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Resumo

Esta tese recorre à análise de wavelets para explorar a estrutura de prazo das taxas

de juro. A tese sublinha as vantagens das wavelets e argumenta que o seu uso para

estudar interações económicas complexas e séries não-estacionárias é muito vantajoso.

Adicionalmente, justifica também o recurso à transformada contínua da wavelet. A tese

recorre a diversos instrumentos associados à transformada contínua da wavelet — em

especial o espetro de potência de wavelet, a coerência de wavelet, a diferença de fase

da wavelet e a distância de espetros de wavelet — para explorar processos e fenómenos

económicos em três artigos.

Enquanto dois dos artigos se focam na curva de rendimentos, o terceiro avalia a

capacidade preditiva do indicador avançado da OCDE.

Um artigo usa as taxas de juro das dívidas soberanas para avaliar o contágio financeiro

na Zona Euro, distinguindo entre contágio e interdependência. O artigo mostra que há

contágio entre países periféricos e que a crise grega levou a uma fuga de capitais para

países seguros.

O segundo artigo extrai três fatores latentes da curva de rendimentos do Canadá e

explora os seus co-movimentos com quatro variáveis macroeconómicas.

O terceiro artigo investiga o poder preditivo do indicador compósito avançado da

OCDE. O artigo mostra que o indicador avançado é um preditor útil dos índices de

produção industrial, mas que tem uma performance pobre relativamente à taxa de

crescimento do PIB. Relativamente à taxa de desemprego, os resultados são mistos.

Globalmente, a tese demonstra que a curva de rendimentos contém informação sobre

vários eventos económicos e pode ser usada como preditor de várias variáveis

económicas. Também se demonstra que a informação contida na curva de rendimentos

oferece informação valiosa sobre política monetária e a dinâmica de variáveis económicas

como a inflação ou o desemprego.

Palavras-chave: Indicado Ciclo de Negócios, Indicador Compósito Avançado,

Contágio; Interdependência; Variáveis Macroeconómicas; estrutura de prazos; Curva de

Rendimento; Wavelet
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Abstract

The thesis utilises wavelet analysis to explore the term structure of interest rates. It

highlights the benefits of wavelet analysis and offers justification for its use in analysing

complex economic interactions and non-stationary series. Similarly, the thesis provides a

rationale for the adoption of Continuous Wavelet Transforms. The thesis utilises various

wavelet tools – such as wavelet power spectrum, wavelet coherency, wavelet

phase-difference and wavelet spectra distance – to explore economic phenomena and

processes in three papers. While the first two papers focus on the yield curve, the third

paper evaluates the forecasting ability of the composite leading indicator.

The first paper utilises the sovereign bond yield to evaluate financial contagion in the

Eurozone and distinguish between contagion and interdependencies in the Eurozone.

The paper found evidence of contagion among some periphery countries and established

a flight-to-quality flow to core countries during the Greek crisis. The second paper

extracts the three latent factors of the Canadian yield curve and explore their

co-movement with four macroeconomic variables. The study established a bidirectional

link between the yield curve and macroeconomic variables but found different

relationships between the latent factors and macroeconomic variables.

The third paper investigates the forecasting power of OECD’s composite leading

indicator. The paper found that the composite leading indicator is a useful forecasting

tool for Industrial Production Index but exhibit poor performance on GDP growth.

However, its forecasting power on the unemployment rate is mixed. Overall, the thesis

established that the yield curve is a crucial bellwether of economic events and could be

used to forecast various economic variables. It also demonstrated that the information

content of the yield curve could offer valuable information about monetary policy and

the dynamics of economic variables, such as inflation and unemployment.

Keywords: Business Cycle Indicator, Composite Leading Indicator, Contagion;

Interdependence; Macroeconomic variables; Term Structure; Yield Curve; Wavelet
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Chapter 1

Introduction

1.1 Background

Fourier analysis is frequently relied upon to determine the most appropriate cyclical com-

ponents of a time series1. The idea of Fourier transform hinges on ’capturing’ series

with different sinusoidal functions, each with varying frequency, and determining the

best-matched sinusoids for the original series. Fourier spectral analysis has been used

to identify some stylised business cycle facts (see, e.g. Granger, 1966; King and Watson,

1996), explore seasonal components (see, e.g. Nerlove, 1964; Wen, 2002) and evaluate

relationships among economic variables at distinct frequencies (see, e.g. Wen, 2005).

However, Fourier transform has some limitations. With sinusoidal functions being waves

of infinite duration, Fourier transform does not provide any localisation in time. That is,

Fourier transforms do not allow us to determine when different frequencies occur, making

it impossible to identify structural changes or differentiate transient relations. More

importantly, spectral analysis is suitable for time series with stable statistical properties.

However, most financial and economic time series are characterised by non-stationarity.

Wavelet analysis, an extension of Fourier analysis, addresses these limitations. It

estimates spectral characteristics of a series as a function of time. Thus, it reveals the

evolution of its varying periodic components. Although some of the ideas behind the

wavelet transform had been in existence for many years2, wavelet started as a coherent

body of mathematics in the mid-1980s (Goupillaud et al., 1984; Grossmann and Morlet,

1984). It is now widely used in various fields, such as astronomy, epidemiology,

geophysics, oceanography, physics and signal processing.

Ramsey and Lampart (1998) are precursors of wavelet in economics before its adoption

by other authors, such as Gençay et al. (2001, 2005), Wong et al. (2003), Connor and

1There are various types of Fourier transforms (discrete, continuous and finite), depending on the nature of the series

involved.
2We can trace the history of wavelets to at least 1909, when a Hungarian mathematician, Alfred Haar, used, in his

doctoral thesis, what is now recognised as the prototype of an orthogonal wavelet.
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Rossiter (2005), Fernandez (2005), Gallegati (2008) and Gallegati et al. (2011). The

earliest studies utilised discrete versions of the wavelet transform - Discrete Wavelet

Transform (DWT) and the Modified Discrete Wavelet Transform (MODWT). During

the last decade, many authors have gravitated towards the continuous-time version of

wavelet transform – Continuous Wavelet Transform (CWT) – to investigate economic

issues.

The utilisation of CWT is increasingly becoming interminable with its adoption in vari-

ous economics studies, such as Aguiar-Conraria et al. (2008), Crowley and Mayes (2009),

Baubeau and Cazelles (2009), Rua and Nunes (2009), Aguiar-Conraria and Soares (2011);

Aguiar-Conraria et al. (2013b), Rua and Nunes (2012), Aguiar-Conraria et al. (2012b);

Aguiar-Conraria and Soares (2014), Alvarez-Ramirez et al. (2012), Caraiani (2012), Fernández-

Macho (2012), Jammazi (2012), Vacha and Barunik (2012), Verona (2016), Bekiros et al.

(2017), Flor and Klarl (2017), and Ko and Funashima (2019). This thesis deepens the

utilisation of CWT in the economics literature. It uses continuous wavelet tools to address

three crucial economic issues.

One, the increasing integration of global financial markets sometimes exposes the

vulnerability of various markets to external shocks. While such vulnerability often

sparks episodes of financial crises, the snowballing effects of such crises have galvanised

interest in identifying channels through which the crises spread. The first objective of

this thesis is to explore the spread of a financial crisis from one market to another. The

thesis investigates the financial contagion in the Eurozone debt market, using wavelet

tools to distil the cross-country co-movement of sovereign bond yields.

Two, the behaviour of the yield curve changes across the business cycle, and this has

propelled a proliferation of literature exploring the information content of the yield

curve. Notable studies - such as Smets (1997) and Diebold et al. (2006a) – established

that the yield curve explains the dynamics of inflation, economic activity, monetary

policy and unemployment. While Bonser-Neal and Morley (1997) established that the

yield curve predicts the real economic activity in the US, they noted that such a result is

not evident outside the US. This thesis evaluates the link between the Canadian yield

curve and its macroeconomic variables.

Three, leading indicators are considered a useful tool for predicting future economic

conditions. With such utility, policymakers and economists consider them as a

bellwether of economic activities. However, leading indicators are criticised as

’measurement without theory’ (Koopmans, 1947). The ensuing debate galvanised a vast

body of literature on the predictive power of leading indicators and has resulted in a

multiplicity of leading indicators at both national and supranational levels. While

OECD’s composite leading indicator is one of such, it is under constant scrutiny. This

2



thesis explores the predictive performance of the OECD’s composite leading indicator on

three macroeconomic indicators: industrial production index, unemployment and GDP

growth.

The structure of the thesis is as follows: The rest of Chapter 1 focuses on the description

of wavelet tools utilised in the thesis. Chapter 2 evaluates the financial market

contagion in the Eurozone. Chapter 3 investigates the link between the latent factors of

the Canadian yield curve and its macroeconomic variables. Chapter 4 explores the

forecasting power of OECD’s composite leading indicator, while Chapter 5 concludes.

1.2 Continuous Wavelet Analysis

This section describes the continuous wavelet tools utilised in the three subsequent chap-

ters. The materials presented in this section were mostly adopted from Aguiar-Conraria

et al. (2012a, 2013a) and Aguiar-Conraria and Soares (2014).

1.2.1 Basic Definitions and Notations

Hereafter, L2 (R) represents square-integrable functions and denotes set of functions de-

fined on the real line, satisfying
∫∞
−∞ |x (t)|2 dt <∞. The inner product

⟨x, y⟩ :=
∫ ∞

−∞
x (t) y (t) dt

and corresponding norm

∥x∥ :=
√

⟨x, x⟩

The symbol := connotes ’by definition’ while the overbar denotes complex conjugation.

Unless otherwise stated, all functions are assumed to be in L2(R). With the influence of

the signal processing literature, this space refers to the space of finite energy functions,

with the energy of a function x being ∥x∥2.

The Fourier Transform (FT) of a function x(t) is denoted by Fx(ω) or simply x̂(ω) and

defined as:

Fx(ω) :=

∫ ∞

−∞
x(t)e−iωtdt =

∫ ∞

−∞
x(t)

(
cos(ωt)− i sin(ωt)

)
dt, ω ∈ R (1.1)

where Euler’s identity, eiθ = cos θ + i sin θ, is utilised in the second equality.

Remark 1 It is noteworthy that various definitions of Fourier transform of a function

appear in the literature, with ω as the angular (or radian) frequency and has a relation,

f = ω
2π

, with the ordinary frequency f.

3



Eq. 1.1 shows that the value of the Fourier transform of function x at the frequency ω

utilises the information of x(t) for all t ∈ R. Hence, it has no localisation in time.

Similarly, a function of the frequency ω is obtained, suggesting that time information is

lost under the Fourier transform. In this case, we are either in time-domain without

frequency information or frequency-domain without time information.

However, the representation of the function in the time-frequency domain is necessary to

overcome this problem. That is, a representation in time and frequency domains. Denis

Gabor proposed one such type of representations in his seminal paper on communication

theory (Gabor, 1946), and this is obtained using the Short-Time Fourier Transform

(STFT).

1.2.2 Short-Time Fourier Transform

The STFT is based on a simple idea: a function g, such as the Gaussian function, with a

very fast decay towards zero as t→ ±∞3 is multiplied by x(t) to select a ’local section’ of

x(t), and the Fourier transform of this is computed. Furthermore, g is shifted (translated)

to obtain another ’section’, and the Fourier transform of this new section is calculated.

The continuous repetition of this process would result in a two-variable function of τ

(translation parameter) and ω (angular frequency), with the function defined as:

Fg,x(τ, ω) =

∫ ∞

−∞
x(t)g(t− τ)e−iωtdt (1.2)

STFT could also be viewed from a different perspective: we can translate and modulate

a basic function g by τ and ω, respectively, to obtain a two-parameter family of functions

gτ,ω(t) := (t−τ)e−iωt, and the computation of inner products of x and all family members

is then carried out:

Fg,x(τ, ω) = ⟨x, gτ,ω⟩ (1.3)

Although a different representation using the continuous wavelet transform is intensively

adopted in this thesis, some concepts would be defined before exploring this representa-

tion. The concepts would enable the comparison of time-frequency localisation properties

of this representation with those of the STFT.

A time-center µ of a function g(t) is defined by

µ = µ(g) :=
1

∥g∥2
∫ ∞

−∞
t|g(t)|2 dt.

3Gabor, in his original paper, used Gaussian functions; with this type of window functions; the STFT is more commonly

known as the Gabor transform.

4



This implies that the centre of the wavelet is the mean of the probability distribution

obtained from |g(t)|2
∥g∥2 . As a measure of the concentration of g around its centre, the

standard deviation is usually computed as:

σ = σ(g) :=

√
1

∥g∥2
∫ ∞

−∞
(t− µ)2|g(t)|2dt,

This is referred to as the time-radius of g. The frequency-center µ̂ and the

frequency-radius σ̂ of g are defined in a similar manner, but applied to the Fourier

transform of g:

µ̂ = µ̂(g) :=
1

∥ĝ∥2
∫ ∞

−∞
ω|ĝ(ω)|2 dω and σ̂ = σ̂(g) :=

√
1

∥ĝ∥
2 ∫ ∞

−∞
(ω − µ̂)2|ĝ(ω)|2dω

An assumption is made about function g when defining the above quantities. It is im-

plicitly assumed that the function g is such that all these quantities are finite. This

corresponds to assuming a sufficiently fast decay for g and its Fourier transform ĝ.

In such cases, we refer to g as a (time-frequency) window function. Thus, we have

⟨x, g⟩ =
∫∞
−∞ x(t)g(t)dt ≈

∫ µ+σ
µ−σ x(t)g(t)dt, with the Fourier Parseval formula,

⟨x, g⟩ = 1

2π
⟨x̂, ĝ⟩ = 1

2π

∫ ∞

−∞
x̂(ω)ĝ(ω)dω ≈ 1

2π

∫ µ̂+σ̂

µ̂−σ̂
x̂(ω)ĝ(ω)dω

This indicates that the computation of the inner product of x and g provides information

about x(t) and x̂(ω) for various values of t and ω in the undermentioned rectangular

region in the time-frequency plane:

Hg := [µ− σ, µ+ σ]× [µ̂− σ̂, µ̂+ σ̂] (1.4)

The rectangle, as shown in Figure 1.1, is known as the Heisenberg box for g, while the

area of this box measures the joint time-frequency resolution of the window.

