
Universidade do Minho
Escola de Engenharia

Rui António Sabino Castiço da Silva

Locality optimisation techniques
for platforms

april 2021U
m

in
ho

 |
 2

02
1

R
ui

 S
ilv

a
L

o
ca

lit
y

o
p

tim
is

a
tio

n
 t

e
ch

n
iq

u
e

s
fo

r
p

la
tf

o
rm

s

Rui António Sabino Castiço da Silva

Locality optimisation techniques
for platforms

Doctor Program in Informatics

Supervisors:
Professor João Luís Ferreira Sobral

Universidade do Minho
Escola de Engenharia

april 2021

Despacho RT - 31 /2019 - Anexo 3

Declaração a incluir na Tese de Doutoramento (ou equivalente) ou no trabalho de Mestrado

DIREITOS DE AUTOR E CONDIÇÕES DE UTILIZAÇÃO DO TRABALHO POR TERCEIROS

Este é um trabalho académico que pode ser utilizado por terceiros desde que respeitadas as regras e

boas práticas internacionalmente aceites, no que concerne aos direitos de autor e direitos conexos.

Assim, o presente trabalho pode ser utilizado nos termos previstos na licença abaixo indicada.

Caso o utilizador necessite de permissão para poder fazer um uso do trabalho em condições não previstas

no licenciamento indicado, deverá contactar o autor, através do RepositóriUM da Universidade do Minho.

Licença concedida aos utilizadores deste trabalho

Atribuição
CC BY

https://creativecommons.org/licenses/by/4.0/

v

Acknowledgements

Obtaining a doctoral degree comes with a personal decision to improve my knowledge of high-performance

computing. My view is that performance should not interfere with the domain code. During this work,

techniques were explored in order to expose this vision On this long journey, I counted with many individ-

uals and institutions help, which made it possible to obtain the final results. First of all, I want to deeply

thank my advisor, Professor Doctor João Luís Sobral, who always supported me, sharing his vision, asking

pertinent questions that made it possible to choose the best solutions. Secondly, I would like to thank

my research colleagues who had always been willing to collaborate and share ideas. To Bruno Medeiros

for the different collaborative works presented throughout this dissertation. To Rui Gonçalves for the long

conversations about the possible implementations and the constraints of each solution. I would like to

thank the Informatics Department for the working conditions provided and for access to the Search-ON2:

Revitalization of HPC infrastructure of UMinho, (NORTE-07-0162-FEDER-000086), co-funded by the North

Portugal Regional Operational Programme (ON.2-O Novo Norte), under the National Strategic Reference

Framework (NSRF), through the European Regional Development Fund (ERDF). The project Parallel Re-

finements for Irregular Applications (UTAustin/CA/0056/2008) and the project General-purpose Aspect-

Oriented framework for heterogeneous multicore Parallel systems (PTDC/EIA-EIA/108937/2008), both

supported the first years of this thesis. Finally, I would like to thank all the people who were part of my life

during this journey. To my parents who, in difficult times, were there and encouraged me to continue. My

sister shared many moments of my life in this period. To my friends Jorge and Andreia who were always

available to help. Finally, Isabel, who appeared in my life in the final phase of this marathon and who

encouraged me every day to finish it.

STATEMENT OF INTEGRITY

I hereby declare having conducted my thesis with integrity. I confirm that I have

not used plagiarism or any form of falsification of results in the process of the

thesis elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of

the University of Minho.

University of Minho,

Full name:

Signature:

vii

Resumo

Aplicações científicas simulam o mundo real através de modelos matemáticos. As simulações destes

modelos necessitam de grande poder computacional, existente nas arquiteturas atuais. Contudo, para

aceder a esse poder computacional, o programador necessita de desenvolver a aplicação de acordo com

a plataforma de execução, o que introduz complexidade no desenvolvimento da aplicação. Nas aborda-

gens tradicionais estas adaptações/otimizações estão misturadas no código do domínio originando dois

problemas: primeiro, o código fica dependente da plataforma, sendo que a execução numa plataforma

distinta obriga a uma reescrita do código; segundo, o código relativo à otimização mistura-se com o código

do domínio, dificultando a perceção do mesmo.

As linguagens orientadas ao objeto são reconhecidas por explicitar os conceitos do domínio no código.

Porém, a sua utilização introduz tipicamente uma elevada sobrecarga na execução da aplicação limitando

a sua utilização em aplicações cientificas. Isso explica o motivo pelo qual o Java, uma das linguagens

orientadas ao objeto mais utilizadas, não é usada neste tipo de aplicações. Java utiliza a compilação

dinâmica para remover as sobrecargas das linguagens orientadas ao objeto, quando os conceitos mais

avançados não são utilizados (exemplo polimorfismo), como é, frequente, no caso das aplicações cientí-

ficas.

A abordagem apresentada nesta tese permite adiar a implementação das otimizações para fases pos-

teriores do desenvolvimento, escondendo o mapeamento de dados. Por outro lado, permite especificar

nas fases finais do desenvolvimento várias optimisações: o processamento em subdomínios, empacota-

mento de dados e ordenação dos dados em memória. Por fim, permite a execução paralela ocultando

detalhes de implementação. Para isso separa o desenvolvimento em duas fases distintas: escrita do

código de domínio e fase de otimização. A fase de otimização é adiada para fase final do desenvolvi-

mento, o que permite uma fácil adaptação à plataforma de execução.

A abordagem permite aplicar estas otimizações através de dois mecanismos: primeiro, alteração

do mapeamento das coleções; e segundo, decomposição do problema em subproblemas. Ambas as

otimizações são introduzidas no programa pelo programador de uma forma simples (pequeno custo de

desenvolvimento) mantendo os conceitos de domínio. Primeiro, a alteração do layout baseia-se no con-

ceito de procurador, cria um objeto temporário o que permite ao utilizador usar vários mapeamentos com

a mesma API. Em segundo lugar, o mecanismo de decomposição de domínio suporta outras otimizações

comuns: processamento de dados em blocos, empacotamento, execução paralela e dados privados aos

fios de execução. O mecanismo é implementado por anotações de código, evitando alterações mais

invasivas.

viii

A abordagem foi avaliada com um conjunto de casos de estudo: soma de um vector, daxpy, JECoLi,

simulação de dinâmica molecular e multiplicação dematrizes. Este conjunto permitiu validar a abordagem

em diferentes casos e a sobrecarga introduzida na execução. A adaptação do código de domínio para

suportar a abordagem foi mais simples do que alterar o mapeamento de dados no código de domínio.

Em todos os casos, a abordagem obteve uma performance similar às abordagens tradicionais. No caso

do MD, exemplo que suporta mais otimizações, o uso da abordagem proporcionou um ganho de 50X no

tempo de execução. Os outros casos de estudos obtiveram ganhos entre 20x e 40x. A JECoLi teve um

ganho mais baixo (1,6x), já que neste caso apenas foi possível aplicar a otimização do mapeamento dos

dados. Esses ganhos mostram a viabilidade da abordagem que permitiu obter códigos eficientes.

Palavras chave: Execução paralela, Java, organização de dados, otimizações para hierarquia de

memória, Tiling

Abstract

Scientific applications simulate the real world through mathematical models. The simulation of these

models requires all the computational power available in current architectures. However, to take advantage

of this computational power, the simulation code must be optimised, bringing it closer to the execution

platform. This adaptation introduces a lot of complexity in application development. Traditionally the

code is written according to the platform on which it will be executed. This approach has two problems:

first, the code is dependent on the execution platform, and changing the execution platform requires code

rewriting; second, the optimisation code is mixed with the domain code, making it difficult to understand.

The Object-Oriented Paradigm (OOP) is known for bringing the code closer to the domain. However, its

use typically introduces an overhead, preventing its use in scientific applications. This explains why Java,

one of the most widely used OOP languages is not commonly used to develop scientific applications. On

the other hand, modern OOP languages that rely on dynamic compilation (e.g., Java) can remove many

overheads typical of OOP, when more advanced features are not used (e.g. polymorphism), which is the

case of many scientific applications.

This dissertation introduces an approach that allows developers to perform optimisation in the final

development step. The approach enables multiple data layouts and allows the selection of the best layout

according to the execution platform. On the other hand, the approach supports tiling, packing and sorting

optimisations. Additionally, the approach supports parallel execution, hiding the implementation details

related to optimisation. The approach separates the development of the domain code from its optimisation.

The optimisation step is delayed until the final development step, which allows an easy adaptation to the

execution platform.

The supported optimisations rely on two mechanisms: first, changing the data collection layout and

second, decomposing the problem into subproblems. Both optimisations are introduced in the program by

the developer in a simple way (low development cost) and maintaining the domain concepts in the code.

First, for hiding the data layout, the approach is based on the proxy pattern, creating a temporary object that

accesses the data using the same API. Second, the domain decomposition mechanism enables several

common optimisations: processing data in tiles, packing, parallel execution and thread private data. The

technique was implemented by code annotations avoiding more invasive code changes.

The approach was evaluated with a set of case studies: Sum, daxpy, JECoLi, MD and Matrix multipli-

cation. This set allowed to verify the approach effectiveness in different cases and its execution overhead.

The adaptation of the domain code to support the approach was simpler than transforming the layout in

the domain code. In all cases, the approach obtained a performance similar to traditional approaches.

x

In the MD case, the example that supports more optimisations, the use of the approach provided a gain

of 50x in execution time. Other cases studies provided gains from 20x to 40x. The JECoLi case has

the lowest gain (1.6x) since the gain was only due to layout change. These gains show the feasibility of

the approach that delivered efficient optimised codes, adding low additional cost when compared with

traditional approaches.

Keywords: Data layout, Java, Optimisations for memory hierarchy, Parallel execution, Tiling

Contents

1 Introduction 1

1.1 Context . 1

1.2 Motivation . 3

1.3 Objectives . 4

1.4 Contributions . 5

1.5 Outline . 6

2 Background 9

2.1 Memory hierarchy . 9

2.2 Data locality optimisations . 13

2.2.1 Data footprint . 13

2.2.2 Data flow . 20

2.2.3 Summary . 23

2.3 Java . 24

2.3.1 Compiler and execution processes . 24

2.3.2 Memory management . 27

2.3.3 Parallelism . 28

3 Proposed approach 29

3.1 Overview . 31

3.2 Programming interface . 34

3.2.1 Domain specification . 34

3.2.2 Optimisation specification . 38

3.3 Implementation . 43

3.3.1 Supporting tools . 44

xi

xii Contents

3.4 Tool limitations . 51

4 Performance evaluation 53

4.1 Methodology . 54

4.2 Programming interface . 56

4.2.1 Sum . 56

4.2.2 daxpy . 67

4.3 Java framework - Java Evolutionary Computation Library 74

4.4 Testing mechanisms - Molecular dynamics simulation 79

4.4.1 Applying the approach . 79

4.4.2 Tiling optimisation . 84

4.4.3 Parallel execution . 86

4.4.4 Composing optimisations . 88

4.4.5 Complex entity - API closer to the domain 89

4.4.6 Summary . 91

4.5 Extending collection - Matrix multiplication . 91

4.5.1 Tiling optimisation and parallel execution 94

4.5.2 Libraries for matrix multiplication . 97

4.5.3 Summary . 99

4.6 Conclusions . 100

5 Discussion 103

5.1 Programming interface . 104

5.2 Data locality optimisations . 105

5.2.1 Data layout . 105

5.2.2 Data sorting . 108

5.2.3 Padding and alignment . 109

5.2.4 Tiling and packing . 109

5.3 Parallelism and privatisation . 110

5.3.1 Skeletons . 111

5.4 Summary . 112

5.4.1 Decisions . 113

Contents xiii

6 Conclusion and future work 117

6.1 Conclusion . 117

6.2 Future Work . 119

6.2.1 Polymorphism . 119

6.2.2 Data layouts . 121

6.2.3 Parallelism . 121

7 Appendix 137

7.1 Sum benchmark . 137

7.2 daxpy benchmark . 141

7.3 MM benchmark . 141

7.4 Discussion . 143

xiv Contents

List of figures

2.1 Typical memory hierarchy . 10

2.2 Cache maps . 11

2.3 Layouts footprint in memory . 14

2.4 JCF class diagram . 17

2.5 Encapsulation example . 18

2.6 Nomal and Van Emde Boas layout (Heap access) 19

2.7 Loop tiling . 21

2.8 Java execution process . 25

3.1 Approach workflow . 32

3.2 Iterator and Proxy pattern . 33

3.3 Particle interface (UML tool) . 35

3.4 gCollection package . 35

3.5 Map tasks onto threads . 40

3.6 Privatisation example (UML tool) . 41

3.7 Tools . 44

3.8 Generate interfaces and classes . 45

3.9 Private fields implementation . 48

3.10 Domain decomposition implementation . 49

4.1 Sum - AoP vs SoA (Java) . 57

4.2 Sum - Iterators performance . 59

4.3 Sum - Java vs GasPar (AoP) . 61

4.4 Sum - Java iterator vs GasPar iterator (AoP) . 62

4.5 Sum - Java vs GasPar (Java streams sum method) 64

xv

xvi List of figures

4.6 Sum - Java vs GasPar (Java streams) . 64

4.7 Sum - Data sorting (GasPar AoP) . 65

4.8 Sum - GasPar parallel . 66

4.9 Sum - Java streams vs GasPar (parallel) . 67

4.10 daxpy - AoP vs SoA (Java) . 68

4.11 daxpy - Iterators performance (AoP) . 70

4.12 daxpy - Iterators performance (SoA) . 70

4.13 daxpy - Joint collection (AoP) . 71

4.14 daxpy - Java vs GasPar (Java streams) . 72

4.15 daxpy - GasPar parallel . 73

4.16 daxpy - Java streams vs GasPar (parallel) . 74

4.17 JECoLi - Base vs Generic . 77

4.18 JECoLi - Base vs GasPar . 77

4.19 JECoLi - SoA by inheritance . 78

4.20 MD - Domain model . 80

4.21 MD - Java vs GasPar . 81

4.22 MD - GasPar data sorting (AoP) . 82

4.23 MD - AoP vs SoA (GasPar) . 83

4.24 MD - Execution profiler . 84

4.25 MD - GasPar tiling . 85

4.26 MD - GasPar parallel . 87

4.27 MD - Execution profile (parallel) . 88

4.28 MD - GasPar compositions . 89

4.29 MD - Complex entity (performance) . 90

4.30 MD - Complex entity (footprint) . 91

4.31 MM - Traditional kernel . 92

4.32 MM - Matrix API . 93

4.33 MM - aoa vs vector (layout) . 94

4.34 MM - aoa vs vector . 95

4.35 MM - Kernel elements . 95

4.36 MM - GasPar tiling and packing . 96

4.37 MM - GasPar parallel . 97

4.38 MM - JMatBench . 98

List of figures xvii

4.39 MM - Libs vs GasPar . 99

4.40 Optimisations impact by case study . 100

4.41 Evaluations performance summary (layout improvements) 101

6.1 Polymorphism implementation . 120

6.2 GPU implementation . 124

7.1 MM - Parallel versions . 142

7.2 JCRNE performance . 143

xviii List of figures

List of listings

2.1 Codes for AoP, AoS, SoA layouts . 15

2.2 Padding implementation . 20

2.3 Packing implementation . 21

2.4 Loop fusion implementation . 22

2.5 Loop reorder implementation . 23

2.6 Loop unrolling implementation . 26

3.1 Tiling specification by gSplitMapJoin . 33

3.2 gCollection creation . 36

3.3 Particle creation . 36

3.4 Adding a particle to a collection . 36

3.5 Options to access collections . 37

3.6 Higher-order functions . 38

3.7 Data API example . 38

3.8 Change layout in the packing . 40

3.9 Thread private data (annotation example) . 42

3.10 Reduce method . 42

3.11 Sorting optimisation . 42

3.12 gCollection implementation . 46

3.13 gIterator implementation of composed entities . 47

3.14 Pseudo-code of generated methods . 49

3.15 Split generated . 50

3.16 Join generated . 51

4.1 Sum - Different codes . 58

4.2 Sum - Assembler aop vs faop . 61

xix

xx List of listings

4.3 Sum - Assembler soa vs fgsoa . 63

4.4 Sum - Java streams . 63

4.5 Sum - GasPar parallel . 66

4.6 daxpy - GasPar parallel . 73

4.7 JECoLi - Different codes . 76

4.8 MD - Different codes . 81

4.9 MD - GasPar tiling . 84

4.10 MD - GasPar parallel . 87

4.11 MD - Reduce method . 87

4.12 MD - Compose optimisations . 89

4.13 MD - Complex entity (assembler overhead) . 91

5.1 JCRNE implementation . 106

5.2 OpenACC tiling . 110

5.3 Approach with annotation . 115

6.1 gSplitMapJoin: decomposition the problem in multiple small problems 122

6.2 gSplitMapJoin to distribute memory . 123

6.3 Implementation of the foreach method on GPU . 125

6.4 Implementation of the move method on GPU . 125

7.1 Sum - Assembler aop and gaop . 137

7.2 Sum - Assembler soa and gsoa . 138

7.3 Sum - Assembler faop and fgaop . 138

7.4 Sum - Assembler ggaop . 138

7.5 Sum - Assembler code of csaop and cssoa . 139

7.6 Sum - Assembler code of saop and ssoa . 140

List of tables

2.1 Access time and size the memory hierarchy for Intel Xeon 5500 processors [Lev09] . . 10

2.2 Impact the memory optimisations in the program 23

4.1 Sum - Acronym (base and iterators) . 58

4.2 Sum - Groups of instructions generated (base and iterators) 59

4.3 Sum - Acronym (streams and compensation) . 63

4.4 Sum - Groups of instructions generated (csaop and csgaop) 64

4.5 Sum - Groups of instructions generated (saop and sgaop) 64

4.6 daxpy - Acronym (base and iterators) . 69

4.7 daxpy - Groups of instructions generated (base and iterators) 69

4.8 daxpy - Acronym (joint collections) . 71

4.9 daxpy - Groups of instructions generated (joint collection) 72

4.10 JECoLi examples . 76

4.11 MD - Problem size . 83

4.12 MD - Miss rate . 86

4.13 MD - Problem size (complex entity) . 90

4.14 MM - Problem size . 94

4.15 MM - Libraries versions . 99

4.16 Evaluations summary (development time) . 101

5.1 Locality optimisation and parallelism approaches 103

5.2 Approaches supported optimisations . 113

7.1 Sum - Group of instructions generated . 139

7.2 daxpy - Group of instructions generated . 141

xxi

xxii List of tables

Chapter 1

Introduction

1.1 Context

Scientific applications simulate real-world activities using mathematical models, converting the real-world

entities and activities into computational models. This kind of applications requires massive computa-

tional power to perform accurate simulations. Frequently, a set of optimisations is needed to efficiently

use the computational power available. Optimisations make the development of scientific applications

more complex: first, the developer needs knowledge of the domain and execution platforms; second,

the optimisations must be applied depending on the execution platform (platform map). Sometimes the

developer uses libraries to obtain high performance, but the solution cannot be implemented in all cases.

Object Oriented Programming (OOP) languages support more complex codes by using objects to

represent entities in the domain (i.e. real-world entities). The objects hold the state of those entities

[SB85, Weg87] and have methods that are actions over the entity. Thus, OOP languages enable the de-

velopment of more abstract code due to the usage of domain concepts, making the code more perceptible

[Sny86]. It leads to easier programming and fewer errors. In OOP, the encapsulation concept is a key

to provide abstraction: it defines that objects must have methods to access them because their internal

representation should not be relevant.

Java is currently one of the most popular OOP languages. It can be used to develop scientific applica-

tions due to its flexibility and provides fast development. Java provides a set of containers (Java Collections

Framework (JCF)) that helps develop applications. These containers are organised by type, where the top

of the hierarchy is divided into collections and maps. This sort of hierarchy is made up of interfaces, pro-

viding multiple implementations. Moreover, the developer can provide new implementations if the built-in

implementations are not appropriate for the case (e.g. low performance). It is accomplished by developing

1

2 1. Introduction

new containers that conform to the JCF data access interface.

JECoLi [EMR09] is one good example of a framework to develop scientific applications in Java. It

provides a large set of generic algorithms that the developer can use for the fast development of applica-

tions in this scientific domain. OpenFOAM [JJT+07] is another example in the C++ world that use OOP

to simplify programming. However, Java is simpler than C++, more secure and leads to more robust

programs [YSP+98]. On the other hand, it is more challenging to develop efficient applications in Java.

The proliferation of multicores makes computational power compatible with the scientific application.

The wide availability of multicore systems was mostly motivated by two factors [MRR12]: energy limitation

and parallelism limitation at the level of instruction. The energy limitation restricts the maximum processor

frequency mainly due to the heat dissipation limits. On the other hand, improving the exploitation of

parallelism at the instruction level became limited due to the lack of instructions without dependencies in

most programs. The solution came with multicores proliferation and the need to use parallel programming

to increase performance.

The effective use of multicores systems requires the execution of code in parallel. Specifying parallel

execution improves performance but also increases the code complexity [PGB+06]. With the introduction

of multicores, the shared memory model became widely used. In the shared memory model, all threads

access global memory. Different tools have been created to help parallel applications development under

this model. This thesis will highlight OpenMP and Java Streams as the two most predominant parallel

programming environments for multicores. OpenMP uses the fork-join model specified through directives

in C, C++ and Fortran. Java 8 recently introduced streams that provide parallelism at the data-level.

Data-level parallelism applies the same instructions (block of code) to different data in different processing

units. It is the most common form of parallelism in scientific applications. The Java streams provide a

simple and secure specification of data-level parallelism.

The processor-memory performance gap has increased over the last decades [Car02]. The processing

units improved in computational capacity, but their real performance became constrained by the memory

access limitations [LRW91]. It became fundamental to introduce a memory hierarchy to mitigate the

problem. The memory hierarchy improves the data access performance, lightening the main memory

accesses, namely by getting blocks instead of single words. Modern processor units can take advantage

of spatial locality (access to data whose memory location is close to previous access), and temporal

locality (access to data that has been accessed recently). Therefore, in many cases, the developer needs

to follow new programming rules in order to improve temporal and/or spatial locality. There are well-

known techniques to improve data locality. One common technique uses a more efficient data layout in

collections but makes the code less abstract.

1.2. Motivation 3

Typically, scientific applications need a large data set. These sets are represented as collections

of objects (domain entities), which impact the program performance depending on its data organisation

in memory. The collections may use one of three distinct layouts: AoP, AoS and SoA [NFS11]. AoP

is an array of pointers, where each datum is allocated in a new memory region, which requires more

memory accesses. However, this layout natively supports polymorphic data in C++ and Java (collections

can hold entities of different kinds). The AoS layout improves performance by reducing the number of

memory accesses (access to the element implies a calculation of its position instead of getting a memory

address). In SoA, the data structure is broken into multiple parts, creating several arrays. To summarise,

typically, more abstract layouts tend to decrease performance, so one pragmatic data locality optimisation

in scientific codes is the use of SoA layout.

There are other well-known memory locality optimisations. Kowarschik [KW03] organises optimisa-

tions in two groups: data organisation and reordering accesses to data. The data organisation intends

to reduce cache line conflicts and increase spatial locality. These optimisations change the memory

footprint, so the elements are still processed in the original (sequential) order. On the other hand, the

accesses reordering changes the order that elements are accessed to increase the temporal locality.

Stratton [SRS+12] proposes a similar classification for massive thread systems optimisations. In data or-

ganisation, packing and sorting are commonly used. The packing compacts data required for processing.

Sorting orders elements by the order they are accessed. As for accesses reordering, the most common

optimisation is tiling. In this case, the processing is performed in small parts to keep the data in cache.

1.2 Motivation

The development of efficient programs for today’s processing units (e.g., multicore systems) requires the

efficient use of the memory hierarchy. Current compilers are not able to automatically perform this task

due to the complexity and interplay of memory locality optimisations. In many cases, the developer must

ensure the correctness and effectiveness of optimisations. For example, changing the layout from AoS to

SoA forces a change in the signature of the function/method requiring several transformations in the code.

Moreover, the effectiveness of many locality optimisations depends on the execution platform. Frequently,

many of these optimisations are implemented in the premature steps of the code development [Str11],

making the code more complex [Oak14] since the domain concepts are removed or overshadowed by the

optimisation code. The challenge is how to develop high-level code (e.g., abstract) and how to optimise

the code in the final development step (e.g., by creating efficient platform mappings).

Scientific applications traditionally use low-level languages such as C and Fortran. These languages

4 1. Introduction

allow the writing of code closer to the execution platform but have less support to develop abstract codes

(e.g., using the domain concepts in the code). An example is specifying the memory management directly

in the code that limits the runtime optimisations (e.g., locality of data accesses). On the other hand,

Java uses the garbage collector to manage memory and compiles the code at the runtime (dynamic

compilation). We believe that writing abstract code simultaneously with dynamic compilation will help to

apply optimisations in the final development step and will deliver acceptable performance.

Java is a language that abstracts the execution platform bringing the code closer to domain concepts.

However, Java is criticised for introducing additional execution overhead. Some mechanisms that intro-

duce overheads are the Garbage Collector, execution on a virtual machine and polymorphic collections. In

scientific applications, it is common to use the same data set during the simulation making the Garbage

Collector cost negligible. On the other hand, it is also common to execute the same procedures multiple

times that enables the virtual machine to dynamically compile the code generating efficient code for the

native platform. Additionally, the dynamic compilation allows applying additional optimisations. The poly-

morphic collections are not essential in this type of applications. We believe the Java mechanisms make

it is feasible to develop efficient scientific applications in Java.

1.3 Objectives

Within the scope of this dissertation, we intend to develop a new approach to improve the programmability

of scientific applications without dismissing the performance. The approach should support the most

common locality optimisations without removing or overshadowing the domain concepts.

This work aims to achieve the following three specific objectives:

• Develop an API compatible with Java Collections that efficiently maps on the execution platform;

• Develop a high-level constructor that supports tiling and parallelism;

• Study the support for other locality optimisations commonly used.

The API should support OOP concepts and provide efficient layouts (e.g., SoA). The API will be compat-

ible with the Java Collections simplifying the application development. The most efficient layout is typically

the SoA layout, where a collection becomes a structure of several arrays. Usually, this removes the object

abstraction from the code and a change in the layout forces the developer to perform broad changes in

the code. The usage of OOP concepts with the SoA layout and maintaining compatibility with the Java API

is the main challenge of this dissertation.

1.4. Contributions 5

The high-level constructor will support tiling and parallelism. The constructor will support problem pro-

cessing by decomposing the domain into smaller problems, enabling parallel processing of subdomains,

tiling optimisation or both. The high-level constructor should hide the details of those optimisations. The

developer should access only the relevant parameters, such as the number of threads of execution. It

must be possible to combine several levels of this optimisation.

The last objective is to study and implement other common optimisations compatible with the devel-

oped mechanisms. For example, tiling can use packing, the data tile is copied into a new data structure,

processing elements placed in consecutive memory locations.

1.4 Contributions

The contributions of this work are as follows:

1. An approach to develop abstract code and to optimise the code at final the development step;

2. An approach that encapsulates the data layout and allows the layout selection in compile/execution

time;

3. A high-level constructor inspired on the map-reduce pattern that can express both parallel compu-

tations and tiling over a data collection;

4. Several optimisation techniques applied to a Java-based implementation of the proposed data API

and parallelism model;

5. A set of tools to support the approach;

6. A benchmark with scientific applications.

The main contribution of this work is a new approach to develop scientific applications separating

the development into two distinct steps: domain, and optimisation. In the domain step, the methodology

provides an API to simplify the development of abstract code. The API enables the data layout optimisa-

tion in the final development step (contribution 2). The approach also enables other improvements in the

optimisation step. It offers a high-level constructor to inject other supported optimisations (contribution 3).

The developed constructor is based on a map-reduce pattern, but it also supports tiling, packing and pri-

vatisation (contribution 4). Additionally, the constructor uses Java annotations to simplify the optimisation

specification with minimal impact on the domain code (avoid overshadowing the domain concepts).

6 1. Introduction

During the development of this work, a toolset was developed to support the approach. The first

tool generates collections with two different layouts: AoP and SoA. The developer specifies the domain

model, and the tool generates collections implementations. The collections provide all methods to access

the object and higher-order functions to support other approach features. A second tool simplifies the

parallelism specification. For this, the developer creates an annotation for the method that defines: the

domain decomposition; how each subdomain is processed; and how to join the subdomains. Finally, a

performance analysis tool, based on aspects, provides performance counters.

A study using a set of benchmarks provided a validation of the approach. These benchmarks allow

the performance study of the Java language in scientific applications. In some cases, the assembly code

is analysed to show the efficiency code generated in Java. Java collections and streams were analysed.

Finally, the benchmark clarifies the reasons for the performance differences obtained with traditional

approaches versus the approach presented on this thesis.

During the development of this work, these contributions were disseminated in the scientific commu-

nity. The data API was presented in the “Gaspar: A Compositional Aspect-Oriented Approach for Cluster

Applications” [MSS15]. In VecPar [SS16], we present API improvements, and introduced the a high-level

constructor. An early study of the layout impact on performance was published in [FSS13].

In this work, the acronym GasPar refers to the implementation of our approach. The acronym comes

from a project that explored the separation of concerns (i.e., domain and optimisation code) for the different

platforms. Our approach comes within the scope of the project with a focus on optimising data access.

In parallel, other work focused on parallel execution through aspects [Med19].

1.5 Outline

The document is organised into five chapters. The next chapter (chapter 2) presents the important con-

cepts for the approach development. It describes the memory hierarchy, the common memory optimisa-

tions and presents the Java language and execution environment. The memory hierarchy section shows

details of the operation of cache levels. The second section presents the main optimisations of data

access. And finally, the last section introduces the differentiating characteristics of the Java environment.

Chapter 3 describes the approach developed in this work. First, we define the problem and require-

ments of the approach. Subsequently, we show how it satisfies the requirements. The chapter also

describes the programming interface. Next, the chapter describes the implementation of the approach.

Finally, the chapter explains the most relevant imitations.

Chapter 4 describes the evaluation of the approach presented in chapter 3, applying optimisation to

1.5. Outline 7

several case studies. The first case uses two simple algorithms to analyse the basic cost of the program-

ming abstractions. The next evaluation uses the generic framework JECoLi to test the approach on existing

code. The third case study uses a molecular dynamics simulation(MD) to test the approach with more

complex structures. The last case is a matrix multiplication that tests the framework extensibility with a

new container. The chapter ends with a summary of the results and presents the conclusions.

Chapter 5 discusses alternative approaches to the one described in this thesis. It starts to argue

about iterators and then it describes, for each optimisation presented in section 2.2, what are the existing

alternatives and what their characteristics are. Finally, it compares the alternatives described with the

approach proposed. The last chapter (chapter 6) draws conclusions and presents research proposals to

be developed in the future.

8 1. Introduction

Chapter 2

Background

This chapter introduces the main concepts used in this work. First, we describe the memory organisation

and its impact on performance. Subsequently, the main optimisations used to improve data access are

presented. At the end of the chapter, we describe the Java characteristics.

2.1 Memory hierarchy

The gap between CPU frequency and the time to access data in memory has been increasing over the last

decades [Car02, MCWK99]. The data access performance is characterised by bandwidth and latency.

The bandwidth is the data amount that can be transferred per unit of time. Latency is the time it takes

to get the first data bit. The problem in accessing data lays in the latency that has not kept up with the

processor speed. Introducing cache memory reduces the negative impact of the latency on performance,

but only when programs provide locality in data accesses. These caches reduce the cost of data accesses

due to: the most used data are in faster memories (temporal locality), or the data are in consecutive

positions in memory (spatial locality with pre-fetch). Sometimes, more data is transferred than necessary

(some data are not used), which consumes more bandwidth. Double Data Rate memories emerged,

which allowed the bandwidth to double, but they did not reduce the latency. The use of caches improves

the average latency but consumes more bandwidth. Thus, it is possible to have faster data accesses when

these are stored on consecutive memory addresses.

The cache memory also improves the data accesses performance when the data are already in the

cache. Data may not be available in the cache due to four factors [SJG92, SHV+98]: cold, capacity,

conflicts and coherence. Cold is when data has not ever been loaded into the cache memory. Capacity

is when the amount of data exceeds the cache memory capacity, and some data must be discarded from

9

10 2. Background

the cache. Most cache memories have a set of spaces for each memory address, which might originate a

conflict miss when the set is full and more data is loaded to this set. Conflicts and capacity misses reduce if

the cache capacity increases or the data footprint decreases. Coherence misses occurs when two threads

access the same memory address, and one of them writes the data and to maintain coherence, the data

from the processor/core are invalidated. It can also happen when threads write at nearby addresses since

the control is, generally, carried out on a cache line basis. The problem is known as false sharing.

Figure 2.1 shows a typical memory hierarchy. The top-level registers have faster access time (e.g., as

fast as the machine clock time), but their capacity is too much limited (e.g. 32 registers). Cache memories

reduce the performance gap between the main memory and the processor. The main memory can be

extended using virtual memory, but it has a longer access time. The remainder of the section describes

how cache memory works.

registers

cache

main memory

virtual memory

more
capacity

faster

Figure 2.1: Typical memory hierarchy

Table 2.1 shows the access time and the size of the different memories. These memories are tem-

porarily used to keep a copy of data from the main memory. There are some policies to manage these

temporary data.

Memory Latency Size

L1 4 cycles 32 + 32KiB/per core

L2 10 cycles 256KiB/per core

L3, line unshared 40 cycles

L3, shared line 65 cycles 2MiB x #cores

L3, modified in 75 cycles

L3, remote 100-300 cycles

Local Dram 60 ns > GiB

Remote Dram 100 ns > GiB

Table 2.1: Access time and size the memory hierarchy for Intel Xeon 5500 processors [Lev09]

2.1. Memory hierarchy 11

The memory bottleneck can be a big hurdle in multicore platforms since the latency does not decrease,

and the cores share the available memory bandwidth. On the other hand, the effective bandwidth in

accessing caches scales proportionally to the number of cores, since most platforms provide an L1/L2

cache per core. Thus, to effectively use, current and future, programs should explore temporal and/or

spatial locality in data access whenever possible. The next paragraphs describe how the data are mapped

in the cache, which data stay in the cache when more data is loaded from the main memory and the

protocols to keep these memories with coherent values.

There are different options to map a block of main memory in the cache lines: Direct Map, N-Way

Associative Map and Fully Associative Map (figure 2.2). In the Direct Map, the memory address is mapped

into one cache line (figure 2.2a). This implementation is simple and inexpensive, but it has the highest

conflict misses. In the Fully Associative Map, each address can be mapped to any cache line. Therefore,

there is a better performance since there are no conflict misses (better cache usage). However, this

mapping has the highest hardware cost. N-Way Associative Map (figure 2.2b) is more flexible than Direct

Map and easier to implement than Fully Associative Map . It allows each memory address to be mapped

to N different cache lines (for a set).

Main
Memory

INDEX

0

1

2

3

4

5

6

7

…

Cache6
Memory

Index60

Index 1

Index62

Index63

Main
Memory

INDEX

0

1

2

3

4

5

6

7

…

Cache6Memory

Index60,6Way 0

Index 0,6way61

Index61, Way60

Index61, Way61

(a) Direct Map

Main
Memory

INDEX

0

1

2

3

4

5

6

7

…

Cache6
Memory

Index60

Index 1

Index62

Index63

Main
Memory

INDEX

0

1

2

3

4

5

6

7

…

Cache6Memory

Index60,6Way 0

Index 0,6way61

Index61, Way60

Index61, Way61

(b) Associative map

Figure 2.2: Cache maps

The N-Way and Fully associative maps need a protocol to select the data to be replaced (i.e., dismiss).

