analysis of the Lagrange multiplier is divided into the denom-

inator and numerator of its expressions, refer to figures 6.5 and 6.6.

75

Figure 6.5: Denominator equations of the

Lagrange multiplier π1 in case of 1,2 and 3

waypoints, respectively.

.

Figure 6.6: Numerator equations of the

Lagrange multiplier π1 in case of 1,2 and 3

waypoints, respectively.

.

As one can observe in figures 6.5 and 6.6, the pattern is divided in two main parts, represented by an

orange and a yellow rectangle in the same figures. This division is essential to achieve a general equation of

Lagrange multiplier since it is from the last part that the next is derived. Analysing the Lagrange multiplier

π1 of a trajectory with 3 waypoints, equation 6.44, and figures 6.5 and 6.6 :

Orange rectangle The orange rectangle is defined by as many equations as the number of way-

points, and changing the indexes αik between them. Specifically, considering the denominator algorithm

(Figure 6.5), we have 3 equations (α33,−α23 and α13), where the equations are defined by
∑3

i=1 αi3. In

the numerator algorithm (Figure 6.6), the equations are slightly different, (α33,−α32 and α31), where the

equations are defined by
∑3

i=k α3k. The signal of equation αik is defined whether i for the denominator

and k for the numerator is even or odd.

Green rectangle The yellow rectangle is essentially achieved by a recursive process, where its equa-

tions (selected as light blue, red and dark blue rectangle) are achieved by computing the previous waypoints

(waypoint 2 and waypoint 1). For instance, the blue rectangle is dictated by the complete equation of a tra-

jectory with 2 waypoints. Then, the remaining part of the equation (red and green rectangles), is achieved

by computing the same process, however, with the indexes of αik and βi alternated. Regarding the de-

nominator equation (Figure 6.5), the red rectangle is obtained by re-computing the blue rectangle with

76

α2k changed to α3k, and the green rectangle by re-computing the red rectangle with α1k changed to α2k.

Similarly, considering the numerator algorithm, the red rectangle is obtained by re-computing the blue

rectangle with αi2 and β2 changed to αi3 and β3, respectively, and the green rectangle by re-computing

the red rectangle with αi1 and β1 changed to αi2 and β2, respectively.

Note that the recursiveness illustrated in figures 6.5 and 6.6 is implemented, in case of having N

waypoints, by means of the algorithms in section 6.1.3.

After determining the Lagrange multipliers π = [π1, π2, ..., πN] and the time of each waypoint (sec-

tion 6.1.4), all variables are known and, therefore, the equation of the joint trajectory θ(t) can be achieved.

The expression of the joint trajectory in t0 ≤ t ≤ t1 is described by the equation 6.47.

0θ1(τ) = θinit + (θtar − θinit)(10τ 3 − 15τ 4 + 6τ 5)+

(−10τ 3 + 15τ 4 − 6τ 5)
N∑
k=1

(
πkT

5(1− τk)5

120

)
+

(+20τ 3 − 35τ 4 + 15τ 5)
N∑
k=1

(
πkT

5(1− τk)4

120

)
+

(−10τ 3 + 20τ 4 − 10τ 5)
N∑
k=1

(
πkT

5(1− τk)3

120

)
(6.47)

where τ =
t

T
and τk =

tk

T
Subsequently, knowing equation 6.47, one can redefine the system 6.27 that represents the trajectory

segmentations for all time t0 ≤ t ≤ T (Equation 6.48):

θ(t) =

0θ1(τ) (t0 ≤ t ≤ t1)

1θ2(τ) =
0 θ1(τ) +

π1T
5(τ − τ1)5

120
(t1 ≤ t ≤ t2)

...

NθT (τ) =
N−1 θN(τ) +

πN T 5(τ − τN)5

120
(tN ≤ t ≤ T)

(6.48)

6.1.3 Lagrange multiplier

This subsection presents the algorithms responsible for determining the Lagrange multipliers π =

[π1, π2, ..., πN] of a single joint trajectory that passes through N waypoints.

The process to obtain the expression of each Lagrange multiplier is divided into two main parts:

77

denominator and numerator. Furthermore, as the equations 6.44-6.46 show, the denominator of all

Lagrange multiplier [π1, ..., πN] is equal, whereas the numerator is different between each expression.

Although both patterns (figures 6.5 and 6.6) are similar, they are determined separately by means of two

recursive processes.

The main algorithm to get the Lagrange multipliers of N waypoints of a single joint is Algorithm 1,

where it receives as input an array with the time normalised of each waypoint τwp = [τ1, ..., τN], the

waypoints θwp = [θwp1, ..., θwpN] and the initial and final joint position, θinit and θtar, respectively. The

denominator of π is determined using the Algorithm 2, and the numerator of each [π1, π2, ..., πN] using

the Algorithm 3, which is essentially obtained by computing cyclically the Algorithm 4.

Figures 6.6 and 6.5 illustrate the denominator and numerator of the Lagrange multiplier for the first

waypoint π1, where τwp = [τ1, τ2, ..., τN] and θwp = [θwp1 , θwp2 , ..., θwpN]. As one can observe

from equations 6.44 and 6.45, interestingly the numerator of π2 has the same form of π1, however, the

indexes of αik and βi that contain ”2” or ”1” are switched. For instance, α32 in π1 is switched to α31 in

π2. Similarly, π3 (equation 6.46) is obtained by switching the indexes ”2” and ”3” of π2 (equation 6.45).

Specifically, for determining π1 we have τwp = [τ1, τ2, ..., τN] and θwp = [θwp1 , θwp2 , ..., θwpN], for

determining π2 we have τwp = [τ2, τ1, ..., τN] and θwp = [θwp2 , θwp1 , ..., θwpN], and in case of π3 we

have τwp = [τ3, τ1, τ2, ..., τN] and θwp = [θwp3 , θwp1 , θwp2 , ..., θwpN] (lines 3-8 of Algorithm 3). All

these changes are handled by Algorithm 3 in lines 3-8.

As already mentioned, the denominator of all Lagrange multiplier is the same, however, the numerator

is different. Thus, Algorithm 2 returns the denominator of all Lagrange multiplier π = [π1, ..., πN]

and Algorithm 4 returns the numerator of the Lagrange multiplier πi. Both Algorithms are essentially

recursive, dictated by the size of the arrays τwp and τor, which are composed by the normalised time of

the waypoints τwp = [τ1, τ2, ..., τN]. The process of both algorithms starts by determining the orange

rectangle, Por, of Figure 6.5 and 6.6 by means of Algorithm 5. Then, the yellow rectangle is determined.

As explained in Figure 6.5 and 6.6, the key to obtain the entire equation is, basically, switching the indexes

of the equation αik and βi, and that is possible by switching the indexes of the array τwp and θwp (lines

7-9 of Algorithm 2 and lines 7-12 of Algorithm 4.

Note that equation βk is a simplification of the expression βk = (θtar−θinit)(10τ 3k−15τ 4k +6τ 5k)−

(θwpk − θinit), which is computed in line 3 of Algorithm 4). Equation αik is obtained with Algorithm 6

where it receives as input the normalised time of two waypoints τ = [τ1, τ2, ..., τN] (lines 4 and 6 of

Algorithm 5). Algorithm 6 is the key of Algorithm 5, which essentially determines the orange rectangle of

figures 6.6 and 6.5.

78

Algorithm 1 Lagrange multiplier equations for a single joint πi = [π1, π2, ..., πN]

Input: τwp // array of τwp = [τ1, ..., τN]

θtar // final position of joint i

θinit // initial position of joint i

θwp // array of N waypoints of joint a single joint, θwp = [θwp1, ..., θwpN]

Output: π // array of Lagrange multiplier for all waypoints πi = [π1, ..., πN]

1: Den ← Algorithm 2(τwp, τwp) // Denominator of π

2: Num ← Algorithm 3(τwp,θwp, θtar, θinit) // Numerator of πi

3: for i < N do // Get the Lagrange multiplier for N waypoints

4: π.append

(
−120
T 5
× Num[i]

Den

)

Algorithm 2 Complete denominator equation of Lagrange multiplier πi
Input: τwp // array of τ = [τ1, ..., τN] where the changes are computed

τor // original array of τ = [τ1, ..., τN]

Output: Den // final denominator equation

1: n← size(τwp)

2: if n=0 then // end of the recursiveness

3: return 1

4: Por ←Algorithm 5(τwp, τor) // Orange rectangle, refer to Figure 6.5

5: for i < size(τwp) do

6: if n > 1 and i > 0 then // Changes of the αik indexes (refer to Figure 6.5)

7: aux← τwp[n− i− 1]

8: τwp[n− i− 1]← τwp[n− 1]

9: τwp[n− 1]← aux

10: Den ← Den + Por[i]×Algorithm 2(τwp[0 : n − 1], τor[0 : n − 1]) // compute the

same function for all waypoints and with array τwp changed)

79

Algorithm 3 Numerator part of Lagrange multiplier πi for all waypoints of a single joint
Input: τwp // array of τ = [τ1, ..., τN] where the changes are computed

θwp // array of waypoints θwp = [θwp1, ..., θwpN]

θinit // initial joint position

θtar // final joint position

Output: π // array with the numerator part of Lagrange multipliers for waypoints

1: for k < size(θwp) do // numerator of all Lagrange multipliers

2: if k > 0 then // switch αik and βi (refer to equations 6.44, 6.45, 6.46)

3: aux← τwp[0]

4: τwp[0]← τwp[k]

5: τwp[k]← aux

6: aux← θwp[0]

7: θwp[0]← θwp[k]

8: θwp[k]← aux

9: π.append(Algorithm 4(τwp, τwp,θwp, θinit, θtar)) // numerator of π of the waypoint k

80

Algorithm 4 Numerator equation of Lagrange multiplier πi
Input: τor // Original array of τ = [τ1, ..., τN]

τwp // array of τ = [τ1, ..., τN] where the changes are computed

θwp // array of waypoints θwp = [θwp1, ..., θwpN]

θinit // initial joint position

θtar // final joint position

Output: Num // final numerator equation

1: n← size(τwp)

2: if n=0 then // equation βk

3: return (θtar − θinit)(10τwp[0]
3 − 15τwp[0]

4 + 6τwp[0]
5)− (θwp[0]− θinit)

4: Por ← Algorithm 5(τwp, τor) // Orange rectangle, refer to Figure 6.6

5: for i < size(τwp) do

6: if n > 1 and i > 0 then // Changes the indexes of αik and βi (refer Figure 6.6)

7: aux← τwp[n − i − 1]

8: τwp[n − i − 1]← τwp[n − 1]

9: τwp[n − 1]← aux

10: aux← θwp[n − i − 1]

11: θwp[n − i − 1]← θwp[n − 1]

12: θwp[n − i − 1]← aux

13: Num ←Num+Por[i]×Algorithm 4(τor[0 : n − 1], τwp[0 : n − 1],θwp[0 : n − 1])

// compute the same function for all waypoints and with array τwp changed)

81

Algorithm 5 Orange part of denominator and numerator (refer 6.5 and 6.6)

Input: τwp // array of τ = [τ1, ..., τN] where the changes are computed

τor // original array of τ = [τ1, ..., τN]

Output: Por // array with the Orange part of the denominator or numerator

1: i, n← size(τwp)

2: while i > 0 do

3: if i is even then

4: Eq ← −Algorithm 6(τwp[i], τor[n]) // Equation −αik

5: else

6: Eq ← Algorithm 6 (τwp[i], τor[n]) // Equation αik

7: i = i - 1

8: Por.append(Eq)

Algorithm 6 Equation αik

Input: σ // value of array τ = [τ1, ..., τN] from Algorithm 5

γ // value of array τ = [τ1, ..., τN] from Algorithm 5

Output: Eq

1: Eq1 ← (−10γ3 + 15γ4 − 6γ5)(1 − σ)5 + (+20γ3 − 35γ4 + 15γ5)(1 − σ)4 + (−10γ3 +

20γ4 − 10γ5)(1− σ)3

2: Eq2← 0

3: if σ ≤ γ then

4: Eq2← (γ − σ)5

5: Eq ← Eq1 + Eq2

6.1.4 Waypoints time

Now that each Lagrange multiplier of π = [π1, π2, ..., πN] is already defined, we rely on equation 5.27

to determine the time of each waypoint [t1, t2, ..., tN]. Applying the costate conditions (refer to equation

6.12) at these points to equation 5.27, we obtain a general equation of the Hamiltonian continuity at a

waypoint n:

Hn−1(tn) = Hn(tn) (6.49)

82

where Hn−1 corresponds to the Hamiltonian function of the segmentation trajectory after the waypoint

(n−1) and before the waypoint n, andHn corresponds to the Hamiltonian of the segmentation trajectory

after the waypoint n and before the waypoint n+ 1, or target position θwp.

Using equation 6.49 for every waypoint results in the system 6.50, where the unique unknown variables

are times [t1, ..., tN], when the robots passes through waypoints [θwp1, ..., θwpN].

π1v1(t1) = 0

π2v2(t2) = 0

...

πNvN(tN) = 0

(6.50)

Note that the system 6.50 is for a unique joint, however, the system is easily extended to deal with

K joints. Each joint trajectory’s motion is independent from the others and, therefore, they are calculated

separately. On the other hand, all robot joints must have a coordinated motion, i.e., all joints must start

and finish the movement simultaneously. Furthermore, they must reach the waypoints at the same time.

Thus, we can extend the system 6.50 and calculate the time of each waypoint considering all joints.

