
A REAL TRIPLE DQDS ALGORITHM FOR THE NONSYMMETRIC
TRIDIAGONAL EIGENVALUE PROBLEM ∗

CARLA FERREIRA† AND BERESFORD PARLETT‡

Abstract. The paper discusses the following topics: attractions of the real tridiagonal case, relative eigenvalue
condition number for matrices in factored form, dqds, triple dqds, error analysis, new criteria for splitting and deflation,
eigenvectors of the balanced form, twisted factorizations and generalized Rayleigh quotient iteration. We present our
fast real arithmetic algorithm and compare it with alternative published approaches.

Key words. LR, dqds, unsymmetric tridiagonal matrices, balanced form, twisted factorizations

AMS subject classifications. 65F15

1. Introduction. The dqds algorithm was introduced in 1994 in [9] as a fast and extremely
accurate way to compute all the singular values of a bidiagonal matrix B. This algorithm implicitly
performs the Cholesky LR iteration on the tridiagonal matrix BTB and it is used in LAPACK.
However the dqds algorithm can also be regarded as executing, implicitly, the LR algorithm applied
to any tridiagonal matrix with 1’s on the superdiagonal. Our interest here is in real unsymmetric
matrices which may, of course, have some complex eigenvalues. In contrast to the QR algorithm,
the LR algorithm preserves tridiagonal form and this feature makes dqds attractive. It is natural to
try to retain real arithmetic and yet permit complex conjugate pairs of shifts. Our analogue of the
double shift QR algorithm of J. G. F. Francis [14] is the triple step dqds algorithm. We explain why
three steps are needed. However the main goal of this paper is to derive our implicit implementation
(3dqds) of this 3-steps process which relies on the implicit L analogue of the implicit Q theorem.
See Section 3.4.1 and Theorem 3.1.

In order to focus on our 3dqds algorithm we assume an extensive background for our reader. The
unsymmetric eigenvalue problem can be almost ill-posed and such cases are not easily
apparent. A tridiagonal matrix requires so little storage that it seems feasible to compute ap-
proximate eigenvalues together with an indication of the number of digits that are robust in the
presence of computer arithmetic. We decided to provide relative condition numbers (for factored
forms) for each computed eigenvalue even when the user does not request it. The extra cost, in
storage and arithmetic operations is surprisingly low, 2n storage and O(n) computing. See Section
7.2 for details. We omit any history of the contributions to the field, even the seminal work of
H. Rutishauser who invented the qd algorithm and the LR algorithm. We must however mention
that he also discovered the so-called differential form of qd but did not appreciate its accuracy and
never published it. That understanding came much later in the computation of singular values of
bidiagonal matrices. See [9]. We do describe the double LR algorithm for complex conjugate shifts
because of its relation to our triple dqds algorithm. We say nothing about the need for an eigen-
solver devoted to tridiagonal matrices because that issue is covered admirably by Bini, Gemignani,
and Tisseur in [1]. We do give pseudocode for a complete program but hope it will not produce
distractions from our main concern, the 3dqds algorithm. We provide error analyses for both dqds
and 3dqds.

∗ The research of the first author was partially financed by Portuguese Funds through FCT (Fundação para a
Ciência e a Tecnologia) within the Projects UIDB/00013/2020 and UIDP/00013/2020.
†Centro de Matemática, Universidade do Minho, 4710-057 Braga (caferrei@math.uminho.pt).
‡Department of Mathematics and the Computer Science Division of the Electrical Engineering and Computer

Science Department, University of California, Berkeley, California 94720 (parlett@math.berkeley.edu).

1

2 B. Parlett and C. Ferreira

A novel feature of our approach is the usefulness of keeping matrices in factored form. We also
acknowledge the preliminary work on this problem by Z. Wu in [39].

We do not follow Householder conventions except that we reserve capital Roman letters for
matrices. Section 2 describes other relevant methods, Section 3 presents standard, but needed,
material on LR, dqds, single and double shifts and the implicit L theorem. Section 4 develops our
3dqds algorithm, Section 5 is our error analysis, Section 6 our splitting, deflation and shift strategy.

Section 7 analyzes applications of factored forms - the computation of eigenvectors using twisted
factorizations of the balanced form, relative condition numbers and the generalized Rayleigh quotient
iteration. Finally, Section 8 presents our numerical tests using Matlab and Section 9 gives our
conclusions.

2. Other methods relevant to 3dqds.

2.1. 2 steps of LR = 1 step of QR. For a symmetric positive definite tridiagonal matrix 2
steps of the LR (Cholesky) algorithm produces the same matrix as 1 step of the QR algorithm. Less
well known is the article by H. Xu [40] which extends this result when the symmetric matrix is not
positive definite. The catch here is that the LR transform, if it exists, does not preserve symmetry.
The remedy is to regard similarities by diagonal matrices as “trivial”, always available, operations.
Indeed, diagonal similarities cannot introduce zeros into a matrix. So, when successful, 2 steps of
LR are diagonally similar to one step of QR. Even less well known is a short paper by J. Slemons
[32] showing that for a tridiagonal matrix, not necessarily symmetric, 2 steps of of LR are diagonally
equivalent to 1 step of HR, see [2]. Note that when symmetry disappears then QR is out of the
running because it does not preserve the tridiagonal property.

The point of listing these results is to emphasize that 2 steps of LR gives twice as many shift
opportunities as 1 step of QR or HR. Thus convergence can be more rapid with LR (or dqds) than
with QR or HR. This is one of the reasons that dqds is faster than QR for computing singular values
of bidiagonals. This extra speed is an additional bonus to the fundamental advantage that dqds
delivers high relative accuracy in all the singular values. The one drawback to dqds, for bidiagonals,
is that the singular values must be computed in monotone increasing order; QR allows the singular
values to be found in any order.

In our case, failure is always possible and so there is no constraint on the order in which
eigenvalues are found. The feature of having more opportunities to shift leads us to favor dqds over
QR and HR. See the list of other methods which follows. We take up the methods in historical order
and consider only those that preserve tridiagonal form.

2.2. Cullum’s complex QR algorithm. As part of a program that used the Lanczos al-
gorithm to reduce a given matrix to tridiagonal form in [4], Jane Cullum used the fact that an
unsymmetric tridiagonal matrix may always be balanced by a diagonal similarity transformation
[18]. She then observed that another diagonal similarity with 1 or i produces a symmetric, but
complex, tridiagonal matrix to which the (complex) tridiagonal QR algorithm may be applied. The
process is not backward stable because the relation

cos2 τ + sin2 τ = 1

is not a constraint on | cos τ | and | sin τ | when τ is complex. Despite the possibility of breakdown
the method proved satisfactory in practice. We have not used it in our comparisons because we are
persuaded by 2.1 that it is outperformed by the complex dqds algorithm, described below.

2.3. Liu’s HR algorithm. In [15] Alex Liu found a variation on the HR algorithm of Angelika
Bunse-Gerstner that, in exact arithmetic, is guaranteed not to breakdown - but the price is a

A real triple dqds algorithm for the nonsymmetric tridiagonal eigenvalue problem 3

temporary increase in bandwith. This procedure has only been implemented in Maple and we do
not include it in our comparison.

2.4. Complex dqds. In his thesis David Day [5] developed a Lanczos-style algorithm to reduce
a general matrix to tridiagonal form and, as with Jane Cullum, needed a suitable algorithm to
compute its eigenvalues. He knew of the effectiveness of dqds in the symmetric positive definite
case and realized that dqds extends formally to any tridiagonal that admits triangular factorization.
The code uses complex arithmetic because of the possible presence of complex conjugate pairs of
eigenvalues.

We compare our real 3dqds algorithm with its explicit version - the three steps of dqds are
computed explicitly in complex arithmetic - in a more sophisticated version of David Day’s complex
dqds code.

2.5. Ehrlich-Aberth algorithm. This very careful and accurate procedure was presented by
Bini, Gemignani and Tisseur in [1]. It finds the zeros of the characteristic polynomial p(·) and
exploits the tridiagonal form to evaluate p′(z)/p(z) for any z. The polynomial solver improves a full
set of approximate zeros at each step. Initial approximations are found using a divide-and-conquer
procedure that delivers the eigenvalues of the top and bottom halves of the matrix T . The quantity
p′(z)/p(z) is evaluated indirectly as

[
trace(zI − T)−1

]
using a QR factorization of zI−T . Since T is

not altered there is no deflation to assist efficiency. Very careful tests exhibit the method’s accuracy
- but it is very slow compared to dqds-type algorithms.

3. LR and dqds. The reader is expected to have had some exposure to the QR and/or LR
algorithms so we will be brief.

3.1. LU factorization. Any n×n matrix A permits unique triangular factorization A = LDŨ
where L is unit lower triangular, D is diagonal, Ũ is unit upper triangular, if and only if the leading
principal submatrices of orders 1, . . . , n− 1 are nonsingular.

In this paper we follow common practice and write U = DŨ so that the “pivots” (entries of D)
lie on U ’s diagonal. Throughout this paper any matrix L is unit lower triangular while U is simply
upper triangular.

3.2. LR transform with shift. Note that U is “right” triangular and L is “left” triangular
and this explains the standard name LR. For any shift σ let

A− σI = LU, (3.1)

Â = UL+ σI. (3.2)

Then Â is the LR(σ) transform of A. Note that

Â = L−1(A− σI)L+ σI = L−1AL.

We say that the shift is restored (in contrast to dqds - see below). The LR algorithm consists of
repeated LR transforms with shifts chosen to enhance convergence to upper triangular form. For
the theory see [29, 30, 36, 37].

In contrast to the well known QR algorithm, the LR algorithm can breakdown and can suffer
from element growth, ‖L‖ >> ‖A‖, ‖U‖ >> ‖A‖. However LR preserves the banded form of A
while QR does not (except for the Hessenberg form).

When a matrix A is represented by its entries then the shift operation A −→ A− σI is trivial.
When a matrix is given in factored form the shift operation is not trivial.

4 B. Parlett and C. Ferreira

3.3. The dqds algorithm. From now on we focus on tridiagonal matrices in J-form which
means that entries (i, i + 1) are all 1, i = 1, . . . , n − 1. Any tridiagonal matrix C = tridiag(b,a, c)
that does not split (unreduced), bici 6= 0, is diagonally similar to a J-form. Entries (i + 1, i) equal
bici. Throughout this paper all J matrices have this form. See [11, Section 2.2] on representations
of tridiagonals.

If J − σI permits triangular factorization

J − σI = LU

then L and U must have the following form

L =


1
l1 1

. . .
. . .

ln−2 1
ln−1 1

 , U =


u1 1

u2 1
. . .

. . .

un−1 1
un

 . (3.3)

It is an attractive feature of LR that

UL = Ĵ

is also of J-form. Thus the parameters li, i = 1, . . . , n − 1, and uj , j = 1, . . . , n, determine the
matrices L and U above and implicitly define two tridiagonal matrices LU and UL.

The qds algorithm is equivalent to the LR algorithm but only the factors L,U are formed, not
the J matrices. The progressive transformation is from L,U to L̂, Û ,

L̂Û = UL− σI. (3.4)

Notice that the shift is not restored and so Û L̂ is not similar to UL,

Û L̂ = L̂−1(UL)L̂− σI. (3.5)

Equating entries in each side of equation (3.4) gives

qds(σ) : û1 = u1 + l1 − σ;
for i = 1, . . . , n− 1

l̂i = liui+1/ûi
ûi+1 = ui+1 + li+1 − σ − l̂i

end for.

The algorithm qds fails when ûi = 0 for some i < n. When σ = 0 we write simply qd, not qds.
In 1994 a better way was found to implement qds(σ). These are called differential qd algorithms.

See [22] for more history. This form uses an extra variable d but never forms matrix products.

dqds(σ) : d1 = u1 − σ
for i = 1, . . . , n− 1

ûi = di + li
l̂i = li(ui+1/ûi)
di+1 = di(ui+1/ûi)− σ

end for
ûn = dn.

A real triple dqds algorithm for the nonsymmetric tridiagonal eigenvalue problem 5

By definition, dqd=dqds(0). In practice we choose to compute, and store, ûi and l̂i separately from
ui and li. This allows us to reject a transform, choose a new shift, and proceed smoothly to another
step. Only when the transform is accepted will we write ûi and l̂i over ui and li.

A word on terminology. In Rutishauser’s original work qi = ui, ei = li; and the qi’s were certain
quotients and the ei’s were called modified differences. In fact the qd algorithm led to the LR
algorithm, not vice-versa. The reader can find more information concerning dqds in [22, 24]

One virtue of the dqds and QR transforms is that they work on the whole matrix so that large
eigenvalues are converging near the top, albeit slowly, while the small ones are being picked off at
the bottom.

We summarize some advantages and disadvantages of the factored form.

Advantages of the factored form

1. L,U determines the entries of J to greater than working-precision accuracy because the
addition and multiplication of l’s and u’s is implicit. Thus, for instance, the (i, i) entry of
J is given by li−1 + ui implicitly but fl(li−1 + ui) explicitly.

2. Singularity of J is detectable by inspection when L and U are given, but only by calculation
from J . So, LU reveals singularity, J does not.

3. LU defines the eigenvalues better than J does (usually). There is more on this in [7].
4. Solution of Jx = b takes half the time when L and U are available.

Disadvantages of the factored form

The mapping J, σ 7→ L,U is not everywhere defined for all pairs J, σ and can suffer from element
growth. This defect is not as serious as it was when the new transforms were written over the old
ones. For tridiagonals we can afford to double the storage and map L,U into different arrays L̂, Û .
Then we can decide whether or not to accept L̂, Û and only then would L and U be overwritten. So
the difficulty of excessive element growth has been changed from disaster to the non-trivial but less
intimidating one of, after rejecting a transform, choosing a new shift that will not spoil convergence
and will not cause another rejection.