A simple protocol replaces the older block in the cache. The implementation can be done using a circular

buffer to indicate where the next block is placed. On the other hand, there are more complex protocols:

Least Recently Used (LRU), Least Frequently Used (LFU) and Not Recently Used (NRU). In LRU, the block

replaced is the block that was accessed less recently. The LFU replaces the block that has less usage.

Both protocols require an additional state to save the usage of the blocks. It is impracticable to use the

12 2. Background

LRU. For this reason, the modern processors use the NRU, which discards a block not accessed recently

[JTSE10]. NRU uses one bit per data block that indicates if the block can be discarded or not. When it

needs to discard a block, it firstly selects one of these marked blocks. These protocols are relevant for

programming techniques that improve the temporal locality since the set of data that is accessed (most)

recently is the one that remains in the cache.

The memory caches can implement different data write policies (what and when the different hierarchy

levels are written). There are two different policies: write-through and write-back. In the write-through,

when data is written it is immediately also written in the main memory. The write-though guarantees

coherence with the main memory. Because the data is always written to memory, write operations are

slower and consume more memory bandwidth. The other alternative, write-back, reduces the writes on

main memory to the minimal (for example, when the cache is full, and it needs to replace some data).

However, this alternative makes the data coherence protocols more complex. Performance improves in

two ways: reduces bandwidth consumption, and the writes are in the cache memories (faster writers). On

the other hand, data readings can cause a write miss if a line should be replaced it needs to write in the

main memory. Current processors use write-back, so the write miss is not a key issue for performance.

In modern multicores, each core has its top-level cache(s), it is necessary to ensure that the values

in the memory hierarchy are coherent (i.e., all cores see the same value). Typically the control of data

coherence is done at cache line level (if an element of a line changes in one core, the line must be made

coherent in all cores). For this, the cache memories use state information for each line. The available

states depend on the protocol used.

One of the most naive protocols is MSI. In this protocol, the cache line has three possible states:

Modified, Shared and Invalid. In the Modified state, the value has changed, and the cache will write the

new value in memory. If the line is in Shared state, the line was only read, and the value can be used. The

Invalid state identifies that the line has changed by another processing unit and needs to be updated. From

this cache coherence protocol emerges the MESI protocol that adds the Exclusive state. This new state

identifies which blocks are loaded into only one cache memory of a processing unit. Intel processors use

the MESIF protocol that derives from MESI and adds a Foward state. The Forward state is a specialisation

of state Shared. When a processing unit changes a block of data, that block is marked in state Foward

in that cache. From that moment, the remaining cache updates are performed using the value from that

cache. At each moment and for each block there is only one core with state Foward.

Current processors can load data into the cache memory before it is needed, this technique is called

pre-fetch. The processors predict the data which will be used by the next instructions and load that data

into the cache memory. The pre-fetch improves performance, especially if the data access is sequential

2.2. Data locality optimisations 13

(e.g., sequential accesses to positions of an array). However, pre-fetch increases bandwidth consumption

and creates additional cache line conflicts. If the program accesses the data randomly, pre-fetch may

cause a degradation of performance.

On the other hand, the processors provide pre-fetch instructions that allow the developer/compiler

to identify the data which will be used later. When the data are marked for pre-fetch, the data pattern

detection is disabled. Therefore, there is a decrease in bandwidth consumption, as the pattern detector

does not load additional data.

2.2 Data locality optimisations

The previous section presented the relevant characteristics of the memory hierarchy. This section presents

the most used optimisation techniques [KW03, SRS+12] that can take advantage of these characteristics

in scientific applications. The techniques can be grouped into how data are stored in memory (Data

footprint) and the order in which data are processed (Data flow). The section starts with techniques that

modify the footprint of data in memory. The subsequent section addresses techniques that change the

processing flow. Finally, the section ends with a summary of all techniques described.

2.2.1 Data footprint

This section shows the main optimisations that modify the data footprint in memory. The first optimisation

changes the layout to take advantage of the memory hierarchy. The second optimisation sorts data in

memory to improve spatial locality. Next, padding and alignment are presented, which create empty

spaces to make data access more efficient. Finally, the packing optimisation compacts/organise data

during execution to maximise the cache usage.

Data layout

The data can have different layouts in memory. The most common data layouts for a collection of objects

(or data structures) are (figure 2.3): Array of Pointers (AoP), Array of Structures (AoS) and Structure of

Arrays (SoA). AoP and AoS use an API closer to real-world entities (e.g., developers can work with data

structures instead of array indexes) [JRS16].

The AoP layout is a popular layout due to its support for abstract data types. The collection is an

array of pointers to the concrete data type. The other layouts improve spatial locality by storing data in

contiguous memory addresses.

14 2. Background

In AoS, the entities are stored in contiguous memory addresses, as in SoA, which stores fields into

separate arrays. The AoS layout removes the array of pointers and uses an array of structures (the data

is contiguous in memory). This layout is not available in Java. The SoA provides better locality if the

algorithm does not require all structure fields in the same time-frame, loading only the required fields.

The AoP requires additional space to hold the array of pointers, when compared to SoA, but provides

more flexibility to manage the data storage. It is beneficial to use hybrid layouts, in certain situations,

where some fields are stored in the contiguous memory address, the remaining are stored into separate

arrays. Sharma [SKK+13] explores these hybrid layouts.

The data layout can have a significant impact on performance, and the choice of the best might

depend on the platform and algorithm [MBZ+13, SKK+13]. Moreover, the change from one layout to

another might require considerable code refactoring.

(a) AoP

fields

(b) AoS

fields

(c) SoA (d) Hybrid

Figure 2.3: Layouts footprint in memory

One concrete example is discussed next. In the listing 2.1, to change from the AoP layout to the SoA

or the AoS the computeForce must be changed accordingly: creates additional parameter (change API),

and adapt code implementation. Moreover, the AoP layout is the most natural implementation as the code

includes a concept from the domain application (Particle). The Particle has a set of methods to implement

actions in the Particle (e.g., computeForce). The change from this layout to other requires rewriting code

in all places where the Particle class is used in the code. In the Java Grande Forum1 (JGF) MD used in

this document, a change in the layout implies an extensive code rewrite. The AoS layout maintains the

entity but needs to pass the Particle by parameter. Moreover, Java does not support this layout but, in

this case, can emulate this layout. However, this solution removes entity representation from the code.

To access the px particle field in the array, each layout requires:

AoP two memory accesses to access the element;

1http://www.javagrande.org/

http://www.javagrande.org/

2.2. Data locality optimisations 15

//AoP layout
forceParticle(...){

xi = this.px;
yi = this.py;
zi = this.pz;
(...)

}

//AoS layout
forceParticle(Particle p1, ...){

xi = p1.px;
yi = p1.py;
zi = p1.pz;
(...)

}

//SoA layout
forceParticle(Particles p1, int id, ...){

xi = p1.px[id];
yi = p1.py[id];
zi = p1.pz[id];
(...)

}

//AoS layout in Java
forceParticle(Particles p1, int id, ...){

xi = p1.data[id*9+0];
yi = p1.data[id*9+1];
zi = p1.data[id*9+2];
(...)

}

Listing 2.1: Force computation using AoP, AoS and SoA layouts.

AoS one memory access and a calculation to access the data;

SoA one memory access to access data.

The SoA implies fewer instructions. However, sometimes other layouts can be more efficient. In the

AoP layout, to swap the data, it is possible to switch the pointers. However, in AoS and SoA, it needs

to copy field by field. In AoS, all fields have a better spatial locality than SoA (each entity has all data in

contiguous memory positions).

Sometimes the developer needs to test several layouts to obtain the best performance. Traditionally

there are two approaches to change the layout: rewrite code or encapsulate the data. The need to rewrite

the code creates a code maintenance problem (requires more code, one for each layout). Encapsulating

the data can have an impact on performance [FSS13].

The data layout optimisation is equivalent to combination of Merge data structures (Array Merging) and

Transpose [KW03, SRS+12]. The Merge data structure optimisation groups the structures and changes

the SoA layout to the AoS layout. The Transpose changes AoS to SoA or from SoA to AoS.

Data layout in Java collections

Java has the Java Collections Framework (JCF) that supports a set of containers. It provides different ways

to store the data with the same behaviour. Containers manage the memory without developer intervention

and allow hiding the collection layout (e.g., ArrayList vs LinkedList). All containers available in the JCF

support generics. This forces collections to use the AoP layout, making the default JCF implementations

not suited for HPC.

16 2. Background

Figure 2.4 shows the JCF class hierarchy. JCF provides a set of interfaces, and collections imple-

mentations organised hierarchically. At the top of the hierarchy, there are two interfaces, Collection and

Map.

The collection interface represents a collection of objects, that can be ordered or not and with or

without repeated elements. There are three interfaces that extend the collection interface: List, Queue

and Set. In the List, there is a specific elements order. The elements are associated with the order they

occupy in the collection, being possible to access them through their position (get(i)). Queue adds to the

collection a set of methods that make it possible to add and remove elements from the container. The

elements are removed according to their insertion order. In the Set, there is no order of the elements, and

it does not support repeated elements.

The ArrayList is the most used data structure of the JCF, approximately 47% in the study by Costa

[CASL17]. The OpenJDK implementation uses an array of pointers. Additionally, the class adds a mech-

anism that allows the developer to add and remove elements without overloading the developer with the

array dimension management. The Stack class implements the List interface and adds methods that

allow the developer to use the container as a Stack (the last element inserted is the first to be removed).

LinkedList implements the List and Queue interface at the same time. Its internal structure is based on

nodes, where each node has the pointer to the next node and the other to the previous element. Priori-

tyQueue implements the Queue interface using an array organised as binary heap.

The Map interface represents a set of elements in which each element has an associated key. In

the JCF there are two implementations of the Map interface: HashMap and TreeMap. HashMap uses an

array-like structure. TreeMap implements the map interface using a tree-based structure.

The Java collections support generic types, although, in many cases, the developer only needs a

collection of simple structures. In Java, the developer can use Java collections or arrays of objects, but

both have a negative impact on performance. These are collections of objects, where the array has the

pointers to objects. This representation requires extra instruction for each access and spends more space

(object headers and the pointers). Moreover, in Java, it is not guaranteed that the objects are allocated

in contiguous memory, thus, the spatial locality is low. Some approaches have been proposed to use the

garbage collector to rearrange the objects to improve the spatial or temporal locality [Hir07]. Additionally,

in Java, the primitive arrays are allocated in contiguous positions in memory. So, there is only one header

for the array, and one data item can be accessed with a single instruction.

JCF does not provide containers of primitive data types, but it can use collections of objects that

represent the primitive types. For this, Java provides a mechanism for converting primitive type variables

into objects of the same type [HKH+16]. The solution creates an overhead [FSS13], due to primitive

2.2. Data locality optimisations 17

672

If you want to write a program that collects objects (such
as the stamps to the left), you have a number of choices. Of
course, you can use an array list, but computer scientists
have invented other mechanisms that may be better suited
for the task. In this chapter, we introduce the collection
classes and interfaces that the Java library offers. You will
learn how to use the Java collection classes, and how to
choose the most appropriate collection type for a problem.

15.1 An Overview of the Collections Framework
When you need to organize multiple objects in your program, you can place them
into a collection. The ArrayList class that was introduced in Chapter 7 is one of many
collection classes that the standard Java library supplies. In this chapter, you will
learn about the Java collections framework, a hierarchy of inter face types and classes
for collecting objects. Each interface type is implemented by one or more classes (see
Figure 1).

At the root of the hierarchy is the Collection interface. That interface has methods
for adding and removing elements, and so on. Table 1 on page 674 shows all the meth-
ods. Because all collections implement this interface, its methods are available for all
collection classes. For example, the size method reports the number of elements in
any collection.

The List interface describes an important category of collections. In Java, a list is a
collection that remembers the order of its elements (see Figure 2). The ArrayList class
implements the List interface. An ArrayList is simply a class containing an array that is
expanded as needed. If you are not concerned about efficiency, you can use the Array-
List class whenever you need to collect objects. However, several common opera-
tions are inefficient with array lists. In particular, if an element is added or removed,
the elements at larger positions must be moved.

The Java library supplies another class, LinkedList, that also implements the List
interface. Unlike an array list, a linked list allows efficient insertion and removal of
elements in the middle of the list. We will discuss that class in the next section.

A collection groups
together elements
and allows them to
be retrieved later.

Figure 1 Interfaces and Classes in the Java Collections Framework

‹‹interface››
Map

HashMap TreeMap

‹‹interface››
Collection

HashSet TreeSetStack LinkedList

‹‹interface››
List

‹‹interface››
Queue

‹‹interface››
Set

ArrayList PriorityQueue

© nicholas belton/iStockphoto.

 You use a list whenever you want to retain the order that you established. For
example, on your book shelf, you may order books by topic. A list is an appropriate
data structure for such a collection because the ordering matters to you.

However, in many applications, you don’t really care about the order of the ele-
ments in a collection. Consider a mail-order dealer of books. Without customers
browsing the shelves, there is no need to order books by topic. Such a collection
without an intrinsic order is called a set—see Figure 3.

Because a set does not track the order of the elements, it can arrange the elements
so that the operations of finding, adding, and removing elements become more effi-
cient. Computer scientists have invented mechanisms for this purpose. The Java
library provides classes that are based on two such mechanisms (called hash tables
and binary search trees). You will learn in this chapter how to choose between them.

Another way of gaining efficiency in a collection is to reduce the number of opera-
tions. A stack remembers the order of its elements, but it does not allow you to insert
elements in every position. You can add and remove elements only at the top—see
Figure 4.

In a queue, you add items to one end (the tail) and remove them from the other end
(the head). For example, you could keep a queue of books, adding required reading
at the tail and taking a book from the head whenever you have time to read another
one. A priority queue is an unordered collection that has an efficient operation for
removing the element with the highest priority. You might use a priority queue for
organizing your reading assignments. Whenever you have some time, remove the
book with the highest priority and read it. We will discuss stacks, queues, and prior-
ity queues in Section 15.5.

Finally, a map manages associations between keys and values. Every key in the
map has an associated value (see Figure 5). The map stores the keys, values, and the
associations between them.

Figure 2 A List of Books
© Filip Fuxa/iStockphoto.

Figure 3 A Set of Books
© parema/iStockphoto.

Figure 4 A Stack of Books
© Vladimir Trenin/iStockphoto.

A list is a collection
that remembers the
order of its elements.

A set is an unordered
collection of unique
elements.

A map keeps
associations
between key and
value objects.

Figure 5
A Map from Bar
Codes to Books

© david franklin/iStockphoto.

ISBN 978-0-470-10555-9

9 7 8 0 4 7 0 1 0 5 5 5 9

9 0 0 0 0

Values

Keys
ISBN 978-0-470-10554-2

9 7 8 0 4 7 0 1 0 5 5 4 2

9 0 0 0 0
ISBN 978-0-470-50948-1

9 7 8 0 4 7 0 5 0 9 4 8 1

9 0 0 0 0

ISBN 978-0-470-38329-2

9 7 8 0 4 7 0 3 8 3 2 9 2

9 0 0 0 0
ISBN 978-0-471-79191-1

9 7 8 0 4 7 1 7 9 1 9 1 1

9 0 0 0 0

bj5_ch15_04.indd 672 10/15/12 4:49 PM

Figure 2.4: JCF class diagram [Hor16]

type conversion into an object, and the AoP layout. There are several approaches to use primitive data

types arrays backed by arrays of primitive data [OW15, Tro, Vig16]. Thus, these approaches improve the

performance by removing the load instructions to access the object and reducing the memory footprint

(remove the object header). However, the approaches do not support structured data types and remove

the domain abstractions from the code.

AoP is the best layout to support collections of heterogeneous elements (different entities). In other

layouts, it is possible to implement polymorphism. However, the solution is more complex and adds

overhead.

The use of arrays of primitive types for better performance can lead to abstractions removal from the

code (e.g. the domain entities disappear from the code). This is common in scientific applications since

the collection of objects does not obtain the best performance.

The other option encapsulates all entities in a collection and uses the primitive array for the fields (in

this context, this option is called Java Collection Returns New Element(JCRNE)). So, it hides the internal

collection representation to the developer creating a new entity each time the developer accesses the

fields. The option keeps the entity in the code and allows the use of the SoA layout. However, it adds the

overhead of creating the entities. Figure 2.5 illustrates this problem, where the entity has three fields (A, B

and C), and the data fields are distributed in the three arrays. To access a field, it needs to create the new

object E (created by getElement) that will be later de-constructed (by getB in functionA). f(B) changes the

b field, but the collection is not updated. The setB updates the value in the new element. The setElement

updates the element in the original collection. In this case, to update a field, it needs to copy the values

multiple times (for one read and one write needs to perform seven reads and seven writes).

Java can reduce the space used by object pointers using compressed pointers. In Java, the data is

typically aligned to 16 bytes, which in practice makes the last 4 bits of the address to be 0. Java takes

18 2. Background

new$E

A

B

C

E

getA

getB

getC

A

B

C

getElement setElement

CBA

Elements

getB E

functionA

f(B) setB

Figure 2.5: Encapsulation example

advantage of this to reduce the space used by the pointers. So in memory, it does not represent these

bits, being added later when it accesses the address.

Java provides iterators to process the entire container. Iterators allow hiding the container implemen-

tation to the developer, so it is possible to process multiple containers types using the same source code.

Iterators are typically a safe approach for accessing containers, as they limit access to the elements in

the container. Iterators, being more abstract than using indexes, introduce more instructions. The Java

dynamic compilation can remove these additional instructions in most cases.

Java iterators use the natural order to process the collection, being possible to modify the iterator.

Java does not provide access to the element position by the iterator, which can prevent using iterators in

some cases (e.g., transpose of the matrix). Java uses iterators to process the collection elements with

foreach and in the streams interface.

Data sorting

The sorting technique reorders the data in memory according to the way it is accessed. This technique

improves the spatial locality, but the ordering is dependent on the domain. An example in the AoP layout

is the reorder of objects in memory by the collection index. If the algorithm access the consecutive

position in the collection, the sorting improves the spatial locality. The technique introduces additional

complexity in the program development and increases the code complexity. However, Hirzel [Hir07]

made this improvement automatic by changing the Garbage Collector mechanism of a JVM. This provides

the developer with a performance improvement without any programming cost.

There are complex ordering schemes, such as the Z layout however, the calculation of the data indexes

can become complex leading to an overall performance degradation [TBK06].

One sorting example is present in the layout proposed by Van Emde Boas [vEBKZ76] to the Heap Sort

2.2. Data locality optimisations 19

algorithm (figure 2.6). The work introduces a hierarchically decomposed search tree structure, implicitly

decomposed by redefining index computations (for children and parent expressions) to achieve the desired

access pattern. It consists of looking at the binary tree data structure from a blocked point-of-view per-

spective so that each memory access to the root of each block can also fetch adjacent nodes, preferably

children nodes.

!"#$%&'(#)"#)*+',-+'

.%/'0$1-'2"%3'

&-4!"1-5)6'7'8'9')':;'

&-4!"1-5)6'7')':;'"#'<=)&12&"<>5)6'

Figure 2.6: Nomal and Van Emde Boas layout (Heap access)

There are many other data sorting approaches. Overall all these approaches improve the spatial

locality by making consecutive accesses in the closest memory zones.

Padding and alignment

The Padding and Alignment adjust the data footprint to specific cache/memory parameters [PNDN99]

(e.g., a dimension compatible with the cache line size). The padding inserts dummy elements in the data

structure to make the data structure dimension divisible or multiple at the cache line. Divisible/Multiple

depends on whether the structure fits or not in the cache line. Padding is also used to remove false-sharing

by inserting elements in order to avoid coherence misses.

Data alignment is essential for efficient vectorial computing in modern processing units. Java aligns

the objects in memory however, in the case of arrays there is the array object header that misaligns the first

element of the array. In such cases, the first array elements are processed without vectorial instructions

(i.e., one by one). The problem has a more negative impact on Tiling optimisation (described next). The

first tile element is misaligned, which implies a higher performance loss.

Listing 2.2 shows the code changes required to implement the padding, in this case, aligned to 16

Bytes (1 int => 4 Bytes and 1 char => 1 Byte). The structure stores three integers (12 Bytes), so it

needs to increase 4 Bytes (char pa [4]). Nevertheless, padding does not ensure the structure alignment

in memory. It is required also to align the array in memory for the cache line (see last statement pack in

while on the right of listing 2.2).

20 2. Background

Base Padding

//declaration
typdef struct s1 {

int vall, va12,va13;
} t1;

//allocation
size=sizeof(t1)*SIZE;

//alignment array
ar=(*t1) malloc(size);

//declaration
typedef struct s1 {

int vall, va12,va13;
char pad[4];

} t1

//allocation
size=sizeof(t1)*SIZE+1;
ar=(struct t1*) malloc(size);

//alignment array
arl=(((int)ar+B-1)/B)*B;

Listing 2.2: Padding - Differences of the code [LW94]

Packing

Packing creates a temporary set of data to minimise data fragmentation. The technique needs more

memory since it replicates some of the data but reduces the capacity misses. Thus, its use makes the

size of data that is loaded into the cache smaller. The optimisation is typically combined with the tiling

optimisation, performing packing while loading a tile. Packing optimisation improves spatial locality.

The optimisation can be applied in two ways: first, creates all packed structures at the start; second,

creates only a packing structure and loads the data to the packing structure when needed. In the first

case, there is higher memory consumption. However, the packing cost is all at the beginning. The second

option reduces memory consumption, but it may force to load several times the same data.

The packing combined with parallel execution can reduce coherence misses since each processor

can use its data pack. Furthermore, it can put the data closer to the processing unit (in its main memory

in a NUMA system). If each thread initialises its data pack, the memory management system will allocate

that memory in a place closer to the processing unit.

The listing 2.3 shows the packing in a matrix multiplication for part of the matrix B. Before the calcu-

lation, it needs to load data from matrix B (B) into the packing matrix (bb). As matrix B is not rewritten in

this calculation, the matrix update is not performed at the end.

2.2.2 Data flow

The first section presented optimisations that modify the data footprint in memory. This section presents

optimisations that modify the order of processing the elements.

2.2. Data locality optimisations 21

for (int jj = 0; jj < size; jj += tilej) {

//Packing matrix B
for (int k = 0; k < size; k++)

for (int j = 0; j < tilej; j++)
bb[k][j] = B[k][jj + j];

(...)
}

Listing 2.3: Packing implementation - copy data to packing matrix

Tiling

The general approach is a divide and conquer strategy: the problem is decomposed into subproblems

of smaller size that fit into faster memory [YRP+07]. This optimisation intends to take advantage of the

temporal locality present in the algorithm since each subproblem is in one of the cache levels. However,

it increases the number of instructions executed due to two factors:

• more loop control instructions since it introduces more and smaller loops.

• more load and store instructions since it performs additional steps through the data.

The tiling optimisation needs an additional parameter that defines the smaller problems size (number

of blocks). The size defined for the smaller problems has an impact on the number of instructions, and

cache misses. If the size is small the number of instructions will be higher, but if the parameter is too

large it cannot take advantage of the faster cache levels due to capacity misses. This technique can be

applied multiple times, thus enabling a better fitting of the problem to multiple cache levels.

!" #"

$" %" &"

'()(*+"

Figure 2.7: Loop tiling - data needed to calculate the first elements (8 iterations) on matrix multiplication.

Figure 2.7 illustrates a matrix multiplication algorithm where the data is accessed by blocks, thereby

decomposing the problem into subproblems. With this decomposition, it is intended that subproblems

have a size smaller than the level of the cache that it is intended to optimise for.

Tiling optimisation is probably the most used optimisation since it can provide huge improvements in

certain algorithms, namely in those that can take strong advantage of temporal locality. Let us consider the

following example: collections p1 and p2 have both 1024 elements and each occupies 24MiB in memory;

22 2. Background

the numbers of tiles is 4; the cache size is 12MiB; the computation performs two loops picking one of p1

and performing a computation with each p2 element; only one element of each collection is required for

each computation; the elements of the collection do not exhibit spatial locality (simplifies the example).

In a simple implementation, p1 collection elements will be read from memory only once. However, the

collection p2 will be read from memory in all iterations of the outer loop (1024), reading ∼ 24GiB from

memory. After applying the tiling optimisation, the original function is called 4 times, which implies that

the collection p1 is loaded 4 times from memory. Each call is performed over 4 subcollections of the

original p2 collection that occupy only 6MiB. This subcollection fits in cache, which implies that during the

processing of the inner loop the data is read from the cache and not from to main memory. There is a

substantial reduction in the number of data read from memory, in this case only 120MiB is required.

In the example, more loop control instructions are added, as well as data reading instructions. The

data from the p1 collection is read-only once, with tiling optimisation of the data.

Loop fusion

The loop fusion merges multiple loops over a data set into the same loop. Therefore the instructions and

the data accesses reduce (fewer instructions for controlling the loops), which implies a decrease in the

number of misses. However, the technique increases the code inside in the same loop body, so, it can

increase the number of misses in the instruction cache.

Loop Loop fusion

for i = 1 to N
M[i] += C1

for i = 1 to N
M[i] *= C2

for i = 1 to N
M[i] += C1
M[i] *= C2

Listing 2.4: Loop fusion - Differences of the code

This technique can be applied when several functions are applied to the same data (listing 2.4). In

this example, it applies two operations to the same data. Thus, it needs to traverse the data twice, but

the optimisation applies the two operations on a single loop. In the example, the optimisation reduces

the memory accesses, which implies a decrease in the load/store instructions, and in the cache misses.

Additionally, it allows taking advantage of the multiple functional units into the processors, reducing the

Cycles per Instruction (CPI).

2.2. Data locality optimisations 23

Loop reorder

Loop Reorder changes the order in which data is processed. As a rule, the optimisation aims to improve the

data locality (e.g., accessing the matrices by rows instead of columns). This reordering of loops is used,

for example, in matrix multiplication [SG98], obtaining a significant impact on performance. Typically,

changing the order of the loops is simple for the developer. However, validating the optimisation can be

difficult.

In the example of listing 2.5, assuming an array of doubles (8 bytes) and a cache line of 64 bytes, for

each load made from the main memory 64 bytes are loaded, and only 8 bytes are used. In the second

case, as the array is accessed by rows and the array elements are in consecutive memory, the 64 bytes

loaded into the cache are fully used.

Access by column Access by line

for j = 1 to N
for i = 1 to N

M[i][j] *= C2

for i = 1 to N
for j = 1 to N

M[i][j] *= C2

Listing 2.5: Loop reorder - Differences of the code

2.2.3 Summary

The table 2.2 summarises the locality optimisation impact on a program. The first column (Miss type)

shows the type of the miss that each optimisation intends to solve (cold, capacity, cold, conflict or coher-

ence). The Locality column refers to the locality type that optimisation improves. Finally, the last column

shows which modifications to the code are necessary at the implementation and in which part of the

program the optimisation improves.

Miss type Locality Implementation -> Impact

Data Layout(AoS->SoA) Capacity Spatial All -> All

Sorting data Cold Spatial Local++ -> Local+

Padding and alignment Conflicts+Coherence Spatial Local -> All

Packing Capacity Spatial Local -> Local

Tiling Capacity Temporal Local -> Local

Loop fusion Capacity Temporal Local ->Local

Loop reorder Cold+Capacity Spatial+Temporal Local -> Local

Table 2.2: Impact the memory optimisations in the program

A change from AoS to SoA reduces unnecessary data cache loads so, it minimises capacity misses.

The optimisation has a massive impact on code since the developer needs to change all data accesses.

24 2. Background

In practice, this optimisation avoids loading additional fields from the structure into the cache (reduces

the data loaded from memory). Sorting data reduces cold misses. This optimisation reorders the data

in a specific program step to improve spatial locality. Padding and Alignment are specified in the data

structures definition step, so its impact on the development cost is minimal. This optimisation reduces

conflicts and coherence misses. Packing aims to reduce capacity misses by reducing the data loaded

into the cache that is not needed. The Packing has a performance impact only where the optimisation

is applied. Tiling decomposes the problem to reduce capacity misses. This optimisation is applied to

a specific function/loop. Loop Fusion takes advantage of the data loading to cache to perform more

calculations over these data. Thus, it reduces capacity misses. Loop Reorder improves the spatial and

temporal locality (such as processing the matrix by lines reduces misses). On the other hand, Loop

Reorder allows maintained the problem segment at the cache, reducing misses due to capacity.

In short, the layout change is the optimisation that implies an intensive transformation in the domain

code. Tiling and the usage of the best layouts for performance make code less legible.

2.3 Java

In this section, some relevant characteristics of Java are described. Java compiles the code to bytecode

that executes on several platforms where a Java Virtual Machine(JVM) is available. The JVM transforms

the bytecode into native instructions of the machine running the program [Oak14]. This process will be

described in the following subsection. The subsequent Garbage Collector section describes how memory

is managed in Java. The final section describes the parallelism model in Java.

2.3.1 Compiler and execution processes

A Java program (figure 2.8) is first transformed into bytecode (generated by the Java Compiler), code that

is platform-independent. In this step, syntax errors are detected, and some optimisations are applied (e.g.,

final variables are replaced by the value). In this step, the applied optimisations are platform-independent.

The bytecode does not execute directly in the machine, it needs a JVM to run upon. Therefore, this section

will explain the execution process in the JVM [Oak14].

In the execution step, the JVM interprets or compiles the bytecode. Interpretation occurs when the

code is not yet compiled. Thus, the execution starts immediately without waiting for the compilation of

code. However, the interpretation mode is slow. For this reason, the JVM compiles the heaviest meth-

ods. Just-in-Time(JiT) uses dynamic compilation which compiles the code during the execution step. The

2.3. Java 25

Java Compiler

4
Source Code

(.java)

4
Bytecode

(.class)

Compiler

Interpreter

Compiler

JVM

3
Machine Code

:Execute

Figure 2.8: Java execution process

dynamic compilation allows the application of more aggressive optimisation techniques (e.g., dynamic

compilation allows de-virtualisation of the methods [SOK+04, APC+96]). This compilation process in-

creases the efficiency of Java when compared with techniques that use static compilation.

Compiling the code occurs asynchronously: the program is not stopped to compile the code. When the

method/code is selected for compilation, it is placed in a queue. After the compilation of the method/code

ends, that part of the code runs natively in the machine language.

The compilation process enables several optimisations of the code: In-line expansion, Escape Analysis,

De-optimisation and others. In-line expansion inserts the method code in the location where the method is

invoked, removing the invocation cost. The optimisation is essential to remove the data encapsulation cost

when the objects fields are accessed by get/set. These small methods can introduce an overhead, but

compiler optimisation can avoid it. The methods are expanded in two distinct situations [Oak14]: when

the method size is less than a value (by default 35 bytes) or when the method is invoked N times and is

not extensive (by default 325 bytes).

Escape analysis is one of the most sophisticated optimisations in the JVM. It allows the compiler to

improve the objects allocation performance, and to remove the overhead of synchronisation [CGS+99]. It

analyses the accesses to objects, to identify the methods or threads that access the objects. The analysis

allows deciding if the object is created or not (e.g., allocate space for the object fields in the stack instead

of creating a new object). The escape analysis allows knowing if the object is accessed by a single thread,

in this case, it removes the synchronisation operations.

Sometimes the compiler enables optimisations that are valid at that compile-time and become invalid

later. When the optimisation becomes invalid, the JVM runs a version less optimised (this version is

26 2. Background

available in a stack of compiled methods/code). An example is the methods called through an interface

that is expanded in-line, and later, it is called with a different concrete class method. The de-optimisation

of a code does not permanently disable optimisations. The code de-optimisation allows more aggressive

optimisations for a specific case, which translates into better overall performance.

In more abstract languages, like Java, this set of optimisations is essential for performance. They allow

removing the overhead created by the language implementation due to the abstraction support and are

fundamental to make the proposed work feasible in terms of performance. To summarise, the dynamic

compilation enables many opportunities to improve performance: applying optimisations that are valid

for the specific data input; and optimised to available resources. However, runtime compilation uses

processor time, and this may interfere with the runtime of the application.

Other relevant optimisations

The loop unrolling provides the calculation of multiple elements in the same loop body. Typically, the

JiT compiler implements the loop unrolling optimisation although, it can also be applied manually by the

developer. The listing 2.6 shows the assembly codes with and without the optimisation. The listing shows

that there is a significant reduction in the number of instructions executed. In the code without optimisa-

tion, for each element, four instructions are needed. With loop unrolling, it needs seven instructions to

calculate four elements (1.75 instructions/element).

.L6:
addl %ebx, (%edx,%eax,4)

incl %eax
cmpl %ecx, %eax
jl .L6

.L6:
addl %ecx, (%edx,%eax,4)
addl %ecx, 4(%edx,%eax,4)
addl %ecx, 8(%edx,%eax,4)
addl %ecx, 12(%edx,%eax,4)
addl $4, %eax
cmpl %ebx, %eax
jl .L6

Listing 2.6: Loop unrolling optimisation

The optimisation reduces the number of instructions executed: less loop control instructions since

each loop body processes more elements; improves the instructions scheduling [Int16]; simplifies the

data mapping into registers; allows to apply of other optimisations (removal of redundant loads and subex-

pressions). However, its use increases the code size, which can increase the number of misses. Moreover,

it can inhibit the use of branch prediction. That happens when the loop body has many jump expressions,

leaving the branch predictor without storage capacity.

2.3. Java 27

Current Java compilers generate vectorial instructions that allow the calculation of several elements

in a single instruction [NCL+10]. The vectorial instructions follow the SIMD approach, where the same

instruction can process several elements. The compilers generate vectorial instructions when possible.

In some cases, the developer must modify the code to enable this auto-vectorisation. The fundamental

condition is that the same operation is carried out on several elements. Moreover, the elements must be

in consecutive memory positions, making the SoA layout the most efficient for vectorisation [JRS16]. The

use of the AoS layout creates additional overhead, as it requires scatter and gather operations.

The vectorisation is more efficient when elements are aligned in memory (the first element must be

aligned in memory, normally at a 32 Byte boundary). The JVM supports auto-vectorising. However, there

is an additional problem since the first array element is not aligned in memory.

The vectorial instructions can reduce the processor frequency. These instructions typically have a

higher power consumption which causes a decrease in the processor frequency [Len14].

2.3.2 Memory management

In Java, the objects are allocated in the heap, while primitive data and (local) object pointers are in the

stack. The memory allocation and freeing in the stack, as in other languages, is trivial: when the function

ends, the space used for local data is released by updating the stack pointer.

All objects data is kept in the heap. The developer creates the objects explicitly, but in Java, the object

destruction is the responsibility of the Garbage Collector(GC). The GC performs several functions: find

unused objects, make space available in memory and remove empty spaces between data. When finding

unused objects, and if more memory is needed, the GC frees up that space. Removing empty spaces

allows better management and improves access efficiency, which is why the GC must keep data spaces

in compact regions.

The GC is activated when the free heap space is limited (space is need for other data). For this reason,

the larger heaps size implies that the mechanism is activated less often. However, using a large heap

means that each call to manage the heap has a higher cost (more data is analysed). The JVM2 does not

recommend the use of heap sizes larger than the main memory.

When the GC is activated, the heap content is analysed. The typical GC uses two spaces: the young

generation and the old generation. Allocated objects are placed provisionally in the young generation. If

the objects remain active, they are placed in the old generation. This division allows the GC to be more

efficient in memory management. When the young generation fills up, objects that are no longer used are

2https://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/memman.ht
ml

https://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/ memman.html
https://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/ memman.html

28 2. Background

discarded (e.g., auxiliary objects that exist only in the method context that has finished). The objects more

persistent (e.g., objects created in the main method) are moved to the old generation. After this process,

the young generation becomes empty. Using this mechanism allows the GC to minimise the impact of

creating many objects. Moreover, this process reduces data fragmentation since temporary data no longer

cohabits with more persistent data.

