
Universidade do Minho
Escola de Engenharia

Mohsen Parsa

 Smart BIM objects for intelligent
modular construction

October 2021U
M

in
ho

 |
 2

02
1

M
oh

se
n

Pa
rs

a
 S

m
ar

t B
IM

 o
bj

ec
ts

 fo
r i

nt
el

lig
en

ce
 m

od
ul

ar
 co

ns
tr

uc
tio

n

Co-funded by the
Erasmus+ Programme
of the European Union

The European Master in Building Information Modelling is a joint initiative of:

Universidade do Minho
Escola de Engenharia

Mohsen Parsa

Smart BIM objects for intelligent modular
construction

Master Dissertation
European Master in Building Information Modelling

Work conducted under supervision of:
Maria Isabel Brito Valente

October, 2021

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ ii

AUTHORSHIP RIGHTS AND CONDITIONS OF USE OF THE

WORK BY THIRD PARTIES

This is an academic work that can be used by third parties, as long as internationally accepted rules and
good practices are respected, particularly in what concerts to author rights and related matters.

Therefore, the present work may be used according to the terms of the license shown below.

If the user needs permission to make use if this work in conditions that are not part of the licensing
mentioned below, he/she should contact the author through the RepositóriUM platform of the University
of Minho.

License granted to the users of this work

Attribution

CC BY

https://creativecommons.org/licenses/by/4.0/

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ iii

ACKNOWLEDGEMENTS

I would like to express my gratitude to my thesis advisor Professor Maria Isabel Brito Valente, for her
valuable support and guidance during the development of this research work.

I would also like to thank the support provided by Construsoft, especially to Vakis Kokoris and Nuno
Pires. They contributed with their insights on the first stages of the research and provided access to the
BIM tools used for developing this work.

I gratefully acknowledge the support of Electrofer company and Fractus company in Marinha Grande,
Portugal, especially Marta Gregorio for her support during this research. I would like to tanks Hugo
Sousa and Philipe Monteiro, engineers of Electrofer and Fractus, for their support during my settlement
in Marinha Grande.

My thanks to the staff and professors of BIM A+, particularly to Professor Pietro Crespy, Professor
Miguel Azenha and Professor Tomo Cerovcek, for their support throughout the master.

I am grateful to my friends Dr Saeid Zarrinmehr and Pouya Parsa for motivating and helping me find
the way when I was stocked with Python.

I would like to thank my parents Mohammad Hossein and Homa, my sister Sara and my cousin Victoria
Parsa, also my father-in-law Mohammad Reza Farzanehneghad and Mother-in-law Mitra Nezakati
Roshan for their unconditional support and encouragement since the beginning of this journey.

Finally, I would appreciate my wife, Roya that supported me, tolerated this far distance for one year and
took care of our child, Karen. I cannot express her sacrifice by words.

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ iv

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have not used
plagiarism or any form of undue use of information or falsification of results along the process leading
to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho.

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ v

RESUMO

A AEC é uma das maiores indústrias mundiais e , em comparação com outras indústrias, como a da manufatura,
apresenta uma das menores taxas de produtividade. Uma das principais soluções para aumentar a taxa de
produtividade é mudar os processos de produção . Cada edifício é um produto único e a abordagem usual de
manufatura - Produção em massa - não pode ser adaptada diretamente para a indústria de AEC. Graças às novas
tecnologias, surgiu um novo método: o ETO ou Engineered-To-Order. Nesta abordagem, os produtos podem ser
fabricados correspondendo ao projeto final do produto de construção. Um desafio importante deve ser resolvido
na abordagem ETO, as propriedades dos elementos devem ser extraídas dos documentos de projeto. Este problema
pode ser resolvido com BIM e com Inteligência Artificial.

O Building Information Modeling (BIM) tira proveito dos poderosos processos digitais e das novas tecnologias de
programação, como as linguagens de programação orientada a objetos (OOP). Com o BIM, é possível criar um
modelo 3D completo e enriquecido por diversas informações não gráficas do produto final.

Associar o BIM ao método Engineered-To-Order torna os processos mais fáceis. Além disso, existem outras
tecnologias embutidas no BIM que tornam os processos totalmente automáticos: Design Paramétrico e Inteligência
Artificial que deram origem aos Objetos BIM Inteligentes. Ao aplicar essas tecnologias, o projeto e a modelação
de elementos podem ser feitos de forma automática e otimizada.