K∑
i=1

πi
1v

i
1(t1) = f1 = 0

K∑
i=1

πi
2v

i
2(t2) = f2 = 0

...
K∑
i=1

πi
Nv

i
N(tN) = fN = 0

(6.51)

f1 =

waypoint 1 and joint 1︷ ︸︸ ︷
π1
1v

1
1(t1) +π2

1v
2
1(t1) + ...+

waypoint 1 and joint K︷ ︸︸ ︷
πK
1 v

K
1 (t1)

f2 = π1
2v

1
2(t2) + π2

2v
2
2(t2) + ...+ πK

2 v
K
2 (t2)

· · ·

fN = π1
Nv

1
N(tN)︸ ︷︷ ︸

waypoint N and joint 1

+π2
Nv

2
N(tN) + ...+ πK

N v
K
N (tN)︸ ︷︷ ︸

waypoint N and joint K

(6.52)

In this dissertation, the nonlinear system 6.51 is solved by means of an open-source Python library

SciPy, which addresses a wide range of models as optimization, integration, interpolation, ODE solvers

and many other tasks common in science and engineering. Specifically, from the SciPy library, we use

the fsolve function, which returns the roots of equations 6.51 given a starting estimate. The Initial Guess

83

(IG), or starting estimate is determined by the joint average of the travel path in each waypoint.

IGn =
1

K

K∑
k=1

⌊ n∑
i=0

||θ[i+1],k − θi,k||

N∑
i=0

||θ[i+1],k − θi,k||

⌉
(6.53)

whereK is the number of joints of the robot,N is the number of waypoints, θ0,k is the initial joint position

θinit of the joint k, θN is the final joint position θtar of the joint k and θi,k is the waypoint i of the joint k.

The function fsolve gets as input the system of equations 6.51 and an array of initial guesses for of

all waypoints IGwp = [IG1, IG2, ..., IGN], determined by equation 6.53. The acceptable root must lie

between 0 and 1. Furthermore, the time of each waypoint must be sequential, i.e [τ1 < τ2 < ... < τN].

If fsolve returns more than one possible solution, the solution selected is the one that minimises the

energy of the system through equation 6.54.

En =
√

(f1)2 + (f2)2 + (...)2 + (fN)2 (6.54)

After having the solution of system 6.51, we can substitute the time of each waypoint [t1, t2, ..., tN]

in equations 6.26 and, finally, obtain the final expression of θ(t) for the entire movement.

6.2 Time parametrization

The trajectory generated in this dissertation is time normalised and time is also discretised into number

of steps. Hence, the total movement duration, T , the number of steps, Nsteps, and the size of each time

step, ∆t, need to be computed.

6.2.1 Total time

Rosenbaum et al. (2001) determined the optimal duration time, T , of a human-like movement based

on Fitts’ Law of joint angular displacement,∆θ. Recently, Gulletta et al. (2021), extended the Rosenbaum

et al. (2001) formulation and added the term Nsteps
∆θmax,k

wmax,k
, which guarantees that the maximum joints

velocity is respected, and, therefore, never reached (equation 6.55). The optimal time is the one that

minimises the travel cost, which is defined by the sum of the costs of the movements of the individual

joints going from the starting posture to the next goal posture (equation 6.57).

84

Tk = Nsteps
∆θmax,k

wmax,k

+ δk ln(1 + ∆θk) (6.55)

∆θk =

Nsteps∑
i=1

|θi,k − θi−1,k| (6.56)

∆θmax,k = max
i=1,...,Nsteps

|θi,k − θi−1,k| (6.57)

where δk is the expense factor of the kth joint, Nsteps is the number of time steps in the movement,

wmax,k is the maximum angular velocity of the kth joint.

This approach grants an optimal movement time and at the same time ensures the minimum cost of

travel without violating the limits of kinematics. Besides, since the robot must have a coordinate movement,

i.e, all joints start and stop a movement at the same time, the optimal time is computed as a weighted

average of the optimal duration for each joint (Equation 6.58).

T =

n∑
k=1

δk∆θkTk

n∑
k=1

δk∆θk

(6.58)

6.2.2 Number of steps

The number of steps, Nsteps, is determined according to the weight average of the distance between

each waypoint (equation 6.59).

Nsteps =
∑Nwp

i=0

⌊
Nm + (NM −Nm)

||θwp[i+1]
− θwpi ||

||θM − θm||

⌉
(6.59)

where NM and Nm are the acceptable maximum and minimum number of steps, respectively. Nwp is

the total number of waypoints. θM is the maximum limit of the joints, and thetam is the minimum limit

of the joints. θwpi is the joint value in the ith waypoint. θwp0 is equal to θinit, and represents the initial

joint position. θwp[Nwp+1]
is equal to θtar, and represents the final joint position.

6.2.3 Time step

An approximated time step is determined based on a standard trajectory with null boundary conditions,

which can be defined by equation 6.47 with no constraints, therefore, with null Lagrange multiplier πk = 0,

and is given by equation 6.60:

85

∆t =
T

Nsteps

(6.60)

The resultant step size∆t should provide a trajectory that does not reach the joint velocity and accel-

eration limits, wmax.

86

Part V

Validation of the Trajectory Planning

87

Chapter 7

Human-like Trajectory Planning with

waypoints in a Human-Robot Collaboration

Scene

In this dissertation, it is considered a quality inspection task to validate the proposed trajectory planner.

Specifically, the user selects mandatory positions where the robot must cross for allowing the inspection

of the selected eye angles. The process to validate the proposed method is first described in section 7.1.

The trajectory is executed in a human-like manner, which enhances the productivity of the human-robot

collaboration. Thus, metrics to evaluate the human-likeness of the UR10 robot movements are presented

in section 7.2. Then, in section 7.3.1, the task to validate the proposed method, as well as the method to

select waypoints are described. Finally, the results are individually analyzed in section 7.4, and then an

overall discussion is presented in section 7.5.

Note that the results were obtained with a machine with a processor Intel®CoreTM i7-7700HQ

2.80GHz, running the Ubuntu 16.04 LTS 64-bits operator system, with graphics NVIDIA GeForce

GTX 1050M and 16 GB RAM.

7.1 Validation Architecture

To ensure the integrity of the robotic platform and the workplace involved, the validation of the trajectory

planning that this dissertation presents is performed in a simulation environment. The architecture of the

trajectory planning process and its validation in a simulation environment is illustrated in Figure 7.1, which

is essentially composed of 4 software modules, called: i) CoppeliaSim simulator; ii)Polyscope iii) Motion

88

Manager; iv) Motion Planner;

Figure 7.1: The validation of the generated trajectory is achieved by using the following modules: simulator

CoppeliaSim; Polyscope; Motion Manager and Motion Planner.

The trajectory planning method that is here presented is implemented in the Human-like Upper-limb

Motion Planner (HUMP) [Gulletta et al. (2021)]. The HUMP library is a motion planning algorithm that

generates collision-free trajectories with human-like characteristics. Very briefly, the human-like obstacle

avoidance is accomplished by the imposition of two movements: a direct movement, from the start pos-

ture to the target posture, and a back-and-forth movement, from the start posture to a bounce posture

[Gulletta et al. (2021)]. In this dissertation is presented a completely new functionality, and therefore, none

of these algorithms are used to accomplish the results further on demonstrated.

The communication between the different modules is achieved through the ROS (Robot Operating

System) framework fromQuigley et al. (2008). The Motion Manager module is used to obtain the necessary

scenario information for trajectory planning, from the kinematics of the robotic platform to the waypoints

that the robot must cross. Note that the waypoints are defined in the Polyscope module, which is the

Graphical User Interface embedded in Universal Robots’ robots. Having obtained the data, this is sent to

the Motion Planner module, or HUMP, which involves the implementation in C++ of the proposed method

to generate the human-like trajectory. Then, this trajectory is sent back to the simulator CoppeliaSim,

where the human-robot collaboration scenery is projected. Additionally, the joint trajectory is also sent to

the Polyscope module, which has a motion simulator of the real robot and, thus, one can observe the

89

robot moving in the Universal Robot GUI.

7.2 Human-likeness Evaluation

As already referred endowing the UR10 robot, a collaborative robot, with the capability to generate

human trajectories is the objective of this dissertation. Accordingly, with section 3.3, a human-like arm

motion is composed by a minimization of the joints’ acceleration, which results in a single peak bell-shaped

hand velocity and a slightly curved hand trajectory between two points. Additionally, more velocity peaks

may be observed due to high rate wrist rotation, normally occurring when there are objects in proximity.

Therefore, we must have a methodology to analyze the robot movements and whether they correspond

to what is expected. Although it is not possible to measure exactly the human-likeness of the robot’s

movements, it is possible to analyze quantitatively and qualitatively a set of metrics, which have been

proposed in psychology and neuroscience [Gulletta et al. (2020)].

Some studies have been pursued to evaluate reaching movements in children with cerebral palsy

[Chang et al. (2005)], and post-stroke patients [Chang et al. (2008)]. The metrics used are directly related

to the smoothness of the movement and, thus, the human-likeness of it. These metrics are known as the

Normalised Jerk Score (NJS) and the Number of Movement Units (NMU).

The variable NJS is formulated as:

NJS =

√
1

2

(T 5

D2

)∫ ((d3xH
dt3

)2

+
(d3yH
dt3

)2

+
(d3zH
dt3

)2
)

(7.1)

where (xH , yH , zH) is the hand position in the Cartesian space, T is the total duration of the movement

and D is the travelling distance of the hand.

According to Chang et al. (2005), the NMU variable is determined by: Firstly, searching for local

minima and maxima in the velocity profile; secondly, finding an increase in velocity between the adjacent

minimum and maximum that exceed a threshold of 10%. If the threshold of 10% is exceeded means that

occurs a movement unit.

Usually, in reaching movement, the value of NJS metric is less than 100 [Chang et al. (2005)]. Yet,

naturally, this value is higher when considering more complex movements [Gulletta et al. (2020)]. Similarly,

the NMU metric is typically 1 in reaching movements; however, a higher NMU value is expected when high

wrist rotations are necessary [Gulletta et al. (2020)].

The human-likeness of movements can also be evaluated qualitatively by the human operator. The

expected movements are natural, smooth, and pleasant, which contribute to a better human-robot inter-

90

action by its predictability and, additionally, enhancing the operator’s confidence and well-being [Schaal

(2007)]. Therefore, a user study would be useful for a more concise evaluation of the human-likeness of

robot movements.

7.3 Task: Quality inspection

The validation of the proposed trajectory generation method is performed in an assembler process

with a quality inspection context. The scenario used is only a demonstration of how this method can be

advantageous for several tasks in today’s industry.

The purpose of this task, Figure 7.2, is to pick up the boards from the pallet and assemble them in

the box on top of the conveyor. At the same time, the operator must inspect the board to guarantee that it

is suitable and in perfect condition to be assembled. This requires, from the operator, a manual rotation

of the board to verify all sides. According to its condition, the user or even assembles the board in the box

or places it into the faulty box, which is closed to the palette.

Figure 7.2: Quality inspection scene

Considering the human inspection, there are several properties of an object that may transform it into

an inadequate one for the following task, such as: texture, painting, size, format, and more. Naturally, the

requisites vary according to the next task, which could be an assembler process, painting, etc.

This task is tedious, heavy, and repetitive, which may negatively contribute to the human’s happiness

and well-being. As already explained, when a human performs constantly repetitive movements, it may

result in long term diseases. Therefore, to maintain the healthy life of the human workers, and at the same

91

time to improve the productivity of the task, we propose the implementation of the UR10 collaborative robot

with a vacuum gripper in the scene, Figure 7.2. Since the worker is working close to the robot and both

collaborate to complete the task, the human-likeness of robot movements has a tremendous impact on

the operator confidence, security, and productivity.

Figure 7.3: Quality inspection scene with human-robot collaboration

Figure 7.3 illustrates the validation task of the proposed method. In this scene, we can observe the

UR10 robot, two boxes, a pallet of boards, and a conveyor. The robot performs the critical and heavy tasks

before handling by the operator. This means that the main task of the robot is to constantly manipulate the

boards. On the other hand, the operator deals with the cognitive task, which is the definition of mandatory

points where the robot must pass during his trajectory. Thus, after picking up the board, the robot shows

it to the worker in the angles that he has selected. If the boards are suitable, the robot releases them

and the operator mounts the box on the conveyor. Otherwise, the robot places it in the ”faulty” box and

repeats the task for the following boards. Another important aspect is that, since it is the worker who sets

the mandatory crossing points and he knows the workspace environment, he can set strategic points to

avoid collisions if the workspace is restricted.

This task must be divided into 3 different movements (pick the plank; show to the operator; place it),

since it demands an interruption between them and the action of the vacuum gripper, which are thoroughly

described in subsection 7.3.1. The selection of the waypoints is explained in detail in subsection 7.3.2.

92

7.3.1 Task Description

In the validation task introduced in section 7.3, the human operator and the robot collaborate to

accomplish the task. The robot deals with all transportation and manipulation of objects. The operator,

in turn, is responsible for the cognitive tasks, which is the quality inspection and based on that decides

where the object should be placed. The user has the most important role, which is the definition of the

waypoints, i.e. the definition of mandatory points in the robot trajectory.