5



✲

✻

µ− σ µ µ+ σ

µ̂− σ̂

µ̂

µ̂+ σ̂

Figure 1.1: Heisenberg box

The Heisenberg uncertainty principle states that there is a minimum area for any

Heisenberg box. That is, we always have for any window function g,

4 σ(g)σ̂(g) ≥ 2 (1.5)

Hence, a well-localised function in time (very small σ) cannot be well-localised in

frequency and vice-versa. With the functions gt,ω utilised in the STFT obtained by

translations and modulations of the window function g, it can be easily shown that:

σ(gτ,ω) = σ(g) and σ̂(gτ,ω) = σ̂(g), ∀τ, ω ∈ R.

This shows that all the functions gτ,ω have Heisenberg boxes with the same height and

width. Its main limitation is the rigidity of the windows utilised in the STFT, having

the same width for both low- and high-frequency values.

1.3 Continuous Wavelet Transform

1.3.1 Definition of Continuous Wavelet Transform

The essence of the CWT is to calculate the inner products of the function x and family

members of two-parameter functions ψτ,s, generated from a given mother wavelet ψ by

translation and scaling factors τ and s, respectively.

ψτ,s(t) =
1√
|s|
ψ

(
t− τ

s

)
, τ, s ∈ R, s ̸= 0 (1.6)

The function ψ must satisfy the following minimum requirements to be considered a

(mother) wavelet:

1. 0 ̸= ψ ∈ L2 (R);

6



2. Cψ :=

∫ ∞

−∞

|ψ̂(ω)|2
|ω| dω <∞;

(see Daubechies, 1992, p. 24).

While the square integrability of ψ connotes a very mild decay condition, the wavelets

utilised in practice have much faster decay. Typically, it exhibits exponential decay

behaviour or even compact support. Although the second condition above is typically

referred to as the admissibility condition (AC), it is equivalent to requiring the

followings for functions with sufficient decay:

ψ̂ (0) =

∫ ∞

−∞
ψ (t) dt = 0.

This implies that the function ψ must wiggle along the t-axis. That is, it must have a

wavy behaviour, and in conjunction with the decaying property, justifies the term

wavelet (originally ondelette in French).

The definition of the CWT is analogous to the STFT when the family of functions gτ,ω

in (1.3) is replaced with wavelet daughters ψτ,s defined by (1.6). Thus, the CWT of a

function x(t) with respect to a certain wavelet ψ is a two-variable function given by

Wx,ψ (τ, s) := ⟨x, ψτ,s⟩ =
1√
|s|

∫ ∞

−∞
x(t)ψ

(
t− τ

s

)
dt (1.7)

Remark 2 With the lack of ambiguity with which wavelet ψ is used in the CWT, the

notation is simplified and written as Wx for Wx,ψ.

In the definition of wavelet, the imposition of Cψ as a finite quantity guarantees the

possible recovery of x(t) from the wavelet transform Wψ,x(τ, s). Moreover, for analytic

wavelet ψ, i.e. it is such that ψ̂(ω) = 0 for ω < 0, and x(t) is real, a reconstruction formula

involving only values of the real part of Wψ,x(τ, s), for s > 0, exists. This implies that we

may restrict ourselves to the use of positive scales (see Daubechies, 1992, p. 27). In what

follows, we assume we are working with an analytic wavelet and restrict the computation

of the CWT to positive values of s.

1.3.2 Localisation Properties

Let the wavelet function ψ be a window function4. For simplicity, it is centred at zero

(this is always achievable with the appropriate translation of ψ). Similarly, assume that

µ̂ > 0 is the frequency-centre of ψ. Suppose σ̂ and σ denote the frequency-radius and

4The wavelet adopted in this thesis satisfies this requirement.
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time-radius of the wavelet ψ. Then, we have for the wavelet daughter ψτ,s (s > 0),

µ(ψτ,s) = t, σ(ψτ,s) = sσ

µ̂(ψτ,s) =
µ̂

s
, σ̂(ψτ,s) =

σ̂

s

Hence, the Heisenberg box related to the function ψτ,s is

[
t− sσ, t+ sσ

]
×

[ µ̂
s
− σ̂

|s| ,
µ̂

s
+
σ̂

s

]

✲

✻

t1

s1

t2

s2

Figure 1.2: Heisenberg boxes with 0 < s1 < s2

Despite all the windows having the same area 4σσ̂, their dimensions vary with the scale.

We have large windows (in time) centred, in frequency, around low frequencies ω = µ̂

s
for

large values of s and short windows (in time) centred, in frequency, around high

frequencies ω = µ̂

s
for small values of s. Thus, there is an automatic adjustment of

window size to frequencies: short windows for high frequencies and large windows for

low frequencies. Such window flexibility is a big challenge in the STFT.

Remark 3 For technical clarity, the wavelet transform offers a time-scale representation

of the function x rather than a time-frequency representation. The inverse relation between

the angular frequency and the scale

ω(s) =
µ̂

s
(1.8)

make sense only if the Fourier transform of the wavelet has a single prominent peak around

the non-zero frequency µ̂ (see Meyers et al., 1993). This is precisely the case of the wavelet

utilised in three subsequent chapters of this thesis.
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1.3.3 Wavelet Choice

The required conditions for a function to be considered a wavelet are weak, and there are

various wavelets. In practice, the choice of a wavelet is driven by its intended application.

For instance, to study cycles, as this thesis focuses on, requires choosing a wavelet with

wavelet transform containing information on both phase and amplitude. This requires

the utilisation of a complex-valued wavelet. The phase provides vital information about

the variable’s position in the cycle.

The most popular complex wavelet belongs to the Morlet wavelet family, a family of

wavelets indexed by a parameter ω0, given by

ψω0(t) = π− 1
4 e−t

2/2
(
eiω0t −Kω0

)
, Kω0 = e−ω

2
0/2.

-4 -2 2 4

-0.6

0.6

(a) Real part (solid line) and imagi-
nary part (dashed line)

-2 2 4 6 8 10 12

-0.5

0.5

1.0

1.5

2.0

(b) Fourier transform

Figure 1.3: The simplified Morlet with parameter ω0 = 6 and its Fourier transform

The constant term Kω0 is included in the definition of the Morlet family to guarantee that

all its members satisfy the admissibility condition, i.e., we have
∫∞
−∞ ψ(t)dt = 0. However,

for reasonably large ω0, this term becomes so small (for example, when ω0 = 6, we have

Kω0 ≈ 1.5 × 10−8) that it is usually neglected in practice. This thesis uses a simplified

Morlet wavelet, corresponding to the choice ω0 = 6, i.e., it is the function:

ψ(t) = π−1/4e−t
2/2e6it = π−1/4e−t

2/2 (cos(6t)− i sin(6t)) . (1.9)

Observe that:

1. ψ̂(ω) =
√
2π1/4e−

1
2
(ω−6)2 ; hence, for ω < 0, we have ψ̂(ω) < 2.9× 10−8, so ψ can be

seen, for all practical purposes, as an analytic wavelet.

2. µ̂(ψ) = 6 and ψ̂(ω) has only one pronounced peak at µ̂ = 6; hence, it is fair to use the

relation (1.8), ω(s) = 6
s
to convert scales to (angular) frequencies (see Remark 3).

If we relate this to the more common Fourier frequency, we obtain f(s) = 1
2π

6
s
≈ 1

s
.

9



For the Fourier periods, we have p = 1
f ≈ s. This is why, in the interpretation of

our results, we often refer to frequencies or periods, instead of scales.

3. σ(ψ) = σ̂(ψ) = 1√
2
; hence, this wavelet has a Heisenberg box of area 4 1√

2
1√
2
= 2,

which is the minimum valued allowed by the Heisenberg principle. It is noteworthy

that function ψ has an equilibrated time-frequency resolution since the spread in

time and the spread in frequency are equal.

1.3.4 Wavelet Power and Wavelet Phase

A complex-valued wavelet function ψ equally has complex-valued wavelet transform Wx.

Therefore, it can be expressed in polar form, i.e. Wx(τ, s) can be written in terms of its

modulus |Wx(τ, s)| and argument (angle) ϕWx(τ, s) as follows:
Wx(τ, s) = |Wx(τ, s)| eiφWx(τ,s) , ϕWx(τ,s) ∈ (−π, π].

Recall that, given a complex number z = ℜz + iℑz, the modulus of z is denoted by |z|
and expressed as:

|z| =
√
zz =

√
(ℜz)2 + (ℑz)2 while the angle ϕz is expressed as:

ϕz = arctan

(ℑz
ℜz

)
,

where arctan represents the undermentioned extension of the typical principal component

of the arctan function, with range (−π/2, π/2):

arctan

(
b

a

)
:=





arctan ( b
a
), a > 0,

arctan ( b
a
) + π, a < 0, b ≥ 0,

arctan ( b
a
)− π, a < 0, b < 0,

π/2, a = 0, b > 0,

−π/2, a = 0, b < 0.

The local wavelet power spectrum of x, denoted byWPSx, follows the terminology adopted

in the Fourier case, and it is expressed as the square of the modulus of Wx, i.e.

WPSx(τ, s) := |Wx(τ, s)|2 = Wx(τ, s)Wx(τ, s).

The wavelet power spectrum measures the variance distribution of the time-series in the

time-frequency plane. The angle of Wx(τ, s) is called the phase of x and denoted by

ϕx(τ, s).
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1.4 Bivariate Wavelet Analysis

This section focuses on the description of various wavelet tools that can be utilised to

explore the link between series x and y in the time-frequency domain.

The cross-wavelet transform (XWT) of two series x and y is expressed as

Wxy(τ, s) = Wx(τ, s)Wy(τ, s). (1.10)

Similarly, the cross-wavelet power of x and y is computed as the absolute value of the

cross-wavelet transform, |Wxy(τ, s)|, and describes the local covariance between the

series at each time and frequency.

Remark 4 While all described wavelet measures are functions of variables s and t, we

simplify the notation by omitting the argument (τ, s) in the formulas unless absolutely

necessary.

The complex wavelet coherency between x and y is given by

ϱxy :=
S (Wxy)√

[S (|Wy|2)S (|Wx|2)]
, (1.11)

where S is a smoothing operator in both time and scale. Smoothing is essential to prevent

coherency of one at all scales and time5. The smoothing across time and scale is attained

through convolution with appropriate windows (see Cazelles et al., 2007; Grinsted et al.,

2004, for details).

The wavelet coherency, denoted by Rxy, is the modulus of the complex wavelet

coherency and expressed as:

Rxy :=
|S (Wxy)|√

[S (|Wy|2)S (|Wx|2)]
(1.12)

The phase-difference ϕxy between x and y is the angle of the complex wavelet coherency,

and expressed as:

ϕxy := arctan

(ℑ(ϱxy)
ℜ(ϱxy)

)
. (1.13)

The wavelet coherency is viewed as the correlation between the two variables at each

frequency and time.

The phase-difference between series x and y provides information on the possible oscilla-

tory delays of two series as a function of scale (frequency) and time. A phase-difference

5The same applies to the Fourier coherency
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ϕxy of zero implies that the two series move together at the specified frequency. The two

series move in phase and series x leads y when ϕxy lies within (0, π
2
). A phase relation

still exists, but y leads when ϕxy lies within (−π
2
, 0). However, a phase difference of π(−π)

implies an anti-phase relation between x and y. An anti-phase relation exists and y leads

when ϕxy lies within (π
2
, π) while x leads when ϕxy lies within (−π, −π

2
). These relations

are represented in Figure 1.4.

Anti-phase;
y leads

In-phase;

x leads

In-phase;
y leads

Anti-phase;

x leads

0

−π
2

-π
π

π
2

ϕxy

Figure 1.4: Phase Relations

Remark 5 Some authors define the phase difference as the angle of the cross-wavelet

transform. Comparing the formula (1.11) for the complex wavelet coherency with the for-

mula (1.10) for the cross-wavelet transform, the two measures of the phase-difference show

that they do not totally coincide due to the smoothing process involved in the coherency.

Adopting the definition of the phase-difference as the angle of the cross wavelet transform,

i.e. as the angle of WxWy and recalling the well-known results for the angle of the conju-

gate and product of complex numbers, we immediately see that ϕxy = ϕx−ϕy, which better

explains the name phase-difference. This seems to be a more natural definition. But the

definition in terms of the complex wavelet coherency, which is adopted in this thesis, is

more suitable for generalisation. However, the two measures are closely related.

1.5 Multivariate Wavelet Analysis

With more than two series, the association between two series often requires accounting

for the effect of their interaction with other series. Aguiar-Conraria and Soares (2014)

introduced the concepts of multiple wavelet coherency, partial wavelet coherency and

partial phase-difference for the general case of m ≥ 3 series. This thesis is restricted to
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the case of three series.

The concept of partial coherence focuses on the interdependence between two variables

in the time-frequency domain after accounting for the effects of other variables. However,

the notion of multiple coherency can be used when the interest is on the dependence of

one variable on two other variables. If the (partial) coherency between two variables

decreases in some regions after controlling for the effect of a third variable, the third

variable can be assumed to be partly responsible for their interdependence. Otherwise,

it could be concluded that the omission of the third variable is obscuring the relation.

The multiple wavelet coherency of series x, y and z, denoted by

Rx(yz) :=

√
R2
xy +R2

xz − 2ℜ
(
ϱxy ϱyz ϱxz

)

1−R2
yz

. (1.14)

The complex partial wavelet coherency ϱxy.z between x and y after controlling for the

effect of z is given by

ϱxy.z :=
ϱxy − ϱxzϱyz√

(1−R2
xz)(1−R2

yz)
. (1.15)

The partial wavelet coherency Rxy.z between x and y, after controlling for z is defined as

the absolute value of the complex partial-wavelet coherency while the partial

phase-difference ϕxy.z of x over y, given z, is the angle of ϱxy.z.

