

Universidade do Minho
Escola de Engenharia

André Filipe Pereira Alves

Integrating an Intrusion
Detection System with
Heterogeneous IoT Endpoint
Devices

julho de 2020

In
te

gr
at

in
g

an
 I

nt
ru

si
on

 D
et

ec
ti

on
 S

ys
te

m

w
it

h
H

et
er

og
en

eo
us

 I
oT

 E
nd

po
in

t
D

ev
ic

es

Ad
nr

é F
ilip

e P
er

eir
a

Alv
es

UM

inh
o

| 2
02

0

������

������

������

������

������

������

��������������	�
����������	���

������

�����������������	��	����
����	��������	������	

����������	�����������
�	���	��������	�������

������

������

������

������

���	����������������	

�����������
�������

������

�������� 	����!�������� ��������������

���������������	�
���	�����	�����

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������"�������#�$�	���%&%&

DIREITOS DE AUTOR E CONDIÇÕES DE UTILIZAÇÃO DO TRABALHO POR TERCEIROS

Este é um trabalho académico que pode ser utilizado por terceiros desde que respeitadas as regras

e boas práticas internacionalmente aceites, no que concerne aos direitos de autor e direitos conexos.

Assim, o presente trabalho pode ser utilizado nos termos previstos na licença abaixo indicada. Caso o

utilizador necessite de permissão para poder fazer um uso do trabalho em condições não previstas no

licenciamento indicado, deverá contactar o autor, através do RepositóriUM da Universidade do Minho.

Licença concedida aos utilizadores deste trabalho

https://creativecommons.org/licenses/by-nc-sa/4.0/

ii

Acknowledgments

Aos meus pais e à minha irmã, deixo o meu profundo agradecimento pelo apoio que me deram

durante esta dissertação, mas também durante todo o meu percurso académico. Sem dúvida, nunca me

faltou absolutamente nada para que eu pudesse tirar o maior proveito possível desta minha passagem

pela Universidade do Minho.

Ao meu orientador, o Professor Doutor Tiago Gomes, quero agradecer por ter assumido para comigo

um papel altamente desafiante e exigente, mas sempre presente e amigo. O seu conhecimento, ex-

periência e liderança marcaram bem a imagem do que deve ser um orientador exímio. Deixo também

um forte agradecimento ao futuro PhD Miguel Silva por ter também mostrado sempre um papel ativo e

enriquecedor na minha dissertação.

A todos os meus amigos, um enorme abraço e agradecimento por todo o companheirismo e amizade

demonstrados ao longo do meu percurso académico. Uma especial menção, não poderia faltar, ao grupo

”ESRG Top Students”.

A todos os meus professores cabe um sincero agradecimento por tudo o que me ensinaram dentro e

fora da sala de aula.

À minha restante família do NEEEICUM e da AAUMinho, um honesto obrigado por terem também

marcado o meu crescimento e aprendizagem durante estes 5 anos.

iii

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have not used

plagiarism or any form of undue use of information or falsification of results along the process leading to

its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho.

iv

Resumo

Com o permanente desenvolvimento tecnológico, o mundo tem vindo a assistir a um crescimento

exponencial no número de dispositivos eletrónicos presentes no quotidiano das pessoas, desde ferramen-

tas de trabalho a dispositivos de uso pessoal. Devido a este contínuo desenvolvimento e utilização de

aparelhos eletrónicos, a Internet das Coisas está cada vez mais presente nas casas, empresas, e ruas

das cidades, com dispositivos munidos de desde sensores a atuadores, para demais propósitos.

O crescimento desta indústria levou a que os fabricantes priorizassem a produção de dispositivos

com menores dimensões, energeticamente mais eficientes, com maior processamento, a custo reduzido.

Contudo, este crescimento e a necessidade de ligarmos tudo em rede, expõe estes dispositivos a ameaças

vindas da Internet. Existe assim uma óbvia urgência no desenvolvimento de soluções adequadas para pro-

teger empresas, consumidores e infraestruturas críticas, bem como garantir maior confiabilidade nesses

dispositivos e na sua utilização.

O objetivo desta dissertação consiste na exploração de soluções de segurança ao nível da rede, para

dispositivos low-end ligados à Internet. Deste trabalho resultou o desenvolvimento de um sistema de

detecção de intrusões, o IDIoT, capaz de detectar, corrigir, e eliminar, ataques provenientes de dispositivos

maliciosos, tais como ataques de encanhamento e ataques de Denial of Service (DoS). Dada a conhecida

escassez de recursos nestes dispositivos, o mecanismo proposto deve apresentar requisitos de memória

o menor possíveis, bem como aumento no consumo energético que não comprometa o desempenho do

sistema.

Nesta dissertação é apresentado um estudo teórico para o estado da arte referente a arquitecturas

de sistemas de deteção de intrusões existentes referentes a estes dispositivos. É apresentado o de-

senvolvimento e implementação do Intrusion Detection on the Internet of Things (IDIoT), assim como a

sua integração numa plataforma com as capacidades de simulação desses dispositivos. Seguidamente,

são apresentados resultados experimentais com o objetivo de comprovar o funcionamento e eficácia

da solução proposta. Por último, são apresentadas as conclusões e perspectivas futuras de trabalho.

Palavras-Chave: Internet of Things (IoT), Intrusion Detection System (IDS), Ataques DoS, Ataques de

Mapeamento, Operating System (OS), Segurança, Conectividade.

v

Abstract

With the technological development, the world is witnessing a phenomenon that can be described as a

flooding of gadgets and electronic devices in everyone’s daily life, both for work and personal usage. Due to

this continuous increasing of development and deployment of gadgets, the IoT is continuously increasing

its presence in city houses, companies and streets, with various devices that can work as sensors and/or

actuators for many purposes.

The quick growth of this industry is leading to the manufacturers the prioritizing production of devices

with smaller dimensions, higher efficiency concerning energy consumption, greater processing capabilities

and, ultimately, at a reduced cost. Meanwhile, it has been observed that these devices, and the networks

in which they are integrated, still remain very vulnerable and require stronger protection mechanisms.

Therefore, there is an obvious urgency in the development of appropriate solutions to protect businesses,

consumers, and critical infrastructure as well as ensuring greater reliability on these devices.

Hereupon, this dissertation consists in the development of the IDIoT, an IDS for the IoT, designed for

heterogeneous endpoint devices. This system improves endpoint devices security with network layer con-

trol by being able to detect and correct to the most popular attacks targeting low-end devices, such as DoS

and routing attacks. Since it targets low-end devices, this mechanism must require the smallest memory

footprint possible, without sacrificing the energy consumption and the overall system performance.

Throughout this dissertation, several IDS systems and possible attacks are studied in order to endow

IDIoT with the best possible features. In order to test the solution over a network that can represent real

world scenarios, the IDIoT was tested over the Cooja simuator, which is a network simulator that is able

to emulate several IoT motes under a chosen network topology. Furthermore, some experimental results

are presented in order to prove the efficiency of the proposed solution, through the simulation of attacks

against an emulated network where devices are running the IDIoT. At last, the conclusion and future work

perspectives are presented.

Keywords: IoT, IDS, DoS Attacks, Routing Attacks, OSes, Security, Connectivity.

vi

Table of Contents

Resumo v

Abstract vi

Acronyms List xiii

1 Introduction 1

1.1 Problem Statement . 1

1.2 Goals . 2

1.3 Thesis Structure . 3

2 State of the Art 4

2.1 Background . 4

2.1.1 The Internet of Things . 4

2.1.2 The IoT Network Stack . 7

2.1.3 6LoWPAN . 9

2.1.4 RPL . 9

2.1.5 Operating Systems for the IoT . 12

2.1.6 Security Threats Addressed to the IoT . 14

2.1.7 Intrusion Detection System . 16

2.2 Related Work . 20

2.2.1 High- and Middle-end IDS . 20

2.2.2 Low-end IDS . 22

2.3 Platform and Tools . 32

2.3.1 Cooja Network Simulator . 32

vii

3 System Model and Design 35

3.1 GAP Analysis . 35

3.1.1 Proposed Solution . 37

3.1.2 System Assumptions . 38

3.2 System Overview . 39

3.2.1 IDIoT-6Mapper . 43

3.2.2 IDIoT-Routing-Detection . 44

3.2.3 IDIoT Firewall System . 45

3.2.4 IDIoT DoS Detection Module . 46

4 Implementation 49

4.1 Implementation Overview . 49

4.2 IDIoT Modules . 53

4.2.1 IDIoT-6Mapper . 53

4.2.2 IDIoT-Routing-Detection . 57

4.2.3 IDIoT-Firewall . 60

4.2.4 DoS Detection Module . 65

5 Evaluation 69

5.1 Evaluation Overview . 69

5.2 IDIoT Routing Detection . 70

5.3 DoS Detection Module . 75

5.4 Memory footprint . 79

5.5 Energy Consumption . 81

6 Conclusion 84

6.1 Future Work . 85

References 93

viii

List of Figures

2.1 Variants of things and networks in the Internet of Things. 6

2.2 IoT Network Stack. 8

2.3 Flow of DIO and DAO messages in RPL network. 11

2.4 Taxonomy of Security Threats in the IoT. 15

2.5 Network-based IDS (left) vs Host-based IDS (right). 18

2.6 IDS for the IoT Taxonomy. 19

2.7 Architecture examples for Snort and Suricata, side by side. 21

2.8 An IoT setup where IDS modules are placed in Internet Protocol version 6 (IPv6) over

Low Power Wireless Personal Area Networks (6LoWPAN) Border Router (6BR) and also

in individual nodes. 25

2.9 Evaluation of Svelte performance in lossless and lossy networks for a selective forwarding

attack. 26

2.10 DoS detection architecture for the 6LoWPAN. 27

2.11 INTI IDS system entities. 29

2.12 INTI IDS system evaluation in comparison with Svelte IDS for false positives and false

negatives. 30

2.13 DoS detection architecture for the signature-based IDS. 31

2.14 Contiki Cooja Network Simulator Environment. 33

2.15 Contiki Cooja Network Simulator available motes for emulation. 33

3.1 Overview of the IDIoT architecture. 40

3.2 Overview of the IDIoT Border-Router architecture. 41

3.3 Overview of the IDIoT regular nodes architecture. 42

4.1 Svelte improved mapper. 53

4.2 IDIoT-Firewall exchanged packets. 61

ix

5.1 Clean routes in network under no attacks. 71

5.2 Topology used for the evaluation of the sinkhole attack detection. 71

5.3 Modified Routes in network under sinkhole attack. 72

5.4 Modified topology caused by a sinkhole attack. 72

5.5 IDIoT-6Mapper network graph recovered after global repair. 73

5.6 Network routes after recovery from sinkhole attack. 74

5.7 Routes in network recovered after the sinkhole was detected and corrected. 74

5.8 Network traffic resulting from User Data Protocol (UDP)-flood attack. 77

5.9 DoS detection module from node 3 detecting node 13(d) as abusive. 77

5.10 Thread-Metrics score for all tests, evaluating all topologies. 79

5.11 Random Access Memory (RAM) usage overhead evaluation for devices running IDIoT

modules. 80

5.12 Read Only Memory (ROM) usage overhead evaluation for devices running IDIoT modules. 80

5.13 Energy consumption overhead for the Directed Acyclic Graph (DAG)-root under DoS attack

over 15 minutes. 83

5.14 Energy consumption overhead related to each IDIoT module enabled, for a 10 minute

simulation. 83

x

List of Tables

2.1 Key features of representatives of several categories of OSes. 14

2.2 Eighteen IDS solutions for the IoT. 23

2.3 Key features of representative IDS solutions for each category. 24

3.1 IDIoT metrics side by side with studied IDS for the IoT solutions. 38

5.1 Thread Metrics results for all tests executed. 78

5.2 Memory Footprint for both UDP-server and -client with the IDIoT modules. 79

5.3 Tmote Sky nominal operation values. 81

5.4 Energy Consumption for devices running IDIoT modules for 15 minutes, in 4 topologies. . 82

xi

Listings and Algorithms

4.1 Contiki-NG Makefile for Routing Protocol for low power and lossy networks (RPL)-border-

router running IDIoT modules. 50

4.2 Contiki-NG Makefile for UDP-client running IDIoT modules. 50

4.3 Contiki-NG application project configuration header file example. 52

4.4 Contiki-NG application processes start example. 52

5 IDIoT-6Mapper-Server Algorithm for network construction. 54

6 IDIoT-6Mapper-Client Algorithm for handling mapping requests and responses. 55

7 IDIoT-6Mapper-Server Algorithm for managing the network mapping. 56

8 IDIoT-Routing-Detection checking child-parent relation for rank inconsistencies. 57

9 Detecting and correcting RPL Destination-Oriented Directed Acyclic Graph (DODAG) In-

consistencies. 59

10 Correcting severe attacks with mapper and RPL global-repair. 60

11 Firewall client local filter management. 62

12 Firewall server broadcast filter command. 63

13 Firewall client network filters management. 64

14 DoS Detection module at each packet reception. 66

15 DoS Detection module at timer overflow. 68

5.1 UDP Flood implementation as an modified UDP-client 75

xii

Acronyms List

6BR 6LoWPAN Border Router.

6LoWPAN IPv6 over Low Power Wireless Personal Area Networks.

6TISCH IPv6 over the Time Slotted Channel Hopping (TSCH).

CoAP Constrained Application Protocol.

CPU Central Processing Unit.

CSMA Carrier Sense Multiple Access.

CUTE mote CUstomizable and Trustable End-device for the internet of things.

DAG Directed Acyclic Graph.

DAO DODAG Advertisement Object.

DAO-ACK DODAG Advertisement Object Acknowledgment.

DDoS Distributed Denial of Service.

DIO DODAG Information Object.

DIS DODAG Information Solicitation.

DODAG Destination-Oriented Directed Acyclic Graph.

DoS Denial of Service.

FAM Frequency Agility Manager.

FPGA Field Programmable Gate Array.

xiii

HIDS Host-based Intrusion Detection System.

HTTP Hypertext Transfer Protocol.

ICMP Internet Control Message Protocol.

IDIoT Intrusion Detection on the Internet of Things.

IDS Intrusion Detection System.

IEEE Institute of Electrical and Electronics Engineers.

IETF Internet Engineering Task Force.

IoT Internet of Things.

IP Internet Protocol.

IPv4 Internet Protocol version 4.

IPv6 Internet Protocol version 6.

LLN Low Power and Lossy Network.

LoRa Low Range.

LoWPAN Low Power Wireless Personal Area Networks.

LPM Low Power Mode.

MAC Medium Access Control.

MCU Microcontroller Unit.

MQTT Message Queue Telemetry Transport.

MTU Maximum Transmission Unit.

NFC Near Field Communication.

NIDS Network-based Intrusion Detection System.

xiv

OS Operating System.

OSI Open System Interconnection.

PAN Personal Area Network.

RAM Random Access Memory.

RCU Reconfigurable Computing Unit.

RF Radio Frequency.

RFID Radio Frequency Identification.

ROM Read Only Memory.

RPL Routing Protocol for low power and lossy networks.

RTOS Real Time Operating System.

SIEM Security Incident and Event Management System.

SoC System on Chip.

TCP Transmission Control Protocol.

TI Texas Instruments.

TSCH Time Slotted Channel Hopping.

UDP User Data Protocol.

WSN Wireless Sensor Networks.

xv

Chapter 1

Introduction

This chapter starts by addressing the problem statement of this thesis as well as the expected goals

intended to achieve. Finally, a brief description of the structure of this document is presented.

1.1 Problem Statement

Connecting myriads of end-devices in the IoT can bring several challenges to the way such systems

are designed and deployed in a wide-range of applications [1][2][3]. Such challenges not only comprise

the connectivity and interoperability of heterogeneous wireless nodes, where a large volume of data is

exchanged with the Internet, but also arise security- and privacy-related issues, even at the network edge.

Such issues demand for a robust solution to tackle the ever-growing amounts of data transferred over the

network, and also the security and performance requirements. Nowadays, hybrid hardware platforms,

which combine a Microcontroller Unit (MCU) and a Field Programmable Gate Array (FPGA) on the same

System on Chip (SoC), are becoming more cost-effective solutions that can be used even at the IoT net-

work edge. Such platforms add extra processing capabilities to already existing systems by allowing the

deployment of dedicated hardware accelerators [4][5][6] on the FPGA fabric. For instance, CUstomizable

and Trustable End-device for the internet of things (CUTE mote), a mote specially designed for the edge

network, is an in-house project that uses such platforms [7][8][9].

Nowadays the IoT industry is increasingly reaching more ecosystems, from infrastructures, such as

transportation systems and power plants, services that reach out to entire cities and countries, and even

household appliances such as electronic gadgets, smart home devices from light bulbs and wall plugs,

to personal use machines. This vast presence of the IoT concept in the daily activities of our society is

definitively a real concern in cybersecurity matters. Bringing connectivity to low-end devices significantly

increases breaches for attacks through the network in which these devices are connected. With such

1

Chapter 1. Introduction 2

breaches and security issues, devices and networks are significantly more compromised ,which makes

them less reliable. Therefore, efforts need to be made in regards to seeking for more cost-effective solu-

tions and more processing capable devices , and in the security- and privacy-related issues [3][10][11].

Such issues demand greater and stronger mechanisms that enables more and more security at the IoT

device and network paradigm. Mainly due to the quick growth of this industry, the rush for cheaper and

faster devices has been the prior reason for the security and privacy concerns that have become a smaller

priority for the manufacturers. However, adding additional capabilities to such resource-constrained de-

vices is a compromise between integrating security mechanisms and reducing the device’s processing

capabilities, increasing energy consumption and other concerns [12]. This pros and cons balancing sit-

uation is definitively a challenge researchers have in hands because the impact of such solutions. One

solution for tackling this problem is fetching an IDS mechanism for the IoT networks and protocols, allowing

for a greater possibility of detection and prevention of many kinds of malicious intrusions in IoT devices and

networks. For instance, an implementation of an IDS towards the IoT constrained devices, can become a

very useful tool for the manufacturing industry.

For this reason, this thesis focuses on the study of IDS development capable of improving devices

security againts two popular attacks: routing and DoS, with a possibility of integration in aforementioned

hybrid hardware platforms such as the CUTE mote [7]. Due to the ferocity of such attacks and the liability

of these resource constraint devices, the IDS must be able to standalone contribute with major safety

capabilities.

1.2 Goals

The main goal of this thesis is to integrate an IDS with heterogeneous IoT endpoint devices. This

security mechanism must be able to:

• Detect and prevent against routing attacks;

• Detect and prevent against DoS attacks;

• Improve safety in the data transferred through the network;

• Induce little overhead regarding memory and Central Processing Unit (CPU) usage;

• Be OS agnostic;

Chapter 1. Introduction 3

The final goal is to integrate this solution with a heterogeneous architecture for an IoT endpoint device,

such as CUTE mote [7].

1.3 Thesis Structure

This thesis will proceed to the Chapter 2, State of the Art, where structural topics used in this disser-

tation are covered, performing a theoretical context necessary for the discussion and conclusions taken

down the line. Furthermore, the related work is presented, in which some state-of-the-art IDS solutions

are studied. Information about the platform and tools used during and for the project are also shown. In

Chapter 3, System Model and Design is covered, by showing the developed architecture of the solution,

the decisions and trade-offs taken considering the best design. Moving on, is the Chapter 4 which covers

the Implementation of the IDIoT solution. Some core-algorithms are presented aiming to deeply explain

how the previous system model is implemented and integrated with the entire system. Evaluation takes

place in Chapter 5 and here are presented the results for simulations and benchmarks performed on the

system. Then, an analysis occurs, concerning the proposed solution and the obtained results. Limitations

of the solution are also covered. At last, the conclusions for this project are presented in Chapter 6, re-

ferring to the solution beneficial features as well as limitations. A final section is reserved for future work

discussion.

Chapter 2

State of the Art

Throughout the development of this work, several topics and domains must be covered. These include

security and connectivity, applied to IoT end-devices and IDSs. These principles are the backbone of this

study. The first section of this chapter will briefly describe what these topics are and where they stand in

the current state-of-the-art. Firstly, IoT history, importance and architecture will be approached, in Sections

2.1.1 and 2.1.2. Moreover, OSes for the IoT are discussed in Section 2.1.5 as these are fundamental for

our work, which will present a solution that runs as one or more OS applications. Furthermore, security

threats addressed to the Wireless Sensor Networks (WSN) and the IoT are discussed in Section 2.1.6, an

important topic for a security concerned project such as this one. At last, IDS as a defense mechanism is

approached in 2.1.7, regarding possible architectures and common actuation methods. Next, the second

section of this chapter addresses current state-of-the-art that is somehow closed to this work. Finally, last

section covers the platform and tools required to the successful realization of this work.

2.1 Background

2.1.1 The Internet of Things

The Internet of Things (IoT) as an idea has been around for a while now, the first example of an

application more related to the IoT concept appears in the early 1980s where local programmers from the

Carnegie Melon University used the internet connection to access a Coca Cola machine in the university

facilities. They would use the connection to the refrigerated appliance to check if there was a drink available,

and if it was cold, before making the trip to the cafeteria room. Despite some similar applications appearing

as such, the IoT was not even officially named until 1999 [13]. This imminent technology is growing at a fast

rate and it is already adding up large importance on various environments, on a daily basis. Whether we

4

Chapter 2. State of the Art 5

are improving the production of an industry, monitoring our health, or providing services for the community

of a city such as live parking information, it is the common IoT platform that allows the communication

between all its intervenients. The IoT, for this reasons, is resulting in regular day-to-day tasks to become

more easy and automated [14] [15]. IoT can be described as a collection of billions of devices sharing and

collecting data through the internet [16]. These devices are now able to communicate with each other,

and with the user, in a network made of things, due to the emergence and integration of the IoT [17]. IoT

devices can be used in a multitude of applications, in an endless amount of configurations and network

topologies [1] [18] [2][3]. Each IoT device usually performs a specific set of tasks anf procedures such

as data collection, like sensors, or performing services, like actuators. Communication with IoT devices

through the Internet is only possible by integrating gateways to the network [19]. Some benefits of using

IoT technology are: access to high-quality data; better tracking and management; more efficient resource

utilization; automation and control; comfort and convenience; time and money savings [20]. Some fields

of application are the human body, our homes, the environment, cities, and industries [16] [18] [21].