Now we turn to our main question of dqds(σ): how can complex shifts be used without having
to use complex arithmetic? This question has a beautiful answer for QR and LR iterations.

3.4. Implicit shifted LR for J matrices.

3.4.1. Double shift LR algorithm. We use the J, L and U notation from the previous section.
Consider two steps of the LR algorithm with shifts σ1 and σ2,

J1 − σ1I = L1U1

J2 = U1L1 + σ1I

J2 − σ2I = L2U2

J3 = U2L2 + σ2I.

(3.6)

Then, with matrices L = L1L2 and U = U2U1, we have

J3 = L−1J1L (3.7)

and the triangular factorization

LU = L1(J2 − σ2I)U1 = L1(U1L1 + σ1I − σ2I)U1

= L1U1 [L1U1 + σ1I − σ2I] = (J1 − σ1I)(J1 − σ2I)

= J2
1 − (σ1 + σ2)J1 + σ1σ2I =: M. (3.8)

6 B. Parlett and C. Ferreira

An important observation from (3.8) is that column 1 of M is proportional to column 1 of L,

Me1 = LUe1 = Le1u11, u11 = m11.

According to the following theorem, matrix L is determined by its first column and we can compute
J3 from J1 without using J2.

Theorem 3.1. [Implicit L theorem] If H1 and H2 are unreduced upper Hessenberg matrices
and H2 = L−1H1L, where L is unit lower triangular, then H2 and L are completely determined by
H1 and column 1 of L.

We omit the proof and refer to [11, pp. 66–68].

So the application to J1 and J3, using (3.7), is to choose column 1 of L (which has only three
nonzero entries since J1 is tridiagonal and J2

1 is pentadiagonal) to be

L1 = I +m1e1
T (3.9)

where m1 =
[
0 m21/m11 m31/m11 0 . . . 0

]T
and perform a first explicit similarity transform

on J1,

L−11 J1L1 =: K.

Observe that K is not tridiagonal. In the 6× 6 case

K =


x 1
x x 1
+ x x 1
+ x x 1

x x 1
x x

 . (3.10)

Next we apply a sequence of elementary similarity transformations such that each transformation
pushes the 2 × 1 bulge one row down and one column to the right. Finally the bulge is chased off
the bottom to restore the J-form. In exact arithmetic, the implicit L theorem ensures that this
technique of bulge chasing gives

J3 = (L1 . . .Ln−1)−1J1(L1 . . .Ln−1) and L = L1 . . .Ln−1.

In section 4.1 below we will see the details on Lj , j = 2, . . . , n− 1.
If matrix J1 and shifts σ1 and σ2 are real then factors L1, U1, L2, U2 and matrices J2, J3 will all

be real. Now suppose that J1 is real and σ1 is complex. Then, by (3.8), J3 will be real if, and only
if, σ2 = σ1. The reason is that M is real,

M = J2
1 − 2(<σ1)J1 + |σ1|2I,

so that L and U are real and J3 is the product of real matrices. Note however that J2, and factors
L2, U2, will be complex, given that L1, U1 and shifts σ1, σ2 are all complex. As we have described
above, it is possible to skip this complex matrix J2 and go straight from real J1 to real J3. So, in
the case of complex eigenvalues (which for real matrices occur in complex conjugate pairs) we will
be able to apply a complex conjugate pair of shifts implicitly and avoid complex arithmetic. Recall
that we are seeking an algorithm that uses only real arithmetic and converges to real Schur form.

A real triple dqds algorithm for the nonsymmetric tridiagonal eigenvalue problem 7

3.4.2. Connection to dqds algorithm. In figure 3.1 we examine the two steps of the LR
transform derived in the previous section but with a significant difference. Instead of J1 being an
arbitrary matrix in J-form, we assume that it is given to us in the form U0L0. A different way of
introducing this factorization is saying that our initial matrix is J0 (not J1) and we always consider
an additional unshifted LR step for constructing real factored forms

J0 = L0U0 and J1 = U0L0

so that dqds starts with factors L0, U0. The dqds algorithm can not start with J1 unless its UL
factorization is available.

J1 - J2 - J3
LR(σ1) LR(σ2)

�
�
��� @

@
@@R �

�
��� @

@
@@R �

�
��� @

@
@@R

L0, U0
- L1, U1

- L2, U2
- L3, U3

dqds(σ1) dqds(σ2 − σ1) dqds(−σ2)

−σ1 σ1 −σ2 σ2

Figure 3.1. Implicit two steps of LR and three steps of dqds.

The crucial observation in Figure 3.1 is that the implicit LR algorithm forms only the J matrices
while dqds, on the bottom line, works only on the factors L,U . So with LR the only J matrix which
is skipped by an implicit double step is J2 and we go from J1 = U0L0 to J3 = L3U3. The dqds
algorithm cannot stop with L2, U2 because it is only when we take the product U2L2 and add back
the shift σ2 that we get the matrix J3; it requires a third step to obtain L3, U3 which define J3. The
triple dqds algorithm will skip the factors L1, U1, L2, U2 and will go from L0, U0 to L3, U3 performing
implicitly three dqds steps.

Here is another way to describe the diagonal arrows in Figure 3.1 for the relation between double
shift LR and triple dqds:

double shift LR triple dqds

J1 = U0L0

J1 − σ1I = L1U1

}
L1U1 = U0L0 − σ1I

J2 = U1L1 + σ1I
J2 − σ2I = L2U2

}
L2U2 = U1L1 − (σ2 − σ1)I

J3 = U2L2 + σ2I L3U3 = U2L2 − (−σ2)I

(3.11)

So the similarity (3.7) corresponds to

L3U3 = L−1(U0L0)L (3.12)

and, in contrast to a single dqds step, a triple dqds step (implicit) restores the shifts.
Observe that in the triple dqds step (3.11) we find factors L3, U3 such that J3 = L3U3 and these

factors (different factors) would only occur in LR in the following step with a new shift σ3,

J3 = U2L2 + σ2I
J3 − σ3I = L3U3

}
L3U3 = U2L2 − (σ3 − σ2)I

J4 = U3L3 + σ3I.

(3.13)

8 B. Parlett and C. Ferreira

So to make explicit dqds equivalent to LR with shifts σi and σi+1 it is necessary to use the differences
(σi+1 − σi) with dqds. In other words, successive shifts σi and σi+1 in LR lead to the dqds step

Li+1Ui+1 = UiLi − (σi+1 − σi)I.

3.4.3. Single shift LR and double dqds. Analogously to a double shift, a single shift LR
step is equivalent to two steps of dqds when we consider the implicit implementation of these shifted
algorithms.

single shift LR double dqds

J1 = U0L0

J1 − σ1I = L1U1

}
L1U1 = U0L0 − σ1I

J2 = U1L1 + σ1I L2U2 = U1L1 − (−σ1)I

(3.14)

Similar to (3.7) and (3.12),

J2 = L−1J1L and L2U2 = L−1(U0L0)L (3.15)

with L = L1. Here matrix M is tridiagonal,

LU = L1U1 = J1 − σ1 =: M

and matrix K corresponding to (3.10) has only one bulge in entry (3, 1) (instead of a 2× 1 bulge).
Recall from Section 3.4.1 that the implicit double LR algorithm uses the technique of bulge

chasing. This technique is also applied for implicit single shifts.
The next section develops a form of bulge chasing for the triple dqds algorithm (3dqds). We

did not develop this technique for the double dqds algorithm (2dqds) because in our shift strategy
we will always use double shifts (only initially we use single dqds with zero shifts). See Section 6.3
for details on the shift strategy in our complete algorithm.

4. Triple dqds algorithm. We use the term 3dqds as a shorthand for our triple dqds algo-
rithm which, using bulge chasing, implements implicitly the three dqds steps (3.11) equivalent to
an implicit double shift LR step. Although the 3dqds algorithm has been primarily developed to
avoid complex arithmetic in the case of consecutive complex shifts σ1 and σ2 = σ1 in the presence
of complex eigenvalues, it can be applied to the case of two real shifts σ1 and σ2. To cover both
cases, all we need is the sum and the product of the pair of shifts, sum = σ1 + σ2 and prod = σ1σ2,
to form matrix M in (3.8),

M = (U0L0)2 − sum(U0L0) + prodI. (4.1)

Using (3.12) the idea is to transform U0 into L3 and L0 into U3 by bulge chasing in each matrix,

L3U3 = L−1U0︸ ︷︷ ︸L0L︸︷︷︸ .
Notice that we need to transform an upper bidiagonal into a lower bidiagonal and vice-versa. From
the uniqueness of the LU factorization, when it exists, it follows, see [21], that there is a unique
hidden matrix X such that

L3 = L−1U0X
−1, XL0L = U3.

A real triple dqds algorithm for the nonsymmetric tridiagonal eigenvalue problem 9

The matrix L is given, from section 3.4.1, as a product

L = L1 . . .Ln−1Ln

(Ln = I) and we will gradually construct the matrix X in corresponding factored form Xn · · ·X2X1.
In fact we will write each Xi as a product

Xi = YiZi.

Matrices Li and Yi are elementary matrices, Li = I +mie
T
i and Yi = I +wie

T
i , but Zi is not. The

details are quite complicated and will be shown in the following sections.

4.1. Chasing the bulges. Starting with the factors L0, U0 and the shifts σ1, σ2, we normalize
column 1 of M in (4.1) to form L1, spoil the bidiagonal form with

L−11 U0︸ ︷︷ ︸L0L1︸ ︷︷ ︸
and at each minor step i, i = 1, . . . , n, matrices Zi, Li and Yi are chosen to chase the bulges. After
n minor steps, we obtain L3 and U3,

L3U3 =L−1n · · · L−11 U0Z
−1
1 Y −11 · · ·Z−1n Y −1n︸ ︷︷ ︸YnZn · · ·Y1Z1L0L1 · · · Ln︸ ︷︷ ︸

=L−1n · · · L−11 U0X
−1
1 · · ·X−1n︸ ︷︷ ︸Xn · · ·X1L0L1 · · · Ln︸ ︷︷ ︸

=L−1U0X
−1︸ ︷︷ ︸XL0L︸ ︷︷ ︸

All the work of bulge chasing will be confined to two matrices F and G. Initially,

F = U0, G = L0

and, finally,

F = L3, G = U3.

10 B. Parlett and C. Ferreira

For a pair of shifts σ1 and σ2 (real or a complex conjugate pair), the triple dqds algorithm has the
following matrix formulation:

3dqds(σ1, σ2) :
% step 1
F = U0; G = L0

F = FZ−11 ; G = Z1G
F = L−11 F ; G = GL1 [form L1 using (3.9) and (4.1)]
F = FY −11 ; G = Y1G

% steps 2 to n-3
for i = 2, . . . , n− 3

F = FZ−1i ; G = ZiG
F = L−1i F ; G = GLi

F = FY −1i ; G = YiG [Zi with one, Li with two and Yi with three
end for nonzero off-diagonal entries]

% step n-2
F = FZ−1n−2; G = Zn−2G
F = L−1n−2F ; G = GLn−2
F = FY −1n−2; G = Yn−2G [Yn−2 with two nonzero off-diagonal entries]

% step n-1
F = FZ−1n−1; G = Zn−1G
F = L−1n−1F ; G = GLn−1
F = FY −1n−1; G = Yn−1G [Yn−1 and Ln−1 with one nonzero off-diagonal entry]

% step n
Ln = I; Yn = I
F = FZ−1n ; G = ZnG [Zn diagonal]
L3 = F ; U3 = G

4.2. Details of 3dqds. In this section we will go into important details of the 3dqds algorithm.
Consider L0 with subdiagonal entries l1, . . . , ln−1 and U0 with diagonal entries u1, . . . , un, as defined

in Section 3.3, and consider matrices L3 and U3 with subdiagonal entries l̂1, . . . , l̂n−1 and diagonal
entries û1, . . . , ûn, respectively.

For each iteration of 3dqds, at the beginning of a minor step i, i = 2, . . . , n− 3, the active 4× 4
windows of F and G are

F =



. . .

. . . 1

l̂i−1 ui 1
xl ui+1 1

yl ui+2
. . .

. . .


, G =



. . .
. . .

ûi−1 1
xr

yr 1
zr li+1 1

. . .
. . .


. (4.2)

A real triple dqds algorithm for the nonsymmetric tridiagonal eigenvalue problem 11

We denote the entries Fi+1,i−1 and Fi+2,i−1 by
[
xl yl

]T
, the 2× 1 bulge in F , and the entries Gi,i,

Gi+1,i and Gi+2,i by
[
xr yr zr

]T
. The bulge in G is

[
yr zr

]T
. In practice, as the bulges both

change value and position, these 5 auxiliary variables are enough to accomplish all the calculations.
The subscripts l and r in x, y and z derive from “left” and “right”, respectively, and observe that
these variables are not from matrices X, Y and Z described in Section 4.1.

Each minor step i, i = 2, . . . , n−3, consists of the following 3 parts. The values in xl, yl, xr, yr, zr
change and they move one column right and one row down.

Minor step i

(a) F ←− FZ−1i puts 0 into Fi,i+1 and 1 into Fi,i

G←− ZiG turns Gi,i+1 into 1 and changes Gi,i

Z−1i =



. . .

1
1
ui
− 1

ui

0 1
1

. . .


, Zi =



. . .

1
ui 1
0 1

1
. . .


,

FZ−1i =



. . .

. . . 1

l̂i−1 1 0
xl ui+1 1

yl ui+2
. . .

. . .


, ZiG =



. . .
. . .

ûi−1 1
xr 1
yr 1
zr li+1 1

. . .
. . .


xr ←− xr ∗ ui + yr

(b) F ←− L−1i F puts 0 into Fi+1,i−1 and Fi+2,i−1, and moves the bulge to column i
G←− GLi creates ûi in Gi,i and changes Gi+1,i, Gi+2,i and Gi+3,i below it

xl ←− −xl/l̂i−1
yl ←− −yl/l̂i−1

, L−1i =



. . .