1.6 Implementation Details

1.6.1 CWT for a Finite Time-Series

In practice, the computation of the CWT of a finite time series x = {xt : t = 0, . . . , T − 1},
comprising T observations corresponding to a uniform time step δt, requires the discreti-

sation of the integral in formula (1.7) and its replacement with a summation. For compu-

tational efficiency, it is suitable to compute the transform for T values of the parameter

t = nδt;n = 0, . . . , T − 1. Similarly, the wavelet transform is computed only for a chosen

set of scale values s = sm. Hence, the computed wavelet transform of the finite time-series

x will simply be a S × T matrix Wx = (wmn), with its (m,n) element given by

wmn =
δt√
sm

T−1∑

k=0

xkψ

(
(k − n)δt

sm

)
; m = 0, . . . , S − 1, n = 0, . . . , T − 1

Although the above formula can be used to compute the wavelet transform for each m

and n, the simultaneous computation of all the T values of n can also be identified as a
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convolution of two sequences. Thus, the standard computational procedure for convolu-

tions (which involves the use of the FFT) can be used to perform the computation for

each value of s and T values of n simultaneously (see Torrence and Compo, 1998, for

details). This computational procedure is adopted in the Matlab package ASToolbox6 for

this thesis.

When the CWT is applied to a finite length time series, the values of the transform at

the beginning and end of the series comprise missing values that must be prescribed in

some way. Hence, the computed values near the borders are always ’incorrectly

computed.’ For instance, data periodisation is assumed when utilising the FFT

approach. This implies that values from one end of the series are utilised for computing

transform values at the other end. To avoid this wrapping, the series is usually padded

with enough zeros (the number of zeros is generally chosen to obtain a series with several

elements equal to a power of 2, to gain efficiency with the FFT), before using the FFT.

With the ’size’ of the wavelets ψt,s increasing with s, the edge-effects equally increase

with s. The cone-of-influence (COI) represents the region where the transform suffers

from these edge-effects. However, the result of this area of the time-frequency plane

must be interpreted cautiously (see Torrence and Compo, 1998).

1.6.2 Significance Tests

The tests of significance for wavelet measures are carried out using Monte-Carlo sim-

ulations. This involves fitting an ARMA model to the series while new samples are

constructed by drawing errors from a Gaussian distribution with the same variance as the

estimated error terms. For each series, this exercise is performed severally (typically 5000

times), and critical values are extracted.

Alternatively, theoretical distributions could be utilised for significance testing. For

instance, Torrence and Compo (1998) used large Monte Carlo simulations to establish

that the wavelet power spectrum obtained with a Morlet wavelet of an AR(0) or AR(1)

process is approximated by a Chi-squared distribution. But if computational speed is

not an issue, the Monte Carlo simulations can simply be performed. Cohen and Walden

(2010) and Ge (2008) established vital theoretical results on the test of significance for

the wavelet coherency. These authors utilised Morlet wavelet, assumed a Gaussian white

noise process, and analytically derived the sampling distributions. These results are

obviously important. However, they are still restrictive, as they imply the use of

Gaussian white noises. If one, for robustness, wants to consider the null a general

ARMA(p,q), these tests are not appropriate.

6This package, developed by Luís Aguiar-Conraria and Maria Joana Soares, is available at https://sites.google.com/

site/aguiarconraria/joanasoares-wavelets/the-astoolbox.
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Presumably, there are no suitable statistical tests regarding the phase-difference due to

the difficulty in defining the null hypothesis. In particular, Ge (2008) argued that

significance tests should not be used for the phase-difference. Instead, the analysis

should be complemented by inspecting the coherency and focusing on phase-differences

with the corresponding statistical significance coherency. More so, there appears to be

no viable existing study on the test of significance for the partial or multiple coherency.

1.7 Wavelet Spectra Dissimilarity Matrix

Aguiar-Conraria and Soares (2011) proposed a mechanism for evaluating the distance

between a given pair of wavelet spectra7. This can be adopted to generate a dissimilarity

matrix that is relevant for cluster analysis when studying synchronisation between sev-

eral series. This approach utilises the singular value decomposition (SVD) of a matrix to

explore typical common high-powered time-frequency regions. This technique is equiva-

lent to the principal component analysis. But unlike the principal component analysis,

this technique extracts components that maximise covariances, with the first extracted

components corresponding to the essential common patterns between the wavelet spec-

tra. Aguiar-Conraria and Soares (2011) proposed a technique for estimating the pairwise

dissimilarity between various extracted components.

1.7.1 Leading Patterns and Leading Vectors

Let Wx and Wy be two S × T wavelet spectral matrices. Suppose Qxy := WxW
H
y is their

covariance matrix8 and WH
y represents the conjugate transpose of Wy. The execution of

an SVD of this matrix yields

Qxy = UΣV H (1.16)

where U and V represent unitary matrices (i.e. UHU = V HV = I) while Σ = diag(σi)

is a diagonal matrix with non-negative sequential diagonal elements, which are ordered

from highest to lowest, σ1 ≥ σ2 ≥ . . . ≥ σS ≥ 0.

The column uk of the matrix U is the singular vector for Wx, V is the singular vector for

Wy, and σi represents the singular values. The number of non-zero singular values equal

to the rank of the matrix Qxy.

The singular vectors uk and vk satisfy a vital variational property. For each k,

uH
kQxyvk = max

pk,qk∈S {pH
kQxyqk

}
(1.17)

7For mathematical clarity, the measure introduced by Aguiar-Conraria and Soares (2011) is a dissimilarity measure and

not a true distance since it does not necessarily satisfy d(x, z) ≤ d(x, y) + d(x, z).
8Qxy is a square S × S matrix.
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where S represents the set of vectors satisfying the following orthogonality conditions:

pH
k pj = qH

k qj = δk,j, for j = 1, . . . , k, (1.18)

with δk,j denoting the Kronecker delta symbol, i.e. δk,j = 1 if j = k and δk,j = 0, if j ̸= k.

Suppose lkx and lky denote the leading patterns, i.e. 1 × T vectors obtained through the

projection of each spectrum Wx and Wy onto the respective kth singular vector (axis):

lkx := uH
kWx and lky := vHk Wy (1.19)

Please note that lkx is a linear combination of the rows of Wx, with weights being the

conjugates of the components of the kth singular vector uk (and similarly for lky). Since

uH
kQxyvk = uH

kWxW
H
y vk = uH

kWx(v
H
kWy)

H = lkx (l
k
y)

H (1.20)

it can be concluded that the leading patterns represent linear combinations of the rows of

Wx andWy, respectively, which maximise their mutual covariance (subject to the referred

orthogonality constraints).

Equation (1.16) is equivalent to

UHQxyV = Σ (1.21)

One can obtain the covariance of the kth leading patterns by equating the diagonal

elements of the matrices on each side of this equation. This is given by

∣∣lkx (lky)H
∣∣2 =

∣∣uH
kQxyvk

∣∣2 = σ2
k (1.22)

Similarly, the (squared) covariance of Wx and Wy is given by ∥Qxy∥2, where ∥.∥
represents the Frobenius matrix norm, defined by ∥A∥ :=

√∑
ij |aij|2. With this norm

invariant under a unitary transformation, we obtain

∥Qxy∥2 = ∥UHQxyV ∥2 = ∥Σ∥2 =
F∑

i=1

σ2
i .

The (squared) singular values σ2
k represent the weights attributed to each leading pattern

and are equal to the (squared) covariance explained by each pair of singular vectors.

If Lx and Ly denote matrices with rows representing leading patterns lkx and lky,

Equation(1.19) shows that Lx = UHWx and Ly = V HWy. We then obtain

Wx = ULx =
S∑

k=1

ukl
k
x, Wy = V Ly =

S∑

k=1

vkl
k
y
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We typically select, in practice, a certain number K < S (K is usually much smaller

than S) of leading patterns, guaranteeing, for instance, that the fraction of covariance(∑K

k=1 σ
2
k

)
/
(∑S

k=1 σ
2
k

)
is above a certain threshold9, and use

Wx ≈
K∑

k=1

ukl
k
x, Wy ≈

K∑

k=1

vkl
k
y.

1.7.2 Dissimilarity between Two Spectra

The information in the two wavelet spectra has been reduced to a few components: K most

appropriate leading vectors and patterns. The objective is to define a distance between

two spectra, and this would be done by appropriate measurement of the distance from

each pair of these vectors.

Consider the usual inner product in Cn, ⟨a, b⟩ = ∑n

i=1 aibi and the associated norm

∥a∥ :=
√
⟨a, a⟩ =

√∑n

i=1 |ai|2. Similarly, consider the so-called Hermitian angle between

two vectors a, b ∈ Cn, ΘH(a, b), defined by the formula

ΘH(a, b) = Arccos
|⟨a, b⟩|
∥a∥∥b∥ . (1.23)

The dissimilarity between two vectors p = (p1, . . . , pM) and q = (q1, . . . , qM) with M

components in C (applicable to the leading patterns and vectors), d(p, q), is defined by

d(p, q) =
1

M − 1

M−1∑

i=1

ΘH (sp
i , s

q
i ) (1.24)

where the ith segment s
p
i is the two-vector s

p
i := (i+ 1, pi+1)− (i, pi) = (1, pi+1 − pi) and

where s
q
i is defined analogously. The dissimilarity measure D (Wx,Wy) is computed to

compare the wavelet spectra x and y:

D (Wx,Wy) =

∑K

k=1 σ
2
k

[
d
(
lkx, l

k
y

)
+ d (uk, vk)

]
∑K

k=1 σ
2
k

, (1.25)

where σ2
k are weights equal to the squared covariance explained by each axis. The

dissimilarity measure could be computed for each pair of wavelet spectra and the

information extracted from this to fill a dissimilarity matrix.

9K = 3 is adopted in this thesis: three leading patterns are sufficient for the attainment of a fraction above 90%. The

use of larger K values yields almost identical results.
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Chapter 2

A Time-Frequency Analysis of

Financial Market Contagion in

Europe

Abstract

This paper adopted a wavelet approach to investigate the financial contagion in the

Eurozone debt market during various crisis-ridden periods in the zone. We used weekly

10-year bond yield data and showed that until the onset of the financial crisis of

2007/2008, bond yields were highly synchronised among all countries. However, the

bond yields in Greece, Ireland, Italy, Spain, and Portugal became non-synchronised with

core countries after 2008. Similarly, there was no synchronisation among the periphery

countries during this period, except for Italy and Spain.

We found evidence of contagion emanating from Ireland during the first part of the

sovereign debt crisis until around 2010, and from Greece afterwards. We also established

that contagion spread to Portugal, Greece and Ireland, and can be observed at high

frequencies. However, Italy and Spain were not affected. At business cycle frequencies,

we found that the Greek crisis propelled a flight-to-quality flow to Belgium, Finland,

France and Germany.

Keywords: Contagion; Interdependence; Fundamental-based Contagion; Pure

Contagion; Spillovers; Cross-market Co-movements; Wavelet Power Spectrum; Wavelet

Coherency; Wavelet Phase-Difference; Wavelet Distance
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2.1 Introduction

The increasing interconnectedness of the global economy and the rapid integration of

global financial markets propel global economic growth, increase volume and velocity of

international financial transactions, and improve capital flows to many countries (Gereffi,

2005; Kenc and Dibooglu, 2010; Rajan, 2006). On the flip side, it poses challenges to

global economy and financial architecture. For instance, global financial markets have

witnessed various financial and currency crises in the last four decades. One feature of

these crises is their snowballing effect from one market or geographical location to another.

While this undesired domino effect of financial market crises is generally called contagion,

there is no consensus on the definition or measurements of contagion.

Some prominent definitions include a substantial increase in the conditional probability

of a crisis in one country relative to another country; volatility asset-price spillover from

a crisis-ridden country to another; cross-country co-movement of asset prices that is

unexplained by fundamentals; substantial increases in co-movements of prices and

quantities across markets conditioned on the occurrence of a crisis in at least one

market; intensified shock transmissions or changes after a shock in a market; substantial

increases in the cross-market correlation during turmoil (see Dungey* et al., 2005;

Forbes and Rigobon, 2002; Pericoli and Sbracia, 2003, for details).

Overall, there are four fundamental considerations in these definitions: significant

cross-market correlation; measures of shock transmission across markets; differences

between contagion and interdependence; distinguish between normal and excessive

co-movements across financial markets. Numerous studies incorporated these features in

their definitions of contagion. For example, Dornbusch et al. (2000) defined contagion as

a significant increase in cross-market linkages after a shock to at least one market.

Forbes and Rigobon (2002) deepened this definition and posited that contagion implies

a fundamental difference in the cross-market link after a shock to one market; similarly,

interdependence emphasises no significance change in cross-market relationships.

Although there is a proliferation of studies on contagion, some studies were driven by

definitions ascribed to contagion. With contagion defined as a substantial increase in

cross-market linkages after a shock to at least one market (Forbes and Rigobon, 2002),

some studies evaluated evidence of contagion based on the notion of correlation

breakdown. Such studies emphasised the statistically significant increase in correlation

during the crisis period (Rodriguez, 2007). For instance, Edwards and Susmel (2001)

utilised switching volatility models to analyse the evolutionary volatility in Latin

America and found short-lived high-volatility episodes, lasting between two and twelve

weeks and accompanied by volatility co-movements across countries in the sample.
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Similarly, Bertero and Mayer (1990) and King and Wadhwani (1990) found an increase

in the correlation of stock returns during the 1987 stock market crash while Calvo

(1999) established correlation shifts during the Mexican Tequila crisis. Chiang et al.

(2007) adopted a dynamic conditional correlation model and found evidence of

contagion, as shown by increases in correlation.