The JVM uses different algorithms for the GC: Serial GC, Throughput, CMS and G1. Serial GC uses

a single thread to run the GC and interrupts all application threads. Throughput is used by default in the

64-bit JVM. This GC uses several threads but also interrupts all application threads. The CMS is designed

to avoid long pauses. It uses several threads in the background when there is processing time available if

not, it is executed in a single thread. The application threads are interrupted for short periods. G1 collector

is designed for heaps greater than 4 GiB. For this purpose, it subdivides the old generation into several

regions.

2.3.3 Parallelism

Java supports thread-based shared memory programming natively. In Java, parallelism can be used for

multiple objectives. In this thesis, the objective is to improve the performance of the scientific application.

Scientific applications require massive processing, and parallelism allows us to take advantage of multicore

machines. In scientific applications, many problems can be divided into multiple subproblems that can

be processed by multiple threads. Typically the number of subproblems should be close to the number of

cores. The use of an excessive number of threads causes more context switching, delaying processing. On

the other hand, the insufficient number of threads does not allow to take advantage of the full capacities

of the processor [Sub11].

In Java, there is a set of mechanisms for parallel processing. Java has the basic thread constructors

in which the threads are managed manually. On the other hand, Java supports executors, where the

developer creates tasks and submits them for execution. In programming code, these two options are

similar, but the latter avoids the explicit management of the lifetime of threads. Java 8 introduced a new

distinct concept, streams. The streams provide several higher-order functions that can be performed in

parallel. The stream concept uses an API closer to the domain, but the use of streams is limited. Streams

were developed to process data in collections in the context of the JCF.

Chapter 3

Proposed approach

The main goal of the approach is to promote high-level programming in data-parallel scientific applications.

Typically, scientific applications need to leverage all computer power available by using High-Performance

Computing (HPC) techniques. In HPC, the main focus is to reduce the program execution time. Program-

ming using domain abstractions simplifies the development and makes the code more understandable

but can reduce performance. In these cases, the developer removes the abstractions from the code to

increase performance. The abstractions represent entities in the domain and actions on them. Thus, the

approach should enable domain abstractions while keeping high performance.

The approach should provide a framework for the developer with the following capabilities:

1. use domain abstractions in the code, using an OOP approach;

2. deliver high performance;

3. allow data locality optimisations in the final development step;

4. support common data locality optimisations, e.g. data layout and tiling;

5. support data-parallel processing;

6. do not constrain the most important compiler optimisations.

The OOP enables writing code using abstractions from the domain that simplifies the code and writing

of complex software. These languages use encapsulation to hide the internal representation of objects

and leave only the relevant interface exposed to the developer. Traditionally, the optimisation techniques

modify the code and tune it for a specific execution platform, making code efficiency dependent on that

29

30 3. Proposed approach

platform. Frequently, the domain abstractions are removed, and the encapsulation is lost. The proposed

approach should enable the object oriented concepts with a performance compatible with the one required

by HPC problems. In this case, the domain code uses the Java language to enable the object oriented con-

cepts. The approach must support the main OOP concepts (objects, classes, and inheritance [Weg87]).

Additionally, the approach has to maintain compatibility with Java.

The approach should allow the developer to build the code in two distinct steps: a domain code

development step and an optimisation step. In the first step, the developer must specify the code with

domain concepts. At the end of this step, the developer should have a code that satisfies the functional

requirements. In the second step, the developer has at his disposal a set of optimisations for performance

tuning. The proposed approach aims to avoid premature optimisations in the domain code and support

tuning to a specific platform in a simple way. The optimisation step must maintain the domain concepts

created in the first step.

One essential program optimisation in scientific applications is the data layout. The best data layout

depends on the execution platform. The approach must support multiple data layouts to be selected in the

final development step (i.e., platform-specific tuning). Developers select from one of the layouts available

or create a new one. However, changing the layout should not have an impact on the domain code.

Overall, the approach aims to improve performance by supporting multiple data layouts and using

other data-related optimisations. The main focus is the collections accesses performance. For this pur-

pose, the developer can change the collection layout or change the order of accessing data elements.

Thus, the approach has to provide efficient layouts for collections and offer abstractions to implement the

most common techniques in HPC, such as tiling and packing.

Another requirement is the simplification of parallel programming by supporting parallelism patterns

over collections. The developer defines the operations to perform in parallel, and if required, decides the

strategy to deal with concurrent data accesses. For this, the developer must use Java mechanisms or

thread private data. The tool should support thread private data without requiring modifications to the

domain code.

Finally, the solution should not constrain the most common compiler optimisations. Some examples

are auto-vectorisation and loop unrolling. The approach uses abstract data layouts at the programming

level (1st requirement), but these layouts are incompatible with vectorial instructions (e.g. collections of

objects). However, the approach could internally use SoA layout to enable vectorisation in more cases.

The next section presents an approach overview and how it satisfies these requirements. The Pro-

gramming interface section shows how developers can use the framework, including the mechanism to

apply optimisations. The following section presents an overview of the implementation. Finally, the last

3.1. Overview 31

section presents the most relevant limitations of the current tools.

3.1 Overview

The approach includes a methodology and a toolset that, as a whole, support the development of abstract

code that can be tuned to obtain high performance.

Traditionally, in scientific applications, the developer accesses the data directly (use the entity position

in arrays of raw data). In the proposed approach, the developer privileges more abstract access methods:

iterators and higher-order functions. Java iterators hide the implementation of the collection. However, to

support efficient data layouts, the approach needs to hide both the collection and entities implementations.

The approach supports the Java collections API but requires the usage of getter and setter methods for

accessing the object data fields. This combination allows hiding the layout representation and providing

efficient data access, namely by using a SoA collection implementation.

The approach supports two generic types of locality optimisations (2nd requirement):

1. Layout change —the strategy provides multiples layouts for collections (e.g., AoP and SoA) with the

same access API. The developer creates the domain code without depending on the internal data

representation. The SoA layout implementation provides greater efficiency without removing the

abstractions from the code (1st requirement).

2. Change the execution flow —the approach provides a high-level constructor that allows applying

optimisations that change the execution flow in the final development step. Thus, the optimisation

step is independent of the domain code development (3rd requirement).

The developer specifies the domain code without being concerned with optimisations (figure 3.1). For

this, the approach provides a high-level API compatible with the Java collections API. The API provides

collections, iterators and higher-order functions for processing collections of objects. In a second step,

the developer specifies the layout for those collections and other optimisations. Those optimisations are

specified by annotations that make the optimisation code pluggable (it is possible to enable or disable

those optimisations).

The Domain specification has three steps (blue boxes in figure 3.1). First, the developer designs the

domain model in the Unified Modelling Language (UML). The developer represents the domain concepts

and the relationship between them. Second, the approach uses the domain model to generate a library

containing collections implementations. The compositions relationships of 1 to N are converted into the

corresponding collections. Third, the developer writes the domain code using Java interfaces without

32 3. Proposed approach

Domain

Domain model

Generate code

Optimisation

Benchmark

Domain code

Select optimisation

Figure 3.1: Approach workflow

knowing the data layout implementation. For this step, the framework provides three levels of abstraction.

At the first (lowest) level is the indexed access, using the collection get and set methods. The second level

uses iterators, which remove the loop index from the domain code. The highest-level uses higher-order

functions which removes the loop in the code.

At the end of the Domain step, the program already implements all the functional requirements. The

program performance is not relevant at this first step: the emphasis is on program abstraction and correct-

ness. In the Optimisation step, the performance is analysed and improved. The developer analyses the

program execution and identifies the code parts that should be optimised using profiling tools (Benchmark

step). The approach includes a tool that enables access to the processor counters in Java to help the de-

veloper on this step. In the Select optimisation, the developer can optimise the program using two distinct

mechanisms: layout and domain decomposition (gSplitMapJoin mechanism). In this step, the developer

can select a data layout through an application parameter.

The domain decomposition allows the developer to apply multiple optimisations, such as tiling, pack-

ing and parallel execution. The mechanism improves the abstraction level since the developer defines

how to decomposition the domain, and the approach hides implementation details. The mechanism al-

lows dividing collections to define the subdomains. The mechanism starts by decomposing the domain,

processes all subdomains and finally aggregates the results. The traditional tiling implementation (sec-

tion 2.2.2) injects a new code into the program without any meaning for the domain (e.g., a new loop).

The proposed approach increases the abstraction level since one annotation specifies all the optimisation

3.1. Overview 33

parameters.

The approach was designed to support the two most common locality optimisations: layout change

and tiling. The strategy for changing the layout relies on two software design patterns: Proxy and Iterator.

The idea is to use an interface to support the domain API (figure 3.2) where data entities are accessed

through an intermediate Proxy, and that is also an Iterator to iterate over the collection. Thus, the Proxy

has the same methods as the domain entity and provides methods to iterate over the collection, hiding

the concrete collection layout and the entity implementations. The other strategy allows the developer

to decompose the problem domain into subdomains. The key is to manipulate the parameters of the

method that processes the domain. The developer inserts an annotation where it specifies how to divide

the collections. The tool generates a new method that decomposes the domain and processes each

subdomain. Besides tiling, this strategy enables several other optimisations, such as packing and parallel

execution. Listing 3.1 exemplifies how the tiling optimisation is specified. The example will execute the

original code (2 internal loops) several times each time with a subcollection of the p2 gCollection parameter

(in practice, a new external loop is added).

<<interface>>
Aggregate

createIterator() : Iterator
<<interface>> Iterator

hasNext() : Boolean
next() : IObject

Concrete Aggregator

createIterator() : Iterator

<<interface>> IObject

getY() : A
set(A Y) : void

Concrete Iterator |
Proxy Object

Client

Figure 3.2: Iterator and Proxy pattern [GHJV93, Met02]

@gSplitMapJoin(name = "Tiling", map = "Sequential", split = {none ,"Virtual"}, reduce = {"
default", "default"})

f(gCollection p1, gCollection p2){
for(gIterator it1=p1.begin(); it1.isless(p1.end()); it1.inc()){

for(gIterator it2=p2.begin(); it2.isless(p2.end()); it2.inc()){
(...)

}
}

}

Listing 3.1: Tiling specification by gSplitMapJoin

These two strategies allow the developer to apply common optimisations (4th requirement). The

second strategy also satisfies the 5th requirement by supporting the processing of the subdomains in

34 3. Proposed approach

parallel. Additionally, the developer can use the thread private data mechanism. In this case, the developer

defines which fields are private, and the tool generates a new structure to implement this mechanism.

All mechanisms were developed to be compatible with important compiler optimisations. In the first

case, using a proxy/iterator allows the compiler to remove the additional code through method in-lining

and escape analysis (to avoid proxy/iterator object creation) enabling further compiler optimisations. The

second strategy has an additional cost but does not inhibit the compiler optimisations.

footnote

3.2 Programming interface

This section shows how to use the approach presenting a concrete example (MD case study from JGF

[BSW+00]). First, it shows how to write the domain code. Then, it explains how to apply each optimisation.

3.2.1 Domain specification

Domain model and code generation

The first step is to create the domain model (figure 3.3 shows the example. The approach provides a tool

to specify the domain model and to generate code to support the model.

The process starts with a UML class diagram, where the developer specifies the domain entities. The

developer specifies the entities that compose the domain and attributes. The tool generates collections to

support the different collections layouts for each entity from the model. The entities specified should have

a composition relationship from 1 to N1. The current tool does not allow polymorphic entities (collection

entities must belong to the same class).

The generated code is organised into a set of packages that contains the interfaces and classes

to support the model. For the MD case study, the tool generates two packages: ParticleCollection and

gCollection.

ParticleCollection package (figure 3.3) contains all the interfaces. These interfaces are domain-de-

pendent. This package provides the API that allows accessing the domain entities. For MD case study,

the tool generates two interfaces: Particle and gVector. The Particle interface represents a particle and has

the methods to access the particle attributes.

1In the tool prototype, aggregation relationships are not supported.

3.2. Programming interface 35

Figure 3.3: Particle interface (UML tool)

This package also contains additional classes to help the developer to create collections. The first

class allows the developer to create a single Particle (class realParticle). The second creates a collection

of Particles (class FactorygCollectionParticle). There are similar classes for the gVector.

gCollection

get() : T
…
hasNext() : boolean
next() : T
sync(gIterator) : void
…

<<interface>>
gIterator<T>

iterator(): Iterator
get(int i) : T
set(T, int) : void
map(voidFunction f) : void
reduce(voidFunction f, T r) : void
…

<<interface>>
gCollection<T>

Figure 3.4: The most important interfaces to access the gCollection

The gCollection package (figure 3.4) has the interfaces to support the collection. This package is the

same for all domains, but it is also generated by the tool. The most relevant interfaces in this package are

36 3. Proposed approach

the gCollection and gIterator.

All collections implement the gCollection interface. The interface allows index access to each element

(by the get and set), creation of iterators (by iterator, begin, end), and the application of a method to all

elements of a collection (reduce and map). gCollection interface extends the Java List interface which

makes it compatible with the Java API. The gCollection interface also provides a set of methods that allow

the developer to divide the collection into subcollections and sorting the data to improve the spatial locality.

Domain code

In this step, the developer writes the domain code using the collections API. To create a collection, the

developer uses the factory pattern [MW06, Gra02]. In the listing 3.2, the developer creates a collection of

particles. For this, the developer creates a factory of collections of Particle. Subsequently, the developer

uses the factory to create a collection with the specified size.

FactorygCollectionParticle factory = new FactorygCollectionParticle();
gCollection<Particle> mdCollection = factory.creategCollection(size);

Listing 3.2: Example of the creation of a gCollection of particles

The framework allows the entity to exist outside the collection. The developer can insert the entity into

the collection by copy. The listing 3.3 shows how the developer creates a particle. Initially, the developer

creates three gVector. Later, it creates a particle using these three gVector.

gVector position = (gVector) new realgVector(px, py, pz);
gVector velocity = (gVector) new realgVector(vx, vy, vz);
gVector force = (gVector) new realgVector(fx, fy, fz);
Particle particle = (Particle) new realParticle(position, velocity, force);

Listing 3.3: Example of a Particle creation

To add the Particle to the collection, the developer uses the add (listing 3.4). At this step, the framework

API is slightly different from Java. Java adds the object to the collection, but the proposed framework copies

the object values to the collection. There is also the set that specifies the position that the element will

occupy in the collection.

mdCollection.add(particle);

Listing 3.4: Example of adding a particle to a collection

3.2. Programming interface 37

For accessing collections, the approach provides several methods using different abstraction levels

(listing 3.5): index, iterators and higher-order functions. In the index access, the developer specifies the

index using the get(i). In the example, the developer obtained the particle aP1 through this access type

(this is a more traditional way of collections accesses). Index access is flexible to iterate over the collection

since the developer has full control over the index range. On the other hand, index access exposes the

processing order in the domain code, restricting the set of optimisations that can be applied later.

//index access
for(int i=0; i<size; i++){

Particle aP1 = mdCollection.get(i);
System.out.println(aP1);

}

//iterator access
Iterator<Particle> it = mdCollection.iterator();
while(it.hasNext()){

Particle aP2 = it.next();
System.out.println(aP2);

}

//higher -order functions
mdCollection.stream().forEach(aP3 -> System.out.println(aP3));

Listing 3.5: Options to access collections

The second case uses iterators for the particle aP2 (i.e., Java iterators). The approach also provides

STL iterators [SL95]. Thus, the developer has available a begin() that obtains an iterator for the collection

begin. To test if there are more elements to process, the developer compares the iterator with a new

iterator that is obtained by end(). For comparison, it uses the isless(...). To advance to the next element

in the collection, the developer uses inc(). Moreover, the gIterator allows forward and backward iteration

by inc and dec (like the random iterator available in STL).

Finally, the approach supports higher-order functions. In the example, aP3 is obtained with this type

of access. Additionally, the approach provides two other higher-order functions (listing 3.6)2. The map

processes each collection element by applying the provided method. The reduce reduces the collection to

a single element by applying a reduce operation. The second parameter of reduce stores the result and

should be initialised with the neutral element.

Java iterators and streams do not support iterating several collections at the same time. The approach

provides a sync for this purpose. The sync updates the iterator position with the same value as another

iterator.

Listing 3.7 illustrates the program to compute the force between a Particle p1 and the other particles

2map and reduce are an alternative to Java streams: for-each and reduce respectively.

38 3. Proposed approach

...
collection.map(it -> it.setgDouble(it.getgDouble() + 1));
...
gDouble returnvalue = new realgDouble(0.0);
collection.reduce((it, res) -> res.setgDouble(it.getgDouble()+res.getgDouble()), returnvalue);
...

Listing 3.6: Higher-order functions examples

in a collection. To obtain the Position vector, the developer uses getPosition, and then, accesses to the

vector fields through the getX, getY and getZ. To access to particleSet, the developer uses a Java iterator

and a while loop to process all elements. Note that Particle, gCollection and gIterator are interfaces, that

will be implemented by concrete classes according to the layout (this code is layout independent).

// the same method for all data layouts
void forceParticle(Particle p1, gCollection<Particle> particleSet) {

// get coordinates of particle p1
xi = p1.getPosition().getX();
yi = p1.getPosition().getY();
zi = p1.getPosition().getZ();

// iterate over particleSet
Iterator<Particle> iterator = particleSet.iterator();
while(iterator.hasNext()){

Particle p2 = iterator.next();

// compute distance
xx = xi - p2.getPosition().getX();
yy = yi - p2.getPosition().getY();
zz = zi - p2.getPosition().getZ();
(...)

}
}

Listing 3.7: Example of the usage of the data API

3.2.2 Optimisation specification

Data Layout

The approach makes it possible to develop a program where the code has the domain entities (e.g., Particle

interface in the example of listing 3.7), but the layout details are hidden (the developer writes the code

using an API closer to the AoP layout). The layout can be selected subsequently in the execution step,

making it possible to test layouts easily. The developed tool generates two layouts by default: AoP and

3.2. Programming interface 39

SoA. The developer uses the Factory method pattern to choose the layout (see listing 3.2). The developer

can provide one additional parameter to the creategCollection with the layout3.

It is also possible to change the layout on a specific part of the program. For this, the developer uses

the packing optimisation that will be presented later.

Domain decomposition

The domain decomposition enables several optimisations. The developed approach changes the method

parameters by dividing the collections, thereby the problem is processed as several subproblems. For

each gCollection, the developer defines the option for domain decomposition. On the other hand, there are

several options to aggregate the subcollection after the processing. The developer inserts one annotation

in the original method (listing 3.1), and the tool generates a new method. The new method calls the

original method with each subdomain. The developer can choose to call the original or optimised method.

Thus, the optimisation is pluggable (the developer selects between the original or optimised method to

execute).

In the annotation, the developer must specify the name, the map to use (sequential or parallel),

the splits and joins. In practice, listing 3.1 applies the tiling optimisation to the f method. The annotation

processing tool creates a new method (Tiling.f(gCollection p1, gCollection p2)) that calls the original method

n times (each time with one of the subdomains). In this case, it decomposes the collection p2 into several

collections. The developer specified the Virtual split since it has a lower cost. The other alternatives need

to replicate data that imply more memory required and data copies.

The tool selects the number of partitions to generate (the default value is 2), but it can be defined by

a virtual machine argument (Dtile option). The section 3.3 contains details about how the new class is

generated.

Current processors have multiple cache levels, so, sometimes, it is more efficient to partition the

collection several times. The approach supports tiling with multiple levels since the same mechanism can

be applied again by annotating the generated method (Tiling.f(...)).

Packing

The annotation tool supports packing optimisation. In listing 3.1, the collection p2 is decomposed using

the Virtual split. The method creates views over the original P2 collection. Alternatively, the developer can

3Can be an application parameter; aop for layout AoP and soa for SoA layout.

40 3. Proposed approach

choose packing to divide the collection where the data of each subdomain is copied into a new collection.

There are two packing alternatives: Packing and PackingOnDemand.

Packing creates all subcollections in the initial step and writes the results, into the original collection

in the final step.

PackingOnDemand creates a subcollection and copies the data into the subcollection only when nec-

essary. After processing the subproblem, the data is rewritten into the original collection. If the processing

is performed in parallel, there is one subcollection for each thread.

The approach also allows changing the layout of a collection or subcollection. For this purpose, the

developer can use PackingSoA or PackingOnDemandSoA in the split specification (listing 3.8).

@gSplitMapJoin(name="f1", map="map", split={"none", "PackingSoA"}, join={"none", "default"})

Listing 3.8: Example of a change in the layout in the packing of a collection.

Parallelism

The current approach implementation has several options to implement maps and reduces including

sequential and parallel versions. The sequential version processes the elements4 by the natural order.

The developer has several schedulers available formap and reduces with parallel processing: ParallelBlock,

ParallelBlockBalance, ParallelCycle and ParallelDynamic. Figure 3.5 illustrates the supported scheduling

of a collection with twelve elements and three threads.

3
0 1 2 3 4 5 6 7 8 9 10 11

Sequential 0 0 0 0 0 0 0 0 0 0 0 0 -1 Runtime
ParallelBlock 0 0 0 0 1 1 1 1 2 2 2 2 0 Thread0
ParallelBlockBalance 0 0 1 1 2 2 2 2 2 1 1 0 0 1 Thread1
ParallelCycle 0 1 2 0 1 2 0 1 2 0 1 2 Thread2
ParallelDynamic -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

subcollections/elements

Figure 3.5: Map task onto threads (collection with twelve elements and three threads)

The ParallelBlock aggregates elements into blocks. The block size is the number of elements divided

by the number of threads. If the number of elements is not divisible by the number of threads, the last

block is larger.

4An element can be an entity or subcollection.

3.2. Programming interface 41

ParallelBlockBalance improves the performance in the cases where the computation reduces or in-

creases monotonously among collection elements. ParallelBlockBalance distributes the block X to the

thread with the same number in the first half of processing. In the second half, the blocks are processed

in reverse order 5.

In the Cycle scheduling, the thread TT processes the element%number of threads. If the number of

elements is less or equal to the number of threads, this distribution is the same as of Block distribution.

ParalllelDynamic scheduler creates one task per element and a thread pool distributes the tasks by

the threads.

Privatisation

Parallel maps allow parallel execution, but they may originate data races due to concurrent data accesses.

The developer can use the Java mechanisms to avoid data races, however, in HPC problems, these

mechanisms can introduce an unacceptable overhead. An alternative can be the thread private data.

To use this mechanism with the approach, the developer needs to specify the private fields in the

domain model (figure 3.6). The developer adds private attributes into the Annotated element. The UML

tool generates a new split that returns a collection where the private field is visible to a single thread6,

and shared fields can be accessed by all threads. The developer uses the original method, but the data

access methods hide if the field is private or shared.

Figure 3.6: Example for privatisation data in MD case study

5The block X is processed by thread TT-X (TT is the total of threads, and the number of blocks must be equal to TT x 2).
6Private fields are initialised by default to 0.

42 3. Proposed approach

The developer uses the new split which name is equal to the comment defined in the UML tool. At the

end of processing, it is necessary to update the original collection. The developer must define the method

for this purpose. This method receives two parameters: the object pointing to the private collection, and

the object to access the original collection.

In the MD example, the developer needs a private force vector. The figure 3.6 shows how to create

the new split that enables private Force vector in the UML tool. The developer uses this split, in the

gSplitMapJoin (see listing 3.9), to enable private Force vector on each thread. Additionally, the developer

creates and uses the md::reduceMethod to reduce the private fields.

@gSplitMapJoin(name = "PForce", map = "ParallelBlock", split = {"Virtual", "PrivateForce"},
reduce = {"default","md::reduceMethod"})

Listing 3.9: Annotation example using a private collection in second argument.

Listing 3.10 show md::reduceMethod. The developer defines how the c must be added to the ret

(after processing the ret value is copied to the original collection). In this case, the collection’s values are

reduced using the sum operation.

public static void reduceMethod(Particle c, Particle ret){
ret.getForce().setX(c.getForce().getX() + ret.getForce().getX());
ret.getForce().setY(c.getForce().getY() + ret.getForce().getY());
ret.getForce().setZ(c.getForce().getZ() + ret.getForce().getZ());

}

Listing 3.10: Method reduce - sum all private values

Data sorting

Data sorting can be applied to the AoP collections. The consecutive collection elements are placed in

successive memory positions7, to improve spatial locality. The developer just calls the collection’s sort

(listing 3.11).

collection.sort();

Listing 3.11: Using the sorting optimisation

7Exchange the order of objects in memory.

3.3. Implementation 43

Other optimisations

Several optimisations can be implemented manually. In the context of this document, the optimisations

already described have been implemented and tested. However, the developed methodology also simpli-

fies other optimisations, improving the code legibility (it is possible to hide other optimisations within the

gCollection framework).

An example is data alignment optimisation. Aligning collections in Java does not imply that the first col-

lection element is aligned. The approach can align this element by leaving empty spaces and redefining the

access methods (for element n, the methods can access the element n+alignment). Thus, the approach

can transparently align the first element of the collection, which is essential for efficient vectorisation.

Another option is to use the same iterator to process multiple collections (similar to the Zip iterator

implemented in boost 8). Also, the approach allows adding a mechanism to join or split collections. The

mechanism implementation is similar to the virtual collections.

3.3 Implementation

The approach relies on a set of tools to support certain development steps. Figure 3.7 shows the differ-

ent tools that help developers writing programs using the proposed approach. The developer creates the

domain application in the steps represented by blue boxes. The orange boxes are the optimisation spec-

ification steps performed by the developer. Finally, green boxes are the steps where the developed tools

help the developer (one example is the collection generation). In the first step, the developer defines the

domain entities that will be used to generate the required code library. In the next step, the UML tool gen-

erates the library to support the entities and collections. Then, the developer writes the domain code using

the entities and collections of the generated code library. These three steps deliver a complete program

that solves the domain problem, but the developed program is not yet optimised. In the following steps,

the developer identifies optimisations to be applied in order to optimise the program execution time. For

this, the developer uses the profiling tool (PAPIJ) or traditional benchmark/profiling tools. Subsequently,

the developer selects the optimisations that will be applied. After that, the developer can go back to the

previous step to analyse the impact of those optimisations.

8https://www.boost.org/doc/libs/1_64_0/libs/iterator/doc/zip_iterator.html

https://www.boost.org/doc/libs/1_64_0/libs/iterator/doc/zip_iterator.html

44 3. Proposed approach

Annotation tool

PAPIJ + Profiler Tools

UML tool: domain code

Generate classes and interfaces

Generate map
code

Domain model

Domain code

Annotate
method

Select optimisations (layout…)

Private Fields

Optimisation code

Test program

Annotation tool

Figure 3.7: Development tools supporting the steps of the approach

3.3.1 Supporting tools

The approach has a set of tools that help the developer to build and optimise programs. The developed

implementation includes three tools: UML tool, Annotation tool, and Profiler tool. The UML tool generates

a set of interfaces and classes that implement collections for the problem domain. The Annotation tool

creates classes to implement the domain decomposition. The Profiler tool enables the profiling of Java

programs through annotations.

UML tool

The UML tool creates the interfaces and classes to support a collection of domain entities. These interfaces

and classes are compatible with the Java List interface. The UML tool currently implements two layouts:

AoP and SoA. The UML tool uses two eclipse plugins: the first allows the developer to specify the domain

model and the second generates the classes and interfaces. The first plugin is Papyrus9, a visual tool for

developers, used to define the domain model (e.g. see figure 3.3). The approach is not dependent on

this plugin, since it is possible to use other tools to specify the domain model. The second plugin is the

9https://eclipse.org/papyrus/

https://eclipse.org/papyrus/

3.3. Implementation 45

Acceleo that provides the Acceleo Query Language (AQL)10 to specify model transformations in Java code.

We developed modules in Acceleo to generate the interface and classes that support collections and

the domain API. The tool generates two different components: the collections API and the domain API.

The collections API is domain-independent, so it can be a pre-defined package that the developer imports.

However, we decided always to generate this package. The tool generates interfaces and classes to

support the domain API based on the domain model.

The tool generates the code in five steps (figure 3.8)11.

1º
gCollection API

2º
Domain API

3º
AoP layout

3º
SoA layout

4º
Object Layout

5º
Packing Collection

5
Packing On Demand

Collection

5º
Virtual Collection

Figure 3.8: Steps to generate interfaces and classes

First, the tool generates interfaces to implement the collections API. The tool uses code templates

to create those files. The step generates seven files that are placed in the gCollection package. The

first is the interface gCollection that defines the API to access the collection. This interface extends the

Java List interface. The gCollection interface also provides several higher-order functions implementations

through the default methods or static methods (e.g., maps for gSplitMapJoin). The parallel map used

in gSplitMapJoin has additional complexity to deal with concurrent access. Parallel PackingOnDemand

creates a packing collection per thread, so each thread does not use data from another thread. The

parallel reduce uses a similar approach to enable concurrent accesses. This step also generates the join

method. gSplitMapJoin uses this method for the data privatisation technique. The method allows the

developer to reduce the data defining only one simple method.

The package also contains ParametersBiFunction, ParametersFunction, voidBiFunction and voidFunc-

tion that extends the corresponding Java interface Function to accommodate several parameters configu-

rations. The higher-order functions and the gSplitMapJoin mechanism require these interfaces.

This step also generates the gIterator. The class implements the iterator API and extends the Java

iterators API: Iterator, ListIterator. All objects implement the interface gCopy. This interface has a simple

method that enables to copy of the object (similar to the Java clone). Finally, gException is a class to throw

exceptions in gCollections.

10https://www.eclipse.org/acceleo/documentation/aql.html
11The order of the steps is defined for this presentation, but it is possible to generate the classes in any order.

https://www.eclipse.org/acceleo/documentation/aql.html

46 3. Proposed approach

Secondly, the tool generates concrete domain interfaces and classes that do not depend on the layout.

For each entity, the tool generates an interface, an abstract class, a concrete class (e.g., realParticle) and

a Factory class. These interfaces and classes are available in the package defined by the developer in

the domain model (figure 3.3). The interface has the same methods specified by the developer in the

domain model. The developer can use the abstract class to implement additional methods of the entity.

The tool converts the get and set into the class fields and generates those methods that implement the

entity interface. The developer can use this concrete class in specific cases: initialise the gCollection; the

layout AoP uses an array of this class; etc. Finally, the Factory class enables the developer to create a

collection of the entities.

The third step generates two packages providing the concrete layout implementations: the aop pack-

age has classes to support the AoP layout, and the soa package supports the SoA layout. For each entity,

there are two classes in each package: one to support the gCollection; another to support the iterator over

the gCollection. The AoP collection is an array of the concrete class (generated in the first step). For the

SoA collection, all fields of the entities are arrays of primitive types. The tool analyses the getmethods and

flattens the structures. It means, if the type is primitive, the tool adds an array of this type, otherwise the

tool analyses the type recursively until it is primitive. For instance, in the MD case, the Particle interface

has three gets that return gVector. The tool analyses the first get (getPosition), since it returns a gVector

(non-primitive type), the tool analyses this object (gVector). gVector has three gets that return doubles.

Thus, the tool adds three arrays to the collection Particle. Something similar happens to getVelocity and

getForce. The listing 3.12 shows the fields definition of a Particle collection with AoP (grey color) and SoA

(blue color) layouts.

public class gCollectionParticle implements gCollection<Particle>{

public realParticle gCollection[]; public double PositionX [] ;
public double PositionY [] ;
public double PositionZ [] ;
public double VelocityX [] ;
public double VelocityY [] ;
public double VelocityZ [] ;
public double ForceX [] ;
public double ForceY [] ;
public double ForceZ [] ;

int size = 0;
int globalPosition=0;

(...)

Listing 3.12: Implementation of collection fields

The iterator implementation is specific for each layout. However, in both cases, the iterator is a pointer

3.3. Implementation 47

to the concrete collection (e.g., gCollectionParticle) and has an integer to store the element position in the

collection.

If an entity is composed of other entities an auxiliary object is generated, which provides a bridge

to access that data. For instance for a Particle, the tool creates three classes: gBridgePosition provides

access to the position, gBridgeVelocity to the velocity data and gBridgeForce to access to the force. The

listing 3.13 shows how the developer accesses the value x in the position. The getPosition creates an

object gBridgePosition. In the AoP, the getX accesses to the Particle and returns the double, using the

getPosition and getX. For SoA, the getX returns a double from the PositionX array. In this specific case, it

needs to create another object.

public gVector getPosition (){
return new gBridgePosition(this);

}

a) Method to access the vector position

public double getX (){
return this.gBridge.gCollection.gCollection return this.gBridge.gCollection.PositionX
[this.gBridge.position].getPosition().getX(); [this.gBridge.positionArray];

}

b) Method to access the coordinate X

Listing 3.13: Example of gIterator methods on composed entities

The tool also generates code to implement private data at this step. The tool creates a private collection

(figure 3.9, the collection has eight elements and the example uses two threads). For the AoP layout (figure

3.9a), the private collection uses an additional array to save private fields. This array is composed by a

new class with capacity to save all private data. For the SoA layout (figure 3.9b), the tools creates multiple

arrays (one array for each private field). For all layouts, the tool extends the original gCollection, adding

private collection class. The extended class returns a special iterator where shared fields use the original

collection, and the private fields use the private arrays.

In the fourth step, the tool generates the classes to support a generic collection. In the approach,

the gCopy is the most generic interface available (all objects implement the gCopy interface). This step

generates two classes: one to implement the gCopy collection and the other is an iterator to the gCopy

collection. The collection has an array of gCopy which implies the use of the AoP layout. The iterator is

similar to other gIterator implementations (it has a reference to the gCopy collection and an integer to save

the element position in the collection).

The tool uses this collection to implement the domain partition using only a generic implementation

to support the partitions. So, it uses multiple partition levels. The number of elements in these collections

48 3. Proposed approach

particles

P0

P1

P2

P3

P4

P5

P6

P7

Particle Collection
particles

PrivateForce
Collection (T0)

particles

privateForce

PrivateForce
Collection (T1)

particles

privateForce

privateForce

F0

F1

F2

F3

F4

F5

F6

F7

privateForce

F0

F1

F2

F3

F4

F5

F6

F7

(a) AoP layout

Particle
Collection

positionX

forceX…

forceX

…

Private Force
Collection (T0)

positionX

…

forceX

…

Private Force
Collection (T1)

positionX

…

forceX

…

…

…

positionX

private
forceX

private
…

private
forceX

private
…

(b) SoA layout

Figure 3.9: Private fields implementation

is usually small, so the overhead due to the layout12 is negligible in performance.

The last step generates the classes to implement domain partition. It generates three packages: one

supports virtual collections, and the other two packages support the two variants of packing of collections

(basic packing and lazy packing). The tool uses code templates to generate these packages. Each package

has three classes: the first supports the collection of subcollections; the second is an iterator for that

collection of subcollections; last is the subcollection implementation. The differences among those three

packages are mostly in the implementation of the subcollection. gCollectionVirtual13 (figure 3.10a) is a

view from the original collection. The class has a reference to the original collection and two integers: one

to the start position and the other to the end position of the subcollection. The methods that access the

subcollection return a gIterator to the original collection, so this class adds low overhead.

The gCollectionPacking14 class (figure 3.10b) has a collection of the same type as the original collec-

tion, but with a smaller size. This packing assumes the creation of all packing collections at the beginning,

and at the end, updates the original collection. This option duplicates the collection footprint in mem-

ory (data replication). Moreover, it has an initial overhead since it creates all packing structures at the

beginning.

PackingOnDemand reduces the initial and final cost to manage the subcollections and also reduces

the size needed to save the data. All instances of the gCollectionPackingOnDemand use the same packing

12The use of a generic collection to implement all kinds of domain partitions implies the usage of the AoP layout.
13Class that contains one subcollection when the developer uses the splitVirtual.
14Class that contains one subcollection when the developer use splitPacking.