As presented in section 3.3, Martins de Sá (2018) divides a task into different movements: Pick,

Place and Move, and each movement is composed of different phases and states. For the case of this

project, since we deal with waypoints, all movements are classified as a Move movement. Note that a

Move movement corresponds to the trajectory from an initial to a final position, taking no account of the

grasp and ungrasp phases. When considering objects, this movement is equivalent to the transport

phase, where the robot transports the object from a position to another. This is easily seen when using a

vacuum gripper since it only demands action at the end of the movement. However, when considering a

finger gripper, the waypoints also include the gripper aperture, and thus the grasp and ungrasp phases

are embedded in the waypoints selection.

Hence, considering the task described in section 7.3, one can divide it in three phases: movement to

pick the plank; movement to show the plank to the operator; movement to place the plank;

Algorithm 7 Procedure to pick the plank
1: Home posture

2: Go to N waypoints

3: Go to Goal posture - Plank position from the pallet

4: Activate Vacuum Gripper

Algorithm 8 Procedure to show the plank

1: Final posture of Pick Movement (Algorithm 7 line 4)

2: Go to N waypoints

3: Go to Goal posture - Last waypoint

93

Algorithm 9 Procedure to place the plank

1: Final posture of Show Movement (Algorithm 8 line 3)

2: Go to N waypoints

3: Go to Goal posture - Faulty or Good Box

4: Deactivate Vacuum Gripper

5: Go to home posture

Firstly, considering the Pick movement (Algorithm 7), the operator must set the home posture of the

task, where the robot returns after each task cycle. The goal posture is also interpreted as waypoints,

however, since all boards are in different positions, the goal posture of the picking movement in each task

cycle must be different from the previous ones. For a pallet of 24 boards, one must have 24 goal postures

and perform 24 task cycles. Secondly, in the show movement, the robot starts its trajectory from the final

position of the picking movement (Algorithm 7 line 4), and crosses the waypoints defined by the operator.

The last waypoint defined is considered as the goal posture of the movement. Lastly, regarding the place

movement, the Motion Planner plans a trajectory starting from the final posture of show movement

(Algorithm 8 line 3) to the goal posture - Faulty or Good Box - and passing through N waypoints defined

by the operator. At the end of the movement, the robot releases the plank by deactivating the vacuum

gripper and then returns to the home posture of the task (Algorithm 7 line 1).

7.3.2 Waypoints definition

The key of this dissertation is the generation of a trajectory that passes through waypoints, which are

totally independent of the task. To define waypoints for each movement, as explained in Figure 7.1, the

user must use the Polyscope software built-in the UR10 teach pendant. By using this software the user

has the possibility to define waypoints by manipulating physically the robot or even using the built-in joystick

to move the joints individually or controlling the end-effector pose and consequently the joints position.

In order to physically grab the robot arm and pull it to the desired pose, the user must hold down the

Freedrive button (Figure 7.4).

The definition of waypoints demands the correlation between the Polyscope andMotion Manager

models, where the first allows the robot manipulation and the second deals with the acquisition of those

waypoints in the joint space. The communication between both modules is held by the ROS framework.

Figure 7.5 illustrates the Graphical User Interface built in the Motion Manager module, where it is

possible to obtain the waypoints. Regarding this platform, the button Add waypoint is used to define the

94

Figure 7.4: Universal Robots Graphical Programming Environment

waypoints of a movement, by enabling the connection to Polyscope, reads the robot’s joints values and

displays the result in the box above. The operator must define the action of the gripper at the end of the

movement with the button Vacuum On/Off. Once these steps are defined the user must give a name

to the movement (e.g. pick), and the button, Add Movement merges the waypoints, name and gripper

action to the movement. The procedure should be repeated until all movements are determined, and once

concluded, the user must click on the button End Task. Then, the waypoints are defined and ready to be

sent to the Motion Planner module, which computes the joints trajectory.

95

Figure 7.5: Motion Manager Environment for defining waypoints

7.4 Movements and Results Achieved

There are an infinite possible set of waypoints the user could define to accomplish the task 7.3.1.

Programming a task through waypoints is flexible, intuitive, and easy to use. The user has a direct inter-

vention on the robot trajectory and can easily program a new task by physically manipulating the robot.

When defining waypoints, it should be taken into account the environment scene, i.e. the obstacles in the

workplace; the robot joint limits; the complexity of the task; and the critical positions of the trajectory.

The first step is the definition of a home posture, table 7.1, where the robot starts and returns in each

task cycle, Figure 7.6.

Table 7.1: Home posture of the UR10 robot for the task 7.3.1

Joints θ1 θ2 θ3 θ4 θ5 θ6

Deg −180 −80 −130 −60 90 0

The experiments in the following subsections are only an example of how the proposed method could

be applied. The movement Pick is defined by 3 waypoints and the vacuum action activated at the end

of the movement; the movement Show is defined by 6 waypoints, with 3 critical angle inspection points;

96

Figure 7.6: Posture where the robot starts and returns in each task cycle

and finally, the movement place is also composed of 3 waypoints followed by the vacuum deactivation.

7.4.1 Pick Movement

In order to plan the Pick movement, simple sequences of waypoints, Figure 7.7, were addressed

to maintain the focus on the human-likeness of the robot movement. As explained in the section 7.3.1,

the home pose is considered the first waypoint (Figure 7.7a), and the board position is the last waypoint

(Figure 7.7c). The second waypoint, Figure 7.7b, guarantees that the robot approaches the board in the

z-axis. In this dissertation, the waypoint that corresponds to the board position is defined manually by the

user. Further on, in section 8.1, it will be explained how this could be automated with no human action

required.

Table 7.2: Waypoints to accomplish the show movement in the task 7.3.1

θ1 θ2 θ3 θ4 θ5 θ6

θwp1 −180 −80 −130 30 90 0

θwp2 −155.71 −41.12 −86.43 38.05 89.79 −66.71

θwp3 −155.71 −51.24 −87.32 49.05 89.79 −66.71

The defined waypoints, table 7.6, are the input of the Motion Planner module. Firstly is determined

the duration of the movement by means of equation 6.58. Then, the time when the robot passes through

each waypoint, equation 6.51, is computed followed by the Human-like trajectory, equation 6.48.

As we can observe from Figure 7.8, the executed movement to pick the board presents similar proper-

ties to the experiments in upper-limb movements. The movement is defined by a uni-modal velocity shape

97

(a) First waypoint (b) Second waypoint

(c) Third waypoint

Figure 7.7: Waypoints sequence of the pick movement

98

profile (Figure 7.8b) and a curved path (Figure 7.8a). Particularly, all joints present a smooth movement

with no jerk pikes, as demonstrated by Figure 7.9. Quantitatively, considering the human-like evaluation

metrics introduced in section 7.2, the Normalised Jerk Score (NJS) is 41.75 and the Number of Movement

Units (NMU) is 1, which confirms the human-likeness and the smoothness of the movement. The total

duration of the movement is 9.9 seconds, and the planning solving time is 0.49 seconds. Furthermore,

the robot achieves the waypoint θwp2 at time 7.3 seconds.

Table 7.3: Results of the movement pick planning

NMU NJS Solving Time (ms) Movement Duration (sec)

1 41.75 490 9.9

(a) Hand position
(b) Hand velocity

Figure 7.8: Position and velocity of the hand during the pick movement. The waypoint position is marked

by the dashed line.

Regarding the precision of the planner, the robot achieved the waypoint with an error in the average

of 0.96%. More specifically, table 7.5 shows the absolute error between the joints Expected and Cal-

culated, [0.17, 1.27, 0.22, 1.95, 0, 0.46], with an average of 0.68 degrees. This error corresponds to a

distance of the robot hand position on a scale of [2.94, 4.46,−17.17]mm, table 7.4. Note that the first

and last waypoint, i.e, the initial and final pose, are always accomplished with 100% of precision.

99

(a) Joint 1 (b) Joint 2

(c) Joint 3 (d) Joint 4

(e) Joint 5 (f) Joint 6

Figure 7.9: Joint position(black line), velocity(red line) and acceleration(blue line) profile during the pick

movement. The waypoint is marked with a dashed line.

100

Table 7.4: Comparison between the expected and the calculated robot hand pose at the waypoints

Waypoint xe[mm] ye[mm] ze[mm] Roll(γ) Pitch(βe) Yaw(αe)

θwp2

Expected

Calculated

Absolute Error

955.29

952.35

2.94

250.39

245.93

4.46

789.45

806.62

-17.17

1.59

1.58

0.01

0.0

0.0

0.0

3.13

3.13

0.0

Table 7.5: Comparison between the expected and the calculated robot joints values at the waypoints

Waypoint θ1 θ2 θ3 θ4 θ5 θ6 Error °

θwp2

Expected

Calculated

Absolute Error

-155.71

-155.88

0.17

-41.12

-39.85

1.27

-86.43

-86.65

0.22

38.05

37.00

1.05

89.79

89.79

0.0

-66.71

-66.25

0.46

0.53

7.4.2 Show Movement

To plan the show movement, the waypoints in table 7.2 were defined. As explained in section 7.3.1, the

first waypoint of the show movement (Figure 7.10a) is the last waypoint of the Pick movement. The second

waypoint, Figure 7.10b, is a safety waypoint to define a retreat phase in the z-axis and avoid collisions

when removing the board from the palette. The following waypoints are set in critical positions to inspect

the boards. Thus, the third and fourth waypoints, Figure 7.10c and 7.10d, are set to inspect the left and

right lateral of the board, respectively. The fifth waypoint, Figure 7.10e, is defined to observe the top of the

board, and, finally, the sixth waypoint, Figure 7.10e, allows the inspection of the button part of the board.

101

Table 7.6: Waypoints to accomplish the show movement in the task 7.3.1

θ1 θ2 θ3 θ4 θ5 θ6

θwp1 -155.71 -51.24 -87.32 49.05 89.79 -66.71

θwp2 -154.46 -41.97 -85.03 35.65 89.77 -65.46

θwp3 -105.79 -27.80 -65.86 12.11 113.33 30.02

θwp4 -48.82 -24.91 -73.13 30.95 78.15 -31.63

θwp5 -68.88 -28.02 -63.02 2.51 86.55 19.51

θwp6 -64.71 -35.60 -79.25 148.72 67.02 -15.35

The defined waypoints, table 7.2, are the input of the Motion Planner module. Firstly is determined

the duration of the movement by means of equation 6.58. Then, the time when the robot passes through

each waypoint, equation 6.51, is computed followed by the Human-like trajectory, equation 6.48.

As we can observe from Figure 7.11, the executed movement to pick the board presents similar proper-

ties to the experiments in upper-limb movements. The movement is defined by a multi bell-shaped velocity

profile (Figure 7.11b) and a curved path (Figure 7.11a). Particularly, all joints present a smooth movement

with no jerk pikes and a bell-shaped velocity profile, as demonstrated by Figure 7.12. Quantitatively, con-

sidering the human-like evaluation metrics introduced in section 7.2, the Normalised Jerk Score (NJS)

is 349.76 and the Number of Movement Units (NMU) is 1, which confirms the human-likeness and the

smoothness of the movement. The successive bell-shaped peaks in the hand velocity profile are caused by

the high rate of change in hand orientation demanded by the waypoints. A similar event is often observed

in humans, especially when avoiding collisions with obstacles [Gulletta et al. (2020)]. Additionally, the total

duration of the movement is 9.9 seconds, and the planning solving time is 1.26 seconds. Furthermore,

the robot achieves θwp2 at 3.7 seconds, θwp3 at 12.15 seconds, θwp4 at 20.59 seconds and θwp5 at

24.82 seconds.

Table 7.7: Results of the movement pick planning

NMU NJS Solving Time (ms) Movement Duration (sec)

1 349.76 1245 32.21

102

(a) First waypoint (b) Second waypoint

(c) Third waypoint (d) Fourth waypoint

(e) Fifth waypoint (f) Sixth waypoint

Figure 7.10: Waypoints sequence of the show movement

103

(a) Hand position
(b) Hand velocity

Figure 7.11: Position and velocity of the hand during the show movement.

Regarding the precision of the planner, the robot achieved the waypoints θwp2,θwp3,θwp4 and θwp5

with an error in average of 0.43%, 1.05%, 1.3% and 1.05%, respectively. More specifically, table 7.9 shows,

for each waypoint, the absolute error between the Expected and Calculated value of all joints. The joints

error in second waypoint is [0.13, 0.61, 0.22, 1.01, 0.12, 0.49], which corresponds to a distance of the

robot hand position in a scale of [1.18, 2.40, 10.58]mm, table 7.8. The joints error in the third waypoint

is [3.4, 0.12, 0.1, 2.11, 0.49, 0.09], which corresponds to a distance of the robot hand position in a scale

of [38.9, 22.84, 1.32]mm. The joints error in the fourth waypoint is [0.71, 0.05, 0.69, 3.96, 0.2, 2.17],

which corresponds to a distance of the robot hand position in a scale of [15.13, 0.94, 3.12]mm. The

joints error in the fifth waypoint is [1.29, 0.53, 0.08, 1.23, 0.7, 2.47], which corresponds to a distance of

the robot hand position in a scale of [15.47, 19.91, 0.47]mm. Note that the first and last waypoint, i.e,

the initial and final pose, are always accomplished with 100% of precision.

104

(a) Joint 1 (b) Joint 2

(c) Joint 3 (d) Joint 4

(e) Joint 5 (f) Joint 6

Figure 7.12: Joint position(black line), velocity(red line) and acceleration(blue line) profile during the show

movement. The waypoints are marked by dashed lines.