However, some studies are critical about linking contagion to the structural shift in

correlation. For instance, Boyer et al. (1997) argued that evaluating correlation changes

without accounting for conditional heteroskedasticity might result in a severely biased

result. Rodriguez (2007) corroborated this and argued that the correlation between two

random variables, conditioning on extreme realisations of one variable would likely

suggest correlation breakdown, even if the true data generation process has a constant

correlation. Forbes and Rigobon (2002) deepened this argument by utilising the

generalised approach of Boyer et al. (1997) and found no evidence of correlation

breakdown after adjusting for heteroscedasticity.

The criticism of the correlation framework for measuring contagion galvanised a shift of

focus in another strand of literature and propelled varying methodologies in those

studies. For instance, Bae et al. (2003) utilised the multinomial logistic regression model

for stock markets and established that contagion is dependent on changes in exchange

rates, interest rate and stock return volatility. Similarly, Masih and Masih (1999)

examined the short- and long-term dynamic linkages among stock markets in OECD

countries and Asia using a VAR model. The study found that regional markets, rather

than OECD markets, explained stock market fluctuations in Asia. Also, Schwert (1990)

found a dramatic jump in stock return volatility during and after the crash, while

Forbes and Rigobon (2002) argued that such market-return volatility can bias

correlation coefficients and induce heteroscedasticity.

Furthermore, Bekaert et al. (2014) analysed the crisis transmission to 415

country-industry equity portfolios using a factor model in 55 countries and found limited

evidence of contagion from both the US market and the global financial sector. However,

the study found substantial evidence of contagion from domestic equity markets to

individual domestic equity portfolios. But its severity is inversely related to the quality

of economic policies and fundamentals of the countries. Additionally, a strand of

literature explored the recent sovereign debt crisis in Europe. For example, Missio and

Watzka (2011) used dynamic conditional correlation models to assess contagion during

the European debt crisis and found that yield returns in Belgium, Italy, Portugal, and

Spain increased as Greece experienced increasing yield spread with Germany.

Similarly, Arghyrou and Kontonikas (2012) explored the European sovereign debt crisis

and found a shift in market pricing behaviour from a convergence-trade model to one
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propelled by macro-fundamentals and international risk. Specifically, the study found

that other Economic and Monetary Union (EMU) countries experienced contagion from

Greece but established no significant speculation effects from CDS markets. Giordano

et al. (2013) investigated the link between a sharp increase in the sovereign spread of

Eurozone countries and deterioration of macroeconomic and fiscal fundamentals or

financial contagion after the Greek crisis and found evidence of wake-up contagion, but

not pure contagion. Martins and Amado (2018) found long-run contagion effects across

periphery countries while Broto and Perez-Quiros (2015) and Mink and De Haan (2013)

established Greece, Portugal and Ireland as sources of contagion.

While most studies on contagion utilised time-domain analysis, there is increasing

adoption of spectral analysis and wavelet analysis in evaluating the spread of financial

crisis from one market to another. These techniques are adopted to provide insight on

contagion that is hidden in the traditional time-domain framework. Orlov (2009)

adopted spectral analysis to evaluate the co-movement of exchange rates during the

Asian financial crisis. The study found greater co-movement among high-frequency

components. Similarly, Gray (2014) utilised cross-spectral methods to investigate

co-movement between currency market in Eurozone and selected markets outside

Eurozone and found evidence of contagion in at least three markets.

On the other hand, Gallegati (2012) utilised the wavelet approach to distinguish

between contagion and interdependence in stock markets during the US subprime crisis

and found that the crisis affected all stock markets in the sample. However, Brazil and

Japan are two countries showing evidence of contagion at all scales. Rua and Nunes

(2009) utilised the wavelet analysis to assess the co-movement among international stock

markets. The study found that the extent of co-movement of international stock market

return is dependent on the frequency. Specifically, the study found stronger

co-movement between markets at the lower frequencies. However, the study established

stronger co-movement at higher frequencies between the UK and the US markets around

the 1987 crash and the dotcom era towards the end of the century, with the dotcom

bubble associated with contagion.

Similarly, Madaleno and Pinho (2012) adopted the continuous wavelet approach to

explore the stock market linkages and found a strong but heterogeneous relationship

among four stock market indices - Brazil, Japan, UK and the US. Additionally, the

study showed the impact of geography in the co-movement between markets by

establishing that geographically and economically closer markets show higher correlation

and exhibit deepening short-run co-movement. However, the study found that strong

co-movement is mostly experienced with long-run fluctuations. In evaluating the

evidence of contagion and interdependence among OECD countries, Ftiti et al. (2015)
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combined spectral and wavelet analysis. While the study found evidence of contagion

and interdependence at different periods, it demonstrated that long-term co-movement

is related to the interdependence of stock market indexes. In contrast, short-term

co-movement is linked to the evidence of contagion.

Despite the proliferation of definitions of contagion in the existing literature, the

definition provided by Forbes and Rigobon (2002) is mostly adopted. One major

takeaway from this definition is contagion is driven by shock transmission that is

unexplained by fundamentals. With the inability of fundamentals to explain contagion,

some authors viewed it as a short-run phenomenon due to the typical rigidity of

fundamentals in this time horizon. This view galvanised a strand of literature utilising

either spectral analysis or wavelet analysis to explore contagion. This literature

considers contagion as a temporary and significant shift in cross-market linkages and

interdependence as a permanent shift in cross-market linkages after a shock (Bodart and

Candelon, 2009). The established link between period (time horizon) and frequency

prompted several authors - such as Bodart and Candelon (2009), Madaleno and Pinho

(2012), Gallegati (2012) and Orlov (2009) – to associate contagion with high frequencies

and interdependence with low frequencies.

While our work builds on the papers mentioned in the previous paragraph, we propose a

different way of distinguishing between contagion and interdependence. As stressed by

Martins and Amado (2018), an increase in the correlation between financial series

during times of turmoil is not enough evidence of contagion. It may be merely the result

of higher volatility accompanied by stable and substantial interdependence. Contagion

is the change in market interdependence during periods of high volatility. Similarly, our

paper contrasts with most of the existing literature and relates to Martins and Amado

(2018) in two ways. One, we do not impose a pre-defined date for the turmoil; instead,

we allow the dynamics of bond-yield data to speak for itself. Two, our wavelet approach

allows us to work in different timescales simultaneously, and this enables us to

distinguish between the short- and the long-run.

Our approach relies mainly on the concept of partial wavelet coherence proposed by

Aguiar-Conraria and Soares (2014), with Aguiar-Conraria et al. (2017), Ko and

Funashima (2019) and Verona (2019) applying this concept to the financial time series.

In this paper, we used a set of countries, called the core countries, to control for

structural interdependence. To identify these countries, we rely on a wavelet

dissimilarity measure proposed by Aguiar-Conraria and Soares (2011) and applied by

Aguiar-Conraria et al. (2013a), Aguiar-Conraria et al. (2013b), and Flor and Klarl

(2017). The core countries are mostly immune to the turmoil that affected the sovereign

yields. The coherency between core countries and each of the periphery countries

22



captured ordinary market interdependence and synchronisation between countries across

frequencies. This allowed us to identify precise time and frequencies that the highly

affected countries cease to anchor to core countries.

Furthermore, we explored the highly affected countries for evidence of contagion and the

source of such contagion. We identified contagion as the leftover coherence - partial

coherency - between these countries. Therefore, when studying the contagion between

two countries, say Portugal and Greece, we estimated the interdependence, in the

time-frequency domain, between their yields after eliminating the effect of yield returns

of other countries. We relied on the concept of partial coherency to achieve. However, if

there is a significant region of the (partial) coherency between Portugal and Greece after

controlling for effects for other countries, we will conclude that there is evidence of

contagion. The Partial Phase-difference identifies the originating country of such

contagion.

The paper proceeds as follows. Section 2.2 presents the empirical findings by identifying

core countries and the peripheral countries, analyses the time-frequency relationship

between these two categories of countries, and tests for evidence of contagion between

peripheral countries. Similarly, Section 2.3 concludes the study.

2.2 Empirical Findings

We utilised weekly data from January 2001 to June 2019. We extracted daily data of 10-

year sovereign bond yields from Eurostat for nine European countries: Belgium, Finland,

France, Germany, Greece, Ireland, Italy, Portugal, and Spain. However, the data were

converted to weekly data to reduce the computational burden.

We present the empirical results in this section. We estimated the wavelet power

spectrum of weekly returns for each country. This is akin to presenting the descriptive

statistics. We then identified the core countries by exploring the wavelet spectra

dissimilarity of yields for countries in our sample. Subsequently, we estimated the

wavelet coherency between core countries and each of the periphery countries. Finally,

we used partial coherency and phase-difference to evaluate evidence of contagion

between selected countries.
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Figure 2.1: Weekly data on 10-year government bond yields for nine Eurozone countries

2.2.1 Wavelet Power Spectrum

Figure 2.1 shows the weekly 10-year government benchmark bond yields for the nine

countries in our sample. It should be noted that the turmoil in the sovereign debt started

in late 2008 or early 2009. Greek bonds spiked the most, followed by Portugal and

Ireland. With these dynamics, the leading country is not completely obvious. While it

is also apparent that Italy and Spain have similar dynamics, the turmoil did not affect

Belgium, Finland, France, and Germany. However, it is unclear if Italy and Spain are

closer to the former or the latter group.
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Figure 2.2: The wavelet power spectrum of each country’s government yield. The
black/grey contour designates 5%/10% significance level. The cone of influence, which
indicates the region affected by edge effects, is shown with a parabola-like black line. The
colour codes range from blue (low power) to red (high power). The white lines show the
local maxima of the wavelet power spectrum.

Figure 2.2 shows the wavelet power spectrum of bond yields for nine countries. In the

power spectra, the colours reflect the degree of volatility, with the blue colour depicting

low variability and the red colour signifying high volatility. A thick black/grey contour

identifies the 5/10% significance regions against the null of a flat power spectrum. The
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white stripes identify local maxima and are, therefore, estimates of periods of most

relevant cycles.

For the four countries on the left (Belgium, Finland, France and Germany), it is

apparent that the dominant cycles are at the lower end of business cycle frequencies:

frequencies between four and eight years. However, the dynamic is different for the five

countries on the right (Greece, Ireland, Italy, Portugal and Spain). In general, the power

spectrum for these countries is much higher after 2008 and, mainly, after 2010. This

applies to both the upper and the lower end of business cycle frequencies, but it is

mostly visible at the 4 ∼ 8-year frequency band.

Among these five countries, Spain’s power spectrum is closest to the power spectrum of

the four countries on the left of Figure 2.2. However, the power spectrum at 1.5-year

frequency becomes statistically significant around 2012. On the other hand, Greece

exhibited the most peculiar characteristics. We observed a predominant five-year cycle

starting in 2009 and extending to the end of the sample. Similarly, a shorter cycle is

experienced between 2010 and 2015 at the frequency of about 1.5 years, while high

frequencies can be seen around 2012. For Italy and Ireland, a (smaller) spike was

observed at high frequencies in 2012. While the power spectrum for Ireland is not

statistically significant, Ireland is peculiar as it exhibited high volatility at all business

cycle frequencies between 2008 and 2015. Portugal, like Greece, has a salient cycle at

frequencies slightly below four years while volatility also increased at higher frequencies,

but with some delay, when compared to Greece and Ireland.

2.2.2 Core Countries

In Table 2.1, we showed the pairwise dissimilarity index between the countries in our

sample. It is based on comparing the wavelet transform of yields of all countries. It is

noteworthy that this is not the same as comparing the wavelet power spectra of Figure

2.2. In the computation of the wavelet power spectrum, the absolute value is taken, and

this implies that complex numbers disappear. By focusing on the wavelet transform,

the information provided by complex numbers is preserved. Precisely, one retains the

information about the phase of the cycle. A dissimilarity index between two countries

close to zero means that the two countries have a similar wavelet transform. Similarly, this

implies that both countries share the same high-power regions and have aligned phases.

Therefore, (1) the contribution of cycles at each frequency to the total variance is similar

between both countries, (2) this contribution happens at the same time, and finally, (3)

the wiggling of each cycle coincides in both countries.
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Table 2.1: Pairwise dissimilarities. p-values obtained by Monte Carlo simulation (10,000
replications) against the null that the cycles are not synchronised.

As we intend to consider all range of high frequencies to business cycle frequencies, the

wavelet transform was computed for frequencies from two week-period to eight years.

With our weekly data, the highest frequency that we can adopt is bi-weekly. The lower

end, eight years, is just the typical lower end of business cycle frequencies1.

The results are entirely in line with our observation in Figure 2.1. Precisely, there is a

set of countries that have well-aligned cycles with one another (Belgium, Finland,

France, and Germany), and a group of countries that are autonomous (Greece, Ireland,

Italy Portugal, and Spain). The inclusion of Spain and Italy in the second group

removes the earlier doubt of where they belong when one looks at Figure 2.2.

Figure 2.3: Multidimensional Scaling Map

To visualise Table 2.1, we reduced the dissimilarity matrix to a two-column matrix called

the configuration matrix, which contains the position of each country in two orthogonal

1Given that, traditionally, we associate the frequency band of 1.5 to 8 years to business cycles, in our analysis, we

separated business cycle frequencies from short-run frequencies (frequencies higher than 1.5 years).
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axes. This, of course, cannot be performed with perfect accuracy because the dissimilarity

matrix does not represent Euclidean distances. Figure 2.3 is generated from the configu-

ration matrix, with a multidimensional scaling map (on the left), and a dendrogram (on

the right). With their highly synchronised cycles, Germany, Finland, France and Belgium

are in the same group. Thus, they are referred to as core countries while Greece, Ireland,

Italy, Portugal and Spain are periphery countries.

2.2.3 Wavelet Coherency and Phase-Differences between the Core

Countries and the Peripheral Countries

The interpretation of our econometric results proceeds as follows. We evaluated the

statistically significant regions for coherency between two variables. These regions imply

that, in those episodes, we can affirm that there is a significant co-movement of variables

for cycles at the indicated period. For the statistically significant time-frequency regions,

we analysed phase-differences to determine the type of co-movement and identified the

leading and lagging variables. However, a low and statistically non-significant coherency

will provide a limited meaningful explanation as the phase-differences will be erratic given

the absence of a meaningful relationship.