Mimo [22] is a new kind of infant monitor that provides parents with real-time information about their

baby’s breathing, skin temperature, body position, and activity level on their smartphones. To help to

prevent problems like sudden death syndrome, these devices improve health and life quality. SmartTrash

[23] is a community service directed appliance. Products like cellular communication enabled Smart

Trash to use real-time data collection and alerts to let municipal services know when a bin needs to be

emptied. This information can drastically reduce the number of pick-ups required and translates into fuel

and financial savings for community service departments. OnFarm [24] is a solution that combines real-

time sensor data from soil moisture levels, weather forecasts, and pesticide usage from farming sites into a

consolidated web dashboard. Farmers can use this data with advanced imaging and mapping information

to spot crop issues and remotely monitor all of the farm’s assets and resource usage levels. Many more

appliances can be developed and integrated using the IoT, for instance, [16] gathers some big amount of

examples regarding this, concerning five major scenarios. These are: Transportation and Logistics, with

examples of environment monitoring application; Healthcare, with examples of tracking application; Smart

Environments, with examples of comfortable homes and offices; Personal and social, with examples of

thefts and losses; Futuristic scenarios, at last, with examples of robot taxi’s.

Statista, a business data platform, estimates that by the year of 2020, around 31 billion smartphones,

wearables, smart watches, cars, and other devices will be connected to the IoT [25]. As previously dis-

cussed, there is a vast versatility of IoT appliances all around the tecnologic world. In Figure 2.1, adapted

Chapter 2. State of the Art 6

from [26], is categorized a structure for the IoT architecture.

Figure 2.1: Variants of things and networks in the Internet of Things.

Similarly, to the Open System Interconnection (OSI) model, the most accepted architecture layout

for the IoT in the current literature [27][18] is structured, from top to bottom, with application, network

and perception layers. In Figure 2.1 it is possible to understand this categorization and organization. On

the top of the architecture stands the application Layer that manages the data exchanged with the layers

below, and uses this data to provide required services or operations. It is also known as the business layer

and here various applications can exist, each having different requirements. Moving downwards, in the

network Layer the processed information from the perception layer is received here. Then, the routes to

transmit the data and information to the IoT hub are determined. This is the most important and dense

layer of the architecture because the numerous amounts of devices and communication technologies that

are integrated. The last one is the perception layer, or in other words the physical or the sensor layer

and its the bottom layer in this example of IoT architecture. This layer has the capabilities of measuring

Chapter 2. State of the Art 7

and collecting data which is then processed to the upper layers. Sometimes these network nodes can

exchange data with each other and even perform operations without intervention from above.

Concerning the perception layer, there can be many kinds of devices/things in IoT network. For

instance, the IoT compliant devices can be described in three types of things, which are presented in Figure

2.1. All of these communicate with the IoT server via an Internet connection. Big Things are considered

large devices, not specifically concerning the size of the device, but also as the complexity of the function

it can perform and the vast expected resource availability. These devices are normally computers, big

industrial machines, cars, etc... Small Things are devices with simpler function and complexity. Normally

executing censoring or actuating operations, these devices are expected to be constrained in resources

such asmemory, power, and bandwidth. Non IP-Things are very much similar to the small things, described

above. They establish a connection with a Gateway, using communication protocols such as Low Range

(LoRa), bluetooth and Radio Frequency (RF). The Gateway performs the analysis of data which is later

transmitted to the IoT Server via an Internet connection.

2.1.2 The IoT Network Stack

The network layer of the IoT architecture is a layer concerning connection and connectivity. Protocols

are specifically designed for the IoT and must tackle all of the communication challenges involved in this

kind of network, which can be supporting and connecting to the Internet a large amount of heterogeneous

smart devices [28] [18]. Such challenges are: addressing and identification, low power communication,

low power routing protocols, high speed and nonlossy communication and, also, mobility of smart things

[29]. In this section, we will briefly approach the IoT network stack and it’s most important protocols which

will later be used during the development of the IDIoT solution. To develop a security mechanism for the

IoT low-end devices, it’s important to understand what protocols are used within an IoT network, not only

for communication between its devices but also for communication between the gateway of the network

and the Internet. Additionally, it is also important to refer to which routing protocols are designed to IoT

networks, most importantly the protocol we will be using, since routing is very important for the subject

of preventing attacks, taking in consideration that these can take place by taking unauthorized actions

against routing information.

Generally, IoT devices connect to the Internet through the Internet Protocol (IP) stack, which most

typically nowadays is used the IPv6, as an upgrade to the previous, but still in use, Internet Protocol version

4 (IPv4) [30]. However, some IoT devices are too resource-constrained to secure such complex and dense

Chapter 2. State of the Art 8

network protocols. For this reason, these devices tend to connect locally through non-IP networks and,

using a border router acting as a gateway, connecting the network to the wide Internet [31]. For instance,

taking a glance at Figure 2.2 it is possible to further understand how all the above mentioned layers and

protocols reside within a protocol stack such as the 6LoWPAN protocol stack.

Figure 2.2: IoT Network Stack.

There are many existing protocols for these non-IP networks, such as Bluetooth, Radio Frequency

Identification (RFID), Near Field Communication (NFC), Institute of Electrical and Electronics Engineers

(IEEE) 802.15.4, low power wifi, Sigfox, LoRa, Zigbee and somemore [32][33] [34]. These are very popular

however they are limited in range, making most of the above networks limited to small-medium Personal

Area Network (PAN) [17]. In order to adapt an IP stack to better suit IoT networks, 6LoWPAN was developed

by the Internet Engineering Task Force (IETF) and constituted one of the most important protocols of an

IoT network stack. Moving upwards to the transport layer, IoT networks can use protocols such as UDP

and Transmission Control Protocol (TCP), however, due to being a connection-oriented protocol and having

a considerable bigger overhead, TCP is not a good option for communication in low power environments

and UDP is the preferred option. Some networks also employ Internet Control Message Protocol (ICMP)

at this layer, instead of UDP. Finally, at the top of a device’s communication architecture, the application

layer also has many protocols specifically developed for the IoT networks and two of the most used are

Message Queue Telemetry Transport (MQTT) and Constrained Application Protocol (CoAP). These will not

be taken into details in this thesis.

Chapter 2. State of the Art 9

2.1.3 6LoWPAN

6LoWPAN consists of the Low Power Wireless Personal Area Networks (LoWPAN) adaptation layer

which defined encapsulation and header compression mechanisms enabling IPv6 over IEEE 802.15.4-

based networks. IEEE 802.15.4 networks. It is an open standard regulated by the IETF, which defines

other standards used in the internet, e.g., Hypertext Transfer Protocol (HTTP), UDP and TCP. The IETF

regulated 6LoWPAN through RFC 4919 and RFC 4944 between 2007-2009 [33][32]. This open standard

is expected to be used by resource constrained embedded devices in low power wireless networks.

Internet protocol packets can be carried efficiently within small link-layer frames because 6LoWPAN

has defined encapsulation and header compression mechanisms that allow IPv6 packets to be sent and

received over IEEE 802.15.4-based networks [18]. This way, 6LoWPAN performs a crucial function at

adapting the packet sizes of the two networks, since IPv6 requires the Maximum Transmission Unit (MTU)

to be at least 1280 bytes while IEEE 802.15.4 standard’s packet size available for media access control

layer is just 102 to 81 bytes [35].

On a 6LoWPAN network, there is a dedicated edge router, just like a sink node in a WSN. The 6BR acts

as gateway communication with the internet. On a 6LoWPAN network each node can have an IPv6 address

assigned to each interface, which enables them to be directly reached from anywhere on the Internet. This

way, applications running on the nodes can exchange IP packets to a server on the Internet [36].

In Figure 2.2 a comparison is made between the IoT network stack, using the 6LoWPAN, and the

traditional Internet network IP stack [36].

2.1.4 RPL

Routing Protocol for low power and lossy networks (RPL) is a routing protocol developed specifically for

Low Power and Lossy Network (LLN)s which is a class of networks in which both the routers and their nodes

are expected to be constrained concerning the fundamental resources such memory, power sources, and

processing capabilities. This is a pro-active protocol based on a distance vector algorithm and provides

support for multipoint-to-point traffic as well as point-to-multipoint traffic, from inside of the LLN network

to the outside, and vice-versa. Support for point-to-point traffic is also available in RPL [37].

This protocol configuration works by creating a network topology map, which is called a Directed Acyclic

Graph (DAG), and every node present has an assigned rank. The Destination-Oriented Directed Acyclic

Graph (DODAG) root node has the smallest rank of the network, 0, and node’s rank increases as they get

Chapter 2. State of the Art 10

further from the root since the rank of the node describes their logic distance to the root. A parent-child

hierarchy is created where the nodes closer to the root are parents, and below them are the children, with

higher ranks.

In the genesis of a DODAG, a node of the network is chosen as root. Most times the border router

is set by the network administrator as the root. This root node will then send to all network neighbors a

DODAG Information Object (DIO), spreading the message through all neighbors, by link-local multi-casting,

that he is, in fact, the root. The root will then inherit rank value 0 and, consequently, nodes that receive

the DIO message will discover the new DODAG and replace the old one. This way, nodes in the network

can join the DODAG by making use of the DIO messages received. Upon reception of such a message,

the node selects the best parent according to the rank of its neighbors in the DODAG and then broadcasts

its own DIO message to other nodes.

The DODAG demands for initialization and maintenance. For this, and to exchange information about

the graph over the network, four different control messages are used:

• DODAG Information Object (DIO), which was covered before, is a control message which contains

information about the routing graph such as IPv6 address of the root and current ranks of all the

nodes;

• DODAG Information Solicitation (DIS) is used to solicit DIO messages from router nodes in RPL. It

may be used to probe neighbor nodes in adjacent DODAGs;

• DODAG Advertisement Object (DAO) allows for nodes to advertise the path to the root in order to

fully build the DODAG;

• DODAG Advertisement Object Acknowledgment (DAO-ACK) is a simple acknowledgment message

for a node to send when a DAO is received.

Chapter 2. State of the Art 11

Figure 2.3: Flow of DIO and DAO messages in RPL network.

In Figure 2.3 DIS and DAO control message’s regular behaviour is shown. As explained previously,

the Sink has the smallest value of rank and this value increases and nodes go further from the sink. DIS

messages are spread from the border router to all the nodes in the network and each node responds with

DAO messages containing their and their neighbors information [38].

RPL protocol is widespread on IoT low-end devices and networks, with current implementation under

several embedded IoT OSes, such as: Contiki-NG, TinyOS, LiteOS, T-Kernel, EyeOS, RIOT.

Furthermore the Contiki-NG supports two versions: RPL-Classic, the first version and presented in the

early versions of Contiki, and the new implementation, RPL-Lite, introduced with the Contiki-NG. RPL-Lite

is a lightweight version of the classic Contiki-RPL implementation and it removes all the support for storing

mode, working always with the non-storing mode. It removes the possibility of having multiple instances

and DODAGs. This way, it allows for more performance, less ROM footprint and more stability. However,

this implementation looses interoperability with other current implementations.

Chapter 2. State of the Art 12

2.1.5 Operating Systems for the IoT

An Operating System (OS) usually is a big complex system of software that manages machine hardware

and software resources in order to provide the user of such a machine an environment of abstraction where

generic software applications can be executed. OSesmanage the hardware resources, which include: input

devices such as keyboards, output devices such as displays, network devices such as routers and network

connections, storage devices such as internal or external drivers. This way, applications can be developed

for specific OS without having to take into consideration the specific hardware details or even other tasks,

e.g., memory allocation [29].

OSes, as we know them today, appeared as early as 1960 and have since been developed side by

side with the technological improvements of computers and devices in general, by the hands of companies

such as General Motors, IBM, Apple, Linux, Microsoft and many more. Worldwide, OSes are nowadays

the most vital tool for any device. Around March 2019 Microsoft announced that Windows 10 was now

running over 800 million devices. Concerning the personal computing platform area of smartphones and

watches, Google’s Android is dominating with over 2.5 billion users.

As we can see, there are many successfully OSes for many kinds of machines and devices due to dif-

ferent personal preferences of users and enterprises worldwide, but also due to the different requirements

of each system. For instance, OSes for cellphones and smart-phones were developed because the already

existing OSes for bigger machines, e.g., computers and laptops, were not suitable for these environments.

The same process leads to the development of OSes for even smaller and resource-constraint devices,

such as the low-end devices in the IoT. These IoT low-end devices, like Arduino, TelosB motes, Zolertia

Z1, Tmote Sky, etc, are too resource-constrained in terms of energy, processing capabilities, and memory

capacity, to be able to run traditional OSes.

The constrained low-end devices bring novel challenges for the development of OSes for such devices

[39]. The most important requirements that a generic OS for low-end IoT devices should focus on satisfying

are the following:

• Small Memory Footprint - one of the most crucial requirement in a IoT low-end device making this a

challenge for the OS to fit within such constraints. The IETF uses three classes of memory capacity

classification for these devices, where class 0 is for devices with the smallest resources («10kB of

RAM and «100kB flash) and class 1 for medium-level resources (10kB of RAM and 100kB Flash);

Chapter 2. State of the Art 13

• Support for Heterogeneous Hardware - IoT low-end devices are now running in a huge diversity of

hardware and communication technologies making thus a requirement for and OS to be able to

support this heterogeneity. IoT low-end devices are based on various microcontroller architectures

which can vary from 8, 16 and 32 bit. Additionally, some may have different ROM/RAM limitations;

• Network Connectivity - IoT devices are all about connectivity. Thus, these devices usually provide

support to at least one communication interface, which can vary from low-power radio technologies,

e.g., IEEE 802.15.4, 802.11 (WiFi), or Ethernet. This way, an OS for the IoT must have a network

stack based on IP protocols relevant for the IoT;

• Energy Efficiency - An OS for the IoT must be able to provide energy saving options to the upper

application layers, as well as using those energy-saving options itself as much as possible, since

battery powered devices must provide a long-term duration;

• Real-Time Capabilities - are also very important for these devices since most of the applications

they will be running demand an accurate timing execution, e.g., medical purposes or precise-timed

sensor readings for many purposes. This way, an Real Time Operating System (RTOS) can have

an important role in specific applications of the IoT and thus any OS should be able to supply with

features in accordance with the application requirements;

• Security - Even tough most IoT devices will have security and safety measures provided by the

network control or even the industrial systems in which they make part of, an OS must be able to

provide Root-of-Trust, provided by hardware, for these Internet-connected devices.

OSes for such low-end devices started appearing as early as 2002. Back then, such OSes were devel-

oped only for the WSN and only later started being integrated with the IoT low-end devices requirements

and specifications. Table 2.1 summarizes the most prominent OSes for IoT, according to their category

and their most important features [29].

Chapter 2. State of the Art 14

Table 2.1: Key features of representatives of several categories of OSes.

Name Category MCU w/o < 32 kB 6LoWPAN RTOS HAL Energy-efficient

MMU RAM scheduler MAC layers

Contiki Event-driven 3 3 3 7 3 3

RIOT Multithreading 3 3 3 3 3 7

FreeRTOS RTOS 3 3 7 3 7 7

uClinux Multithreading 3 7 3 7 3 7

Android Multithreading 7 7 7 7 3 7

Arduino Other 3 3 7 7 7 3

Contiki, first released around 2002, is an event-driven OS with cooperative scheduling approach and

with support for lightweight pseudo-threading [40]. It runs on 8, 16 and ARM 32-bit MCUs and works

with its native network stack: µIP and Rime Stack. RIOT [41] runs a micro-kernel-based RTOS with multi-

threading support, using a kernel inherited from FireKernel. It started being developed in 2012 and runs

in 8, 16 and ARM 32-bit MCUs. RIOT can run its native stack, gnrc, and also has support for OpenWSN

and ccn-lite. FreeRTOS [42] is equipped with a preemptive micro-kernel with support for multi-threading

and started being developed in 2002 for general embedded systems architectures. It supports 16, 32

and 64-bit MCUs and has no native stack, however, it presents support for others. TinyOS [43] is a really

lightweight OS which first appeared in 2000. It runs on extreme constraint nodes running 8 and 16 bit

MCUs and has an event-driven with cooperative scheduling approach. BLIP his its native network stack.

OpenWSN [44] has event-driven with cooperative scheduling approach kernel and started being developed

in 2010. It runs on its own popular network stack, the OpenWSN. Amazon Free RTOS is a more recent OS

for the IoT which is rapidly gaining popularity. It runs on a multi-threading programming model.

2.1.6 Security Threats Addressed to the IoT

Connectivity is nowadays a basic requirement of any devide. However, and since they can be accessed

from anywhere in the world, connectivity drastically increases the attack surface [36]. Moreover, as the IoT

uses network architecture similar to traditional networks, IoT networks also inherit problems and liabilities

from these traditional networks [45]. Provided that this work is concerned with the security of IoT networks

and devices, it is fundamental to briefly approach this problematic. The Figure 2.4, adapted from [45],

Chapter 2. State of the Art 15

organizes the security threats for the IoT in the perspective of four different entry points, pointing out the

most dangerous attack of each category.

Figure 2.4: Taxonomy of Security Threats in the IoT.

Physical attacks are performed within the hardware devices in the network and these mainly target

the physical layer of the OSI model. Malicious code injection, which not only stops the services but also

modifies the data, is considered as the most dangerous of these. Network attacks refer to those focused

on the network layer of the IoT system which presents many similarities to the network layer of the OSI

model. This means that these attacks mainly affect the communication protocols. Sinkhole and DoS are

considered the most dangerous attacks [36][46] [47]. The next category is concerned with software and

these are performed using a worm, spyware, adware, etc., in order to steal data and deny the services. The

authors [45] claim virus and worms to be the most harmful attack. This type of attack consists of a virus

that searches for files and services within a device to attack. The fourth group are the encryption attacks.

These depend on destroying the encryption techniques and obtain the private keys. In this category,

side-channel attacks are considered the most difficult to prevent. Here, the attacker uses side-channel

Chapter 2. State of the Art 16

information emitted by encrypting devices in order to detect the encryption key. It is performed by using

information about the encryption operation, power and time required, faults frequency, etc.

Many surveys have been published towards security threats in the IoT [48][46][27]. Such surveys

mostly study threats which target the devices through the network and application layer. In accordance

with the previously presented taxonomy in 2.4, these are: Routing, Man-in-the-middle, and Denial of Ser-

vice attacks [46]. Routing attacks affect the routing information by spoofing, modifying or replacing this

information. These attacks aim to create routing loops, to attract or repel network traffic, to increase or

decrease source routes, etc... Some specific routing attacks are Sinkhole, Selective-forwarding, Wormhole

and Sybil attacks. Man-in-the-middle attacks work by interfering with the communication between two

entities. The attacker node modifies or obstructs the communication between entity A or B, without these

noticing, or even just captures the traffic for unauthorized data analysis. Denial of Service are attacks

launched into a specific network or a specific device within a network, intending to disable the normal

operation of this device, or network, by an exhausting their resources. These attacks usually take place

by flooding of communications or even jamming of the communication channels. There is a variety of

DoS and Distributed Denial of Service (DDoS) attacks, such as IPv6 UDP Flooding Attack, Syn Flood, Land

attack, ICMP flood, Smurf attack.

Routing attacks and DoS attacks are considered the most frequent and more destructive mainly due to

the current IoT device’s security breaches and constraint of resources [46][49][36]. Routing-wise, Sinkhole

attack is the most important and takes place when an attacker introduces a fake node inside a network.

This node will advertise, to all neighbor nodes, a minimum cost routing path in order to make all the

adjacent nodes forwarding their packets through this malicious node. On the other hand, concerning the

DoS attacks, one of the most destructive IPv6 UDP flood, a type of DoS attack in which the attackers

overwhelms random ports on the target with IP packets containing UDP datagrams. As this happens, the

receiving host will try to find the corresponding application associated with the received datagrams, but

none will be found. Then, the host will try to send back a “Destination Unreachable” packet but having sent

many and many UDP packets, the attacker will be able to overwhelm the system and make it unresponsive

to other clients.

2.1.7 Intrusion Detection System

An IDS is a type of security software designed to detect malicious actions performed by intruders

with the aim of obtaining unauthorized access to a computer or a network. In order to protect systems

Chapter 2. State of the Art 17

and networks, an IDS performs analysis on the network traffic, using an analysis engine, so it can detect

ongoing intrusions and report a system alert to the network administrator. The network administrator, or

other tools assisted by the IDS, can then take action against this attack by blocking such harmfull user

or device, stopping the flow of that attacked network, and even saving the signature of the attack for

later recognition and earlier prevention [27]. Intrusions can be external or internal to the network. An

external intrusion happens when a user outside the target network tries to access one system without

authorization. An internal intrusion happens when an inside device attempts to raise its access privileges

in order to perform non-authorized actions [50].

The first research about this subject first appeared by 1980 by [51] where a preliminary concept

of an IDS was delineated at the National Security Agency and consisted of a set of tools intended to

help administrators review audit trails, normally composed by access logs, file access logs and system

access logs [52]. Various kinds of networks co-exist in the Internet. For instance, some networks in the

Internet enable peer-to-peer communication, where devices may communicate directly with each other

and, for this reason, security mechanism based in the networks switch or router may not be preventive in

case of a device becomes malicous. Therefore, in order to tackle these adverse difficulties, two kinds of

IDS configuration also exist. Network-based Intrusion Detection System (NIDS) connects to one or more

network segments and monitors network traffic for malicious activities. Host-based Intrusion Detection

System (HIDS) is attached to a computer device and monitors malicious activities occurring within the

system. The HIDS can also perform analysis to system calls, running processes, file-system changes,

interprocess communication and application logs [48]. Figure 2.5 depicts the topology of a NIDS and a

HIDS.