3.3. Implementation 49

originalCollectiongCollection
Virtual

start

end

(a) Virtual partition

originalCollectiongCollection
Packing

packingCollection

(b) Packing partition

Figure 3.10: Domain decomposition implementation

collection to save the data. The data is packed into the subcollection before processing. When processing

is complete, the data is rewritten in the original collection. For this purpose, the maps use the methods

read and write available in interface Parameters 15. If the map is parallel, it needs to create a packing

collection for each thread, so each thread allocates a new collection to store the packing.

Annotation tool

The Annotation tool generates the code for domain decomposition, hiding implementation details from the

developer. The tool uses the APT 16 tool available in Java to process the user-provided annotations.

The tool generates two methods (listing 3.14): the first has the same API as the original annotated

method but places the method parameters into one Parameters class; the second receives that parameter

class and calls the original method.

public static void force(gCollection<Particle> p1, gCollection<Particle> p2){
PForce aux = new PForce(p1, p2);
gCollection.mapParallelBlock(PForce::force, PForce::split, PForce::join, aux);

}

public static void force(Parameters parameters){
//calls original method
md.force(parameters.p1, parameters.p2);

}

Listing 3.14: Pseudo-code of generated methods (listing 3.9)

The tool also creates a split that decomposes the problem domain. For this purpose, it generates

parameters collections gCollection. Split returns a collection of collections where each element represents

15read loads the data to packing and write store the data in the original collection.
16https://docs.oracle.com/javase/7/docs/technotes/guides/apt/

https://docs.oracle.com/javase/7/docs/technotes/guides/apt/

50 3. Proposed approach

a subdomain. Finally, it aggregates the subdomains into Parameter collection.

Listing 3.15 shows a split method generated by the Annotation tool. The method starts by splitting

the collections through the strategy specified by the developer. In this example, it uses a split virtual to

divide the collection p1. The p2 collection uses a specific split defined by the developer in the UML tool:

the splitThreadData generates subcollections where some fields are private to each thread. In the UML

tool, the developer defines the label PrivateForce which identifies this special split. The next step creates

subdomains. In the loop body, it creates the subdomains. PForce class saves the data relative to each

subdomain.

public static gCollection<PForce> split(Parameters obj){
int numberblocks = Integer.getInteger("tile", 2);
PForce parameters = (PForce) obj;

//collections split
gCollection<gCollection<Particle>> aux1 = parameters.p1.splitVirtual(numberblocks);
gCollection<gCollection<Particle>> aux2 = parameters.p2.splitThreadData("PrivateForce",

numberblocks);

//create a new collections of parameters
gCollection.gCollection<PForce> ret = new gCollection.Object.gCollectiongCopy(numberblocks);

//creates all new parameters and put in the collection
for(int i=0; i < numberblocks; i++){

PForce newparameters = new PForce(aux1.get(i), aux2.get(i));
ret.set(newparameters, i);

}
return ret;

}

Listing 3.15: Split generated for example listing 3.9

The tool also generates the join (listing 3.16) that updates the original collection. This example uses

the default methods to join the p1 collection: the p1 uses a splitVirtual so the join only returns the original

collection since in this split the writes are performed directly in the original collection. For p2, it needs

to join each private collection to the original collection. To do this, it calls the methods defined by the

developer (listing 3.10) to join all private collections.

If the developer uses the packing option, the annotation tool generates similar code, replacing the

split and reduce, with the equivalent versions. The read and write methods were created to support the

PackingOnDemand. So before the method is called the data is loaded into the packing collection and after

processing it is returned to the origin location. The tool generates both methods.

3.4. Tool limitations 51

public static Parameters join(gCollection<PForce> obj){
int numberblocks = obj.end().positionArray();
PForce ret = new PForce(obj.get(0)._original_p1, obj.get(0)._original_p2);
for(int i=0; i < numberblocks; i++){

PForce collection = (PForce) obj.get(i);
((gCollection<Particle>) collection.p2).joinThreadData(md::joinPrivateForce, (gCollection<

Particle>) ret.p2);
}
return ret;

}

Listing 3.16: Join generated for example listing 3.9

Profiler tool

The profiler tool measures the performance of annotated methods, allowing the developer to obtain some

performance metrics from a specific method in a simple way. The tool has two operating modes. The

first uses the Performance Application Programming Interface(PAPI)17 [TJYD10] to obtain the hardware

counters. The second uses the currentTimeMillis() to measure the execution time.

The profiling intercepts the specific methods to add the code for profiling. For this, we use AspectJ to

intercept code in two points. The first point is the main method since it needs to start the PAPI library (for

the first mode). This also adds the code to print the measured values at the end of the program execution.

The second point intercepts the annotated method. At the beginning of the method, it adds the code to

start to measurement. In the end, it stops the measurement and saves the values into a HashMap.

In both modes, the tool measures the values for each thread individually. Each measure adds the

value in the HashMap whose key is the thread identifier. Thus, in the end, it prints the values obtained by

each thread.

3.4 Tool limitations

The developed tools have several limitations that will be discussed in this section. The first limitation is

the lack of support for polymorphism: entities in a collection should all belong to the same concrete class.

Section 6.2 discusses how the limitation can be removed. The tool does not support this feature since

the implementation is too complex, and polymorphism is not commonly used in scientific applications.

Moreover, the solution could add overhead to the execution time.

The second limitation is that collections do not support null elements. This limitation arises from the

support to the SoA layout, which does not support null elements by default. To support null elements,

17https://icl.utk.edu/papi/

https://icl.utk.edu/papi/

52 3. Proposed approach

this layout needs one boolean array that indicates if the values in the collection are valid or not 18. This

solution needs more space to save the collections and adds overhead (to test if one element is valid).

The third limitation is the current support of only two layouts: AoP and SoA. The tool does not support

the AoS layout since Java does not directly support this layout. For this layout, there are two options: first,

if all fields are of the same type it is possible to implement this layout with the manipulation of the indices;

second, use of the Unsafe class that allows the writing of low-level code. Another option is the support for

hybrid layouts, but these layouts are not attractive in our case studies.

A fourth limitation is a restriction on the type of methods where the mechanisms can be applied. The

gSplitMapJoin does not support methods with a return value since, for the parallel execution, the return

value requires an additional join of the values returned by all threads.

The last limitation discussed, the tool only supports simple data structures with one dimension (e.g.,

List). The Matrix Multiplication case study needs a new interface and classes. These interfaces and

classes are generated manually using the same approach principles. However, JCF supports other types

of structures: hash-map, stack, etc. In the case studies used in Empirical Study of Usage and Performance

of Java Collections [CASL17] the List is used in 56% of the cases, the second most used is HashMap

with 28%. Moreover, most scientific codes rely solely on simple arrays of data. For this reason, this work

focused only on the List container.

18The problem is more complex with composed objects.

Chapter 4

Performance evaluation

This chapter evaluates the performance and programmability of the developed framework. The approach

proposes a high-level API for HPC programs, so it is crucial to ensure minimal runtime overhead. One

key point of the proposed approach is to provide mechanisms to test common data locality optimisations

quickly. Thus, the performance tuning process is simplified, allowing fast development of an optimised

version.

The performance is evaluated with five applications that test four different aspects. The first test uses

two simple algorithms, which assess the basic programming interface and the base-line performance. The

second evaluates the approach in the context of a Java framework for scientific applications whose code

was already developed. The third application tests the gSplitMapJoin mechanism and the optimisation

composition. The last test evaluates the extensibility of the framework with a new container (e.g. matrix).

The first test evaluates programming interface overhead in a simple context in order to also identify

the causes of these overheads. For this, the evaluation uses two different algorithms whose results were

also used for tuning the approach. This evaluation analyses several ways to iterate over collections:

the traditional for, the Java Iterator, the gIterators, the higher-order function and Java streams. The first

algorithm sums all the collection elements. However, the vectorisation is complex (Java 8 does not support

the vectorisation of reducing operations). The second algorithm is daxpy. daxpy calculates the y = alpha * x

+ y operation for each element in the y collection, where alpha is a constant and x is the element in another

collection. Thus, the daxpy successively operates over two double values from two distinct collections at

the same time. This case study allows auto-vectorisation, so the goal is to analyse the iterators impact on

vectorisation (i.e., the compatibility with auto-vectorisation). The use of Java streams is straightforward in

the first algorithm. However, the second case is only implementable if the two collections are joined into

a single collection. This evaluation can also assess the performance of parallel streams and higher-order

53

54 4. Performance evaluation

functions. The analysis of this case study was used to define the parallel map implementation/schedule

to be used by default.

The second evaluation analyses, how the approach can be applied to a Java framework. For this, the

evaluation uses the JECoLi framework. JECoLi is a Java framework for evolutionary computing that uses

Object Oriented programming. The JECoLi uses a List of generic objects. In practice, if we analyse the

usage examples provided in the framework repository the List can be of Double, Integer or Boolean. Our

challenge is how to transform a generic list into several concrete lists. The concrete lists allow using the

SoA layout to improve performance.

The third evaluation uses a more complex data structure. The base code comes from the JGF moldyn

benchmark [BSW+00]. Moreover, this evaluation allows applying a large set of optimisations supported by

the approach. The first optimisation is to improve the AoP layout by sorting objects. The second modifies

the base AoP layout to a SoA layout. The third uses tiling optimisation so that each subdomain remains in

the cache. Then, it uses parallel execution mechanisms, where it will test various scheduling options and

the privatisation optimisation. In this case, it is also possible to make compositions of optimisations, as an

example, using two tiling levels. Overall, this case tests several features of the gSpliMapJoin mechanism.

To finish this evaluation, it will analyse the usage of a new API closer to that domain.

Finally, the last evaluation analyses the approach extensibility, with the calculation of matrix multipli-

cation. In this case, the container is a matrix of doubles rather than a list, so, it requires new methods to

access a matrix. This evaluation tests the packing mechanisms together with parallel execution to improve

performance. This application uses a special matrix multiplication kernel developed in Java with low-level

optimisations (e.g., a non-trivial low-level kernel). It also tests if the approach is compatible with these

kinds of low-level optimisations.

4.1 Methodology

The section characterises the test environments and describes themethodologies used for each evaluation.

The results were obtained in the SeARCH1 cluster using the compute-662-6 node. The node has

two Intel Xeon E5-2695v2 processors with the Ivy Bridge architecture. Each processor has 12 cores and

supports 24-threads. The processor supports Intel Turbo Boost technology which increases the processor

frequency according to its design limits. As a rule, the frequency is increased to the maximum when

only one core is heavily used. In this evaluation, the frequency is fixed at 2.4GHz, allowing the results to

suffer less variation caused by several factors such as environmental temperature. Moreover, it allows

1http://search6.di.uminho.pt/

http://search6.di.uminho.pt/

4.1. Methodology 55

more accurate scalability analysis in parallel execution since the frequency does not decrease with more

threads. The machine has three levels of cache memory. The first two levels are private to each core.

The first level is divided into instructions and data cache and has an access cost of 4 or 5 cycles. Its size

is 32KiB for instructions and 32KiB for data. The second level has a size of 256KiB and an access time

of 12 cycles. The L3 cache is shared by all processor cores and has a total of 30MiB. Its access time is

approximately 30 cycles. The node has two processors, so there is a total of 60MiB of L3 cache.

A personal machine is used to obtain the execution profile, using the VisualVM tool. The VisualVM

can obtain the profile through two methods: Profiling and Sampling. The Profiling mode intercepts the

method calls and measures execution time. The Sampling mode interrupts the execution every delta time

to analyse the call stack. This evaluation uses the sampling mode to obtain the execution profile since it

introduces less overhead in the analysis, and it does not restrain compiler optimisations.

The programs execution use the JVM from the OpenJDK 1.8.0 20 package. Additionally, the evaluation

uses several JVM tuning parameters: -Xmx32G, -XX:LoopUnrollLimit=100, -XX:+UseCompressedOops and

-XX:+UseNUMA. -Xmx defines the maximum size occupied by the heap. Some evaluations need more

memory than the default value. -XX:LoopUnrollLimit makes unrolling optimisation more aggressive. -

XX:+UseCompressedOops forces the use of compressoops which reduces the size occupied by pointers.

-XX:ObjectAlignmentInBytes=32 forces objects to be aligned to 32 bytes. With -XX:+UseNUMA the compiler

privileges the object’s allocation in the memory closer to the processor.

The first evaluation studies the overheads of the approach at a low level. For this propose, the evalu-

ation discards the first five executions of the algorithm since this discards the cost of loading data to fast

memory and the JiT compile time of the program. The main method executes ten times to increase the

problem granularity (for a better clock resolution). The program runs 100 times, and the values presented

in this section are the median of values. This evaluation analyses the performance values computed

per element since these allow comparison with theoretical values. The evaluation analyses the assembly

instructions in order to understand the costs or benefits of each option.

The JECoLi evaluation studies the three algorithms that use the largest sized collections (collections

with more than 1000 elements). Other algorithms provided in the JECoLi repository are not attractive for

performance improvements since the collections are small.

MD evaluation compares the base JGF version with a base implementation using the proposed ap-

proach. After this comparison, the evaluation optimises the base implementation with the tools available.

The evaluation analyses the impact of each optimisation on the code. Finally, the evaluation tests a new

code version using a model of entities closer to the domain.

MM evaluation tests two distinct layouts: vector or array of arrays. The first analysis compares these

56 4. Performance evaluation

two versions to choose the best representation. After this step, the evaluation applies other optimisations

available in the approach. Finally, the evaluation compares optimised versions with existing MM libraries

for Java.

4.2 Programming interface

This section evaluates the base programming interface. For this, two simple algorithms are used to analyse

and quantify the overheads of different programming interfaces. The first algorithm sums all elements in

the collection. The second algorithm multiplies one constant with each element in one collection and

adds this result to the corresponding element in another collection. These two simple algorithms allow

obtaining performance counters per element that can be compared with the theoretical performance.

4.2.1 Sum

The Sum benchmark sums all values of a collection. To sum each value, it reads the value from the

collection and adds this value to the result. In the most efficient version, the variable result remains in a

register, and the value is only saved in the memory when the processing finishes. This case requires only

one X86-64 instruction2 to sum each element. This operation implies a memory read and one arithmetic

operation.

The benchmark analyses the two layouts available in the approach: AoP and SoA. AoP uses an ArrayList

from the JCF. The ArrayList is an array of objects, which are instances of the class Double. The developed

framework implementation also uses an array of objects. However, the elements are instances of class

realDouble. The SoA layout uses an array of primitive doubles.

The evaluation analyses two problems sizes: 6.4x105 elements (∼5MiB) and 5.12x107 elements

(∼390MiB). In the AoP layout, each element is an instance of class Double or realDouble and consumes

32 bytes3, so the effective size of the problem is ∼19MiB and ∼1562MiB. For all layouts, in the small

size, the problem fits in the L3 cache, while in the large size, it requires accesses to main memory.

Figure 4.1a shows the impact of the layout. For the large size, the SoA layout is ∼4 times faster

than the AoP layout (Cycles Large bars). The AoP layout requires more instructions since it performs two

loads per element (load the object pointer and load the data object, see instructions bars in the figure).

Moreover, the data access performance is worse for two reasons: the effective data size increases; and

2X86-64 instructions support one arithmetic operation and one load or store operation in one instruction.
3Objects are aligned to 32bytes.

4.2. Programming interface 57

0

2

4

6

8

10

12

14

16

Cycles Small Cycles Large Instructions

pe

r e
le

m
en

t

aop soa

(a) Time and instructions performance

0.0

0.1

0.2

0.3

0.4

0.5

0.6

L1 L2_Smal l L2_Large L3_Large

pe

r e
le

m
en

t

aop soa

(b) Memory access performance

Figure 4.1: Performance of AoP and SoA layout (Java version).

the elements are not contiguous in memory (less spatial locality).

The results presented in figure 4.1b show that L1 misses are close to the expected number of misses.

The cache line has 64 bytes. In the SoA layout, each element takes 8 bytes. Thus, on a miss eight

elements are loaded that results in 0.125 misses per element which is in line with the measured 0.13 per

element. In the AoP layout, one object takes 32 bytes causing 0.5 misses to load the object. Additionally,

it needs to read the pointer to the object from the array, and each pointer uses 4 bytes4. Each miss forces

the load of 16 pointers (64bytes/4bytes) to the cache, resulting in 0.0625 misses per element. Adding

the two values, the misses per element are 0.5625, which is close to the measured value of 0.57.

The small size has better performance (fewer cycles per element), since all elements, in the collection,

are in the cache, so there are no accesses to the main memory (i.e., there are no L3 cache misses).

Table 4.1 summarises the tested implementations and presents their acronyms. The lines represent

the modes used for processing collection, and the columns show the layouts and approaches (Java and

GasPar). Java versions use distinct codes for each layout: AoP (see listing 4.1, green code) and SoA (see

listing 4.1, grey code). GasPar uses a similar code to Java AoP5 for both layouts: AoP and SoA (see listing

4.1, blue code).

The first code variant does not use iterators (listing 4.1a), it accesses the element by its index (get(i)).

The evaluation tests this code with all layouts, which creates four versions (table 4.1 line basic version):

aop uses an ArrayList<Double>; soa uses a primitive array of double; gaop uses the GasPar with the AoP

4compressedoops force the pointers to use only 32 bits.
5Not the same due to Java’s autoboxing and unboxing.

58 4. Performance evaluation

Java GasPar

layout AoP layout SoA layout AoP layout SoA

basic version aop soa gaop gsoa

Java iterators faop fsoa fgaop fgsoa

GasPar iterators - - ggaop ggsoa

Table 4.1: Acronym of each sum implementation

for(int i=0; i < collection.size(); i++) {
result += collection.get(i); result += collection[i]; result += collection.get(i).getValue();

}

a) basic version: aop, soa, gaop and gsoa

for(Double value: collection) { for(double value: collection){ for(gDouble value: collection) {
result += value; result += value.getValue();

}
or
Iterator it = collection.iterator();
while(it.hasNext()){
result+=it.next(); //not support result+=it.next().getValue();

}

b)Java iterators: faop, fsoa, fgaop and fgsoa

gIterator it = collection.begin();
for(;it.isless(collection.end()); it.inc()){

result += ((gDouble) it).getValue();
}

c) GasPar iterators: ggaop and ggsoa

Listing 4.1: Different codes for sum

layout; gsoa uses the GasPar with the SoA layout.

The second variant uses Java iterators to access the elements (table 4.1 line Java iterators) and

includes tests for the same layouts. The two codes in listing 4.1b produce the same bytecode, thus, the

variants have the same performance6. In the soa, it is mandatory to use the first specification of listing

4.1b, since explicit iterators are not supported on arrays of primitive types. The second specification is

more generic, as it allows the developer to navigate the collection by skipping elements, for instance.

The third variant uses the GasPar iterators (listing 4.1c). It supports the two layouts: ggaop for the

AoP layout and ggsoa for the SoA layout (table 4.1 line GasPar iterator).

Figure 4.2 summarises the performance of the different AoP implementations. In general, the GasPar

6https://docs.oracle.com/javase/specs/jls/se8/html/jls-14.html#jls-14.14.1.2

https://docs.oracle.com/javase/specs/jls/se8/html/jls-14.html#jls-14.14.1.2

4.2. Programming interface 59

0

2

4

6

8

10

12

14

16

18

20

aop gaop faop fgaop ggaop

#	

pe
r	
 e

le
m
en
t

Cycles	
 Small Cycles	
 Large Instructions

(a) Time and instructions performance

0

0.1

0.2

0.3

0.4

0.5

0.6

aop gaop faop fgaop ggaop

#	

pe
r	
 e

le
m
en
t

L1 L2_Small L2_Large L3_Large

(b) Memory access performance

Figure 4.2: Performance analysis for AoP layout

collections use fewer instructions to calculate the sum. Nevertheless, it does not imply a reduction in the

execution time in the same proportion since the number of misses in L2 and L3 are higher (L1 misses

are equal in all versions).

The use of iterators introduces a performance penalty (see aop vs faop and gaop vs fgaop) since it

needs to store the index in memory (table 4.2). For the Java implementation, these costs are higher. One

the other hand, GasPar collections have a smaller penalty: ∼0.75 additional instructions per element that

imply ∼0.22 cycles per element.

The SoA layout generates simpler code in all versions (detailed table 7.1 in appendix). However, the

GasPar has one more instruction on each loop body. It means that there is one more instruction per 16

elements resulting in equivalent performance.

load object test null checkcast store index store result unroll

aop $$ $$ $$ - $$ 8

gaop $$ - - - $$ 8

faop $$ - $$ $$$ $$ 4

fgaop $$ - - $$ $$ 8

ggaop $$ - - $$ $$ 8

soa - - - - $ 16

gsoa - - - $ $ 16

Table 4.2: Groups of instructions generated (assembler instructions in appendix listings 7.1, 7.2, 7.3 and

7.4)

Table 4.2 shows the purpose of the instructions generated that explain the differences in #I among

the AoP implementations tested. The first column refers to if the version needs to load the object address

60 4. Performance evaluation

(element). In the examples (blue instructions in listing 4.2), typically, this operation requires three instruc-

tions. The first instruction accesses the array to load the object address. The second instruction copies

the address into another register (this instruction has zero latency), and the last calculates the real object

address7. These instructions are mandatory in the AoP layout but do not necessary in the SoA layout.

The “test null” column indicates if the version generates code to test if the object is null (yellow

instructions). This test consists of two instructions. The first instruction tests if the pointer to the object is

zero (test null), if so, the second instruction jumps to the null pointer exception handler code.

The third column shows what versions test the object type. The examples (red instructions) use three

instructions. The first instruction copies the object type into a register. The second compares the register

contents against the expected type. If the type is incorrect, the third instruction jumps to the exception

handler code.

The “store index” column shows the cases where the object index is written to memory. If there is

one write per element, the table shows symbol $$. The symbol $$$ indicates an additional overhead

(e.g., the use of two variables per index). In these cases, Java has additional overhead since the ArrayList

iterator also stores the last element index accessed. In the example (green instructions), there are four

instructions for this operation. The first two operations calculate the new index. The third operation stores

the index. The last operation stores the index in another memory location. gsoa writes the index in memory

one time per loop body (symbol $).

The “store result” column identifies when the sum result is written to memory. “$$” writes once per

element. “$” writes once per loop body. Typically, it needs one instruction for this operation (orange

instructions).

The “unroll” column shows how many elements are processed in one loop body. This technique was

described in section 2.3.1.

The table 4.2 explains why the GasPar collections generally use fewer instructions to calculate the

sum. The approach does not generate the instructions to test the object type and test if the pointer is null

since the JVM can identify that the collection uses one object type, and the objects are not null.

Java vs GasPar

The evaluation now focuses on a comparison of GasPar with the traditional approaches. Figure 4.3a shows

that without iterators, GasPar has similar performance to Java.

This evaluation has a bottleneck in the data access (the best version needs one memory access per

7The program uses the option compressedoops and aligns objects to 32 bytes. Thus, the last five digits of the memory

address are zero. This option removes these bits, storing only 32 bits, but it needs to add the zeros to use the stored value.

4.2. Programming interface 61

//Assembly for aop
(...)
mov 0x18(%rdi,%rbp,4),%edx
(...)
mov %rdx,%r8

shl $0x5,%r8

test %r8,%r8

je 0x00002b3f5c3fabd2

mov 0x8(%r8),%r9d

cmp $0xed08,%r9d

jne 0x00002b3f5c3fac5b
(...)
vaddsd 0x10(%r8),%xmm0,%xmm0

vmovsd %xmm0,0x90(%rcx)
(...)

//Assembly for faop
(...)
mov 0x18(%rbx,%rbp,4),%esi
(...)
mov %rsi,%r10

shl $0x5,%r10

mov %r8d,%ecx

add $0x3,%ecx

mov %ecx,0xc(%r9)

mov 0x8(%r10),%eax

cmp $0xed08,%eax

jne 0x00002b7a60824652

mov %ecx,0x10(%r9)

vaddsd 0x10(%r10),%xmm0,%xmm0
(...)
mov $0x1d992fa280,%r10

vmovsd %xmm0,0x90(%r10)
(...)

Listing 4.2: Example of assembler instructions to calculate one element in aop

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Small Large

aop/gaop

re
la

tiv
e

pe
rfo

rm
an

ce

Cycles Instructions

(a) Without iterators

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Small Large

faop/fgaop

re
la

tiv
e

pe
rfo

rm
an

ce

Cycles Instructions

(b) Java iterators

Figure 4.3: Comparative performance of Java and GasPar (AoP layout)

each sum operation). For this reason, an improvement in the number of instructions has less impact on

performance. In the small size, the GasPar has better performance since it removes the instructions to

perform type checking and to test if the object exists (table 4.2, red and yellow columns). For the large

size, the lower performance is due to a small increase in the number of misses in L3. The footprint in

memory is not the same in both implementations since the allocation of objects is different: the GasPar

creates all objects when creating the collection; the JCF version creates the objects later.

62 4. Performance evaluation

The GasPar fgaop has better performance than the pain Java faop due to a stronger reduction of

number of instructions (figure 4.3b). This improvement is most noticed in the small size since there are

no accesses to memory, so the reduction in the number of instructions reduction creates a bigger impact.

In the large case, the number of instructions reduces in the same proportion, but there are accesses to

the main memory (misses in L3). This memory bottleneck implies an equivalent performance.

0.0

0.2

0.4

0.6

0.8

1.0

Small Large

fgaop/ggaop

re
la

tiv
e

pe
rfo

rm
an

ce

Cycles Instructions

Figure 4.4: GasPar iterator performance

Figure 4.4 shows that the GasPar iterator has similar performance to Java-based iterator despite the

increase in the number of instructions. These additional instructions have a minimal impact on perfor-

mance since they are more two mov instructions (comparing listing 7.4 with listing 7.3 in appendix): one

to copy a register to another register; the other moves a constant into a register).

We now focus on the SoA layout. The SoA layout uses only one instruction to load data and does

not use instructions to test the object (check the object type and check if the object is not null). The

several versions developed with SoA layout present similar performance, despite having a small difference

in the number of instructions (see listing 4.3). The Java versions need 21 instructions to process 16

elements (∼1.31 instructions per element), while the GasPar need 23 instructions (∼1.44 instructions

per element). The first additional instruction loads the result variable into a register, and the second

additional instruction is generated due to an optimisation problem (writes to the same memory position

in consecutive instructions).

Java streams vs GasPar

Java 8 introduced the stream API to simplify the processing of elements in collections. Java stream

provides the method sum to sum all collection elements (listing 4.4). The AoP implementations need

4.2. Programming interface 63

//Assembly for SoA
(...)
vaddsd 0x10(%r11,%rbx,8),%xmm0,%xmm0
(...)
vmovsd %xmm0,0x90(%r10)
(...)

//Assembly for gSoA load and sum element
(...)
vaddsd 0x10(%r10,%r11,8),%xmm0,%xmm0
(...)
mov $0x1f2abbdea0,%r8

vmovsd %xmm1,0x90(%r8)

vmovsd %xmm0,0x90(%r8)
(...)

Listing 4.3: Instructions need to calculate one element in versions soa and fgSoA

to convert the stream to Doublestream, with the mapToDouble. The operation converts the Double object

sequence into a new sequence of primitive double. SoA layout only needs the summethod. These versions

(from listing 4.4) are referred as csaop and cssoa. The sum uses the Kahan algorithm [Kah65] to reduce

sum errors, but it increases the sum operation complexity from one arithmetic operation to four operations.

//Layout AoP (csaop)
result = collection.stream().mapToDouble(Double::doubleValue).sum();

//Layout SoA (cssoa)
result = Arrays.stream(collection).sum();

Listing 4.4: Java code for stream implementations

The evaluation used new versions to perform the sum operation (code is similiar to the listing 4.4)with

GasPar collections: one with the AoP layout (csgaop) and another with the SoA layout (csgsoa). These two

versions use the same code alike csaop 8. Table 4.3 summarises the acronyms for these versions.

Java GasPar

layout AoP layout SoA layout AoP layout SoA

stream based csaop cssoa csgaop csgsoa

Table 4.3: Acronym of each sum with compensation implementation

The figure 4.5 shows that the GasPar collections present a performance similar to Java in both layouts.

The csaop improves slightly the performance since there is a decrease in the number of instructions. As

the table 4.4 shows, the compiler removes the object checks (it does not test if it is null and its type).

However, the GasPar needs to store the index in the memory, and the loop processes one element at a

time. csgsoa has a performance similar to the cssoa.

The previous comparison did not allow us to make a conclusion about the efficiency of streams. For

this purpose, we created new versions which implement the sum without the Kahan algorithm by using a

8Java sum method.

64 4. Performance evaluation

0.0

0.2

0.4

0.6

0.8

1.0

1.2

csaop/csgaop cssoa/csgsoa
re

la
tiv

e
pe

rfo
rm

an
ce

Cycles_Small Cycles_Large Instructions

Figure 4.5: Relative performance the sum betweens Java and GasPar

load object test null checkcast store index store result unroll

csaop $$ $$ $$ - $$$ 4

csgaop $$ - - $ $$$ 1

Table 4.4: Groups of instructions generated (assembler instructions in appendix listing 7.5)

reduce method. The figure 4.6 show the relative performance of the new versions for both layouts (saop

uses streams with AoP layout and ssoa uses streams to process a double array) with the GasPar versions.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

aop/saop aop/sgaop soa/ssoa soa/sgsoa

re
la

tiv
e

pe
rfo

rm
an

ce

Cycles Small Cycles Large Instructions

Figure 4.6: Relative performance with streams and GasPar versions with iterators

load object test null checkcast store index store result unroll

saop $$ - $$ $$ $$$ 1

sgaop $$ - $$ $$ $$$ 1

ssoa - - - - $ 16

sgsoa $$ - $$ $$ $$$ 1

Table 4.5: Groups of instructions generated (assembler instructions in appendix listing 7.6)

4.2. Programming interface 65

The streams introduce significant overheads, except for the Java with SoA layout (figure 4.6). The

decrease in performance is due to the number of instructions increases. Table 4.5 shows that the streams

block the loop unrolling optimisation, also use more instructions for writing the result and the iterator

position. For the SoA layout, the Java version has a similar performance since the code uses an optimised

stream for primitive arrays (uses Arrays.stream(soaCollection)). GasPar use a generic stream for SoA layout

that generates similar instructions to AoP versions.

Data sorting

The objects might be out of order in memory. For AoP, sorting can improve performance. Sorting changes

the object positions in the collection for a better spatial locality.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

gaop/gaopS

re
la

tiv
e

pe
rfo

rm
an

ce

Cycles Instructions Misses_L3

Figure 4.7: Gain of sorting collections

Figure 4.7 compares the gaop performance version with the sorting optimisation. Improving locality

has no impact on the small size. Thus, the figure shows only results for the large size. In this evaluation,

the sorting cost is not measured. For the large size, it increases performance 1.5 times due to the number

of misses in the L3.

Parallel versions

The test in this case study evaluates the schedules available in GasPar in order to fine tune the library to

deliver better performance, by default. Additionally, it compares the performance of the GasPar skeletons

with Java streams. This test uses the GasPar reduce skeleton, which receives two parameters: the first is

a method and the second is the return value.

66 4. Performance evaluation

GasPar versions use reduceBlock (listing 4.5) available in the gCollection. The default implementation

uses the number of threads supported by the processor (48 threads). The threads can be managed in

two different modes: explicitly creating new threads (gXXXparallel) or using a fork-join pool to process the

tasks (gXXXforkjoin).

gDouble ret = new realgDouble(0);
collection.reduceParallelBlock(sum::gsum, ret);
result = ret.getValue();

Listing 4.5: Sum parallel version in GasPar

0

10

20

30

40

50

60

gaopparallel gaopforkjoin gsoaparallel gsoafork join

re
la

tiv
e

pe
rfo

rm
an

ce

Small Large

Figure 4.8: Analysis of gains of parallel sum in GasPar

Parallel execution and layout reduces ∼58 times the execution time (figure 4.8) when compared to

base version (aop). The parallel versions with fork-join, in general, obtain the best performance. In the

small size, there are speed-down in some versions due to the parallelism cost: the threads creation, and

the data concurrency mechanism.

The next test compares GasPar with Java parallel streams (version sXXXparallel). In this case, the

scheduling is the default. For Java, we use the saop version and change the sequential stream to a

parallel stream.

Figure 4.9 show that the improvement is bigger with GasPar collections. The saopparallel version only

reduces ∼4 times. The sequential version (saop) is five times slower than aop. When compared to the

sequential stream version (saop) the speed-up is ∼7. GasPar skeletons have better performance.

4.2. Programming interface 67

0

10

20

30

40

50

60

sao
pp

ara
llel

sga
oppa

ral
lel

ga
op

forkj
oin

sso
ap

ara
llel

sgs
oap

ara
llel

gso
afo

rk join

re
la

tiv
e

pe
rfo

rm
an

ce

Small Large

Figure 4.9: Compare GasPar with Java (parallel versions)

Summary

The evaluation analyses the overheads associated with the alternatives to access the elements of collec-

tions. The iterators added little overhead which makes them a valid alternative. The compiler generates

fewer instructions for GasPar with the AoP layout. In these versions, the test of objects type and the null

test is removed by the JVM. However, for the SoA layout, the GasPar collections generate more instructions

but do not have a performance impact. The streams with objects introduced a substantial overhead which

hinders its further use.

This evaluation uses several optimisations: data layout, sorting objects and parallel execution. In total,

we reduce the runtime by ∼58 times for the large size and ∼8 times for the small size compared to the

base version (aop).

4.2.2 daxpy

The second algorithm is the daxpy operation that multiplies the elements of array x with a value and adds

the result to the elements of the array y.

This algorithm uses two collections and needs to access the same position in both collections. In Java,

it is not possible to synchronise two iterators that limits the use of Java iterators. However, the iterators

from JFC follow the natural order (from 0 to n). Therefore, they ensure access to the same index to both

arrays when using two different iterators and going forward them at the same time. GasPar has the sync

to synchronise the two iterators.

This algorithm uses the same sizes as the sum still the number of elements per collection was reduced

to half. The evaluation uses the same layouts (AoP and SoA) with two different options: the first uses two

68 4. Performance evaluation

0

10

20

30

40

50

60

70

80

Cycles Small Cycles Large Instructions

pe

r e
le

m
en

t

aop aopOD soa

(a) Cycles and instructions performance

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

L1_Smal l L2_Smal l L2_Large L3_Large

pe

r e
le

m
en

t

aop aopOD soa

(b) Memory access performance

Figure 4.10: Performance of AoP and SoA layout9

collections to store the values; the second uses one collection with an object that holds two values, joining

the two collections, which avoids using two iterators.

The daxpy algorithm requires two operations per element. The first multiplies the element of collection

x with a scalar. The collection x elements are in memory, and the scalar value can be in a register. The

second operation reads the element of collection y from memory, adds to the previous result and places

the result into the collection y.

Once again, the results show that the SoA layout delivers better performance (figure 4.10). The soa

has five times better performance than the aopOD since the number of instructions decreases, and the

cache misses reduces in all cache levels. aopOD is a new version that improves the aop and is explained in

the next paragraph. The number of instructions decreases for the same reasons as in the sum algorithm

(e.g., remove instructions to load and test objects). Additionally, there are other reasons: AoP layout

disallows vectorisation; the loop calculates fewer elements (there are more loop related instructions).

The aop variant uses Java Autoboxing10 which causes a big impact on performance. The evaluation

also uses an improved version, aopOD, which performs better (aop has half of the performance). The

aop uses an ArrayList<Double>, whereas the aopOD uses an ArrayList<ODouble>. The ODouble class

contains only a double, avoiding the Autoboxing and Unboxing. The version avoids the Double and forces

a change to the object in the collection to update the value. On the other end, in the aopOD, to change the

values in the collection, it needs to convert the Double into double and double into Double that creates a

new Double object. Creating objects adds considerable overheads due to the memory allocation (activates

9The instructions and L1 misses are the same for small and large size and the L3 misses for small size are irrelevant.