No contexto atual, como a indústria de AEC aproveita cada vez mais a inteligência digital adaptável representativa
de elementos de construção. Este trabalho buscou implementar IA utilizando para desenvolver a aplicação
automática de painéis de parede, de pavimento e de cobertura. Esta pesquisa concentra-se em explorar como os
recursos BIM e a inteligência artificial podem apoiar os processos de produção na abordagem ETO. Esta
dissertação tenta utilizar o ambiente BIM para automatizar o processo de revestimento de um piso ou parede com
aberturas.

No método de produção ETO, é difícil encontrar o equilíbrio entre a liberdade do design e os limites de produção.
Como é que se pode transferir os limites do processo de produção para o projetista? Existem várias abordagens,
mas a que é escolhida nesta pesquisa é a Inteligência Artificial. O desafio consiste em projetar painéis para algum
tipo de elemento de construção (parede, piso e telhado), considerando as regras e restrições da produção. Esta
pesquisa tenta vincular a forma dos elementos ao processo de produção dos painéis, tendo em consideração a visão
do projetista e as regras do fabricante. Para tal, foi desenvolvido um algoritmo que permite criar painéis ETO
ajustados aos elementos que o projetista definiu para a edificação, incorporando as regras do processo de produção.
O algoritmo inclui a forma do elemento, começando por dividi-lo em partes menores e apropriadas ao painel, as
modifica e finaliza para o painel. Em seguida, começa a organizar os painéis e define o tamanho dos mesmos de
forma otimizada, atendendo às regras e limites de produção.

O algoritmo desenvolvido usa a interface de programação Python do Grasshopper para as entradas e saídas e usa
o Tekla Structures como um software de autoria BIM. Este processo automatizado reduz o tempo de trabalho e os
custos resultantes, e também produz resultados mais precisos e otimizados. O algoritmo é capaz de incorporar
regras que são definidas pelo utilizador e calcular o resultado que corresponde a essas regras.

Palavras-chave: BIM, Smart BIM Objects, Engineered To Order (ETO), Painel Pré-fabricado, Python,
Grasshopper, Tekla Structures.

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ vi

ABSTRACT

From a general perspective, AEC is one of the largest industries and surprisingly, when compared to
other industries such as the automobile and airplane production, it shows one of the lowest productivity
rates. One of the main solutions for increasing productivity rate is to shift the production processes from
traditional to manufacturing processes. But there is a problem: Each building is a unique product and
the usual manufacturing approach – Mass Production – cannot be directly adapted to the AEC industry.
Thanks to new technologies, a new method has emerged: ETO or Engineered-To-Order. In this
approach, the products can be fabricated corresponding to the design of the final product (building). An
important challenge should be solved before: in ETO approach, the properties of the elements should be
extracted from design documents. Hopefully, this problem can be solved with BIM and Artificial
Intelligence.
Building Information Modelling (BIM) takes advantage of powerful digital processes and new
technologies in programming, such as Object-Oriented Programming languages (OOP). With BIM, it is
possible to create a complete 3D model enriched by various non-graphic information of the final product.
Associating BIM to Engineered-To-Order method makes the overall processes smoother and easier. In
addition, there are other technologies embedded in BIM that make processes completely automatic:
Parametric Design and Artificial Intelligence that led to Smart BIM Objects. By applying these
technologies, designing and modelling elements can be done automatically in an optimized way.
Within the current context, as the AEC industry increasingly takes advantage of intelligence adaptable
digital representative of building elements. This work tries to implement AI in the work of panelling
floors automatically. The research focuses on exploring how BIM capabilities and Artificial intelligence
can support the production processes, in the ETO approach. To be more precise, this dissertation tries
to utilize the BIM environment to make the process of panelling a floor or a wall with openings
automatic.
In ETO production method, it is very difficult to find a balance between the design freedom and the
production limits. How is it possible to integrate the limits of production process into the design

process? There are various approaches but the one used in this research, is Artificial Intelligence. The
challenge is to design panels to be applied in building elements (wall, floor, and roof), considering the
production rules and some restrictions. This research tries to associate the shape of elements with the
production process of panels while considering the designer’s desires and the fabricator’s rules.
Therefore, an algorithm was developed to create ETO panels fitted to construction elements that the
designer created for the building, considering the various rules of production process. The algorithm
collects the shape of element, starts to divide it to some smaller parts appropriate for panelling, modifies
and finalize them for panelling. Then starts to arrange the panels and defines the size of them in an
optimised way responding to production rules and limits.
The algorithm developed uses the Python programming interface of Grasshopper and for the inputs and
outputs, uses Tekla Structures as a BIM authoring software. This automated process not only reduces
the time of work and resulting costs, but also produces more precise and optimized results. This
algorithm is capable to incorporate rules that are defined by the user and calculates the result that
correspond to those rules.
Keywords: BIM, Smart BIM Objects, Engineered To Order (ETO), Pre-fabricated Panel, Python,
Grasshopper, Tekla Structures.