Chapter 2. State of the Art 18

Figure 2.5: Network-based IDS (left) vs Host-based IDS (right).

Even though IDSs are considered a matured technology for traditional networks, IDSs solutions are

not so adequate for the IoT systems. Due to the lack of security concerns and resource constraints in the

devices currently used in IoT networks, there are many development barriers for traditional IDS to operate

within the IoT networks. These IoT devices are generally resource constrained due to reduced power,

memory, processing capabilities and more. This way, the IDS as a concept of security mechanisms is also

being imported for the WSNs as these devices become more connected with the Internet due to the IoT.

Many solutions are already spread within the academic community and will later be studied in depth, in

Section 2.2.2. For this purpose, some authors have published surveys [48] [27] to the current literature of

IDS for the IoT and have categorized this solutions in a taxonomy that juggles with four approaches, being

these: placement strategy, detection method, security threats which the IDS was designed to protect, and

validation strategy.

Chapter 2. State of the Art 19

Figure 2.6: IDS for the IoT Taxonomy.

The IDS placement strategy concerns the strategy and location of IDS within the systems architecture.

This strategy can be classified into three classes as seen in Figure 2.6. In a distributed strategy, IDS mod-

ules are placed in every physical object of the network. In this case, the drawbacks are that each physical

object of the IoT network will be resource-constrained so the IDS module must be greatly optimized. Cen-

tralized strategy happens when the IDS is strategically placed in a centralized component of the network,

e.g., a border router or a dedicated host, so all the traffic exchanged between the network and the Internet

can be analyzed by the IDS. In a Hybrid placement, both strategies are combined in order to take each

others strong points and to avoid each others drawbacks.

The IDS detection method describes the functional mechanism used for the detection engine. In

signature-based approach the behavior of usual and known attacks are stored in the IDS internal database

so it can match certain network or node behavior to a stored attack signature. Signature-based are accurate

and very effective when it comes to known threats, however, they are ineffective to detect new and unknown

attacks because signature matching will never occur. Anomaly-based engine is composed by a set of rules

defining how the network should behave. These rules define a normal behavior threshold and therefore if

a deviation from these values occur, an alert is triggered. This approach is very efficient to detect attacks

related to abuse of resources, however, they can consider an intrusion to anything that does not match

a normal behavior and this can become a drawback. Specification-based is very alike with the anomaly-

based where a set of rules and thresholds are defined to represent the expected behavior but in this

approach, a human expert should manually define the rules of each specification. This allows for rules to

Chapter 2. State of the Art 20

be set for network specifications such as nodes, protocols and routing tables. Hybrid approach uses all

the above-described strategies in order to maximize their advantages and minimize their drawbacks.

An IDS is also categorized by the security threats it tries to prevent. There are many and the most

relevant are, sinkhole and DoS [45] [36]. At last, the validation method is also an important metric for

a classification on an existing IDS solution. Some validation examples are hypothetical, by simulation,

theoretical, or even no validation at all. These last are self-explanatory.

2.2 Related Work

Securing devices and networks with security measures like an IDS is an important topic that has been

addressed for a long time. This method was so reliable and there was already established a mechanism for

all networks, anti-virus, etc., that with the technological development and appearance of new technologies

such as the IoT, the adoption of an IDS of IDS was kept within the goals of a secured network and/or device.

However, developments in these technologies resulted in new security challenges to whom traditional IDSs

were not suitable. This way, new solutions are demanded either from adapting the existing solutions to

the new paradigm of the IoT, either from developing new solutions from the scratch. In this section we will

present and discuss the most relevant related work concerning IDS based solutions. High- and Middle-

end IDSs are discussed in 2.2.1. Low-end IDSs for the IoT are discussed in 2.2.2. At last, a brief analysis

of the platform and tools is presented in Section 2.3.

2.2.1 High- and Middle-end IDS

IDS are usually one of the best tools for securing networks and devices. These security mechanisms

were usually appointed as one of the best tools for securing traditional networks and devices. High- and

middle-end IDS solutions are currently at its peak of development and well established in the Internet

networks. For this class of devices, Snort and Suricata, depicted in 2.7, are two well-know solutions that

have been widely used [53] [54].

2.2.1.1 Snort

Snort is a Network-based IDS developed in 1998 and spread for the web community like an open-

source tool in 1999. It is a High-End IDS which only counted with 1200 lines of code back in 1999. The

Chapter 2. State of the Art 21

user’s community has had a major role in developing and keeping this mechanism updated over the years

through submitting bug alerts, bug fixes and more, as discussed in [55].

The Snort core engine is single-threaded, designed for the popular computers back in the day. It is a

light-weight cross-platform network sniffing tool that works based on a bunch of defined rules and analyzing

the packets exchanged over the network. This way, and having in mind the classification stated before in

Figure 2.1.7, it is a signature-based IDS. A typical snort installation can process traffic at a rate of 100-200

megabits per second [56]. Snort works not only as intrusion detection but also as an intrusion protection

system, by having the possibility of dropping and rejecting packets. In order to enable full sets of rules,

Snort must be running in a 64-bit machine [53].

An architecture example [56] for Snort can be depicted in Figure 2.7.

Figure 2.7: Architecture examples for Snort and Suricata, side by side.

Snort sniffs and analyses all of the network traffic. Hence, Snort has a dedicated packet capture

module and sent to the Decoder where their structure is analyzed for suspicious behaviors. These can

be presented as wrong packet sizes, protocol settings, etc. If something suspicious takes place here, the

Decoder is able to trigger an alert, otherwise the packets follow to the pre-processor which prepares this

data for proper rules application by the detection engine. At last, output plug-ins define how to deal with

the triggered alerts.

Chapter 2. State of the Art 22

2.2.1.2 Suricata

In 2009 a set of private companies, with the support and resources from the US Department of

Homeland Security, founded the OISF. The biggest goal of this foundation was to develop an alternative

to Snort tools called Suricata. Later in 2010, and inspired by Snort, Suricata is brought to the world as a

Network-based IDS with a very similar to Snort’s structure [54].

Unlike Snort, which was 10 years old and was developed for the computers at that time, Suricata

has a core engine working with a multi-thread architecture. This way, Suricata is expected to much better

in multi-core systems, as evidenced in [55]. Just like Snort, Suricata also performs both as intrusion

detection as intrusion protection and also needs to be running in a 64-bit machine in order to load the full

set of rules. This is one major example of why we consider these mechanisms as middle- and high-end.

In Figure 2.7, an example for the Suricata architecture is presented [56]. Network traffic, which can

either come directly from the network interface or from pre-recorded traffic, is sent to the decode and the

stream application layer where they suffer two operations. Firstly, packets are decoded just like in Snort,

but then, instead of being sent in a queue to the following stage, here the packets are assembled into

stream-queue which will later be fetched, for processing, by a certain thread. All threads compose the

thread engine and this is how the multi-threading operations of Suricata takes place.

2.2.2 Low-end IDS

Even though the IoT is still a recent and incipient paradigm in modern technology, it was already

granted with some security and privacy challenges in keeping the information and collected data safe,

trustable, and consistent. However, these systems face some challenges in authentication, confidentiality,

access control, mobile security and many more. For these issues, protecting networks with heterogeneous

IoT devices using IDSs as a security measure is a must. Nevertheless, an IDS designed for IoT devices will

have different requirements than IDSs designed for traditional networks, thus, for this reason, adapting

traditional IDS approaches to the IoT concept is still a topic of great interest.

Several IDS systems for low-end devices can be found in the literature [49] [57] [58] [59], [60], [61]

[62] [63]. Table 2.2, adapted from [48], summarizes the current state of the art of IDS regardign their

placement strategy, detection method, security threats they can detect, and the validation strategy.

Chapter 2. State of the Art 23

Table 2.2: Eighteen IDS solutions for the IoT.

Key Placement Detection Security Validation

Reference Strategy Method Threat Strategy

Cho et al. (2009) Centralized Anomaly-based Man-in-the-middle Simulation

Liu et al. (2011) - Signature-based - None

Le et al. (2011) Hybrid Specification-based Routing attack None

Misra et al. (2011) - Specification-based DoS Simulation

DEMO (2013a) [57] Centralized Signature-based DoS Empirical

Wallgren et al. (2013) Centralized - Routing attack Simulation

Svelte (2013) [49] Hybrid Hybrid Routing attack Simulation

Gupta et al. (2013) - Anomaly-based - None

Kasinathan et al. (2013b) Centralized Signature-based - Hypothetical example

Amaral et al. (2014) Hybrid Specification-based - Empirical

Oh et al. (2014) Distributed Signature-based Multiple conventional attacks Empirical

Lee et al. (2014) Distributed Anomaly-based DoS Simulation

Krimmling and Peter (2014) - Hybrid Routing attack and Man-in-the-middle Simulation

INTI (2015) [59] Distributed Hybrid Routing attack Simulation

Summerville et al. (2015) - Anomaly-based Conventional Empirical

Thanigaivelan et al. (2016) Hybrid Anomaly-based - None

Le et al. (2016) Hybrid Specification-based Routing attack Simulation

Pongle and Chavan (2015) Hybrid Anomaly-based Routing attack Simulation

However, when handling a list of eighteen solutions, proper sampling must be used and, in this case,

there are some vital concerns about the presented solutions which rule out many works. First and foremost,

IoT network is continuously building and shaping itself and, for this reason, when studying the oldest works

from these surveys, we found some of the older ones somewhat outdated. Secondly, many of these works

are overlapping each other either in the problems they secure, either on the approaches they use in order to

secure the communication or routing problems of such devices. Therefore, the ones who show overlapped

approaches or targets, and show the weakest or even none results in evaluation or benchmarking concerns,

must be dismissed. Thereafter, the result from a selective tapering of the previous table of solutions results

in less than a handful of solutions which have the ability to represent all the relevant placement strategies,

detection methods and different kind of security threats. These works are gathered in the Table 2.3 and

represent the works we will be studying in the following sections.

Chapter 2. State of the Art 24

Table 2.3: Key features of representative IDS solutions for each category.

Key Placement Detection Security Validation Detected

Reference Strategy Method Threat Strategy Attacks

DEMO (2013a) [57] Centralized Signature-based DoS Empirical IPv6 UDP flooding attack

Svelte (2013) [49] Hybrid Hybrid Routing attack Simulation Sinkhole and selective-

forwarding attacks

INTI (2015) [59] Distributed Hybrid Routing attack Simulation Sinkhole attacks

A Signature-based IDS of IoT Hybrid Signature-based DoS Empirical ”Hello Flooding” and

(2018) [64] Version Number Modification

2.2.2.1 SVELTE: Real-time IDS in the IoT

In 2013, Raza et al. [49] have proposed Svelte, an IDS developed to primarily target routing attacks

such as spoofed or manipulated data, as well as sinkhole and selective-forwarding. Svelte is designed for

6LoWPAN networks and makes use of RPL.

Following the taxonomy proposed and discussed in [48], this IDS has a hybrid placement strategy, be-

cause it has both centralized and distributed modules within the 6LoWPAN network. Centralized modules

are found in the 6BR while the distributed modules can be found in the constrained nodes.

The architecture proposed by [49] can be seen in Figure 2.8. It is possible to understand that this

execution flow consists of many network nodes capable of sending information and traffic reports to the

border router. This last is responsible for performing intrusion detection analysis to detect if any malicious

activity is taking place. This is possible because of two main software modules located in the 6BR, which

are the 6Mapper and the Mini-Firewall and their corresponding light-weight modules in the regular network

nodes.

The most important module of this architecture is the 6Mapper, which gathers information about

RPL network and reconstructs the RPL DODAG in the 6BR. Having a secure and trustworthy mapping of

the 6LoWPAN network is very efficient for the detection of many attacks. For example, sinkhole attacks,

which take place when an attacker advertises a better routing path, can be prevented with the RPL DODAG

information. To reconstruct the DODAG, 6Mapper sends mapping requests to the nodes in the 6LoWPAN

network. These mapping requests are five bytes long and contain some information such as RPL instance

ID, DODAG ID and DODAG version number. Nodes in the network will respond to the mapping request

with packets with a size of 13 bytes, with four extra bytes per each neighbor of such node. The response

packet contains the following information: node rank, parent ID and all neighbors IDs and ranks. As a

Chapter 2. State of the Art 25

security measure, the authors state that packets used to map the network must be indistinguishable from

other packets, otherwise attackers can perform a selective-forwarding attack exploiting this breach.

Figure 2.8: An IoT setup where IDS modules are placed in 6BR and also in individual nodes.

The other big contribution of [49] work is the Mini-Firewall, which has a module in the 6BR and also

in the regular network nodes. Besides providing typical blocking functionalities against already known

external attackers, specified by the network administrator, the firewall can block the external malicious

hosts specified in real-time by the nodes inside the 6LoWPAN network. Nodes inside the 6LoWPAN can

only choose to filter the traffic destined to itself. For an external to be blocked to all nodes, a minimum set

of nodes need to have complained about such specific host.

At last, Svelte has a few more Intrusion Detection Algorithms for network analysis, which support the

6Mapper and the Firewall. Such algorithms are Network graph inconsistency detection; Checking node

availability; Routing graph validity; End-to-end packet loss adaptation. It is also convenient to refer that

6Mapper is capable of passively protect the network against Sybil and Clone ID attacks.

All evaluations show high success rates for all the tested attacks. During the evaluation described by

[49], with an example of such in Figure 2.9, it is possible to conclude that Svelte behaves the best when in

a lossless network when compared to a lossy network. This is due to the time necessary for the 6Mapper

to build a stable and secure network map.

Chapter 2. State of the Art 26

Figure 2.9: Evaluation of Svelte performance in lossless and lossy networks for a selective for-
warding attack.

Also, the evaluation shows that the rates drop with the amount of nodes in the network, once again,

because bigger networks will demand more time to be mapped. In lossy networks, with few run-time,

e.g., 10 minutes, and with many nodes, e.g., 32, the true positive rates drop up to 60%. These rates

will, however, behave much better in lossless networks with considerable run-time and fewer nodes, where

positive rates surpass the 90% rates.

Svelte modules show a small memory footprint, as they only require an additional 0.365kB of RAM in

a 10kB Tmote Sky. The authors also claim that 1.76k required ROM of the 6Mapper is perfectly suitable

for constraint nodes, such as Tmote Sky with 48k, even though it is designed for 6BR which are typically

less constraint in-memory resources, like a desktop or laptop computers.

Concerning energy overhead, Svelte induces negligible consumption in network-wide without duty cy-

cling, where the radio is always turned on to receive and transmit packets. However, in duty-cycled net-

works, where the radio is off for approximately 98% of the time, the overhead can reach up to 30%, in

bigger networks. The current drawback of Svelte is that it was released in Contiki 2.6 version, and never

updated, thus only provides support for the classic version of RPL, which is being replaced by RPL-Lite in

the latest Contiki-NG. Furthermore, Svelte has no reference whatsoever to DoS attacks, which are known

to be another ferocious attack towards these devices.

2.2.2.2 DEMO: An IDS Framework for IoT Empowered by 6LoWPAN

Also in 2013, Kasinathan et al. [57] proposed a centralized solution called DEMO, where the main

goal for this IDS was to detect DoS attacks in IoT 6LoWPAN-based networks. DEMO is a signature-based

IDS with empirical validation, developed against IPv6 UDP flooding attacks.

Chapter 2. State of the Art 27

Contributions made with [57] work are reported only has enhancements to an already existing structure

proposed in [58], however, from the same author. These point out that security breaches may happen if

the information packets in a security mechanism like IDS are transmitted within the wireless medium. In

their solution, wired communication is established between the IDS engine, and the IDS probes sniffing

the network.

Figure 2.10 ilustrtes the DEMO framework architecture. This architecture has an advanced event moni-

toring system and also the IDS engine. The monitoring system consists of Frequency Agility Manager (FAM)

and Security Incident and Event Management System (SIEM). Frequency Agility Manager is a mechanism

that allows a network to become aware of the interference level by analyzing channel occupancy states in

real-time, thus, making it possible to choose the best available channel at a given time. FAM switches the

operating channel when the interference level exceeds a certain threshold. Prelude SIEM is responsible for

monitoring the attacks events or alerts. It receives information from the IDS engine and is also capable to

receive interference information from the FAM. Prelude integrates a wide range of security tools under one

monitoring system, making it possible to minimize the false positive alerts by correlating information avail-

able from other network monitoring tools such as FAM. Attack confirmations can be triggered by Prelude,

which can extend notifications by sending email or SMS alerts to the network administrators.

Figure 2.10: DoS detection architecture for the 6LoWPAN.

Chapter 2. State of the Art 28

This solution’s IDS engine is made possible through Suricata. Since Suricata was developed to detect

attacks on traditional networks, protocols from WSN and 6LoWPAN are not understood by Suricata so there

was a need to develop decoders for these protocols, to Suricata, so the engine could analyze the network

packets.

No evaluation is presented on the paper, however, the authors explain that testing is made using

the Scapy tool, a powerful packet manipulation program that can generate attacks, for example, flooding

attacks, but also more complex attacks such as RPL-rank attacks. According to the conclusions made,

results proved that the proposed solution was scalable and stable, also appearing as a promising solution

for the future 6LoWPAN security. DEMO’s capabilities can be developed to detect more complex attacks

by developing specific modules for Suricata, e.g., by extending Suricata’s engine to support anomaly

detection.

2.2.2.3 INTI: Detection of Sinkhole Attacks for Supporting Secure Routing on 6LoWPAN

for the IoT

Proposed in [59] and described as Detection of Sinkhole Attacks for Supporting Secure Routing on

6LoWPAN for the IoT, INTI combines concepts of trust and reputation with watchdogs for detecting and

mitigating attacks. This system implements a hierarchical structure of nodes where each node as a role

in the system. These can be leader, associated, member or a free node. The main task of each node,

within the IDS play-role, is to monitor a superior node estimating its traffic patterns like inbound and/or

outbound traffic. When a node detects a sinkhole attack, it broadcasts a message to alert other nodes.

In comparison with Svelte [49], INTI discusses and presents the concept of mobility within the 6LoW-

PAN network nodes, stating that such mobility is expected in real life network behavior, resulting in a

non-fixed network mapping possibility. Thus, INTI operates with a virtual clustering of nodes, and also a

hierarchy within the clusters, which is constantly being updated and altered with changes related to mo-

bility but also changes resulting from attacks. This way, the network is equipped with self-organizing and

self-repairing properties. Since RPL was only developed to work with static devices and environments, INTI

also developed a new routing protocol inspired on the RPL, taking into account the device’s mobility and

cluster information.

Chapter 2. State of the Art 29

Figure 2.11: INTI IDS system entities.

In Figure 2.11 it is presented an example of a INTI network entities arrangment, with all of the exist-

ing entities in the INTI system. The dashed line is representing the created virtual-cluster. INTI system

architecture has four modules: cluster configuration, routing monitoring, attack detection, and attack iso-

lation. Initially, all nodes are free nodes but the cluster is built with runtime. INTI makes use of the Beta

Probability Density Function in order to estimate the state of a node concerning its past behavior. This

function is essential for trust and reputation algorithms. Attack detection in INTI takes place by evaluating

all of the node’s trust and reputation, in real-time. Whenever a node detects his neighbor’s confidence

value below a defined threshold, this node will then broadcast an alarm message in order to alert all the

neighbor nodes.

Even though INTI has a distributed placement strategy, having all of its software running on the con-

straint nodes, the authors still imply that this solution results in less resource consumption, in comparison

with Svelte [49] and DEMO [57], resulting in a smaller hit on network and system performance. However,

no evaluation is presented concerning energy consumption in [59].

Chapter 2. State of the Art 30

Figure 2.12: INTI IDS system evaluation in comparison with Svelte IDS for false positives and
false negatives.

INTI is evaluated in the Cooja simulator, just like Svelte, given out the purpose of comparing both

systems. Evaluations are performed with large networks, with 50 nodes, and comparisons are made

concerning four metrics: detection rate, false negative, false positive and delivery rate. All evaluations are

realized with sinkhole attacks, no other routing attacks are covered in this paper neither are Sybil ID and

cloned ID, which Svelte claims protection against.

It is possible to see in Figure 2.12 an example of the charts presented, in which is presented the

detection rates of sinkhole attacks for both systems, taking account no mobility on the left, whereas, on

the right, mobility is present. Detection rates are very similar in a fixed scenario whereas in a mobile

scenario INTI shows a much more positive rate. As false negatives concern, INTI behaves really good

in the fixed scenario but with mobile nodes, Svelte provides the best results, curiously. Rates for false

positives are again very similar. At last, Svelte presents a delivery rate that reaches 99% in fixed scenarios

whereas INTI takes the best score around 75% for mobile scenarios. No energy consumption’s neither

memory usage evaluations are presented in INTI.

2.2.2.4 A Signature-based Intrusion Detection System

The last work reviewed in this thesis concerning existing low-end IDS solutions for the IoT is a Signature-

based Intrusion Detection System proposed in [64], which involves both centralized and distributed IDS

modules, resulting, this way, in a hybrid solution for detection of DoS and Routing attacks.

This IDS solution, just like Svelte, which is also hybrid concerning the placement strategy [49], also

places the centralized IDS module in the main router, which can be the border router of the 6LoWPAN

network. However, this solution does not place the distributed IDS modules running inside the constraint

Chapter 2. State of the Art 31

nodes of the network, lightweight modules are deployed in the network in close proximity to the nodes for

the purposes of traffic monitoring and reporting. Just like DEMO [58], all the IDS modules are connected

via wired communication channels in order to avoid jamming or other types of wireless attacks which can

happen if these packets were being transmitted within a wireless medium.

Figure 2.13: DoS detection architecture for the signature-based IDS.