105

Table 7.8: Comparison between the expected and the calculated robot hand pose at the waypoints

Waypoint xe[mm] ye[mm] ze[mm] Roll(γ) Pitch(βe) Yaw(αe)

θwp2

Expected

Calculated

Absolute Error

952.86

954.04

1.18

272.65

270.25

2.40

784.11

773.53

10.58

1.59

1.59

0

0.01

0.01

0

-3.12

-3.13

0.01

θwp3

Expected

Calculated

Absolute Error

352.44

391.34

38.9

937.76

914.92

22.84

1216.48

1215.16

1.32

0.82

0.77

0.5

0.07

0.10

0.03

-2.72

-2.72

0

θwp4

Expected

Calculated

Absolute Error

-508.99

-524.12

15.13

893.96

893.02

0.94

1216.07

1219.19

3.12

2.85

2.9

0.05

-0.23

-0.26

0.03

2.76

2.71

0.05

θwp5

Expected

Calculated

Absolute Error

-188.94

-204.41

15.47

978.17

958.26

19.91

1209.31

1209.78

0.47

1.60

1.67

0.07

-0.04

0.01

0.03

-3.09

3.07

0.02

106

Table 7.9: Comparison between the expected and the calculated robot joints values at the waypoints.

Waypoint θ1 θ2 θ3 θ4 θ5 θ6 Error °

θwp2

Expected

Calculated

Absolute Error

-154.46

-154.59

0.13

-41.97

-42.58

0.61

-85.03

-85.25

0.22

35.65

36.66

1.01

89.77

89.65

0.12

-65.46

-65.95

0.49

0.43

θwp3

Expected

Calculated

Absolute Error

-105.79

-108.39

3.4

-27.80

-27.68

0.12

-65.86

-65.76

0.1

12.11

10.00

2.11

113.22

113.71

0.49

30.02

30.11

0.09

1.05

θwp4

Expected

Calculated

Absolute Error

-48.82

-48.11

0.71

-24.91

-24.96

0.05

-73.13

-73.82

0.69

30.95

34.91

3.96

78.15

77.95

0.20

-31.63

-33.80

2.17

1.3

θwp5

Expected

Calculated

Absolute Error

-68.88

-67.59

1.29

-28.02

-27.49

0.53

-63.02

-63.10

0.08

2.51

-1.28

1.23

86.55

86.48

0.7

19.51

17.04

2.47

1.05

7.4.3 Place Movement

The place movement is performed after the show movement and in accordance with what the operator

decides. More specifically, if the inspected board is in good conditions, the operator approves it and the

board is placed in the box in front of the operator. Otherwise, if the board is faulty, it should be placed into

the other box next to the robot. Thus, the place movement is divided into two types: Place Approved

and Place Faulty. The Place Approved is the movement to place the approved board after inspection,

and the Place Faulty is the movement to place the rejected board in the inspection phase.

To plan both movements, simple sequences of waypoints, Figure 7.14 and 7.17, were addressed to

maintain the focus on the human-likeness of the robot movement. As explained in section 7.3.1, the first

waypoint of the place movement (Figure 7.13a and 7.16a) is the last waypoint of the show movement.

Therefore, the movements Place Approval and Place Faulty have the first waypoint in common. Both

movements have similar waypoints, i.e. the second waypoint (Figure 7.13b and 7.16b) in both movements

is for safety reasons, which addresses the approach phase, in the z-axis, and guarantees no collisions with

107

the box. The third waypoint, 7.13c and 7.16c, is set to release the board in that position. When the robot

achieves the last waypoint, the vacuum action is deactivated.

Place Approval

Table 7.10: Waypoints to accomplish the Place Approved movement in the task 7.3.1

θ1 θ2 θ3 θ4 θ5 θ6

θwp1 -64.71 -35.60 -79.25 148.72 67.02 -15.35

θwp2 -72.30 -19.58 -92.11 19.99 88.95 16.12

θwp3 -72.86 -34.29 -104.37 46.96 88.96 16.40

(a) First waypoint (b) Second waypoint

(c) Third waypoint

Figure 7.13: Waypoints sequence of the place approved movement

108

As we can observe from Figure 7.14, the executed movement to place the board presents similar

properties to the experiments in upper-limb movements. The movement is defined by a bell-shape velocity

profile (Figure 7.14b) and a curved path (Figure 7.14a). Particularly, all joints present a smooth movement

with no jerk pikes, also with bell-shaped velocity profile, as demonstrated by Figure 7.15. Quantitatively,

considering the human-like evaluation metrics introduced in section 7.2, the Normalised Jerk Score (NJS)

is 70.30, which confirms the smoothness of the movement. The Number of Movement Units (NMU) is

1, which is the same as the observed in upper-limb movements. The total duration of the movement is

13.5 seconds, and the planning solving time is 0.53 seconds. Furthermore, the robot achieves the second

waypoint, θwp2, at 9.50 seconds.

Table 7.11: Planning results of the movement place

NMU NJS Solving Time (ms) Movement Duration (sec)

1 70.30 530 13.5

(a) Hand position (b) Hand velocity

Figure 7.14: Position and velocity of the hand during the Place Approved movement.

Regarding the precision of the planner, the robot achieved the waypoint with an error in the average

of 0.6%. More specifically, table 7.13 shows the absolute error between the joints Expected and Calcu-

lated, [0.11, 1.01, 1.04, 0.99, 0.18, 0.28], with an average of 0.6 degrees. This error corresponds to a

distance of the robot hand position on a scale of [1.25, 0.87, 24.8]mm, table 7.12. Note that the first and

last waypoint, i.e, the initial and final pose, are always accomplished with 100% of precision.

109

(a) Joint 1 (b) Joint 2

(c) Joint 3 (d) Joint 4

(e) Joint 5 (f) Joint 6

Figure 7.15: Joint position (black line), velocity (red line) and acceleration (blue line) profile during the

Place Approved movement. The waypoint θwp2 is marked by a dashed line.

110

Table 7.12: Comparison between the expected and the calculated robot hand pose at waypoint θwp2 of the

Place Approved movement.

Waypoint xe[mm] ye[mm] ze[mm] Roll(γ) Pitch(βe) Yaw(αe)

θwp2

Expected

Calculated

Absolute Error

-97.61

-98.86

1.25

857.45

858.32

0.87

1037.85

1062.43

24.8

1.6

1.61

0.01

0.02

0.01

0.01

3.12

3.12

0.0

Table 7.13: Comparison between the expected and the calculated robot joints values at waypoint θwp2 of

the Place Approved movement.

Waypoint θ1 θ2 θ3 θ4 θ5 θ6 Error °

θwp2

Expected

Calculated

Absolute Error

-72.30

-72.19

0.11

-19.58

-18.59

1.01

-92.11

-91.07

1.04

19.99

19.00

0.99

88.95

88.77

0.18

16.12

15.84

0.28

0.6

Place Faulty Movement

Table 7.14: Waypoints to accomplish the Place Faulty movement in the task 7.3.1

θ1 θ2 θ3 θ4 θ5 θ6

θwp1 -64.71 -35.60 -79.25 148.72 67.02 -15.35

θwp2 -261.10 -33.62 -107.53 52.41 87.85 -84.63

θwp3 -261.10 -55.80 -104.68 71.74 87.85 -84.63

111

(a) First waypoint (b) Second waypoint

(c) Third waypoint

Figure 7.16: Waypoints sequence of the place approved movement

As we can observe from Figure 7.17, the executed movement to place the board presents similar

properties to the experiments in upper-limb movements. The movement is defined by a bell-shape velocity

profile (Figure 7.17b) and a curved path (Figure 7.17a). Particularly, all joints present a smooth movement

with no jerk pikes, also with bell-shaped velocity profile, as demonstrated by Figure 7.18. Quantitatively,

considering the human-like evaluation metrics introduced in section 7.2, the Normalised Jerk Score (NJS)

is 185.36 and the the Number of Movement Units (NMU) is 1, which is the same as the observed in upper-

limb movements and confirms the smoothness of the movement. The total duration of the movement is

14.9 seconds, and the planning solving time is 0.54 seconds. Furthermore, the robot achieves the second

waypoint, θwp2, at 9.84 seconds.

112

Table 7.15: Planning results of the movement Place Faulty

NMU NJS Solving Time (ms) Movement Duration (sec)

1 185.36 540 14.9

(a) Hand position (b) Hand velocity

Figure 7.17: Position and velocity of the hand during the Place Faulty movement.

Regarding the precision of the planner, the robot achieved the waypoint with an error in the average of

0.81%. More specifically, table 7.17 shows the absolute error between the joints Expected and Calcu-

lated, [1.86, 1.13, 0.12, 0.91, 0.2, 0.66], with an average of 0.81 degrees. This error corresponds to a

distance of the robot hand position on a scale of [27.11, 4.56, 16.98]mm, table 7.16. Note that the first

and last waypoint, i.e, the initial and final pose, are always accomplished with 100% of precision.

Table 7.16: Comparison between the expected and the calculated robot hand pose at waypoint θwp2 of the

Place Faulty movement.

Waypoint xe[mm] ye[mm] ze[mm] Roll(γ) Pitch(βe) Yaw(αe)

θwp2

Expected

Calculated

Absolute Error

-42.91

-15.80

27.11

-834.79

-839.35

4.56

742.98

759.96

16.98

0.06

0.08

0.02

0.04

0.04

0.00

3.12

3.10

0.02

113

(a) Joint 1 (b) Joint 2

(c) Joint 3 (d) Joint 4

(e) Joint 5 (f) Joint 6

Figure 7.18: Joint position (black line), velocity (red line) and acceleration (blue line) profile during the

Place Faulty movement. The waypoint θwp2 is marked by a dashed line.

114

Table 7.17: Comparison between the expected and the calculated robot joints values at waypoint θwp2 of

the Place Faulty movement.

Waypoint θ1 θ2 θ3 θ4 θ5 θ6 Error °

θwp2

Expected

Calculated

Absolute Error

-261.10

-259.24

1.86

-33.62

-32.49

1.13

-107.53

-107.41

0.12

52.41

52.32

0.91

87.85

87.65

0.2

-84.63

-83.97

0.66

0.81

7.4.4 Task Results

The concatenation of the movements defines the overall task. In Figure 7.19 and Figure 7.20, one

can observe hand velocity profile and trajectory since the home pose until the placement of the board in

the box in front of the operator, and in the faulty box, respectively. Since the robot starts and finishes the

task in the home posture, the initial and final hand position correspond to the same point in the space

(Figure 7.19a and 7.20a). The velocity hand profile, represented in Figure 7.19b and Figure 7.20b, clearly

shows that vacuum activation and deactivation defines the phases of the movement. These occurrences

are the points in time during the entire task execution when the hand come to rest.

(a) Hand position (b) Hand velocity

Figure 7.19: Position and velocity of the hand during the task

115

(a) Hand position (b) Hand velocity

Figure 7.20: Position and velocity of the hand during the task

7.5 Discussion

The validation of the trajectory planning through waypoints method is processed in a quality inspection

task, where the user selects the critical points of the robot posture. The waypoints allow the human

operator to easily program a new task with no necessary previous deep knowledge about robot kinematics

and trajectory planning. The resultant movements are, as pretended, smooth, pleasant, intuitive, and

easily understandable. Besides, this method is efficient, robust, and highly flexible since it can compute

a trajectory crossing N waypoints for a robot with K degrees of freedom.

The trajectory planner achieves similar results observed to those seen in upper-limb experiments in

areas of psychology and neuroscience. In summary, these properties are associated with bell-shaped

velocity profile [Flash and Hogan (1985); Rosenbaum et al. (1995, 2001); Wada and Kawato (2004)];

decomposition of hand movement in sub-movements [Burdet et al. (2013)]; a low value of Normalised

Jerk Score (NJS), which corresponds to a smooth movement of the hand [Flash and Hogan (1985)]; the

existence of one movement unit (NMU), or even more in case of significant rotation of the joint wrist, or

when avoiding obstacles [Rosenbaum et al. (2001),Gulletta et al. (2020)].

The robot’s hand and joints performs a smooth movement with bell-shaped velocity profiles in the

entire task. The maximum NJS obtained was 349.76 in the show movement, which is very acceptable

due to the complexity of the task. Interestingly, in movement show we observe more than one bell shaped

peak in the hand velocity profile, however we still obtain a NMU of 1. This happens due to the threshold of

10% defined to determine number of movement units. Nevertheless, more than one bell-shaped peak are

116

usually observed when considering obstacle avoidance. Here, we do not deal with obstacles, but we have

waypoints, which are constraints in the path. The reason for the peaks in velocity profile is the high rate

of wrist rotation demanded by the waypoints (Figure 7.10). Hence, these movements follow human-like

metrics observed in human experiments; however, we can not affirm that the movements are absolutely

human-like, since there are no experiments of human’s movements considering waypoints.

By planning different movements, we conclude the results presented are directly affected by: the com-

plexity of the movement; the number of waypoints; selection and disposition in the space of the waypoints;

kinematics of the robot, specifically, the number of degrees of freedom. The complexity of the system

increases significantly as the number of waypoints increases, and, naturally, the degrees of freedom. This

can be easily understood when analysing sections 6.1.3 and 6.1.2. The algorithms are defined by recur-

sive processes, which compute the Lagrange multipliers and when all waypoints are achieved. Thus, the

system becomes more numerically expensive with more waypoints and degrees of freedom. Note that to

our best knowledge, this approach is the most efficient. Therefore, a good selection of waypoints is of

utmost importance to avoid non-critical trajectory positions and thus optimise performance. Besides the

number of waypoints that may overload the system, the user must also be aware of their position in space.

For safety, and no risk of collision, no waypoint should be set close to objects. In other words, the user

must take into consideration the planning precision, i.e., the planner is acceptably precise, but still not

completely.