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ...III

RESUMO .. V

ABSTRACT .. VI

TABLE OF CONTENTS ... VII

LIST OF FIGURES ... IX

LIST OF TABLES .. XI

1. INTRODUCTION ..12

2. LITERATURE REVIEW ...14
2.1. INTRODUCTION ..14
2.2. MODULAR CONSTRUCTION ..15

2.2.1. DEFINITION ...15
2.3. PREFABRICATION DOMAINS ..17
2.4. MODULAR CONSTRUCTION ..19

2.4.1. MODULAR CONSTRUCTION PROBLEMS ..20
2.4.2. SIGNIFICANCE IN THE CONSTRUCTION PRACTICE ..20

2.5. PREFABRICATED PANEL CONSTRUCTION ..22
2.5.1. INTRODUCTION ..22
2.5.2. DEFINITION AND HISTORY ...23
2.5.3. PREFABRICATED PANELS ...23

2.6. MASS CUSTOMIZATION AND PLATFORM DESIGN ..24
2.7. SMART BIM OBJECT ..24

2.7.1. INTRODUCTION ..24
2.7.2. DIFFERENT SOLUTION FOR CREATING SMART BIM OBJECT IN BIM
PLATFORMS: ...25

3. METHODOLOGY ...26
3.1. RESEARCH SCOPE AND LIMITATIONS ...26
3.2. MAIN PHASES ...26
3.3. KEY ASSUMPTIONS ...27
3.4. IDENTIFICATION OF THE PROBLEM ...28

3.4.1. THE ARRANGEMENT OF PANELS ON A WALL, FLOOR OR A ROOF:28
3.4.2. DESIGNING THE DETAILS OF PANELS ..28
3.4.3. ISSUES RELATED TO THE DESIGN PROCESS: ...28
3.4.4. ISSUES RELATED TO PRODUCTION PROCESS: ...29
3.4.5. WHICH CHALLENGES WERE SELECTED TO DEAL IN THE RESEARCH AND
WHY? 29

3.5. STEPS OF THE SOLUTION ..30
3.6. ANALYSING THE CHALLENGE: ..30

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ viii

3.6.1. ASSUMPTIONS ... 31
3.6.2. RULES AND RESTRICTIONS .. 31
3.6.3. OPTIMIZATION GOALS .. 31

3.7. DEFINE AND EVALUATE THE TOOLS AVAILABLE: .. 31
3.7.1. MAIN STAGES .. 31
3.7.2. SELECTING SOFTWARE ... 32

3.8. OPTIMIZATION .. 33
3.9. BLIND OPTIMIZATION ... 33

3.9.1. CONS AND PROS: ... 38
3.10. RATIONAL OPTIMIZATION ... 38

3.10.1. CONS AND PROS: ... 40
3.11. CONCLUSION ... 41

4. RATIONAL OPTIMISATION SOLUTION .. 42
4.1. MAIN PARTS: .. 42

4.1.1. INPUT ALGORITHM: ... 43
4.1.2. DIVISION ALGORITHM: ... 43
4.1.3. FROM HUMAN METHOD TO COMPUTER METHOD ... 45
4.1.4. STRUCTURE OF THE ALGORITHM .. 46

4.2. JOINING ALGORITHM: ... 53
4.2.1. MAIN CONCEPT ... 53
4.2.2. STRUCTURE OF JOINING ALGORITHM: ... 54
4.2.3. ETAILED WORK-FLOW .. 56

4.3. PANELISING ALGORITHM ... 63
4.3.1. MAIN CONCEPT ... 63
4.3.2. STRUCTURE OF THE PANELLING ALGORITHM ... 64
4.3.3. DETAILED WORK-FLOW .. 65