1
xl 1
yl 1

. . .

 , Li =



. . .

1
−xl 1
−yl 1

. . .



12 B. Parlett and C. Ferreira

L−1i F =



. . .

. . . 1

l̂i−1 1 0
0 xl ui+1 1

0 yl ui+2
. . .

. . .


, GLi =



. . .
. . .

ûi−1 1
ûi 1
xr 1
yr li+1 1
zr li+2 1

. . .
. . .


ûi ←− xr − xl
xr ←− yr − xl
yr ←− zr − yl − xl ∗ li+1

zr ←− −yl ∗ li+2

(c) G ←− YiG puts 0 into Gi+1,i, Gi+2,i and Gi+3,i, and moves the bulge to column i + 1

F ←− FY −1i creates l̂i in Fi+1,i and changes Fi+2,i and Fi+3,i (bulge in F) below it

xr ←− xr/ûi
yr ←− yr/ûi
zr ←− zr/ûi

, Y −1i =



. . .

1
xr 1
yr 1
zr 1

. . .


, Yi =



. . .

1
−xr 1
−yr 1
−zr 1

. . .



FY −1i =



. . .

. . . 1

l̂i−1 1 0

0 l̂i ui+1 1
0 xl ui+2 1

yl ui+3
. . .

. . .


, YiG =



. . .
. . .

ûi−1 1
ûi 1
0 xr
0 yr 1
0 zr li+2 1

. . .
. . .



l̂i ←− xl + yr + xr ∗ ui+1

xl ←− yl + zr + yr ∗ ui+2

yl ←− zr ∗ ui+3

xr ←− 1− xr
yr ←− li+1 − yr
zr ←− −zr

The result of this minor step is that the active windows of F and G shown in (4.2) have been moved
down and to the right by one place.

Naturally steps 1, n − 2, n − 1, n are slightly different and their practical implementation may
be found in [11, pp.147–157].

A real triple dqds algorithm for the nonsymmetric tridiagonal eigenvalue problem 13

4.3. Comparison of dqds and 3dqds. In this section we present a detailed version of the
inner loop of 3dqds and compare one step of 3dqds with three steps of simple dqds in terms of
arithmetic effort.

Here is the inner loop of 3dqds. See Appendix A for the whole 3dqds algorithm.

3dqds(σ1, σ2) :
for i = 2, . . . , n− 3

xr = xr ∗ ui + yr
xl = −xl/l̂i−1; yl = −yl/l̂i−1;
ûi = xr − xl;
xr = yr − xl; yr = zr − yl − xl ∗ li+1; zr = −yl ∗ li+2

xr = xr/ûi; yr = yr/ûi; zr = zr/ûi
l̂i = xl + yr + xr ∗ ui+1

xl = yl + zr + yr ∗ ui+2; yl = zr ∗ ui+3

xr = 1− xr; yr = li+1 − yr; zr = −zr
end for

In contrast,

dqds(σ) :
d1 = u1 − σ
for i = 1, . . . , n− 1

ûi = di + li
t = ui+1/ûi
di+1 = dit− σ
l̂i = lit

end for
ûn = dn.

(4.3)

In practice, each di+1 may be written over its predecessor in a single variable d and, using and
auxiliary variable t, only one division is needed.

Table 4.1 below shows that the number of floating point operations required by one step of 3dqds
is comparable to three steps of dqds (table expresses only the number of floating point operations
in the inner loops).

3dqds 3 dqds steps

Divisions 5 3
Multiplications 6 6

Additions 5 3
Subtractions 6 3
Assignments 16 12

Auxiliary variables 5 2

Table 4.1
Operation count of 3dqds and 3 dqds steps.

However to accomplish a complex conjugate pair of shifts these 3 dqds steps will be complex
in contrast to our 3dqds which uses only real arithmetic. Thus 3 steps of complex dqds take more
time than one step of 3dqds (complex arithmetic raises the cost by a factor of about 4 [6, p.163]).

14 B. Parlett and C. Ferreira

5. Error analysis. We turn to the effect of finite precision arithmetic on our algorithms. First
consider the dqds algorithm.

5.1. dqds. It is well known that even in exact arithmetic the dqds iteration, applied to the
factors L,U of a J matrix can break down due to a zero pivot in the new factors. The dqds transform,
just like the LR transform, is unstable. In the early days when the new was written over the old
immediately breakdown was a disaster. Today all users can afford to store the new factors separately
from the old and simply reject a transform with unacceptable element growth, choose a new shift,
and continue the iteration. A rejection is a nuisance, not a disaster.

One of the attractions of dqds is that it has high mixed relative stability, to be explained below.
One of us proved this in [9] in the context of singular values of bidiagonals and eigenvalues of
real symmetric tridiagonals. Since this desired property is independent of symmetry, we take this
opportunity to present the result again in the context of J matrices.

To set up notation for the proof we consider real bidiagonal factors L and U of a real J matrix
together with a real shift σ and use the dqds transform to obtain output L̂, Û satisfying

L̂Û = UL− σI. (5.1)

We assume no anomalies occur, i.e. no divisions by zero, no overflow/underflow.

Theorem 5.1 ([9], Theorem 4). Let dqds(σ) map L,U into computed L̂, Û with no anomalies.
Then well chosen small relative changes in the entries of both input and output matrices, of at most 3
ulps each, produces new matrices, one pair mapped into the other, in exact arithmetic, by dqds(σ).

Our analysis consists to write down the exact relations satisfied by the computed quantities L̂, Û
and then to work out among them an exact dqds transform whose input is close to L,U and output
is close to L̂, Û . The diagram in Figure 5.1 is an excellent summary.

L,U L̂, Û

a
L,

a
U

`
L,

`
U

dqds

computed

change each

li by 1 ulp

ui by 3 ulps

change each

l̂i, ûi by 2 ulps

dqds

exact

`
L

`
U =

a
U

a
L− σI

Figure 5.1. Effects of roundoff for dqds.

The model of arithmetic we assume is that the floating point result of a basic arithmetic operation
� (one of the four binary operations +, −, ∗ and /) satisfies

fl(x� y) = (x� y)(1 + ε) = (x� y)/(1 + η) (5.2)

where ε and η depend on x, y, and the operation �, and satisfy

|ε| < ε, |η| < ε. (5.3)

The quantity ε is called variously roundoff unit, machine precision or macheps. We will choose freely
the form (ε or η) that suits the analysis. We will also use the acronym ulp which stands for units
in the last place held and it is the natural way to refer to relative differences between numbers.

A real triple dqds algorithm for the nonsymmetric tridiagonal eigenvalue problem 15

Our result is possible because of the simple form of the recurrence for the auxiliary variable
{di}ni=1. In exact arithmetic

d1 = u1 − σ, di+1 =
diui+1

di + li
− σ, i = 1, . . . , n− 1.

Proof. We consider the floating point implementation of dqds in (4.3). The computed quantities

L̂, Û are governed by the following exact relations.

ûi = fl(di + li) = (di + li)/(1 + ε+)

t = fl(ui+1/ûi) =
ui+1(1 + ε/)

ûi
=
ui+1(1 + ε/)(1 + ε+)

di + li

di+1 = fl
(

fl(di ∗ t)− σ
)

=
dit(1 + ε∗)− σ

1 + εi+1

l̂i = fl(li ∗ t) = lit/(1 + ε∗∗)

The symbol ε∗∗ represents the rounding error in the second multiplication li ∗ ti. All the ε’s obey
(5.3) and depend on i but we supress this dependence on i except for the subtraction of the shift σ.
Here εi+1 accounts for the error in subtracting the real shift σ. To be consistent we must also use
di(1 + εi), where εi is defined in minor step i−1, and (1 + ε1)d1 = u1−σ. Here t is just an auxiliary
variable for the analysis.

Now we can write an exact dqds transform using [·] to surround our chosen variables.[
ûi(1 + ε+)(1 + εi)

]
=
[
di(1 + εi)

]
+
[
li(1 + εi)

]
[
di+1(1 + εi+1)

]
=

[
di(1 + εi)

][
ui+1(1 + ε/)(1 + ε+)(1 + ε∗)

][
di(1 + εi)

]
+
[
li(1 + εi)

] − σ

[
l̂i(1 + ε∗)(1 + ε∗∗)

]
=

[
li(1 + εi)

][
ui+1(1 + ε/)(1 + ε+)(1 + ε∗)

][
di(1 + εi)

]
+
[
li(1 + εi)

]
We can read off the perturbations, defining

a
l i,

aui+1 and
`
l i,

`ui on the way to an exact transform:

li −→ li(1 + εi) =:
a
l i l̂i −→ l̂i(1 + ε∗)(1 + ε∗∗) =:

`
l i

ui+1 −→ ui+1(1 + ε/)(1 + ε+)(1 + ε∗) =: aui+1 ûi −→ ûi(1 + ε+)(1 + εi) =: `ui

The perturbations are as claimed in the theorem: 3 ulps for ui and 1 ulp for li, and 2 ulps each for l̂i
and ûi as shown in Figure 5.1. Notice that our choices of

a
L,

a
U and

`
L,

`
U are not in general machine

representable.
When σ = 0 the (1 + εi) factors are omitted but still 3 ulps are needed for ui+1.
The remarkable feature here is that element growth does not impair the result. However,

Theorem 5.1 does not guarantee that dqds returns accurate eigenvalues. For that, an extra re-
quirement is needed such as positivity of all the parameters uj , lj in the computation, as is the case
for the eigenvalues of BTB where B is upper bidiagonal.

We mention that Yao Yang considered the roundoff in dqds in his dissertation at UC, Berkeley,
in 1994 [41]. He had two results. He gave an n = 4 example to show that even dqd (no shift in
dqds) is not backward stable. He also produced an a posteriori (computable) bound on the error in

the exact product L̂Û of the output matrices. Unfortunatly, his dissertation has not been published
but his results are stated and proved in [22].

16 B. Parlett and C. Ferreira

5.2. 3dqds. Each minor step in the algorithm consists of 3 simple transformations on work
matrices F and G. All three parts arise from similarities that chase the bulges in the transformation
from U0L0 to L3U3. See section 4. Two of these transformations are elementary transformations
of the form I + veTj , with inverse I − veTj , and v has at most 3 nonzero entries. We examine the
condition number of these 3 transforms. Consult Section 4.2 to follow the details.

• The active part of Zi is[
ui 1
0 1

]
and cond(Zi) ' max

{
|ui|, |ui|−1

}
.

• The active part of Li is 1

−xl/l̂i−1 1

−yl/l̂i−1 0 1

 and cond(Li) ' 1 +

(
xl

l̂i−1

)2

+

(
yl

l̂i−1

)2

.

• The active part of Yi is
1

−xr/ûi 1
−yr/ûi 0 1
−zr/ûi 0 0 1

 and cond(Yi) ' 1 +

(
xr
ûi

)2

+

(
yr
ûi

)2

+

(
zr
ûi

)2

.

The variables xl, yl, xr, yr, zr are formed from additions and multiplications of previous quantities.
Note that ui is part of the input and so is assumed to be of acceptable size. We see that it is
tiny values of l̂i−1 and ûi that lead to an ill-conditioned transform at minor step i. In the simple

dqds algorithm a small value of ûi (relative to ui+1) leads to a large value of l̂i and di+1. In 3dqds
the effect of 3 consecutive transforms is more complicated. The message is the same: reject any
transform that has more then modest element growth. In practice, |ûi| and |l̂i−1| are monitored and
a transform is rejected if either quantity is too big (bigger than 1/

√
ε). The computed eigenvalues

are used as input for Rayleigh quotient correction in the original balanced matrix.

In order to understand the intricate arguments below we have found it essential to absorb the
contents of Sections 4.1 and 4.2, in particular the division of the typical inner loop of 3dqds in
three parts (a), (b) and (c). The three dqds similarities have morphed into a sequence of n − 1
similarities of FG (implicit) each of which in its turn is composed of three transformations of F and
G by matrices Zi, Li, Yi (with exact inverses) at minor step, or loop, i where we concentrate our
attention.

Minor step i.

Recall that at the start the bulges xl, yl are in column i− 1 of F while xr, yr, zr are in column
i of G. See (4.2). The values in these bulges change and they move one column right and one row
down. In analysis, not practice, as the bulges both change value and position, new variables are
created and denoted by augmentation of the subscripts. See Table 5.1. By the end of minor step i
new values are given to all the bulge variables to be ready for the next step. The most active is xr,
the entry on the diagonal of G. The loop i updates xr four times so we find

xr, xr1 , xr2 , xr3 , xr4

and the last value xr4 becomes xr at the next loop i+ 1. Its position changes from Gi,i to Gi+1,i+1.
This change in position occurs at operation 14 of the 16 arithmetic operations in 3dqds.

A real triple dqds algorithm for the nonsymmetric tridiagonal eigenvalue problem 17

To follow the analysis below the reader should have reference to Section 4.2. At minor step i
the inner loop transforms columns i− 1, i of F and i, i+ 1 of G.

To anticipate our result we are going to show that very small relative, but well chosen, pertur-
bations in the input and output variables of each part, (a), (b), and (c), separately, of loop i yield
exact, albeit implicit, transformations of F and G. Of course, the input and output variables are
different for each part.

Part Input Output

(a) xr, yr, ui xr1

l̂i−1, li+1, li+2 ûi
(b) xl, yl xl1 , yl1

xr1 , yr, zr xr2 , yr1 , zr1

li+1, ui+2, ui+3, ûi l̂i
(c) xl1 , yl1 xl2 , yl2

xr2 , yr1 , zr1 xr3 , yr2 , zr2
xr4 , yr3 , zr3

Table 5.1
Input and output variables of 3dqds algorithm.

Note that the output variables for Part (b) may be perturbed (again) as input variables of Part
(c). We will point out the two (of 16) operations at which our perturbations fail to give an exact
implementation of the whole of loop i. That would be a result as strong as the one for real dqds.