However in the aop for large size, the value of L1 cache misses is ∼1.71 misses per element.
10Autoboxing allows the developer to use Objects (Integer, Double,...) where the primitive types are expected and vice versa.

4.2. Programming interface 69

the garbage collector).

The L1 caches misses, in this case, present the expected values. The sum algorithm of the previous

section needs one memory read to calculate one element: AoP layout has 0.5625 misses per element,

and SoA layout has 0.125. The daxpy needs two memory reads to calculate one element, so this algorithm

shows the double of misses per element: aop has 1.125 misses per element, and soa has 0.25. The

measured value is ∼1.13 for AoP layout, and ∼0.25 for SoA layout (figure 4.10b).

Java vs GasPar

This section compares the performance between Java and GasPar. Table 4.6 shows the acronyms to

identify each version. The aop is not included since it has poor performance.

Java GasPar

layout AoP layout SoA layout AoP layout SoA

without iterator aopOD soa gaop gsoa

Java-based iterator faopOD - fgaop fgsoa

GasPar iterator - - ggaop ggsoa

Table 4.6: Acronym of each daxpy implementation

Table 4.7 shows that the GasPar reduces the number of instructions to test the object. On the other

hand, the versions with iterators write the index values in memory, and the JiT does not apply the unroll

optimisation in all versions with iterators. The table contains similar columns that represent the same

kinds of instructions used in the sum evaluation. However, the column “store result” is not included since

the algorithm needs to write the result always in the memory. Additionally, the table has a new column

that shows the alternatives with vectorial instructions.

load object test null checkcast store position vectorial unroll

instructions

aopOD 2x($$) 2x($$) 2x($$) - - 4

gaop 2x($$) $$ - - - 4

faopOD 2x($$) - 2x($$) 2x($$$) - 1

fgaop 2x($$) - - $$$ - 1

ggaop 2x($$$) - - 2x($$) - 1

soa - - - - + 4x4

Table 4.7: Groups of instructions generated

Figure 4.11 and figure 4.12 shows the performance for all versions present in table 4.7. The number

of instructions is lower in the GasPar versions, but it does not improve the performance. The data access

has more impact on performance for this algorithm since it needs two values per element. As in the sum,

the performance difference between GasPar and Java is explained by the collection allocation. Once again,

70 4. Performance evaluation

the Java collection allocation is better for the large size. However, in the small size, the GasPar has better

performance due to has fewer instructions.

0

5

10

15

20

25

30

35

40

45

aopOD gaop faopOD fgaop ggaop

pe

r e
le

m
en

t

Cycles Small Cycles Large Instructions

Figure 4.11: Performance analysis for codes in table 4.6 (AoP layout)

The iterators have a bigger impact on performance in this case study. The algorithm needs two

iterators, and the compiler does not apply some optimisations (number of instructions increases). In the

sum case study, the iterator is kept in a register, but, in this algorithm, the iterator is a variable stored in

memory (e.g., reads and writes to the variable originate load and store instructions).

In this algorithm, with the SoA layout (figure 4.12), the GasPar and Java have the same performance.

The GasPar also makes it possible to use iterators with this layout (it is not possible in Java). However,

the iterator has a low performance since the number of instructions increases.

0

5

10

15

20

25

30

soa gsoa fgsoa ggsoa

pe

r e
le

m
en

t

Cycles Small Cycles Large Instructions

Figure 4.12: Performance analysis for codes presented in table 4.6 (SoA layout)

Note that in figure 4.12, for the SoA layout, the number of instructions per element is 1.25, which

is lower than the number of the operation per element (the daxpy requires two instructions). It is possi-

4.2. Programming interface 71

ble since the compiler uses vector instructions, so the processor deals with four elements in the same

instruction.

The next test joins the collections where one element contains the two values. Table 4.8 presents the

acronyms for these versions. Java does not support this alternative with the SoA layout.

The new layout has two advantages: first, it uses a unique iterator, and second, it reduces the footprint

in memory for AoP layout. When using this layout AoP with a single collection, the real problem size reduces

to half. One Java objects support two double with minimal objects size (objects are alignment the 32 bits).

Java GasPar

layout AoP layout SoA layout AoP layout SoA

without iterator aopJ - gaopJ gsoaJ

Java-based iterator faopJ - fgaopJ fgsoaJ

GasPar iterator - - ggaopJ ggsoaJ

Table 4.8: Acronym of each daxyp with joint collection

0.0

0.5

1.0

1.5

2.0

2.5

aopOD/aopJ gaop/gaopJ

re
la

tiv
e

 p
er

fo
rm

an
ce

Cycles_Small Cycles_Large Instructions Misses_L1

(a) Without iterators

0.0

0.5

1.0

1.5

2.0

2.5

3.0

faop/faopJ fgaop/fgaopJ

re
la

tiv
e

 p
er

fo
rm

an
ce

Cycles_Small Cycles_Large Instructions Misses_L1

(b) Java iterators

Figure 4.13: Relative performance between two collections and join collections for AoP layout

The figure 4.13 compares the performance of this layout to aopOD. As expected, the performance is

better due to reductions in the instructions and cache misses. The number of instructions reduces ∼1.5

times (figure 4.13a) for the versions without iterators. The operations to load the object pointer reduces to

half (compare table 4.7 to table 4.9). In the versions with Java iterators, the impact is considerable (figure

4.13b). The compiler reduces the number of instructions needed to read values from x and y collections.

The faopJ enables the unroll optimisation, which further decreases the number of instructions. The number

of misses also reduces since the real size of the problem is reduced to half.

72 4. Performance evaluation

load object test null checkcast store position vectorial unroll

instructions

aopJ $$ $$ $$ - - 4

gaopJ $$ - - - - 8

faopJ $$ - $$ $$$ - 4

fgaopJ $$ - - $$ - 8

Table 4.9: Groups of instructions generated

Regarding the layout SoA, the results are not presented as their performance is similar to the soa

(see table 7.2 in appendix). The compiler applies optimisations that produce the code similar to the soa

version. There is only a small increase in the number of instructions due to a store of the iterator value in

memory.

In all layouts, there is a significant improvement in performance since these versions only use one

iterator.

Streams

We use the join collection optimisation to assess the performance with Java streams since Java streams do

not allow iterating over two collections simultaneously. Moreover, in Java, the SoA layout is not compatible

with streams since it would need two collections. Therefore, the version named saopJ is the aopJ that

uses the stream mechanisms to iterate over the collection.

0

1

2

3

4

aopJ/saopJ aopJ/sgaopJ aopJ/sgsoaJ

re
la

tiv
e

 p
er

fo
rm

an
ce

Cycles_Small Cycles_Large Instructions

Figure 4.14: Relative performance between GasPar and streams

The use of streams does not add overhead in this case. In the AoP layout, the Java version and GasPar

present the same performance. The GasPar version (sgaopJ) reduces the number of instructions, but the

performance is similar. In soa, the improvement in the number of instructions is due to the layout (∼9

times, the graph is cropped to 4x).

4.2. Programming interface 73

Parallel versions

To conclude this analysis, the algorithm is executed in parallel. GasPar supports several implementations

of the map pattern. In this evaluation, we use the mapParallelBlock to calculate the daxpy in parallel

(listing 4.6). The evaluation uses the same number of threads as the number of threads support by the

processor (48 threads). The threads can be created in two ways: the map method always creates new

threads (ggXXXparallel) or uses the fork-join to process the tasks (ggXXXforkjoin). The Java version uses

parallel streams.

gaopall.mapParallelBlock(a -> a.setY(alpha * a.getX() + a.getY()));

Listing 4.6: Parallel version in GasPar framework

Figure 4.15 compares two different parallel alternatives. Once again, the best results use fork-join to

execute the tasks. For this reason, it will be used by default in GasPar framework.

0

2

4

6

8

10

12

14

16

18

gaopJparallel gaopJforkjoin gsoaJparallel gsoaJforkjoin

re
la

tiv
e

pe
rfo

rm
an

ce

Small Large

Figure 4.15: Analysis to parallel gains in GasPar

In this algorithm, the parallelism and data layout provide an improvement of ∼18 times, in the best

case (figure 4.16). It needs more data to calculate an element, and this limits the speed-up. In this case,

Java only allows implementation with streams with the AoP layout. Our approach allows more alternatives

to implement parallel versions: use SoA layout and use the two collections. The two collections alternative

shows a lower performance due to the need to use two iterators. The Java versions perform worse than

using our collections.

74 4. Performance evaluation

0
2

4
6
8

10
12
14

16
18

sao
pJp

ara
llel

ga
op

Jpara
lle

l

ga
op

Jfo
rkj

oin

ga
op

Jex
ecut

e

gso
aJp

aral
lel

gso
aJf

orkj
oin

gso
aJe

xe
cute

re
la

tiv
e

pe
rfo

rm
an

ce

Small Large

Figure 4.16: Relative performance between GasPar and streams

Summary

The evaluation of this algorithm tested again multiples alternatives to access the elements. In this case, the

collection values are rewritten that cause Autoboxing and Unboxing of the values. Autoboxing/Unboxing

creates additional complexity in the execution that introduces a significant performance cost. Additionally,

we compare the use of two collections with a single collection. The two collections have an additional cost

caused by the object load and the usage of two iterators.

For the SoA layout, Java only allows the use of the two collections with index accesses (get(i), it does

not allow using iterators). Our approach allowed us to create all alternatives for both layouts.

In this case, the optimisations provide an improvement of 18 times (layout change improves in ∼5

times, and the parallel execution improves in∼3.5 times). Java versions only allowed a performance gain

of ∼2.

4.3 Java framework - Java Evolutionary Computation Library

The Java Evolutionary Computation Library (JECoLi) [EMR09] is a framework to implement meta-heuristic

optimisation algorithms. The main focus of the framework is Genetic and Evolutionary Computation.

Frameworks in this field provide a set of algorithms to improve a set of solutions for some generations

(i.e., iterations). Within a generation, some solutions are mutated/combined to find better solutions to the

problem at hand. Typically, the most demanding of the computer power is the solution evaluation (i.e.,

calculate its fitness).

According to the authors, JECoLi uses OOP concepts to provide: flexibility, usability, adaptability,

4.3. Java framework - Java Evolutionary Computation Library 75

modularity, extensibility and transparency. Therefore, it relies on Java collections and their intrinsic AoP

layout. After analysing the JECoLi, we decided to change the LinearRepresentation implementation, which

is one key class provided by the framework to represent a solution. We changed the ArrayList used in

the implementation to a gCollection. The JECoLi class uses the ArrayList of objects that are a generics-

based approach to represent a solution composed of a sequence of values (e.g., a sequence of bits).

Our collections support the concrete objects that are generated from the domain model improving the

performance.

The JECoLi repository has several examples illustrating the framework usage. This evaluation changes

the LinearRepresentation that is used in all examples. The examples use collections of several types:

Double, Integer, and Boolean. First, the evaluation uses GasPar with generic objects, in this case a gCopy

collection. The solution allows us to support all examples. However, this solution can not enable SoA

layout. Thus, the solution has a low performance. Below we optimise this first solution to create specific

collections. There are three GasPar collections: a collection that provides double, another provides int,

and finally one provides boolean. When, a LinearRepresentation is created, it is selected the concrete the

GasPar collection to use.

Using gCollection introduces a restriction that does not exist with ArrayList: objects must be accessed

only by get and set methods. However, Java has classes wrapping primitive types. These objects are

special and can be accessed like primitive type objects (using the Unboxing)11. Thus, there is a need

to rewrite the code to access the data through those methods. The listing 4.7 shows an example of the

transformations required to use the GasPar collections. This case needs to add the getValue to read the

boolean of the gBoolean class.

Finally, JECoLi objects implement features from other interfaces, such as Comparable. Therefore

GasPar objects implement those features by extending the required interfaces and implementing the code

with default methods.

This evaluation allows us to test how the approach works with frameworks that have already been

developed. All examples provided can use GasPar collections. However, some examples use small collec-

tions, which is not suited to analyse the performance. Thus, the criterion was to analyse examples with

collections with more than 1000 elements. Looking at the table 4.10, there are three cases under these

conditions. All these cases use a collection of Booleans which in our approach was adapted to a gBoolean.

The remaining cases have small collections, which make the collection layout irrelevant for performance

(there is no impact on performance).

11In this case, Autoboxing and Unboxing do not introduce the same penalty of the daxpy since this case does not use

Autoboxing.

76 4. Performance evaluation

protected int countOnes(ILinearRepresentation <Boolean> genomeRepresentation){
int countOneValues = 0;
for(int i = 0;i < genomeRepresentation.getNumberOfElements();i++)

if(genomeRepresentation.getElementAt(i)) countOneValues++;
return countOneValues;

}

a) Original version

protected int countOnes(ILinearRepresentation<gBoolean> genomeRepresentation) {
int countOneValues = 0;

for(int i = 0;i < genomeRepresentation.getNumberOfElements();i++)
if(genomeRepresentation.getElementAt(i).getValue()) countOneValues++;

return countOneValues;
}

b) GasPar Version

Listing 4.7: Code of countones: Original vs GasPar Collections

Package Class Data Type Data size

countones
CountOnesCAGATest Boolean 1000

CountOnesEATest Boolean 10000

knapsacking EAknapsacking -

motifs

EAMotifs Integer 5

ProcuraMotifs -

SeqMotifs -

multiobjective.countones

CountOnesMOSATest Boolean 100

CountOnesNSGAIITest Boolean 100

CountOnesSPEA2Test Boolean 5000

CountOnesSPEAMEMETest Boolean 100

multiobjective.fonseca FonsecaSPEA2Test Double 3

multiobjective.kursawe

KursaweESPUMOSATest Double 3

KursaweMOSATest Double 3

KursaweSPEA2ArchiveTest Double 3

KursaweSPEA2Test Double 3

KursaweSPEAMEMETest Double 3

multiobjective.schaffer SchafferSPEA2Test Double 1

multiobjective.wrapper SAMOGenericTest Double 3

numericalopt EANumericalOptimization Double 3

targetlist
EATargetList Integer 50

EATspOrdinal -

Table 4.10: JECoLi examples

All case studies are for the countOnes algorithm optimisation. The countOnes optimisation finds the

best solution for a problem where the optimal solution has all gnomes set to true. The CountOnesCAGA

uses the CellularGeneticAlgorithm to find the best solution. The solution has 1000 gnomes, and the process

is repeated for 1000 generations. The CountOnesEA evaluation starts with 10 random solutions and the

process stops after 100 000 generations. This case uses EvolutionaryAlgorithm to find the best solution.

CountOnesSPEA2Test uses SPEA2 algorithm to find the solutions. In this case, the population has 250

individuals, and the genome contains 5000 elements. The search stops after 500 generations.

4.3. Java framework - Java Evolutionary Computation Library 77

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

CountOnesCAGATest CountOnesEATest CountOnesSPEA2

re
la

tiv
e

pe
rfo

rm
an

ce

Time Instructions Misses_L1 Misses_L2

Figure 4.17: Relative performance between Original code and GasPar generic collection

The first evaluation compares the original JECoLi version with generic GasPar collection. Figure 4.17

shows a performance decrease in all cases. As mentioned, the initial solution allows us to execute the

code in the framework context. Performance decreases since data accesses are less efficient.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Aop SoA Aop SoA Aop SoA

CountOnesCAGATest CountOnesEATest CountOnesSPEA2

re
la

tiv
e

pe
rfo

rm
an

ce

Time Instructions Misses_L1 Misses_L2

Figure 4.18: Relative performance between Original code and GasPar collection

Figure 4.18 shows that our approach has better performance when the developer uses the SoA layout

since the number of instructions reduces, and the data access performance is better. The number of

instructions reduces for two reasons: instructions of load reduce (SoA layout avoids one load per access)

and more Java optimisations are applied. The AoP layout has a slight lower performance than the generic

solution. In practice, the layout is identical, with small differences. First, collection allocation is different.

The generic solution uses the element previously created and inserts it into the collection. In contrast, a

concrete solution copies the data to the collection.

In the two previous examples, our collections have a composition relationship with LinearRepresen-

78 4. Performance evaluation

tation. That is, LinearRepresentation has a gCollection. Another solution uses inheritance by making

LinearRepresentation a gCollection. The evaluation analyses this option for the SoA layout. This approach

limits the LinearRepresentation to one single layout (the layout is defined at compile time and not during

runtime when the collection is created). Thus, LinearRepresentation extends either a gCollection with AoP

layout or a gCollection with SoA layout. The layout is a set in the LinearRrepresentation code, unlike the

other option where it can be a program parameter.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

CountOnesCAGATest CountOnesEATest CountOnesSPEA2

re
la

tiv
e

pe
rfo

rm
an

ce

Time Instructions Misses_L1 Misses_L2

Figure 4.19: Relative performance between SoA versions and using inheritance

The figure 4.19 shows the improvement for the inheritance. In this case, the collection accesses are

more efficient and decreases the number of instructions. The number of misses increases since the stress

over memory is higher (the number of accesses with a time-frame are higher).

Summary

The proposed approach was able to improve JECoLi framework performance. The programming cost

to include the GasPar approach in the JECoLi was one day. Thus, we can improve the legacy code

performance (such as JECoLi) with a low development cost.

In this kind of frameworks, polymorphism is essential to allow its use in multiple cases. In this case,

a mixed approach is created: using a generic collection to support polymorphism, and, in a second

phase, concrete collections are created to improve performance in some case studies. As a result, it was

possible to maintain the framework properties (flexibility, usability, adaptability, modularity, extensibility

and transparency) allowing to improve performance.

4.4. Testing mechanisms - Molecular dynamics simulation 79

4.4 Testing mechanisms - Molecular dynamics simulation

This evaluation analyses the approach in four new aspects: use of structured entities, the gSplitMapJoin

mechanism, thread private data and composition optimisations. The case study deals with a collection

of particles. A particle can be composed of other data structures. Thus, the evaluation explores two

different alternative data structures to represent a particle. The molecular dynamics simulation (MD) can

be optimised by decomposing the problem into subproblems. So, the evaluation tests the gSplitMapJoin

mechanism to partition the problem in order to improve the performance. Parallel execution in this case

study requires data access control in order to avoid data races. The evaluation uses the thread private

data mechanism, available in gSplitMapJoin, to deal with the data race. Finally, the evaluation tests

gSpliMapJoin with two levels (tiling with two levels, and tiling+parallelism) to evaluate the composition

mechanisms.

TheMD is an iterative process. Within an iteration, it moves the particles, advances the time, calculates

the forces among particles and calculates the velocity of each particle. The process is repeated again for

the number of iterations defined by the user.

The simulation uses a particles collection. Particles have attributes such as the position, velocity and

force. Each attribute represents a 3D point in Cartesian space.

The evaluation uses the MolDyn benchmark available in the Java Grand Forum. The MolDyn simulates

the interactions between Argon atoms. These atoms have Van der Waals interactions that use Leonard-

Jones potential. The simulation space is a cube with periodic boundary conditions [BSW+00]. It means

that when a particle moves outside the domain, it renters on the opposite side.

The code is organised in two main classes: md and Particle. The md class represents the simulation

and contains a particles collection. The md class initialises the particles: initialises the positions, and

generates the initial velocities. The force values have 0 value at the start. The Particle class has nine

double that represent the position, velocities and force.

4.4.1 Applying the approach

To use Gaspar approach, the developer starts by creating the domain model in the tool. The domain model

present in the JGF Moldyn has only the Particle concept. Particle is represented by a Java class and, in

the approach, it is transformed into an interface. This interface has the gets and sets that access the nine

double (figure 4.20). The interface enables the change of the layout.

After completing the domain model, the tool generates all code needed for the collections where both

AoP and SoA layouts are available.

80 4. Performance evaluation

Figure 4.20: Domain model of a Particle (in the UML tool)

Then it is necessary to adapt the original code to use the gCollection interface. The listing 4.8 shows

the changes required:

listing 4.8 a) the original code uses a particle array which is replaced by a gCollection<Particle>.

listing 4.8 b) create the collection, using the factory available in the GasPar. For this, create a factory

and then create a new collection, by calling the creategCollection. This method has a parameter to

select the layout and other for the initial collection size.

listing 4.8 c and d) the read of the Particle data is now performed using the get and set to read and

write the values.

listing 4.8 e) access gCollection using the GasPar iterators instead of the traditional loop.

At this step, the program already performs the complete simulation using gCollections. In this case, the

code modification involves multiple changes since the original code uses a simple array to save particles.

If the original code relied on the List interface (e.g., as in the JECoLi case study) and accesses to data use

the get and set, the modifications would be restricted to the creation step (listing 4.8b).

The first evaluation compares the original implementation with the base GasPar implementation (figure

4.21a). The evaluation measures the runtime of the runiters method that runs the simulation (which

4.4. Testing mechanisms - Molecular dynamics simulation 81

public Particle one[]; public gCollection<Particle> one;

a) declare collection.

one = new Particle[mdsize]; FactorygCollectionParticle factory = new FactorygCollectionParticle();
one= factory.creategCollection(sVersion, mdsize);

b) initialise collection.

positionx = one[i].xposition; positionx = one.get(i).getPositionX();

c) read position x coordinate.

one[i].xposition = positionx; one.get(i).setPositionX(positionx);

d) write position x coordinate.

for (i = 0; i < mdsize; i++) { for (gIterator it = one.begin(); it.isless(one.end()); it.inc()) {
one[i].force(..., i, this.one); force(..., it.get(), c2);

e) call the force method

Listing 4.8: Code implementation: Original vs GasPar Collections

excludes the time for creation and initialisation of the particles). The performance drops to ∼0.75 for

the large size due to an increase in the number of instructions. The original version uses a traditional

for loop, and data accesses are index accesses. Our approach uses GasPar iterators to process the

collection. These allow optimisations to be easily applied in the future but adds some overhead to the

base implementation in this case study (see section 4.2).

0.0

0.2

0.4

0.6

0.8

1.0

Small Large

re
la

tiv
e

pe
rfo

rm
an

ce

Time Intructions

(a) AoP layout

0.0

0.2

0.4

0.6

0.8

1.0

Small Large

re
la

tiv
e

pe
rfo

rm
an

ce

Time Intructions

(b) SoA layout

Figure 4.21: Approach overhead

In order to use the SoA layout in the original JGF several modifications are required: transform the

Particle collection, change several method parameters and change the data accesses. The Particle col-

lection tranformation implies changing the Particle into a class Particles, which represents all particles

82 4. Performance evaluation

in the system. For this purpose, the evaluation transforms the Particle fields into arrays. The methods

that received a Particle now receive the Particles and the index that indicates the particle position in the

array. Data access now use one.X[i] instead of one[i].X. These changes make the code more complex.

The transformation to GasPar is simpler, and enable both layouts.

Figure 4.21b shows that the performance of these two versions is equivalent when using the SoA

layout. The performance of the approach is ∼0.97 of the manually converted JGF version. In this case,

the compiler was able to remove most of the iterator overhead.

The AoP layout makes it possible to test the sorting optimisation: organising objects in memory by their

access order. It is performed by simply calling the method available in the gCollection interface. Figure

4.22a shows the improvements by applying object sorting in the collection before executing the simulation.

Unsurprisingly, the sorting optimisation only has an impact on large problem size. This optimisation does

not improve the small size since the problem fits in the last level memory cache.

The algorithm uses the quick-sort algorithm [Hoa62] for sorting the objects, which has an average

complexity of O(n logn), which is lower than the complexity of the problem (O(n2)). Therefore, the

bigger the problem, the less will be the sorting algorithm overhead impact.

0

0.2

0.4

0.6

0.8

1

1.2

Small Large

re
la

tiv
e

pe
rfo

rm
an

ce

Time Instructions Misses_L1 Misses_L2 Misses_L3

(a) Relative performance

0

0.2

0.4

0.6

0.8

1

1.2

1.4

re
la

tiv
e

pe
rfo

rm
an

ce

Cycles_L1 Cycles_L2 Cycles_L3

(b) Improvements in access data

Figure 4.22: Sorting optimisation improvements

Figure 4.22a shows that the sorting improves the performance but does not explain why. Overall the

data access should be more efficient, but the figure 4.22a shows the opposite (the number of misses

increases). We decided to obtain additional performance counters to clarify this point. The processor has

several counters that count the cycles wasted due to cache misses12. Figure 4.22b shows that the sorting

12CYCLE_ACTIVITY:CYCLES_L1D_PENDING, CYCLE_ACTIVITY:CYCLES_L2_PENDING, CYCLE_ACTIVITY: CY-

CLES_LDM_PENDING.

4.4. Testing mechanisms - Molecular dynamics simulation 83

optimisation decreases the total cycles spent waiting for the data. Thus, the performance improvement is

due to more efficient data access.

The second test compares the two layouts available in GasPar. The test can change the AoP layout

to an SoA by changing only a program parameter. Figure 4.23 shows the relative performance by using

the SoA layout, which improves performance by ∼2.6 times for the large size. In the small size, the

optimisation only improves 1.2 times since the problem fits in the cache, making layout impact lower.

The cache misses decreases due to memory footprint decrease and spatial locality improvement. The

table 4.11 shows the footprint in memory for each layout. A Particle in the AoP layout takes 96 Bytes and

in the SoA layout takes 72 Bytes.

In this evaluation, there is also an improvement in the number of instructions due to a change in the

layout. However, the impact on the executed instructions is small since the total of instructions that use

collections is around 15% of the total number of instructions.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Small Large

gaop/gSoa gaop/gSoa

re
la

tiv
e

pe
rfo

rm
an

ce

Time Instructions Misses_L1 Misses_L2 Misses_L3

Figure 4.23: GasPar collections AoP vs SoA13

Particle Small Large

AoP 96 Bytes 824 KiB 79 MiB

SoA 72 Bytes 618 KiB 59 MiB

Table 4.11: Problems sizes

13The graph are truncated at five units since the improvements are huge (in the large size improvements on L2 are 70x and

on L3 are 3400x, in the small size improvements are 100x).

84 4. Performance evaluation

4.4.2 Tiling optimisation

The tiling optimisation optimises a single program step, which is different from the previous optimisation

(has a performance impact on all the program). For this reason, we will first analyse the program execution

profile. Figure 4.24 shows the execution profile14 which indicates that the force method takes most of the

time (99.9% of the time).

Figure 4.24: MD execution profile

The main focus is to optimise the force method by using the gSplitMapJoin mechanism to apply

the tiling optimisation over this method. The method receives two collections: the elements in the first

collection interact with the elements in the second collection. The outer loop controls the first collection

accesses, and the second collection is accessed by the inner loop. The tiling optimisation can be applied

by dividing the second collection. The listing 4.9 shows the annotation that generates a new method that

applies the tiling optimisation. In this case, the second collection is divided into several parts, and the

original method is called on each part.

@gSplitMapJoin(name ="Tile", map ="map",
split ={"...","none","Virtual"}, join ={"...","none","default")

public static void force(..., gCollection<ParticleLine> p1, gCollection<ParticleLine> p2) {
...

}

Listing 4.9: Annotation to apply tiling optimisation

The optimisation needs an additional parameter for tuning the number of subdomains (number of

tiles). Figure 4.25 shows the impact of the tile size on the performance. The values compare the perfor-

mance with the versions without tiling. The optimisation improves the performance in ∼1.5 for the aop

with 20 MiB tile size. This impact makes aop faster than aopSorting due to aopSorting needs to sort the

collection: more instructions and more data accesses.

14The execution profile uses the VisualVM tool in sampling mode.

4.4. Testing mechanisms - Molecular dynamics simulation 85

The number of instructions in both aop and aopSorting reduces in more than 10% when tiling is applied

(figure 4.25c). This result is not expected and can be explained by more aggressive compiler optimisations

since the inner loop becomes smaller and is executed more times.

The performance of the SoA layout does not improve with the tiling optimisation. As we can see for this

layout, the best performance is obtained with only one block, which has the lower instruction overhead.

The SoA layout is still the most efficient version (it executes faster than any other).

0.0

0.2

0.4

0.6

0.8

1.0

1.2

4.8 9.6 19.3 38.6 77.1 154.3 308.5 617.0

re
la

tiv
e

pe
rfo

rm
an

ce

tile size KiB

aop aopSorting soa

(a) time (Small)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 10 20 30 40 50 60 70

re
la

tiv
e

pe
rfo

rm
an

ce

tile size MiB

aop aopSorting soa

(b) time (Large)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 10 20 30 40 50 60 70

re
la

tiv
e

pe
rfo

rm
an

ce

tile size MiB

aop aopSorting soa

(c) instructions (Large)

0

10000

20000

30000

40000

50000

60000

0 10 20 30 40 50 60 70

re
la

tiv
e

pe
rfo

rm
an

ce

tile size MiB

aop aopSorting soa

(d) misses in L3 (Large)

Figure 4.25: Tiling optimisation impact

In the small size, the optimisation decreases the performance due to the data remains in cache L3

(figure 4.25a). Thus, the tiled data access does not significantly reduce the number of cycles, and the

technique needs more instructions to solve the problem (figure 4.25c).

In both sizes, for a single block (equivalent to process the problem without tiling), the performance

86 4. Performance evaluation

is ∼0.99. It shows that the approach introduces little overhead to apply this optimisation. The best

improvement is for a block size of 20 MiB in the aop (see figure 4.25b). If we analyse the miss rate in the

original versions (table 4.12), this result is expected since the aop has the highest miss rate. As for the

small size, it already has a low miss rate.

L2 misse rate for Small Size L3 miss rate for Large Size

aop 0.037 0.451

aopSorting 0.040 0.447

soa 0.014 0.001

Table 4.12: Miss rate analysis

4.4.3 Parallel execution

The MD allows performing force calculation in parallel. However, the JGF implementation uses Newton’s

third law, which reduces the number of the calculations but introduces concurrency in data access in

parallel execution. Different threads access the same data concurrently(to write the forces), which can be

avoided by a concurrency control mechanism, where only one thread has access to the data at the same

time, or create a new temporarily structure where the thread stores its values. The second alternative

needs to reduce the values at the end of the force step. The evaluation uses the second alternative

since the approach provides a mechanism to support this alternative, and the approach implements

this alternative in a module that can enable or disabled. For the primitive variables (such as epot), the

evaluation uses the alternative control concurrency mechanisms. In this case, the use of exclusive data

accesses mechanisms has a small performance impact since the variables are only rewritten once for

each particle (i.e., in the outer loop).

The developed parallelism module uses the Annotation tool. The listing 4.10 shows the annotation

that is used to generate the code for parallel execution. The evaluation uses three types of scheduling15:

Block, BlockBalance and Dynamic. The annotation implementation breaks the outer loop body into several

parts and processes these parts in parallel. The P2 collection needs private force data to avoid the data

races. At the end of processing, the approach calls to reduce md::joinPrivate.

The UML tool creates the PrivateForce method. The developer defines which fields should be thread

private. On the other hand, the developer has to define the md::joinPrivate (listing 4.11). The md::joinPri-

vate joins the data from a private collection to the original. In this case, the values are cumulative, so the

reduce uses a sum operation.

15Replace X by Block, BlockBalance and Dynamic (for more details see section 3.2.2 Parallelism).

4.4. Testing mechanisms - Molecular dynamics simulation 87

@gSplitMapJoin(name = "X", map = "mapParallelX",
split = {"...","Virtual", "PrivateForce"},
join = {"...","default","md::joinPrivate")

public static void force(..., gCollection<ParticleLine> p1, gCollection<ParticleLine> p2) {
...

}

Listing 4.10: Parallelism annotation

public static void joinPrivate(Particle col, Particle ret){
ret.setForceX(col.getForceX() + ret.getForceX());
ret.setForceY(col.getForceY() + ret.getForceY());
ret.setForceZ(col.getForceZ() + ret.getForceZ());

}

Listing 4.11: Method defined by the developer to reduce private data

0

5

10

15

20

25

30

small large small large small large

aop aopSorting soa

re
la

tiv
e

pe
rfo

rm
an

ce

Block BlockBalance Dynamic

Figure 4.26: Scheduling impact

Figure 4.26 shows the parallel execution improvements16. For the small size, the speed-up is limited

to ∼7. The best result uses the SoA layout with BlockBalance scheduling. This problem is small when

compared to the cost of parallel execution (the execution takes 2.24s). The execution profile (figure 4.27

analyses a main thread in the moldyn.md.one_iteration. The execution uses only one thread to know how

much work would be done in parallel. The domain decomposition (split method) used takes 296ms time

that includes the creation of the new structures. There is also a reduction method that takes only 98ms.

The moldyn.md.cicle_mkekin method is not executed in parallel. In this case, the evaluation executed

in parallel ∼95% the total workload (CountDownLatch.await() represents the main thread waiting for the

other threads to calculate the problem). Therefore, considering that we execute the code in 16 threads,

the theoretical maximal speed-up is ∼9 times.

16Compares with the same sequential version and use the number of threads that obtain the best performance.

88 4. Performance evaluation

Figure 4.27: Execution profiler for BlockBalance

In the large size, the execution time reduces∼30 times. The layout AoP shows the higher scalability.

The other two layouts improve the performance at∼27 times. In this case, the limitation is imposed by the

hardware. The hardware has two processors, where each processor has 12 cores (24 virtual cores with

Hyper-Threading technology). Intel17 claims, the virtual cores can bring up to 30% improvement, which

means a limit of ∼31 times. In short, the approach gets close to the limit defined by the hardware.

4.4.4 Composing optimisations

Until here, all evaluations only use one optimisation at once. In this section, the evaluation tests the com-

position of optimisations. In the approach, the optimisations are modules that can be enabled or disabled

in the program execution. In GasPar, composing optimisations is simple: only include two optimisation

modules in execution that the developer validates. The evaluation uses two new versions: tileP1+tile and

dynamic+tile. tileP1+tile adds a new level of tiling that also performs a partition of the outer loop in the

original version. dynamic+tile uses the best parallel version and adds the tiling to the inner loop.

To apply the modules, the developer modifies the external optimisation module (tileP1 or dynamic) and

change the original method call to call the internal module (tile). The listing 4.12 shows the differences in

the external module(dynamic) to use the tiling optimisation (tile).

The two tiling levels improves performance in the aop version ∼1.4 times (figure 4.28a). For the

others, there is no improvement in the performance. aopSorting improves the locality by organising the

elements in the memory by the order they are accessed. The tiling also changes the order in which the

elements are accessed, thus, the optimisation has an unpredictable impact. soa optimisation has no

17https://software.intel.com/en-us/articles/how-to-determine-the-effectiveness-of-hy
per-threading-technology-with-an-application

https://software.intel.com/en-us/articles/how-to-determine-the-effectiveness-of-hyper-threading-technology-with-an-application
https://software.intel.com/en-us/articles/how-to-determine-the-effectiveness-of-hyper-threading-technology-with-an-application

4.4. Testing mechanisms - Molecular dynamics simulation 89

public class Dynamic ...
{

(...)
public static void force(gCollection.Parameters parameters){

md.force(...); Tile.force(...);
}
(...)

}

Listing 4.12: Code example of composition of optimisations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 10 20 30 40 50 60 70

re
la

tiv
e

pe
rfo

rm
an

ce

tile size Mib

aop aopSorting soa

(a) tileP1+tile

0.00

0.20

0.40

0.60

0.80

1.00

aop aopSorting soa

(b) dynamic+tile

Figure 4.28: Optimisations compositions benchmark (Large size)

improvements since the version is already efficient in accessing the data.

Figure 4.28b shows that the composition dynamic+tile reduces the performance. Tiling improves

access to data that reduces the wasted cycles in the processor. Hyper-Threading technology allows the

execution of two threads simultaneously by using the wasted cycles on a second thread. Thus, the Hyper-

Threading gains reduce when those wasted cycles decrease. In conclusion, improving data access lowers

the gains of using two threads in the same core. The performance decreases since the optimisation causes

additional overhead.