Figure 2.5 presents the wavelet coherency and the wavelet phase-difference between the

yield of the Core and each periphery countries2. We equally presented the same

computations for two core countries - Belgium and France - in Figure 2.4 to enable us to

make comparisons.

Figure 2.4: On the left - wavelet coherency between the yield of Belgium and France.
The black contour designates 5% significance. The colour codes for coherency range from
blue (low coherency - close to zero) to red (high coherency - close to one). On the right

- phase-differences between Belgium and France.

We observed that the wavelet coherency between two core countries is red and statistically

significant almost everywhere. Kindly note that the phase-differences are almost zero

for the whole sample period, implying that the yields are positively correlated at all

frequencies and co-move. In such instances, there is no leading or lagging country.

2The yield of the Core is the average yield of Belgium, France, Finland, and Germany.
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Figure 2.5: On the left - wavelet coherency between the yield of the core countries and
each of the periphery countries. The black contour designates 5% significance. The colour
codes for coherency range from blue (low coherency - close to zero) to red (high coherency
- close to one). On the right - phase-differences between the core countries and each
periphery country.

However, the scenario differs when evaluating the link between the Core and periphery

countries. Greece presented the most peculiar case, with its high coherency at higher

frequencies until 2008. Thereafter, the picture turns blue, indicating low coherencies and

maintained this until the end of the sample period. At higher frequencies, the

phase-difference became erratic in 2009. This signifies that the Greek bond yields

detached from others as from this period. In contrast to other countries, the coherency
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is mostly blue at low frequencies at the beginning of the sample period. This suggests

that the long-run co-movement between Greece and core countries has always been

weak. The most notable exception occurs between 2009 and 2013. During this period,

we observed an island of high coherency at the frequency band of about 2-3 years. The

phase-difference lies between π/2 and π, signifying an anti-phase (or negative) relation,

with Greece leading. We do not observe this with any other countries. It suggests that

in this period, there was a flight-to-quality flow, with investors taking refuge in core

countries.

For other periphery countries, except Spain, we observed the same region of high

coherency. However, the phase-difference is close to zero. This suggests that these

countries remained tied to the core countries at business cycle frequencies during the

crisis period. Ireland, Italy, and Spain were highly coherent for a longer period at both

lower and higher frequencies. However, Portugal is somewhat between Greece and the

other periphery countries. Regarding shorter-run phase differences, Portugal and Ireland

experienced an erratic phase-difference around 2010. Similarly, this was experienced in

Spain and Italy between 2012 and 2013. However, Ireland became synchronised with the

core countries in 2014. While Spain and Italy were the only periphery countries whose

governments did not seek external assistance, Ireland was the first to re-align with the

core countries. After Ireland, there was evidence that Portugal and Spain experienced

the same scenario. Regarding Italy, we observed high coherency at several frequencies

between 2015 and 2017, but this vanished thereafter.

2.2.4 Wavelet Partial Coherency and contagion between Greece,

Ireland and Portugal

In the previous subsection, we established that Greece, Ireland, and Portugal were the

first countries to show signs of stress in their sovereign bond markets. In this subsection,

we explored those results further. We investigated evidence of contagion by estimating

the partial wavelet coherency and phase-differences between the yields of these countries

after controlling for the yields of Spain, Italy, and the Core. We interpreted the existence

of leftover (significant) coherency at high frequencies as evidence of contagion, while the

partial phase-difference informs the source of such contagion.

Regarding this, we observed that Portugal consistently lagged both Greece and Ireland

between 2008 and 2014 at higher frequencies. i.e. at the 0.25 to the 1.5-year frequency

band. Similarly, the partial phase-differences between Greece and Portugal, and Ireland

and Portugal are consistently between 0 and π/2. Thus, Portugal is not the source of

contagion. Regarding Greece and Ireland, we observed a switch in 2010. Prior to that

period, Greece lagged Ireland while Greece became the leading country afterwards. This
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evidence suggests that until 2010, the primary source of contagion was Ireland while

Greece became the originating country afterwards. The Irish banking crisis forced its

government to issue a broad state guarantee of Irish domestic banks in September 2008,

and the subsequent public finance crisis in Greece, which led to a bailout programme in

2010 are the most obvious culprits.

At business cycle frequencies, phase relations are much more stable. Ireland consistently

leads both Portugal and Greece. The phase relation between Portugal and Greece is also

stable, with Portuguese yields slightly leading Greek yields for most parts of the sample

period. However, the phase-difference becomes zero between 2009 and 2011, suggest-

ing that the yields were highly synchronised in the peak of the crisis at business cycle

frequencies.

Figure 2.6: On the left - wavelet partial coherency between the Greece, Ireland and
Portugal, after controlling for Italy, Spain and the Core countries. The black/grey contour
designates the 5/10% significance. The colour codes for coherency range from blue (low
coherency - close to zero) to red (high coherency - close to one). On the right - the
partial phase-differences.
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2.3 Conclusions

We applied the Continuous Wavelet Transform to study the sovereign debt yields in nine

Eurozone countries. We used weekly data from 2001 to June 2019. We first applied the

dissimilarity index to demarcate core countries (Belgium, Finland, France and Germany)

from the periphery countries, also known as GIIPS (Greece, Ireland, Italy, Portugal and

Spain). We estimated the wavelet coherency and the wavelet phase-difference between

the core and peripheral countries.

We established that Greece had a significant coherency with the core countries until

2008 and became erratic as from 2009. For other periphery countries, their detachment

from the core occurred later (in the case of Ireland and Portugal) and even much later in

the case of Spain and Italy. In the case of Ireland, we also observed that it re-aligned

with the core countries in 2014. An interesting result that we established was the

evidence of the flight-to-quality flow, with investors taking refuge in core countries due

to the instability in Greece.

We equally investigated evidence of contagion between the first three countries that de-

tached from the core: Greece, Ireland, and Portugal. We concluded that until 2010,

Ireland was the main source of contagion while Greece took over later. We can connect

these timings to the Irish banking crises, which started in September 2008, and the Greek

public finance crisis, which led to a bailout programme in 2010.
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Chapter 3

A Time-Frequency Analysis of the

Canadian Macroeconomy and the

Yield Curve

Abstract

We used wavelet analysis to study the relationship between the yield curve and

macroeconomic indicators in Canada. We relied on the Nelson-Siegel approach to model

the zero-coupon yield curve and used the Kalman filter to estimate its time-varying

factors: the level, the slope and the curvature. Apart from establishing a bidirectional

yield-macro relation, the paper broadened the existing literature by exploring the link

between the monetary policy and the yield curve. We reached several conclusions. First,

the monetary policy variable, the bank rate, affects mainly short-run interest rates.

Arguably, the main driver for economic activity is the long-run interest rate (instead of

the short-run), suggesting that monetary policy is mostly ineffective. Second, we

concluded that concerning the inflation rate, the Bank of Canada is very proactive.

Third, regarding the unemployment rate, we found that both the slope and the

curvature are leading indicators for the long-run evolution of unemployment. Finally,

our results suggested that the industrial production index leads the yield curve factors

and not the other way.

Keywords: Term Structure; Yield Curve; Macroeconomic Variables; Wavelet Power

Spectrum; Wavelet Coherency; Wavelet Phase-Difference
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3.1 Introduction

”The ability of monetary policy to affect aggregate expenditures rests on the premise

to influence market expectations regarding the future path of short-term interest rates” -

(Geiger, 2011, p.1). However, the impact of any central bank on macroeconomic dynamics

depends on its influence on financial market prices, particularly its grip on the long-term

interest rate, which governs the level of credit demand and consequently expenditures.

The typical hypothesis is that expectations connect the short- and long-run interest rates,

with the yield curve representing the pivot between the aggregate demand and monetary

policy, offering the central bank valuable information on private market expectations

(Geiger, 2011). Such a vital influence has fuelled a proliferation of yield curve models.

While the modelling of the yield curve is evolving (see Diebold and Rudebusch (2013)

for a review), efforts have been made to explore unidirectional and bidirectional links

between macroeconomic variables and the yield curve. Such efforts deployed mostly

traditional econometrics techniques (see Ang and Piazzesi, 2003; Wu, 2001; Estrella and

Hardouvelis, 1991; Benati and Goodhart, 2008), with few novel approaches (see

Aguiar-Conraria et al., 2012a,b). However, there is a paucity of literature on the role of

the yield curve in monetary policy space. Such investigation is crucial for countries like

Canada since its central bank uses an interest rate measure - Target for the Overnight

Rate - as a monetary transmission mechanism. This paper fills the void by, not only

exploring the bidirectional macro-yield link, but also evaluating the link between the

Canadian yield curve and its monetary policy. The paper equally deepens the literature

by adopting the wavelet approach. The ability of wavelet tools to capture the high

irregularity in the financial data through its decomposition into both time and frequency

domains influences its choice for this study.

A wide range of empirical studies has explored the relationship between the yield curve

and the macroeconomic variables. Diebold et al. (2006b) used Nelson-Siegel model to

explore the macroeconomic-yield link and found that inflation rate and real economic

activity highly correlated with level and slope factors, respectively, but the curvature

factor had no underlying relationship with any of the main macroeconomic variables.

Evans and Marshall (2007) established that inflation and economic activity are

responsible for the huge variability in short- and medium-term yields, respectively. The

explanatory power of these two variables is commonly attributed to the role of monetary

policy as a transmission channel of macroeconomic dynamics (Kozicki and Tinsley,

2001). Rudebusch and Wu (2008) obtained a similar result, but with a more structural

interpretation: level factor reflected the underlying market view about the central

bank’s medium-term inflation targeting while slope factor captured the central bank’s

cyclical response. Empirical studies by Kozicki and Tinsley (2001) and Dewachter and
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Lyrio (2006) explored the feedback from an implicit inflation target generated from the

yield curve to explain the yield curve dynamics. Similarly, Taylor (1993) found that the

short end of the yield curve evolves at par with the central bank’s policy instrument,

which responds to changes in inflation and economic activity. Furthermore, Moneta

(2005) hypothesised that a positive yield curve is associated with the future expected

economic growth by investors while a negative yield curve is associated with an expected

impairment in economic growth.

To our knowledge, two papers used wavelets to explore this relation for the USA.

Gallegati et al. (2014) relied on the Discrete Wavelet Transform to perform a

scale-by-scale decomposition of several indicators that measure the stance of monetary

policy variables, including the yield curve slope and GDP. Similarly, Aguiar-Conraria

et al. (2012a) relied on the continuous wavelet transform to explore the link between the

yield curve and the macroeconomy in the USA. The main advantage of using wavelets

lies in its ability to estimate relations that are not only time-varying but also

frequency-varying, providing a thorough vision of the relationship between the yield

curve components and the macroeconomic variables that is almost impossible to obtain

with purely time-domain or frequency-domain analysis.

The literature on the Canadian yield curve is scarce, and limited available studies have

widespread focus. For instance, Lange (2013) explored the link between the Canadian

yield curve and its macroeconomic variables using a dynamic latent approach and found

bidirectional causality between them. Garcia and Luger (2007) equally explored this

relationship using the equilibrium-based approach and incorporated a vector

autoregression description of Canada’s key macroeconomic dynamics. They found that

in-sample average pricing errors from the equilibrium-based model are slightly larger

than those from a relatively flexible no-arbitrage model. However, Hao and Ng (2011)

investigated the ability of Canadian financial and macroeconomic variables in predicting

recessions and found that government bond yield spread (akin to the yield slope) among

others is a powerful predictor of recession. The study by Booth et al. (2007) focused on

the drivers of provincial-Canada yield spreads and found a strong correlation between

provincial yield spreads and provincial debt and deficit levels. Hejazi et al. (2000)

examined the implicit determinants of the Canadian term premia and found that the

conditional variances of Canadian macroeconomic variables are not significant predictors

of the T-bill term structure. This finding is contrary to the evidence from the USA.

While a strand of literature on the yield curve focused on the link between the yield

curve and macroeconomic variables and its predictive power, there is paltry literature on

the yield curve and the monetary policy. Cook and Hahn (1989) examined the market’s

reaction to monetary policy actions and found a positive response to the federal funds
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rate target increases at all maturities. Edelberg et al. (1996) found a marginal

significance response of bond rates to policy shocks, but a highly significant response

regarding treasury bill rates.

The paper proceeds as follows. In section 3.2, we describe our modelling and estimation

choices for the yield curve factors. We also present the data. In section 3.3, we present

our main results and section 3.4 concludes.

3.2 Methodology and Data

3.2.1 Yield Curve Model Specification and Estimation

Despite a growing body of literature on yield curve modelling, three distinct approaches

are popular: no-arbitrage models, equilibrium models and parsimonious model. While

the no-arbitrage approach perfectly fixes the yield curve at a point in time and ensures

no arbitrage opportunity exist, the equilibrium approach typically uses affine models to

model the dynamics of the instantaneous rates and subsequently derive yields of other

maturities under various assumptions about the risk premium. The parsimonious model,

popularised by Nelson and Siegel (1987), distils the yield curve into a three-dimensional

parameter: level, slope and curvature.

This study uses the parsimonious model to explore the relationship between the

Canadian yield curve and the macroeconomic variables. The model is represented by:

y(τ) = β1 + β2

(
1− e−λτ

λτ

)
+ β3

(
1− e−λτ

λτ
− e−λτ

)
,

where y(τ) and τ denote the zero-coupon yields and maturity, respectively, while β1, β2

and β3 are time-varying parameters. Based on Diebold and Li (2006), the time-varying

parameters capture the level, slope and curvature of the yield curve at each period t. The

yield can be estimated from the equation:

yt(τ) = Lt + St

(
1− e−λτ

λτ

)
+ Ct

(
1− e−λτ

λτ
− e−λτ

)
. (3.1)

The role of the three components Lt, St and Ct becomes clear when we consider their

limiting behaviours with respect to time to maturity τ . Lt may be viewed as the long-term

factor with a loading of 1 and does not decay to zero in the limit; St may be interpreted

as a short-term factor with a loading that starts at 1 and monotonically decays fast to

zero; finally, Ct may be viewed as a medium-term factor with a loading that starts at

zero, increases and then decays to zero.
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Note that long-run interest rates are usually higher than short-run, as an investor is

expected to be compensated for funds invested for longer periods. That means that, for

most of the periods, yt is an increasing function of maturity τ . Given that the factor

loading
(

1−e−λτ
λτ

)
is decreasing with τ , then St will actually be negative most of the

times, and an increase in St is to be interpreted as a flattening of the curve (with

short-run interest rates becoming closer to long-run rates). This definition of the slope

may seem counter-intuitive, but it is a convention in the yield curve literature 1.