As said above, if ej denotes column j of I and v is a vector satisfying eTj v = 0 then the exact

inverse of I − veTj is I + veTj since (I − veTj)(I + veTj) = I − veTj veTj = I − (eTj v)veTj = I. Hence
the attraction of using elementary matrices for Parts (b) and (c). The matrix Zi, whose active part

is

[
ui 1

0 1

]
, is not elementary but the action of its inverse is implicit in creating 0 and 1 in F and

it is only Zi that acts on G. Thus 1/ui is never used explicitly and, again, there is no error in the
implicit use of Z−1i on F . These observations help to explain the welcome accuracy of 3dqds in
practice.

In the analysis in each statement we use a subscript on ε as an indicator of the operation. For
example,

fl
(
a+ b+ c ∗ d

)
= fl

(
fl(a+ b) + fl(c ∗ d)

)
=
[
(a+ b)(1 + ε+) + c · d(1 + ε∗)

]
(1 + ε++).

We find it simpler to not name the perturbed variables but to indicate them by judicious use
of parentheses and square brackets. We use either a dot or juxtaposition to represent an exact
multiplication.

18 B. Parlett and C. Ferreira

Loop i, 1 < i < n− 2, in Section 4.3.

Part (a)

F ←− FZ−1i puts Fi,i+1 = 0 and Fi,i = 1. No errors.

G←− ZiG turns Gi,i+1 = 1, updates xr in Gi,i.

1 xr1 = fl
(

fl(xr ∗ ui) + yr
)

=
[
xr · ui(1 + ε∗) + yr

]
(1 + ε+)

xr1 =
[
xr(1 + ε+)

][
ui(1 + ε∗)

]
+
[
yr(1 + ε+)

]
Part (b)

F ←− L−1i F puts 0 into Fi+1,i−1 and Fi+2,i−1, and moves the bulge to column i.

G←− GLi creates ûi in Gi,i (an LU output) and creates xr2 , yr1 , zr1(bulge in G) below it.

2 xl1 = −fl(xl/l̂i−1) = −xl/l̂i−1(1 + ε/) xl1 = −
[
xl(1 + ε/)

]
/l̂i−1

3 yl1 = −fl(yl/l̂i−1) = −yl/l̂i−1(1 + ε/) yl1 = −
[
yl(1 + ε/)

]
/l̂i−1

Note that l̂i−1 is created in loop i− 1 and (1 + ε/) differs from (1 + ε/) in Op. 3.

4 ûi = fl(xr1 − xl1) = (xr1 − xl1)/(1 + ε−)
[
(1 + ε−)ûi

]
= xr1 − xl1

5 xr2 = fl(yr − xl1) = (yr − xl1)/(1 + ε−)
[
(1 + ε−)xr2

]
= yr − xl1

6 yr1 = fl
(

fl(zr − yl1)− fl(xl1 ∗ li+1)
)

=
[
(zr − yl1)/(1 + ε−)− xl1 · li+1(1 + ε∗)

]
/(1 + ε−−)[

(1 + ε−)(1 + ε−−)yr1
]

= zr − yl1 − xl1

[
li+1(1 + ε∗)(1 + ε−)

]
7 zr1 = −fl(yl1 ∗ li+2) = yl1 li+2(1 + ε∗) zr1 = −yl1

[
li+2(1 + ε∗)

]
Part (c)

F ←− FY −1i creates l̂i in Fi+1,i (an LU output) and creates xl2 , yl2 (bulge in F) below it.

G←− YiG puts 0 into Gi+1,i, Gi+2,i and Gi+3,i, and moves the bulge to column i+ 1.

8 xr3 = −fl(xr2/ûi) = −xr2/ûi(1 + ε/) xr3 = −
[
xr2(1 + ε/)

]
/ûi

9 yr2 = −fl(yr1/ûi) = −yr1/ûi(1 + ε/) yr2 = −
[
yr1(1 + ε/)

]
/ûi

10 zr2 = −fl(zr1/ûi) = −zr1/ûi(1 + ε/) zr2 = −
[
zr1(1 + ε/)

]
/ûi

11 l̂i = fl
(

fl(xl1 + yr2) + fl(xr3 ∗ ui+1)
)

= fl
(
(xl1 + yr2)/(1 + ε+) + xr3 · ui+1(1 + ε∗)

)
=
[
(xl1 + yr2)/(1 + ε+) + xr3 · ui+1(1 + ε∗)

]
/(1 + ε++)[

(1 + ε+)(1 + ε++)l̂i
]

= xl1 + yr2 + xr3

[
ui+1(1 + ε∗)(1 + ε+)

]

A real triple dqds algorithm for the nonsymmetric tridiagonal eigenvalue problem 19

Part (c) (cont.)

12 xl2 = fl
(

fl(yl1 + zr2) + fl(yr2 ∗ ui+2)
)

= fl
(
(yl1 + zr2)/(1 + ε+) + yr2 · ui+2(1 + ε∗)

)
=
[
(yl1 + zr2)/(1 + ε+) + yr2 · ui+2(1 + ε∗)

]
/(1 + ε++)[

(1 + ε+)(1 + ε++)xl2

]
= yl1 + zr2 + yr2

[
ui+2(1 + ε∗)(1 + ε+)

]
13 yl2 = fl(zr2 ∗ ui+3) = zr2 · ui+3(1 + ε∗) yl2 = zr2

[
ui+3(1 + ε∗)

]
14 xr4 = fl(1− xr3) = (1− xr3)/(1 + ε−) (1 + ε−)xr4 = 1− xr3

15 yr3 = fl(li+1 − yr2) = (li+1 − yr2)/(1 + ε−) (1 + ε−)yr3 = li+1 − yr2

16 zr3 = fl(−zr2) = −zr2 zr3 = −zr2

No error in negation.

end loop

Some comments. In Op. 4, for example, when cancellation occurs (xr1 and xl1 have same
exponent) there is no error in subtraction but ûi’s uncertainty increases.

We perturb xr2 in Op. 5, as an output in Part (b), and also in Op. 8, as an input in Part (c).
Similarly, we perturb yr1 in Op. 6, in Part (b), and also in Op. 9 in Part (c). We use plain zr1 in
Op. 7, as an output in Part (b), and perturb zr1 in Op. 10, as an input in Part (c).

We did not need to perturb xl1 nor yl1 in Ops. 2 and 3 in Part (b) and used xl1 and yl1 in
Ops. 5 and 6, still Part (b), as well as Op. 11 and 12, in Part (c). So xl1 and yl1 did preserve their
identities for the whole of loop i.

In Ops. 5 and 6 the perturbations we heaped on xr2 and yr1 were to avoid perturbing xl1 and
yl1 . It seemed just too messy to try and carry the perturb xr2 and yr1 through the later operations
in Part (c) that use them, such as Ops. 8 and 9.

Minor step 1 has a slightly different analysis but we omit the details which may be derived using
a similar analysis.

In summary,

Theorem 5.2. If 3dqds is executed in standard floating point IEEE standard arithmetic with
no invalid operations then suitable small perturbations (2 ulps maximum) of Parts (a), (b), and (c)
produce an exact instance of each part in every minor step.

20 B. Parlett and C. Ferreira

6. Implementation details.

6.1. Deflation (n← n− 1). Some of our criteria for deflating come from [24], others are
new. Consider both matrices UL and LU and the trailing 2× 2 blocks,[

ln−1 + un−1 1

ln−1un un

]
,

[
ln−2 + un−1 1

ln−1un−1 ln−1 + un

]
.

Deflation (n← n− 1) removes ln−1 as well as un. Looking at entry (n− 1, n− 1) of UL shows that
a necessary condition is that ln−1 be negligible compared to un−1,

|ln−1| < tol · |un−1|, (6.1)

for a certain tolerance tol close to roundoff unit ε.
The (n, n) entries of UL and LU suggest either un+acshift or ln−1+un+acshift as eigenvalues

where acshift is the accumulated shift. Recall that simple dqds is a non-restoring transform (see
(3.5)). To make these consistent we require that

|ln−1| < tol · |un + acshift|. (6.2)

Finally we must consider the change δλ in the eigenvalue λ caused by setting ln−1 = 0. We
estimate δλ by starting from UL with ln−1 = 0 and then allowing ln−1 to grow. To this end let J
be UL with ln−1 = 0 and (un,y

T ,x) be the eigentriple for J . Clearly yT = eTn . Now we consider
perturbation theory with parameter ln−1. The perturbing matrix δJ , as ln−1 grows, is

ln−1(en−1 + enun)eTn−1.

By first order perturbation analysis

|δλ| = |yT δJx|
‖x‖2‖y‖2

and ‖y‖2 = 1 in our case. So,

|δλ| =
∣∣ln−1eTn (en−1 + enun)eTn−1x

∣∣
‖x‖2

=
|ln−1un||xn−1|

‖x‖2

and we use the crude bound
|xn−1|
‖x‖2

< 1. So, we let ln−1 grow until the change

|δλ| < |ln−1un|

in eigenvalue λ = un is no longer acceptable. Our condition for deflation is then

|ln−1un| < tol · |acshift+ un|. (6.3)

A similar first order perturbation analysis for LU with ln−1 = 0 will give our last condition for
deflation. For the eigentriple (un,y

T ,x) we also have yT = eTn . The perturbing matrix is now

ln−1en
(
eTn−1un−1 + eTn

)
and

|δλ| =
∣∣ln−1eTnen(eTn−1un−1 + eTn)x

∣∣
‖x‖2

= |ln−1|
|un−1xn−1 + xn|

‖x‖2
< |ln−1| (|un−1|+ 1) .

Finally we require

|ln−1| (|un−1|+ 1) < tol · |acshift+ un|. (6.4)

A real triple dqds algorithm for the nonsymmetric tridiagonal eigenvalue problem 21

6.2. Splitting and deflation (n← n− 2). Recall that the implicit L theorem was invoked
to justify the 3dqds algorithm. This result fails if any lk, k < n−1 vanishes. Consequently, checking
for negligible values among the lk is a necessity, not a luxury for increased efficiency. Consider
J = UL in block form 

J1
1

µ

J2


where µ = uk+1lk, k < n− 1. We can replace µ by 0 when

spectrum(J1) ∪ spectrum(J2) = spectrum(J), to working accuracy.

However we are not going to estimate the eigenvalues of J1 and J2. Instead we create a local criterion
for splitting at (k + 1, k) as follows. Focus on the principal 4× 4 window of J given by

uk−1 + lk−1 1

uklk−1 uk + lk 1

uk+1lk uk+1 + lk+1 1

uk+2lk+1 uk+2 + lk+2

 .
Now J1 and J2 are both 2× 2 and our local criterion is

det(J1) · det(J2) = det(J), to working accuracy. (6.5)

Let us see what this yields. Perform block factorization on J and note that the Schur complement
of J1 in J is

J ′2 = J2 −
[
0 µ

0 0

]
J−11

[
0 0

1 0

]
with

J−11 =
1

det1

[
uk + lk −1

−uklk−1 uk−1 + lk−1

]
where

det1 = det(J1) = uk−1(uk + lk) + lk−1lk.

Thus

J ′2 =

[
uk+1 + lk+1 1

uk+2lk+1 uk+2 + lk+2

]
−
[
µ(uk−1 + lk−1)/det1 0

0 0

]
.

Since det is linear by rows and the second rows are equal

det(J2)− det(J ′2) = µ(uk−1 + lk−1)(uk+2 + lk+2)/det1.

22 B. Parlett and C. Ferreira

Our criterion reduces to splitting only when

det(J ′2) = det(J2), to working accuracy.

Thus we require

|lkuk+1(uk+2 + lk+2)(uk−1 + lk−1)/det1| < tol · |det(J2)| .

Since

det2 = det(J2) = uk+1(uk+2 + lk+2) + lk+1lk+2,

the criterion for splitting J at (k + 1, k) is then

|lkuk+1(uk+2 + lk+2)(uk−1 + lk−1)| < tol · |det1det2| . (6.6)

Finally, to remove lk we also need lk to be negligible compared to uk,

|lk| < tol · |uk|. (6.7)

Deflation (n← n− 2)

We use the same criterion for deflation (n ← n − 2), but because lk+2 = ln = 0 there is a
common factor det2 on each side of (6.6). Deflate the trailing 2× 2 submatrix when

|ln−2| < tol · |un−2| (6.8)

and

|ln−2(un−3 + ln−3)| < tol · |un−3(un−2 + ln−2) + ln−3ln−2| . (6.9)

We omit the role of acshift here because it makes the situation more complicated. We have to
recall that 3dqds uses restoring shifts and acshift is always real. So, for complex shifts, det2 is not
going to zero. In fact

|det2| ≥ |=(λ)|2

where λ is an eigenvalue of J2.
When n = 3 these criteria simplify a lot. Both reduce to

|l1| < tol · |u1|.

6.3. Shift strategy. As with LR, the dqds algorithm with no shift gradually forces large
entries to the top and brings small entries towards the bottom. We want to use a shift as soon as the
trailing 2× 2 principal submatrix appears to be converging. We use the size of the last two entries
of L to make the judgement. The code executes a dqds transform with a zero shift if

ln−1 > 10−2 and ln−2 > 10−2.

Otherwise, a 3dqds transform is executed with

sum = ln−1 + (un−1 + un), prod = un−1un,

A real triple dqds algorithm for the nonsymmetric tridiagonal eigenvalue problem 23

the trace and the determinant of the trailing 2 × 2 submatrix of UL. This will let us converge to
either two real eigenvalues in the bottom 2× 2 or a single 2× 2 block with a complex conjugate pair
of eigenvalues.