4.4.5 Complex entity - API closer to the domain

The previous evaluation uses the same API as the original JGF code. A particle has direct access to

nine values that represent the 3D position, velocity and force. In the JGF the concept of 3D coordinates

disappears in the code. The next evaluation analyses the execution cost to introduce this 3D coordinates

abstraction.

90 4. Performance evaluation

The figure 4.29 shows that the new API/Layout (gaop3D) has a high cost with the AoP layouts. The

performance decreases to ∼60% in the small size and ∼25% in the large due to the memory footprint

(more noticed when the problem increases) and the need to perform one more load instruction to access

the data. The table 4.13 compares the data footprint in memory. For instance, in the large size, the

problem increases to 185MiB in memory instead of 79 MiB. The figure 4.30 represents both layouts in

memory. In the JGF, there is an array of pointers that refers to one object that contains all particle data.

In the new API, the object has pointers to the other three objects: position, velocity and force. Each object

stores three doubles that represent the point in the Cartesian coordinate system. The footprint in memory

increases by using the pointers, the Java headers and the memory alignment.

0.0

0.2

0.4

0.6

0.8

1.0

Small Large Small Large

gaop/gaop3D gsoa/gsoa3D

re
la

tiv
e

pe
rfo

rm
an

ce

Time Intructions

Figure 4.29: Performance using a model of entities closer to domain

Particle Small Large

AoP layout 96 Bytes 824 KiB 79 MiB

AoP3D layout 224 Bytes 1922 KiB 185 MiB

Table 4.13: Memory footprint from all layouts

The number of instructions increases due to the need to perform one more load to access the data

(listing 4.13). To access to the coordinate x from position it needs: access to the particle; access the

vector position and finally access the x (listing 4.13 blue colour). The black colour (listing 4.13) is the

example in the original version that requires one less instruction.

The performance is equivalent in the SoA layout since the data footprint in memory is the same.

There are more instructions due to the need to create an auxiliary structure for simulating the coordinate

system18.

18The compiler can remove the auxiliary structures by Escape Analysis, but the optimisation applies only after a few iterations.

4.5. Extending collection - Matrix multiplication 91

Header PositionX PositionY

PositionZ VelocityX VelocityY VelocityZ

ForceX ForceY ForceZ Alignment

Header Header Position Velocity Force Alignment

Header X Y

Z Alignmet

Header X Y

Z Alignmet

Header X Y

Z Alignmet

Header

(a) AoP layout

Header PositionX PositionY

PositionZ VelocityX VelocityY VelocityZ

ForceX ForceY ForceZ Alignment

Header Header Position Velocity Force Alignment

Header X Y

Z Alignmet

Header X Y

Z Alignmet

Header X Y

Z Alignmet

Header

(b) AoP3D layout

Figure 4.30: Comparative APIs layout

load &particles, %eax load &particles, %eax
load 24(%eax), %ebx load 24(%eax), %edx

load 24(%edx), %ebx

Listing 4.13: Pseudo assembler

4.4.6 Summary

In this evaluation, we test the gSplitMapJoin mechanism. This mechanism allows introducing the tiling

optimisation in a simple form and separation of the domain code from the optimisation code. The op-

timisation improves the execution in ∼1.5 times. Yet, the mechanism makes it possible to implement

parallel execution. The private thread data is used only to define the private thread fields and reduction

method. Finally, it was evaluated an API closer to the domain that introduces costs in performance, but

with the most efficient layout (SoA), the performance cost is negligible. The approach allows improving

the performance in∼ 4 times with the optimisation, and in∼93 times by enabling the parallel execution.

4.5 Extending collection - Matrix multiplication

Matrix multiplication (MM) is one of the most widely used routines and whose implementation well studied.

MM generates a new matrix where the element in the position i, j is obtained by the multiplication of row

i of matrix A with the column j of matrix B. For the operation to be possible, the number of columns in

matrix A has to be equal to the number of rows in matrix B. A naive implementation has low performance,

which can be improved using an optimised MM kernel, introducing data tiling techniques and executing

in parallel.

A naive MM implementation is based on the dot product of two vectors: the element Cij of the result

matrix is computed from the dot product of line i from matrix A with the j column from matrix B (figure

92 4. Performance evaluation

4.31a). An optimised kernel computes several matrix elements C in a single loop (figure 4.31b). The

kernel implements the tiling optimisation for registers, where a (mini-)column of A is brought into registers

and multiplied with a (mini-)row of B to compute a (small) block of the Cmatrix that fits into registers. This

optimisation needs to handwrite the loop unrolling (code to compute the small block of C).

C"""""""""""""""""""""+="A"""""""""""""""""""""x"B"

""""""""" """"" "

(a) Naive

C"""""""""""""""""""""+="A"""""""""""""""""""""x"B"

""""""""" """"" "
"
"
""
"
"
"

"

"
"
+="

"
"

"

"
"
x"

"
" " " " "
"

12:4 F. G. Van Zee et al.

Fig. 1. Illustration from Van Zee and van de Geijn [2012] of the various levels of blocking and related packing
when implementing GEMM in the style of Goto and van de Geijn [2008a]. The bottom layer shows the general
GEMM and exposes the special case where k = kc (known as a rank-k update, with k = kc). The top layer shows
the microkernel upon which the BLIS implementation is layered. Here, mc and kc serve as cache block sizes
used by the higher-level blocked algorithms to partition the matrix problem down to a so-called block-panel
subproblem (depicted in the middle of the diagram), implemented in BLIS as a portable macrokernel. (This
middle layer corresponds to the “inner kernel” in the GotoBLAS.) Similarly, mr and nr serve as register block
sizes for the microkernel in the m and n dimensions, respectively, which also correspond to the length and
width of the individual packed panels of matrices Ãi and B̃, respectively.

3. A LAYERED IMPLEMENTATION
In many ways, the BLIS framework is a reimplementation of the GotoBLAS software
that increases code reuse via careful layering. We now describe how the GotoBLAS
approach layers the implementation of matrix-matrix multiplication. Then, we will
discuss ways in which BLIS employs this approach as well as how BLIS differs.

The Goto approach. The GEMM operation computes C := αAB+βC, where C, A, and B
are m× n, m× k, and k× n, respectively. For simplicity, we will assume that α = β = 1.

It is well known that near-peak performance can already be attained for the case
where A and B are m×kc and kc ×n, respectively [Goto and van de Geijn 2008a], where
block size kc will be explained shortly. A loop around this special case implements the
general case, as illustrated in the bottom layer of Figure 1.

To implement this special case (k = kc), matrix C is partitioned into row panels, Ci,
that are mc × n, whereas A is partitioned into mc × kc blocks, Ai. Thus, the problem
reduces to subproblems of the form of Ci := Ai B + Ci. Now, B is first “packed” into
contiguous memory (array B̃ in Figure 1). The packing layout in memory is indicated
by the arrows in that array. Next, for each Ci and Ai, the block Ai is packed into
contiguous memory as indicated by the arrows in Ãi. Then, Ci := Ãi B̃+ Ci is computed
with an “inner kernel,” which an expert codes in assembly language for a specific
architecture. In this approach, Ãi typically occupies half of the L2 cache, and B̃ is in
main memory (or the L3 cache).

The BLIS approach. The BLIS framework refactors the inner kernel into a double
loop over what we call the microkernel. The outer of these two loops was described
earlier: it loops over the n columns of B, as stored in B̃, nr columns at a time. The

ACM Transactions on Mathematical Software, Vol. 42, No. 2, Article 12, Publication date: June 2016.

12:4 F. G. Van Zee et al.

Fig. 1. Illustration from Van Zee and van de Geijn [2012] of the various levels of blocking and related packing
when implementing GEMM in the style of Goto and van de Geijn [2008a]. The bottom layer shows the general
GEMM and exposes the special case where k = kc (known as a rank-k update, with k = kc). The top layer shows
the microkernel upon which the BLIS implementation is layered. Here, mc and kc serve as cache block sizes
used by the higher-level blocked algorithms to partition the matrix problem down to a so-called block-panel
subproblem (depicted in the middle of the diagram), implemented in BLIS as a portable macrokernel. (This
middle layer corresponds to the “inner kernel” in the GotoBLAS.) Similarly, mr and nr serve as register block
sizes for the microkernel in the m and n dimensions, respectively, which also correspond to the length and
width of the individual packed panels of matrices Ãi and B̃, respectively.

3. A LAYERED IMPLEMENTATION
In many ways, the BLIS framework is a reimplementation of the GotoBLAS software
that increases code reuse via careful layering. We now describe how the GotoBLAS
approach layers the implementation of matrix-matrix multiplication. Then, we will
discuss ways in which BLIS employs this approach as well as how BLIS differs.

The Goto approach. The GEMM operation computes C := αAB+βC, where C, A, and B
are m× n, m× k, and k× n, respectively. For simplicity, we will assume that α = β = 1.

It is well known that near-peak performance can already be attained for the case
where A and B are m×kc and kc ×n, respectively [Goto and van de Geijn 2008a], where
block size kc will be explained shortly. A loop around this special case implements the
general case, as illustrated in the bottom layer of Figure 1.

To implement this special case (k = kc), matrix C is partitioned into row panels, Ci,
that are mc × n, whereas A is partitioned into mc × kc blocks, Ai. Thus, the problem
reduces to subproblems of the form of Ci := Ai B + Ci. Now, B is first “packed” into
contiguous memory (array B̃ in Figure 1). The packing layout in memory is indicated
by the arrows in that array. Next, for each Ci and Ai, the block Ai is packed into
contiguous memory as indicated by the arrows in Ãi. Then, Ci := Ãi B̃+ Ci is computed
with an “inner kernel,” which an expert codes in assembly language for a specific
architecture. In this approach, Ãi typically occupies half of the L2 cache, and B̃ is in
main memory (or the L3 cache).

The BLIS approach. The BLIS framework refactors the inner kernel into a double
loop over what we call the microkernel. The outer of these two loops was described
earlier: it loops over the n columns of B, as stored in B̃, nr columns at a time. The

ACM Transactions on Mathematical Software, Vol. 42, No. 2, Article 12, Publication date: June 2016.

12:4 F. G. Van Zee et al.

Fig. 1. Illustration from Van Zee and van de Geijn [2012] of the various levels of blocking and related packing
when implementing GEMM in the style of Goto and van de Geijn [2008a]. The bottom layer shows the general
GEMM and exposes the special case where k = kc (known as a rank-k update, with k = kc). The top layer shows
the microkernel upon which the BLIS implementation is layered. Here, mc and kc serve as cache block sizes
used by the higher-level blocked algorithms to partition the matrix problem down to a so-called block-panel
subproblem (depicted in the middle of the diagram), implemented in BLIS as a portable macrokernel. (This
middle layer corresponds to the “inner kernel” in the GotoBLAS.) Similarly, mr and nr serve as register block
sizes for the microkernel in the m and n dimensions, respectively, which also correspond to the length and
width of the individual packed panels of matrices Ãi and B̃, respectively.

3. A LAYERED IMPLEMENTATION
In many ways, the BLIS framework is a reimplementation of the GotoBLAS software
that increases code reuse via careful layering. We now describe how the GotoBLAS
approach layers the implementation of matrix-matrix multiplication. Then, we will
discuss ways in which BLIS employs this approach as well as how BLIS differs.

The Goto approach. The GEMM operation computes C := αAB+βC, where C, A, and B
are m× n, m× k, and k× n, respectively. For simplicity, we will assume that α = β = 1.

It is well known that near-peak performance can already be attained for the case
where A and B are m×kc and kc ×n, respectively [Goto and van de Geijn 2008a], where
block size kc will be explained shortly. A loop around this special case implements the
general case, as illustrated in the bottom layer of Figure 1.

To implement this special case (k = kc), matrix C is partitioned into row panels, Ci,
that are mc × n, whereas A is partitioned into mc × kc blocks, Ai. Thus, the problem
reduces to subproblems of the form of Ci := Ai B + Ci. Now, B is first “packed” into
contiguous memory (array B̃ in Figure 1). The packing layout in memory is indicated
by the arrows in that array. Next, for each Ci and Ai, the block Ai is packed into
contiguous memory as indicated by the arrows in Ãi. Then, Ci := Ãi B̃+ Ci is computed
with an “inner kernel,” which an expert codes in assembly language for a specific
architecture. In this approach, Ãi typically occupies half of the L2 cache, and B̃ is in
main memory (or the L3 cache).

The BLIS approach. The BLIS framework refactors the inner kernel into a double
loop over what we call the microkernel. The outer of these two loops was described
earlier: it loops over the n columns of B, as stored in B̃, nr columns at a time. The

ACM Transactions on Mathematical Software, Vol. 42, No. 2, Article 12, Publication date: June 2016.

(b) Optimised

Figure 4.31: MM Traditional kernel

This evaluation uses an optimised matrix multiplication kernel. The kernel processes 4x2 elements in

each loop body, enabling the variables to stay in the register, reducing the number of memory accesses

(the load and store instructions reduces). In the base version, the loop body calculates a single matrix C

element that results from adding to this element the result from multiplication of one matrix A element with

one matrix B element (in a way similar to daxpy). The optimised kernels apply the tiling optimisation to a

small block so that some variables remain in registers. For this, it needs to apply the unrolling optimisation

in the loop body. This evaluation uses the order kij for loops, a tiling decomposes the loop i where size is

2, and loop k with size 4. With this setting, the elements of matrix B are reused, and the matrix A elements

stay in registered in the outermost loop.

Traditionally, tiling allows sub-matrices to stay in the cache for a longer time. Additionally, the packing

optimisation can improve performance since the data footprint used for processing is better (improve

spatial locality).

One (or more) loops can be executed in parallel, which is equivalent to the computation of submatrices

in parallel. The most common strategy is to assign different matrix C blocks to multiple threads since each

thread writes to one different submatrix C (there is no concurrency in data writes).

This evaluation explores two questions about the approach: the first is the approach extension to

support data with several dimensions (e.g., matrices); the second studies the packing optimisations which

are common in MM implementations. The tiling in the matrix multiplication originates accesses to the

submatrix data that will remain in the cache. Packing can group this data into small matrices to improve

cache usage.

4.5. Extending collection - Matrix multiplication 93

The evaluation extends the GasPar to support matrix-like data structures19. The new API enables it to

iterate over the matrix by columns and by rows. For this purpose, the API implements two new methods

that create different iterators: one accesses the matrix by columns and another accesses by rows. It also

allows index access to an element with the get and set. Figure 4.32 shows the new classes that support

this new matrix API. When the developer iterates by rows, the developer uses beginRow(). This method

returns an instance of the gIteratorRowDouble class 20, that represents a matrix row, providing access to

the elements of a matrix row. Using this class, the developer iterates over the collection as in the usual

method (e.g., calling begin, etc).

gMatrixDouble

gIteratorRowsDouble

gCollectionRowsDouble

gIteratorColumnsDouble

gCollectionColumnsDouble

beginRow() beginColumns()

begin() begin()

Figure 4.32: Matrix API21

A question behind this evaluation is the matrix layout. In the previous case studies, the SoA layout

always provided the best performance. However, a new question arises regarding the matrix layout: using

an array of pointers for arrays or using a single vector (figure 4.33). Java uses the AoA layout. AoA

layout has an array of pointers to the matrix lines, and a line is an array, so each line access is done by

a load. Vector layout uses a unique array (contiguous space in memory) where the data access uses a

calculation. In Java, this calculation is specified by the developer. In other languages, such as C, it is

possible to implement this layout using traditional access. AoA needs additional space to store the pointer

array. The GasPar approach allows these options to be transparent for the developer (i.e., use the same

19The tool does not support the matrix API since it is a prototype for the matrix access, developed for evaluation purposes.

The code to support the new API was handwritten.
20Is a gIterator and gCollection at same time.
21It shows the concrete classes to empathise the new implementation.

94 4. Performance evaluation

matrix API for both layouts). This evaluation starts by comparing the performance of both layouts. The

first layout decreases the number of calculations, but it also introduces new memory accesses. Table

4.14 shows memory footprint is need for each of the sizes tested.

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

(a) AoA

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

(b) Vector

Figure 4.33: aoa vs vector layout

Problem size (MiB) Line Size (KiB)

1024 192 64

4096 3072 256

16384 49152 1024

Table 4.14: Problem size

Figure 4.34 shows the impact on the performance. The approach has a maximum cost of ∼0.88

over traditional code development. The GasPar API allowed writing the low level kernel using iterators

(note: the kernel contains register tiling and loop unrolling in the code), but it introduces overheads.

Despite performance loss, the use of iterators allows the application of the remaining optimisations without

modifying the domain code.

The vector causes a substantial loss of performance, and the best case can not reach 0.60 of the

native implementation performance. For this reason, the vector option was discarded in the remaining

tests.

4.5.1 Tiling optimisation and parallel execution

In this evaluation, all matrix sizes are larger than the cache memory size. Therefore, it needs to access

the main memory. As already defined above, the kernel uses the kij ordering for loops which implies that

the innermost loop needs a row of matrix C and a row of matrix B (figure 4.35). The middle loop (loop i)

4.5. Extending collection - Matrix multiplication 95

0.0

0.2

0.4

0.6

0.8

1.0

1024 4096 16384
re

la
tiv

e
pe

rfo
rm

an
ce

aoa vector

Figure 4.34: Layouts performance

uses the same row of matrix B and loads a new line of C and carries a value of A. To take advantage of

the data locality, it needs to ensure that the multiple lines of matrix B remain in the cache.

\+= A x BC

104 4. Performance evaluation

4.5 Matrix Multiplication

Matrix multiplication (MM) is one of the most widely used routines
and whose implementation well studied. MM generates a new matrix
where the element in the position i, j is obtained by the multiplication
of row i of matrix A with the column j of matrix B. For the operation
to be possible, the number of columns of matrix A has to be equal
to the number of rows in matrix B. A naive implementation has poor
performance, which can be improved by using an optimised MM kernel,
introducing data tiling techniques and executing in parallel.

A naive MM implementation is based on the dot product of two
vectors: the element Cij of the result matrix is computed from the dot
product of line i from matrix A with the j column from matrix B (figure
4.33a). An optimised kernel computes several elements of matrix C in a
single loop (figure 4.33b). The kernel implements the tiling optimisation
for registers, where a (mini-)column of A is brought into registers and
multiplied with a (mini-)row of B to compute a (small) block of the C
matrix that fits into registers (e.g., an 8x4 matrix). This optimisation
needs to handwrite the loop unrolling (code to calculation these elements
one by one).

C"""""""""""""""""""""+="A"""""""""""""""""""""x"B"

""""""""" """"" "

(a) Naive

C"""""""""""""""""""""+="A"""""""""""""""""""""x"B"

""""""""" """"" "
"
"
""
"
"
"

"

"
"
+="

"
"

"

"
"
x"

"
" " " " "
"

12:4 F. G. Van Zee et al.

Fig. 1. Illustration from Van Zee and van de Geijn [2012] of the various levels of blocking and related packing
when implementing GEMM in the style of Goto and van de Geijn [2008a]. The bottom layer shows the general
GEMM and exposes the special case where k = kc (known as a rank-k update, with k = kc). The top layer shows
the microkernel upon which the BLIS implementation is layered. Here, mc and kc serve as cache block sizes
used by the higher-level blocked algorithms to partition the matrix problem down to a so-called block-panel
subproblem (depicted in the middle of the diagram), implemented in BLIS as a portable macrokernel. (This
middle layer corresponds to the “inner kernel” in the GotoBLAS.) Similarly, mr and nr serve as register block
sizes for the microkernel in the m and n dimensions, respectively, which also correspond to the length and
width of the individual packed panels of matrices Ãi and B̃, respectively.

3. A LAYERED IMPLEMENTATION
In many ways, the BLIS framework is a reimplementation of the GotoBLAS software
that increases code reuse via careful layering. We now describe how the GotoBLAS
approach layers the implementation of matrix-matrix multiplication. Then, we will
discuss ways in which BLIS employs this approach as well as how BLIS differs.

The Goto approach. The GEMM operation computes C := αAB+βC, where C, A, and B
are m× n, m× k, and k× n, respectively. For simplicity, we will assume that α = β = 1.

It is well known that near-peak performance can already be attained for the case
where A and B are m×kc and kc ×n, respectively [Goto and van de Geijn 2008a], where
block size kc will be explained shortly. A loop around this special case implements the
general case, as illustrated in the bottom layer of Figure 1.

To implement this special case (k = kc), matrix C is partitioned into row panels, Ci,
that are mc × n, whereas A is partitioned into mc × kc blocks, Ai. Thus, the problem
reduces to subproblems of the form of Ci := Ai B + Ci. Now, B is first “packed” into
contiguous memory (array B̃ in Figure 1). The packing layout in memory is indicated
by the arrows in that array. Next, for each Ci and Ai, the block Ai is packed into
contiguous memory as indicated by the arrows in Ãi. Then, Ci := Ãi B̃+ Ci is computed
with an “inner kernel,” which an expert codes in assembly language for a specific
architecture. In this approach, Ãi typically occupies half of the L2 cache, and B̃ is in
main memory (or the L3 cache).

The BLIS approach. The BLIS framework refactors the inner kernel into a double
loop over what we call the microkernel. The outer of these two loops was described
earlier: it loops over the n columns of B, as stored in B̃, nr columns at a time. The

ACM Transactions on Mathematical Software, Vol. 42, No. 2, Article 12, Publication date: June 2016.

12:4 F. G. Van Zee et al.

Fig. 1. Illustration from Van Zee and van de Geijn [2012] of the various levels of blocking and related packing
when implementing GEMM in the style of Goto and van de Geijn [2008a]. The bottom layer shows the general
GEMM and exposes the special case where k = kc (known as a rank-k update, with k = kc). The top layer shows
the microkernel upon which the BLIS implementation is layered. Here, mc and kc serve as cache block sizes
used by the higher-level blocked algorithms to partition the matrix problem down to a so-called block-panel
subproblem (depicted in the middle of the diagram), implemented in BLIS as a portable macrokernel. (This
middle layer corresponds to the “inner kernel” in the GotoBLAS.) Similarly, mr and nr serve as register block
sizes for the microkernel in the m and n dimensions, respectively, which also correspond to the length and
width of the individual packed panels of matrices Ãi and B̃, respectively.

3. A LAYERED IMPLEMENTATION
In many ways, the BLIS framework is a reimplementation of the GotoBLAS software
that increases code reuse via careful layering. We now describe how the GotoBLAS
approach layers the implementation of matrix-matrix multiplication. Then, we will
discuss ways in which BLIS employs this approach as well as how BLIS differs.

The Goto approach. The GEMM operation computes C := αAB+βC, where C, A, and B
are m× n, m× k, and k× n, respectively. For simplicity, we will assume that α = β = 1.

It is well known that near-peak performance can already be attained for the case
where A and B are m×kc and kc ×n, respectively [Goto and van de Geijn 2008a], where
block size kc will be explained shortly. A loop around this special case implements the
general case, as illustrated in the bottom layer of Figure 1.

To implement this special case (k = kc), matrix C is partitioned into row panels, Ci,
that are mc × n, whereas A is partitioned into mc × kc blocks, Ai. Thus, the problem
reduces to subproblems of the form of Ci := Ai B + Ci. Now, B is first “packed” into
contiguous memory (array B̃ in Figure 1). The packing layout in memory is indicated
by the arrows in that array. Next, for each Ci and Ai, the block Ai is packed into
contiguous memory as indicated by the arrows in Ãi. Then, Ci := Ãi B̃+ Ci is computed
with an “inner kernel,” which an expert codes in assembly language for a specific
architecture. In this approach, Ãi typically occupies half of the L2 cache, and B̃ is in
main memory (or the L3 cache).

The BLIS approach. The BLIS framework refactors the inner kernel into a double
loop over what we call the microkernel. The outer of these two loops was described
earlier: it loops over the n columns of B, as stored in B̃, nr columns at a time. The

ACM Transactions on Mathematical Software, Vol. 42, No. 2, Article 12, Publication date: June 2016.

12:4 F. G. Van Zee et al.

Fig. 1. Illustration from Van Zee and van de Geijn [2012] of the various levels of blocking and related packing
when implementing GEMM in the style of Goto and van de Geijn [2008a]. The bottom layer shows the general
GEMM and exposes the special case where k = kc (known as a rank-k update, with k = kc). The top layer shows
the microkernel upon which the BLIS implementation is layered. Here, mc and kc serve as cache block sizes
used by the higher-level blocked algorithms to partition the matrix problem down to a so-called block-panel
subproblem (depicted in the middle of the diagram), implemented in BLIS as a portable macrokernel. (This
middle layer corresponds to the “inner kernel” in the GotoBLAS.) Similarly, mr and nr serve as register block
sizes for the microkernel in the m and n dimensions, respectively, which also correspond to the length and
width of the individual packed panels of matrices Ãi and B̃, respectively.

3. A LAYERED IMPLEMENTATION
In many ways, the BLIS framework is a reimplementation of the GotoBLAS software
that increases code reuse via careful layering. We now describe how the GotoBLAS
approach layers the implementation of matrix-matrix multiplication. Then, we will
discuss ways in which BLIS employs this approach as well as how BLIS differs.

The Goto approach. The GEMM operation computes C := αAB+βC, where C, A, and B
are m× n, m× k, and k× n, respectively. For simplicity, we will assume that α = β = 1.

It is well known that near-peak performance can already be attained for the case
where A and B are m×kc and kc ×n, respectively [Goto and van de Geijn 2008a], where
block size kc will be explained shortly. A loop around this special case implements the
general case, as illustrated in the bottom layer of Figure 1.

To implement this special case (k = kc), matrix C is partitioned into row panels, Ci,
that are mc × n, whereas A is partitioned into mc × kc blocks, Ai. Thus, the problem
reduces to subproblems of the form of Ci := Ai B + Ci. Now, B is first “packed” into
contiguous memory (array B̃ in Figure 1). The packing layout in memory is indicated
by the arrows in that array. Next, for each Ci and Ai, the block Ai is packed into
contiguous memory as indicated by the arrows in Ãi. Then, Ci := Ãi B̃+ Ci is computed
with an “inner kernel,” which an expert codes in assembly language for a specific
architecture. In this approach, Ãi typically occupies half of the L2 cache, and B̃ is in
main memory (or the L3 cache).

The BLIS approach. The BLIS framework refactors the inner kernel into a double
loop over what we call the microkernel. The outer of these two loops was described
earlier: it loops over the n columns of B, as stored in B̃, nr columns at a time. The

ACM Transactions on Mathematical Software, Vol. 42, No. 2, Article 12, Publication date: June 2016.

(b) Optimised

Figura 4.33: MM Traditional kernel

The kernel used in this evaluation is a Java-tuned kernel that is based
on a daxpy implementation, instead of a dot-based implementation,
since the former is easier to auto-vectorise in Java. Thus, it keeps a
small matrix of A in registers (2x4 elements) in order to compute 8
daxpy in a single loop.

This evaluation uses an optimised matrix multiplication kernel. The
kernel processes 4x2 elements in each loop body, enabling the variables
to stay in register, reducing the number of memory accesses (reduces
the load and store instructions). In the base version, the loop body
calculates a single element of matrix C, adding the result of the mul-
tiplication of one element of matrix A with one element of matrix B.
The optimised version applies the tiling optimisation to a small block
so that some variables remain in registers. For this, it needs to apply

Figure 4.35: Kernel elements + tiling

The gSpliMapJoin mechanism decomposes the problem into subproblems. The subproblems must

remain in cache memory to take full advantage of data locality. The matrix C subproblem is defined with

the size of 32 rows by 512 columns (tile example in figure 4.35 is 4x8). Thus, the matrix B line, for this

subproblem, has 512 elements. Additionally, the submatrix C has 32 lines to stay in the L2 cache while

calculating the subproblem. For matrix A, it needs to load new values into registers in the external loop

(loop k).

The evaluation compares three tiling options. The tile option uses virtual views that use collections

where the begin returns an iterator to the starting subcollection position. The packing option divides the

matrix with splitondemand, where the data reads trigger the packing of the submatrix before processing the

subproblem. After processing, it writes the packed submatrix into the original matrix. The packingOptimise

option creates all packed matrices for matrices A and B at the beginning and uses the split on demand on

matrix C.

Figure 4.36a compares the three tiling optimisations impact. The best version is packingOptimise.

96 4. Performance evaluation

0.0

0.4

0.8

1.2

1.6

2.0

2.4

tile packing packingOptimise

re
la

tiv
e

pe
rfo

rm
an

ce

1024 4096 16384

(a) time

0.0

0.4

0.8

1.2

1.6

2.0

2.4

tile packing packingOptimise

re
la

tiv
e

pe
rfo

rm
an

ce

Intructions L3_Misses

(b) instructions+l3_misses22

Figure 4.36: Tiling and packings optimisations impact

This version is better than the packing since it prevents the data of matrices A and B from being reloaded

several times to the packing matrix. Each submatrix of C is loaded only once, so the splitondemand uses

less space in memory.

The tiling optimisation improves data accesses by decreasing the number of misses, as the figure

4.36b shows. This improvement has a positive impact on runtime for two versions (figure 4.36a): packing

and packingOptimise. However, for the tile option, the runtime increases due to an increase in the number

of instructions (figure 4.36b). In this case, the virtual collections introduce additional instructions since

they disable some compiler optimisations (e.g., bounds check in collection accesses).

There are many other possible tiling combinations. The ones presented in the figure 4.36 provide the

best (and more representative) results. There was a preliminary study not presented in this document

since it is not relevant to this evaluation.

The parallel execution uses the block-scheduling strategy where the subproblems are organised into

blocks23. The parallel execution requires a mechanism to control the concurrency in packing since the C

matrix uses packingondemand. To solve the problem, the evaluation utilises the strategy present in the

gCollection (create a private matrix for each thread).

The figure 4.37a shows that the parallel execution decreases the execution time. The tile option has

the worse improvement in the runtime, while packingOptimise shows the best improvement. These results

reflect the sequential version performance (see figure 4.36a). The parallel execution and packing enable

a 40 times improvement for the larger size: ∼2.3 times from the data tile/packingOptimise optimisation

22The columns show the average of all three matrix sizes.
23One block has one or many subproblems.

4.5. Extending collection - Matrix multiplication 97

and the remainder from the parallel execution.

0

5

10

15

20

25

30

35

40

tile packing packingOptimise

re
la

tiv
e

pe
rfo

rm
an

ce

1024 4096 16384

(a) Parallel+optimisations24

0.4

0.8

1.6

3.2

6.4

12.8

25.6

51.2

1 2 4 6 8 12 16 24 32 48 64 96 128

re
la

tiv
e

pe
rfo

rm
an

ce

1024 4096 16384

(b) Parallel+packingOptimise

Figure 4.37: Parallel execution impact

The performance for all versions (tile, packing and packingOptimise), as the number of threads in-

creases, follows a similar trend-line (see in appendix figure 7.1). The figure 4.37b shows the trend-line

of the faster option. There is a performance drop when the number of threads is not a power of 2 due

to load unbalancing. In that case, there is a thread that processes more elements than other threads,

so the execution time reflects this thread time. Although the machine supports only 48 threads, at the

same time, there is an improvement with 64 and 128 due to using all threads and better load balance.

The lower speed-up occurs in the small size since parallel execution cost is proportionally larger (leading

to higher parallelism overhead).

4.5.2 Libraries for matrix multiplication

Using GasPar enabled a performance improvement when compared to the previously developed base

kernel. For this, the best performance is obtained with packing optimisation and parallel execution. The

OjAlgo library developers analysed the performance of some libraries available for matrix multiplication

for Java. The study (results shown in figure 4.38) are based for the JMatBench on 2018-04-04 25. The

most efficient libraries are the EJML for small sizes and ojAlgo for larger matrices. For this reason, the

evaluation compares Gaspar against these three libraries.

Efficient Java Matrix Library (EJML) is a linear algebra library for manipulating real/complex/dense/s-

parse matrices. The library was designed to be as computationally and memory-efficient as possible for

24The gains are relative to the aoa version and for the number of threads that have minimum execution time.
25https://github.com/lessthanoptimal/Java-Matrix-Benchmark

https://github.com/lessthanoptimal/Java-Matrix-Benchmark

98 4. Performance evaluation

Figure 4.38: JMatBench: Summary Benchmark performance

small and large matrix, and accessible to both novices and expert developers. These goals are accom-

plished by dynamically selecting the best algorithms to use at runtime, clean API, and multiple interfaces.

EJML is free, written in 100% Java and has been released under an Apache v2.0 license. EJML uses three

kernels to calculate the matrix multiplication. When matrix B has only one column, it uses the first kernel.

The second kernel is for small matrices, i.e., when the number of columns is less than 15. This kernel

also uses the ijk loops order. The third kernel is used for all other cases, and the order of the loops is ikj.

All kernels are sequential and do not use tiling or packing optimisation.

ojAlgo26 is a linear algebra library also developed in pure Java. In figure 4.38, ojAlgo presents the

best libraries performance in most problems sizes. Unlike the other libraries, ojAlgo uses domain decom-

position to optimise code as well as parallel processing. The library begins by decomposing the problem

into subproblems that execute in a thread pool.

Additionally, the evaluation includes jBlas in this test. The jBlas uses the blas and lapack through JNI

calls to the corresponding methods from the Fortran library. Thus the library is not developed in Pure

Java, which makes it dependent on the execution platform.

The table 4.15 show the library versions used in this evaluation. The figure 4.39 shows the rela-

tive library performance compared to the GasPar base. The optimised version is packingOptimised with

sequential execution. The parallel use same version with parallel execution.

As expected, EJML is the lowest-performing library since it does not use the major optimisations (figure

4.39). ojAlgo performs better for the small size. In this size, the matrix fits in the cache, and the bottleneck

is not memory since the innermost loop is loop j. Additionally, ojAlgo uses parallel processing that makes

it faster than our optimised base. When compared to the parallel, the performance is similar in the smaller

26https://www.ojalgo.org/

https://www.ojalgo.org/

4.5. Extending collection - Matrix multiplication 99

Library Version

EJML 0.38

ojAlgo 47.3.1

jBlas 1.2.4

Table 4.15: Libraries versions

size. jBlas uses a sequential version of ATLAS. The jBlas has better performance than base GasPar, but

the optimised is better than jBlas. Using parallel processing reduces the execution time by nearly 46 times

for the larger size.

0.25

0.5

1

2

4

8

16

32

64

1024 4096 16384

EJML ojAlgo Jblas Optimised Parallel

Figure 4.39: Comparation GasPar with other Libs

4.5.3 Summary

This case study allowed us to extend the approach to support matrices. The code developed is a prototype

that shows the approach potentialities to accommodate new containers. The new API allowed us to use a

complex kernel.

The virtual collections have worse performance, inhibiting the application some optimisation by the

compiler. The packaging optimisation eliminates this limitation and improves performance.

Finally, GasPar enables parallel execution to reduce the execution time by more than ∼20X in the

larger size.

100 4. Performance evaluation

4.6 Conclusions

The approach allows the use of the most efficient layout without neglecting the programmability. The eval-

uations use the same API as the Java collections and additionally improve the efficiency in accessing data

through the layout. Additionally, the approach allows the application of the most common optimisations,

hiding implementation details. All optimisations available in the GasPar are pluggable (can be removed or

introduced easily by the developer).

All evaluations had an improvement in performance. The figure 4.40 shows the improvement in

performance in all evaluations. It was possible to reduce the execution time by almost 20 times, for

all evaluations that support parallelism. MD reduced the execution time by 50 times. In JECoLi, this

improvement is less since the parallel execution is not used. The improvement is due to a more efficient

layout. JECoLi’s execution time has been reduced by 3 times.