To estimate these components, we considered a state-space representation of the model,

with a measurement system of equations, in which one relates the yields of different

maturities to the three factors:




yt (τ1)

yt (τ2)
...

yt (τN)



=




1
(

1−e−λτ1
λτ1

) (
1−e−λτ1
λτ1

− e−λτ1
)

1
(

1−e−λ2
λτ2

) (
1−e−λτ2
λτ2

− e−λτ2
)

...
...

...

1
(

1−e−λτN
λτN ) (

1−e−λτN
λτN − e−λτN) 
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The factors are modelled as latent factors with the following transition system of

equations:



Lt − L̄

St − S̄

Ct − C̄


 =



a11 a12 a13

a21 a22 a23

a31 a32 a33






Lt−1 − L̄

St−1 − S̄

Ct−1 − C̄


+



ηL,t

ηS,t

ηC,t


 , (3.3)

where t = 1, . . . , T is the sample period, L̄, S̄ and C̄ are estimates of the mean values of

the three latent factors, and ηL,t, ηS,t and ηC,t are innovations to the autoregressive

processes of the latent factors. We used the Kalman filter to estimate this set of

equations (see Aguiar-Conraria et al. (2012b) for further details).

3.2.2 Data

The daily zero-coupon bond yields for Canada for various maturities - 3, 6, 9, 12, 15, 18,

21, 24, 30, 36, 48, 60, 72, 84, 96, 108 and 120 months - were extracted from the Bank

of Canada’s website2; these yields were converted to monthly yields by a simple average

method. Our choice of macroeconomic variables includes the unemployment rate and CPI

Inflation. A business cycle index complements the unemployment rate. While indexes

such as GDP growth or output gap are notional measures of the business cycle, their

availability in either quarterly or yearly basis makes them inappropriate for our purpose.

1Typically, the empirical measure for the slope is: Slopet = yt(3) − yt(120). Therefore, a negative value for the slope

means that the interest rate is increasing with maturity
2Data downloaded from http://www.bankofcanada.ca/rates/interest-rates/bond-yield-curves/ on September 22,

2016.
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Capacity utilisation is another possible indicator, but its lack of availability for the entire

sample period inhibits its consideration. Following Aguiar-Conraria and Soares (2011),

we relied on the industrial production index’s year-on-year growth data.

The transition of the Bank of Canada from its previous key monetary instrument - Bank

Rate - to the current - Target for the Overnight Rate - on February 22, 1996 creates a

bit of a challenge for our choice of the monetary policy instrument. Our sample covers

the period, January 1986 - May 2016. While the data for the Target for the Overnight

Rate is unavailable for the entire sample period, the data for Bank Rate is available.

Despite this, the correlation between the two rates - Target for the Overnight Rate and

Bank Rate - is very strong, and this strong association undergirds the choice of Bank

Rate as our monetary policy instrument. The data for Bank Rate was extracted from

the Bank of Canada’s website while the data for CPI inflation and industrial production

index was downloaded from Statistic Canada’s website and IMF, respectively.

The estimated factors, which are plotted as time plots, and the corresponding wavelet

power spectra are given in Fig. 3.1. In Fig. 3.2, we have the plots and the wavelet

power spectra for macroeconomic activity indicators3. In the plots of wavelet power, the

black conical line identifies the region, referred to as the cone of influence (COI), where

edge effects - unavoidable artefacts appearing when computing the continuous wavelet

transform for a finite series - are important; outside this line, the results should be

interpreted with caution (see, e.g. Aguiar-Conraria and Soares (2014) for more details).

The degree of variability is distinguished by a colour spectrum, ranging from dark blue

(low variability) to red (high variability). The white lines in the power spectra indicate

local maxima. The black contours signify 5% significance level, while the grey contours

represent 1% significance level. These were computed using a known theoretical

distribution for the power, assuming a flat spectrum as the null (see Torrence and

Compo (1998) for more details).

3There is a well-known bias regarding the estimation of the wavelet coefficients at the lowest scale levels. For that reason,

we implement the correction proposed by the Liu et al. (2007).
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Figure 3.1: Level, slope and curvature of the Canadian yield curve (left panel) and cor-
responding wavelet power spectra (right panel). The colour code for power ranges from
dark blue (low power) to red (high power); the black (grey) contours designate the 5%
(1%) significance levels; the cone of influence, which indicates the region affected by edge
effects, is delimited with a black conic line; the white lines show the local maxima of the
wavelet power spectra.

For the level factor, one can see that the series was most volatile in the 1990s, in

particular for cycles at the lower business cycle frequencies (4 ∼ 8-year periodic cycle).

To be more precise, the volatility is significant at 5% for the 4 ∼ 8-year frequency band

between 1992 and 2000. If one considers 1% significance level, then there are almost no

significant regions. In the case of the slope, if we focus on the 4 ∼ 8-year frequency band,

the wavelet power spectrum is significant almost across the entire sample. At higher

frequencies (2 ∼ 4-year periodic cycle), it is also significant in the second half of the

1990s and early 2000s. For the curvature, the high volatility occurs at various frequency

bands and across the entire sample, with several cycles occurring simultaneously, as we

can observe a white stripe at a frequency slightly lower than 2 years, another slightly

lower than 4, and the 8-year period cycle. One also observed this multiplicity of cycles

for other factors, but they are not as evident as in the case of the curvature.
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Figure 3.2: Macroeconomic variables (left panel) and corresponding wavelet power spectra
(right panel). The colour code for power ranges from dark blue (low power) to red (high
power); the black (grey) contours designate the 5% (1%) significance levels; the cone of
influence, which indicates the region affected by edge effects, is delimited with a black
conic line; the white lines show the local maxima of the wavelet power spectra.

It is interesting to note that the bank rate’s power spectrum is very similar to the power

spectrum of the slope (Fig. 3.1). The wavelet power spectrum is significant almost

across the entire sample, especially in the 4 ∼ 8-year frequency band. In the case of the

inflation rate, the wavelet power spectrum is quite heterogeneous. One can see a

significant island at the 2-year frequency during the first half of the 1990s and later in
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the early 2000s. In the first part of the sample, we can also observe some white stripes

suggesting that there was an important cycle of 4 ∼ 6-year period, and approaching the

end of the sample, 3-year cycle. For unemployment, the power spectrum is statistically

significant for all the sample period for lower frequencies. Finally, for the industrial

production index, one observed a persistent 6-year cycle, although much more important

before than after 2000. At higher frequencies, the wavelet power spectrum is also quite

high until the year 2000 and subsequently around the year 2010.

3.3 Empirical Results

In this section, we present the wavelet coherency and wavelet phase difference between

each of the macroeconomic variables and each latent factor of the yield curve and discuss

their main implications. Significance tests for the coherency were conducted based on

Monte Carlo simulations: we fitted an ARMA model to each of the series and constructed

new samples with the same basic properties. For each pair of series, we performed the

exercise 5000 times and then extracted the critical values at 1% and 5% significance levels.

As for the power, the 5% significance levels are indicated in the coherency plots with black

contours and the 1% significance levels with grey contours. Because of the possibility of

having false positives, in the sense of rejecting the null too often, (see Maraun et al.

(2007)), we focussed on the regions which are significant at 1%. The colour code for the

coherency ranges from dark blue (low coherency) to red (high coherency).

To facilitate the presentation, we displayed the mean phase difference for two frequency

bands (cycles of period 2-4 years and cycles of 4-8 years). Because the phase differences

are measured on a circular scale, the mean is computed as a circular mean (see Zar

(1996) for details). These (mean) phase differences are indicated in the corresponding

plots with a solid black line. Confidence intervals for the circular mean at each point in

time were also computed - we used the formulas proposed by Zar (1996); see also Berens

et al. (2009) - and the interpretation of the mean phase at each point is done considering

values as extreme as the two endpoints of the corresponding interval. The limits of the

confidence intervals for the mean phases are indicated in the pictures with red dashed

lines.

3.3.1 Bank Rate and the Yield Curve

Figure 3.3 shows the level of coherency between the bank rate and latent factors (left

panel), as well as the phase differences between them (right panel). The most striking

feature of Figure 3.3 is the high coherency, across most of the times and frequencies,

between the bank rate and the slope of the yield curve. Similarly, the phase difference
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is basically zero, implying that these two variables are well synchronised. Much more

synchronised than, for example, the level of the yield curve and the bank rate, which

are very synchronised only between the early 1990s and early 2000s in the 4 ∼ 6-year

frequency band.

This implies that when the Bank of Canada changes the bank rate, its main impact is

felt at short-term interest rates. If it were felt simultaneously for all maturities, then one

would expect much larger statistically significant coherent regions between the bank rate

and the yield curve level. For example, an increase in the bank rate will lead to a

stronger increase in shorter maturities, resulting in the flattening of the yield curve. The

relation between the curvature and the bank rate is also interesting, as it has a very

large region of strong coherency, although this disappears completely after 2010. The

phase difference, slightly negative in several periods of significant coherency tells us that

the curvature served as a leading indicator of the bank rate, meaning that changes in

the curvature preceded changes in the bank rate in the same direction.
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Figure 3.3: Bank rate and latent factors of the yield curve: coherency (left panel) and
phase differences (right panel). The colour code for coherency ranges from dark blue (low
coherency) to red (high coherency); the black (grey) contours designate the 5% (1%); the
cone of influence, which indicates the region affected by edge effects, is delimited with a
black conic line. Phase differences are indicated with a solid black line and confidence
intervals with a red dashed line.

3.3.2 Inflation Rate and the Yield Curve

Figure 3.4 presents the wavelet coherency and the phase difference between the inflation

rate and the yield curve. At 4 ∼ 6-year frequencies, and until the early 2000s, there is

high coherence between the yield curve factors and inflation. The phase difference (in

areas where coherency is statistically significant), lies consistently between −π
2
and zero,

implying that the variables are in-phase with the yield curve factor leading. If one takes

into consideration our results for the bank rate, these results suggest that the Bank of

Canada had a very proactive monetary policy. Changes in the slope of the yield curve

(and the level between the early 1990s and early 2000s) anticipated changes in the same

direction of inflation. This suggests that when the central bank predicts a rise (or fall) in

inflation, it would immediately adjust its monetary policy and increase (or decrease) the
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bank rate. After that, regions of high coherency are no longer dominant, and sometimes

the phase difference is between zero and π
2
, suggesting that monetary policy became more

reactive.

Figure 3.4: Inflation rate and latent factors of the yield curve: coherency (left panel) and
phase differences (right panel). The colour code for coherency ranges from dark blue (low
coherency) to red (high coherency); the black (grey) contours designate the 5% (1%); the
cone of influence, which indicates the region affected by edge effects, is delimited with a
black conic line. Phase differences are indicated with a solid black line and confidence
intervals with a red dashed line.

3.3.3 Unemployment Rate and the Yield Curve

Regarding the unemployment rate, one can observe from Figure 3.5 that the unemploy-

ment rate seems to be largely independent of the level factor of the yield curve. This

perspective somewhat changes once one looks at the relationship with the slope and the

curvature, where some regions of statistical significant coherencies can be observed. While

this is valid for medium and low frequencies until 2010 in the case of the slope, the curva-

ture reflected this in the second half of the sample. In this scenario, the phase difference

indicates an anti-phase relation with the yield curve factor leading. This implies that
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both the slope and the curvature are viewed as leading indicators for the long-run evolu-

tion of unemployment. Note that the wavelet power spectrum for the unemployment rate

(Figure 3.2) suggests that the cyclical behaviour of unemployment occurs mainly at the

lower frequencies, adding significance to this result.

Figure 3.5: Unemployment rate and latent factors of the yield curve: coherency (left
panel) and phase differences (right panel). The colour code for coherency ranges from
dark blue (low coherency) to red (high coherency); the black (grey) contours designate
the 5%(1%); the cone of influence, which indicates the region affected by edge effects, is
delimited with a black conic line. Phase differences are indicated with a solid black line
and the confidence intervals with a red dashed line

3.3.4 Industrial Production and the Yield Curve

We estimated the coherency and phase difference between the industrial production and

each of the yield curve factors. In Figure 3.6, we observed several islands of statistically

significant coherency. In the case of the level, the most important region of statistical

significance occurred in the 4 ∼ 8-year frequency band between the second half of the

1990s and first half of the 2000s (it is the only 5% significant region that included a

1% sub-region). Interestingly, the phase difference is between π
2
and π, suggesting an
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anti-phase relation with the level of the yield curve leading. In the case of the slope and

the curvature, there are several statistically significant islands, mainly in the 2 ∼ 4-year

frequency band, but also in the 4 ∼ 6-years band (towards the end of the sample). For

these cases, the phase difference is between π
2
and π, before 1998, and between 0 and π

2

after that. Therefore, these variables are out of phase until 1998, with the yield curve

leading, and in-phase after that, with the yield curve factors lagging.