Also important, the resultant joint trajectories from the planner are not monotonic. This can be ob-

served in figures 7.9, 7.12, 7.15, and 7.18. For instance, Figure 7.15b illustrates this clearly; the initial and

final joint positions are−35, while the waypoint is−20. What would be expected for a monotonic function

is a constant growth of the function followed by a constant decrease after the waypoint. However, before

the waypoint, the joint increases to −15 and then decrease to −20. In a two-point trajectory planning,

the result is a monotonic function, where the joint value during the whole path constantly increases or

decreases. However, the goal here is different; there are mandatory points to be passed through, and this

restricts the planning method. The whole trajectory is computed with the concatenation of multiple tra-

jectory segmentation’s, however, each segmentation takes into account a coefficient (Lagrange multiplier)

that represents all waypoints of the trajectory (refer to section 6.1.1 and equation 6.27). Thus, the planner

returns the optimal path with the lowest joint jerk variations from the initial to the final positions passing

through some mandatory points in between. Hence, to achieve this, a non-monotonic function may be

necessary. The major practical consequence of the non-monotonic joint evolution is the risk of exceeding

the robot joints limits. To avoid this event, a safety high-level verification is addressed to the planner.

117

Furthermore, another point to be considered is the execution time expended by this method. For in-

stance, the show movement (refer to 7.4.2) takes 32.21 seconds, and the overall task to pick, inspect,

and place the board takes approximately 70 seconds to be completed. Therefore, the resulting time is

presumably expensive. Still, the execution time is influenced by many factors such as: computer Central

Processor Unit (CPU) used to obtain the numeric results; the number of waypoints; selection and dispo-

sition in the space of the waypoints. Probably, a human operator would not need 70 seconds to perform

such a task.

Hence, a user study would be necessary to get human experiments using waypoints for a more rea-

soned and critique description regarding the execution time and the overall robot motion.

118

Part VI

Conclusion

119

Chapter 8

Conclusion and Future Work

The emergence of industry 4.0 demands more autonomy and flexibility of the current industry. As a

consequence, robotics has advanced and changed according to the needs of society. To address these

needs, the research community proposed collaborative robots, which are are safe, easy-to-use and easy-

to-program, and foremost are capable of sharing the workspace with human operators. Its programming

is mainly achieved by recording and executing thereafter the demonstrations of human operators, which

facilitates the operators effort when programming a task. These robots are considerably advantageous

compared to traditional robots, and attend many requisites of industry 4.0. However, industry 5.0 is

already coming and many authors predict that robots will live and constantly cooperate with humans in

their daily routines. Thus, the performance of more pleasant, smooth, and predictable movements are

required [Gulletta et al. (2020)].

The trajectory planning methods (chapter 3) currently used in industry are focused on the efficiency

and computational cost. However, the industry still does not have any method capable of computing

human-like trajectories, and more specifically, human-like trajectories through waypoints.

The proposed trajectory planning method presented in chapter 6 includes a set of characteristics

associated with the behaviour of a human’s arm observed in experiments. Considering the research of

Martins de Sá (2018) and Gulletta et al. (2021), which defined all movements in pick, place and move,

here we consider each movement through waypoints as amove movement. The planner takes inspiration

from: (i) kinesthetic teaching programming method and (ii) upper-limb kinematic features observed in

human arm movements. Particularly, this dissertation extends the Flash and Hogan (1985) approach,

which presents a mathematical model that predicts experiments of coordination of voluntary human arm

movements in unconstrained point-to-point motion and curved motions (through a mandatory waypoint in

between). The proposed method considers N waypoints in between the initial and final points (instead of

120

only 1 waypoint), transfers the human’s movements knowledge to robotics and minimzes the variation of

K joints acceleration (instead of only the variation of hand acceleration). Mathematically, as explained in

chapter 5, the trajectory is accomplish by solving an optimization problem where the criteria function is the

time integral of the third derivative of the joints position, with the addition of Lagrange multipliers, which

are constants calculated and represent the restrictions imposed by the waypoints. This problem is known

as a dynamic optimization problem with interior point equality constraints, and it is solved using concepts

of dynamic optimization theory and optimal control theory, especially, Pontryagin method [Pontryagin

(1986)]. All code related to this dissertation, including the planner and simulation modules, is readily

available for free access 1.

The properties observed in upper-limb experiments in areas of psychology and neuroscience are as-

sociated with bell-shaped velocity profile [Flash and Hogan (1985); Rosenbaum et al. (1995), Rosenbaum

et al. (2001), Wada and Kawato (2004)]; decomposition of hand movement in sub-movements [Burdet

et al. (2013)]; a low value of Normalised Jerk Score (NJS), which corresponds to a smooth movement of

the hand [Flash and Hogan (1985)]; the existence of one movement unit (NMU), or even more in case of

significant rotation of the joint wrist, or when avoiding obstacles [Rosenbaum et al. (2001),Gulletta et al.

(2020)].

The validation of the proposed method (chapter 7) is accomplished in the context of an assembler

process with quality inspection. Previously, the operator’s job was to take boards from a pallet and assem-

ble them in the box on top of the conveyor. At the same time, the operator also had to inspect them to

ensure they were suitable and in perfect condition for assembly. Thus, to improve the operators’ quality

of life, and optimize the production time and quality, we implement a collaborative robot UR10 (chapter

4) capable of generating predictable and understandable trajectories. The robot becomes responsible for

constantly manipulating the boards, which are repetitive and heavy tasks; the operator, on the other hand,

deals with the cognitive task, which is the definition of mandatory points where the robot must pass during

his trajectory. In this scene, these mandatory points are defined as eye-angles to observe and inspect the

boards without the need to rotate them manually.

The programming approach through waypoints is intuitive, easy-to-use, and essentially easy-to-program.

It is so simple as defining mandatory robot postures in the trajectory by manipulating the robot physically

or by the help of a joystick, that even a non-expert operator with no previous knowledge regarding pro-

gramming methods or robot kinematics are demanded for programming a new task.

Regarding the objectives mentioned, the planner allows the performance of smooth, fluent and in-

1https://github.com/JoaoQPereira

121

tuitive movements through the previously defined waypoints by the operator, as one can confirm from

the obtained movements for good 2 and faulty 3 boards in the Coppellia simulation environment. Thus,

human satisfaction, well-being, and productivity are enhanced by the performance of comprehensible and

predictable during the task.

Despite the good results of the hand profile, we can not absolutely affirm that the resultant move-

ments are human-like since there are no experiments in humans with waypoints. Nevertheless, as already

mentioned, the resultant movements include essential properties of human’s movements.

By planning different movements, we conclude that the results presented are directly affected by:

the complexity of the movement; the number of waypoints; selection and disposition in the space of the

waypoints; kinematics of the robot, specifically, the number of degrees of freedom. The complexity of the

system increases significantly as the number of waypoints and the degrees of freedom increases.

8.1 Future Work

The accomplished results are highly satisfactory, however, there are some points to improve and to

complete in future work. Starting from the validation of the trajectory planner, in this dissertation it was

only possible to realise experiments in a simulation environment scene. Thus, experiments in reality with

the real robot would be necessary and interesting for a future work. Still, the transfer from the simulation

to reality should be straightforward and the expected results are the same.

Regarding the accuracy of the planner, the error of the joint position is sometimes considerable in the

first joint, which then propagates the error to the others joints. The maximum observed was an error of

3.4 degrees in θ1. This error, for many tasks is irrelevant; however, for a task where the precision and

accuracy are mandatory, this is at least inconvenient.

Additionally, the calculation of the time when the robot passes through each waypoint is determined

by using the library fsolve, implemented in python. This solution is practical and effective, however a

complete solution in c++ would be robust and faster.

The selection of waypoints has a high impact on the resultant robot movement. The waypoints can

be defined through the joystick embedded in the UR10 UI poyscope, or by physically manipulating the

robot and setting mandatory positions during the task. Thus, a good knowledge regarding the workplace

and robot kinematics are useful when defining waypoints. Therefore, a user study would be necessary to

evaluate the intuitiveness, efficiency, and usability of the programming method through waypoints.

2https://youtu.be/aX8ifqhSzqA
3https://youtu.be/J-V-WMKI5mE

122

https://youtu.be/aX8ifqhSzqA
https://youtu.be/J-V-WMKI5mE

Since there are no experiments of human movements through waypoints, we could not completely

affirm the human-likeness of the resultant trajectories. Thus, it would be necessary observe the behaviour

of human’s movements through waypoints and a user study to evaluate the co-worker’s confidence and

psychology stress when working along side the robot and, also important, evaluate if the movements are

smooth and predictable.

123

Bibliography

Abdel-Malek, K., Mi, Z., Yang, J., and Nebel, K. (2006). “Optimization-based trajectory planning of the
human upper body.” Robotica, 24(6), 683–696.

Aggogeri, F., Amici, C., and Pellegrini, N. (2020). “Dual control for jerk-driven robotics in rehabilitative
planar applications.” Micromachines, 11(2), 141.

Akgun, B., Cakmak, M., Yoo, J. W., and Thomaz, A. L. (2012). “Trajectories and keyframes for kines-
thetic teaching: A human-robot interaction perspective.” HRI’12 - Proceedings of the 7th Annual
ACM/IEEE International Conference on Human-Robot Interaction, 391–398.

Albrecht, S., Ramírez-Amaro, K., Ruiz-Ugalde, F., Weikersdorfer, D., Leibold, M., Ulbrich, M., and Beetz, M.
(2011). “Imitating human reaching motions using physically inspired optimization principles.” IEEE-
RAS International Conference on Humanoid Robots, 602–607.

Andersen, R. S. (2018). “Kinematics of a UR5.” Aalborg University, May 2018, 1–12.

Barre, P.-J., Bearee, R., Borne, P., and Dumetz, E. (2005). “Influence of a jerk controlled movement law on
the vibratory behaviour of high-dynamics systems.” Journal of Intelligent and Robotic Systems,
42(3), 275–293.

Bearee, R., Barre, P.-J., and Hautier, J.-P. (2005). “Vibration reduction abilities of some jerk-controlled
movement laws for industrial machines.” IFAC Proceedings Volumes, 38(1), 796–801.

Ben-Ari, M., Mondada, F., Ben-Ari, M., and Mondada, F. (2018). “Kinematics of a Robotic Manipulator.”
Elements of Robotics, 267–291.

Biagiotti, L. and Melchiorri, C. (2008). Trajectory planning for automatic machines and robots.
Springer Science & Business Media.

Bloss, R. (2016). “Collaborative robots are rapidly providing major improvements in productivity, safety,
programing ease, portability and cost while addressing many new applications.” Industrial Robot:
An International Journal.

Bobrow, J. E., Dubowsky, S., and Gibson, J. S. (1985). “Time-optimal control of robotic manipulators along
specified paths.” The international journal of robotics research, 4(3), 3–17.

Boesl, D. B. and Liepert, B. (2016). “4 robotic revolutions-proposing a holistic phase model describing
future disruptions in the evolution of robotics and automation and the rise of a new generation ‘r’of
robotic natives.” 2016 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), IEEE, 1262–1267.

Bohlin, R. and Kavraki, L. E. (2000). “Path planning using lazy prm.” Proceedings 2000 ICRA.Millen-
nium Conference. IEEE International Conference on Robotics and Automation. Symposia
Proceedings (Cat. No. 00CH37065), Vol. 1, IEEE, 521–528.

124

Bortot, D., Born, M., and Bengler, K. (2013). “Directly or on detours? how should industrial robots
approximate humans?.” 2013 8th ACM/IEEE International Conference on Human-Robot In-
teraction (HRI), IEEE, 89–90.

Brooks, R. A. and Lozano-Perez, T. (1985). “A subdivision algorithm in configuration space for findpath
with rotation.” IEEE Transactions on Systems, Man, and Cybernetics, (2), 224–233.

Bryson, A. E. and Ho, Y.-C. (1975). Applied Optimal Control, Vol. 21. Taylor Francis, New York.

Burdet, E., Franklin, D. W., and Milner, T. E. (2013). Human Robotics: Neuromechanics and Motor
Control. The MIT Press, London.

Carfì, A., Villalobos, J., Coronado, E., Bruno, B., and Mastrogiovanni, F. (2019). “Can Human-
Inspired Learning Behaviour Facilitate Human–Robot Interaction?.” International Journal of Social
Robotics, (April).

Chachuat, B. (2016). “OPTIMIZATION From Theory to Practice.” (August).

Chang, J. J., Wu, T. I., Wu, W. L., and Su, F. C. (2005). “Kinematical measure for spastic reaching in
children with cerebral palsy.” Clinical Biomechanics, 20(4), 381–388.

Chang, J.-J., Yang, Y.-S., Lan-Yuen, G., Wen-Lan, W., and Fong-Chin, S. (2008). “Differences in Reach-
ing Performance Between Normal Adults and Patients Post Stroke-A Kinematic Analysis.” Journal of
Medical and Biological Engineering, 3–8.

Clarke, R. (1994). “Asimov’s laws of robotics: Implications for information technology. 2.” Computer,
27(1), 57–66.

Constantinescu, D. and Croft, E. A. (2000). “Smooth and time-optimal trajectory planning for industrial
manipulators along specified paths.” Journal of robotic systems, 17(5), 233–249.

Craig, . (1986). Introduction to robotics : mechanics & control. Addison-Wesley Pub. Co.„ Reading,
Mass. Includes bibliographies and index.