5. CONCLUSION AND FUTURE DEVELOPMENTS .. 74

REFERENCES .. 76

LIST OF ACRONYMS AND ABBREVIATIONS .. 79

APPENDICES ... 81
APPENDIX 1: PANELLING CODES IN PYTHON ... 81
APPENDIX 2: HIGH QUALITY FIGURES .. 105

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ ix

LIST OF FIGURES

Figure 1 – Index of labour productivity for construction and nonfarm industries,
1964-2009

14

Figure 2 – Structure of literature review 15

Figure 3 – Degree of Prefabrication (Smith, 2010) 16

Figure 4 – Labour productivity indices of manufacturing, on-site, and off-site
construction in period 1967 – 2015 in the American market

22

Figure 5 – Proposed framework 27

Figure 6 – General work-flow of analysing the problem 31

Figure 7 – Domain of solution and related tools 32

Figure 8 – Three stages of solution and selected tools and software 33

Figure 9 – Moving arrangement in X and Y directions by length and breadth of a
panel to generate new arrangements

34

Figure 10 – An overview of blind optimization in Rhino and Grasshopper 34

Figure 11 – General work-flow of Blind optimization 35

Figure 12 – Octopus plug in and generative design 36

Figure 13 – Grasshopper script, Analysing part 37

Figure 14 – Grasshopper script, Panelling part 37

Figure 15 – Grasshopper script, Optimization part 37

Figure 16 – A sample result of Blind Optimisation by grasshopper and Octopus 38

Figure 17 – General work-flow of Rational Optimization solution 39

Figure 18 – A sample result of Rational Optimisation by Python in Grasshopper 40

Figure 19 – Main stages of Rational optimisation solution 42

Figure 20 – Alternatives of solution carried out by human 43

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ x

Figure 21 – General work flow of Rational optimisation solution 44

Figure 22 – A geometrical sample of different steps of Rational optimization solution 44

Figure 23 – digital work-flow of rational optimisation extracted from Human work-
flow

46

Figure 24 – Detailed process-flow of Division Algorithm (Part 1) 50

Figure 25 – Detailed process-flow of Division Algorithm (Part 2) 51

Figure 26 – Detailed process-flow of Division Algorithm (Part 3) 52

Figure 27 – Regular and irregular Rectangles resulted from Division Algorithm 53

Figure 28 – Detailed work-flow of joining Algorithm 54

Figure 29 – Detailed process-flow of Joining Algorithm (Part 1) 60

Figure 30 – Detailed process-flow of Joining Algorithm (Part 2) 61

Figure 31 – Detailed process-flow of Joining Algorithm (Part 3) 62

Figure 32 – Rule of dividing breadth of panels, regular panels and irregular panels 63

Figure 33 – production rules of breadth and length of panels 64

Figure 34 – Work-flow of Panelling Algorithm 65

Figure 35 – Arrangement of panels in a same rectangle in both direction X and Y 66

Figure 36 – Arrangement of panels in both direction X and Y and the results: 10
panels in X direction and 9 panels in Y direction.

67

Figure 37 – Detailed process-flow of Panelling Algorithm (Part 1) 71

Figure 38 – Detailed process-flow of Panelling Algorithm (Part 2) 72

Figure 39 – A sample result of Algorithms calculation

73

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ xi

LIST OF TABLES

Table 1 - Prefabrication domains. Adapted from (Lopes et al, 2018). 19

Table 2 – evaluating possibility of solving the challenges 29

Table 3 – comparison two solution (Blind optimization and Rational optimization) 41

Table 4 – data types and function of Division Algorithm 49

Table 5 – Evaluation of direction of junctions 55

Table 6 – Evaluation of the number of corners of junctions 55

Table 7 – Evaluation of joining to the larger or smaller neighbour. 56

Table 8 – data types and function of Joining Algorithm 59

Table 9 – data types and function of Panelling Algorithm 70

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 12

1. INTRODUCTION

In Building Information Modelling (BIM) technology, a building can be represented by a set of objects
that carry detailed information about how they are constructed and capture the relationship with other
objects in the building model. Each building model has typical building rules and relations that can be
predicted and defined by a few parameters and constraints. Nowadays, there is a general trend in AEC
industry that demands cheaper, faster, safer and more productive methods for design and fabrication of
construction components. Mass production and “Engineered To Order” (ETO) products can help the
industry to achieve these goals.