Recall that Figure 3.3 showed that the slope and curvature are closely related to the

variable representing the monetary policy, the bank rate. Similarly, note that the level

of the yield curve and the bank rate were synchronised between the mid-1990s and early

2000s in the 4 ∼ 6-year frequency band. In that sense, if we interpret the yield curve

factors as proxies for the monetary policy, the fact that, in Figure 3.6, the phase

difference in the second half of the sample indicated that the industrial production index

is in-phase and leading the slope and the curvature, suggesting that the Bank of

Canada’s monetary policy is lagging the evolution of the industrial production. Given

the mandate of the Bank of Canada (2% inflation target), this interpretation is

consistent only if the industrial production index is a leading indicator of inflation in the

second half of the sample. In the first half, given the anti-phase relation of industrial

production and the yield curve factors, one would also expect the same relation between

industrial production and inflation.
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Figure 3.6: Industrial production index and latent factors of the yield curve: coherency
(left panel) and phase differences (right panel). The colour code for coherency ranges from
dark blue (low coherency) to red (high coherency); the black (grey) contours designate
the 5% (1%); the cone of influence, which indicates the region affected by edge effects, is
delimited with a black conic line. Phase differences are indicated with a solid black line
and the confidence intervals with a red dashed line

With the aim of testing the predictions in the last paragraphs, we estimated the coherency

and phase difference between industrial production and the inflation rate. In Figure 3.7,

we observed two main regions of high coherency: at lower frequencies in the 1990s (only

at 5%), and at higher frequencies towards the last third of the sample (in this case also

at 1% significance). As expected, the phase difference associated with the first region is

between π
2
and π, implying an anti-phase relation with inflation leading. The associated

phase difference is between 0 and π
2
at higher frequencies (between 2 and 4 year periods).
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Figure 3.7: Industrial production index and the inflation: coherency (left panel) and
phase differences (right panel). The colour code for coherency ranges from dark blue (low
coherency) to red (high coherency); the black (grey) contours designate the 5% (1%); the
cone of influence, which indicates the region affected by edge effects, is delimited with a
black conic line. Phase differences are indicated with a solid black line and the confidence
intervals with a red dashed line.

3.4 Conclusion

In this paper, we used wavelets to study the yield curve and some key macroeconomic

indicators, namely the inflation rate, the unemployment rate, the industrial production

index and the bank rate (an important monetary policy instrument). With the continuous

wavelet transform, we used two important tools - the wavelet coherency and the wavelet

phase-difference - to study the relationship between each of the three-dimensional latent

factors of the yield curve and the four macroeconomic indicators.

We reached several conclusions. One, the monetary policy variable - the bank rate - does

not have a uniform impact across time horizons. Changes in the bank rate affect mainly

short-run interest rates. If one believes that the main driver for economic activity is the

long-run interest rate (instead of the short-run rate), then it is not difficult to argue that

monetary policy is quite ineffective. Two, we concluded that concerning the inflation

rate, the Bank of Canada is very proactive, in the sense of trying to act on inflation

before it happens. This reiterates the information on its website: ”monetary policy is

always forward-looking and the policy rate setting is based on the Bank’s judgement of

where inflation is likely to be in the future, not what it is today4”.

Three, regarding the unemployment rate, we found that both the slope and the

curvature are leading indicators for the long-run evolution of unemployment. Finally,

our results suggest that the industrial production index leads the yield curve factors and

not the other way. Therefore, nominal interest rates do not seem to be a very important

determinant of economic activity. The main difference between our results and the

results of a similar study obtained by Aguiar-Conraria et al. (2012b) for the USA is that

4http://www.bankofcanada.ca/core-functions/monetary-policy/
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Fed interest rates impacted on the three factors of the US yield curve, showing that

monetary policy impacted both short-term and long-run interest rates. It is also

interesting to note that the relationships between the yield curve and real

macroeconomic activity are stronger in the USA than in Canada.

Our results are not directly comparable with previous studies on the Canadian yield

curve because wavelet analysis provides a fundamentally different way of looking at the

data. However, it is fair to say that our conclusions align with the existing studies on

the Canadian yield curve in certain aspects. For instance, our findings on the

proactiveness of the Canadian monetary policy are consistent with Lange (2013) that

highlighted the forward-looking, monetary policy stance on future inflation. Similarly,

our result on the link between latent factors and monetary policy rate partly aligns with

the existing studies. For example, our result on the high coherency between the

monetary policy rate and the slope factor shares some semblance with the findings of

Lange (2013) on the large positive links between the monetary policy rate and the slope

factor (although our results are not as strong as Lange’s regarding level factor).

To be more precise, our findings showed an in-phase relation between the monetary

policy rate and the level factor, which is consistent with Lange (2013), but there appears

to be a moderate coherency between them in the early 1990s and 2000s. Our results

regarding the relationship between the yield curve and real activity differed from

Lange’s, who found a very strong relation between them; even stronger than in the USA.
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Chapter 4

The Performance of OECD’s

Composite Leading Indicator

Abstract

This paper evaluated the performance of OECD’s composite leading indicator using the

Continuous Wavelet Transform. We used two wavelet tools - wavelet coherency and

wavelet phase-difference - to assess the co-movement between the composite leading

indicator and three macroeconomic variables – industrial production index,

unemployment rate and real GDP growth – at different timescales. We also explored the

lead-lag relation between each pair of variables across time and frequency. We concluded

that OECD’s composite leading indicator is a useful leading indicator of the Industrial

Production Index. Although it can be suited for forecasting the unemployment rate, it

exhibits poor performance regarding GDP growth.

Keywords: Composite Leading Indicator; Business Cycle Indicator; Wavelet Power

Spectrum; Wavelet Coherency; Wavelet Phase-Difference
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4.1 Introduction

The business cycle fluctuation and the counteracting effects of fiscal and monetary policies

are of utmost importance to policymakers and market participants. With the enormous

influence of the business cycle fluctuation on the dynamics of macroeconomic variables,

renewed efforts are geared towards exploring common characteristics of business cycles.

Such exploration is vital as decisions on monetary policy affect the economy with long

and varying lags, and it is essential to have an educated judgement about the prevailing

economic conditions and outlook (Fichtner et al., 2009).

Although a single data series, such as real GDP, is often used as a proxy for the business

cycle, Boehm and Summers (1999) argued that such a decision is fraught with two

problems: the shift in GDP’s turning points over time and varying experience of at least

one cycle in the real GDP which often does not correspond to growth cycle chronology

at any chosen period. These dual problems broaden the search for suitable business

cycle indicators. In particular, these problems galvanise interest in a system of

indicators that could provide an advanced signal on the economy.

Diebold and Rudebusch (1991) noted that the prospect of such indicators is fascinating

to economic agents suffering through cycles of prosperity and depression. This system of

indicators is expected to offer advanced information that could assist policymakers in

gauging the market expectation, anticipating macroeconomic conditions, and fashioning

policy tools to counteract any adverse economic effects. Consequently, such information

influences other key macroeconomic variables, such as expected future inflation,

expected term interest rates, and the shape of the yield curve.

The possibility of such advanced signal has resulted in a proliferation of leading

indicators. While the notion of leading indicators first came to light in 1919, it has

evolved from its application to the business cycle to its utilisation for inflation (Bikker

and Kennedy, 1999). Granger (2001) opined that the proliferation of leading indicators

signifies their policy significance and operational relevance in economic statistics.

However, the index of leading indicators is criticised for being ’measurement without

theory’ (Koopmans, 1947).

Similarly, Neftci (1979) argued that the property to lead does not imply a causal

relationship between two variables, as the link is not based on the choices of the

decision-makers. While Fichtner et al. (2009) explored the performance of leading

indicators, he found a declining ability of country-specific leading indicators.

Specifically, they are unable to address the significant structural changes occasioned by

the rapid advances in globalisation, which has deepened the international financial and
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trade linkages. These limitations stimulated the search for other leading indicators,

particularly composite leading indicators.

A composite leading indicator (CLI) is constructed from various series, notably

producer’s price changes, hours worked, profitability changes, stock prices, building

approvals, and price-cost ratios containing information on the anticipatory movement of

the coincident index (Boehm and Summers, 1999). The selected series has the following

properties: a significant economic indicator; statistically adequate; not subjected to

substantial revisions; reveals a consistent relationship with peaks and troughs of the

business cycle; conforms to the general cyclical movements between peaks and troughs;

not dominated by erratic, irregular, and non-cyclical influences; promptly and regularly

available at various periods, such as monthly or quarterly (see Boehm (1987) and

Zarnowitz and Boschan (1975) for details).

While the OECD’s CLI is revered, it seeks to improve on the drawbacks of

country-specific leading indicators. Although the OECD’s CLI is evolving with periodic

reviews, it is designed to serve as a bellwether of fluctuations in economic activity

around its potential long-term level. It is constructed to predict cycles in a proxy series

for economic activity. The fluctuation in the economic activity is measured as the

variance of the economic output relative to its long-term potential. The OECD’s system

of leading indicator utilises univariate analysis to estimate individual trends and cycles

for each component series, while the resultant de-trended series is aggregated to obtain a

composite indicator (Nilsson et al., 2006).

The indicator is constructed from a limited economic time series with cyclical

fluctuation similar to the business cycle and tends to turn earlier than the business

cycle. OECD previously adopted monthly series of industrial production index, but has

migrated to a quarterly GDP-based business cycle target in April 2012 (Fulop and

Gyomai, 2012). While such a switch decreases the timeliness of the referenced series by

approximately two months, it enhances the clarity and interpretation of the composite

leading indicators. The CLIs are under constant scrutiny and drawing both criticism

and accolades. For instance, Diebold and Rudebusch (1991) found a considerable decline

in the real-time forecasting performance of CLIs.

Similarly, Artis et al. (1995) did not consider OECD’s CLI as a wholesome predictor of

the business cycle’s turning points. Emerson and Hendry (1996) also argued that the

weighting scheme utilised in the aggregated series before scaled CLI is suboptimal.

Additionally, McGuckin et al. (2007) argued that CLIs are fraught with the inability to

deploy current information in their procedure. Such information lag adds to its

uncertainty and forecasting errors. Furthermore, Estrella and Mishkin (1998) opined

that the CLI is a bad predictor of industry activity in real-time and advocated for its
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replacement with financial variables, such as bond and stock prices, and interest rate

spread. Additionally, Fichtner et al. (2009) found a decline in the predictive power of

CLIs for many countries.

However, Weale (1996) established that OECD’s CLIs have a longer lead over those of

the UK’s leading indicators. Similarly, CLIs eliminated individual variable’s noise and

reduced the risk of false signals (Fichtner et al., 2009). Also, Zarnowitz and Braun

(1990) posited that incorporating the CLI in a vector-autoregressive model reduces

in-sample residual variance. Equally, several attempts have been made to explore the

bivariate and multivariate causality between CLIs and business cycle indicators. Koch

and Rasche (1988) and Alan (1981) found strong evidence of the CLI linearly predicting

the industrial production, even with conditional production values and in- and

out-of-sample forecast.

Despite a lack of consensus on the performance of CLIs, a survey of extant literature

reveals the dominance of time-domain analysis. This is somewhat puzzling considering

the heterogeneity of economic agents and their varying operations at different

timescales. Similarly, the impact of low- and high-frequency shocks on any economic

phenomenon varies. Furthermore, the dominance of time-domain analysis in the extant

literature places the unit root at the core of a fundamental issue relating to business

cycles. While the first-difference filter is used to remove non-stationary components

from a time series, Baxter (1994) established that the filter has an unintended attribute

of removing most cyclical variations in the series. This limits the effectiveness of

time-domain analysis in the exploration of business cycle fluctuation.

Additionally, the assessment of business cycle dynamics and the construction of CLIs are

more complicated than what the traditional time-domain analysis can explain. We

pursued an alternative approach to capture this complexity. We utilised wavelet analysis

to explore the forecasting power of OECD’s CLI at different business-cycle frequencies

and separates its performance between shorter (2 ∼ 4 years) and longer-run (4 ∼ 8

years) business-cycle periods. The wavelet analysis is chosen based on its ability to

provide insight into economic phenomena, operating contemporaneously at multiple

timescales (Gallegati and Semmler, 2014). It offers utility to decompose economic

dynamics into multiple timescales and analyse them at each scale.

Although business cycles are low-frequency phenomena and difficult to identify in the

data (Dalsgaard et al., 2002), the wavelet approach decomposes the CLI series,

regardless of their frequencies, into both time and frequency domains and offer an

atomistic view of its hidden dynamics. We relied on two continuous wavelet tools -

wavelet coherency and phase-difference - to assess the performance of OECD’s CLI. For

sixteen countries, we estimated the wavelet coherency between their respective CLIs and
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three macroeconomic variables: real GDP growth, unemployment and Industrial

Production Index.

4.2 Data and Exploratory Analysis

We used quarterly data of four indicators for 16 countries: Australia, Canada, Denmark,

Finland, France, Germany, Ireland, Italy, Japan, Mexico, New Zealand, Portugal, Spain,

Sweden, UK and the US. While the data covers the period 1991Q1 to 2019Q2, sampled

countries are spread across different regions and have varying economy sizes with hetero-

geneous cyclical fluctuations. The data used comprises OECD’s CLIs and three business

cycle indicators. With CLIs providing early signals about changes in economic activity,

we considered either the real GDP or industrial production index as a measure of real

economic activity. However, dual problems associated with the real GDP (see Boehm

and Summers, 1999) nullifies its consideration and places industrial production index as

our chosen variable.

Similarly, we considered the GDP growth. Its choice is premised on the business cycle

focusing on alternating periods of expansion and contraction of macroeconomic activity,

regarding deviations of the GDP growth from an appropriately defined trend growth

rate (Altavilla, 2004). Furthermore, we complemented the industrial production index

with the unemployment rate. While all the data were obtained from the OECD’s

website, we extracted the quarterly data of industrial production index, unemployment

rate and GDP growth. However, monthly data of CLI was obtained and converted to

quarterly data by a simple average method.

Table 4.1 presents the descriptive statistics of our data. The industrial production index

indicated higher volatility compared to other variables, as shown by the standard

deviation of all the variables. While the CLI is negatively skewed for all countries, GDP

growth is equally negatively skewed for all countries except for Australia, Denmark and

Ireland. Additionally, the industrial production index is negatively skewed for all

countries except for Germany, Ireland, Japan, Portugal and Spain. However, the

unemployment rate is positively skewed except for Germany, Italy, Japan and Sweden.