Dehghani, S. and Bahrami, F. (2020). “3D human arm reaching movement planning with principal patterns
in successive phases.” Journal of Computational Neuroscience, 48(3), 265–280.

Deloitte (2005). “Made-to-order: The rise of mass personalisation.

El Zaatari, S., Marei, M., Li, W., and Usman, Z. (2019). “Cobot programming for collaborative industrial
tasks: An overview.” Robotics and Autonomous Systems, 116(June), 162–180.

Elbanhawi, M. and Simic, M. (2014). “Sampling-based robot motion planning: A review.” Ieee access,
2, 56–77.

Emadi Andani, M. and Bahrami, F. (2012). “COMAP: A new computational interpretation of human move-
ment planning level based on coordinated minimum angle jerk policies and six universal movement
elements.” Human Movement Science, 31(5), 1037–1055.

FarzanehKaloorazi, M. H. and Bonev, I. A. (2018). “Singularities of the typical collaborative robot arm.”
Proceedings of the ASME Design Engineering Technical Conference, 5B-2018, 1–7.

Fischer, K., Kirstein, F., Jensen, L. C., Krüger, N., Kuklínski, K., Der Wieschen, M. V., and Savarimuthu,
T. R. (2016). “A comparison of types of robot control for programming by demonstration.” ACM/IEEE
International Conference on Human-Robot Interaction, 2016-April, 213–220.

125

Fitts, P. M. (1954). “Journal of Experimental Psychology..” Journal of Experimental Psychology,
47(6), 381–391.

Flash, T. and Hogan, N. (1985). “The coordination of arm movements: An experimentally confirmed
mathematical model.” Journal of Neuroscience, 5(7), 1688–1703.

Garcia, N., Rosell, J., and Suarez, R. (2019). “Motion Planning by Demonstration with Human-Likeness
Evaluation for Dual-Arm Robots.” IEEE Transactions on Systems, Man, and Cybernetics: Sys-
tems, 49(11), 2298–2307.

Gasparetta, A., Boscario, P., Lanzutti, A., and Vidoni, R. (2015). Motion and Operation Planning of
Robot Systems, Chapter 1 - Path Planning and Trajectory Planning Algorithms: A General
Overview, Vol. 29, <http://link.springer.com/10.1007/978-3-319-14705-5>.

Gasparetto, A. and Scalera, L. (2019). “A brief history of industrial robotics in the 20th century.” Advances
in Historical Studies, 8(1), 24–35.

Gasparetto, A. and Zanotto, V. (2008). “A technique for time-jerk optimal planning of robot trajectories.”
Robotics and Computer-Integrated Manufacturing, 24(3), 415–426.

Geraerts, R. and Overmars, M. H. (2004). “A comparative study of probabilistic roadmap planners.”
Algorithmic Foundations of Robotics V, Springer, 43–57.

Giles, N. and Hatzel, M. (2013). “Innovative human-robot cooperation in BMW Group Production.” BMW
Groups.

Gladden, M. E. (2019). “Who will be the members of society 5.0? towards an anthropology of technologi-
cally posthumanized future societies.” Social Sciences, 8(5), 148.

Gulletta, G., Costa e Silva, Eliana Erlhagen, W., Meulenbroek, R., Pires Costa, M. F., and Bicho, E. (2021).
“A Human-like Upper-limb Motion Planner: generating naturalistic movements for humanoid robots.”
International Journal of Advanced Robotic Systems, (April), In Press.

Gulletta, G., Erlhagen, W., and Bicho, E. (2020). “Human-like armmotion generation: A review.”Robotics,
9(4), 1–48.

Gupta, A. K., Arota, S. K., and Westcott, J. R. (2015). Industrial Automation and Robotics: An
Introduction. Mercury Learning Information, Boston.

Han, L. and Amato, N. (2001). “A kinematics-based probabilistic roadmap method for closed chain sys-
tems: Li han, texas a nancy m. amato, texas a.” Algorithmic and Computational Robotics, AK
Peters/CRC Press, 243–251.

Hanc, J. (2017). “The original Euler’s calculus-of-variations method: Key to Lagrangian mechanics for
beginners.” European Journal of Physics, Submitted, (September), 1–16.

Hawkins, K. P. (2013). “Analytic Inverse Kinematics for the Universal Robots UR-5/UR-10 arms.” 1–5.

Hettich, R., Kaplan, A., and Tichatschke, R. (2009). Semi-infinite programming: numeri-
cal methodsSemi-infinite Programming: Numerical Methods. Springer US, Boston, MA,
<https://doi.org/10.1007/978-0-387-74759-0588>.

Hockstein, N. G., Gourin, C., Faust, R., and Terris, D. J. (2007). “A history of robots: from science fiction to
surgical robotics.” Journal of robotic surgery, 1(2), 113–118.

126

Hsu, D., Kindel, R., Latombe, J.-C., and Rock, S. (2002). “Randomized kinodynamic motion planning with
moving obstacles.” The International Journal of Robotics Research, 21(3), 233–255.

Hsu, D. and Sun, Z. (2004). “Adaptively combining multiple sampling strategies for probabilistic roadmap
planning.” IEEE Conference on Robotics, Automation and Mechatronics, 2004., Vol. 2, IEEE,
774–779.

Huang, J., Hu, P., Wu, K., and Zeng, M. (2018). “Optimal time-jerk trajectory planning for industrial robots.”
Mechanism and Machine Theory, 121, 530–544.

Intelligence, M. (2020). “Global collaborative robot market.” 25.

Jazar, R. N. (2008). “Theory of Applied Robotics.” Journal of Chemical Information and Modeling,
Vol. 53, 287.

Kang, S. B. and Ikeuchi, K. (1994). “Determination of motion breakpoints in a task sequence from human
hand motion.” Proceedings - IEEE International Conference on Robotics and Automation, (pt
1), 551–556.

Karaman, S. and Frazzoli, E. (2011). “Sampling-based algorithms for optimal motion planning.” The inter-
national journal of robotics research, 30(7), 846–894.

Karel, C. (1920). R.U.R. - Rossum’s Universal Robots. Aventinum.

Kavraki, L. E., Svestka, P., Latombe, J.-C., and Overmars, M. H. (1996). “Probabilistic roadmaps for path
planning in high-dimensional configuration spaces.” IEEE transactions on Robotics and Automation,
12(4), 566–580.

Kebria, P. M., Al-Wais, S., Abdi, H., and Nahavandi, S. (2017). “Kinematic and dynamic modelling of UR5
manipulator.” 2016 IEEE International Conference on Systems, Man, and Cybernetics, SMC
2016 - Conference Proceedings, 4229–4234.

Khatib, O. (1986). “Real-time obstacle avoidance for manipulators and mobile robots.” Autonomous robot
vehicles, Springer, 396–404.

Kirk, D. E. (1970). “Optimal Control Theory An Introduction Englewood Cliffs New Jersey.

Koppenborg, M., Nickel, P., Naber, B., Lungfiel, A., and Huelke, M. (2017). “Effects of movement speed and
predictability in human–robot collaboration.” Human Factors and Ergonomics In Manufacturing,
27(4), 197–209.

Kucuk, S. (2017). “Optimal trajectory generation algorithm for serial and parallel manipulators.” Robotics
and Computer-Integrated Manufacturing, 48(April), 219–232.

Kuffner, J. J. and LaValle, S. M. (2000). “Rrt-connect: An efficient approach to single-query path plan-
ning.” Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on
Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), Vol. 2, IEEE, 995–
1001.

Kunz, T. and Stilman, M. (2011). “Turning Paths Into Trajectories Using Parabolic Blends.” Georgia Institute
of Technology.

Kurt, R. (2019). “Industry 4.0 in Terms of Industrial Relations and Its Impacts on Labour Life.” Procedia
Computer Science, 158, 590–601.

127

Kyriakopoulos, K. J. and Saridis, G. N. (1988). “Minimum jerk path generation.” Proceedings. 1988 IEEE
International Conference on Robotics and Automation, IEEE, 364–369.

Lan, J., Xie, Y., Liu, G., and Cao, M. (2020). “A Multi-Objective Trajectory Planning Method for Collaborative
Robot.” eletronics.

LaValle, S. M. (1998). “Rapidly-exploring random trees: A new tool for path planning.

LaValle, S. M. (2006). “Planning algorithms.” Planning Algorithms, 9780521862, 1–826.

LaValle, S. M. and Kuffner Jr, J. J. (2000). “Rapidly-exploring random trees: Progress and prospects.

Liberzon, D. (2011). Calculus of Variations and Optimal Control Theory: A Concise Introduction.
Princeton University Press, USA.

Liu, S., Wang, Y., Wang, X. V., and Wang, L. (2018). “Energy-efficient trajectory planning for an industrial
robot using a multi-objective optimisation approach.” Procedia Manufacturing, 25(July), 517–525.

Liu, X., Qiu, C., Zeng, Q., Li, A., and Xie, N. (2020). “Time-energy optimal trajectory planning for collaborative
welding robot with multiple manipulators.” Procedia Manufacturing, 43, 527–534.

Lozano-Perez, T. (1990). “Spatial planning: A configuration space approach.” Autonomous robot vehicles,
Springer, 259–271.

Lu, S., Ding, B., and Li, Y. (2020). “Minimum-jerk trajectory planning pertaining to a translational 3-degree-
of-freedom parallel manipulator through piecewise quintic polynomials interpolation.” Advances in Me-
chanical Engineering, 12(3), 1687814020913667.

Lynch, K. M. and Park, F. C. (2017). Modern Robotics. Cambridge University Press.

Mansour, R. and Waldemar, K. (2004). Human-Robot Interaction, Vol. 53. Taylor & Francis, London.

Martins de Sá, S. F. (2018). “Planeamento de Movimentos Compreensíveis pelo Hu-
mano para o Robô Sawyer.” M.S. thesis, Universidade do Minho, Universidade do Minho,
<http://hdl.handle.net/1822/59244>.

Meirovitch, Y., Bennequin, D., and Flash, T. (2016). “Geometrical Invariance and Smoothness Maximization
for Task-Space Movement Generation.” IEEE Transactions on Robotics, 32(4), 837–853.

Nahavandi, S. (2019). “Industry 5.0—a human-centric solution.” Sustainability, 11(16).

Neto, P., Pires, J. N., and Moreira, A. P. (2010). “3D CAD-based robot programming for the SME shop-floor.”
20th International Conference on Flexible Automation and IntelligentManufacturing, FAIM.

Nguiadem, C., Raison, M., and Achiche, S. (2020). “Motion Planning of Upper-Limb Exoskeleton Robots: A
Review.” Applied Sciences.

Niku, S. B. (2020). Introduction to robotics: analysis, control, applications. John Wiley & Sons.

Oosterwyck, N. V. (2018). “Real Time Human Robot Interactions and Speed Control of a Robotic Arm for
Collaborative Operations Real Time Human-Robot Interactions and Speed Control of a Robotic Arm for
Collaborative Operations Nick Van Oosterwyck.” Ph.D. thesis, Ph.D. thesis.

128

Park, G. R. and Kim, C. H. (2010). “Constructing of optimal database structure by imitation learning based
on evolutionary algorithm.” IEEE/RSJ 2010 International Conference on Intelligent Robots and
Systems, IROS 2010 - Conference Proceedings, 2698–2703.

Perumaal, S. S. and Jawahar, N. (2013). “Automated trajectory planner of industrial robot for pick-and-place
task.” International Journal of Advanced Robotic Systems, 10.

Piazzi, A. and Visioli, A. (2000). “Global minimum-jerk trajectory planning of robot manipulators.” IEEE
Transactions on Industrial Electronics, 47(1), 140–149.

Pilz, G. and KG, C. (2019). “Motion blending.” GitHub repository, <https://github.com/
ros-planning/moveit/tree/master/moveit_planners/pilz_industrial_motion_planner>.

Pontryagin, L. S. (1986). The Mathematical Theory of Optimal Processes, Vol. 4 - The Ma.

Quigley, M., Gerkey, B., Conley†, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R., and Ng, A. (2008).
“ROS: an open-source Robot Operating System.” IECON 2015 - 41st Annual Conference of the IEEE
Industrial Electronics Society, 4754–4759.

Rojas, R. A., Garcia, M. A. R., Wehrle, E., and Vidoni, R. (2019). “A variational approach to minimum-jerk
trajectories for psychological safety in collaborative assembly stations.” IEEE Robotics and Automation
Letters, 4(2), 823–829.

Rosenbaum, Ruud G.J., Meulenbroek, D. A., Jansen, C., Vaughan, J., and Vogt, S. (2001). “Multijoint
grasping movements: Simulated and observed effects of object location, object size, and initial aperture.”
Experimental Brain Research, 138(2), 219–234.

Rosenbaum, D., D.Loukopoulos, L., Vaughan, J., E.Engelbrecht, S., and Meulenbroek, R. G. (1995). “Plan-
ning Reaches by Evaluating Stored Postures.” American Psychological Association.

Saito, H., Tsubone, T., and Wada, Y. (2006). “Movement time planning in human movement with via-
points.” Annual International Conference of the IEEE Engineering in Medicine and Biology
- Proceedings, (4), 1208–1211.

Schaal, S. (2007). “The new robotics—towards human-centered machines.”HFSP Journal, 1(2), 115–126.

Short, A., Pan, Z., Larkin, N., and van Duin, S. (2016). “Recent progress on sampling based dynamic motion
planning algorithms.” 2016 IEEE International Conference on Advanced Intelligent Mechatron-
ics (AIM), IEEE, 1305–1311.