In Figure 2.13 we can see the architecture for this solution. There are two new devices added to a

standard network, the IDS router which runs not only the detection module but also a firewall, and the IDS

detectors that monitor the network and send suspicious traffic to the router. Besides from sending the

data to the IDS router, lightweight modules also perform algorithms to only forward the necessary traffic.

Malicious patterns are stored in the border router. For malicious activity detection, four main metrics are

constantly measured, being these the Received Signal Strength, packet data drop rate, packet sending rate

and the number of nodes ID in the network.

Cooja was also used for testing and experimentation purposes. The authors tested only two scenarios

in Cooja, using the same network specifications in both. In the first scenario, there is no threat, however, in

the second scenario, one of the nodes was performing both hello flooding and version number alteration.

This way, the authors showed the negative effects these attacks can have on a network using RPL. Neither

Chapter 2. State of the Art 32

evaluations nor results are presented for this IDS solution, concerning memory usage, power consumption

or detection rates.

2.3 Platform and Tools

In this section, we will briefly approach the platform and tools used throughout the implementation of

this project. There is one very-known application from the Contiki OS that constitutes a vital tool for the

development of this project, the Cooja Network Simulator. This tool will allow for all the network simulations

of this project, and we will better approach this tool in the following Section 2.3.1.

2.3.1 Cooja Network Simulator

Developing an IDS for the IoT is only feasible if reliable testing of the system is performed. Setting up a

physical network of devices in a secured and controlled environment would be too much of a burden, if even

financially possible, and for this reason, simulation is the wisest choice. Simulating an IoT network where

an IDS would be integrated requires for a network simulator not only capable of simulating large networks

of devices but also capable of simulating different devices running different firmware. Furthermore, the

network simulator should be able to supply with a reliable computation of performance metrics of the IoT

based smart devices.

Contiki OS, previously analyzed in Section 2.1.5, offers Cooja Simulator, a network simulator specifi-

cally designed for WSN which allows for emulation of real hardware platforms. For this convenient reason,

and also for the acknowledged performance of this tool [65][66], Cooja was used as the preferred, and

only, network simulator throughout the development of this project.

Cooja supports many sets of hardware motes and radio transceivers, such as TR 1100, Texas Instru-

ments (TI) CC2420, and allows real simulation with message decoding of standard protocols such as RPL,

IEEE 802.15.4, uIPv6 stack and uIPv4 stack. Cooja also provides a flexible and easy-to-use interface built

up in different windows. There are five main windows, as seen in Figure 2.14, such as: the network win-

dow, which displays the physical arrangement of the runtime window, mote output, etc. Furthermore, this

window can also display a 10-meter grid, different colors to different mote functionality in the network (sink,

server, client, etc...) and radio environment of each node; The simulation window controls the operation

of the simulation, through the speed parameter and the pause, start and reload button; The mote output

window allows for a time-based visualization of all data printed and/or exchanged between each mote.

Chapter 2. State of the Art 33

This window can allow filters to be added, in the bottom field, enabling a mote-specific view. The timeline

window enables visualization of both power consumption and network traffic in the 6LoWPAN network. At

last, the mote interface viewer allows for multiple types of configurations that can track multiple metrics

of the node in runtime. For instance, in Figure 2.14 there are three different mote interface viewers dis-

playing the status of three node-metrics. The far-left one allows us to press the node’s button during the

simulation, the next is showing the status of the node’s LED’s, and the last is showing the node’s serial

port. More metrics can be analyzed in this mote interface viewer.

Figure 2.14: Contiki Cooja Network Simulator Environment.

Figure 2.15: Contiki Cooja Network Simulator available motes for emulation.

Chapter 2. State of the Art 34

Cooja network simulator has support for many devices, such as the MicaZ mote, MSP-EXP430F5438

mote from TI, Wismote, Z1 mote from Zolertia, Tmote Sky mote and some more. Hardware motes available

to emulation by Cooja can be seen in Figure 2.15. Cooja can successfully emulate all these hardware

platforms and build reliable simulations. For instance, Tmote sky is an ultra low power wireless module

for use in sensor networks, monitoring applications, and rapid application prototyping. It consists of an

8 MHz TI MSP430 MCU with 10kB RAM and 49kB flash as well as a 250kbps 2.4GHz IEEE 802.15.4

chipcon wireless transceiver. This is the preferred device to simulate in a project, since its one of the

most constraint devices supported by Cooja, allowing for the developers to always remember the resource

constrained environment they are developing, and to test network applications before the real deployment.

Chapter 3

System Model and Design

This chapter will proceed on presenting the system model and design for the IDIoT IDS. Firstly, a GAP

analysis is performed in Section 3.1 in order to understand which contributions are possible to add with

this solution to the current literature. Then, the proposed solution is detailed in 3.1.1 followed by all system

assumptions in Section 3.1.2. Then, for the rest of the chapter, the system model and design is presented

in Section 3.2, where the entire system will be covered. For a more in-depth view, we will be analyzing the

modules running in both border router and constraint nodes of the network, in Section 3.2.

3.1 GAP Analysis

In previous Section 2.2.2 it was possible to understand that many solutions addressing the implemen-

tation of IDS for the IoT paradigm have been published. For instance, [27] published a survey studying

twenty published solutions, with dates ranging from 2009 to 2017. Furthermore, Zarpelão et al. [48] is the

author of the survey discussed before, in Section 2.2.2, which also analyses eighteen published solutions,

which release dates range from 2009 to 2016. Both works have impressive content regarding the research

of present literature for IDS for IoT and both present some concerns and considerations about the lack of

conclusions and closures regarding many metrics of studied solutions.

Concerns are drawn as the research in IDSs for the IoT are still in its infancy and incipient [27] [48].

Works reviewed do not cover or address a lot of IoT technologies and cannot detect a large variety of attacks

[27][48], the most usual being routing attacks, DoS and man-in-the-middle. Furthermore, the proposed

solutions do not investigate the strong and weak points of each possible detection method and placement

strategy, as well as not reaching a consensus of which is the most proper one. Additionally, in most of the

cases, security over the communication between IoT nodes is only an assumption. This is a real concern

since many of the services provided by IoT networks and devices contain private data. This problem with

35

Chapter 3. System Model and Design 36

security in communication between network nodes also applies to the communication and traffic related to

the IDS mechanism, as most of the solutions did not refer to any kind of security over the control data from

the IDS itself. Last but not least, for all the studied, there is a clear lack of extendibility and configurability,

meaning that a lack of clear instructions and details for adding more attacks to the detection engines is

found, thus increasing a barrier in the use of already designed tools [48]. Concerning the configurability,

most of these solutions also fail to present some kind of adjustment to the network needs during runtime

of the devices and their tasks.

In the previous Sections 2.2.2.1 to 2.2.2.4 the 4 most relevant low-end IDS solutions for the IoT were

presented. These solutions suffer from some or even all of the problems previously pointed out and, at

this moment, none of these seem really capable of effectively and stand-alone securing an IoT network

with constraint nodes exposed to the malicious users which may arise from the connection to the Internet.

Regarding Svelte, the main concern is the lack of clear strategies to prevent or protect against DoS

attacks, which are as disruptive to a network as the sinkhole attack which is the main focus of Svelte. Also,

Svelte makes use of the RPL protocol but fails in delivering protection against exploits of the RPL using

control messages against itself. At last, Svelte assumes the communication between nodes to be secure

and this can also be an issue with networks where nodes handle data with higher privacy concerns.

In Section 2.2.2.2 DEMO was described, along with its particularity of using wired communications.

DEMO deploys physical IDS probes to the network, more than one, depending on the size of the network,

in order to send data to the centralized IDS engine. Although the authors introduce this particularity as a

great solution in order to secure the communication of control data from the IDS, there are major concerns

regarding the drawbacks of this approach, namely the increased cost of having to deploy physical devices

to the network, running their specific firmware for the IDS. Additionally, the major difficulty for the net-

work administrator to connect these wired devices, greatly limiting the possibility of having a network with

mobile characteristics. Furthermore, DEMO presents no protection against routing attacks like Sinkhole

and Selective-forwarding, protected in Svelte, and does not implement security measures against all RPL

exploits. DEMO does not deliver any kind of evaluation of its metrics against the DoS attacks and cannot

be considered an open-source solution since there is no access to the project or related algorithms and

flow charts.

INTI solution is an improvement to Svelte concerning the mobility features. In spite of having a good

evaluation concerning detection rates and false positives, no evaluation is presented regarding energy

or memory overhead which is a major concern for this solution since it empowers the constraint nodes

Chapter 3. System Model and Design 37

with many more functionalities and responsibilities for the construction of the network map, for example,

these nodes are constantly calculating neighbors trust and reputation levels using Beta Probability Density

Function. Much like Svelte, INTI only covers routing attacks and fails to deliver protection against DoS

attacks. At last, INTI also assumes communication between nodes to be secure and cannot be considered

as an open-source solution since there is no trace of the project or any kind of algorithms and flow charts.

Finally, the forth and last work covered, in 2.2.2.4, proposes a signature-based solution which, just

like DEMO, is focused in protecting DoS attacks but has no protection strategy againts routing attacks.

Furthermore, and having the samemajor concerns as DEMO does, this solution is based on the deployment

of physical IDS probes to sniff the network which are wired-connected to the central IDS module. As

discussed before, these strategy leaves major concerns with increased cost and reduced mobility of the

networks. This signature-based solution makes use of RPL protocol nonetheless it does not prevent any

kind of exploits of the RPL control messages. No evaluation or benchmarking is performed and this

solution cannot be considered as an open-source solution since there is no trace of the project or any kind

of algorithms and flow charts.

3.1.1 Proposed Solution

In accordance with the survey of existing IDS solutions for the IoT, [50], we draw the conclusion

that a hybrid IDS integrated into the 6LoWPAN protocol, would be the most promising IDS for the future

of the IoT. Additionally, combining detection methods in order to make the best of anomaly-based and

specification-based strategies would be most successful concerning detection rate and energy overhead.

Furthermore, for solutions making use of the RPL protocol, it is essential for the solution to secure this

protocol and the devices againts RPL exploits, namely the DIS and DAO attacks [67] [68] [69]. Regarding

the attack protection, the IDS solution is expected to be capable of securing the network against both two

most popular attacks, Routing and DoS attacks [70].

The GAP Analysis performed in previous Section 3.1 was the base for the development of the IDIoT

solution and these metrics compose the IDIoT description which are presented in Table 3.1. On top of these

introduced metrics for the IDIoT, it is also intended for the proposed solution to be able to accomplish a role

of independence towards the OS of the platform it is deployed. Furthermore, it is envisioned a configurable

and extensible point of view of the solution in order to both being able to deploy more protection rules at

the moment of the integration with the network, and also of configuring the thresholds of such rules. At

last, we pretend to deliver this project to the community making this an open-source solution.

Chapter 3. System Model and Design 38

Table 3.1: IDIoT metrics side by side with studied IDS for the IoT solutions.

Key Reference Placement Detection Security Validation Detected

Name Strategy Method Threat Strategy Attacks

DEMO (2013) [58] Centralized Signature-based DoS Empirical IPv6 UDP Flooding attack

SVELTE (2013) [49] Hybrid Hybrid Routing attack Simulation Sinkhole and Selective-

Forwarding Attacks

INTI (2015) [59] Distributed Hybrid Routing attack Simulation Sinkhole attacks

A Signature-based IDS of IoT Hybrid Signature-based DoS Empirical ”Hello Flooding” and

(2018) [64] Version Number Modification

IDIoT Hybrid Hybrid DoS + Routing Attack Simulation Sinkhole and

Denial of Service

3.1.2 System Assumptions

First, concerning the positioning of our proposal, it is assumed that the communication between the

network nodes is secured and authenticated. Secure communications can be provided by upper layers,

and for the sake of simplicity, the evaluation was performed with packets being transmitted in plain text,

which did not affect the system deployment and its proper operation. We also assume that for the routing

attacks, the malicious node is already inside the network. For the DoS attacks, they can be performed

from anywhere inside the network or from the Internet.

Regarding the IoT devices, this solution is intended to run in low-end IoT devices with tiny resources.

They are expected to have below 10kB of RAM and less than 100kB of flash.

Moreover, it is expected that networks where these low-end IoT devices are running, can perform some

kind of critical service and therefore data availability is a priority. Regarding the network, it is assumed that

a network will always be composed of more than 1 constraint nodes, and we assume that a network must

always have a 6BR with higher resource availability, over 100kB of RAM or even the size of a Raspberry Pi

or small laptop.

Regarding mobility of the devices, we assume that these can change location once in a while, during

their run time, for example, a smart light-bulb changing rooms within a house or sensors for a farm being

changed from place to place in accordance with the needs of the farmer to track this or that plantation.

This way, we assume the mobility will not be constant, for example as a smartphone being carried in a

postman’s pocket.

Chapter 3. System Model and Design 39

At last, motes will not run in networks under arsh and remote environments. These motes are expected

to work within environments ranging from indoor houses with stable air flows and network connections,

up to some outdoor applications where a little wind and dense air can be expected at some times.

3.2 System Overview

The proposed solution shares some strategies with an already existing and previously studied solution

of an IDS for the IoT. For instance, with a careful look at table 3.1, both IDIoT and Svelte are hybrid,

concerning both placement strategy and detection method. Furthermore, both solutions intend to protect

the devices and networks against routing attacks such as the sinkhole and the selective-forwarding. Svelte

implementation makes use of 6LoWPAN and the RPL as is intended in our solution and Svelte’s successfully

proved its truthfulness with simulations concerning memory overhead, energy overhead, and many more,

whithin the constraint nodes, which we believe is crucial for a solution of this kind. We intend in doing the

same extensive evaluation.

For these reasons, and after an thorough study of the Svelte architecture and implementation, the

conclusion was that not developing an IDS engine and architecture from scratch, but instead improving

the Svelte IDS for all the intended requirements of our solution, would be the foremost choice in order

to achieve the best results for our contribution. Many improvements and contributions to the existing

architecture of Svelte will be performed. The refered solution was published in 2013 [49] and was designed

over Contiki-2.6 at that time. Architecture was mostly constituted of modules in the application layer and

some minor changes to the network layer.

Contiki developers continued developing this OS during the years and in May-2018 a huge change was

released, the Contiki-NG. At that moment, the Contiki-3.x version was the most recent and stable version

of the Contiki OS. It was kept available for the community to work with, but developers shifted all work for

the new and improved Contiki-NG. In the current Contiki-NG, the old RPL implementation was set aside for

a brand new implementation called RPL-Lite. The old implementation even was considered to be deleted

by some developers, but the community concluded that users and the community would benefit the most

if it remained available as its last stable version. It is now called the RPL-Classic and its possible to use it

in Contiki projects. Now ahead is the RPL-Lite which has many new features and seems much promising

to the Contiki future and therefore promising for any application running in Contiki aswell.

Chapter 3. System Model and Design 40

For this reason an upgrade and refurbish of Svelte for the Contiki-NG is mandatory. For instance, Svelte

used the Contiki-RPL implementation from Contiki-2.6 to Contiki-3.x. The architecture will be accordingly

upgraded in order to make use of Contiki-NG’s RPL-Lite implementation. Futhermore, enhancements to

the Firewall will also be alongside with the efforts on the DoS attack protection, as each the rule-based

model and the mini Firewall will be co-dependent. At last, enhancements to the 6Mapper module and the

detection and correction modules, inherited from Svelte, will also be developed in order to provide for a

more stable and reliable flow of data collection and attack detection.

Figure 3.1 compiles an overview of the IDIoT architecture, showing an example of a network layout

with three agents on sight: a border router which is the network root, some network nodes scattered

randomly, and an internet connection, performed through the border router. On both the border router

and the network nodes, a zoom-in table is displayed showing the network stack of the device in which is

possible to locate the placement of the IDIoT.

Figure 3.1: Overview of the IDIoT architecture.

In Figure its possible to understand the hybrid nature of the IDIoT regarding the placement strategy,

as there are both centralized and distributed modules present in the border router and the network nodes,

respectively. On the the network nodes, the modules inherited from Svelte are the 6Mapper client and the

Packet Loss, whereas the modules added in our project are the Firewall-Client, the firewall-Manager and the

DoS detection. In the 6BR, themodules inherited by Svelte are the 6Mapper, Spoofing/Alteration Detection,

Node Availability, Graph Validity, End-to-end Packet Loss and the Firewall-Server, whereas the modules now

developed in our project are the DoS detection and the improved Firewall-Server and manager.

The IDIoT architecture is present in the application layer and network layer, just like Svelte, which

worked in the same grounds. However, Svelte was mainly present in the application layer and only few

Chapter 3. System Model and Design 41

features run in the network layer. At this moment, IDIoT introduces more modules to the application layer,

in both border router and network nodes, but also in the network layer, where features are more significant

in both devices due to many new capabilities from the Firewall. Figure 3.2 depicts the border router,

which is the central device with all centralized modules, detailing its dependencies between other software

modules.

Figure 3.2: Overview of the IDIoT Border-Router architecture.

These communications concern the IDIoT flow between modules, so basically they represent control

packets and these can be both periodically and occasional. On the left side of the Figure 3.2, it is possi-

ble to see that this device receives two kinds of control packets: filter requests and mapping responses.

These packets are sent from the network nodes. On the right side of Figure 3.2 there are the control

packets generated by this device, and sent to network nodes: the mapping requests and the filter com-

mands. Furthermore, it is possible to see the communication between the TCP/IP and the Firewall-Server

management for filter inquiry, as well as intra-modular communications, for example, between the DoS

detection module and the Firewall management. In Figure 3.3, the network nodes architecture overview

is shown.

Chapter 3. System Model and Design 42

Figure 3.3: Overview of the IDIoT regular nodes architecture.

Packets received are the mapping requests and the filter commands, sent from the border-router.

Packets sent are the filter requests and the mapping responses, in accordance with what was seen before

in Figure 3.2. As it would be expected, the amount of traffic generated by these control packets of the

IDIoT is mostly experienced by the border router. Since a network node only receives two types of control

packets from one border router, network nodes undergo much less traffic than the border router which

receives two types of control packets from all the nodes functioning in the network.

Moving on, regarding the internal communications of the modules and the network stack, IDIoT mod-

ules of both devices are established on two Contiki processes which allow the flow of communications.

There is one process for the 6Mapper and another for the firewall. Both processes are first executed on

the device reset and configure the work flow. In the course of the device runtime, these processes are

triggered in accordance with the established events. Such events are either timers expiring or packets

received trough the UDP connection. Both the timer and the UDP connection are previously established

in the first execution of the process. Once again, in Figure 3.3, as well as in Figure 3.2, DoS detection

module performs communications with the firewal managment which evidences the dependency between

detection modules and Firewall procedures to filter attackers.

From this point on to the rest of this thesis, for consistency purposes, the aforementioned and pre-

sented IDIoT modules will be referred as: IDIoT-6Mapper, IDIoT-Routing-Detection, IDIoT-Firewall, IDIoT-

DoS-Detection. Some of these may even be referred concerning the placement in the network nodes,

such as the IDIoT-6Mapper-Server and IDIoT-6Mapper-Client , as well as the IDIoT-Firewall-Server and the

IDIoT-Firewall-Client.

Chapter 3. System Model and Design 43

3.2.1 IDIoT-6Mapper

The largest module of the IDS is the IDIoT-6Mapper . This module, as seen in Figures 3.1 to 3.3,

is present in both server and clients even though its main role takes place in the server. This module’s

underlying role is to collect data from all network nodes and store it in the central node.

In order to improve this module from its original version, many changes occurred and the most struc-

tural ones are concerning the RPL implementation. The improved mapper will be able of using one of both

Contiki RPL implementations: RPL-Lite and RPL-Classic.

The IDIoT-6Mapper is responsible to send, periodically, a mapping request to all available network

nodes and collecting all mapping responses sent from these nodes. The information in the mapping

request is the RPL instance ID, DAG ID, version number and a timestamp. This information is mostly

necessary for authentication purposes from the IDIoT-6Mapper-Server to the IDIoT-6Mapper-Client. On the

opposite side, the IDIoT-6Mapper-Client node sends all the required information for the detection modules,

as follows: node ID, instance ID, DAG ID, version number, timestamp, the current rank of node and its

parent ID, number of neighbors and for each neighbor, it’s ID and rank. These packets are transferred

over an UDP connection established between server and client nodes.

Upon reception of these packets, the IDIoT-6Mapper-Server stores all data regarding each network

node. The exchanged timestamps have the purpose of letting the mapper know when to send newmapping

requests, asking for updated data, by comparing the current timestamp of the mapper server with the

timestamp of the last data received from a specific node. The timestamp variation for the IDIoT-6Mapper-

Server to consider such timestamp as outdated relies on a configurable value which is defined at the reset

moment or deployment of the device on the network. This value should be in accordance with the network’s

expected mobility and is an important parameter to configure with care with the penalty of sending too

many or too few mapping request packets. For instance, if the network mobility ends up being much

greater than expected, the IDIoT-6Mapper-Server module may end up sending the mapping requests at

a slower rate then the necessary to keep the information updated and stable. On the other hand, if the

network ends up being much less mobile than what was expected, the IDIoT-6Mapper-Server module may

end up sending mapping requests in a higher rate then necessary, resulting in resource consumption’s

which could be avoided.

Chapter 3. System Model and Design 44

3.2.2 IDIoT-Routing-Detection

The IDIoT-Routing-Detection concerns the detection of routing attacks that manipulate the rank of one

or more nodes in order to diverge or converge the network traffic flow with a malicious intention. This

modules requires for the IDIoT-6Mapper to have collected network information concerning all neighbors

relationships and ranks. This module makes use of a strong requirement implemented on the RPL protocol

to detect such data manipulaton: the parent and child relation. The parent must always have an lower

rank then the children and if’s there’s an inconsistency, the system will consider the child to be conflicting.