This dissertation addresses the combined use of new and powerful methodologies, such as Smart BIM
objects, Modular construction, and Artificial Intelligence, in the design and production of building
components. More specifically, the work focuses the development of BIM objects for modular panels
used for walls, floors or roofs, that can be shared, adapted, and reused across different modular projects
within any stage in the life cycle. It is intended to use artificial intelligence in two stages: First that each
of the BIM tools and smart objects encapsulate the domain knowledge that allows it to be inserted in a
building, with high quality and in an efficient manner, and second using AI to implement a defined
modularization pattern on a building wall, floor or roof considering the panel elements properties.

Domain-specific BIM tools, combined with parametric rules, enable better informed design decisions.
It is intended to develop procedures related to the use of smart BIM objects on modular construction, so
that they are capable of transforming their properties automatically and of identifying requirements for
object evolution throughout the building life cycle.

The main objectives of the work are listed below:

 To develop a workflow that enables practitioners to generate Smart BIM Objects;
 To define how rules, specifications, properties, size and relations of modular building elements

can be adopted in Smart BIM Objects and how these Smart BIM Objects can automatically
respond to their position in model;

 To make a modularization workflow using AI for specific parts of an assumed building, and use
it as a base for locating smart BIM object in the model of a modular building;

 To optimize the geometrical properties of smart building objects in a modular building due to
rules, defined requirements, relationships between elements, and so on;

The work development is divided in the following activities:

 Reviewing the concepts of prefabrication in construction;
 Identification and characterization of different prefabricated panel solutions that are already

used in buildings, including the manufacturing processes associated;
 Identification of inbuilt capabilities of BIM authoring software for creating and maintaining

smart BIM objects;

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 13

 Exploration of visual programming applications and AI, such as, Grasshopper and Galapagos,
in modulation process of a simple building;

 Exploration of capabilities and potentials of programming languages like Python in Smart BIM
object creation;

 Development of a workflow for design, analysis, and optimization of a floor for building
applications;

 Embedment of required rules, specifications, properties, size and relations in modular building
elements in examples of Smart BIM Objects that automatically respond to their position in the
model;

 Application of the developed Smart BIM objects in a case study

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 14

2. LITERATURE REVIEW

2.1. Introduction

The complexity of Architecture, Engineering, and Construction (AEC) industry is growing every day.
In addition, the need for new construction in any field such as commercial, residential, manufactures,
and so on, grows continuously in a competitive manner. Therefore, improving construction quality, save
money, and shorten construction schedules are vital issue now. Beyond these, there are variety of
challenges that AEC industry has to deal with. New technologies and experiences in general aspects like
Automatic Manufacturing, Robots, Artificial Intelligence, Information technologies, Energy saving and
so on, have improved almost all types of industrial activities but it seems that AEC industry has not
progressed proportionately.

AEC industry has some special characteristics that cause it to remain in its traditional forms:

 People’s desire to have a unique product.
 The final products are unable to move, export, or import to or from another country.
 Dependency on geographic location and climate.
 Complexity and participation of various trades in production processes.

The mentioned factors and many other reasons put AEC industry in a special condition where it is
difficult to implement common or new industrial technologies. Here some evidences are discussed.

Eastman et al. (2011) have demonstrated low labour efficiency in AEC industry: Extra costs associated
with traditional design and construction practices have been documented through various research
studies. Figure 1 illustrates the productivity within the U.S. field construction industry in comparison to
all nonfarm industries over a period of 45 years, from 1964 up to 2009.

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 15

Figure 1 – Index of labour productivity for construction and nonfarm industries, 1964-2009;

BIM handbook, Chuck Eastman et al. 2011

In last decades, several technologies have been introduced in the AEC industry that significantly
influenced the productivity. These include:

 Building Information Modelling as a new approach to AEC industry focused on information,
data-flow, and visualisation.

 Off-site Construction that has been borrowed from manufacturing
 Modular construction

According to the topic of this research, the focus of the work is on the following main questions:

 How do BIM and Modular construction, combined together, can be explored in AEC
construction?

 How can they be narrowed down and practical in AEC industry?

 According to the main objectives of this dissertation, the suggested diagram for literature review is
presented in figure 2.

Figure 2 – Structure of literature review

2.2. Modular construction

2.2.1. Definition

Prefabrication can be categorized in types of materials or degree of prefabrication, type of
manufacturing, technologies deployed or other approaches.

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 16

For example, Sacks et al. (2018) categorizes prefabricated construction in three main groups,
considering a component-based approach: “

 Made-to-stock components: These are mass-produced components such as plumbing fixtures, or

drywall panels.