0

10

20

30

40

50

60

Sum daxpy JECoLi MD MM

re
la

tiv
e

pe
rfo

rm
ac

e

Figure 4.40: Evaluations performance summary

Figure 4.41 shows the layouts improvement in execution time. For Sum the layout improves the per-

formance in∼4.5 times. In daxpy, the SoA layout has 2.5 more performance. In the MD, the performance

doubled with the SoA layout. In MM, the most efficient layout is the base layout, for that reason, there are

no improvements.

Java uses Autoboxing and Unboxing to allow the use of its collections with primitive types. However,

its use causes a high cost when it is necessary reading and writing the value in the collection. These two

operations force the creation of a new object (daxpy).

Our approach allows, starting with a basic AoP version, and to switch to SoA layout. In the MD

case, the changes are limited to accessing the data. Manual implementation requires the same changes

and additionally needs to redefine the method’s parameters. Our approach allowed JECoLi to remain

4.6. Conclusions 101

0

0.5

1

1.5

2

2.5

3

Sum daxpy JECoLi MD

re
la
tiv
ep
er
fo
rm

an
ce

Figure 4.41: Evaluations performance summary (layout improvements)

generic using the most efficient layout. The integration of our approach in JECoLi was simple due to the

compatibility with the Java collections.

Our iterators reduce the number of instructions since some instructions are removed when compared

with Java iterators. Our approach allowed this reduction by the compiler since collection elements are

created all at once and use the same type of data.

The table 4.16 summarises the results that were measured during this work. For each case study,

different versions are measured, which are quantified in the #versions column. The #tests column identi-

fies the total number of versions measured with different parameters (e.g., number of threads). The last

column gives an estimate of the computation time spent for each case study.

versions # tests Total time

Sum 37 174 4m x 100 (7h)

daxpy 45 465 5m x 100 (8h)

JECoLi 4 14 1h x 10 (10h)

MD 83 553 233h x 10 (97 days)

MM 18 328 12h x 10 (5 days)

Table 4.16: Evaluations summary (development time)

In Sum and daxpy, several versions were created for comparison (i.e., without using the framework).

We replicated this versions by using the framework. It only needs one code for both layouts. At JECoLi,

4 different versions were created. First, we use the original version by the AoP layout for collections. The

other versions used the GasPar framework, with 3 different layouts: generic types in the layout, AoP layout

and the SoA layout. The code is the same for the three versions. In MD, we used two different codes

with the framework: the first used the flatten structure, the second used the structure composed of other

102 4. Performance evaluation

structures. These two codes generate sixteen versions with different optimisations. The other nineteen

versions did not use the framework and are handwritten. For matrix multiplication, the framework allowed

to test two layouts with the same code. The framework enable several optimisations that generated nine

versions with the optimisations supported by framework.

Chapter 5

Discussion

The beginning of chapter 3 presented the requirements of the approach. The first two requirements (use

domain abstractions in the code, using an OOP approach and deliver high performance) were difficult to

provide, at the same time, making them one of the main challenges to address in this dissertation. The

use of OOP may introduce an overhead not admissible for HPC. The solution introduced in this dissertation

allows the developer to use OOP concepts, such as objects, methods, etc making the code more abstract,

and simultaneously, the approach provides support for performance tuning by providing a set of locality

optimisations.

Section 2.2 presented the most common locality optimisations. This chapter compares other ap-

proaches that support these optimisations with the proposed solution. Table 5.1 summarises the sup-

ported optimisations. The first column identifies the optimisations; the second summarises how the

approach supports those optimisations, and the last column indicates other frameworks supporting the

same optimisations.

Implementation Other frameworks

Data Layout Generation+Data API JCRNE, Valhalla, Wimmer, SDLT, ASX,

Sharma, ASTA

Data sorting Data API Hirzel, Chilimbi

Padding and alignment - Compiler

Tiling + Packing Data API + Annotation OpenACC, Mint, Pluto, Polly

Loop fusion - Pluto, Polly

Loop reorder - Pluto, Polly

Privatisation Data API+Generation OpenMP

+Annotation

Parallelism Data API+Annotation OpenMP, OpenACC, Java streams, Habanero, TBB

Table 5.1: Locality optimisation and parallelism approaches

The next section discusses the programming interface, namely, analyses the iterators options. The

discussion in sections 5.2 and 5.3 compares the approaches and their mechanisms to support: data

103

104 5. Discussion

layout, data sorting, padding and alignment, tiling and packing and finally, parallelism and privatisation.

The data layout optimisation has been the target of several research projects. Section 5.2.1 will explain

the different kinds of approaches that transform abstracts layouts into more efficient layouts. Section

5.2.2 presents two approaches to implement the sorting optimisation, that use Garbage Collector (GG) to

sort the data. Traditionally, padding and alignment (section 5.2.3) changes the data structures definition

and data allocation, being simple to implement, or hiding by the library for allocation or by compile-based

optimisation. The Tiling (section 5.2.4) is implemented in some approaches by placing annotations in

loops (e.g. OpenACC). Other approaches (e.g., Pluto and Polly) rely on a sophisticated analysis of memory

accesses patterns. Section 5.3 describes tools that support parallelism, focusing on data parallelism. The

final section presents a summary of the approaches advantages and their constraints.

5.1 Programming interface

GasPar supports both Java and STL-like iterators. Moreover, gCollections fully support the Java List inter-

face, opening the door to a wider range of applications. This dissertation supports the most used Java

container (i.e., ArrayList) [CASL17]. Thus, we can replace this container with a GasPar container. For

problems where the bottleneck is the access to the collection, the developer can improve the performance

by using the GasPar collection with the SoA layout, while keeping the domain abstractions.

STL and JCF support the use of collections of polymorphic data. However, they support the polymor-

phic data only with the AoP layout. The current implementation of GasPar shares the same limitation. The

section 6.2.1 discuss an approach to implement polymorphic data in GasPar with the SoA layout.

The iterators allow the developer to write code that is independent of the collection layout. For example,

the developer can use a LinkedList instead of ArrayList. Moreover, using iterators sometimes has an

additional cost since the iterator might disable some compiler optimisations [BVDGN06] or add overhead.

Java iterators provide two methods to process a collection: one tests if there are more elements and

the other returns the current element and advances to the next one. The use of this type of iterator has

limitations [Wei02]. For example, it is not possible to implement a matrix transpose with these iterators.

However, operations over matrices are essential in HPC, so the GasPar also extends the iterator API.

GasPar also offers iterators similar to the STL iterator. The STL initialises the iterator with begin() and

tests if all elements are already processed by comparing the iterator with the last collection element (given

by the end method). The next element is performed with an increment to the iterator (e.g., it++). The

STL iterator exposes the loop limits that helps to support the parallel execution. In the early versions of

the GasPar, this iterator simplified the development, now it is used internally. The STL iterator allows the

5.2. Data locality optimisations 105

developer to modify the end of the iterationmore easily. This iterator is used to implement the optimisations

such as tiling.

GasPar iterators introduce synch() method that enables iteration over two or more collections, at the

same time, through iterators. STL allows the developer to synchronise iterators, but it is less abstract. In

STL, the developer uses std::advance(it1, std::distance(beginit2, it2)-std::distance(beginit1, it1)) to synchro-

nise it1 with it2. The Boost1 library developed for C ++ also allows the processing of several collections

simultaneously. For this, it provides a zip iterator that abstracts a set of iterators making it possible to

access several collections with the same iterator. In the future, this could be an alternative to the approach

(e.g., a join iterator).

Robert proposes a new approach to remove matrix indices from the code in linear algebra [BVDGN06]

based on a domain-specific language that can be directly mapped into library calls. The development

proposed that the processing should occur in different steps. However, that approach is specific for the

Linear Algebra domain. In this work, the GasPar approach was tested in multiple domains.

The implementation of the proposed iterators, provide a performance similar to lower level program-

ming (e.g., array index-based). It relies on modern JVMs optimisation to eliminate the iterator overhead. At

the implementation level, iterators become an integer to control the loop iteration range. In contexts that

require the sync among iterators, it becomes important to use the same loop control variable for multiple

iterators (as the sync operation does).

The iterators make the code closer to the domain. This thesis analysed different iterators and opted to

include both Java and STL iterators in the approach. Java iterators enable to change of a Java collection

by a GasPar collection. Additionally, the STL-like iterators are well-known to HPC developers.

5.2 Data locality optimisations

5.2.1 Data layout

The choice of the data layout, in traditional approaches, is made at the beginning of the code development.

Thus, changing it after the initial coding step implies many changes in the code. On the other hand, the

most efficient layouts typically do not use domain concepts, as they are closer to the execution platform.

There are several options to allow the choice of the layout in the final development step. The most common

options are data encapsulation, code transformation, use of proxies and use of the JVM to manipulate the

data accesses.

1https://www.boost.org/

https://www.boost.org/

106 5. Discussion

The data encapsulation technique hides the layout over an API by creating temporary objects (e.g.,

an adapter). Section 2.2.1 presented one approach that enables multiples layouts with the same API.

However, this API is not compatible with the Java Collections APIs. In Java collections, get returns a

reference to the entity (object), and it can make changes directly on it. In comparison, the JCRNE returns

an object copy and forces the developer to set the new object in the collection to update the entity.

The proposed approach behaves like Java collections and returns an iterator/proxy that enables direct

access to the collection. In practice, the developer writes the same code with our approach as with

Java collections. The data encapsulation implementation requires the creation of new objects (e.g., the

iterator/proxy) to expose the required API. The overhead of creating this object is removed in most cases, in

recent versions of the JVM. However, in older versions of the JVM, the JCRNE has a significant overhead

on performance [FSS13], whilst the approach reduces the overhead by using the same object several

times (e.g., using the same iterator/proxy to iterate over all the elements in a collection). JCRNE does not

support tiling, packing and parallelism. However, it is possible to adapt the proposed implementation to

use a JCRNE-based implementation.

Section 4.2 (sum/daxpy cases studies) compared the implementation and performance of this ap-

proach against our approach. Listing 5.1 shows the code differences for daxpy: the setValue writes the

value in the new object; the set writes a new object in the collection Y.

for(int i=0; i < collectionX.size(); i++) {\\
gDouble dy = collectionY.get(i); //returns a reference to an element in the collection (proxy)
double aux = alpha * collectionX.get(i).getValue() + dy.getValue();
collectionY.get(i).setValue(aux);

}
a) GasPar API

for(int i=0; i < collectionX.size(); i++) {
gDouble dy = collectionY.get(i); //returns a new object, copy all fields
double aux = alpha * collectionX.get(i).getValue() + dy.getValue();
dy.setValue(aux); //update all fields in collection
collectionY.set(dy, i);

}
b) JCRE API

Listing 5.1: Java code of different daxpy implementations

The figure 7.2 (in thesis appendix) shows that JCRNE has similar performance that the GasPar. The

compiler removes the creation of the temporary object (the JiT uses the escape analysis, section 2.3.1,

to apply this optimisation), so the generated code is similar to GasPar.

In the code transformation approach, the source code is processed and changed to implement the

desired layout. The technique is versatile allowing multiple changes to the source code. On one hand,

5.2. Data locality optimisations 107

it is possible to have an approach that allows the developer to specify the code as the developer wishes,

which imply the development of a complex tool. On the other hand, it can restrict domain code writing,

facilitating tool development.

Sharma [SKK+13] presents a C++ framework that can change the AoS layouts to SoA or hybrid layouts.

The tool processes the code changing the layout (source to source approach) specified by metadata. It

can also create hybrid layouts (between AoS and SoA) automatically, according to the way that fields are

accessed. Our approach could use this mechanism to create hybrid layouts. The tool does not support

tiling and parallelism.

Wende [Wen19] suggest one approach based on proxy objects. The approach uses macro-based C++

to generate the code referring to the proxy that allows using both the AoS layout and the SoA layout. This

approach is based on a strategy similar to the GasPar approach.

Intel suggests using the AoS layout for design and using the SoA layout for performance2. SIMD Data

Layout Templates (SDLT) is a template library for C++ language that enables abstract code (use of an AoS-

based API) and uses the layout SoA in memory. The template library creates an implementation in the

pre-compiler step, where the layout is also selected. SDLT uses the C++ operator overloading to enable

the traditional access API (e.g., a[k].field1). However, the use of this API introduces new copies of the

elements and consequently introduces overhead. To reduce the overhead, SDLT provides an alternative

API that implies accessing data using methods (e.g., a[k].field1()). This strategy is similar to the GasPar

API and implies the same code rewrite (get and set for each field). However, in SDLT the data structure

can only have primitive types, although the GasPar approach supports complex structures.

SDLT generates the layouts using the C++ macros. In our approach, the tool generates the layouts.

The SDLT supports multiple dimensions (e.g., arrays, matrix...). Additionally, our library also provides

other optimisations like parallel execution.

ASTA is a layout proposed by Sung in et [SLH12]. This layout is good for vectorisation since it groups

the same field of successive elements. The next memory position stores the next field. This layout uses

a hybrid layout to allow vectorisation and to keep the entity data in nearby memory positions. With this

layout, the data is ready to be read into vectorial registers avoiding gather and scatter operations. Elements

must be grouped taking into account the data size supported by the vectorial instructions in the execution

platform. Jubertie [JMF18] propose the same layout. However, the developer uses an approach similar

to SDLT to change the layout. There are other approaches similar to SDLT. ASX [Str11] is a library that

enables the change of AoS to SoA layout. About SDLT, ASX allows the use of composite structures.

2https://software.intel.com/sites/default/files/managed/01/cd/improving-vectorizati
on-with-intel-simd-data-layout-templates.pdf

https://software.intel.com/sites/default/files/managed/01/cd/improving-vectorization-with-intel-simd-data-layout-templates.pdf
https://software.intel.com/sites/default/files/managed/01/cd/improving-vectorization-with-intel-simd-data-layout-templates.pdf

108 5. Discussion

All presented approaches allow the switch from AoS to SoA. GasPar allows a similar change but

for the Java programming language. Polymorphism is not supported in any of the approaches, which

indicates that this feature is not relevant for HPC. The current approach implementation does not support

polymorphism, but proxy-based implementations can be extended to accommodate polymorphism. In the

future work section, we will discuss this implementation.

The Java language provides an implementation alternative at the JVM level since it can modify the

data layout in memory. This approach allows a more efficient layout, but it is only possible to turn AoP

into an AoS. Wimmer et. al. [WM08] propose an improvement to the JVM to automatically in-line object

fields by placing the parent and children objects in consecutive memory places and by replacing memory

accesses by address arithmetic. The authors point out that using arrays as in-lining parents is complex

since the Java byte-codes for accessing array elements have no static type information. They claim that

an automatic AoP to AoS transformation at JVM level is impossible without a global data flow analysis.

The Valhalla3 is a new Java project aiming to improve the performance of data accesses, by im-

plementing small objects more efficiently. The project supports in-lining of objects into a parent object

(removing the pointer). This implementation removes the identity of the object allowing a more efficient

implementation. Thus, a composition of objects becomes a simple structure, removing the headers of

in-lined objects. This optimisation can be applied to arrays, implementing an AoS layout, which removes

the header and pointers to objects. Moreover, Valhalla will allow collections of primitive types to be more

efficient, without the need to use Autoboxing and Unboxing. However, this approach will not provide sup-

port for a more drastic restructuring of the layout (e.g., SoA layout). The implementation of this project in

Java will facilitate the include AoS layout in our approach.

5.2.2 Data sorting

To sort the data in the memory, we present two alternatives: the first uses the Garbage Collector; the

second uses a method that hides the operation of sorting the collection. The data order to obtain the best

performance depends on the problem. Chatterjee [CLPT02] presents several layouts for matrices. For

example, the Z-Morton layout [TBK06] has the same performance for accesses by row or column. In our

approach, we sort objects according to their position in the collection (AoP collection).

Chilimbi [CL99], and Hirzel [Hir07] modified a JVM Garbage Collector to sort objects into memory

according to their temporal affinity. Objects that used at the same time are placed in nearby memory

zones. The JVM sorts the objects during the garbage copying. This technique still maintains the AoP

3http://wiki.openjdk.java.net/display/valhalla/Valhalla_Goals

http://wiki.openjdk.java.net/display/valhalla/Valhalla_Goals

5.2. Data locality optimisations 109

layout and thus cannot avoid the overhead of pointer indirection.

Both approaches propose to optimise the data access to sort the objects in memory through the

Garbage Collector. This approach is transparent to the developer, but this technique requires a modified

JVM.

In our approach, we order the data in memory using a sort method. The objects are reordered

in memory according to the index in the collection. This criterion is simple but provides performance

improvements in the cases studied. On the other hand, it can be the developer to define other criteria to

sort the collection.

5.2.3 Padding and alignment

The proposed approach does not implement this optimisation since this optimisation is well-localised in the

code, and it is possible to apply this optimisation in the final development step. Also, compilers/libraries

already provide support for optimisations, such as aligned allocation. On the other hand, it is possible to

align the data using meaningless padding elements. Padding is also used to prevent false sharing in cache

memories. Overall the optimisation techniques change the data structure definition or allocation, which

has a small impact on the code. However, the techniques might be useless if the compiler/allocation also

performs these optimisations.

In Java, objects are aligned in memory, but they always have a header. So, the array object is aligned

in memory, but the first array element is not. The object header forces the initial position to be misaligned

in memory. One solution is to ignore the first array positions and the first element of the array to aligned

in memory (loop peeling [HCM14]). Without the optimisation, the first elements are not calculated with

vectorial instructions. When the application uses the tiling optimisation, the problem is worse since the

first element of the tile is not aligned in memory.

Java takes advantage of data aligned in memory since the data address always ends with 0(s). In that

cases, it stores the pointer in a compressed way (32 bits instead of 64 bits) by eliminating the 0s from

the pointer, thus reducing the space needed to store the addresses in memory.

5.2.4 Tiling and packing

The tiling can use two approaches: loop rewrite or decompose the domain into multiple subdomains.

The loop rewrite implies adding new loop(s) in the code and redefine the internal loop(s) limits. It can be

implemented manually, by annotating the code or by a specific compiler. In these two last strategies, the

tiling optimisation is applied by a code analysis and transformation tool.

110 5. Discussion

The loop rewrite has no meaning at the domain level. However, the domain decomposition technique

is abstract (closer to the domain). Additionally, it makes it easy to apply packing optimisation.

OpenACC and Mint [UCB11] are two programming frameworks that provide OpenMP-like directives

to support the loop tiling through a specific loop clause. Both approaches apply tiling through primitives

which simplifies code development by reducing development errors. However, primitives are handled at

compile time which prevents setting the tile size at runtime.

#pragma acc parallel loop private(i,j) tile(8,8)
for(i=0; i<rows; i++) {

for(j=0; j<cols; j++) {
out[i*rows + j] = in[j*cols + i];

}
}

Listing 5.2: Example for OpenACC tiling

The Polyhedral model allows the analysis of dependencies within nested loops. It can identify the tiling

optimisations. Pluto [BHRS08] and Polly [GZA+11] are tools that uses the Polyhedral model to apply the

tiling optimisation.

The packing is typically associated with the tiling. The tile is copied into consecutive memory posi-

tions. OpenACC provides the cache directive. So, the compiler uses this directive to explore data access

optimisations (data in registers, software-managed cache, or read-only cache) [LB16]. Our proposal uses

annotations that are similar to the directives. However, in our case, annotation partitions the collections

in order to redefine the limits of the loops. On the other hand, our approach generates a new method

that allows us to create more levels of tiling. As long as the tile size limitation, our approach overcomes

this limitation by reading a JVM environment variable to adjust the tile size. Listing 5.2 shows the tiling

implementation in OpenACC. Two external loops are inserted by OpenACC that process the problem by

tiles.

Our approach uses domain decomposition to apply tiling optimisation. Additionally, the approach

allows the developer to use packing and to change processing subdomains.

5.3 Parallelism and privatisation

Java supports the shared memory programming model from the beginning. Currently, Java has a set

of constructors with different abstraction levels: threads, tasks and parallel streams. Java also provides

concurrent mechanisms. However, in scientific applications, it is common to use thread private data to

5.3. Parallelism and privatisation 111

optimise the parallel execution. Java does not provide explicit support for this technique, contrary to our

approach.

Placing synchronisation in the access to the data has a simple implementation being hidden in a

library, as is the case with the ConcurrentHashMap. However, its use is often ruled out in scientific

applications because it limits the parallelism scalability since each access requires blocking operations.

On the other hand, the thread private data technique removes access control while processing the data. At

the end of processing, the data are aggregated in order to compute the final result. However, its use is not

always possible and might be complex to implement. It forces the developer to define new data structures

for each thread and a data reduction operation. OpenMP supports thread private data structures, as well

as user-defined data reductions for more complex data types. In our approach, it is possible to specify

a set of fields as thread private, reducing the code changes required. Access to thread private data is

performed transparently by replacing the data structure in the methods that access each field.

OpenMP uses annotations to introduce parallel execution in (sequential) base codes. OpenMP pro-

vides a fork-join execution model. The parallel for is one of the most commonly used annotations since

it runs loop iterations across multiple threads. OpenACC [WSTaM12] uses primitives similar to OpenMP

for developing parallel code to run on accelerators (e.g., GPUs). More recently, OpenMP standard also

supports offloading to accelerators (e.g., parallel for).

Our approach partitions the domain to support parallel execution. OpenMP and similar approaches

partitions loop having no direct meaning the domain. Therefore, our approach inserts parallelism through

domain concepts.

5.3.1 Skeletons

Cole [Col89] has defined that the domain program should use skeletons that are higher-order functions

or templates. The skeleton defines the parallel execution strategy. So, the skeletons allow hiding the

optimisation details and can be fine-tuned to the execution platform.

For the C language, there are multiple approaches that use Skeletons to insert parallelism. SkePU2

[EK10, ELK18] supports traditional skeletons (map, reduce ...). A new skeleton call allows the developer

to encapsulate the method called on each platform execution inside the skeleton (e.g., CPU or GPU execu-

tion). The Threading Building Blocks(TBB) has the flow-graph skeleton, defining task pipeline, where more

complex compositions are possible. TBB optimises data access by making parallel allocators available

and defining data alignments to avoid false sharing. On the other hand, the TBB allows the developer

to associate data with tasks, making the task processing always on the same thread. Finally, TBB has a

112 5. Discussion

set of parallel containers. STAPL allows scaling applications upto 100000 cores [Rau15]. Additionally,

the frameworks have a set of containers compatible with the STL [AJR+01]. Musket [RWK19] introduces

mechanisms for the efficient composition of skeletons. One example is the skeletons fusion, which trans-

lates into a fusion of loops. Our approach does not support the optimisation of this kind. However, this

type of optimisation can be specified by the developer. The developer can use the map with a composition

of methods.

Habanero-Java [CZSS11] and JaSkel [FSP06, SP07] are skeleton frameworks for Java language.

Habanero-Java extends the language by adding data structures and parallelism support. JaSkel uses the

OOP class hierarchy to provide different skeleton implementations (e.g., seq, parallel, ...). JaSkel supports

the farm and pipeline. The Java 8 streams can also be considered as skeletons to the shared memory

platform. These frameworks enable parallel executions but do not support tiling optimisation.

Our approach supports three skeletons: map, reduce and gSplitMapJoin. The first two patterns are

common skeletons. As in the Cole definition, these are two higher-order functions that the developer uses

and where the parallel execution details are hidden. gSplitMapJoin introduces a new concept, internally,

higher-order functions are used to hide the details. However, the developer creates an annotation that

adapts the original code to the skeleton. In the traditional skeleton approach, all code is written as a

skeleton parameter, in our approach, the code is written normally and the annotation adapts it to the

skeleton.

5.4 Summary

Table 5.2 summarises the optimisations that are supported by each approach. The proposed approach

is the approach that provides support for the largest set of optimisations.

In this chapter, we discussed different approaches that enable layout change. For Java, there are

projects that use the virtual machine, which, for simple objects, transforms AoP layout into AoS. For the C

language, there are approaches that allow the layout to change from AoS to SoA. Our approach uses the

AoP layout for development and later provides two layouts (AoP and SoA). The approach allows to support

more layouts in the future, but, in this context, only layouts supported natively by Java are provided.

For sorting, we presented two approaches that improve the data locality through the garbage collector.

Our option provides a method that sorts the AoP collection, which requires a new call in the domain code.

However, this kinds of sorting only works for the AoP layout. However, typically the most efficient layout

is the SoA, so this is not one key optimisation to focus on.

The approaches presented for tiling are based on loops. Our approach uses domain decomposition

5.4. Summary 113

Data Sorting Packing Loop Loop Loop Privatisation Parallelism

Layout Tiling Fusion Reorder

JCRNE

Valhalla

Wimmer

SDLT

ASX

Sharma

Hirzel

Chilimbi

OpenMP

OpenACC

Mint

Pluto

Polly

Java streams

Habanero

TBB

PSTL

GasPar

Table 5.2: Approaches supported optimisations

to decomposes the domain into smaller parts, bringing the optimisation technique closer to the domain.

However, this option has a little cost since it requires new structures to support the subdomains. On the

other hand, the approach enables the packing optimisation for each subdomain. In short, our approach

increases the code abstraction and enables packing optimisation with a small overhead.

Loop Fusion and loop reorder are optimisations based on loops. There are frameworks based on the

Polyhedral model that analyse the loops to apply these optimisations. Additionally, this model enables

loop tiling.

There are several tools to support parallelism on multiple platforms. In this work, the parallelism

explored is thread-based for data parallelism. Java streams provide higher-order functions that also enable

data parallelism. These functions process a collection with multiples threads. Skeleton-based tools also

use higher-order functions to provide parallelism. These approaches usually also allow parallelism in

distributed memory. Our approach is also compatible with the use of Java Streams.

5.4.1 Decisions

During the thesis, we make decisions regarding approach implementation. Of these decisions, we will

highlight two: Aggregation vs Composition and the UML Tool.

114 5. Discussion

Aggregation vs composition

Our approach uses the composition relationship. The collection entities only exist in this context (they only

exist if the collection exists). The aggregation relationship with the SoA and AoS layout is complex. One of

the problems is what to do when an object is removed from the collection:

• how to know that the object has been deleted, that is, position x does not contain valid values;

• what to do with the existing references.

Both problems have possible resolutions, but their solution implementation is complex, adding overhead

to the program. Thus, we chose to support only the composition relationship.

The first problem could be solved, adding an array of Boolean that identifies whether the value is valid

or not. The second has a more complex resolution since it is potentially necessary to validate all references

to the objects in the collection. One way would be to create an object for each entity in the collection, but

it would lead to an additional access cost.

UML tool

Using UML to generate the collections library is an approach better integrated into the typical develop-

ment of complex codes. Thus, the developer reduces the developing cost. Other code generation tools

use Java annotations for a similar purpose. However, our option increases the abstraction level in code

development. On the other hand, the annotations can simplify the development in simple cases. The

example 5.3 shows the MD example with annotations. In this case, the interface can be annotated with

the gCollection. This annotation generates the same classes and interfaces as the UML tool. @gPrivate

allows to define thread private structures and has a parameter that identifies the split that will be created

to use the thread private data.

The annotation option was not considered in the development, since the complex software uses the

domain model in the development process.

5.4. Summary 115

package ParticleCollection;

import gCollection.*;

@gCollection
public interface Particle extends gCopy{

public gVector getPosition();
public gVector getVelocity();
@gPrivate(name="PrivateForce")
public gVector getForce();
public void setPosition(gVector position);
public void setVelocity(gVector velocity);
public void setForce(gVector force);

}

Listing 5.3: Approach with annotation

116 5. Discussion

Chapter 6

Conclusion and future work

6.1 Conclusion

This thesis introduced an approach that supports the most common data locality optimisations (optimised

layout and tiling) while maintaining domain abstractions in the code.

The approach provides a new programming interface that supports multiple data layouts while keeping

domain abstractions. The programming interface also enables the usual data locality optimisations in

the last development step. Moreover, optimisations can be activated or deactivated easily (pluggable

optimisations).

The new programming interface turned possible to create a new methodology to develop scientific

applications, enabling a two-step development process: first, developers start by writing abstract domain

code without being concerned with performance issues. The main focus of this development step is

on program abstraction and correctness; second, after implementing a fully functional application, the

developers improve the application performance by introducing optimisations that map the abstract code

into a specific platform.

The approach is based on two mechanisms to support this methodology: first, a programming inter-

face provides a data API compatible with Java collections, but it can also encapsulate more efficient data

layouts for scientific applications (e.g., SoA); second, a mechanism based on the domain decomposition

allowing expressing several kinds of optimisations, namely, tiling, packing and parallelism, implemented

through Java annotations.

This second mechanism allowed us to unify several optimisations that are based on domain decom-

position. The developer defines how to create the subdomains and selects the optimisations. The tiling

is supported by defining how to decompose the domain. The packing is based on tiling and is defined by

117

118 6. Conclusion and future work

an annotation parameter (copy a subdomain into a new collection). Parallelism is also supported through

another annotation parameter, that defines how to process subdomains in parallel.

The mechanisms turned possible to support a complete set of locality optimisations. There are other

approaches that only support a subset of those optimisations. For instance, SDLT enables efficient data

layouts. Others approaches enable other optimisations for a specific step of program development (tiling,

parallel execution). The proposed approach allowed to combine this set of optimisations.

The main challenge of this work was how to improve the programmability of scientific applications

without losing performance. The support for the development of more abstract code was accomplished

by using OOP. However, this type of programming can have a significant overhead in performance, which

is incompatible with the high performance required by scientific applications. The developed data API

plays a central role in this goal, but some OOP features are not supported since they are not essential

in scientific applications. Namely, the approach does not support data polymorphism and object identity

(i.e., assignment in collections are performed by copy, which is different from the Java model).

JECoLi is a good example of a scientific framework privileging abstract code over performance. In this

framework, the generic collections were replaced by collections complying with the proposed data API.

This made it possible to use the SoA layout leading to a 1.6X performance improvement. In this case,

distinct collections for each data type were generated by the framework. The changes performed to the

JECoLi did not compromise the abstract code and were minimal: first, the creation of collections; second,

other changes due to the use of primitive objects.

The developed framework implementation provided access to the data through a proxy. This imple-

mentation technique made it possible to use the same domain methods while applying tiling, packing and

parallel execution. Also, it was possible to use the thread private data technique by defining only a method

to reduce private thread data.

The approach provided an improvement in performance in the various case studies. In the MD case

study, a large set of optimisations was assessed, resulting in an improvement of the execution time of 55X.

The number of instructions executed in simple cases was similar to traditional techniques with only one

or two additional instructions per element processed, which was not relevant in terms of performance. In

the MD case study, we created a new code version, using a model of entities closer to the domain without

losing performance in the most efficient layout. In the AoP layout, there is an additional cost caused by

the cost of the layout structure.

In all case studies, the SoA layout has better performance. Changing to SoA layout is complex:

changing access to collections, changing methods API, etc. GasPar approach reduced the cost by avoiding

a change in API methods. The overheads introduced by the approach were negligible in the most efficient

6.2. Future Work 119

layouts.

The dynamic compilation of Java allowed optimising the execution of the application. The developer

uses the provided interfaces to write the domain code. These interfaces are replaced by concrete objects

at runtime, leading to potential calls to virtual methods. However, the Java compiler is able, at runtime, to

generate a version of the code where calls to these methods are expanded in-line. Thus, the efficiency of

the proposed approach relies on the ability of modern Java compilers to remove the potential overheads

of using interfaces, temporary objects (e.g., iterators), etc.

6.2 Future Work

Throughout the work developed, some decisions had to be made, that did not allow to explore all the

approach potentialities, leaving some lines of research to be explored. The three main lines of investigation

pointed for future work are discussed in this section: supporting polymorphism in the SoA layout; new

data layouts (e.g., flat AoP); and improvement of parallelism support (implementation of thread private

data mechanisms for other data types, and parallelism support on other platforms).

6.2.1 Polymorphism

The polymorphism support in the SoA layout is complex, however for AoP layout, it is simple. The current

tool does not support polymorphic collections. It would be possible to support the polymorphism in the

AoP however, to standardise, the tool does not provide it.

A solution to support inheritance with the SoA layout maps classes into tables like in hibernate [BK05].

In hibernate three types of strategy are supported: the first, creates a table per concrete class; in the

second, one table has all classes data; and the third, creates one table by class/interface. In our case,

the database tables are replaced by gCollections. The strategy that best fits our case is the third one,

which maintains the entities order in the parent collection without needing additional fields. In this strategy,

calling the superclass methods does not introduce overhead because the values are stored in the collection

representing the superclass. However, with respect to the rewrittenmethods, it is necessary to test the data

type of the object and to consult the collection representing its subclass, which introduces an additional

cost.

Figure 6.1 shows a possible class diagram with inheritance support in the approach. In the diagram

there are Car and Vehicle entities that will be stored in collections. Vehicle is a polymorphic class that, in

this case, has a single derived entity that is a Car. The common fields are stored in arrays in the Vehicle

120 6. Conclusion and future work

<<Java Interface>>

Car
Vehicle

getDoors():int
setDoors(int):void

<<Java Interface>>

Vehicle
Vehicle

getSize():int
setSize(int):void
printWheels():void
printDescription():void

<<Java Class>>

methodsCar
Vehicle

methodsCar()
printWheels():void
printDescription():void

<<Java Class>>

methodsVehicle
Vehicle

methodsVehicle()
printWheels():void
printDescription():void

<<Java Class>>

gCollectionVehicle
Vehicle.soa

Size: int[]
size: int
typeCollection: gCollection[]
type: int[]
subposition: int[]

gCollectionVehicle(int)
get(int):gIterator

<<Java Class>>

gIteratorVehicle
Vehicle.soa

position: int

gIteratorVehicle(gCollectionVehicle,int)
getSize():int
setSize(int):void

<<Java Class>>

gCollectionCar
Vehicle.soa

Doors: int[]
size: int
positionSuper: int[]

gCollectionCar(int,gCollectionVehicle)
get(int):gIterator

<<Java Class>>

gIteratorCar
Vehicle.soa

position: int

gIteratorCar(gCollectionCar,int)
getSize():int
setSize(int):void
getDoors():int
setDoors(int):void

+collection
0..1

+superCollection

0..1

+collection 0..1

Figure 6.1: Class diagram to support polymorphism

collection. The exclusive properties of the cars are stored in the gCollectionCar. In both collections, there

is a reference to the position occupied by each entity in the other collection. When the developer needs

to process all vehicles, the developer uses an iterator for vehicles, making the Vehicle interface methods

available (e.g., printWheels()). These methods are written with the access methods available in the vehicle

6.2. Future Work 121

interface (e.g., getSize()). If the developer needs to know the vehicle type the developer must use the

getType() method to find out what vehicle type so that the developer can later cast for the respective type.

6.2.2 Data layouts

Within the scope of this dissertation, the approach provides two distinct layouts. These two layouts sup-

ported the validation of the approach. The discussion presented suggests new layouts. One of the pro-

posed layouts improves AoS implementation in order to allow vectorisation. On the other hand, Sharma

presents a tool that generates a hybrid layout according to the use of the fields. A future possibility is to

extend the tool to include the layout for vectorisation and adapt the tool in order to generate more complex

layouts (e.g., hybrid layouts). Java by default does not allow the use of the AoS layout. Removing this

limitation implies the usage of Java unsafe.

The AoP layout with composite structures increases the intrinsic AoP overhead, as it implies multiple

accesses to several memory zones. In the current implementation, one additional memory access is

required for each nested structure. A possible optimisation is to join the structures into a single one,

thus avoiding those additional accesses. The programmability would be improved by using the composite

structures and polymorphism, but with the same performance.

6.2.3 Parallelism

The framework supports parallel execution by processing collections in shared memory. This section

discusses how to extend the tool to support more alternatives: improving thread private data support,

support for distributed memory and accelerators.