This comparison is possible to the IDIoT-Routing-Detection provided that this module is in the possession

of ranks collected by the IDIoT-6Mapper as well as the minimum rank increase determined by the RPL

protocol.

Furthermore, node availability is a small module within this detection module, responsible for checking

if nodes information is reaching the server and, if not, tagging these as offline nodes. There are many

reasons for a node to be offline, maybe an attacker implementing a wormhole or a sinkhole, or just a faulty

node which needs to be replaced. For this reason, the IDIoT-Routing-Detection should be able to notify the

network administrator about this issue, or even to remove out this node from the entire network, avoiding

the energy dissipation of other nodes trying to use this node as a valid route.

Upon detection of an attacker, Svelte’s original work would try to correct the rank inconsistencies by

updating the rank information with information from other nodes who reported valid information for this

node. A new feature was added in order to improve the network quality when an attacker was present. The

classification of the attacker is increased in one possible state, now becoming susceptible to a light correc-

tion and/or a severe correction. The ground for this approach was that not all attacks were successfully

avoided with the rank correction approach, since the attacker kept on advertising fake ranks to all network

reachable nodes, despite the server correcting these ranks, time after time. This resulted in a constantly

unstable network that would only become stable if the attacker was successfully filtered or removed.

The severe correction now takes place when rank correction is not possible because all neighbors

of the attacker were successfully poisoned by the spoofing of the attacker. Two actions are taken in this

situation. Firstly, the node is marked as a severe attacker and the correction method triggers a method that

reaches out to the firewall server module to globally report this node. A global filter command will be sent

from the IDIoT-Firewall-Server to the entire network in order for the attacker to be filtered from all network

nodes. Subsequently, the IDIoT-Routing-Detection launches the RPL global repair, a method owned and

implemented by the RPL protocol which restarts the RPL formation. At this moment, the filtered attacker

Chapter 3. System Model and Design 45

may even be able to receive the initial DIO and DIS messages sent from the network nodes, however, the

responses, which will once again carry a fake rank, will never reach any network nodes. For this reason,

the node will successfully be filtered out from the entire network which will then become stable.

3.2.3 IDIoT Firewall System

Svelte proposes an interesting architecture of a Mini-Firewall, which we also took as the basis of our

IDIoT-Firewall. This mini firewall could become a bigger contribution to our goal of providing more central-

ized and distributed security to all network nodes, but mainly providing more independence for distributed

nodes to have a minimal security layer against easily detected attackers which can still cause considerable

amounts of damage as energy consumption and DoS attacks to smaller nodes if these have no firewall

features.

For this reason, the most significant extensions this project introduces to the firewall is: its necessary

integration with the Contiki-NG and as well with RPL-Lite; distributed capability of all nodes to filter attackers

on the TCP/IP layer, opposite to before when this operation was only performed by the border router; the

capability of all nodes not being only able to filter existing malicious nodes using their IP address, but

also using their link address, if both attacker and network node are neighbors, having a considerable

reduction in energy consumption because the packets are filtered sooner on the network stack, which

saves processing overhead; minor changes to these procedures to prevent missing cases and exploits of

this system, some of them detected while studying the original Svelte.

When a node starts, the configuration of both IDIoT-Firewall-Server and IDIoT-Firewall-Client will happen

due to the two processes running in the border router and the network nodes. These processes set up the

filter rules, empty at this moment, and with a determined size by a given value which takes into account the

memory allocation necessary for each filter. The IDIoT-Firewall-Server has a larger configuration process as

well as a larger activity since all network firewall tasks are centralized in the IDIoT-Firewall-Server. Regular

network nodes have the capability, in case of a detection module, detecting an attacker and send a filter

request to the IDIoT-Firewall-Server. Furthermore, regular nodes are able to automatically filter the attacker

locally in the distributed firewall. They check whether the attacker is a neighbor and, in accordance,

applying the filter rule using its link-layer address. Otherwise, the global IP address is used instead. The

IDIoT-Firewall-Server, not only has the capability of filtering nodes for itself, as explained before with the

regular nodes but is also responsible for receiving all filtering requests from all network nodes, making

thus the IDIoT-Firewall-Server responsible for the management of the active filters of the entire network.

Chapter 3. System Model and Design 46

There are two types of filters. The first is the small filter which represent a specific filter set for

an individual attacker for an individual network node. These result from the previously mentioned filter

requests sent from IDIoT-Firewall-Clients to the IDIoT-Firewall-Server. Secondly there are the global filters,

which are specific filters applied to individual attackers to the entire network. These are applied for attacker

which have proven to be abusive to two or more network nodes. When a filter is promoted from small to

global, the IDIoT-Firewall-Server not only filters all packets from this attacker, just like introduced in Svelte,

but also executes a procedure that sends an advertisement to all network nodes making it possible for

these devices to filter the attacker locally. This capability is able to filter attackers inside the network, i.e.,

before the border router. This way, the attacker is completely filtered from the entire network. Moreover,

the IDIoT-Firewall-Server is even able of triggering a procedure from the RPL protocol which is the RPL-

global-repair. This procedure restarts the entire RPL topology construction and thus is a costly procedure

concerning resource consumption because the entire network routing is restarting, however, it can have

great benefits since the new network would completely exclude the attacker. All network nodes would even

receive the attacker’s control packets, like the DIO and DIS messages, as seen in RPL Section 2.1.4 but

will never respond to this node since its now being blacklisted, resulting in a network routing where this

attacker is not included and therefore a much more stable network.

As mentioned before, both IDIoT-Firewall-Server and IDIoT-Firewall-Client will have a blacklist of filters

which can be filled with an attacker or empty if not necessary. This mechanism requires a nature of

memory allocation, even if with a small impact since it only needs to save addresses, however, needs

to be safely accounted because an over-sized number of possible filters would result in bigger memory

allocation, and also in greater latency induced to every packet reception, because for every packet received

the IDIoT-Firewall compares the sender address with all addresses saved in the filters, searching for a

match.

3.2.4 IDIoT DoS Detection Module

The IDIoT-DoS-Detection was developed from scratch and its main goal is to provide IDIoT with the

ability of detecting DoS attacks. These attacks can greatly affect the main purpose of these IoT small

devices which is to provide communication or service, such as data collection and transmission, as well

as greater energy consumption.

This module was developed with an action plan similar to other modules of the architecture, as this

module is responsible for the detection of an attacker and after such, uses the procedures implemented by

Chapter 3. System Model and Design 47

the IDIoT-Firewall for an action such as alert/filter. This module is mainly present in the application layer

despite having a minor change to the network layer, the TCP/IP, just like the IDIoT-Firewall. Its a module

developed to run both in the border router and regular network nodes, allowing for all network nodes to be

more resilient against a DoS attacker, without need to wait for an intervention of the border router which

would never happen, in case of a more discrete and targeted DoS attack, or when the attack starts from

a node inside the network.

The action flow of this method can be characterized as an anomaly-based, or even signature-based,

considering the assumption that such would detect a well-known attack like the UDP flood, which behavior

is known. This way, IDIoT-DoS-Detection executes a form of a counter which will be responsible to calculate

the packet receiving rate for all packets received on the device it is running under a certain amount of time.

If the packet receiving rate is higher than the configured threshold, different rule can be applied, such as

blacklist filters. This module has a direct connection with the TCP/IP, where for each packet received, a

call for the IDIoT-DoS-Detection is generated.

One of the requirements for the IDIoT-DoS-Detection was the capability of detecting an attack but also

generating the minimum possible overhead in the network. On the other hand, it is possible to understand

that if such module had a counter like the one explained before, running each time we received a packet

and comparing such packet sender with all known addresses from neighbors or even exterior hosts, a

huge overhead would be induced on the device since it would require memory to store all these addresses

of possible attackers as well as generate a great amount of latency in the comparisons perform in each

packet reception. This way, this module was developed to flow within three work states: Off, low alert, and

high alert.

The off-state is only a transitional state, occurring at the reset moment of the device where the IDIoT-

DoS-Detection is running and will run the configurations of the module before switching to the low alert

state. The off-state was designed to run for only a few minutes after reset and it also has been designed

this way in order to avoid extra energy consumption or even detect a false attack, having in consideration

that the first minutes of a network deployment there is a much greater amount of packet exchange resulting

from the network formation itself, where DIO, DIS, and DAO messages flow at a higher frequency during a

short amount of time for the device to integrate the network. After this, the IDIoT-DoS-Detection increases

its state to the low alert which has the main goal of being the most lasting state during the life-span of the

node, where small comparisons are performed allowing for a smaller impact in latency but still being able

to be an awake agent to detect any suspicious behavior and taking due precautions, namely increasing

Chapter 3. System Model and Design 48

the state to high alert. This way, the low alert state is responsible for counting the total amount of packets

received, on the device it is running, for a certain period of time. For this reason, a periodic timer is used.

At each timer overflow, the packet counter is reset to 0. For each packet received, the counter is increased

and its value is compared to the established threshold which sets the limits for the number of packets to

be received for that time interval. If at any moment the number of received packets surpasses the referred

threshold, the mechanism switch from low alert to high alert state.

The high alert state is the one where the number of actions performed is much higher and thus where

more latency is induced to the system, however, it is a state which was designed also not to be active for

a great amount of time. Its main goal is to effectively detect which agent is causing this increased packet

rate and to classify him as the cause, take actions in accordance, and return to the low alert state. This

action is most likely to be a filtering order of the attacker and after such, the network traffic, at least the

network traffic directed at this node should suffer a significant reduction and the IDIoT-DoS-Detection shall

return naturally to the low alert state. This state workflow is very similar to the low alert state but now there

are many increased actions. A finite number of detection agents are created, which are structures that

store the IP address of a possible suspect as well as three packet counters assigned to this suspect. Each

counter will be assigned to a protocol, such as the UDP, TCP and ICMP. In similarity to the low alert state,

thresholds are configured which represent the maximum expected amount of packets to be received, in a

certain amount of time, for a specific sender and protocol. If the received packets surpass any of these

thresholds, the IDIoT-DoS-Detection is now detecting the attacker and the next step shall be to take actions

in accordance. The IDIoT-DoS-Detection triggers a firewall procedure in order for this attacker to be locally

filtered and reported to the border router running the IDIoT-Firewall-Server. As previously described, if any

other network node’s IDIoT-DoS-Detection sends a report to the IDIoT-Firewall-Server concerning this same

attacker, then it will be promoted to a global filter and will be filtered out of the entire network, after the

IDIoT-Firewall-Server command.

These referred thresholds have a great responsibility on the IDIoT-DoS-Detection and efforts are taken

into making these the most representative of real network behavior, under penalty of having a detection

module detecting false attacks and filtering innocent nodes, in a network where the traffic is just higher

than previously expected, or under penalty of the IDIoT-DoS-Detection not being able to detect a possible

attack being taken against the node where he is running, if the network actually is running with an inferior

flow of traffic then previously expected.

Chapter 4

Implementation

This Chapter presents the implementation of the system discussed in Chapter 3. It starts with an

overview given by Section 4.1, followed by a detailed implementation in Section 4.2, where all developed

modules are explained and discussed.

4.1 Implementation Overview

The first approach to implement of the IDIoT solution consisted in studying the Contiki-2.6, which was

used by the first release of the Svelte, and comparing it with the latest Contiki-NG. Svelte was firstly ported

from Contiki-2.6 to Contiki-3.x, where the main difference lies in the RPL implementation. At last, and the

most difficult porting exercise, was upgrading Svelte from Contiki-3.x to Contiki-NG, where several changes

were performed: changes in the Makefiles, the declaration of the DAG root and its initialization, the use

of the UDP connections, the project-conf.h files, and some other minor changes. At last, and probably

the hardest task was to port the Svelte integration with RPL to support both RPL-Classic and RPL-Lite

implementations, present in Contiki-NG.

Listing 4.1 shows an example of a Makefile suited for a UDP-server with the DAG-root, running the

IDIoT modules. Some things remain from the old Contiki, for example, the need for inclusion of the top

Makefile, the Makefile.include, and the definition of the root directory. However, this Makefile shows that

for the inclusion of applications, formerly named as APPS in the previous Contiki versions, are now called

MODULES. Also, in the previous Contiki versions, no routing protocol was specified because only the native

version of RPL was available. By default, Contiki-NG uses the RPL-Lite, however, if the user intends in using

the RPL-Classic, the MAKE_ROUTING define should be defined with MAKE_ROUTING_RPL_CLASSIC, as

shown in line 12 in Listing , 4.1. Furthermore, the user can also define the desired Medium Access Control

(MAC) protocol by defining the MAKE_MAC, e.g., MAKE_MAC_CSMA, as depicted in line 13 of Listing 4.2.

49

Chapter 4. Implementation 50

Listing 4.1: Contiki-NG Makefile for RPL-border-router running IDIoT modules.

1 CONTIKI = ../../..

2 CONTIKI_PROJECT = udp−server

3

4 include $(CONTIKI)/Makefile.dir−variables

5 # Include IDIoT modules

6 MODULES += $(CONTIKI_NG_SERVICES_DIR)/ids−server

7 MODULES += $(CONTIKI_NG_SERVICES_DIR)/firewall−server

8 MODULES += $(CONTIKI_NG_SERVICES_DIR)/dos−detector

9 # Include in the project all flags defined in project −conf

10 CFLAGS += −DPROJECT_CONF_PATH=\”project−conf.h\”

11

12 #MAKE_ROUTING = MAKE_ROUTING_RPL_CLASSIC

13 MAKE_MAC = MAKE_MAC_CSMA

14 all : $(CONTIKI_PROJECT)

15 include $(CONTIKI)/ Makefile . include

Listing 4.2: Contiki-NG Makefile for UDP-client running IDIoT modules.

1 CONTIKI = ../../..

2 CONTIKI_PROJECT = udp−client

3

4 # Include all needed modules for this firmware .

5 include $(CONTIKI)/Makefile.dir−variables

6 MODULES += $(CONTIKI_NG_SERVICES_DIR)/ids−client

7 MODULES += $(CONTIKI_NG_SERVICES_DIR)/firewall−client

8 MODULES += $(CONTIKI_NG_SERVICES_DIR)/dos−detector

9 # Include in the project all flags defined in project −conf

10 CFLAGS += −DPROJECT_CONF_PATH=\”project−conf.h\”

11

12 #MAKE_ROUTING = MAKE_ROUTING_RPL_CLASSIC

13 MAKE_MAC = MAKE_MAC_CSMA

14 all : $(CONTIKI_PROJECT)

15 include $(CONTIKI)/ Makefile . include

Chapter 4. Implementation 51

It is important to notice that all necessary modules, such as the IDIoT-6Mapper-Server, theIDIoT-

Firewall-Server, and the IDIoT-DoS-Detection, must be included also in the Makefile. For instance, if con-

sidering the Makefile for a regular network node, such as an UDP-client, running the IDIoT as a client, a

Makefile for the Contiki-NG using the RPL-Lite would look like the one presented in Listing 4.2. As seen

in both Makefiles, a reference is given, in line 10, so that flags from the file project-conf header file would

be included in the compiling flags for the project. This is a regular practice when building applications in

Contiki as there are many possible configurations for the user regarding modules, variables size, and more.

Listing 4.3 will show an example project-conf header file for a RPL-border-router running IDIoT modules.

As presented before in Section 2.3, Tmote Sky was the preferred mote for the development of the

project, mainly because Svelte’s implementation and evaluation was performed in this mote, for consis-

tency and results comparison purposes. As this device is highly limited in resources, great efforts were

taken during the implementation of saving ROM. For instance, as seen in Listing 4.3, in line 3, TCP stack

was disabled in this project and therefore the support for such was turned of, allowing for a considerable

amount of memory to be saved. Furthermore, in line 6, the amount of possible UDP connections is also

limited to three due to an increasing amount of memory needed for each connection. Three connections

were chosen as the maximum since this project only uses one for the UDP-server and UDP-clients packet

exchanges, another for the IDIoT-6Mapper-Server and IDIoT-6Mapper-Clients exchanging the mapping re-

quests and responses, and a last one for the IDIoT-Firewall-Server and IDIoT-Firewall-Client exchanges.

Moving on to the project-conf.h, shown in Listing 4.3, there is a flag, assigned to zero at this moment,

which allows for the entire project code to know whether it is supposed to use the RPL-Lite or the RPL-

Classic implementation. If the user intends to switch from one RPL implementation to another, one must

set both variables: this last referred one, and the variable seen in the Makefile, in Listing 4.1. By the end of

the project configuration header file, three flags are used for module enabling or disabling management.

In Listing 4.3 it is better detailed how these flags turn of or of the use of modules.

Many other compiling flags can be set, enabled, or disabled in accordance with the user’s intended

application. For instance, it is possible to check the configuration header files of a specific platform building

system, like the T mote Sky or others, to check all the possibilities of configuration, such as the: uIP buffer

size, RPL maximum instances, RPL maximum DAGs per instance, RPL DAG lifetime and more.

Listing 4.3 shows an example of process definition for a specific application running the IDIoT modules.

The two defined variables CONF_FIREWALL and CONF_DOS_DETECTION, in lines 21 and 22, are used

to enable or disable the modules. Listing 5.1 shows how that is implemented.

Chapter 4. Implementation 52

Listing 4.3: Contiki-NG application project configuration header file example.

1 // Save some ROM by turning of the TCP stack.

2 #undef UIP_CONF_TCP

3 #define UIP_CONF_TCP 0

4

5 /* Defines the maximum amount of UDP connections available*/

6 #define UIP_CONF_UDP_CONNS 3

7

8 /* Define the max number of neighbors and routes allowed in each node's table */

9 #undef UIP_CONF_MAX_ROUTES

10 #define NBR_TABLE_CONF_MAX_NEIGHBORS 13

11 #define UIP_CONF_MAX_ROUTES 13

12 #define CSMA_CONF_MAX_NEIGHBOR_QUEUES 13

13 #define NETSTACK_MAX_ROUTE_ENTRIES 13

14

15 /* Turn of to use RPL-Classic. Turn off to 0 to use the default: RPL-Lite*/

16 #define RPL_CONF_CLASSIC 0

17

18 // Auxiliar flags for improved code organization

19 #define CONF_DAG_ROOT 1

20 // Auxiliar flag for easy on/off states of addittional modules

21 #define CONF_FIREWALL 1

22 #define CONF_DOS_DETECTION 1

Listing 4.4: Contiki-NG application processes start example.

1 #include "mapper-client.h"

2

3 #if CONF_FIREWALL

4 #include "firewall-client.h"

5 #endif /* CONF_FIREWALL */

6

7 #if CONF_DOS_DETECTION

8 #include "dos-detector.h"

9 #endif /* CONF_DOS_DETECTION */

10 /*--*/

11 PROCESS(mapper_client_process, "UDP client process");

12 AUTOSTART_PROCESSES(&mapper_client_process, &mapper_client
13 #if CONF_FIREWALL

14 ,&firewall_client
15 #endif /* CONF_FIREWALL */

16 #if CONF_DOS_DETECTION

17 ,&dos_detector
18 #endif /* CONF_DOS_DETECTION */

19);

Chapter 4. Implementation 53

4.2 IDIoT Modules

For the implementation of the IDIoT, we have developed (based on the original Svelte), the following

modules: (1) 6Mapper; (2) routing attack detection; and (3) Firewall. To these modules there were added

several missing features that were not yet developed. Moreover, and in order to enable DoS attack detection,

it was also created the DoS detection module, which is able to detect and stop UDP flood attacks.

4.2.1 IDIoT-6Mapper

Regarding the implementation of the IDIoT-6Mapper, the work of this project consisted mostly in up-

grades and not so much in improvements. The upgrades refer to the changes performed to the Svelte

original 6Mapper for this to be compliant with the Contiki-NG and its two RPL implementations. This was

by far the most effort demanding task concerning the IDIoT-6Mapper.

The IDIoT-6Mapper makes use of a simple UDP connection between server and client, using ports

4714 and 4713, respectively, for mapping requests and mapping response communications. These control

packets have already been referred in Sections 3.2.1 and 2.2.2.1. Figure 4.1 presents the structure of both

mapping request and mapping response exchanged variables and their size in bytes. Algorithm 5 shows

the procedure which periodically sends these control packets to the network nodes.

Figure 4.1: Svelte improved mapper.

In this implementation, the IDIoT-6Mapper-Server makes use of two timers for the management of

mapping request send interval. Both timers are from the etimer Contiki library and the first, map_timer,

overflows at a larger amount of time than the other, the host_timer. Firstly, the map_timer is responsible

for generating the event which will start the entire process of network mapping. This process is periodic

and the mapping interval must be set accordingly with the network mobility, as said in the previous system

Chapter 4. Implementation 54

Algorithm 5: IDIoT-6Mapper-Server Algorithm for network construction.
Input: N - List of the Network Nodes
Input: rpl_info - The RPL info of this node
Input: Timestamp - Timestamp for this node at given moment
Input: host_timer
Input: map_timer
Output: mapping_request
if map_timer.expired then

if host_timer.expired then
for network_node in N do

if network_node.timestamp == outdated then
mapping_request.instance_ID = rpl_info.instance_ID ;
mapping_request.dag_ID = rpl_info.dag_ID ;
mapping_request.version_number = rpl_info.version_number ;
mapping_request.timestamp = timestamp ;
simple_udp_send(network_node.ipaddress , mapping_request);

end
host_timer.restart ;
return ;

end
map_timer.restart ;
return ;

end
end

Chapter 4. Implementation 55

design Section 3.2.1. When this timer expires, the IDIoT-6Mapper-Server proceeds on sending mapping

requests to all network nodes and then restarts the map_timer and repeats the process. Sending map-

ping requests from one node to another is also a periodical procedure executed at the expiring event of the

host_timer. A simple configuration is set: the amount of time of which host_timer runs before overflow is

equal to themap_timer divided by the number of network nodes. For instance, if the network administrator

sets the mapping interval, the map_timer value, of 120, and there are 6 UDP-clients in the network, the

RPL-border-router will send mapping request to each node, one at a time, every 20 seconds.