 Made-to-order components: These are components produced after a client’s order based on certain

shapes and measurements defined in catalogues, such as windows and doors.

 Engineered-to-order components (ETO): These components need to be custom designed and

engineered prior to production such as precast concrete components and façade panels. “

From another perspective, prefabricated construction can be divided by their material types: that means
any common materials that are used to build the prefabrication components, such as timber, concrete,
steel or sometimes the combination of different materials, in the factory.

Third, degree of prefabrication is a construction process through which prefabricated elements are
assembled on site, from the small piece to the big piece, for example, prefabricated column, panels, tilt-
up, and modular methods (Smith, 2010).

Figure 3 – Degree of Prefabrication (Smith, 2010)

Three principles of standardization, prefabrication, and systems building are the roots strengthening the
industrialization in construction. Building components standardization was a prerequisite for the
production in factory conditions which goes together with dimensional coordination that permit the
growth of systems building. (Nawari,, 2012.)

So, from another view, offsite pre-assembly can be subdivided into following four levels (Taylor and
HSE, 2012),based on increasing amounts of preassembling process and standardization involved.

 Component manufacture & sub-assembly
 Non-volumetric pre-assembly
 Volumetric pre-assembly
 Whole buildings

Prefabrication is the practice of assembling components of a structure in a factory or
other manufacturing site, and transporting complete assemblies or sub-assemblies to

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 17

the construction site where the structure is to be located. The term is used to distinguish this process
from the more conventional construction practice of transporting the basic materials to the construction
site where all assembly is carried out.

The theory behind the method is that time and cost are saved if similar construction tasks can be grouped,
and assembly line techniques can be employed in prefabrication at a location where skilled labour is
available, while congestion at the assembly site, which wastes time, can be reduced. The method finds
application particularly where the structure is composed of repeating units or forms, or where multiple
copies of the same basic structure are being constructed. Prefabrication avoids the need to transport so
many skilled workers to the construction site, and other restricting conditions such as a lack of power,
lack of water, exposure to harsh weather or a hazardous environment are avoided. Against these
advantages must be weighed the cost of transporting prefabricated sections and lifting them into position
as they will usually be larger, more fragile and more difficult to handle than the materials and
components of which they are made. (https://en.wikipedia.org/wiki/Prefabrication)

Prefabrication in AEC industry is an expanded and general term applied to variety of approaches in AEC
industry that building components are fabricated off-site, shipped to the field and erected and installed
to complete the building. These approaches include two main types of prefabrication, namely volumetric
(often referred to as 'modular') and panellised.

2.3. Prefabrication domains

Currently, prefabrication is applied in several areas and components. As part of the construction of
buildings, the prefabrication domains can be divided according to the degree of complexity of the system
and consequent requirement of work on site. In a first phase, the prefabrication domains can be divided
into volumetric or non-volumetric systems. That said, in Table 1 the different existing prefabrication
levels are illustrated, as well as examples of their application (Lopes et al, 2018).

Table 1 - Prefabrication domains. Adapted from Lopes et al (2018).

Le
ve
ls
 a
n
d
 C
at
e
go

ri
e
s

 Subcategories Definition Example Scheme

N
on

-v
ol

u
m

et
ri

c

sy
st

em
s

1
C

om
p

on
en

ts
 a

n
d

su
b

-e
le

m
en

ts

Prefabricated
components

(elements

simple)

These elements,
although
predominantly
associated with
traditional
methods, are

Doors, windows and
stuffing elements

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 18

Sub elements
for the
construction of
building

produced in the
factory, in order to
optimize their
application on
site. These do not
allow the total
construction of the
buildings.

Precast concrete
elements (foundations,
stairs, pillars, beams,
etc.) and truss systems

2
P

an
el

-b
as

ed
 c

on
st

ru
ct

io
n

 (
2D

)

Panels of

coating

Factory-produced
panels that can be
pre-finished
before being
transported to the
site, where they
are later
assembled to a
pre-existing
structure, creating
/ sharing spaces

usable or simple
coating.

Facade panels
(ventilated wall
system)

Vertical

panels
Prefabricated interior
walls and walls

Horizontal
panels

Prefabricated slabs and
roofs

V
ol

u
m

et
ri

c
sy

st
em

s

3
C

om
p

le
te

 v
ol

u
m

et
ri

c
co

n
st

ru
ct

io
n

 (
3D

)

Non-structural
volumetric
construction

Small three-
dimensional units
fully realized and
finished at the
factory, including
water and

electricity. These
modules are
directly installed
on the

building slab.