An unexpected reward for having both transforms available is to cope with a rejected transform.
Our strategy is simply to use the other transform with the current shift. More precisely, given sum

and prod, if 3dqds(sum, prod) is rejected we try dqds(un); if dqds(0) is rejected, we try 3dqds(δ, δ)
with δ =

√
ε. We have to admit the possibility of a succession of rejections and in this case we don’t

want to move away from the previous shift too much, just a small amount so that the transformation
does not breakdown. See Algorithm 4 in Appendix B for details. The number of rejections is recorded
and added to the total number of iterations.

7. Factored forms.

7.1. Eigenvectors from twisted factorizations of the balanced form ∆T . A salient
property of an unreduced real tridiagonal matrix C = tridiag(b,a, c) (no off-diagonal entry vanishes)
is that it can be balanced by a diagonal similarity easily and, once the matrix is balanced, it can
be made real symmetric by changing the signs of certain rows. However, changing the signs is
not a similarity transformation and would not preserve the eigenvalues. It is accomplished by
premultiplying by a so-called signature matrix ∆ = diag(δ1, . . . , δn), δi = ±1. So we can write

∆T = SCS−1 (7.1)

where T is real symmetric and S is diagonal positive definite, S = diag(s1, . . . , sn) with s1 = 1,

si =
(
|c1c2 · · · ci−1|/|b1b2 · · · bi−1|

)1/2
, i = 2, . . . , n. See [11, Section 2.2.3]

Let λ be a simple eigenvalue of ∆T with eigenvector equations

∆Tx = xλ, y∗∆T = λy∗. (7.2)

Recall that x, y and λ may be complex and y∗x 6= 0, since λ is simple. An attraction of the ∆T
representation is that the row eigenvector y∗ is determined by the right (or column) eigenvector x.
Transpose ∆Tx = xλ and insert I = ∆2 to find

(xT∆)∆T = λ(xT∆). (7.3)

Compare with y∗∆T = λy∗ to see that y∗ = xT∆. See [13, 31].
The so-called twisted factorizations generalize the lower and upper bidiagonal factorizations.

These factorizations gained new popularity as they were used for the purpose of computing eigen-
vectors of symmetric tridiagonal matrices [10, 23]. The idea is to begin both a top-to-bottom and a
bottom-to-top factorization until they meet at, say, the k-th row, where they will have to be glued
together. The index k is called the twist index or the twist position.

Observe that the eigenvector equations ∆Tx = xλ and (xT∆)∆T = λ(xT∆) are equivalent to

(T − λ∆)x = 0 and xT(T − λ∆) = 0

where T −λ∆ is symmetric. Now suppose that we have λ̃ as an approximation to an eigenvalue λ of
∆T and that T − λ̃∆ admits both lower and upper bidiagonal factorizations, starting the Gaussian
elimination at the first row and at the last row, respectively,

T − λ̃∆ = LDLT = URUT,

where L is unit lower bidiagonal and U is unit upper bidiagonal. Matrices D and R are the diagonals
holding the pivots of the elimination process. Let (L)i+1,i = `i, (U)i,i+1 = ui, i = 1, . . . , n− 1, and

24 B. Parlett and C. Ferreira

D = diag(d1, . . . , dn), R = diag(r1, . . . , rn), i = 1, . . . , n. Then, for each twist index k = 1, . . . , n,

we can construct a twisted factorization of T − λ̃∆ as

T − λ̃∆ = NkGkN
T
k (7.4)

where

Nk =



1

`1 1
. . .

. . .

`k−1 1 uk+1

1 uk+2

. . .
. . .

1 un
1


, Gk =



d1
. . .

dk−1
γk

rk+1

. . .

rn


.

The only new quantity is the twist element γk = (Gk)k,k and one formula for it is

γk = dk + rk − (T − λ̃∆)k,k (7.5)

and another is

γ1 = r1, γn = dn, γk+1 = γkrk+1/dk, k = 1, . . . , n− 1. (7.6)

These formulae are not difficult to obtain. See [38].
A very useful feature of these twisted factorizations is that they can deliver a very accurate

approximation to the column eigenvector x (and row eigenvector xT∆). Since N−1k ek = ek and
G−1k γkek = ek, solving a system of the form

NkGkN
T
k z = γkek (7.7)

is equivalent to solving

NT
k z = ek (7.8)

which leads to the recurrence

zk = 1,

zi = −`izi+1, i = k − 1, k − 2, . . . , 1, (7.9)

zi = −uizi−1, i = k + 1, k + 2, . . . , n.

The above is just inverse iteration to obtain z (and zT∆) as an approximation to λ’s eigenvector x
(and xT∆) with residual norm

‖(T − λ̃∆)z‖
‖z‖

=
|γk|
‖z‖

.

Therefore a natural choice for the twist index would be k such that

|γk| = min
i=1,...,n

|γi|.

A real triple dqds algorithm for the nonsymmetric tridiagonal eigenvalue problem 25

This strategy to choose an initial guess for the eigenvector provides, as a by-product, the diagonal

entries of (T − λ̃∆)−1 since
[
(T − λ̃∆)−1

]
k,k

= γ−1k . See [38, Lemma 2.3].

If ∆ is definite, one important result presented in [7, 8] is that we can always find a twist index
k such that

|γk| ≤
√
n|λ̃− λ|.

Since (7.9) uses only multiplications, the computed vector will be very good provided that λ̃ is
accurate enough. In the general case, to judge the accuracy of the eigenvectors, we compute column
(and row) residual norm relative to the eigenvalue,

‖∆Tz − λ̃z‖
|λ̃|‖z‖

=
‖
(
T − λ̃∆

)
z‖

|λ̃|‖z‖
=
‖zT

(
T − λ̃∆

)
‖

|λ̃|‖zT∆‖
. (7.10)

This is a stricter measure than the usual
‖∆Tz − λ̃z‖
‖z‖‖∆T‖

.

In [25] we show that unique tridiagonal “backward error” matrices can be designated for an
approximate pair of complex eigenvectors (column and row) or two approximate real eigenvectors.

7.2. Relative eigenvalue condition numbers. The condition number of every eigenvalue
of a real symmetric matrix is 1, but only in the absolute sense. The relative condition number can
vary. In the unsymmetric case even the absolute condition numbers can rise to∞ and little is known
about relative errors. In [13] several relative condition numbers with respect to eigenvalues were
derived. Some of them use bidiagonal factorizations instead of the matrix entries and so they shed
light on when eigenvalues are less sensitive to perturbations of factored forms than to perturbations
of the matrix entries. These condition numbers are measures of relative sensitivity, i.e., measures
of the relative variation of an eigenvalue with respect to the largest relative perturbation of each
of the nonzero entries of the representation of the matrix. So the perturbations we consider are of
the form |δpi| ≤ η|pi|, 0 < η � 1. In this section we present the relative condition number for the
entries of the matrix C and for the LU factorization of the J-form.

Assume that λ 6= 0 is a simple eigenvalue of real tridiagonal matrix C = tridiag(b,a, c). Let
∆T = SCS−1 be the balanced form (7.1) of C and

(
λ,x,xT∆

)
be an eigentriple of ∆T ,

∆Tx = xλ, (xT∆)∆T = λ(xT∆), λ 6= 0, (7.11)

and recall that ∆T and C eigenvectors are simply related by

C
(
S−1x

)
=
(
S−1x

)
λ,

(
xT∆S

)
C = λ

(
xT∆S

)
. (7.12)

The relative condition number with respect to λ for the entries of C is

relcond(λ;C) =

∣∣xT∆S
∣∣ |C| ∣∣S−1x∣∣

|λ|
∣∣(xT∆S

)(
S−1x

)∣∣ ,
where |M |ij = |Mij |, for any matrix M . Since S is diagonal it follows that

relcond(λ;C) =

∣∣xT∆
∣∣ |S| |C| ∣∣S−1∣∣ |x|
|λ||xT∆x|

=

∣∣xT∆
∣∣ |∆T | |x|

|λ||xT∆x|
= relcond(λ; ∆T). (7.13)

We have just shown that, in general, for any scaling matrix X invertible and diagonal, the expression
for relcond(λ;C) yields relcond(λ;XCX−1) = relcond(λ;C). See [13, Lemma 6.2].

26 B. Parlett and C. Ferreira

When C is unreduced it is also diagonally similar to a J-form,

J = DCD−1 = tridiag(b,a,1)

where D = diag(1, c1, c1c2, . . . , c1c2 · · · cn−1) and b = diag(b1c1, b2c2, . . . , bn−1cn−1). Now assume
that J permits bidiagonal factorization J = LU and write

∆T = FJF−1, F = SD−1, (7.14)

to obtain

LU
(
F−1x

)
=
(
F−1x

)
λ,

(
xT∆F

)
LU = λ

(
xT∆F

)
, λ 6= 0.

Recall that L = I + L̊ and U = diag(u1, . . . , un)
(
I + Ů

)
with

L̊ =


0

l1 0
. . .

. . .

ln−2 0

ln−1 0

 and Ů =


0 u−11

0 u−12

. . .
. . .

0 u−1n−1
0

 .

For the cost of solving two bidiagonal linear systems,

vT
(
I + Ů

)
=
(
xT∆F

)
for vT and Lw = L̊

(
F−1x

)
for w,

we obtain the following expression of the relative condition number for the entries of L and U ,

relcond(λ;L,U) :=
|v|T|F−1x|+ |xT∆F ||w|

|xT∆x|
. (7.15)

See [13, Section 6.3]. Next we deal with a case of a simple zero eigenvalue. Although the right hand
side of (7.15) is a nonzero finite number for a simple eigenvalue λ = 0, observe that the perturbations
we consider for U , that is, |δui| ≤ η|ui|, produce un + δun = 0 whenever un = 0. This means that
singularity is preserved or, equivalently, that the zero eigenvalue is preserved. Therefore, it seems
appropriate to set relcond(0;L,U) = 0.

We use eigenvalue approximation λ̃ from Rayleigh Quotient Iteration (RQI) and eigenvector
approximations z and zT∆ obtained from (7.8) to compute the relative condition numbers (7.13)
and (7.15). The residual norms for ∆T are given by (7.10) but for J = LU , with eigenvector
approximations F−1z and zT∆F , by

‖F−1
(
T − λ̃∆

)
z‖

|λ̃|‖F−1z‖
and

‖zT
(
T − λ̃∆

)
F‖

|λ̃|‖zT∆F‖
. (7.16)

7.3. Generalized Rayleigh Quotient Iteration. In addition to computing both column
and row eigenvector approximations from twisted factorizations of ∆T , the algorithm described in
Section 7.1 can also be used to improve the accuracy of the eigenvalue approximation λ̃ by performing
a Rayleigh Quotient Iteration. So, our code will return an eigenpair approximation (S−1z, zT∆S)
for C together with an improved eigenvalue estimate, the generalized Rayleigh quotient,(

zT∆S
)
C
(
S−1z

)(
zT∆S

)(
S−1z

) =

(
zT∆

)
∆Tz

zT∆z
= λ̃+

(
zT∆

)(
∆T − λ̃I

)
z

zT∆z
. (7.17)

A real triple dqds algorithm for the nonsymmetric tridiagonal eigenvalue problem 27

Given the twisted factorization in (7.4) and (7.7), the Rayleigh quotient correction is given by

ρ :=

(
zT∆

)(
∆NkGkN

T
k

)
z

zT∆z
=
zTγkek
zT∆z

=
γk

zT∆z
,

since zk = 1, where γk is given in (7.6) and (7.5).
Recall that for x ∈ C, <(x) denotes the real part of x. The following lemma extends Lemma 12

in [8, pg. 886] to the unsymmetric case.

Lemma 7.1. Let T − λ̃∆ = NkGkN
T
k and NkGkN

T
k z = γkek, zk = 1. Then the Rayleigh

quotient ρ with respect to ∆T − λ̃I is

ρ =
γk

zT∆z

and ∥∥∥(∆T − (λ̃+ ρ)I
)
z
∥∥∥

‖z‖
=
|γk|
‖z‖

(
|zT∆z|2 − ωk

|zT∆z|2

)1/2

(7.18)

where ωk = 2δk<(zT∆z)− ‖z‖2.
Proof. Let ∆ = diag(δ1, . . . , δn), δi = ±1. Since(

∆T − (λ̃+ ρ)I
)
z =

(
∆T − λ̃I

)
z − ρz = ∆NkGkN

T
k z − ρz = δkγkek − ρz,

then ∥∥∥(∆T − (λ̃+ ρ)I
)
z
∥∥∥2 = ‖δkγkek − ρz‖2 = (δkγkek − ρz)

T · (δkγkek − ρz)

= |γk|2 + |ρ|2‖z‖2 − 2δk<(γkρ)

= |γk|2 +
|γk|2

|zT∆z|2
‖z‖2 − 2δk|γk|2

|zT∆z|2
<(zT∆z)

=
|γk|2

|zT∆z|2
(
|zT∆z|2 + ‖z‖2 − 2δk<(zT∆z)

)
.

Thus, ∥∥∥(∆T − (λ̃+ ρ)I
)
z
∥∥∥

‖z‖
=
|γk|
‖z‖

(
|zT∆z|2 −

(
2δk <(zT∆z)− ‖z‖2

)
|zT∆z|2

)1/2

.

Observe that, since zk = 1,

|zT∆z|2 + ‖z‖2 − 2δk <(zT∆z) = ‖z‖2 + |zT∆z − δk|2 − 1 > 0.

If the easily checked condition

ωk := 2δk <(zT∆z)− ‖z‖2 > 0 (7.19)

is satisfied, we obtain a decrease in the residual norm by using the Rayleigh quotient; the pair
(λ̃+ ρ, z) is a better approximate eigenpair than (λ̃, z).