Simon, D., Isik, C., et al. (1991). “Optimal trigonometric robot joint trajectories..” Robotica, 9(4), 379–386.

Spong, M. W., Hutchinson, S., Vidyasagar, M., et al. (2006). Robot modeling and control.

Sun, J. D., Cao, G. Z., Li, W. B., Liang, Y. X., and Huang, S. D. (2017). “Analytical inverse kinematic solution
using the D-H method for a 6-DOF robot.” 2017 14th International Conference on Ubiquitous
Robots and Ambient Intelligence, URAI 2017, 714–716.

Sung, C., Kagawa, T., and Uno, Y. (2013). “Whole-body motion planning for humanoid robots by specifying
via-points.” International Journal of Advanced Robotic Systems, 10(7), 300.

Sung, C., Kagawa, T., and Uno, Y. (2015). “Synthesis of humanoid whole-body motion with smooth transition.”
Advanced Robotics, 29(9), 573–585.

129

https://github.com/ros-planning/moveit/tree/master/moveit_planners/pilz_industrial_motion_planner
https://github.com/ros-planning/moveit/tree/master/moveit_planners/pilz_industrial_motion_planner

Tlach, V., Kuric, I., Ságová, Z., and Zajačko, I. (2019). “Collaborative assembly task realization using selected
type of a human-robot interaction.” Transportation Research Procedia, 40, 541–547.

Todorov, E. and Jordan, M. I. (1998). “Smoothness maximization along a predefined path accurately predicts
the speed profiles of complex arm movements.” Journal of Neurophysiology, 80(2), 696–714.

Tsarouchi, P., Makris, S., and Chryssolouris, G. (2016). “Human–robot interaction review and challenges on
task planning and programming.” International Journal of Computer Integrated Manufacturing,
29(8), 916–931.

Tsuzuki, Y. and Ogihara, N. (2018). “A recurrent neural network model for generation of humanlike reaching
movements.” Advanced Robotics, 32(15), 837–849.

Universal Robots (2015). “Universal Robots. UR10e/CB3 User manual.” Universal Robots, I–55 – I–58.

Uno, Y., Kawato, M., and Suzuki, R. (1989). “Formation and control of optimal trajectory in human multijoint
arm movement.” Biological Cybernetics, 61(2), 89–101.

Villani, V., Pini, F., Leali, F., and Secchi, C. (2018). “Survey on human–robot collaboration in industrial
settings: Safety, intuitive interfaces and applications.” Mechatronics, 55(February), 248–266.

Vysocky, A. and Novak, P. (2016). “Human - Robot collaboration in industry.” MM Science Journal,
2016-June(December 2017), 903–906.

Wada, Y. and Kawato, M. (1995). “A theory for cursive handwriting based on the minimization principle.”
Biological Cybernetics, 73(1), 3–13.

Wada, Y. and Kawato, M. (2004). “A via-point time optimization algorithm for complex sequential trajectory
formation.” Neural Networks, 17(3), 353–364.

Wang, C., Peng, L., Hou, Z. G., Li, J., Luo, L., Chen, S., and Wang, W. (2019). “Kinematic Redundancy
Analysis during Goal-Directed Motion for Trajectory Planning of an Upper-Limb Exoskeleton Robot.” Pro-
ceedings of the Annual International Conference of the IEEE Engineering in Medicine and
Biology Society, EMBS, 5251–5255.

Williams, R. L. (2013). “Simplified robotics joint-space trajectory generation with a via point using a single
polynomial.” Journal of Robotics, 2013.

Wolpert, D. M. and Ghahramani, Z. (2012). “Computational Motor Control: ERN.” SpringerReference.

Yokoyama, H., Saito, H., Kurai, R., Nambu, I., and Wada, Y. (2018). “Investigation of isochrony phenomenon
based on the computational theory of human arm trajectory planning.” Human Movement Science,
61(January), 52–62.

Zamalloa, I., Kojcev, R., Hernández, A., Muguruza, I., Usategui, L., Bilbao, A., and Mayoral, V. (2017).
“Dissecting robotics-historical overview and future perspectives.” arXiv preprint arXiv:1704.08617.

Zanchettin, A. M., Rocco, P., Bascetta, L., Symeonidis, I., and Peldschus, S. (2011). “Kinematic motion
analysis of the human arm during a manipulation task.” Joint 41st International Symposium on
Robotics and 6th German Conference on Robotics 2010, ISR/ROBOTIK 2010, 2, 1252–1257.

Zhao, J., Xie, B., and Song, C. (2014). “Generating human-like movements for robotic arms.” Mechanism
and Machine Theory, 81, 107–128.

130

Appendices

131

Appendix A

Revisiting Universal Robot’s Kinematics

132

Revisiting Universal Robot’s Kinematics

João G. Cunha1∗, João Q. Pereira2∗, Estela Bicho2

Abstract— Literature related to robot kinematics is often
abundant and meticulous. However, when faced with the
challenge of developing a kinematics solution for Universal
Robots from scratch, we found this was not the case. We found
Universal Robot’s documentation to be confusing, and that
literature regarding this subject was scarce. Prompted by these
considerations, we present a comprehensive literature review
related to Universal Robots kinematics. Secondly, we provide
an analytical solution for their inverse kinematics using the
modified Denavit-Hartenberg convention. Lastly, we test the
solution in MATLAB, and visualise it in CoppeliaSim through
a remote API. The main goal of this work is to provide an
explicit and transparent guide into Universal Robots kinematics,
by expanding on the literature we found and describing every
part of our analysis exhaustively.

Index Terms— Kinematics Solution, Collaborative Robotics,
Universal Robots, Robotics Simulation

I. INTRODUCTION

Regarding collaborative robots, Universal Robots is, to
date, the largest industrial player and the front-runner in
market share [1]. Most straightforward industrial applications
can be resolved with the use of the included controller, and
programming interface - Polyscope. However, when a closer
human-robot collaboration is needed, the aforementioned
programming approach comes short in terms of flexibility
and adaptability. In these cases, roboticists are required to
model the robot’s behaviour - which cannot be programmed
in Polyscope. To do this, one needs a custom controller that
often requires its own kinematic solver.

Kinematics consists in studying the motion of a certain
system disregarding the forces or torques that cause it [2].
To develop a kinematics solution for the Universal Robots,
we conducted a literature review and found the available
documentation was scarce and inadequately detailed [3].

In this sense, this paper presents an in-depth analysis of
the Universal Robots kinematics. Specifically, the contribu-
tions of this paper are fourfold: (i) a literature review of
papers related to this subject; (ii) forward kinematic solution
based on the modified Denavit-Hartenberg convention; (iii)
geometrical analysis of the inverse kinematics problem; and
(iv) validation of the proposed analysis using MATLAB
and CoppeliaSim (kinematic models are available in an
online repository). Accompanying this paper is also a video
detailing how to use our kinematic models1.

*These authors contributed equally to this work.
1João G. Cunha is with Association Collaborative Laboratory in Digital

Transformation - DTx, Campus de Azurém, University of Minho, 4800-058
Guimarães, Portugal {firstname.lastname}@dtx-colab.pt

2João Q. Pereira and Estela Bicho with are with Centre Algoritmi,
University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
{firstname.lastname}@dei.uminho.pt

1v Universal Robots Kinematics: Visualisation in CoppeliaSim with
MATLAB API.

II. RELATED WORK

Although the use of the UR’s collaborative robots is
widespread in both industrial and academic context, publica-
tions regarding their kinematic modelling is relatively limited
(six publications, from 2013 to 2019).

The common approach to solve the UR’s kinematics across
literature is to use the conventional D-H method, and obtain
an analytical solution for the inverse kinematics based on
geometrical approaches [4]–[9]. In the author’s opinion, the
most detailed publication is [8], as the authors provide
drawings which ease reader comprehension. However, most
publications are inadequately detailed and are of difficult
understanding.

Additionally, the authors in [7] present another approach
for kinematic modelling based on the Product of Exponen-
tials (POE) analysis. They establish a comparison between it
and the conventional D-H method, concluding that although
the modelling process is simpler with the POE method,
not all configurations are solvable due to the inviability to
decompose some into solvable sub-problems.

Besides the authors in [5], which provide the kinematic
and dynamic model of the UR5 robot implemented in MAT-
LAB, and a robot model for SimMechanics, all other papers
lack validation via code of their analyses.

To the best of the authors knowledge, the lack of detail
and clear explanation of the Universal Robots kinematics
is a common problem. Regarding the wide usage of the
UR robots, we argue this paper could be helpful for the
community, providing an in-depth analysis of their kinematic
model. Our approach can be abstracted to any of the Univer-
sal Robots product range, and has been validated by means
of simulation. In addition, the code related to this work is
readily available for free access2.

III. FORWARD KINEMATICS

Forward kinematics consists of finding the pose of the
robot’s tip [xe, ye, ze, γe, βe, αe]

T , from its joint positions
q = [θ1, θ2, θ2, θ3, θ4, θ4, θ5, θ6]

T . For every vector of joint
values, q, the tip’s pose always exists and is unique [10].

A. Assign the Reference Frames

To derive the Denavit-Hartenberg parameters, one must
first position the manipulator in its home pose, and secondly
attribute a reference frame {xi, yi, zi} for every joint. In our
case, the manipulator’s home pose was defined as all joint
values equal to zero, which determine an upright pose (for
the CoppeliaSim robot model). Reference frames {0-6} are
represented in Fig. 1 (where the x, y and z components are

2� Jgocunha/universal-robots-kinematics.

133

Fig. 1: Reference frames along the UR10 e-series structure.

represented with red, green, and blue arrows, respectively).
To attribute these reference frames we followed three basic
rules: i) the right hand rule; ii) the location of the frame is
at the centre of the corresponding joint; and iii) the z-axis
must indicate the rotational axis of the joint [11].

Reference frame {0} is the origin of the robot, and is
located on the centre of its base. From henceforth, reference
frames {1, 2, 3, 4, 5, 6} all follow the above stated rules. Due
to the order of multiplication of the transformations for the
modified Denavit-Hartenberg convention, it was necessary to
add two auxiliary reference frames: {4’}, and {5’} located
at the centre of joint 5.

B. Denavit-Hartenberg Parameters

After attributing the reference frames, it is possible to
compute the transformations that occur between them, using
the D-H parameters mentioned previously, Table I.

C. Computing the Individual Transformation Matrices

Using the Denavit-Hartenberg parameters and the mod-
ified Denavit-Hartenberg matrix, it is possible to compute
the following transformation matrices: 0T1, 1T2, 2T3, 3T4,
4T5, and 5T6. Like the homogeneous matrix, the modified
Denavit-Hartenberg matrix is a transformation matrix from
a system of coordinates to another. The modified Denavit-
Hartenberg homogeneous transformation i−1Ti, from frame
i− 1 to i is defined in Eq. 2 and 3.

D. Computing the Complete Transformation Matrix

Having defined the homogeneous transformation matrices
along the robotic arm, the transformation from the robot base
to robot-tip is given by:

0T6 = 0T1
1T2

2T3
3T4

4T4′
4′T5

5T5′
5′T6 (1)

TABLE I: Denavit-Hartenberg transformations between ref-
erence frames

i−1Ti αi−1 ai−1 di θi

{0} → {1} 0 0 d1 θ1

{1} → {2} −π/2 0 d2 θ2 − π/2

{2} → {3} 0 a2 d3 θ3

{3} → {4} 0 a3 d4 θ4

{4} → {4′} 0 a4 d5 π/2

{4′} → {5} π/2 0 0 θ5

{5} → {5′} −π/2 0 0 −π/2

{5′} → {6} 0 a5 d6 θ6

IV. INVERSE KINEMATICS

Obtaining vector q = [θ1, θ2, θ3, θ4, θ5, θ6]
T that makes

the robot’s tip pose equal to [xe, ye, ze, γe, βe, αe]
T is called

inverse kinematics, and is not as linear to solve as the forward
kinematics problem [12]. For the Universal Robots there are
eight possible inverse kinematic solutions for a certain tip
pose, Fig. 2.

Our approach to solving this particular inverse kinematics
problem is inspired by the aforementioned literature, and uses
a geometrical and analytical approach. For the computation
of each joint angle, a detailed visual and mathematical
demonstration is provided, in order to expedite comprehen-
sion.

i−1Ti = Rotx(αi−1)Transx(ai−1)Transz(di)Rotz(θi) (2)

i−1Ti =

cos(θi) − sin(θi) 0 αi−1

sin(θi) cos(αi−1) cos(θi) cos(αi−1) − sin(αi−1) − sin(αi−1)di
sin(θi) sin(αi−1) cos(θi) sin(αi−1) cos(αi−1) cos(αi−1)di

0 0 0 1

 (3)

134

Fig. 2: The eight inverse kinematic solutions (2θ1 ·2θ5 ·θ6 ·2θ3 ·θ2 ·θ4) for a random generated pose: [xe, ye, ze, γe, βe, αe] =
[0.730 m,−0.292 m, 0.643 m,−9.357◦,−46.676◦, 29.751◦].

A. Computing θ1

To calculate θ1, we first determine the value of 0P5

(the position of frame {5} in reference to frame {0}).
Considering the fourth column of 0T6, 0P6 = [px, py, pz, 1]

T

(the position of the robot’s tip), we can infer that 0P5 consists
in a translation of −d6 in the z-axis from the 6th frame.
Algebraically, this translation can be written as:

0P5 = 0T6
[
0 0 −d6 1

]T
(4)

To visualise the appearance of θ1, we can consider an
overhead view of the robot, where θ2 = π/2 and θ1 6= 0,
Fig. 3. This allows us to see θ1 and represent the robot in
the x-y plane of frame {0} (useful for this analysis).