The skewness and kurtosis measures for all variables indicated evidence against normal

distribution (skewness ̸= 0 and kurtosis ̸= 3). The GDP growth is leptokurtic for most

countries, as their kurtosis is greater than 3. However, Australia, Denmark, New

Zealand and Portugal have kurtosis values that are less than 3.

54



Table 4.1: Descriptive Statistics
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Figure 4.1 shows OECD’s CLIs for all countries in our sample (left panel) and their

corresponding wavelet power spectra (right panel). The power intensity is differentiated

by a colour spectrum, evolving from low power (dark blue) to high power (red). In the

power-spectra plots, the white lines signify the local maxima. On the other hand, the

black and grey contours denote the 5% and 10% significance levels, respectively1. The

black conical line in the power plots identifies the cone of influence (COI), which is the

regions where unavoidable border distortions occur while computing the continuous

wavelet transform of a finite series. The results must be interpreted cautiously beyond

this region (see, e.g. Aguiar-Conraria and Soares (2014) for more details).

As expected, CLIs function at business cycle frequencies for most countries, with most

of the volatility concentrated in the 4 ∼ 8-year frequency band. However, Mexico and

New Zealand are notable exceptions, as they experienced volatility within the 2 ∼ 4-year

frequency band. While Mexico exhibited strong coherency between 1994 and 1995 due

to the Tequila crisis, the crisis was caused by the currency devaluation and evolved into

both currency and banking crisis. On the other hand, New Zealand exhibited strong

coherency in the 1990s due to the adoption of inflation targeting policy regime during

that period. While other countries experienced high volatility in the 1990s, Germany,

Ireland and Portugal did not exhibit high volatility during this period. However, the UK

was somewhat immune from any volatility during this period.

All countries, except Japan, experienced high volatility during the global financial crisis

of 2007/2008. While Japan seemed immune from the global financial crisis of 2007, it

was less resistant to the Asian financial crisis that occurred ten years earlier. The

non-synchronisation of Japan’s power spectrum with other countries is contrary to

expectation in an era dominated by increased global economic integration. However,

this is partly explained by the lack of co-movement in the international business cycle.

Specifically, the synchronisation level of Japan’s business cycle with other G7 countries

has been declining since the 1960s, with the business cycle fluctuation in Japan mostly

explained by domestic shocks rather than by global shocks (Stock and Watson, 2005).

1The computation is done with a known theoretical distribution for the power and the null is assumed to be a flat

spectrum; see Torrence and Compo (1998) for details.
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Figure 4.1: Composite Leading Indicators and their Wavelet Power Spectra. The colour
spectrum depicts the extent of variability and evolves from low power (blue colour) to high
power (red colour). The white lines within the power spectra represent the local maxima.
The black contour denotes 5%, while the grey contour represents the 10% significant level.
The cone of influence, represented by the black conic line, indicates that the results are
unreliable outside this line and should be interpreted with special care.

4.3 Results

The interpretation of our findings follows the standard approach used in related studies

(see Aguiar-Conraria et al., 2012b), and this is summarised as follows: we explored the
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statistically significant coherency regions for the time-frequency domain. These regions

indicate a significant co-movement between two series at a specified timescale2. We anal-

ysed the phase differences for statistically significant regions to determine the direction

of the co-movement, as well as identified the leading and lagging variables. We analysed

the following pairs of variables – Industrial Production Index vs CLI, Unemployment vs

CLI, and GDP growth vs CLI - sequentially. This procedure evaluated the predictive

performance of the CLI on the evolution of each macroeconomic variable and identified

business-cycle frequencies such prediction occurs.

4.3.1 Industrial Production and Composite Leading Indicator

Figure 4.2 shows the wavelet coherency between the industrial production index and CLI

(left panel), and their corresponding phase-difference computed for two frequency bands -

2 ∼ 4 years and 4 ∼ 8 years (right panel). The interpretation of the colours and contours

in the coherency plots are identical to the power spectral. We observed a region of high

coherency for all the countries between 2002 and 2012, with the region generally covering

both frequency bands. Similarly, we observed regions of high coherency for some countries

during the 1990s, but these regions occurred mainly in the 2 ∼ 4-year frequency band.

However, Ireland and New Zealand are notable exceptions.

While New Zealand exhibited high coherency during the period of global financial crisis

within the 2 ∼ 4-year frequency band, CLI led the industrial production index in a

phase relation. For Ireland, there is a weak coherency between these two variables.

While such weak coherency corroborates the established weak link between industrial

production and the CLI for smaller open economies, such as Ireland (Fichtner et al.,

2009), our study identified Portugal as an exception to such a claim with a strong

coherency between the two variables.

Overall, the CLI led the industrial production index in a phase relation for all the

sixteen countries at both frequency bands. This is evident with the phase-difference

consistently lying between −π
2
and 0. The result is consistent with the OECD’s claim

that CLIs have the property of moving in the same direction with the business cycle.

Similarly, such relationship conforms with the expected co-movement of the CLI and a

pro-cyclical industrial production index. However, some countries did not conform to

this relationship within a certain period. For instance, industrial production led the CLI

within the 4 ∼ 8-year frequency band between 2004 and 2010 for Australia and Finland.

2Significant regions are found by using Monte-Carlo simulations: an ARMA model is fitted for each series, and new

samples were constructed with the same basic properties. For each pair of series, we simulate the process 5000 times and

then extract the critical values at 5% and 10% significance levels.
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Figure 4.2: On the left - the wavelet coherency between the Industrial Production Index
and CLI. The black and the grey contours denote the 5% and 10% significance level,
respectively. The colour codes for coherency evolve from blue (low coherency) to red
(high coherency). While the low coherency has a value close to zero, high coherency has
a value closed to one. At the centre and on the right - phase-differences between IP and
CLI for the frequency bands of 2 ∼ 4 and 4 ∼ 8 years, respectively.
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4.3.2 Unemployment and Composite Leading Indicator

Figure 4.3 shows the wavelet coherency between the unemployment rate and CLIs, as

well as their respective phase-differences. The results showed that the forecasting power

of the CLI on the employment rate is somewhat mixed. For instance, regions of high

coherency are scarce for Germany, Ireland, Italy, Mexico, New Zealand, Portugal and the

UK. However, there are large statistically significant coherency regions for other countries,

especially for France, Spain, and the US. It should be noted that the phase difference of

the statistically significant coherency lies in any of these two quadrants: 0 and π
2
or π

2
and

π.

However, for most countries, the coherency lies between π
2
and π, implying that CLI led

in an anti-phase relation as expected. However, this mostly reflected the CLI

performance after the global financial crisis. Prior to this period, CLI often lagged the

unemployment rate. For France, Ireland, Japan, Portugal, Spain and the USA, CLI led

throughout the statistically coherent regions for both frequency bands: 2 ∼ 4 years and

4 ∼ 8 years. Overall, the forecasting dynamics of CLI on the unemployment rate is

reasonable, but it is not as effective as its performance with the industrial production

index, especially before the global financial crisis.
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Figure 4.3: On the left - the wavelet coherency between the Unemployment Rate and CLI.
The black and the grey contours denote the 5% and 10% significance level, respectively.
The colour codes for coherency evolve from blue (low coherency) to red (high coherency).
While the low coherency has a value close to zero, high coherency has a value closed to
one. At the centre and on the right - phase-differences between Unemployment and CLI
for the frequency bands of 2 ∼ 4 and 4 ∼ 8 years, respectively.
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4.3.3 GDP Growth and Composite Leading Indicator

The performance of CLI regarding the GDP growth can be seen in Figure 4.4. It should be

clear that among all the pair of variables tested, this pair has the most significant regions

of high coherency for all countries in our sample. However, the predictive performance of

CLI is suboptimal. The phase-difference consistently lies between 0 and π
2
, implying that

the OECD’s CLI lagged GDP growth. Given that the primary objective of the CLI is to

assist in predicting the turning point of macroeconomic conditions, the CLI fails in this

mission.

This result is somewhat counterintuitive considering the efficient performance of

OECD’s CLI on the industrial production index. However, the de-trending and

smoothing method utilised for estimating the cycle is at the core of the problem. The

OECD’s system of CLIs is based on the growth cycle approach, which measures cycle

based on the deviation-from-trend approach. Nilsson and Gyomai (2011) opined that

the quality of the leading indicator is dependent on the selection of well-behaved

de-trending method. While OECD utilises the Phase-Average Trend (PAT) to measure

growth cycle, Boschan and Ebanks (1978) argued that the PAT is faced with constant

and occasional significant revisions, particularly towards the end of the series.

Although growth cycles are easy to detect in a historical time series with this method,

Boschan and Banerji (1990) posited that it faces the problem of accurate real-time

measurement. This is due to the unstable PAT estimates of the unknown trend over the

latest year or two. As an estimate, the most recent trend measurement is subject to

revisions, thereby making it difficult to have a precise measure of growth cycle date in

real-time (Dua and Banerji, 2001).
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Figure 4.4: On the left - the wavelet coherency between Real GDP growth and CLI.
The black and the grey contours denote the 5% and 10% significance level, respectively.
The colour codes for coherency evolve from blue (low coherency) to red (high coherency).
While the low coherency has a value close to zero, high coherency has a value closed to
one. At the centre and on the right - phase-differences between Real GDP growth and
CLI for the frequency bands of 2 ∼ 4 and 4 ∼ 8 years, respectively.
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4.4 Conclusion

We utilised wavelet analysis to explore the predictive performance of the OECD’s com-

posite leading indicator on three macroeconomic indicators: industrial production index,

unemployment rate and GDP growth. We used two principal wavelet tools: wavelet

coherency and the wavelet phase-difference. While the former reveals the correlation be-

tween each macroeconomic variable and the CLI in each moment and frequency, the latter

offers information about the lead-lag relationship between the two variables.

While our sample covers 16 countries across various geographical locations and cultures.

The evaluation of the forecasting power of OECD’s composite leading indicator on the

three indicators shows the followings: it is a valid leading indicator for the industrial

production index; its forecasting effectiveness is less apparent with the unemployment

rate; it is consistently ineffective with the GDP growth.
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Chapter 5

Conclusion

This thesis extends the application of wavelet analysis to economic phenomena. It

addresses limitations of the traditional time-domain analysis and spectral analysis.

Specifically, it uses wavelet tools to evaluate the information content and the predictive

power of the yield curve, as well as the forecasting ability of the composite leading

indicator. In achieving this objective, the thesis is partitioned into two. The first part

serves as a primer to wavelet analysis. It introduces the concept of wavelet and

highlights the limitation of both time-domain analysis and spectra analysis. Similarly, it

enumerates various types of wavelet and provides the rationale for adopting Morlet

wavelet for this thesis.

Furthermore, it introduces the notion of wavelet transforms, which involves the

translation and dilation of the mother wavelet to generate the daughter wavelet. It

focuses on the Continuous Wavelet Transform and provides the rationale for its

increasing popularity in various empirical works in economics in the last two decades.

On the other hand, the second part of the thesis focuses on the application of various

wavelet tools to economic processes. The thesis uses the wavelet power spectrum,

cross-wavelet power and coherency, multiple and partial coherencies, wavelet

phase-difference, and wavelet spectral dissimilarity matrix for its analysis. While this

part focuses on three empirical papers, the papers used wavelet tools to explain

economic phenomenon or dynamics in different business cycle frequencies.

The first paper investigated financial contagion in the European debt market during

various crisis-ridden periods in Eurozone and evaluated the cross-market co-movement.

It also differentiated contagion from interdependence in the Eurozone. The paper used

weekly data of 10-year sovereign bond yields for 9 Eurozone countries. The paper found

evidence of contagion originating from Ireland at the onset of the sovereign debt crisis

until around 2010, while Greece led the wave of contagion afterwards. The paper also

established the spread of contagion to three periphery countries - Portugal, Greece and

Ireland – at higher frequencies. While the contagion did not spread to Italy and Spain,
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the Greek crisis triggered a flight-to-quality flow to Belgium, Finland, France and

Germany.

The second paper used the Nelson-Siegel model to explore the dynamics of

three-dimensional factors of the Canadian yield curve and its co-movement with four

macroeconomic variables: Unemployment Rate, Inflation Rate, Bank Rate and

Industrial Production Index. The paper utilised wavelet tools to interrogate this

relationship, using monthly zero-coupon yields. The paper established a bidirectional

relationship between the three yield factors and macroeconomic variables. Similarly, the

paper found that the Canadian monetary policy rate affects mainly short-run interest

rates while the Bank of Canada is very proactive in its effort to rein in inflation. While

the slope and curvature lead in the long-run evolution of the unemployment rate, the

industrial production index is a leading indicator of the latent factors of the yield curve.

The third paper evaluated the performance of OECD’s Composite Leading Indicators

using the Continuous Wavelet Transform. The paper assessed the co-movement between

CLI and some macroeconomic variables, such as the Industrial Production Index,

Unemployment Rate and real GDP Growth, at different timescales. Similarly, it

assessed the lead-lag relation between each pair of variables across time and frequency.

The paper established that OECD’s composite leading indicator is an efficient leading

indicator of industrial production index. While it can be suited for forecasting the

unemployment rate, it exhibited poor performance regarding GDP growth. Thus,

OECD’s composite leading indicator has limited predictive power.

Overall, this thesis deepens the application of wavelet analysis in the economics

literature and shows that exploring the dynamics of economic processes and phenomena

across different timescales could reveal hidden information about these processes and

phenomena. Apart from wavelet analysis providing perfect fitting for the financial time

series, it prevents the unanticipated removal of cyclical components experienced with

the first-differencing of the time series. Similarly, it prevents the loss of time information

related to spectral analysis. Specifically, the thesis shows the benefits of wavelet,

especially the positive compromise between time and frequency domains which limits

their inherent drawbacks. Furthermore, wavelet analysis offers various mechanisms to

investigate the multiscale structure of economic and financial processes.
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