28 B. Parlett and C. Ferreira

When ∆ = I (symmetrizable case) the condition (7.19) reduces to 2‖z‖2 − ‖z‖2 = ‖z‖2 > 0
and the Rayleigh quotient correction always gives an improvement. In this case (7.18) simplifies to∥∥∥(T − (λ̃+ ρ)I

)
z
∥∥∥

‖z‖
=
|γk|
‖z‖

(
‖z‖4 − ‖z‖2

‖z‖4

)1/2

=
|γk|
‖z‖

(
‖z‖2 − 1

‖z‖2

)1/2

. (7.20)

Given an approximation λ̃ to an eigenvalue λ of ∆T we compute the twisted factorization of
T − λ̃∆ and use inverse iteration (7.8) to obtain λ’s column and row eigenvector approximations, z

and zT∆. The Rayleigh quotient correction (7.17) gives a new approximation λ̃+ ρ for λ. We may
repeat this process until there is no improvement in the residual (7.18). Although RQI can misbehave
for non-normal matrices, we can use (7.19) to judge improvement. Our code 3dqds examines ωk and
whenever it is greater than zero we apply RQI, otherwise not.

8. Numerical Examples. The need for a tridiagonal eigensolver is admirably covered in Bini,
Gemignani and Tisseur [1], many parts of which have been of great help to us. We refer to the
Ehrlich-Aberth algorithm (see Section 2.5) as BGT and to our code simply as 3dqds, although we
combine 3dqds with real dqds as described in Section 6.3.

Here the exact eigenvalue λi is computed in quadruple precision, using Matlab Symbolic Math
Toolbox with variable-precision arithmetic, and λ̃i denotes the computed eigenvalue in double pre-
cision (unit roundoff 2.2 10−16). We compare our 3dqds algorithm with its explicit version, refered
as ex3dqds (the three steps of dqds are computed explicitly in complex arithmetic, see Figure (3.1)),
with a Matlab implementation of BGT and with the QR algorithm on an upper Hessenberg matrix
(Matlab function eig).

All the experiments were performed in Matlab (R2020b) on a LAPTOP-KVSVAUU8 with an
Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz and 8 GB RAM, under Windows 10 Home. No parallel
operations were used. We acknowledge that the Matlab tests do not reflect Fortran performance,
but even in Matlab environment the ratio of elapsed times is an important feature.

Bessel matrix

Bessel matrices, associated with generalized Bessel polynomials [26], are nonsymmetric tridiag-

onal matrices defined by B
(a,b)
n = tridiag(β,α,γ) with

α1 = − b
a
, γ1 = −α1, β1 =

α1

a+ 1
,

αj := −b a− 2

(2j + a− 2)(2j + a− 4)
, j = 2, . . . , n,

γj := b
j + a− 2

(2j + a− 2)(2j + a− 3)
, βj := −b j

(2j + a− 1)(2j + a− 2)
, j = 2, . . . , n− 1.

Parameter b is a scaling factor and most authors take b = 2 and so do we. The case a ∈ R is the most

investigated in literature. The eigenvalues of B
(a,b)
n , well separated complex eigenvalues, suffer from

ill-conditioning that increases with n - close to a defective matrix. In Pasquini [26] it is mentioned
that the ill-conditining seems to reach its maximum when a ranges from −8.5 to −4.5. We pay a lot
of attention to these matrices because they are an interesting family for our purposes. Each picture
teaches us a lot about the behavior of eigenvalues.

Our examples take B
(−8.5,2)
n , B

(−4.5,2)
n and B

(12,2)
n for n = 40, 50. We show pictures for Matlab

(double precison), BGT and 3dqds to illustrate the extreme sensitivity of some of the eigenvalues.

A real triple dqds algorithm for the nonsymmetric tridiagonal eigenvalue problem 29

The results of ex3dqds are visually identical to 3dqds, so we don’t show them. In exact arithmetic
the spectrum lies on an arc in the interior of the moon-shaped region. Our pictures show this region
and the eigenvalues computed in quadruple precision (labeled as exact).

The results for B
(−8.5,2)
18 , n = 18, 25, are shown in Figure 8.1, without RQI (Rayleigh Quotient

Iteration) and with one RQI. Observe on the real line that our approximations with one RQI (c) lie
on top of the BGT approximations. We include the pictures (b) and (d) to show well the extreme
sensitivity of the eigenvalues. Note how the eigenvalues move out of the moon-shaped inclusion
region.

In Figure 8.2 we show the results for B
(−4.5,2)
n , n = 20, 25, and B

(12,2)
n , n = 40, 50, without RQI.

The reader is invited to see the large effect of changing n from 20 to 25, in (a) and (b), and from 40
to 50, in (c) and (d). Notice that our results are slightly but consistently better than those of the
other two methods.

Table 8.1 shows the minimum and maximum relative errors, relmin = mini |λi − λ̃i|/|λi| and

relmax = maxi |λi− λ̃i|/|λi|. The relative condition numbers relcond(λ;C) and relcond(λ;L,U) (see
(7.13) and (7.15)) and residual norms (see (7.10) and (7.16)) are shown in Table 8.2. We show both
condition numbers because Matlab and BGT only use matrix entries and 3dqds uses L,U factors.

eig BGT 3dqds

(a, b); n relmin relmax relmin relmax relmim relmax

(−8.5, 2); 18 1.6 10−6 2.7 10−1 7.1 10−7 2.3 10−1 5.9 10−7 2.3 10−1

(−8.5, 2); 25 2.5 10−1 1.9 100 1.3 10−1 1.9 100 2.4 10−1 1.8 100

(−4.5, 2); 20 4.1 10−7 3.2 10−1 1.0 10−7 2.1 10−1 1.5 10−8 1.2 10−1

(−4.5, 2); 25 2.0 10−1 1.3 100 5.7 10−2 1.2 100 2.0 10−1 7.3 10−1

(12, 2); 40 3.3 10−15 1.3 10−1 1.1 10−15 1.9 10−1 2.1 10−15 1.7 10−1

(12, 2); 50 7.0 10−15 3.5 10−1 8.5 10−16 4.3 10−1 6.5 10−15 3.4 10−1

Table 8.1
Relative errors for computed eigenvalues from B

(−8.5,2)
n , B

(12,2)
n , and (B

(−4.5,2)
n with one RQI).

relcond(λ;L,U) relcond(λ;C) max residuals

(a, b); n min max min max J = LU ∆T

(−8.5, 2); 18 4.3 108 6.6 1013 1.5 1010 2.2 1015 2.1 10−14 1.8 10−14

(−8.5, 2); 25 8.0 1010 4.3 1013 4.3 1012 2.6 1015 3.9 10−14 1.2 10−14

(−4.5, 2); 20 8.1 107 3.5 1014 3.5 109 1.7 1016 3.5 10−14 3.1 10−14

(−4.5, 2); 25 6.3 108 2.6 1014 4.6 1010 1.9 1016 4.5 10−14 5.0 10−14

(12, 2); 40 9.3 101 7.0 1015 1.4 102 1.8 1016 1.3 10−15 4.6 10−14

(12, 2); 50 1.8 102 1.1 1016 2.7 102 3.8 1016 1.9 10−15 7.7 10−15

Table 8.2
Relative condition numbers and residual norms for B

(−8.5,2)
n , B

(−4.5,2)
n , and B

(12,2)
n .

30 B. Parlett and C. Ferreira

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Exact (o), 3dqds(+), Matlab (x) and BGT (.)

(a) n = 18; no RQI

-0.15 -0.1 -0.05 0 0.05

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Exact (o), 3dqds(+), Matlab (x) and BGT (.)

(b) n = 25; no RQI

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Exact (o), 3dqds(+), Matlab (x) and BGT (.)

(c) n = 18; one RQI

-0.15 -0.1 -0.05 0 0.05

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Exact (o), 3dqds(+), Matlab (x) and BGT (.)

(d) n = 25; one RQI

Figure 8.1. Eigenvalues of B
(−8.5,2)
n , n = 18, 25.

Clement matrix

The so-called Clement matrices (see [3])

C = tridiag(b,0, c)

with bj = j and cj = bn−j , j = 1, . . . , n− 1, have real eigenvalues,

± n− 1, n− 3, . . . , 1, for n even,

± n− 1, n− 3, . . . , 0, for n odd.

These matrices posed no serious difficulties. The initial zero diagonal obliges the dqds based methods
to take care when finding an initial LU factorization.

The 3dqds and ex3dqds codes use only real shifts as they should and the accuracy (approximately
the same) is less than BGT but satisfactory. One RQI reduces errors to O(ε).

A real triple dqds algorithm for the nonsymmetric tridiagonal eigenvalue problem 31

-0.15 -0.1 -0.05 0 0.05

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Exact (o), 3dqds(+), Matlab (x) and BGT (.)

(a) (a, b) = (−4.5, 2); n = 20

-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Exact (o), 3dqds(+), Matlab (x) and BGT (.)

(b) (a, b) = (−4.5, 2); n = 25

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

Exact (o), 3dqds(+), Matlab (x) and BGT (.)

(c) (a, b) = (12, 2); n = 40

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

Exact (o), 3dqds(+), Matlab (x) and BGT (.)

(d) (a, b) = (12, 2); n = 50

Figure 8.2. Eigenvalues of B
(−4.5,2)
n and B

(12,2)
n (without RQI).

Our numerical tests have n = 50, 100, 200, 400, 800. The relative condition number relcond(λ;C)
ranges from 100 to 4 102 and it is smaller at the ends of the spectrum. The maximum residual norm
for C is O(10−11). The minimum and maximum relative errors, relmin and relmax, are shown in
Table 8.3. Note the poor performance of Matlab’s eig (so much for backward stability).

The CPU elapsed times are presented in Table 8.4. We put (+) whenever a RQI is used. Since
we compare Matlab versions of all the codes we acknowledge that the elapsed times are accurate
to only about 0.02 seconds. However, this is good enough to show the striking time ratios between
BGT and the dqds codes.

We draw the readers attention that for n = 400 our algorithm is about 200 times faster than
BGT but when n rises to 1000 it is over 600 times faster. This is finding the eigenvalues to the same
accuracy, namely O(ε). In addition we provide eigenvectors and condition numbers.

An important further comment which illustrates challenges of the unsymmetric eigenvalue
problem is that in these examples for n ≥ 200 the scaling matrices F used above (see (7.14)) are not

32 B. Parlett and C. Ferreira

eig BGT 3dqds

n relmin relmax relmin relmax relmim relmax

50 4.4 10−16 7.4 10−11 0 0 1.7 10−16 4.7 10−15

100 1.6 10−15 1.6 10−3 0 1.8 10−16 0 2.1 10−14

200 4.3 10−16 1.6 101 0 1.1 10−15 0 9.4 10−14

400 5.7 10−16 5.5 101 0 5.6 10−16 0 7.6 10−13

800 2.7 10−15 4.4 102 0 1.2 10−15 0 1.8 10−12

Table 8.3
Relative errors for Clement matrices (without RQI).

n eig BGT ex3dqds (+) 3dqds (+)

100 0.011 0.83 0.014 0.009

200 0.097 2.01 0.020 0.014

400 0.28 8.33 0.036 0.025

800 0.90 35.70 0.080 0.066

1000 1.49 67.02 0.120 0.094

Table 8.4
CPU time in seconds for Clement matrices.

representable. This limitation indicates why we use the ∆T form for computing the eigenvectors.
The overflow problem, which also arises for S−1 (see (7.12)), although not so quickly, explains why
BGT confines its attention to n = 50, but we go further because of our approach.

Matrix with clusters

Matrix in Test 5 in [1],

C = D−1 tridiag(1,α,1), D = diag(β), α,β ∈ Rn

αk = 105(−1)
k

· (−1)bk/4c, βk = (−1)bk/3c, k = 1, . . . , n,

seems to be a challenging test matrix. It was designed to have large, tight clusters of eigenvalues
around 10−5, −105 and 105. Half the spectrum is around 10−5 and the rest is divided unevenly
between −105 and 105. The diagonal alternates between entries of absolute value 105 and 10−5 and
so, for dqds codes, there is a lot of rearranging to do. When n ≥ 100 it is not clear what is meant
by accuracy.

The matrix has a repetitive structure and the diagonal entries are a good guide to the eigen-
values. For n = 100 and for the large real eigenvalues near ±105 the eigenvectors have spikes
(−10−5,−1, 10−5) (complex conjugate pairs have spikes (10−5, 1,−10−7,−1, 10−5), at the appro-
priate places, and negligible elsewhere. Hence the numerical supports for many eigenvectors are

A real triple dqds algorithm for the nonsymmetric tridiagonal eigenvalue problem 33

disjoint. The essential structure of the matrix is exhibited with n = 10,

C =



10−5 1

1 105 1

−1 −10−5 −1

−1 105 −1

−1 10−5 −1

1 −105 1

1 −10−5 1

1 105 1

−1 −10−5 −1

−1 −105


and it has 5 eigenvalues near 0, 3 eigenvalues near 105 and 2 near −105. All the eigenvalues are
well-conditioned and the three codes obtain the correct number of eigenvalues in each cluster.

When n = 20 there are 10 eigenvalues near 10−5, 6 near −105 and 4 near 105; relcond(λ;C)
and relcond(λ;L,U) are all less than 1.2 101; the maximum residual norm for C and J = LU is
O(10−2). For the eigenvalues with small modulus, BGT and 3dqds (with 2 RQI, in average) compute
approximations with relative errors of O(ε), whereas eig yield larger relative errors, as large as 10−6.
See Table 8.5.

eig BGT 3dqds (+ +)

λ relmin relmax relmin relmax relmim relmax

λ ≈ −105 2.0 10−20 1.9 10−15 2.0 10−20 7.1 10−17 2.0 10−20 8.6 10−11

λ ≈ 105 5.0 10−31 2.2 10−13 5.0 10−31 2.2 10−14 5.0 10−31 1.0 10−10

|λ| ≈ 10−5 1.2 10−8 2.0 10−6 3.0 10−17 2.7 10−16 8.0 10−17 2.0 10−16

Table 8.5
Relative errors for the three clusters in Test 5, with n = 20.