Algorithm 6: IDIoT-6Mapper-Client Algorithm for handling mapping requests and responses.
Input: rpl_info - RPL info of this node
Input: Nbr - List of neighbors to this node
Input: mapping_request
Output: mapping_response
if mapping_request.instance_ID == rpl_info.instance_ID then

if mapping_request.dag_ID == rpl_info.dag_ID then
if mapping_request.version_number == rpl_info.version_number then

mapping_response.node_ID = rpl_info.my_ID ;
mapping_response.instance_ID = rpl_info.instance_ID ;
mapping_response.dag_ID = rpl_info.dag_ID ;
mapping_response.version_number = rpl_info.version_number ;
mapping_response.timestamp = current_timestamp ;
mapping_response.node_rank = rpl_info.my_rank ;
mapping_response.parent_ID = rpl_info.myparent_ID ;
for neighbor in Nbr do

mapping_response.neighbors_IDs « neighbor.ID ;
mapping_response.neighbors_ranks « neighbor.rank;

end
simple_udp_send(mappin_response.sender_ip, mapping_response);

end
end

end

Each timer from the etimer library is only present in the IDIoT-6Mapper-Server as the IDIoT-6Mapper-

Client only sends mapping responses after the reception of a mapping request, thus, timers are not

required. The client’s behavior when receiving a mapping request is described in Algorithm 6.

At last, the algoritm 7 shows IDIoT-6Mapper-Server procedure in receiving a mapping response. The

IDIoT-6Mapper-Server increasingly builds a topology of the network packet after packet, adding new nodes

Chapter 4. Implementation 56

to the internally constructed network as the nodes refer to such node as a neighbor. With this information

is then possible to perform the detection algorithms present in the following section.

Notice that in Algorithms 6 and 5, the instance ID, DAG ID, and version number are always checked for

safety concerns. This procedure happens for both RPL-Lite and RPL-Classic implementation even tough

the RPL-Lite only has room for one instance and one dag. This procedure is mandatory since a node

from another network, belonging to another DAG may intercept a mapping request and try to answer to

such, which would create information mismatches in the IDIoT-6Mapper-Server. As expected, the RPL-Lite

implementation induces little overhead when compared to RPL-Classic, mainly due to the existence of

only one RPL instance and only one dag for such instance. This way, the RPL-Lite is the preferred RPL

implementation when considering a solution that will be building a network topology of its own.

Algorithm 7: IDIoT-6Mapper-Server Algorithm for managing the network mapping.
Input: N - List of the Network Nodes
Input: rpl_info - The RPL info of this node
Input: mapping_response
if mapping_response.instance_ID == rpl_info.instance_ID then

if mapping_response.dag_ID == rpl_info.dag_ID then
if mapping_response.version_number == rpl_info.version_number then

N « mapping_response.node_ID ;
N « mapping_response.parent_ID ;
for network_node in N do

if network_node.node_ID == mapping_response.node_ID then
network_node.node.parent = mapping_response.parent_ID ;

end
end
for neighbor in mapping_response.neighbors do

N « neighbor_ID ;
N « neighbor_rank ;

end
end

end
end

Chapter 4. Implementation 57

4.2.2 IDIoT-Routing-Detection

In the similarity of the previous module, the IDIoT-Routing-Detection has also suffered several upgrades

and improvements. However, contrary to the previous module, upgrading the detection module was the

smallest task. This is because almost all of the procedures performed by the IDIoT-Routing-Detection

are performed over the collected data from the IDIoT-6Mapper and therefore do not handle directly with

structured RPL data. For this reason, the effort performed in IDIoT-6Mapper to upgrade the module to work

with both RPL versions resulted in only minor changes for upgrading this module. However, improving the

module was the most effort demanding task.

The Algorithms 9 and 10 will show some of the improvements performed in this solution, over the

existing work presented by Svelte. For instance, Algorithm 8 is very much like the one presented by Svelte

since the child and parent relation has not suffered changes. It was a relation specific to the RPL protocol

as published in the standard [37].

Algorithm 8: IDIoT-Routing-Detection checking child-parent relation for rank inconsistencies.
Input: N - List of the Network Nodes
for Node in N do

if Node.timestamp == outdated then
continue ;

else
for Node in N do

if Node.rank + 0.2*Node.rank < Node.parent.rank + MinHopRankIncrease then
Node.fault = Node.fault + 1 ;
Node.parent.fault = Node.parent.fault + 1 ;

end
end
for Node in N do

if Node.fault > FaultThreshold then
Raise alarm ;

end
end

end
end

The Algorithm 9 presents the detection and correction algorithm of possible attacks or information

mismatches. Algorithm 9 shows one major improvement im comparison to the original Svelte algorithm

Chapter 4. Implementation 58

for the same procedure. In the Svelte’s version, it was not considered the existence of a severe attack

such as a sinkhole that can be so harmfully to the network that cannot be simply counterattacked with the

Svelte’s original correction. For instance, when a sinkhole is so harmful that can imply in all of its neighbor

a spoofed rank, there is no chance for the Svelte’s rank correction procedure to work. Because Svelte

would be replacing the spoofed rank of the attacker with information of one of its neighbors. However,

all that neighbor’s information is compromised since it was in direct contact with the sinkhole attacker.

Svelte would be stuck in a loop replacing bad information of an attacker with information expected to be

secure but was, in fact, as bad as the original. This would result in the attacker running the attack freely.

For this reason, IDIoT biggest improvement to the detection and correction module is acknowledging

that there may be times were an attacker shall be marked as a severe attacker if, after such attacker

was identified, and accordingly be filtered from the entire network as a global filter, proceeded by an RPL-

global-repair and IDIoT-6Mapper. An attacker will be identified as severe if, when trying to replace its faulty

information with the information of other nodes which have him as a neighbor, IDIoT-Routing-Detection

determines that all of the nodes which have the attacker as a neighbor claim that such attacker has a rank

that does not fulfill the relation presented in Algorithm 9: Rank reported for the attacker by any neighbor <

Attacker.parent.rank + MinHopRankIncrease. At last, Algorithm 10 shows the procedure for when a severe

attack is raised.

Chapter 4. Implementation 59

Algorithm 9: Detecting and correcting RPL DODAG Inconsistencies.
Input: N - List of the Network Nodes
for Node in N do

if Node.timestamp == outdated then
continue ;

else
for Neighbor in Node.neighbor do

Diff = |Node.neighbor.rank - Neighbor.rank| ;
Avg = (Node.neighbor.rank + Neighbor.rank)/2 ;
if Diff > Avg * 0.2 then

Node.fault = Node.fault + 1 ;
Neighbor.fault = Neighbor.fault + 1 ;

end
end

end
end
for Node in N do

if Node.timestamp == outdated then
continue ;

else
if Node.fault > FaultThreshold then

for Node in N do
for Neighbor in Node.neighbors do

if Rank reported for Node by any neighbor > Node.parent.rank +
MinHopRankIncrease then

Remove severe alarm ;
Node.rank = Rank reported for Node by such neighbor ;
for Neighbor in Node.neighbors do

Node.neighbor.rank = Neighbor.rank ;
end

else
Raise severe alarm ;

end
end
if Severe alarm raised then

perform mapper global repair ;
end

end
end

end
end

Chapter 4. Implementation 60

Algorithm 10: Correcting severe attacks with mapper and RPL global-repair.
Input: N - List of the Network Nodes
Input: attacker - node reported by detection module
if Severe alarm raised then

if attacker == dag root then
do nothing ;

else
firewall.add_global_filter(attacker) ;
firewall.broadcast_global_filter (attacker) ;
perform rpl_global_repair ;
perform mapper global repair ;

end
end

4.2.3 IDIoT-Firewall

The firewall used in the IDIoT shares its architecture with Svelte, as explained previously in system

design, but is greatly improved and extended. The path for this implementation was to firstly extend the

existing firewall to the regular network nodes, by deploying a very similar but more limited firewall from

the one already existing in Svelte at the firewall server. Secondly, by improving the firewall in both devices

adding new features. In contrast to the IDIoT-6Mapper, there were not a significant need of upgrading

the firewall to the Contiki-NG or the new RPL implementations since the firewall itself is only composed of

actions triggered by the detection modules of the IDIoT.

The native version of this firewall had already established communication between the firewall server

and firewall client, however, the firewall client’s actions were limited to sending report requests to the

firewall server. At this moment, the IDIoT-Firewall-Client is now capable of filtering nodes itself, locally, and

even manage those local filters. For this reason, the communications between IDIoT-Firewall-Server and

IDIoT-Firewall-Clientwere accordingly extended as both control packets, filter requests, and filter commands

structure and size, in bytes, can be seen in Figure 4.2.

As covered in Section 3.2.3 regarding the IDIoT-Firewall, the filter request is a control packet sent from

the IDIoT-Firewall-Client of a regular node to the IDIoT-Firewall-Server of the DAG-root and includes an IP

address corresponding to an external host that is intended to be filtered and excluded from the network.

This is now greatly extended since the network regular nodes are running the IDIoT-DoS-Detection, and

therefore can generate these report requests accordingly. The filtering command is an order to filter sent

by the IDIoT-Firewall-Server to the IDIoT-Firewall-Client. These control packets are exchanged using an

Chapter 4. Implementation 61

Figure 4.2: IDIoT-Firewall exchanged packets.

simple UDP connection between server and clients, at ports 4801 and 4800, respectively.

The Algorithm 11 shows how the IDIoT-Firewall-Client manages the local filters available in the IDIoT-

Firewall-Client of such node whenever receives a filtering command from the IDIoT-Firewall-Server, or simply

receives a filter request from the IDIoT-DoS-Detection running inside the node itself.

Furthermore, Algorithm 11 shows how the IDIoT-Firewall-Client manages the capability to filter the at-

tacker in the MAC layer if one finds itself to be neighbor with the attacker. This is also a feature enabled by

the IDIoT-Firewall. Whether or not the attacker is a neighbor, the attacker is also given a local filter where

the IP address is stored. Only then the IDIoT-Firewall-Client checks if the attacker is a direct neighbor,

applies a MAC address filter instead. This is the implemented methodology to prevent the attacker from

being physically moved within the network range and becoming a non-neighbor to the node under attack.

If this happened, and the node under attack had not set a local filter to the attacker through his IP address,

the attacker would be able to engage with the complaint once again.

Shifting attention to the IDIoT-Firewall-Server running in the DAG-root, many features are also deployed

in accordance with the ones deployed in the IDIoT-Firewall-Client. In Algorithm 13 it is clear that in the

IDIoT-Firewall-Server there are small and global filters, and how the promotion from a small filter to a global

filter happens. This as also been explained in the previous system design Section 3.2.3. Notice that when

this happens we set the state to that existing small filter as unactive, since there will now be a global filter

blocking this attacker, there is no need for this small filter to be active since every active filter is a latency

overhead when receiving a packet. Moreover, as explained before, when a filter becomes a global filter, we

extended the IDIoT-Firewall-Server to send a broadcast command to all network nodes. This takes place

in Algorithm 13 as well, and the procedure itself is seen in Algorithm 12.

Chapter 4. Implementation 62

Algorithm 11: Firewall client local filter management.
Input: sender & attacker
Input: LF - A list of Local Filters
Input: localfilter_index
Input: LLF - A list of Local Link Filters
Input: locallinkfilter_index
Input: Nbrs - A list of neighbors to this node
/*Got a new message of sender asking to filter packets from attacker*/;
for localfilter in LF do

if localfiler.state == active then
if localfilter.ipaddress == attacker.ipaddress then

return /*Already existing filter*/
end

end
end
LF[localfilter_index].ipaddress = attacker.ipaddress ;
LF[localfilter_index].state = active ;
localfilter_index = localfilter_index + 1 ;
for neighbor in Nbrs do

if attacker.ipaddress == neighbor.ipaddress then
for locallinkfilter in LLF do

if locallinkfilter.state == active then
if locallinkfilter.linkaddres == attacker.linkaddress then

return /*Already existing filter*/
end

end
end

end
end
LLF[locallinkfilter_index].linkaddress = attacker.linkaddress ;
LLF[locallinkfilter_index].state = active ;
locallinkfilter_index = locallinkfilter_index + 1 ;

Chapter 4. Implementation 63

In Algorithm 11, the procedure for MAC address filtering management of the IDIoT-Firewall-Client was

shown. Due to algorithm size concerns, the MAC address filtering management for the IDIoT-Firewall-

Server was not included in Algorithm 13, however, its behavior is the same. There are no MAC address

filters addressed to the network, in contrary with the small and global filters in the IDIoT-Firewall-Server,

they always address attacker to a specific node since they rely on the neighbor condition. For this reason,

the IDIoT-Firewall-Server performs the same as the IDIoT-Firewall-Client regarding MAC address filters: after

blocking locally an uIP address of a given attacker, the IDIoT-Firewall checks if such attacker is a neighbor

and if so, proceeds to create a MAC address filters for such.

The last algorithm for the IDIoT-Firewall is Algorithm 12 showing the procedure for the filter command

broadcast. This is performed by the firewall using information collected from the IDIoT-6Mapper, the list

of network nodes. A simple packet, as seen in Figure 4.2 is generated and sent to all network nodes.

The first two bytes of the packet is a command byte which is known only to the server and the clients in

order to a client be able to ensure that such command came from the IDIoT-Firewall-Server. Also, when

a IDIoT-Firewall-Client receives the filter command, a comparison between the filter command sender IP

address, provided by the simple UDP connection, with the stored DAG-root, takes place.

Algorithm 12: Firewall server broadcast filter command.
Input: sender & attacker
Input: N - List of the Network Nodes
for Node in N do

if Node != sender then
if Node != attacker then

simple_udp_send(Node.ipaddress , filter_command , attacker.ipaddress) ;
end

end
end

Chapter 4. Implementation 64

Algorithm 13: Firewall client network filters management.
Input: sender & attacker
Input: GF - A list of Global Filters & GF_index
Input: SF - A list of Small Filters & SF_index
/*Got a new message of sender asking to filter packets from attacker*/;
for Globalfilter in GF do

if Globalfiler.state == active then
if Globalfilter.ipaddress == attacker.ipaddress then

return /*Already existing filter*/
end

end
end
for Smallfilter in SF do

if Smallfilter.state == active then
if Smallfilter.ipaddress == attacker.ipaddress then

if Smallfilter.dest == sender then
return /* Already existing filter for this destination */

end
/*New complaint of an existing filter. Promoting to global*/ ;
GF[GF_index].ipaddress = attacker.ipaddress ;
GF[GF_index].state = active ;
GF_index = GF_index + 1 ;
Smallfilter.state == unactive ;
broadcast global filter ;
return ;

end
end

end
for Smallfilter in SF do

if Smallfilter.state == unactive then
Smallfilter.ipaddress = attacker.ipaddress ;
Smallfilter.state = active ;
Smallfilter.dest = sender ;
return ;

end
end
/* All small filters are active, so replace with the oldest */ ;
SF[SF_index].ipaddress = attacker.ipaddress ;
SF[SF_index].dest = sender ;
SF_index = SF_index + 1 ;

Chapter 4. Implementation 65

4.2.4 DoS Detection Module

Concerning the implementation of the IDIoT-DoS-Detection, two algorithms will be shown for a better

understanding of what was performed. The first, Algorithm 14 shows the procedure that takes place every

time a node, whose IDIoT-DoS-Detection is enabled, receives a valid packet that reaches the networking

layer of the uIP stack. At this point, the TCP/IP performs a link to this procedure so it may be executed. If

a node has the IDIoT-DoS-Detection disabled, this call will not take place and the following procedures will

not take place as well. Algorithm 15 shows the procedure for each timer overflow. This module makes use

of a timer, similarly to the ones used to by the IDIoT-6Mapper as previously explained, and the moment

this timer expires, an event is triggered allowing for this procedure to execute.

As explained in the previous system design of this module, Section 3.2.4, the IDIoT-DoS-Detection uses

three states: OFF, LOW ALERT, HIGH ALERT. In OFF state no data structures are used, only an auxiliary

variable cooldown used for asserting the state from off to low only after a configurable amount of time. In

both the LOW ALERT and the HIGH ALERT state, a counter is used to keep track of the total amount of

received packets for a specific amount of time and is represented in Algorithm 14 as for packet_counter.

At last, the HIGH ALERT states makes use of a list of agents. These agents are called detecting agents

and are implemented in a structure with the attacker uIP address, three counters, one for each protocol,

respectively UDP, TCP and ICMP, and, at last, a state variable. There were two main concerns regarding

the detecting agents: how detecting agents should be allocated, and how which selection process should

be used when considering who will be assigned for the detecting agent to keep track. Firstly, the amount

of allocated detecting agents will have an impact on memory allocation and an impact on latency as well

since, at each packet received, if in the HIGH ALERT state, the comparison of the packet sender and the

list of detecting agents takes place. The longer the list, the higher the latency for each received packet.

Secondly, the selection process when considering which node will be assigned for such a detecting agent

is also a concern, because the system relies on at least of the detecting agents being effectively allocated

to an attacker. If all detecting agents are assigned to track regular network nodes, and the attacker is not

being tracked, the system will never leave the HIGH ALERT state, causing even higher deniability of service

for such node, the opposite of what is intended with this module.

Chapter 4. Implementation 66

Algorithm 14: DoS Detection module at each packet reception.
Input: packet.sender ip address
Input: State_Threshold & udp_threshold
Input: A - A list of Agents
switch State do

case Off do
Do nothing ;

end
case Low Alert do

packet_counter = packet_counter + 1;
if packet_counter > State_Threshold then

state = High_Alert_State;
end

end
case High Alert do

packet_counter = packet_counter + 1;
for agent in A do

if packet.sender == agent.ipaddress then
agent.udp_counter = agent.udp_counter + 1;
if agent.udp_counter > udp_threshold then

report attacker;
end
return;

end
end
/*If no agent is assigned for the sender of this packet, try to assign one*/;
for agent in A do

if agent.state == 0 then
agent.ipaddress = packet.sender;
agent.state = 1;
agent.udp_counter = agent.udp_counter + 1;
return;

end
end

end
end

After some speculation and simulations, we found that themost reasonable amount of detecting agents

for this system would be dynamic and with the value of a third of all network nodes. It is not expected that

so many nodes can be compromised all at the same time and even if so, a third of the network nodes

Chapter 4. Implementation 67

is a reliable value for allowing the system to detect attackers, even if only one at a time. Moreover, and

regarding the selection process, the conclusions taken from simulations with a regular network where one

node was receiving a DoS attack were that such node would always receive a packet from such attacker at

a higher packet rate than any of node, making thus possible for a selection process to work by, after the

IDIoT-DoS-Detection reaching the HIGH ALERT, and given, e.g., five as the amount of detecting agents,

the first five nodes that would send a packet to this node, would be the ones selected to be tracked with a

detecting agent. Empirically, this was the number found to be ideal.

In Algorithm 14, and in case of HIGH ALERT active, it is shown only one counter and one logic com-

parison using the UDP counter for such detecting agent. This procedure is implemented this way since,

at this moment, only support for UDP packet counting is enabled. Support for other protocols is left for

future work. Regardless of the protocol implementation, an attacker will be detected when the number of

packets counted exceeds a previously defined threshold. This threshold can be configured by the network

administrator and in this implementation, we used a threshold in accordance with the maximum expected

traffic flow for one node within a regular network of thirteen nodes, in which one is an UDP-server and

the remaining are UDP-clients. The threshold values were, for this reason, obtained through simulation of

this network delimiting what could be considered normal traffic and from what point it could no longer be

considered normal.

At last, and concerning the timer referred in Algorithm 15, the implementation of the IDIoT-DoS-

Detection makes use of a timer to generate expiring events in order to trigger the procedure shown in

Algorithm 14. This timer value is configurable by the network administrator at the moment of deploy-

ment, such as the mapping interval used by the IDIoT-6Mapper. If deploying this solution in a greatly

resource-limited node, one of the possibilities in the IDIoT is to set this timer value to be the same as

the IDIoT-6Mapper mapping interval timer and the system will make use of the IDIoT-6Mapper timer to

generate these events as well.

Chapter 4. Implementation 68

Algorithm 15: DoS Detection module at timer overflow.
Input: etimer expired event
Input: State_Threshold
Input: A - A list of Agents
switch State do

case Off do
if cooldown == 0 then

state = Low_Alert_State;
else

etimer_restart;
end

end
case Low Alert do

packet_counter = 0;
etimer_restart;

end
case High Alert do

if packet.sender < State_Threshold then
state = Low_Alert_State;

end
packet_counter = 0;
memset(agents,0);
etimer_restart;

end
end

Chapter 5

Evaluation

This chapter will focus on evaluating our solution regarding its ability to accomplish what was proposed

in previous chapters. It presents functional tests, performance evaluations and system characterizations,

e.g., memory footprint and energy consumption.

5.1 Evaluation Overview

Adding new features to a stable version of firmware aiming to improve certain capabilities of the

targeted device is a bold intention in the research community. For this reason, one cannot simply expect

community interest or even approval for its work if detailed evaluations are not presented. Therefore,

it’s widely established that some evaluations and benchmarks shall be performed and presented for any

kind of feature developed with the aim of deployment in stable devices. Our solution slightly changes

the behavior or a device within a network, regarding its routing behavior and its communications activity.

For this reason, metrics for this evaluation should be: the device’s capability of detecting, reporting and

filtering an attack, the device’s overhead when exchanging communications, and the device’s increased

footprint in memory.

The device’s capability of detecting, reporting, and filtering an attack is not a quantifiable metric in

contrary with, for example, the devices increased memory footprint, measured in kB. For this reason, to

evaluate this metric, then, a finite number of simulation samples will be used, where in each sample a

different simulation test scenario is used.