Thread private data

The approach provides thread private data for collections. However, the current tool does not provide

support for a single object or single primitive variable. The approach can combine this mechanism with

Java built-in mechanisms. In the MD, the developer controls access to variables using synchronised. In

that case, the impact on performance is small since the update of the variables is only n times, but

algorithm complexity is n2. For the force vector, the developer uses the thread private data mechanism.

gSpitMapJoin defines the parameters that manage the thread private data. The idea is to extend the

mechanism so that it is also possible to create private objects for each thread. The use of the mechanism

122 6. Conclusion and future work

with primitive data is not relevant since the primitive parameters are passed by value and not by reference.

It means that the method will not update the external variable.

In the domain model, all entities relevant to the domain are represented. Typically the data required to

be local to each thread is associated with domain entities that are present in the domain model. Therefore,

it could be possible to use the UML tool to generalise a method that duplicates and reduces common types

of thread-local data.

The developer just has to define in gSplitMapJoin (listing 6.1) how each parameter is decomposed and

at the end how the data is joined. To divided each parameter, the developer would use the methods that

were generated by the tool (in this case the PrivateData method will be used). To join each parameter,

the developer defines which reduction is defined in his code (as an example of adding two values, in this

case, the reduceData method defined in class my is used).

@gSplitMapJoin(name="f1", map="mapParallel", split={"PrivateData", "none"}, join={"my::
ReduceData", "none"})

public static void f(My_object p1, gCollection p2) {
(...)

}

Listing 6.1: gSplitMapJoin: decomposition the problem in multiple small problems

Expansion of the mechanism allows the developer to use the thread-local mechanism with greater

simplicity, hiding irrelevant implementation details.

Distributed memory

The current implementations of distributed memory for Java offer the possibility to use a lot of computa-

tional resources. For example, RMI allows the developer to access objects that are on a remote machine.

However, these approaches have a significant overhead on performance, and they are not transparent to

the developer. The gSpliMapJoinmechanism forces the developer to describe all data used. Based on the

description, it is possible to optimise the object’s access.

On the other hand, there are libraries that are commonly used in HPC with Java support, as is the case

with the OpenMPI implementation. MPI is a message passing library that allows developers to implement

their code that can be executed in distributed memory system. It is the most used platform for HPC

development in the distributed memory. However, the use of MPI has a significant impact on the way of

writing the code. The messages that are exchanged between the different processes appear in the middle

of the domain code.

6.2. Future Work 123

The idea is to add support for distributed memory in the gSplitMapJoin engine with MPI. The developer

will use the mechanism as in the shared memory with some limitations: all input data must be given as

parameters, variables with concurrent accesses must use the thread private data mechanism (to specify

a reduce operation). The input data has to be parameters in order to be able to identify the data that

will be sent to each process. Concurrency control mechanisms should not be used, as they were devel-

oped for shared memory. The reduce operation is the same as in the shared memory, with its internal

implementation updated for distributed memory.

The developer writes the code, as shown in the example (listing 6.2). The main difference is the map,

for this case, the developer uses the mapParallelDistribute. For the first parameter, it sends a data copy

to all processing units. At the end of the processing, the data are reduced by the my::ReduceData. For

the second parameter, it needs to send all data to all process units.

@gSplitMapJoin(name="f1", map="mapParallelDistribute", split={"PrivateData","none"}, join={"my
::ReduceData","none"})

public static void f(gCollection p1, int p2) {
(...)

}

Listing 6.2: gSplitMapJoin to distribute memory

GPU

The use of accelerators for processing has gained space nowadays due to its parallel processing capacity.

However, its development model is complex, creating difficulties of implementation to the developer. There

are currently many tools that attempt to address this problem. Most of the tools are developed for C and

C ++.

Aparapi 1, Rootbeer [PSFW12] and Tornado [CFP+18] are approaches that support GPU in Java

language. The IBM introduced a JVM implementation that supports stream-like development [IHKS15],

where the kernel code is replaced by a lambda method on a stream of integers. All these frameworks do

not support memory allocation and objects on GPU code. JaBEE [ZLG12] is a research project that aims

to fully support object-oriented development on GPUs. The JaBEE still requires a kernel-based code (like

Aparapi) and the project faced several limitations since it depends on the VM internal data layout and was

implemented on a specific VM (VMKit).

One more fundamental problem is that objects/structures are not efficient on GPU. In GPUs, it is

possible to have multiple accesses to memory in a single transaction (memory coalescing) for this, it

1http://aparapi.com/

http://aparapi.com/

124 6. Conclusion and future work

is necessary to satisfy some requirements. The SoA layout promotes one of these requirements, thus

improving access to data. The AoS layout disables the memory coalescing, requiring more transactions

to access the same data [KWM16]. Gaspar provides SoA layout for data collections that is essential to

obtain good performance on GPUs.

In order to improve Gaspar, it would be used one of these Java approaches to create the GPU version,

such as Aparapi. The current implementation of Aparapi imposes many limitations to the Java code.

Aparapi only supports a single object instance on the GPU (i.e., an instance of the Kernel class), including

object instance variables and methods. Thus, in order to support GPU execution, the tool would generate

a single class (Kernel class extension) to implement all three interfaces (class gGpuParticle in figure 6.2

implements the collection, iterator and data entity). The gCollection map could be executed to GPUs (see

listing 6.3) using Aparapi API.

<<interface>>
gCollection<E>

<<interface>>
gIterator<E>

<<interface>>
Particle

getPX() : double
getPY() : double
getPZ() : double
(…)

gCollectioParticleSoA

PX[] : double
PY[] : double
PZ[] : double
(…)

gIteratorParticleSoA

gCollection : gCollectionParticle SoA
position : int

<<interface>>
List<E>

stream() : Stream<E>

gGpuParticle

PX[] : double
PY[] : double
PZ[] : double
position : int
(…)

Tool generated

Framework API

Java 8

Domain API

<<interface>>
Iterator<E>

next() : E

Figure 6.2: Class diagram to support GPU

The gGpuParticle class would implement all the required functionality to execute the code on a GPU

(see listing 6.4). The class should include the gCollection and gIterator getter and setter methods and the

methods to execute.

In the Aparapi, each GPU thread executes the run method of the kernel class. In this example, each

6.2. Future Work 125

// gpu call
gCollection.foreach(gGpuParticle::move);

// foreach implementation
public void foreach(voidFunction<T> f){

Kernel aux = new gGpuParticle(this);
aux.execute(Range.create(this.size()));
aux.dispose();

}

Listing 6.3: Implementation of the foreach method on GPU

// gpu call
public class gGpuParticle extends Kernel {

// gCollection <Particle >
int size;
double px[];
(...)

// Iterator <Particle >
double getPX() { return(px[getGlobalId()])};
(...)

// stream operation
void move() {

double x = getPX();
(...)

}
public void run() {

move();
}

}

Listing 6.4: Implementation of the move method on GPU

GPU thread will apply the stream method (particle move in this case) to one element of the gCollection, so

each thread gathers the element corresponding to its global id. This implementation relies on the Aparapi

to identify the data to copy to/from GPU memory.

126 6. Conclusion and future work

Bibliography

[AJR+01] Ping An, Alin Jula, Silvius Rus, Steven Saunders, Tim Smith, Gabriel Tanase, Nathan Thomas,

Nancy Amato, and Lawrence Rauchwerger. Stapl: An adaptive, generic parallel c++ library. In

International Workshop on Languages and Compilers for Parallel Computing, pages 193–208.

Springer, 2001.

[APC+96] Joel Auslander, Matthai Philipose, Craig Chambers, Susan J Eggers, and Brian N Bershad.

Fast, effective dynamic compilation. ACM SIGPLAN Notices, 31(5):149–159, 1996.

[BHRS08] Uday Bondhugula, Albert Hartono, J Ramanujam, and P Sadayappan. A practical and fully

automatic polyhedral program optimization system. In ACM SIGPLAN PLDI, volume 10, 2008.

[BK05] Christian Bauer and Gavin King. Hibernate in action, volume 4. Manning Greenwich CT,

2005.

[BSW+00] M. Bull, L. Smith, M. Westhead, D. Henty, and R. Davey. Benchmarking java grande appli-

cations. In Proceedings of the Second International Conference on The Practical Applications

of Java, Manchester, UK, pages 63–73, 2000.

[BVDGN06] Paolo Bientinesi, Robert Van De Geijn, and FLAME Working Note. Representing dense linear

algebra algorithms: A farewell to indices. Computer Science Department, University of Texas

at Austin, 2006.

[Car02] Carlos Carvalho. The gap between processor and memory speeds. In Proc. of IEEE Interna-

tional Conference on Control and Automation, 2002.

[CASL17] Diego Costa, Artur Andrzejak, Janos Seboek, and David Lo. Empirical study of usage and per-

formance of java collections. In Proceedings of the 8th ACM/SPEC on International Conference

on Performance Engineering, pages 389–400. ACM, 2017.

127

128 Bibliography

[CFP+18] James Clarkson, Juan Fumero, Michail Papadimitriou, Foivos S Zakkak, Maria Xekalaki,

Christos Kotselidis, and Mikel Luján. Exploiting high-performance heterogeneous hardware

for java programs using graal. In Proceedings of the 15th International Conference on Managed

Languages and Runtimes, ManLang, volume 18, 2018.

[CGS+99] Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam C Sreedhar, and Sam Midkiff.

Escape analysis for java. Acm Sigplan Notices, 34(10):1–19, 1999.

[CL99] Trishul M Chilimbi and James R Larus. Using generational garbage collection to implement

cache-conscious data placement. ACM SIGPLAN Notices, 34(3):37–48, 1999.

[CLPT02] S. Chatterjee, A. R. Lebeck, P. K. Patnala, and M. Thottethodi. Recursive array lay-

outs and fast matrix multiplication. IEEE Transactions on Parallel and Distributed Systems,

13(11):1105–1123, 2002.

[Col89] Murray I Cole. Algorithmic skeletons: structured management of parallel computation. Pitman

London, 1989.

[CZSS11] Vincent Cavé, Jisheng Zhao, Jun Shirako, and Vivek Sarkar. Habanero-java: the new adven-

tures of old x10. In Proceedings of the 9th International Conference on Principles and Practice

of Programming in Java, pages 51–61. ACM, 2011.

[EK10] Johan Enmyren and Christoph W Kessler. Skepu: a multi-backend skeleton programming

library for multi-gpu systems. In Proceedings of the fourth international workshop on High-level

parallel programming and applications, pages 5–14, 2010.

[ELK18] August Ernstsson, Lu Li, and Christoph Kessler. Skepu 2: Flexible and type-safe skeleton pro-

gramming for heterogeneous parallel systems. International Journal of Parallel Programming,

46(1):62–80, 2018.

[EMR09] P. Evangelista, P. Maia, and M. Rocha. Implementing metaheuristic optimization algorithms

with jecoli. In 2009 Ninth International Conference on Intelligent Systems Design and Applica-

tions, pages 505–510, Nov 2009.

[FSP06] JF Ferreira, JL Sobral, and AJ Proenca. JaSkel: A Java skeleton-based framework for struc-

tured cluster and grid computing. In Sixth IEEE International Symposium on Cluster Computing

and the Grid, 2006. CCGRID 06, volume 1, 2006.

Bibliography 129

[FSS13] Nuno Faria, Rui Silva, and Joao L Sobral. Impact of data structure layout on performance.

In 2013 21st Euromicro International Conference on Parallel, Distributed, and Network-Based

Processing, pages 116–120. IEEE, 2013.

[GHJV93] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns: Ab-

straction and reuse of object-oriented design. In European Conference on Object-Oriented

Programming. Springer, 1993.

[Gra02] Mark Grand. Patterns in Java: A Catalog of Reusable Design Patterns Illustrated with UML,

Volume 1. Wiley, New York, 2002.

[GZA+11] Tobias Grosser, Hongbin Zheng, Raghesh Aloor, Andreas Simbürger, Armin Größlinger, and

Louis-Noël Pouchet. Polly-polyhedral optimization in llvm. In Proceedings of the First Inter-

national Workshop on Polyhedral Compilation Techniques (IMPACT), volume 2011, page 1,

2011.

[HCM14] Nassim A Halli, Henri-Pierre Charles, and Jean-François Mehaut. Performance comparison

between java and jni for optimal implementation of computational micro-kernels. arXiv preprint

arXiv:1412.6765, 2014.

[Hir07] Martin Hirzel. Data layouts for object-oriented programs. In Proceedings of the 2007 ACM

SIGMETRICS international conference on Measurement and modeling of computer systems,

SIGMETRICS ’07, pages 265–276, New York, NY, USA, 2007. ACM.

[HKH+16] Samir Hasan, Zachary King, Munawar Hafiz, Mohammed Sayagh, Bram Adams, and Abram

Hindle. Energy profiles of java collections classes. In Proceedings of the 38th International

Conference on Software Engineering, pages 225–236. ACM, 2016.

[Hoa62] Charles AR Hoare. Quicksort. The Computer Journal, 5(1):10–16, 1962.

[Hor16] Cay S Horstmann. Big Java, Binder Ready Version: Early Objects. John Wiley & Sons, 2016.

[IHKS15] Kazuaki Ishizaki, Akihiro Hayashi, Gita Koblents, and Vivek Sarkar. Compiling and optimizing

java 8 programs for gpu execution. In 2015 International Conference on Parallel Architecture

and Compilation (PACT), pages 419–431. IEEE, 2015.

[Int16] Intel. Intel® 64 and IA-32 Architectures Optimization Reference Manual, 2016.

130 Bibliography

[JJT+07] Hrvoje Jasak, Aleksandar Jemcov, Zeljko Tukovic, et al. Openfoam: A c++ library for complex

physics simulations. In International workshop on coupled methods in numerical dynamics,

volume 1000, pages 1–20. IUC Dubrovnik Croatia, 2007.

[JMF18] Sylvain Jubertie, Ian Masliah, and Joel Falcou. Data layout and simd abstraction layers:

decoupling interfaces from implementations. In 2018 International Conference on High Per-

formance Computing & Simulation (HPCS), pages 531–538. IEEE, 2018.

[JRS16] James Jeffers, James Reinders, and Avinash Sodani. Intel Xeon Phi Processor High Perfor-

mance Programming: Knights Landing Edition. Morgan Kaufmann, 2016.

[JTSE10] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely, Jr., and Joel Emer. High performance

cache replacement using re-reference interval prediction (rrip). In Proceedings of the 37th

Annual International Symposium on Computer Architecture, ISCA ’10, pages 60–71, New

York, NY, USA, 2010. ACM.

[Kah65] W. Kahan. Pracniques: Further remarks on reducing truncation errors. Commun. ACM,

8(1):40–, January 1965.

[KW03] Markus Kowarschik and Christian Weiß. An overview of cache optimization techniques and

cache-aware numerical algorithms. In Algorithms for memory hierarchies, pages 213–232.

Springer, 2003.

[KWM16] David B Kirk and W Hwu Wen-Mei. Programming massively parallel processors: a hands-on

approach. Morgan kaufmann, 2016.

[LB16] Ahmad Lashgar and Amirali Baniasadi. Openacc cache directive: Opportunities and opti-

mizations. In 2016 Third Workshop on Accelerator Programming Using Directives (WACCPD),

pages 46–56. IEEE, 2016.

[Len14] Gregory Lento. Optimizing performance with intel advanced vector extensions. White Paper

of Intel-2014, 2014.

[Lev09] David Levinthal. Performance analysis guide for intel core i7 processor and intel xeon 5500

processors. Intel Performance Analysis Guide, 30:18, 2009.

[LRW91] Monica D Lam, Edward E Rothberg, and Michael E Wolf. The cache performance and op-

timizations of blocked algorithms. ACM SIGOPS Operating Systems Review, 25(Special Is-

sue):63–74, 1991.

Bibliography 131

[LW94] A.R. Lebeck and D.A. Wood. Cache profiling and the spec benchmarks: A case study. Com-

puter, 27(10):15–26, 1994.

[MBZ+13] Deepak Majeti, Rajkishore Barik, Jisheng Zhao, Max Grossman, and Vivek Sarkar. Compiler-

driven data layout transformation for heterogeneous platforms. In European Conference on

Parallel Processing, pages 188–197. Springer, 2013.

[MCWK99] John Mellor-Crummey, David Whalley, and Ken Kennedy. Improving memory hierarchy per-

formance for irregular applications. In Proceedings of the 13th international conference on

Supercomputing, pages 425–433. ACM, 1999.

[Med19] Bruno Silvestre Medeiros. A framework for heterogeneous many-core machines. PhD thesis,

Universidade do Minho, 2019.

[Met02] Steven John Metsker. The design patterns java workbook. Addison-Wesley Longman Publish-

ing Co., Inc., 2002.

[MRR12] Michael McCool, Arch Robison, and James Reinders. Structured parallel programming: pat-

terns for efficient computation. Elsevier, 2012.

[MSS15] B. Medeiros, R. Silva, and J. Sobral. Gaspar: A compositional aspect-oriented approach for

cluster applications. Concurrency and Computation: Practice and Experience, 28:n/a–n/a,

10 2015.

[MW06] Steven John Metsker and William C Wake. Design patterns in Java. Addison-Wesley Profes-

sional, 2006.

[NCL+10] Jiutao Nie, Buqi Cheng, Shisheng Li, Ligang Wang, and Xiao-Feng Li. Vectorization for java.

In IFIP International Conference on Network and Parallel Computing, pages 3–17. Springer,

2010.

[NFS11] R. Silva N. Faria and J. L. Sobral. Enhancing locality in java based irregular applications.

Simpósium de Informática (inForum’11), Coimbra, September 2011, 2011.

[Oak14] Scott Oaks. Java Performance: The Definitive Guide: Getting the Most Out of Your Code. ”

O’Reilly Media, Inc.”, 2014.

[OW15] S Osinski and D Weiss. Hppc: High performance primitive collections for java, 2015.

132 Bibliography

[PGB+06] Tim Peierls, Brian Goetz, Joshua Bloch, Joseph Bowbeer, Doug Lea, and David Holmes. Java

Concurrency in Practice: JAVA CONCURRENCY PRACT _p1. Pearson Education, 2006.

[PNDN99] P.R. Panda, H. Nakamura, N.D. Dutt, and A. Nicolau. Augmenting loop tiling with data align-

ment for improved cache performance. Computers, IEEE Transactions on, 48(2):142–149,

1999.

[PSFW12] Philip C Pratt-Szeliga, James W Fawcett, and Roy D Welch. Rootbeer: Seamlessly using

gpus from java. In 2012 IEEE 14th International Conference on High Performance Computing

and Communication & 2012 IEEE 9th International Conference on Embedded Software and

Systems, pages 375–380. IEEE, 2012.

[Rau15] Lawrence Rauchwerger. The stapl skeleton framework. In Languages and Compilers for

Parallel Computing: 27th International Workshop, LCPC 2014, Hillsboro, OR, USA, September

15-17, 2014, Revised Selected Papers, volume 8967, page 176. Springer, 2015.

[RWK19] Christoph Rieger, Fabian Wrede, and Herbert Kuchen. Musket: a domain-specific language

for high-level parallel programming with algorithmic skeletons. In Proceedings of the 34th

ACM/SIGAPP Symposium on Applied Computing, pages 1534–1543, 2019.

[SB85] Mark Stefik and Daniel G Bobrow. Object-oriented programming: Themes and variations. AI

magazine, 6(4):40–40, 1985.

[SG98] Peter D Sulatycke and Kanad Ghose. Caching-efficient multithreaded fast multiplication of

sparse matrices. In Proceedings of the First Merged International Parallel Processing Sympo-

sium and Symposium on Parallel and Distributed Processing, pages 117–123. IEEE, 1998.

[SHV+98] Vijayaraghavan Soundararajan, Mark Heinrich, Ben Verghese, Kourosh Gharachorloo, Anoop

Gupta, and John Hennessy. Flexible use of memory for replication/migration in cache-

coherent dsm multiprocessors. In Proceedings. 25th Annual International Symposium on

Computer Architecture (Cat. No. 98CB36235), pages 342–355. IEEE, 1998.

[SJG92] Per Stenström, Truman Joe, and Anoop Gupta. Comparative performance evaluation of

cache-coherent numa and coma architectures. In Proceedings of the 19th annual international

symposium on Computer architecture, pages 80–91, 1992.

Bibliography 133

[SKK+13] Kamal Sharma, Ian Karlin, Jeff Keasler, James R McGraw, and Vivek Sarkar. User-specified

and automatic data layout selection for portable performance. Rice University, Houston, Texas,

USA, Tech. Rep. TR13-03, 2013.

[SL95] Alexander Stepanov and Meng Lee. The standard template library. Technical Report 95-

11(R.1), HP Laboratories, 1995.

[SLH12] I-Jui Sung, Geng Daniel Liu, and Wen-Mei W Hwu. Dl: A data layout transformation system

for heterogeneous computing. In 2012 Innovative Parallel Computing (InPar), pages 1–11.

IEEE, 2012.

[Sny86] Alan Snyder. Encapsulation and inheritance in object-oriented programming languages. In

Conference proceedings on Object-oriented programming systems, languages and applications,

pages 38–45, 1986.

[SOK+04] Toshio Suganuma, Takeshi Ogasawara, Kiyokuni Kawachiya, Mikio Takeuchi, Kazuaki

Ishizaki, Akira Koseki, Tatsushi Inagaki, Toshiaki Yasue, Motohiro Kawahito, Tamiya Onodera,

et al. Evolution of a java just-in-time compiler for ia-32 platforms. IBM Journal of Research

and Development, 48(5.6):767–795, 2004.

[SP07] João Luís Sobral and Alberto José Proenca. Enabling jaskel skeletons for clusters and compu-

tational grids. In 2007 IEEE International Conference on Cluster Computing, pages 365–371.

IEEE, 2007.

[SRS+12] John A Stratton, Christopher Rodrigues, I-Jui Sung, Li-Wen Chang, Nasser Anssari, Geng Liu,

W Hwu Wen-mei, and Nady Obeid. Algorithm and data optimization techniques for scaling to

massively threaded systems. Computer, 45(8):26–32, 2012.

[SS16] Rui Silva and João L Sobral. Gaspar data-centric framework. In International Conference on

Vector and Parallel Processing, pages 234–247. Springer, 2016.

[Str11] Robert Strzodka. Abstraction for aos and soa layout in c++. In GPU computing gems Jade

edition, pages 429–441. Elsevier, 2011.

[Sub11] Venkat Subramaniam. Programming Concurrency on the JVM: Mastering Synchronization,

STM, and Actors. Pragmatic Bookshelf, 2011.

134 Bibliography

[TBK06] Jeyarajan Thiyagalingam, Olav Beckmann, and Paul HJ Kelly. Is morton layout competitive

for large two-dimensional arrays yet? Concurrency and Computation: Practice and Experience,

18(11):1509–1539, 2006.

[TJYD10] Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. Collecting performance data

with papi-c. In Tools for High Performance Computing 2009, pages 157–173. Springer, 2010.

[Tro] GNU Trove. High performance collections for java.

[UCB11] Didem Unat, Xing Cai, and Scott B Baden. Mint: realizing cuda performance in 3d stencil

methods with annotated c. In Proceedings of the international conference on Supercomputing,

pages 214–224. ACM, 2011.

[vEBKZ76] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of an efficient priority

queue. Theory of Computing Systems, 10(1):99–127, 1976.

[Vig16] Sebastiano Vigna. fastutil: Fast and compact type-specific collections for java, 2016.

[Weg87] Peter Wegner. Dimensions of object-based language design. In Conference Proceedings

on Object-oriented Programming Systems, Languages and Applications, OOPSLA ’87, pages

168–182, New York, NY, USA, 1987. ACM.

[Wei02] Mark Allen Weiss. Data Structures and Problem Solving Using Java. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 2nd edition, 2002.

[Wen19] Florian Wende. C++ data layout abstractions through proxy types. In 2019 IEEE International

Parallel and Distributed Processing Symposium Workshops (IPDPSW), pages 758–767. IEEE,

2019.

[WM08] Christian Wimmer and Hanspeter Mössenböck. Automatic array inlining in java virtual ma-

chines. In Proceedings of the 6th annual IEEE/ACM international symposium on Code gener-

ation and optimization, CGO ’08, pages 14–23, New York, NY, USA, 2008. ACM.

[WSTaM12] Sandra Wienke, Paul Springer, Christian Terboven, and Dieter an Mey. Openacc—first expe-

riences with real-world applications. In European Conference on Parallel Processing, pages

859–870. Springer, 2012.

Bibliography 135

[YRP+07] Kamen Yotov, Tom Roeder, Keshav Pingali, John Gunnels, and Fred Gustavson. An experi-

mental comparison of cache-oblivious and cache-conscious programs. In Proceedings of the

nineteenth annual ACM symposium on Parallel algorithms and architectures, SPAA ’07, pages

93–104, New York, NY, USA, 2007. ACM.

[YSP+98] Kathy Yelick, Luigi Semenzato, Geoff Pike, Carleton Miyamoto, Ben Liblit, Arvind Krishna-

murthy, Paul Hilfinger, Susan Graham, David Gay, Phil Colella, et al. Titanium: a high-

performance java dialect. Concurrency and Computation: Practice and Experience, 10(11-

13):825–836, 1998.

[ZLG12] Wojciech Zaremba, Yuan Lin, and Vinod Grover. Jabee: framework for object-oriented java

bytecode compilation and execution on graphics processor units. In Proceedings of the 5th An-

nual Workshop on General Purpose Processing with Graphics Processing Units, pages 74–83.

ACM, 2012.

136 Bibliography

Chapter 7

Appendix

7.1 Sum benchmark

//Assembler for aop
(...)
mov 0x18(%rdi,%rbp,4),%edx
(...)
mov %rdx,%r8

shl $0x5,%r8

test %r8,%r8

je 0x00002b3f5c3fabd2

mov 0x8(%r8),%r9d

cmp $0xed08,%r9d

jne 0x00002b3f5c3fac5b
(...)
vaddsd 0x10(%r8),%xmm0,%xmm0

vmovsd %xmm0,0x90(%rcx)
(...)

//Assembler for gaop
(...)
mov 0x14(%r9,%rcx,4),%r11d

mov %r11,%r10

shl $0x5,%r10

vaddsd 0x10(%r10),%xmm0,%xmm0

mov $0x1da8d3fe00,%r10

vmovsd %xmm0,0x90(%r10)
(...)

Listing 7.1: Instructions need to calculate one element in versions: aop and gaop

137

138 7. Appendix

//Assembler for soa
(...)
vaddsd 0x10(%r11,%rbx,8),%xmm0,%xmm0
(...)
vmovsd %xmm0,0x90(%r10)
(...)

//Assembler for gsoa load and sum element
(...)
vaddsd 0x10(%r10,%r11,8),%xmm0,%xmm0
(...)
mov $0x1f2abbdea0,%r8

vmovsd %xmm1,0x90(%r8)

vmovsd %xmm0,0x90(%r8)
(...)

Listing 7.2: Instructions need to calculate one element in versions: soa and gsoa

//Assembler for faop
(...)
mov 0x18(%rbx,%rbp,4),%esi
(...)
mov %rsi,%r10

shl $0x5,%r10

mov %r8d,%ecx

add $0x3,%ecx

mov %ecx,0xc(%r9)

mov 0x8(%r10),%eax

cmp $0xed08,%eax

jne 0x00002b7a60824652

mov %ecx,0x10(%r9)

vaddsd 0x10(%r10),%xmm0,%xmm0
(...)
mov $0x1d992fa280,%r10

vmovsd %xmm0,0x90(%r10)
(...)

//Assembler for fgaop
(...)
mov %ebx,%r10d

add $0x2,%r10d

mov %r10d,0xc(%rax)
(...)
mov 0x14(%rcx,%r8,4),%r10d

shl $0x5,%r10

vaddsd 0x10(%r10),%xmm0,%xmm0

vmovsd %xmm0,0x90(%rbp)
(...)

Listing 7.3: Instructions need to calculate one element in versions: faop and fgaop (instructions)

//Assembler for ggaop
(...)
mov %ecx,%r10d

inc %r10d

mov %r10d,0xc(%rax)

movslq %ecx,%r9

mov 0x14(%rbx,%r9,4),%r10d

shl $0x5,%r10

vaddsd 0x10(%r10),%xmm0,%xmm0

mov $0x1da8a6d0a0,%r10

vmovsd %xmm0,0x90(%r10)
(...)

Listing 7.4: Assembler code for ggaop

7.1. Sum benchmark 139

//Assembler for csaop
(...)
mov 0x14(%rcx,%rsi,4),%r10d

mov %r10,%rdi

shl $0x5,%rdi

test %rdi,%rdi

je 0x00002b0be840069d

mov 0x8(%rdi),%r10d

cmp $0xed08,%r10d

jne 0x00002b0be8400721
(...)
vmovsd 0x10(%rdi),%xmm2

vsubsd %xmm0,%xmm2,%xmm0

vaddsd %xmm2,%xmm1,%xmm1

vaddsd %xmm3,%xmm0,%xmm2

vsubsd %xmm3,%xmm2,%xmm3

vsubsd %xmm0,%xmm3,%xmm0

vmovsd %xmm0,0x18(%rdx)

vmovsd %xmm2,0x10(%rdx)

vmovsd %xmm1,0x20(%rdx)
(...)

//Assembler for cssoa
(...)
vmovsd 0x10(%r11,%rcx,8),%xmm0

vsubsd 0x18(%r9),%xmm0,%xmm1

vmovsd 0x10(%r9),%xmm2

vaddsd %xmm2,%xmm1,%xmm3

vsubsd %xmm2,%xmm3,%xmm2

vsubsd %xmm1,%xmm2,%xmm1

vmovsd %xmm1,0x18(%r9)

vmovsd %xmm3,0x10(%r9)

vmovsd 0x20(%r9),%xmm2

vaddsd %xmm0,%xmm2,%xmm0

vmovsd %xmm0,0x20(%r9)

movslq %ecx,%rbx
(...)

Listing 7.5: Assembler code of csaop and cssoa

load test checkcast store store unroll #I/element

object null index result

aop $$ $$ $$ - $$ 8 10.25

gaop $$ - - - $$ 8 6.5

faop $$ - $$ $$$ $$ 4 13.5

fgaop $$ - - $$ $$ 8 7.25

ggaop $$ - - $$ $$ 8 9

csaop $$ $$ $$ - $$$ 4 18.29

csgaop $$ - - $ $$$ 1 15.53

saop $$ - $$ $$ $$$ 1 48.02

sgaop $$ - $$ $$ $$$ 1 20.52

soa - - - - $ 16 1.31

gsoa - - - $ $ 16 1.44

fsoa - - - - $ 16 1.31

fgsoa - - - $ $ 16 1.44

ggsoa - - - $ $ 16 1.44

JCRNE(aop) $$ - - $$ $$ 8 6.5

JCRNE(soa) - - - - - 16 1.44

Table 7.1: Group of instructions generated

140 7. Appendix

//Assembler for saop
(...)
mov 0x10(%rdi,%r10,4),%ebx

mov %r10d,0x8(%rsp)

mov %rdi,(%rsp)

mov 0x30(%rsp),%r10

mov 0xc(%r10),%edx

mov 0x14(%r10),%r11d

mov %r11,%rdi

shl $0x5,%rdi

mov 0x8(%rdi),%r11d

cmp $0x6bc28,%r11d

jne 0x00002b4454401496

mov %rdx,%rax

shl $0x5,%rax

mov 0x8(%rax),%r11d

cmp $0xed08,%r11d

jne 0x00002b44544014eb

mov %rbx,%rdi

shl $0x5,%rdi

mov 0x8(%rdi),%r10d

cmp $0xed08,%r10d

jne 0x00002b4454401550

vmovsd 0x10(%rax),%xmm0

vaddsd 0x10(%rdi),%xmm0,%xmm
(...)

//Assembler for ssoa
(...)
vaddsd 0x10(%r11,%rbx,8),%xmm0,%xmm0
(...)
vmovsd %xmm0,0x90(%r10)
(...)

Listing 7.6: Assembler code of saop and ssoa

7.2. daxpy benchmark 141

7.2 daxpy benchmark

test null checkcast load store vectorial unroll #I/element

object position instructions

aop rangecheck $$ 2x($$$) - - 1 82.00

gaop $$ - 2x($$) - - 4 12.25

faop rangecheck $$ 2x($$) 2x($$$) - 1 120.00

fgaop - - 2x($$) $$$ - 1 27.00

ggaop - - 2x($$$) 2x($$) - 1 32.00

aopD 2x($$) 2x($$) 2x($$) - - 4 20

faopD - 2x($$) 2x($$) 2x($$$) - 1 44

aopJ $$ $$ $$ - - 4 12.5

gaopJ - - $$ - - 8 8.25

faopJ - $$ $$ $$$ - 4 14.50

fgaopJ - - $$ $$ - 8 10.125

ggaopJ - - $$ $$ - 8 10

soa - - - - + 4x4 1.25

gsoa - - - - + 4x4 1.25

fgsoa - - - 2x($$$) - 1 22.00

ggsoa rangecheck - 2x($$) 2x($$$) - 1 28.00

gsoaJ - - - - + 4x4 1.25

fgsoaJ - - - $ + 4x4 1.31

ggsoaJ - - - $ + 4x4 1.31

eaop - - 2x$$ - - 1 42

esoa - - - - + 4x4 1.25

eaopJ - - $$ - - 1 36

esoaJ - - - - + 4x4 1.25

Table 7.2: Group of instructions generated

7.3 MM benchmark

142 7. Appendix

0.2

0.4

0.8

1.6

3.2

6.4

12.8

25.6

1 2 4 6 8 12 16 24 32 48 64 96 128

re
la

tiv
e

pe
rfo

rm
an

ce

1024 4096 16384

(a) tile

0.1

0.2

0.4

0.8

1.6

3.2

6.4

12.8

25.6

1 2 4 6 8 12 16 24 32 48 64 96 128

re
la

tiv
e

pe
rfo

rm
an

ce

1024 4096 16384

(b) packing

0.4

0.8

1.6

3.2

6.4

12.8

25.6

51.2

1 2 4 6 8 12 16 24 32 48 64 96 128

re
la

tiv
e

pe
rfo

rm
an

ce

1024 4096 16384

(c) packingOptimise

Figure 7.1: MM - Parallel versions

7.4. Discussion 143

7.4 Discussion

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Small Large Small Large

JCRNE/Gaspar(aop) JCRNE/Gaspar(soa)

re
la

tiv
e

pe
rfo

rm
an

ce

Time Instructions

(a) Sum

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Small Large Small Large

JCRNE/Gaspar(aop) JCRNE/Gaspar(soa)

re
la

tiv
e

pe
rfo

rm
an

ce

Time Instructions

(b) daxpy

Figure 7.2: Relative performance between JCRNE and GasPar

	Introduction
	Context
	Motivation
	Objectives
	Contributions
	Outline

	Background
	Memory hierarchy
	Data locality optimisations
	Data footprint
	Data flow
	Summary

	Java
	Compiler and execution processes
	Memory management
	Parallelism

	Proposed approach
	Overview
	Programming interface
	Domain specification
	Optimisation specification

	Implementation
	Supporting tools

	Tool limitations

	Performance evaluation
	Methodology
	Programming interface
	Sum
	daxpy

	Java framework - Java Evolutionary Computation Library
	Testing mechanisms - Molecular dynamics simulation
	Applying the approach
	Tiling optimisation
	Parallel execution
	Composing optimisations
	Complex entity - API closer to the domain
	Summary

	Extending collection - Matrix multiplication
	Tiling optimisation and parallel execution
	Libraries for matrix multiplication
	Summary

	Conclusions

	Discussion
	Programming interface
	Data locality optimisations
	Data layout
	Data sorting
	Padding and alignment
	Tiling and packing

	Parallelism and privatisation
	Skeletons

	Summary
	Decisions

	Conclusion and future work
	Conclusion
	Future Work
	Polymorphism
	Data layouts
	Parallelism

	Appendix
	Sum benchmark
	daxpy benchmark
	MM benchmark
	Discussion