Other scaled test matrices

Here we consider other test matrices from [1]. The eigenvalues of these matrices have a variety
of distributions, in particular, the eigenvalues in Test 4 and Test 7 are distributed along curves. See
Figure 8.3. All these matrices are given in the form

C = D−1 tridiag(1,α,1), D = diag(β), α,β ∈ Rn.

34 B. Parlett and C. Ferreira

Test 1 : αk = (−1)bk/8c, βk = (−1)k/k, k = 1, . . . , n.

Test 3 : αk = k, βk = n− k + 1, k = 1, . . . , n.

Test 4 : αk = (−1)k, βk = 20 · (−1)bk/5c, k = 1, . . . , n.

Test 6 : αk = 2, βk = 1, k = 1, . . . , n. (8.1)

Test 7 : αk =
1

k
+

1

n− k + 1
, βk =

1

k
(−1)bk/9c, k = 1, . . . , n.

Test 9 : αk = 1, k = 1, . . . , n; βk =

{
1 if k < n/2

−1 if k ≥ n/2
.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

10
5

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Test 1

(a)

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

Test 4

(b)

-800 -600 -400 -200 0 200 400 600 800 1000

-200

-150

-100

-50

0

50

100

150

200

Test 7

(c)

-3 -2 -1 0 1 2 3

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

Test 9

(d)

Figure 8.3. Eigenvalues of matrices in Tests 1, 4, 7 and 9 for n = 400.

A real triple dqds algorithm for the nonsymmetric tridiagonal eigenvalue problem 35

The extreme relative errors, condition numbers and residual norms for the three codes, Matlab’s
eig, BGT and 3dqds, are shown in Tables 8.6 and 8.7.

eig BGT 3dqds

Test relmin relmax relmin relmax relmim relmax

1 2.3 10−17 3.3 10−13 9.8 10−19 2.8 10−16 9.8 10−19 1.0 10−15 (+)

3 0 1.1 10−14 0 1.1 10−14 0 1.1 10−14 (+)

4 2.8 10−16 5.5 10−15 4.3 10−18 1.1 10−16 6.6 10−18 1.4 10−16 (+ +)

6 2.8 10−18 4.5 10−13 3.0 10−19 1.3 10−13 3.0 10−19 3.3 10−14 (+)

7 2.2 10−17 6.1 10−14 1.9 10−18 3.5 10−16 1.5 10−18 8.0 10−16 (+)

9 3.1 10−17 1.2 10−14 1.4 10−18 6.7 10−16 1.4 10−18 3.2 10−15 (+)

Table 8.6
Relative errors for matrices in (8.1) for n = 100.

relcond(λ;L,U) relcond(λ;C) max residuals

Test min max min max J = LU ∆T

1 1.0 100 3.8 102 1.0 100 1.6 102 4.8 10−12 1.8 10−11

3 1.0 100 2.3 100 1.0 100 1.1 101 4.9 10−14 1.3 10−12

4 1.3 100 2.8 100 1.3 100 2.4 101 3.5 10−8 1.3 10−7

6 1.0 100 5.0 101 1.0 100 4.1 103 1.3 10−10 1.3 10−10

7 1.5 100 5.5 102 1.3 100 2.4 101 3.0 10−10 1.5 10−9

9 1.1 100 7.2 102 1.0 100 2.1 102 3.3 10−9 3.3 10−9

Table 8.7
Relative condition numbers and residual norms for matrices in (8.1) for n = 100.

Table 8.8 reports the CPU time in seconds required by 3dqds versus the time required by
Matlab’s eig, BGT and ex3dqds with n ranging from 400 to 1000. Examples were chosen to
represent the best, worst, and average efficiency of BGT .

Liu matrix

Z. A. Liu [15] devised an algorithm to obtain one-point spectrum unreduced tridiagonal matrices
of arbitrary dimension n × n. These matrices have only one eigenvalue, zero with multiplicity n,
the Jordan form consists of one Jordan block and so the eigenvalue condition number is infinite.
Our code 3dqds computes this eigenvalue exactly (and also the generalized eigenvectors) using the
following method which is part of the prologue. See [12].

The best place to start looking for eigenvalues of a tridiagonal matrix C = tridiag(b,a, c) is at
the arithmetic mean which we know (µ = trace(C)/n). Before converting to J-form and factoring,
we check whether µ is an eigenvalue by using the 3-term recurrence to solve

(µI − C)x = enpn(µ)/

n−1∏
i=1

ci.

36 B. Parlett and C. Ferreira

Test;n eig BGT ex3dqds (+) 3dqds (+)

3; 400 0.11 3.12 0.07 0.03

6; 400 0.003 53.0 0.04 0.03

9; 400 0.39 19.5 0.52 0.32

3; 800 0.34 13.5 0.13 0.08

6; 800 0.01 360.2 0.12 0.08

9; 800 1.28 84.5 1.28 0.94

3; 1000 0.77 18.76 0.14 0.10

6; 1000 0.02 443.3 0.14 0.09

9; 1000 2.12 145.0 1.68 1.31

Table 8.8
CPU time in seconds for matrices in Tests 3, 6 and 9.

Here

x1 = 1, x2 = (µ− a2)/c1, xj+1 =
1

cj
[(µ− aj)xj − bj−1xj−1] , j = 2, . . . , n− 1,

and

υ := (µ− an)xn − bn−1xn−1

(
= pn(µ)/

n−1∏
i=1

ci

)
.

If, by chance, υ vanishes, or is negligible compared to ‖x‖, then µ is an eigenvalue (to working
accuracy) and x is an eigenvector. To check its multiplicity we differentiate with respect to µ and
solve

(µI − C)y = x

with y1 = 0, y2 = 1 = x′2 (= x1). If

υ′ = p′n(µ)/

n−1∏
i=1

ci := (µ− an)yn − bn−1yn−1 + xn

vanishes, or is negligible w.r.t. ‖y‖, then we continue the same way until the system is inconsistent
or there are n generalized eigenvectors.

Usually υ 6= 0 and the calculation appears to have been a waste. This is not quite correct. In
exact arithmetic, triangular factorization of µI −C or µI − J , where J = DCD−1, will break down
if, and only if, xj vanishes for 1 < j < n. So our code examines minj |xj | and if it is too small w.r.t.
its neighbors and w.r.t. ‖x‖ then we do not choose µ as our initial shift. Otherwise we do obtain
initial L and U from J − µI = LU .

For comparison purposes, we ignored our prologue and give to our 3dqds code the Liu matrices
for n = 14 and n = 28, tridiag(1,αn,γn) defined by

α14 =
[
0, 0, 0, 0, 0, 0,−1, 1, 0, 0, 0, 0, 0, 0

]
,

γ14 =
[
−1, 1, 1,−1, 1,−1,−1,−1, 1,−1, 1, 1,−1

]
,

A real triple dqds algorithm for the nonsymmetric tridiagonal eigenvalue problem 37

and

α28 =
[
0, 0, 0, 0, 0, 0,−1, 1, 0, 0, 0, 0, 0,−1, 1, 0, 0, 0, 0, 0, 1,−1, 0, 0, 0, 0, 0, 0

]
,

γ28 =
[
−1, 1, 1,−1, 1,−1,−1,−1, 1,−1, 1, 1,−1,−1,−1, 1, 1,−1, 1,−1,−1,−1, 1,−1, 1, 1,−1

]
.

The accuracy of the approximations delivered by 3dqds is as good as the accuracy of those provided
by Matlab and BGT . The absolute errors are O(10−2) for n = 14 and O(10−1) for n = 28. The
number of iterations needed for 3dqds to converge is less than 3n. See Figure 8.4(a) and 8.4(b). We
show the numerical results along with the circles z = n

√
ε.

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Exact (o), 3dqds(+), Matlab (x) and BGT (.)

(a) n = 14

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Exact (o), 3dqds(+), Matlab (x) and BGT (.)

(b) n = 28

-1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Exact (o), 3dqds(+), Matlab (x) and BGT (.)

(c) n = 28

-1.5 -1 -0.5 0 0.5

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Exact (o), 3dqds(+), Matlab (x) and BGT (.)

(d) n = 56

Figure 8.4. Eigenvalues of Liu matrices, (a) and (b), and glued Liu matrices, (c) and (d).

We also considered glued Liu matrices which are defined as the direct sum of two Liu matrices,
shifting one of them by

√
2 and letting the glue between them be ε. Roundoff will give us two

clusters, one around 0, the other around
√

2. This is not a one-point spectrum matrix and all three
methods give the results expected by perturbation theory. See Figures 8.4(c) and 8.4(d). This is a
very unstable example, the condition numbers all exceed 1010.

38 B. Parlett and C. Ferreira

9. Conclusions. Following the broad success of the HQR algorithm to compute eigenvalues of
real square matrices it seems natural to use a sequence of similarity transforms to reduce an initial
real matrix to eventual triangular form and also deflate eigenvalues from the bottom of the matrix as
they converge. Any real (unreduced) tridiagonal matrix is easily put into J-form (all superdiagonal
entries are 1) and such matrices ask for the use of the LR (not QR) algorithm since it preserves the
J-form. The potential breakdown of the LR transform, from a 0 pivot, was a strong deterrent in
the early days (1960s) but today is a mild nuisance as explained in Section 5.1. A further incentive
is that the whole procedure can be carried out in real arithmetic since complex conjugate pairs of
eigenvalues are determined from 2× 2 submatrices that converge and may be deflated in a manner
similar to real eigenvalues. The more recent success of the dqds transform in computing singular
values of bidiagonal matrices encouraged us to keep out J matrices in factored form: J − σI = LU ,
Ĵ = UL, because, in exact arithmetic, the two algorithms, LR and dqds, are equivalent. In addition
the dqds transform of today is numerically superior to the original, and seminal, qd transform
discovered by Heinz Rutishauser in 1954 [27] and which gave rise to the LR algorithm itself.

In order to hasten convergence we will need to apply complex conjugate pairs of shifts to our
current LU = J matrix. It is well known how to do this entirely in real arithmetic in the context
of the LR algorithm. To the best of our knowledge this has not been tried in the context of dqds.
The main contribution of this paper is the solution to this challenge. We realized that three, not
two, transforms are required to return to real factors L and U when complex shifts are applied
consecutively. This is the nature of our explicit version, a local detour invoking complex arithmetic.
We went further and produced a subprogram 3dqds that accomplishes the same goal but in (exact)
real arithmetic. This implicit version is more efficient than the explicit but is sensitive to roundoff
error in its initial step. Experts will recall the papers on “washout of the shift” in the implicit shift
HQR algorithm in the 1980s. We can not prove that our algorithm is backward stable. In fact we
dought that it is. However we do show that the three parts of the inner loop separately enjoy high
mixed relative stability.

In the process of implementing our new features we were led to a novel and detailed criterion
for deciding when our J = LU matrix has split into two or more unreduced submatrices. We check
for splits at every iteration. Our new subprograms must only be applied to unreduced matrices. We
also gave attention to the choice of a new shift when a factorization fails and when to start using
the bottom 2× 2 submatrix for shifting.

We save a lot of space by confining our eigenvector calculations to the ∆T form so that only
one vector need be stored. From it we can compute the relative condition numbers that we need.
Instructions are given how to generate the eigenvectors for the original and the J-form representions.

10. Acknowledgments. The authors would like to thank Associate Editor Martin H. Gutknecht
and the anonymous referees for forcing us to look more deeply into an error analysis of our triple
dqds algorithm (first version) and to give a clearer presentation of its mathematical analysis and
implemention details (last version).

REFERENCES

[1] D. A. Bini, L. Gemignani and F. Tisseur. The Ehrlich-Aberth method for the nonsymmetric tridiagonal
eigenvalue problem. SIAM J. Matrix Anal. Appl., 27(1):153-175, 2005.

[2] A. Bunse-Gerstner. An analysis of the HR algorithm for computing the eigenvalues of a matrix. Linear
Algebra and Its Applications, 35:155-173, 1981.

[3] P. A. Clement. A class of triple-diagonal matrices for test purposes. SIAM Review, 1 (vol.1), January,
1959.

[4] J. K. Cullum.A QL procedure for computing the eigenvalues of complex symmetric tridiagonal matri-
ces. SIAM J. Matrix Anal. Appl., 17(1):83-109, 1996.

A real triple dqds algorithm for the nonsymmetric tridiagonal eigenvalue problem 39

[5] D. Day. Semi-duality in the two-sided lanczos algorithm. Ph.D thesis, University of California, Berkeley,
1993.

[6] J. W. Demmel. Applied Numerical Linear Algebra. Society for Industrial and Applied Mathematics,
1997.

[7] I. S. Dhillon and B. N. Parlett. Multiple representations to compute orthogonal egenvectors of sym-
metric tridiagonal matrices. Linear Algebra and its Applications, 387:1-28, 2004.

[8] I. S. Dhillon and B. N. Parlett. Orthogonal eigenvectors and relative gaps. SIAM J. Matrix Anal.
Appl., 25:858-899, 2004.

[9] K. V. Fernando and B. Parlett. Accurate singular values and differential qd algorithms. Numerische
Mathematik, 67:191-229, 1994.

[10] K. V. Fernando. On computing an eigenvector of a tridiagonal matrix. Part I: Basic results. SIAM J.
Matrix Anal. Appl., 18:1013-1034, 1997.

[11] C. Ferreira. The unsymmetric tridiagonal eigenvalue problem. Ph.D Thesis, University of Minho, 2007.
http://hdl.handle.net/1822/6761

[12] C. Ferreira and B. Parlett. Convergence of LR algorithm for a one-point spectrum tridiagonal matrix.
Numerische Mathematik, 113(3):417-431, 2009.

[13] C. Ferreira, B. Parlett and Froilán M. Dopico. Sensitivity of Eigenvalues of an unsymmetric tridiagonal
matrix. Numerische Mathematik, DOI: 10.1007/s00211-012-0470-z, April 2012.