Simulations performed will be available to the research community in an open-source repository and

the structure is as follows: For the device’s capability of detecting, reporting, and filtering an attack, we

have three test scenarios of networks, and we will run each test scenario twice. First time without the

IDS modules and secondly with the IDS modules. These three test scenarios will be (1) network without

69

Chapter 5. Evaluation 70

attacks, (2) network under a sinkhole attack from inside the network, (3) under a DoS attack from inside

the network. All test scenarios run the same base structure which is one UDP-server acting as DAG-root,

running IDS-server modules when IDS is active, and many UDP-clients, also running IDS modules if such

is active.

Regarding the device’s overhead when exchanging communications, which is a quantifiable metric,

many factors can be measured and for this reason, we will be using an excellent tool which has proven to be

suited or these types of works. The Thread-Metrics Benchmark Suite allows researchers and developers to

access the amount of overhead introduced by an RTOS to determine if its services are worth the additional

performance cost [71]. It consists of creating eight OS processes that output a score value denoting the

system’s availability. A higher score represents more system availability to execute the application rather

than OS services. On the other hand, a lower score denotes less availability as the OS is busy processing

other services/events.

From the Thread Metrics Benchmark Suite, we will be benchmarking our system with the following

tests: (1) Basic Processing Test, (2) Cooperative Scheduling Test, (3) Preemptive Scheduling Test, (6)

Message Processing Test, (7) Synchronization Processing Test, and the (8) RTOS Memory Allocation test.

All tests will output a score that will be presented in following sections. Both Interrupt Processing Test

and Interrupt Preemption Processing Test require for some processor-specific instructions which are not

available for the processor being used in Tmote Sky, the MSP430, and for this reason, these will not be

performed. We will be running four additional test scenarios to measure the overhead induced by our

solution. This test scenario is just like the aforementioned, with the difference that, in all four of these

tests, the UDP-server will be running the Thread Metrics tests, each at a time. The score from these tests

will be shown for comparison.

Cooja Network Simulator will be used for all simulations, as discussed in Section 2.3.

5.2 IDIoT Routing Detection

In order to evaluate the IDIoT Routing Detection functionality, a sinkhole attack is launched within the

network. In Figure 5.1 it is possible to see the printed route links from RPL-Lite after one hour of simulation.

The network topology used for this simulation is shown in Figure 5.2 as well as the routing information

collected after 1 hour of runtime, represented in arrows, from a parent to child direction. This information

shows which are the current routes for each node to the network root. This routing table is obtained from

Chapter 5. Evaluation 71

this network while using the RPL-Lite protocol, however using the RPL-Classic the results are very similar,

due to the fact that the attack is not active, so no interference is present to affect routes from the typical

flow.

Figure 5.1: Clean routes in network under no attacks.

Figure 5.2: Topology used for the evaluation of the sinkhole attack detection.

Regarding the attack implementation, one of the deployed UDP-clients will be modified in order to run

a sinkhole attack. This node, represented in simulations by number 13, behaves as a regular UDP-client,

just like the remaining, however with a slightly modified behavior regarding RPL specifications. These

modifications are the rank it is advertising in all of his DIO messages sent to neighbors, as well as the

frequency at which RPL trickle timer is operating. In order to perform the sinkhole attack, we have modified

his rank advertisement to be as high as the root rank and the frequency of the trickle timer to be as high

Chapter 5. Evaluation 72

as possible, resulting in a higher frequency of DIO being sent to neighbors so these always have this node

in high stakes in their routing tables.

The same topology from Figure 5.2 was repeated, however, this time, the attacker was enabled. Once

again, Figure 5.3 shows the printed route links, stored in the DAG-root, node 1, after 1 hour of simulation.

It is now possible to notice that are many links headed by node 13, whereas in previous Figure 5.1 there

was none. In Figure 5.4 it is possible to see to what extent the sinkhole can effect the routing tables of

the network. Routes are shown in Figure 5.4 were collected after 1 hour of simulation. Most neighbors of

node 13 have redirected their routing tables through him since he his advertising a much more pleasant

rank.

Figure 5.3: Modified Routes in network under sinkhole attack.

Figure 5.4: Modified topology caused by a sinkhole attack.

Chapter 5. Evaluation 73

After the first data collection from the IDIoT-6Mapper, the detection and correction module starts

running and analyzing the collected data. At this configuration, the minimum hop rank increase is 128,

which is also the rank of the DAG-root. For this reason, node 13 should be reporting at least a rank of

256 in order to be in accordance with the parent-child relationship. Furthermore, in simulations where the

maximum transmission distance is fewer than 70 meters, node 13 is not a neighbor of node 1, making

it mandatory for him to be a child of either node 2 or 3. This should result in a rank of at least 3 times

the minimum hop rank increase: 384. However, node 13 his being said, by all of its neighbors, to have

a rank value of only 130. The attacker is detected and since the light rank correction is not possible

because all neighbors are contaminated with false rank information, the attacker is marked as severe.

For this reason, the detection and correction module triggers the firewall server to globally filter with the

attacker by sending filter commands to all network nodes. Furthermore, the RPL-global-repair procedure is

triggered, which re-starts the entire RPL formation, and, at last, IDIoT-6Mapper performs a global repair of

his own collected data. Figure 5.5 shows part of the Cooja mote output window from IDIoT-6Mapper-Server

information where it is possible to see the attacker marked as a global filter and aside from the remaining

network. It also shows the re-constructed IDIoT-6Mapper network graph after the global repair process. It

is possible to check, for all network nodes present, none is claiming to have node 13 as neighbor, as this

is completely filtered out from the network. Moreover, and for a better visualization, Figure 5.6 shows a

final instance where all routing information shows how the attacker was successfully globally filtered from

the network. At last, it is possible to see in Figure 5.7 the same procedure of route links being printed, as

seen before, after one hour of simulation and, ultimately, node 13 has vanished.

Figure 5.5: IDIoT-6Mapper network graph recovered after global repair.

Chapter 5. Evaluation 74

Figure 5.6: Network routes after recovery from sinkhole attack.

Figure 5.7: Routes in network recovered after the sinkhole was detected and corrected.

Results shown in Figures 5.1 to 5.7 have been collected from the topology presented Figure 5.2, with

a simulation speed of 100%, meaning that a real-life second was equivalent of a simulation second. We

used both a TX and RX ratio of 100% and a transmission range of 50 meters for nodes. The MAC layer

protocol was the Carrier Sense Multiple Access (CSMA) and the RPL protocol was the RPL-Lite.

This evaluation allows for a direct proof of detection and correction modules effectiveness and, more-

over, for an indirect proof of IDIoT-6Mapper and IDIoT-Firewall effectiveness over the course of the simula-

tion, since the IDIoT-Routing-Detection relies on procedures from these two mentioned modules to collect

network data and take actions against the attacker, respectively. It was possible for a network to fully re-

cover to a stable function after suffering a sinkhole attack launched from within the network. These results

Chapter 5. Evaluation 75

are in accordance with the expectations for the improvements and extensions provided to this Svelte origi-

nal module. During the performed simulations, it was possible to come to the conclusion that detection of

such a routing attack happens best with higher proximity of the attacker with the DAG-root, meaning that

the detection rate is decreased for further distances, e.g., nodes 11 or 12.

5.3 DoS Detection Module

For the DoS detection evaluation, a similar topology as the one shown in Figure 5.2 is used. However,

for this time, routing information is not a factor of interest since the attack will not affect the routing, but

the communication capabilities. The sinkhole attacker is now disabled and a regular network is simulated

until a stable point where all nodes have established a server/client relationship. Regular network nodes

acting as UDP-clients are sending packets at a rate of one packet every 10 seconds, in order to recreate a

possible example of network traffic rate from a specific IoT application.

Regarding the attack implementation, one of the deployed UDP-clients will be modified in order to run a

DoS attack. This node, represented in simulations by number 13, performs a regular UDP-client function,

just like the rest, however with an alteration concerning the packet transmission rate. For this simulation,

we are using a rate of 200 packets per second as seen in Listing 5.1. The attack is set to start only after

2 minutes into the start of the simulation. Moreover, the DoS detection modules in the network nodes are

only set to start after 6 minutes into the simulation. This configuration is for evaluation purposes, allowing

for the attacker to have considerable time to deliver damage to the network service availability before the

detection module starts running, after which the attacker will be detected and filtered. In similarity with all

other regular UDP-clients in the network, the UDP flooder will be running IDIoT modules as well, with the

exception of the DoS detection module.

Listing 5.1: UDP Flood implementation as an modified UDP-client

1 // Force connection with fixed IP for udp-server.

2 uip_ip6addr(&dest_ipaddr, 0xFD00, 0, 0, 0, 0x0212, 0x7401, 0x0001, 0x0101);

3

4 etimer_set(&periodic_timer, random_rand() % CLOCK_SECOND);

5

6 while(1) {

7 PROCESS_YIELD();

8 if (etimer_expired(&periodic_timer)) {

9 LOG_INFO_("Sending request %u to ", count);

Chapter 5. Evaluation 76

10 LOG_INFO_6ADDR(&dest_ipaddr);

11 LOG_INFO_("\n");

12 snprintf(str, sizeof(str), "hello %d", count);

13 simple_udp_sendto(&udp_client_conn, str, strlen(str), &dest_ipaddr);

14 count++;

15 etimer_set(&periodic_timer, SEND_INTERVAL/200);

16 }

This UDP flood attack will have an enormous effect on the network traffic from the moment such attack

is enabled. These overwhelming amount of traffic induced by the UDP flood will result in much higher

demand of CPU availability of the DAG root which is not sustainable. Figure 5.8 shows a capture of the

Mote Output window of Cooja Simulator in which is possible to see such overwhelming amount of traffic.

At the time of capture, after 3 minutes and 24 seconds of the start of the simulation, it is possible to see

how the UDP flooder has already sent to the DAG root over 3600 packets whereas each one of the other

UDP-clients in the network has only sent 12 packets.

In Figure 5.9 a capture of the Cooja Network mote output is shown. It is possible to see node 3 from the

topology detecting the UDP flooder, by means of its DoS detection module. This node filters the attacker

locally and reports the attacker to the DAG-root. This last creates a small filter as seen in Figure 5.9. Few

minutes will pass and the RPL mechanisms will allow the attacker to understand that node 3 is no longer

reachable. At this time, the RPL mechanisms present in attacker node will create new routes to the root,

this time through node 2, and once again transmit the overwhelming amount of packets. In accordance

with node 3, node 2 will also detect this abusive behavior, thanks to its DoS detection module, and perform

the same actions as mentioned before for node 3. This time, however, the root, upon reception of the

filtering request from node 2, will not raise a small filter against the attacker, as it has been already reported

by node 3, but instead a global filter and network repair. This global filter and network repair procedures

were already presented previously in the Routing Detection, in section 5.2. As the UDP-flooder is also the

mote 13 in this simulation, the graphical result of this detection is very similar to Figures 5.5 and 5.6 so

these will not be repeated.

Chapter 5. Evaluation 77

Figure 5.8: Network traffic resulting from UDP-flood attack.

Figure 5.9: DoS detection module from node 3 detecting node 13(d) as abusive.

Chapter 5. Evaluation 78

Thread-Metrics evaluation results have been collected for test scenarios running the DoS attack in a

network with and without the IDIoT modules. We performed all the 6 tests and present the results in table

5.1. Furthermore, Figure 5.9 shows a bar chart representing the evaluation performed for the 6 Thread-

Metrics tests aforementioned in Section 5.1. All simulations were performed with a topology similar to the

one presented in Figure 5.2 and lasted for 15 minutes.

Evaluation performed for the DoS attack show that expectations are accomplished as the IDIoT-DoS-

Detection deployed in both central and distributed devices found little difficulty to detect the launched UDP

flood attack. Simulations were performed with different topology metrics and even with two instances of

the UDP-flooder in the same network. The detection modules were capable to detect the attack in all sim-

ulations performed. Regarding the evaluation using the Thread-Metrics tests, the presented benchmarks

in Figure 5.10 are very satisfactory and could have been gaudier if a better implementation of a DoS attack

was achieved. It is possible to see, in the test scenario with IDIoT modules enabled, a network running

with 97% of the performance of the network which had no DoS attack. Furthermore, the unprotected net-

work reports performance drops up to 40% when compared with the network under DoS attack with IDIoT

modules enabled.

Table 5.1: Thread Metrics results for all tests executed.

Test Nr. No DoS & No IDS No DoS with IDS Under DoS without IDS Under DoS with IDS

1 4434 4431 2757 4392

2 413606 412191 295477 403591

3 423227 422000 290034 415163

6 363882 362640 263215 360606

7 382010 380708 270625 361352

8 293343 292508 199045 290080

Chapter 5. Evaluation 79

Figure 5.10: Thread-Metrics score for all tests, evaluating all topologies.

5.4 Memory footprint

Regarding the memory footprint, it is expected for the DAG-root running the IDIoT modules to have a

significant higher ROM and RAM overhead in comparison with the distributed motes, accounting with the

higher presence of IDIoT modules in this centralized device. Table 5.2 results for ROM and RAM overhead

are shown, both for the centralized DAG-root and the distributed network node. Furthermore, in Figures

5.11, and 5.12, a graphical representation of such values is presented for a clear understanding. Results

are obtained by inspecting the binary file where is possible to see the size for each code section. These

code sections show the size of static allocated RAM, in sections .data and .bss, and ROM, in section .text.

Contiki does not really use dynamic memory allocation, so this information is sufficient to determine the

runtime usage. For a more thorough evaluation values are obtained while enabling each module at a time,

as these can be enabled or disabled in accordance with the network administrator intentions.

Table 5.2: Memory Footprint for both UDP-server and -client with the IDIoT modules.

DAG-root Regular node

Memory IDIoT off with 6Mapper 6Mapper+FW all modules IDIoT off with 6Mapper 6Mapper+FW all modules

RAM (kB) 6090 7454 7566 7664 6136 6176 6360 6692

ROM (kB) 40931 45051 46345 47009 41275 42337 43625 44605

Chapter 5. Evaluation 80

Figure 5.11: RAM usage overhead evaluation for devices running IDIoT modules.

Figure 5.12: ROM usage overhead evaluation for devices running IDIoT modules.

Memory footprint evaluation fulfills the all expectations. It is possible to confirm what was expected

concerning which device had a higher overhead with the inclusion of the IDIoT modules: the centralized

node. An increased 6kB of ROM is necessary for all modules of the IDIoT-server and 3.3kB for the IDIoT-

client. Regarding the RAM usage overhead, an increased usage of 1.5kB is seen for the IDIoT-server

whereas the IDIoT-client modules induce an overhead of 0.5kB of RAM. These results are very positive

concerning the possibility of deploying both IDIoT-server and -client versions on such a resource-constrained

device as the Tmote Sky, with only 48kB of ROM and 10kB of RAM available.

Chapter 5. Evaluation 81

5.5 Energy Consumption

The following Table 5.4 presents the evaluation performed on energy usage of the IDIoT modules.

Usually, nodes in the IoT, such as the Tmote Sky, for instance, are battery powered and hence energy is a

scarce resource. For this reason, Contiki offers a tool named PowerTrace [72] which allows for developers

to access the total time different parts of the system were active. With this data, it is possible to estimate

with high accuracy the power consumption of a node, when one knows the nominal values from the device

in use. In Table 5.3 data is retrieved for the Tmote Sky datasheet [73], which is used for the aforementioned

calculations.

Table 5.3: Tmote Sky nominal operation values.

Typical conditions Minimum Nominal Maximum Unit

Supply Voltage 2.1 3.6 V

Operating free air temperature -40 85 C

MCU on, Radio receiving (RX) 21.8 23 mA

MCU on, Radio transmitting (TX) 19.5 21 mA

MCU on, Radio off 1800 2400 µA

MCU idle, Radio off 54.5 1200 µA

MCU standby 5.1 21.0 µA

Given the nominal operation conditions from Table 5.3 and the on and off time for each part of the

system, provided from the PowerTrace application, it is possible to determine the energy, in mJ, for each

device, with the following calculations. For transmit we understand the amount of time when the MCU

was on and the radio was transmitting. For listen we understand the amount of time when the MCU was

on and the radio was receiving. For CPU we understand the amount of time when the MCU was on and

the radio was off, and for Low Power Mode (LPM) we understand as the amount of time when the MCU

was in idle mode and the radio was off.

Energy(mJ) = ((transmit ∗ 19.5mA) + (listen ∗ 21.8mA)

+(CPU ∗ 1.8mA) + (LPM ∗ 0.0545mA)) ∗ (3V /4096)

Evaluation of resource consumption was performed with the same topology as described in Section

5.2 and 5.3. Simulations were performed with and without the attack, as well as with and without the

IDIoT modules. The obtained results can be seen in Table 5.4.

Chapter 5. Evaluation 82

Table 5.4: Energy Consumption for devices running IDIoT modules for 15 minutes, in 4 topologies.

IDIoT-Server IDIoT-Client

Resource Clean Clean+IDS Under DoS Under DoS + IDS Clean Clean+IDS Under DoS Under DoS + IDS

CPU (s) 2 2 2 2 0 0 18 2

LPM (s) 898 898 898 898 900 900 882 898

listen (s) 25 28 136 30 16 18 20 20

transmit (s) 875 872 765 870 884 882 880 880

Energy (mJ) 14.43 14.43 14.72 14.44 14.43 14.43 14.9 14.43

It is possible to notice, in Table 5.4, an increased energy consumption for a network under DoS attack

and where the IDIoT is not enabled. However, this is only an increase of two percent in energy consumption.

This is immensely negligible having in consideration that the network was set to run for 15 minutes. This

negligible increase can be explained by the limitations presented by Cooja concerning energy consumption

estimations of the emulated radio module. It is possible to see in Table 5.4 the radio was either on listen or

transmit mode for the entire duration of the simulation, 15 minutes, 900 seconds. For this reason, it is not

feasible to estimate the energy consumption of the emulated radio device on different network topologies.

However, the results obtained for the MCU energy consumption, alone, are trustworthy and relevant for

the metric in study. For this reason, Figure 5.13 delivers the obtained results for energy consumption

concerning the MCU operation of the devices under the same circumstances as seen in Table 5.4. The

topology used for this evaluation was the same seen in Figure 5.2, where the IDIoT-server is running in

node 1. The DoS attack used for this simulation was the same as the one described in Section 5.3 which

is launching an UDP flood towards the DAG-root.

Furthermore, and in accordance with the memory evaluation performed in 5.4, it is possible for an

evaluation to be presented regarding the energy consumption of each module in the IDIoT solution, a

relevant evaluation as different IDIoT modules can be enabled or disabled in accordance with the network

administrator intentions.

Chapter 5. Evaluation 83

Figure 5.13: Energy consumption overhead for the DAG-root under DoS attack over 15 minutes.

Figure 5.14: Energy consumption overhead related to each IDIoT module enabled, for a 10 minute
simulation.

Energy consumption evaluations presented in Figure 5.13 shows how the target of a DoS attack can

rapidly have is battery drained out. It is also possible to verify how a IDS solution like the IDIoT can be

used to prevent such a simple implementation of a DoS attack to have unbearable results of a device’s

battery life. Moreover, in Figure 5.14, evaluation of the energy overhead in a topology with no attacks is

possible to re-assure how little energy consumption these IDIoT modules induce of a device.

Chapter 6

Conclusion

The IoT has continuously advanced throughout the years since it first appeared. The deployment and

utilization of IoT devices in a wide range of applications is increasing like never before. However, connecting

all these devices to the Internet, enables for a vast surface of attacks to such devices and the networks

these are integrated in. Security mechanisms for IoT low-end endpoint devices are demanded in order

to address this issue and to establish reliability in these devices and networks. For this reason, solutions

like the IDS are developed for the IoT paradigm and the current state-of-the-art presents a great amount

of literature, published over the years, concerning integration of an IDS with the IoT network architecture.

However, much work can still be done concerning low-end IDS solutions, since these are still in its infancy

and incipient. Works do not cover or address many IoT technologies and can not detect a large variety of

attacks. Moreover, one of the best solutions found, Svelte, is, nonetheless, an outdated solution running

an older version of Contiki OS as well as its previous RPL implementation.

This thesis was based on the development of the IDIoT, a low-end IDS solution which is capable

of detecting routing and DoS attacks, such as the sinkhole and the UDP flood. The development of

the IDIoT was based on Svelte, a low-end IDS developed in Contiki-2.6. A refactoring was performed to

some modules and after developing others from scratch, the resulted IDIoT solution is, to the best of our

knowledge, the first of its kind to integrate both routing and DoS security mechanisms in order to prevent

malicious actions towards IoT constrained devices. IDIoT is capable of detecting sinkhole attacks as well

as UDP flood attacks, thanks to its detection modules running in both centralized and distributed devices

of the network. Furthermore, the IDIoT also integrates into its design a Firewall which allows for centralized

and distributed network nodes to perform basic filtering actions toward detected attacks, preventing this

way issues such as the denial of services, increased energy consumptions, and more.

The IDIoT modules are deployed on the Contiki-NG, a promising OS for the IoT devices, as well as

its most recent RPL implementation, the RPL-Lite, which enables new features concerning the routing in

84

Chapter 6. Conclusion 85

low-end IoT networks. Moreover, the IDIoT is a highly configurable and extensible solution where one can

choose which modules should be enabled in the network and has support for the previous RPL-Classic

implementation.

The evaluation performed to the IDIoT modules show great results concerning the detection of sink-

hole attacks launched from inside the network as well as UDP flood attacks which can be launched from

inside the network as well as from the Internet. Thread-metrics benchmarks show, that for a UDP flood

attack, in a network with IDIoT enabled, such attack will not succeed in affecting the network. However,

if a network is not protected with IDIoT modules, the DoS attack will be able to degrade up to 40% of net-

work’s performance. Moreover, energy consumption evaluations also assure the detection and prevention

enabled by the IDIoT modules during these attacks, which would result in much rapidly drained batteries

for unprotected devices. At last, memory footprint evaluations show that the overhead of all IDIoT modules

are suitable for low-end devices with resource-constrained hardware, e.g., the TMote Sky.