Empirically, observing Fig. 3, the value of θ1 is equal to
the subtraction of θ

′

1 by π, Eq. 5. Whereas the value of θ
′

1

is related to the sum of angle ψ with φ and π/2, Eq. 6.

θ
′

1 = ψ + φ+
π

2
(5)

θ1 = θ
′

1 − π (6)

Angle ψ is created using 0P5 and its x-y components
which form triangle 1. ψ can now be directly calculated
using the tangent function, since both the values of 0P5x

and 0P5y are known from the previously calculated value of
0P5. Thus, ψ is equal to:

ψ = atan2(0P5y,
0 P5x) (7)

Angle φ can be obtained using the values of 0P5 and
d2, d3, d4, d5, which form triangle 2. θ1 has two possible
solutions which are dependant on the configuration of the
shoulder joint (joint 2) - left or right.

φ = ± arccos

d2 + d3 − d4 + d5√
0P 2

5x + 0P 2
5y

 (8)

Fig. 3: Visualising θ1.

B. Computing θ5
Angle θ5 is defined as the angle between the x-axis of

frames 4′ and 5. However, when the robot is in its pre-
defined home pose, these two axis overlap, i.e. have the same
orientation - making it difficult to extract any correlations.
To do this, first we set θ4 to π/2 and then give a value (6= 0)
to θ5, resulting in Fig. 4.

Since θ1 is already known, it is possible to calculate the
transformation matrix from frame {1} to frame {6}, 1T6.
Using its fourth column we obtain 1P6, and consequently its
y component 1P6y . As it is possible to see in Fig. 4, 1P6y

only depends on θ5. Analysing this figure, one can conclude
that 1P6y is determined by the sum of the robot’s links along
the y1 referential (until frame {5}) and the length created by

135

θ5 in the same direction (di), resulting in Eq. 9.

1P6y = di + d2 + d3 − d4 + d5

where, di = d6 cos(θ5)
(9)

Fig. 4: Visualising θ5.

Therefore, by solving Eq. 9, the expression of θ5 is
given by Eq. 10. θ5 also has two possible values which are
determined by the wrist being up or down.

θ5 = ± arccos

(
1P6y − (d2 + d3 + d4 + d5)

d6

)
(10)

C. Computing θ6

The calculation of θ6 is based on the analysis of y1 seen
from frame {6} - 6y1. By inspecting the orientation of the
reference frames along the robot’s structure present in Fig. 1
and abstracting the translations between frame {6} and {1},
one can conclude that the orientation of y1 only depends on
the values of θ5 and θ6 (since y1 will always be parallel
to the z-axes of frames {2, 3, 4, 4′, 5′}). This means we can
discover the value of θ6 as a function of θ5.

To examine the relation between 6y1 and the other ref-
erence frames, we can represent 6y1 using a spherical co-
ordinate system - where the azimuthal angle is θ6 and the
polar angle is θ5. From Fig. 5a, which portrays a unit sphere
showing the radial distance (r), polar angle (ψ) and azimuthal
angle (θ) of a point P, we can abstract Fig. 5b.

Cartesian↔ Spherical
x = p cos(θ) sin(ψ)

y = p sin(θ) sin(ψ)

z = p cos(θ)

(11)

Knowing that Eq. 11 translates the conversion from spher-
ical to Cartesian coordinates, it is possible to obtain the
x, y, z components of 6y1:

6y1 =

sin(θ5) cos(θ6)sin(θ5) sin(θ6)
cos(θ5)

 (12)

Since the value of θ1 is already known (and consequently
the transformation matrix 1T6) one can explicitly deduce the
value of vector 6y1. Hence, the system present in Eq. 13 can
be solved for θ6:

{
sin(θ5) cos(θ6) =

6y1x

sin(θ5) sin(θ6) =
6y1y

⇒

{
cos(θ6) =

(
6y1x)

/
sin(θ5)

sin(θ6) =
(
6y1y)

/
sin(θ5)

(13)

θ6 = atan2

(−6y1y
sin(θ5)

,
6y1x

sin(θ5)

)
(14)

However, Eq. 14 is still not entirely correct, as it does not
consider all the transformations between frame {5} and {6}.
Besides a transformation of θ6 along the z-axis we considered
an auxiliary frame {5’} that assumes a transformation of
−π/2 along the z-axis first (refer to Table I). So, this means
that there needs to be an adjustment to Eq. 14 that considers
this transformation:

θ6 = −π/2 + atan2

(−6y1y
sin(θ5)

,
6y1x

sin(θ5)

)
(15)

It is important to note that Eq. 15 only has a solution if
sin(θ5) 6= 0 (i.e. when θ5 6= 0◦, 180◦or 360◦). Otherwise,
joints 2, 3, 4 and 6 are parallel and the solution for θ6 is un-
determined. When the axes of joints 4 and 6 become parallel
a singularity occurs (more specifically a wrist singularity 3)
which cause these joints to spin 180◦ instantaneously.

D. Computing θ3

Concerning the calculation of θ3 and θ2 we considered a
two link planar manipulator from frame {2} to frame {4}
(links a2 and a3), refer to Fig. 6. This analysis is possible,
since these three frames are parallel, which means the angle
they form can be seen along the same two axes. Since the
values of θ1, θ5 and θ6 are already known, one can obtain
the value of matrix 1T4 through Eq. 16.

3v Universal Robots Singularities: Visualisation in Polyscope.

136

(a) Representation of point P using spherical and
Cartesian coordinates.

(b) Spherical representation of 6y1, where the
azimuthal angle is θ6 and the polar angle is θ5.

Fig. 5: Coordinate analysis of 6y1.

Fig. 6: Visualising θ3 and θ2.
1T6 = inv(0T1)

0T6
4T5 = 4T4′

4′T5
5T6 = 5T5′

5′T6

⇒ 1T4 = 1T6inv(
4T5

5T6) (16)

Analysing Fig. 6, θ3 is equal to the subtraction of ψ to π,
Eq. 17. In its turn, ψ can be derived using the law of cosines
and is given by Eq. 18. The two solutions for θ3 correspond
to the elbow being up or down.

θ3 = π − ψ (17)

cos(ψ) =
1P 2

4 − a32 − a22

−2a2a3

ψ = ± arccos

(
1P 2

4 − a32 − a22

−2a2a3

) (18)

E. Computing θ2
Angle θ2 is defined as the angle between x2 and x2′ , Fig.

6. Thus, the value of θ2 is established by the subtraction of
π/2 with the sum of the auxiliary angles φ1 and φ2, Eq.
21. These two angles can be obtained with the trigonometry
concepts of arc tangent and the law of sines, respectively, as
demonstrated in Eq. 19 and 20.

φ2 = atan2
(
1P4Z ,

1 P4X

)
(19)

a3
sin(φ1)

=
1P4

sin(ψ)
⇒ φ1 = arcsin

(
a3 sin(ψ)

1P4

)
(20)

θ2 =
π

2
− (φ1 + φ2) (21)

F. Computing θ4
By this stage all the joint angles except θ4 are known.

Being defined as the angle between x3 and x4, θ4 can
be obtained using the individual transformation matrix 3T4
(more specifically using the x and y components of the first
column, 3X4). Refer to Eq. 22, and Fig. 7.

θ4 = atan2(3X4y,
3X4x) (22)

Fig. 7: Visualising θ4.

V. VALIDATION

Both the forward and inverse kinematic algorithms were
implemented in MATLAB. Our program is setup so as to
validate the correct computation of both algorithms simulta-
neously, Fig. 8. First, the user selects which UR robot is to be
controlled, and its target joint values - in a GUI. Secondly, the
forward kinematics function computes the robot’s tip pose
for those joint values. Lastly, the inverse kinematics function
is called, and 8 solutions are computed from the target tip
pose. The 8 solutions are sent to CoppeliaSim4, and the robot
model is actuated accordingly.

The solutions were tested for a set of 10000 random target
joint states. The maximum and average computation times5

4This is done via a remote API from the CoppeliaSim framework
5MATLAB script run in a Ryzen 5 3600 CPU at 4.28GHz.

137

Fig. 8: Validation code structure and reasoning.

of the forward and inverse kinematic functions are provided
in Table II.

TABLE II: Average and maximum computation times of the
kinematics functions in seconds (s).

Average Maximum

Forward Kinematics 1.832571E-05 1.832571E-05
Inverse Kinematics 1.612797E-04 1.612797E-04

VI. CONCLUSION
In this paper, we present our kinematic modelling and

analysis of the Universal Robots. First, a comprehensive
literature review of other related papers is provided. Sec-
ondly, we present our forward kinematics solution based on
the modified Denavit-Hartenberg convention and our inverse
kinematics solution based on a geometrical analysis. Lastly,
we prove the validity of our solutions by testing them in
a simulated scene (CoppeliaSim + MATLAB). The code
related to this work is available in an online repository, along
with a video explaining how to use it.

REFERENCES

[1] Cobot Intelligence Inc., “Competitive Insights: Taking A Look
At The Manufactures,” p. 1, 2018. [Online]. Available: https:
//cobotintel.com/guide-to-collaborative-robots-market

[2] A. Renfrew, “Book Review: Introduction to Robotics: Mechanics and
Control,” International Journal of Electrical Engineering & Education,
vol. 41, no. 4, pp. 388–388, 2004.

[3] Universal Robots, “Parameters for calculations of
kinematics and dynamics,” pp. 1–5, 2020. [On-
line]. Available: https://www.universal-robots.com/articles/ur-articles/
parameters-for-calculations-of-kinematics-and-dynamics/

[4] K. P. Hawkins, “Analytic Inverse Kinematics for the Universal
Robots,” pp. 1–5, 2013. [Online]. Available: http://hdl.handle.net/
1853/50782

[5] P. M. Kebria, S. Al-Wais, H. Abdi, and S. Nahavandi, “Kinematic and
dynamic modelling of UR5 manipulator,” 2016 IEEE International
Conference on Systems, Man, and Cybernetics, SMC 2016 - Confer-
ence Proceedings, pp. 4229–4234, 2017.

[6] J. D. Sun, G. Z. Cao, W. B. Li, Y. X. Liang, and S. D. Huang,
“Analytical inverse kinematic solution using the D-H method for a 6-
DOF robot,” 2017 14th International Conference on Ubiquitous Robots
and Ambient Intelligence, URAI 2017, pp. 714–716, 2017.

[7] Q. Liu, D. Yang, W. Hao, and Y. Wei, “Research on kinematic model-
ing and analysis methods of UR robot,” Proceedings of 2018 IEEE 4th
Information Technology and Mechatronics Engineering Conference,
ITOEC 2018, vol. 1, no. Itoec, pp. 159–164, 2018.

[8] R. S. Andersen, “Kinematics of a UR5,” Aalborg University, May
2018, pp. 1–12, 2018. [Online]. Available: http://rasmusan.blog.aau.
dk/files/ur5{ }kinematics.pdf

[9] O. Abdelaziz, M. Luo, G. Jiang, and S. Chen, “Multiple configurations
for puncturing robot positioning,” arXiv, vol. 1, no. 4, pp. 1–19, 2019.

[10] S. Bruno, S. Lorenzo, V. Luigi, and O. Giuseppe, Robotics: Modelling,
Planning and Control, 2019, vol. 53, no. 9.

[11] M. Ben-Ari, F. Mondada, M. Ben-Ari, and F. Mondada, “Kinematics
of a Robotic Manipulator,” Elements of Robotics, pp. 267–291, 2018.

[12] R. N. Jazar, Theory of Applied Robotics, 2008, vol. 53, no. 9.

138

	I Dissertation Structure
	Introduction
	Evolution of Robotics
	Collaborative Robots

	Motivation and Objectives
	Structure of the Dissertation

	II State of the Art
	Programming Methods
	Introduction
	Kinesthetic Teaching
	Teach Pendant programming

	Trajectory Generation
	Overview of Trajectory and Path
	Path Planning Methods
	Optimal Trajectory Planning

	Trajectory Generation through waypoints in Robotics
	Human-like Arm Motion Generation
	Human-like Arm Motion Characteristics
	Human-like Arm Motion Computational Models

	Human-like Trajectory Generation through waypoints
	Discussion

	III Materials and Methods
	Collaborative Robot: UR10e
	Introduction
	Specification
	Singularities

	Kinematic Model
	Forward Kinematics
	Vacuum End-effector
	Inverse Kinematics

	Optimal Control
	Introduction to Optimal Control
	Lagrange multiplier

	Optimal Control Problems
	Equality Interior-point Constraints in State Variables

	IV Design and Implementation
	Trajectory Planning
	Problem statement
	Problem solving
	Final trajectory equation bold0mu mumu t0 t Tt0 t Tfalset0 t Tt0 t Tt0 t Tt0 t T
	Lagrange multiplier
	Waypoints time

	Time parametrization
	Total time
	Number of steps
	Time step

	V Validation of the Trajectory Planning
	Human-like Trajectory Planning with waypoints in a Human-Robot Collaboration Scene
	Validation Architecture
	Human-likeness Evaluation
	Task: Quality inspection
	Task Description
	Waypoints definition

	Movements and Results Achieved
	Pick Movement
	Show Movement
	Place Movement
	Task Results

	Discussion

	VI Conclusion
	Conclusion and Future Work
	Future Work

	Appendices
	Revisiting Universal Robot's Kinematics