[14] J. G. F. Francis. The QR transformation - a unitary analogue to the LR transformation, Parts I and
II. Computer Journal, 4:265-272 and 332-245, 1961/62.

[15] Z. A. Liu. On the extended HR algorithm. Technical Report PAM-564, Center for Pure and Applied
Mathematics, University of California, Berkeley, CA, USA, 1992.

[16] W. Kahan, B. N. Parlett and E. Jiang. Residual bounds on approximate eigensystems of non-normal
matrices. SIAM Journal on Numerical Analysis, 19:470-484, 1982.

[17] N. Newman and J. Todd. The Evaluation of Matrix Inversion Programs. Journal of SIAM, 4(6):466-
476, 1958.

[18] B. N. Parlett and C. Reinsch. Balancing a matrix for calculation of Eigenvalues and Eigenvectors.
Numerische Mathematik, 13:292-304, 1969.

[19] B. N. Parlett. The rayleigh quocient iteration and some generalizations for non-normal matrices.
Mathematics of computation, 28(127):679-693, 1974.

[20] B. N. Parlett. The contribution of J. H. Wilkinson to numerical analysis. A history of Scientific
Computing, p. 25, Edited by Stephen G. Nash, ACM Press, 1990.

[21] B. N. Parlett. Reduction to tridiagonal form and minimal realizations, SIAM J. Matrix Anal. Appl.,
13:567-593, 1992.

[22] B. N. Parlett. The new qd algorithms. Acta Numerica, 459-491, 1995.
[23] B. N. Parlett and I. S. Dhillon. Fernando’s Solution to Wilkinson’s Problem: an Application of Double

Factorization. Linear Algebra and Its Applications, 267:247-279, 1997.
[24] B. N. Parlett and Osni A. Marques. An implementation of the dqds algorithm. Linear Algebra and Its

Applications, 309:217-259, 2000.
[25] B. Parlett, Froilán M. Dopico and and C. Ferreira. The inverse eigenvector problem for real tridiagonal

matrices. SIAM J. Matrix Anal. Appl., 37(2):577–597, 2016.
[26] L. Pasquini. Accurate computation of the zeros of the generalized Bessel polynomials. Numerische

Mathematic, 86:507-538, 2000.
[27] H. Rutishauser. Der Quotienten-Differenzen-Algorithmus. Z. angew. Math. Physik 5:233-251, 1954.

Cited in [36].
[28] H. Rutishauser. Der Quotienten-Differenzen-Algorithmus. Mitt. Inst. angew. Math. ETH, no.7,

Birkhäuser, Basel, 1957. Cited in [36].
[29] H. Rutishauser. Solution of eigenvalue problems with the LR-transformation. National Bureau of

Standards Applied Mathematics series 49:47-81, 1958.
[30] H. Rutishauser and H.R. Schwarz. The LR transformation method for symmetric matrices. Numerische

Mathematik, 5:273-289, 1963.
[31] J. Slemons. Toward the solution of the eigenproblem: nonsymmetric tridiagonal matrices. Ph.D thesis,

University of Washington, Seattle, 2008.
[32] J. Slemons. The Result of Two Steps of the LR Algorithm is Diagonally Similar to the Result of One

Step of the HR Algorithm . SIAM J. Matrix Anal. Appl., 31(1):68–74, 2009.
[33] J. Todd. The condition of finite segments of the Hilbert matrix. Contributions to the solution of

systems of linear equations and the determination of eigenvalues. National Bureau of Standards
Applied Mathematics, 39:109-116, 1954.

[34] L. N. Trefethen and M. Embree. Spectra and Pseudospectra. The Behavior of Nonnormal Matrices
and Operators. Princeton University Press, 2005.

http://hdl.handle.net/1822/6761

40 B. Parlett and C. Ferreira

[35] F. K. Vince and B. N. Parlett. Accurate singular values and differential qd algorithms. Numerische
Mathematic, 67:191-229, 1994.

[36] D. S. Watkins. QR-like algorithms - An overview of convergence theory and practice. Lectures in
Applied Mathematics, 32:879-893, 1996.

[37] D. S. Watkins and L. Elsner. Convergence of algorithms of decomposition type for the eigenvalue
problem. Linear Algebra and Its Applications, 143:19-47, 1991.

[38] P. R. Willems and B. Lang. Twisted factorizations and qd-type transformations for the MR3 algorithm
- new representations and analysis. SIAM J. Matrix Anal. Appl., 33(2):523-553, 2012.

[39] Z. Wu. The Triple dqds Algorithm for Complex Eigenvalues. Ph.D thesis, University of California,
Berkeley, 1996.

[40] H. Xu. The relation between the QR and LR algorithms. SIAMJ. Matrix Anal. Appl., 19(2):551-555,
1998.

[41] Yao Yang. Error Analysis of the qds and dqds Algorithms. Ph.D thesis, University of California,
Berkeley, 1994.

A real triple dqds algorithm for the nonsymmetric tridiagonal eigenvalue problem 41

Appendix A. 3dqds algorithm.

[l̂, û] = 3dqds(l, u, sum, prod)

% sum = (σ1 + σ2); prod = σ1σ2
% l = [l1, l2, . . . , ln−1]; u = [u1, u2, . . . , un]

% l̂ = [l̂1, l̂2, . . . , l̂n−1]; û = [û1, û2, . . . , ûn]

% step 1
xr = 1; yr = l1; zr = 0

% the effect of Z1

xr = xr ∗ u1 + yr
% the matrix L−11

xl = (u1 + l1)2 + u2l1 − sum(u1 + l1) + prod

yl = −u2l1u3l2/xl
xl = −u2l1(u1 + l1 + u2 + l2 − sum)/xl
% the effect of L1

û1 = xr − xl;
xr = yr − xl; yr = zr − yl − xl ∗ l2;

zr = −yl ∗ l3
% the matrix Y −11

xr = xr/û1; yr = yr/û1; zr = zr/û1
% the effect of Y −11

l̂1 = xl + yr + xr ∗ u2
xl = yl + zr + yr ∗ u3; yl = zr ∗ u4
% the effect of Y1
xr = 1− xr; yr = l2 − yr; zr = −zr

% steps 2 to n-3
for i = 2, . . . , n− 3

% the effect of Zi

xr = xr ∗ ui + yr
% the matrix L−1i

xl = −xl/l̂i−1; yl = −yl/l̂i−1;

% the effect of Li

ûi = xr − xl;
xr = yr − xl; yr = zr − yl − xl ∗ li+1;

zr = −yl ∗ li+2

% the matrix Y −1i

xr = xr/ûi; yr = yr/ûi; zr = zr/ûi
% the effect of Y −1i

l̂i = xl + yr + xr ∗ ui+1

xl = yl + zr + yr ∗ ui+2; yl = zr ∗ ui+3

% the effect of Yi
xr = 1− xr; yr = li+1 − yr; zr = −zr

end for

% step n-2
% the effect of Zn−2
xr = xr ∗ un−2 + yr
% the matrix L−1n−2
xl = −xl/l̂n−3; yl = −yl/l̂n−3;

% the effect of Ln−2
ûn−2 = xr − xl;
xr = yr − xl; yr = zr − yl − xl ∗ ln−1
% the matrix Y −1n−2
xr = xr/ûn−2; yr = yr/ûn−2
% the effect of Y −1n−2
l̂n−2 = xl + yr + xr ∗ un−1
xl = yl + yr ∗ un
% the effect of Yn−2
xr = 1− xr; yr = ln−1 − yr

% step n-1
% the effect of Zn−1
xr = xr ∗ un−1 + yr
% the matrix L−1n−1
xl = −xl/l̂n−2
% the effect of Ln−1
ûn−1 = xr − xl;
xr = yr − xl
% the matrix Y −1n−1
xr = xr/ûn−1
% the effect of Y −1n−1
l̂n−1 = xl + xr ∗ un
% the effect of Yn−1
xr = 1− xr

% step n
% the effect of Zn

xr = xr ∗ un
% the matrix L−1n = I

% the effect of Ln

ûn = xr;

% the matrix Y −1n = I

42 B. Parlett and C. Ferreira

Appendix B. Pseudocode for the whole algorithm.

Algorithm 1 wrapper for 3dqds

Input: vectors a, b, c
Output: eigenvalues of tridiag(b,a, c)

top = 1 . code works on submatrix top : n
split(1) = top . vector split saves all active top’s
indsplit = 1 . index for split

nits = 0 . number of iterations
itmax = 100n . maximum number of iterations
acshift = 0 . accumulated shift; simple dqds is not restoring

find l and u of J form [Algorithm 5] . vectors l and u for J = LU
while

(
top + 1 < n and its < itmax

)
do . code should mantain top + 1 < n

deflate as warranted [Algorithm 2] . deflation may reduce n
find splits, if any [Algorithm 3] . splits may increase top
if
(
ln−1 > 10−2 and ln−2 > 10−2

)
then . entries at the bottom are not small

[l1,u1, fail] = dqds(l(top : n),u(top : n), 0) . simple dqds with zero shift
if fail then . fail is a boolean for failure

[l1,u1, shift, fail] = recover(l(top : n),u(top : n)) [Algorithm 4]

end if
else

sum = ln−1 + (un−1 + un)
prod = un−1un
[l1,u1, fail] = 3dqds(l(top : n),u(top : n), sum, prod) . triple dqds
if fail then

[l1,u1, shift, fail] = recover(l(top : n),u(top : n), sum, prod)
end if

end if
if fail then

return “too many failures, no convergence.”
end if
l = l1; u = u1

acshift=acshift+shift . update accumulated shift
its=its+1

end while

A real triple dqds algorithm for the nonsymmetric tridiagonal eigenvalue problem 43

Algorithm 2 deflation body

. deflate as warranted; deflation may reduce n

tol = 10ε . tolerance for deflation; ε = roundoff unit

repeat
if criteria2×2 then . deflation 2× 2 criteria (9.8) and (9.9)

ssum = (ln−1 + (un−1 + uu))/2

disc =
(
(ln−1 + (un−1 − uu))/2

)2
+ unln−1 . discriminant

t =
√
|disc|

if disc < 0 then . complex conjugate pair
x1 = ssum + it
x2 = ssum− it . no use of complex arithmetic

else if ssum == 0 then . real pair
x1 = t
x2 = −t

else
x1 = sign(ssum) ∗

(
|ssum|+ t

)
. no subtractions

x2 = un−1un/x1
end if
eigvals([n− 1, n]) = [x1, x2] + acshift . eigvals stores the eigenvalues
n = n− 2

else if criteria1×1 then . deflation 1× 1 criteria (6.1) – (6.4)
eigvals(n) = acshift un + acshift

n = n− 1
end if

until deflation criteria not met

Algorithm 3 splitting body

. find splits, if any, define top after a split

tol = 10ε . tolerance for splitting; ε = roundoff unit

if n > top + 2 then
k = n− 3
while

(
k > top and criteriasplit not met

)
do . splitting criteria (9.6) and (9.7)

k = k − 1
end while
if k > top then . there is a split

indsplit = indsplit + 1
split(indsplit) = top

lk = acshift . lk saves accumulated shift of the previous segment
top = k + 1

end if . if the condition for splitting is not met, there is nothing to do
end if

44 B. Parlett and C. Ferreira

Algorithm 4 recover

Input: vectors l,u, real sum, prod (or vectors l,u)
Output: vectors l1,u1, real shift, boolean fail

δ =
√
ε . shift increment; ε = roundoff unit

if nargin == 2 then . nargin = number of input arguments
simple = true . failure in dqds with zero shift
sum = δ . sum and prod for 3dqds
prod = δ
shift = 0 . in case of successive failures

else
simple = false . failure in 3dqds
shift = un . shift for simple dqds

end if

fail=true . boolean for failure
nfail = 0 . number of failures
maxfail = 10n . maximum number of failures allowed

while
(
fail and nfail < maxfail

)
do . increase shift and reverse choice of transform

if simple then
sum = sum(1 + δ)
prod = prod(1 + δ)2

[l1,u1, fail] = 3dqds(l,u, sum, prod) . switch to 3dqds
simple = false
if fail==false then . successful recovery with 3dqds

shift = 0
end if

else
shift = shift + δ
[l1,u1, fail] = dqds(l,u, shift) . switch to simple dqds
simple = true

end if
nfail=nfail+1

end while . after a failure the oposite transform is used next

A real triple dqds algorithm for the nonsymmetric tridiagonal eigenvalue problem 45

Algorithm 5 initial LU factorization

Input: vectors a, b, c . LU factorization of tridiag(b,a, c) in J form
Output: vectors l,u, real shift, boolean fail

nfail = 0 . number of failures
maxfail = 10n . maximum number of failures allowed
b = b · ∗c . element-wise product; off-diagonal of J
delta = min

(
1/2, 2 ∗min(abs(a(a∼ = 0)))

)
. shift increment in case of failure

. one eight of the minimum nonzero diagonal element

shift = 0 . in case of failure take J − shift · I = LU
[l,u, fail] = LUfact(a, b, shift) [Algorithm 6] . LU factorization of J
while

(
fail and nfail < maxfail

)
do

nfail=nfail+1
shift = shift + delta . after a failure the shift is increased
[l,u, fail] = LUfact(a, b, shift)

end while

if fail then
return “Too many failures, no initial factorization.”

end if

Algorithm 6 LUfact

Input: vectors a, b, real shift . LU factorization of J = tridiag(b,a,1) without pivoting
Output: vectors l,u, boolean fail

tolg = 1/
√
ε . tolerance for element growth; ε = roundoff unit

fail=false . boolean for failure

u(1) = a(1)
for i = 1 : n− 1 do
l(i) = b(i)/u(i)
u(i+ 1) = a(i+ 1)− l(i)

end for

if
(
any(isnan([l,u])) or any(abs([l,u])) >tolg

)
then . checking for element growth

fail=true
end if