6.1 Future Work

Despite the IDIoT being a good solution as an IDS for the low-end IoT endpoint devices, there are still

some improvements and features that can be added in future developments:

• Integration the IDIoT with CUTE mote - Hybrid hardware platforms, which combine a MCU

and a FPGA on the same SoC are popular even at the network edge. These platforms add extra pro-

cessing capabilities to already existing systems by allowing the deployment of dedicated hardware

accelerators on the FPGA fabric [7] [74]. CUTE mote [7] is a in-house project specially designed

for the edge network that proposes a heterogeneous architecture which combines a MCU and a Re-

configurable Computing Unit (RCU) with an IEEE 802.15.4 radio transceiver. CUTE mote supports

a series of hardware accelerators concerning the IoT e related with the network stack. By having

available FPGA fabric, it is possible to integrate the IDIoT IDS along with the existing network filters,

allowing for the IDIoT blacklist to be directly offloaded in hardware, relieving MCU usage.

• Integrating the IDIoT with IPv6 over the TSCH (6TISCH) based model - The 6TISCH

proposes a protocol stack rooted in the TSCH mode of the IEEE 802.15.4 standard, supports multi-

hop topologies with the RPL and is IPv6-ready through the 6LoWPAN [75]. Having in mind the best

feature of the IDIoT, the detection of an attacker, would be a great topic in research to integrate such

Chapter 6. Conclusion 86

a solution with the 6TISCH protocol. This way, instead of limiting the IDIoT actions when detecting

an attacker to filtering such attacker with the resource to the IDIoT-Firewall, action techniques using

channel hopping provided by the TSCH could be investigated;

• Developing an OS agnostic framework - IoT motes are expected to have a certain degree of

interchangeability concerning its functions and communications in regards to the OS being used.

This is possible through compatibility provided by using the same standards and protocols. For this

reason, and since the IDIoT modules are currently only running in the application and networking

layer of these devices, a great improvement shall be to develop an OS agnostic framework of IDIoT

so it can run in devices with, e.g., RIOT OS or TinyOS;

• Extending the architecture to prevent more attacks - Existing IDIoT modules are easily

extensible for more attack prevention which would enrich the security mechanism. For instance, a

wormhole attack is also a popular attack in wireless networks [76]. If the IDIoT-6Mapper is extended,

in the mapping responses the clients send to the server, with the signal strength of each node’s

neighbor it is also possible to detect a wormhole attacks;

• Extend the DoS detection module - Many improvements can performed to the IDIoT-DoS-

Detection over the basis we have created. For instance, the module can be improved to secure

more flooding attacks, in similarity with the implemented UDP-flood, but this time, with other proto-

cols such as TCP or ICMP; Moreover, the IDIoT-DoS-Detection can be extended for other DoS attacks

which exploit well known and used protocols. For instance, concerning the TCP, it is possible to

improve this module to prevent the syn-flood.

References

[1] T. Gomes, D. Fernandes, M. Ekpanyapong, and J. Cabral, “An IoT-based system for collision detection

on guardrails,” in 2016 IEEE International Conference on Industrial Technology (ICIT), March 2016,

pp. 1926–1931.

[2] S. Pinto, J. Cabral, and T. Gomes, “We-care: An IoT-based health care system for elderly people,” in

2017 IEEE International Conference on Industrial Technology (ICIT), March 2017, pp. 1378–1383.

[3] S. Pinto, T. Gomes, J. Pereira, J. Cabral, and A. Tavares, “IIoTEED: An Enhanced, Trusted Execution

Environment for Industrial IoT Edge Devices,” IEEE Internet Computing, vol. 21, no. 1, pp. 40–47,

Jan 2017.

[4] T. Gomes, S. Pinto, F. Salgado, A. Tavares, and J. Cabral, “Building IEEE 802.15.4 Accelerators for

Heterogeneous Wireless Sensor Nodes,” IEEE Sensors Letters, vol. 1, no. 1, pp. 1–4, Feb 2017.

[5] T. Gomes, F. Salgado, S. Pinto, J. Cabral, and A. Tavares, “Towards an FPGA-based network layer filter

for the Internet of Things edge devices,” in 2016 IEEE 21st International Conference on Emerging

Technologies and Factory Automation (ETFA), Sep. 2016, pp. 1–4.

[6] T. Gomes, F. Salgado, S. Pinto, J. Cabral, and A. Tavares, “A 6LoWPAN Accelerator for Internet of

Things Endpoint Devices,” IEEE Internet of Things Journal, vol. 5, no. 1, pp. 371–377, Feb 2018.

[7] T. Gomes, F. Salgado, A. Tavares, and J. Cabral, “CUTE Mote, A Customizable and Trustable End-

Device for the Internet of Things,” IEEE Sensors Journal, vol. 17, no. 20, pp. 6816–6824, Oct 2017.

[8] T. Gomes, S. Pinto, T. Gomes, A. Tavares, and J. Cabral, “Towards an FPGA-based edge device for

the Internet of Things,” in 2015 IEEE 20th Conference on Emerging Technologies Factory Automation

(ETFA), Sep. 2015, pp. 1–4.

[9] A. Ribeiro, C. Rodrigues, I. Marques, J. Monteiro, J. Cabral, and T. Gomes, “Deploying a Real-Time

Operating System on a Reconfigurable Internet of Things End-device,” in IECON 2019 - 45th Annual

Conference of the IEEE Industrial Electronics Society, vol. 1, Oct 2019, pp. 2946–2951.

87

REFERENCES 88

[10] S. Pinto, D. Oliveira, J. Pereira, N. Cardoso, M. Ekpanyapong, J. Cabral, and A. Tavares, “Towards

a lightweight embedded virtualization architecture exploiting ARM TrustZone,” in Proceedings of the

2014 IEEE Emerging Technology and Factory Automation (ETFA), Sep. 2014, pp. 1–4.

[11] S. Pinto and N. Santos, “Demystifying Arm TrustZone: A Comprehensive Survey,” ACM Comput.

Surv., vol. 51, no. 6, Jan. 2019. [Online]. Available: https://doi.org/10.1145/3291047

[12] S. Raza and R. Magnusson, “TinyIKE: Lightweight IKEv2 for Internet of Things,” IEEE Internet of

Things Journal, vol. PP, pp. 1–1, 08 2018.

[13] K. Ashton. (2009) That ‘Internet of Things’ Thing. [Online]. Available: https://www.rfidjournal.com/

that-internet-of-things-thing

[14] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of Things: A Survey

on Enabling Technologies, Protocols, and Applications,” IEEE Communications Surveys Tutorials,

vol. 17, no. 4, pp. 2347–2376, 2015.

[15] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A Survey on Internet of Things: Architecture,

Enabling Technologies, Security and Privacy, and Applications,” IEEE Internet of Things Journal,

vol. 4, no. 5, pp. 1125–1142, 2017.

[16] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A Survey,” Computer Networks, pp.

2787–2805, 10 2010.

[17] L. Mainetti, L. Patrono, and A. Vilei, “Evolution of wireless sensor networks towards the Internet of

Things: A survey,” in SoftCOM 2011, 19th International Conference on Software, Telecommunications

and Computer Networks, Sep. 2011, pp. 1–6.

[18] P. Sethi and S. R. Sarangi, “Internet of Things: Architectures, Protocols, and Applications,” Journal

of Electrical and Computer Engineering, vol. 2017, pp. 1–25, 01 2017.

[19] M. R. Palattella, N. Accettura, X. Vilajosana, T. Watteyne, L. A. Grieco, G. Boggia, and M. Dohler,

“Standardized Protocol Stack for the Internet of (Important) Things,” IEEE Communications Surveys

Tutorials, vol. 15, no. 3, pp. 1389–1406, Third 2013.

[20] C. Perera, C. H. Liu, S. Jayawardena, and M. Chen, “A Survey on Internet of Things From Industrial

Market Perspective,” IEEE ACCESS, vol. 2, pp. 1660–1679, 01 2015.

https://doi.org/10.1145/3291047
https://www.rfidjournal.com/that-internet-of-things-thing
https://www.rfidjournal.com/that-internet-of-things-thing

REFERENCES 89

[21] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet of Things for Smart Cities,”

IEEE Internet of Things Journal, vol. 1, no. 1, pp. 22–32, 2014.

[22] M. Baby. (2018) Sleep Trackers for little ones. [Online]. Available: https://www.mimobaby.com/

[23] S. Trash. (2019) An overview of Smart City waste management market. View wireless

solution providers, case studies and data platform offerings. [Online]. Available: https:

//www.postscapes.com/smart-trash/

[24] S. Agriculture. (2019) Filter and discover IoT Agriculture Resources. View smart farm case studies,

sensor applications and potential resource and labor saving dashboards, tools and apps. [Online].

Available: https://www.postscapes.com/smart-agriculture/

[25] S. R. Department. (2016) Internet of Things connected devices installed base worldwide from

2015 to 2025 (in billions). [Online]. Available: https://www.statista.com/statistics/471264/

iot-number-of-connected-devices-worldwide/

[26] O. Oman. What is IoT? Understanding IoT Device Management and Standards.

[27] L. Santos, C. Rabadao, and R. Gonçalves, “Intrusion detection systems in Internet of Things: A

literature review,” in 2018 13th Iberian Conference on Information Systems and Technologies (CISTI),

June 2018, pp. 1–7.

[28] A. Dunkels, “Design and implementation of the lwIP TCP/IP stack,” Swedish Institute of Computer

Science, vol. 2, 03 2001.

[29] O. Hahm, E. Baccelli, H. Petersen, and N. Tsiftes, “Operating Systems for Low-End Devices in the

Internet of Things: A Survey,” IEEE Internet of Things Journal, vol. 3, no. 5, pp. 720–734, Oct 2016.

[30] R. Navas, “State of the art of IETF security related protocols for IoT,” 11 2016.

[31] J. Granjal, E. Monteiro, and J. Sá Silva, “Security for the Internet of Things: A Survey of Existing

Protocols and Open Research Issues,” IEEE Communications Surveys & Tutorials, pp. 1–1, 07 2015.

[32] G. Montenegro, J. Hui, D. Culler, and N. Kushalnagar, “Transmission of IPv6 Packets over IEEE

802.15.4 Networks,” RFC 4944, Sep. 2007. [Online]. Available: https://rfc-editor.org/rfc/rfc4944.

txt

https://www.mimobaby.com/
https://www.postscapes.com/smart-trash/
https://www.postscapes.com/smart-trash/
https://www.postscapes.com/smart-agriculture/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://rfc-editor.org/rfc/rfc4944.txt
https://rfc-editor.org/rfc/rfc4944.txt

REFERENCES 90

[33] G. Montenegro, C. Schumacher, and N. Kushalnagar, “IPv6 over Low-Power Wireless Personal Area

Networks (6LoWPANs): Overview, Assumptions, Problem Statement, and Goals,” RFC 4919, Aug.

2007. [Online]. Available: https://rfc-editor.org/rfc/rfc4919.txt

[34] S. Raza, S. Duquennoy, J. Höglund, U. Roedig, and T. Voigt, “Secure communication for the Internet

of Things—a comparison of link-layer security and IPsec for 6LoWPAN,” Security and Communication

Networks, vol. 7, 12 2014.

[35] K. Devadiga, “IEEE 802 . 15 . 4 and the Internet of things,” 2011.

[36] A. Arış, S. F. Oktuğ, and T. Voigt, Security of Internet of Things for a Reliable Internet of

Services. Cham: Springer International Publishing, 2018, pp. 337–370. [Online]. Available:

https://doi.org/10.1007/978-3-319-90415-3_13

[37] R. Alexander, A. Brandt, J. Vasseur, J. Hui, K. Pister, P. Thubert, P. Levis, R. Struik, R. Kelsey, and

T. Winter, “RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks,” RFC 6550, Mar. 2012.

[Online]. Available: https://rfc-editor.org/rfc/rfc6550.txt

[38] M. Khan, M. Lodhi, A. Rehman, A. Khan, and F. Hussain, “Sink-to-Sink Coordination Framework

Using RPL: Routing Protocol for Low Power and Lossy Networks,” Journal of Sensors, vol. 2016, pp.

1–11, 07 2016.

[39] M. Silva, D. Cerdeira, S. Pinto, and T. Gomes, “Operating Systems for Internet of Things Low-end

Devices: Analysis and Benchmarking,” IEEE Internet of Things Journal, vol. PP, pp. 1–1, 09 2019.

[40] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and flexible operating system for tiny

networked sensors,” in 29th Annual IEEE International Conference on Local Computer Networks,

Nov 2004, pp. 455–462.

[41] E. Baccelli, O. Hahm, M. Günes, M. Wählisch, and T. C. Schmidt, “RIOT OS: Towards an OS for the

Internet of Things,” in 2013 IEEE Conference on Computer Communications Workshops (INFOCOM

WKSHPS), April 2013, pp. 79–80.

[42] R. Barry. FreeRTOS, a free open source RTOS for small embedded real time systems.

[43] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay, J. Hill,

M. Welsh, E. Brewer, and D. Culler, TinyOS: An Operating System for Sensor Networks.

https://rfc-editor.org/rfc/rfc4919.txt
https://doi.org/10.1007/978-3-319-90415-3_13
https://rfc-editor.org/rfc/rfc6550.txt

REFERENCES 91

Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 115–148. [Online]. Available:

https://doi.org/10.1007/3-540-27139-2_7

[44] R. Barry. Berkeley’s OpenWSN project.

[45] J. Deogirikar and A. Vidhate, “Security attacks in IoT: A survey,” in 2017 International Conference on

I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Feb 2017, pp. 32–37.

[46] P. Pongle and G. Chavan, “A survey: Attacks on RPL and 6LoWPAN in IoT,” in 2015 International

Conference on Pervasive Computing (ICPC), Jan 2015, pp. 1–6.

[47] L. Liang, K. Zheng, Q. Sheng, and X. Huang, “A Denial of Service Attack Method for an IoT System,”

in 2016 8th International Conference on Information Technology in Medicine and Education (ITME),

Dec 2016, pp. 360–364.

[48] B. B. Zarpelão, R. S. Miani, C. T. Kawakani, and S. C. de Alvarenga, “A survey of intrusion detection

in internet of things,” Journal of Network and Computer Applications, vol. 84, pp. 25 – 37, 2017.

[Online]. Available: http://www.sciencedirect.com/science/article/pii/S1084804517300802

[49] S. Raza, L. Wallgren, and T. Voigt, “Svelte: Real-time intrusion detection in the internet

of things,” Ad Hoc Networks, vol. 11, no. 8, pp. 2661 – 2674, 2013. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S1570870513001005

[50] A. A. Gendreau and M. Moorman, “Survey of Intrusion Detection Systems towards an End to End

Secure Internet of Things,” in 2016 IEEE 4th International Conference on Future Internet of Things

and Cloud (FiCloud), Aug 2016, pp. 84–90.

[51] J. Anderson, “Computer Security Threat Monitoring and Surveillance,” 01 1980.

[52] A. Ashoor and S. Gore, “Intrusion Detection System (IDS): Case Study,” International Journal of

Scientific and Engineering Research, vol. 2011, 06 2019.

[53] S. Community. (2020) Snort, an open source IPS capable of real-time traffic analysis and packet

logging. [Online]. Available: https://www.snort.org

[54] O. I. S. Foundation. (2020) Suricata, Open Source IDS / IPS / NSM engine. [Online]. Available:

https://suricata-ids.org/

https://doi.org/10.1007/3-540-27139-2_7
http://www.sciencedirect.com/science/article/pii/S1084804517300802
http://www.sciencedirect.com/science/article/pii/S1570870513001005
https://www.snort.org
https://suricata-ids.org/

REFERENCES 92

[55] J. S. White, T. Fitzsimmons, and J. N. Matthews, “Quantitative analysis of intrusion detection

systems: Snort and Suricata,” in Cyber Sensing 2013, I. V. Ternovskiy and P. Chin, Eds., vol.

8757, International Society for Optics and Photonics. SPIE, 2013, pp. 10 – 21. [Online]. Available:

https://doi.org/10.1117/12.2015616

[56] R. Fekolkin, “Intrusion Detection and Prevention Systems: Overview of Snort and Suricata,” 01 2015.

[57] P. Kasinathan, C. Pastrone, M. A. Spirito, and M. Vinkovits, “Denial-of-Service detection in 6LoW-

PAN based Internet of Things,” in 2013 IEEE 9th International Conference on Wireless and Mobile

Computing, Networking and Communications (WiMob), Oct 2013, pp. 600–607.

[58] P. Kasinathan, G. Costamagna, H. Khaleel, C. Pastrone, and M. A. Spirito, “DEMO: An

IDS Framework for Internet of Things Empowered by 6LoWPAN,” in Proceedings of the 2013

ACM SIGSAC Conference on Computer and Communications Security, ser. CCS ’13. New

York, NY, USA: Association for Computing Machinery, 2013, p. 1337–1340. [Online]. Available:

https://doi.org/10.1145/2508859.2512494

[59] C. Cervantes, D. Poplade, M. Nogueira, and A. Santos, “Detection of sinkhole attacks for supporting

secure routing on 6LoWPAN for Internet of Things,” in 2015 IFIP/IEEE International Symposium on

Integrated Network Management (IM), May 2015, pp. 606–611.

[60] A. Le, J. Loo, M. Chai, and M. Aiash, “A Specification-Based IDS for Detecting Attacks on RPL-Based

Network Topology,” Information, vol. 7, 05 2016.

[61] F. Medjek, D. Tandjaoui, I. Romdhani, and D. Nabil, “A Trust-based Intrusion Detection System for

Mobile RPL Based Networks,” 06 2017.

[62] Y. Fu, Z. Yan, J. Cao, O. Koné, and X. Cao, “An Automata Based Intrusion Detection Method for

Internet of Things,” Mobile Information Systems, vol. 2017, pp. 1–13, 01 2017.

[63] S. Suganth and D. Usha, “A Survey of Intrusion Detection System in IoT Devices.” International

Journal of Advanced Research, vol. 6, pp. 23–30, 06 2018.

[64] P. Ioulianou, V. Vassilakis, and I. Moscholios, “A Signature-based Intrusion Detection System for the

Internet of Things,” 07 2018.

https://doi.org/10.1117/12.2015616
https://doi.org/10.1145/2508859.2512494

REFERENCES 93

[65] T. Mehmood, “COOJA Network Simulator: Exploring the Infinite Possible Ways to Compute the Per-

formance Metrics of IOT Based Smart Devices to Understand the Working of IOT Based Compression

and Routing Protocols,” 2017.

[66] A. Velinov and A. Mileva, “Running and Testing Applications for Contiki OS Using Cooja Simulator,”

vol. 1, 06 2016, p. 279.

[67] B. Ghaleb, A. Al-Dubai, E. Ekonomou, M. Qasem, I. Romdhani, and L. Mackenzie, “Addressing the

DAO Insider Attack in RPL’s Internet of Things Networks,” IEEE Communications Letters, vol. PP, 10

2018.

[68] P. Perazzo, C. Vallati, G. Anastasi, and G. Dini, “DIO Suppression Attack Against Routing in the

Internet of Things,” IEEE Communications Letters, vol. 21, no. 11, pp. 2524–2527, Nov 2017.

[69] A. Verma and V. Ranga, “Mitigation of DIS flooding attacks in RPL�based 6LoWPAN networks,” Trans-

actions on Emerging Telecommunications Technologies, pp. 1–25, 10 2019.

[70] A. D. Wood and J. A. Stankovic, “Denial of service in sensor networks,” Computer, vol. 35, no. 10,

pp. 54–62, 2002.

[71] W. Lamie and J. Carbone, “Measure your RTOS’s real-time performance,” 01 2020.

[72] A. Dunkels, J. Eriksson, N. Finne, and N. Tsiftes, “Powertrace: Network-level Power Profiling for

Low-power Wireless Networks,” p. 14, 04 2011.

[73] M. Corporation. (2005) Tmote Sky User Manual and Datasheet. [Online]. Available: https:

//fccid.io/TOQTMOTESKY/User-Manual/Users-Manual-Revised-613136

[74] A. Engel and A. Koch, “Heterogeneous Wireless Sensor Nodes that Target the Internet of Things,”

IEEE Micro, vol. 36, no. 6, pp. 8–15, Nov 2016.

[75] X. Vilajosana, T. Watteyne, T. Chang, M. Vučinić, S. Duquennoy, and P. Thubert, “IETF 6TiSCH: A

Tutorial,” IEEE Communications Surveys Tutorials, vol. 22, no. 1, pp. 595–615, 2020.

[76] P. Pongle, “Real Time Intrusion and Wormhole Attack Detection in Internet of Things,” Ph.D. disser-

tation, 06 2015.

https://fccid.io/TOQTMOTESKY/User-Manual/Users-Manual-Revised-613136
https://fccid.io/TOQTMOTESKY/User-Manual/Users-Manual-Revised-613136

	Resumo
	Abstract
	Acronyms List
	Introduction
	Problem Statement
	Goals
	Thesis Structure

	State of the Art
	Background
	The Internet of Things
	The IoT Network Stack
	6LoWPAN
	RPL
	Operating Systems for the IoT
	Security Threats Addressed to the IoT
	Intrusion Detection System

	Related Work
	High- and Middle-end IDS
	Low-end IDS

	Platform and Tools
	Cooja Network Simulator

	System Model and Design
	GAP Analysis
	Proposed Solution
	System Assumptions

	System Overview
	IDIoT-6Mapper
	IDIoT-Routing-Detection
	IDIoT Firewall System
	IDIoT DoS Detection Module

	Implementation
	Implementation Overview
	IDIoT Modules
	IDIoT-6Mapper
	IDIoT-Routing-Detection
	IDIoT-Firewall
	DoS Detection Module

	Evaluation
	Evaluation Overview
	IDIoT Routing Detection
	DoS Detection Module
	Memory footprint
	Energy Consumption

	Conclusion
	Future Work

	References