Modular bathrooms
and kitchens

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 19

Modular

systems

Large three-
dimensional units,
fully adjusted
before being
transported, so
that they are
assembled on the

foundations or
other modules,
thus realizing the
structural shape of
the building.

Highly standardized
schemes: hotels,
prisons,

medium size and
dorms

Table 1 - Prefabrication domains. Adapted from Lopes et al (2018).

It should be noted that some authors consider the existence of a fourth category identified in the literature
as a hybrid construction system, corresponding to a semi-volumetric construction. This solution
translates into the connection between volumetric (modular) and non-volumetric systems, representing
the possibility of using different solutions in the same project, increasing constructive flexibility. As an
example, this solution can be used in modules for kitchens and bathrooms, in parallel with panel systems
for the remaining elements (Lopes et al, 2018). In the course of this work, the theme of non-volumetric
systems will be developed, more specifically, vertical panels.

2.4. Modular construction

There is a precise and comprehensive definition for Modular Constriction in Wikipedia: “Modular

construction is a form of offsite production of building structural units which are then assembled onsite

to complete the construction of a building: the modular units form the structure of the building as well

as enclosing usable space. Modular construction is particularly popular for hotels, educational facilities

such as classrooms and student residences, and healthcare facilities. This is due to the economies of

scale available from many similar sized modules and the particular benefit of reduced on-site

construction time.” (https://en.wikipedia.org/wiki/Modular_construction)

A modular building is a prefabricated building that consists of repeated sections called modules. (Lacey
et al ,2018). Modularity involves constructing sections away from the building site, then delivering them
to the intended site. Installation of the prefabricated sections is completed on site. Prefabricated sections
are sometimes placed using a crane. The modules can be placed side-by-side, end-to-end, or stacked,
allowing for a variety of configurations and styles. After placement, the modules are joined together
using inter-module connections, also known as inter-connections. The inter-connections tie the
individual modules together to form the overall building structure.

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 20

2.4.1. Modular Construction Problems

 Different from traditional construction

Despite the expected increase of the modular construction market, a recent modular construction study
developed by Nick Bertram et al (2019) highlighted that outdated decision-making models are hindering
construction organizations from breaking out of the antiquated and traditional stick-built construction
processes. In fact, modular construction and traditional stick-built differ in many aspects including
design, engineering, transportation requirements, logistics, collaboration requirements, and others
(Mohamad Abdul Nabi,2020).

 Decision making process

Modular construction includes different project aspects and phases where the stakeholders of the
projects are required to make appropriate decisions. However, the old decision-making processes and
planning techniques do not necessarily reflect the complex and unique requirements of modularization
in construction projects. According to Smith (2011), some of the decision- making processes in modular
construction projects include those related to: (1) the assessment of modularization feasibility and its
impact on different project objectives; (2) establishment of the modules’ configuration of the structure
for off-site manufacturing, transporting, assembling, and disassembling; (3) project development where
the percentage of work is proportioned between on-site and off-site factories; and (4) project planning
where module inter- faces, off-site work scheduling, and logistics are addressed to minimize costs and
lead times.

2.4.2. Significance in the construction practice

A US study looked at the 48-year period between 1967 and 2015 and concluded that the productivity of
the traditional construction industry has nearly remained the same, while off-site based construction has
enjoyed increases in measured productivity (Figure 4) (Sacks et al., 2018, p.10). This confirms the
increased value obtained from off-site construction. The benefits of off-site based construction have
been extensively studied in literature, and they include:

 Time savings

Project delays due to unexpected site or weather conditions may incur significant costs due to the failure
to meet the project schedule. Prefabrication enables reduced schedule durations and parallel production,
assembly, and erection operations, which is often not affected by bad weather conditions (Hardin and
McCool, 2015, p.29).

 Increased quality

Factory-produced parts have better quality and tighter tolerances than site-built parts thanks to more
robust quality control procedures (Rathnapala, 2009, p.22). Standardized factory products are also more
guaranteed to fit-in together (Khalili, 2013, p.31).

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 21

 Improved cost-efficiency

Factors to consider include decreased installation cost, lower site occupancy, increased mechanization,
reduced construction duration, and reduction of scaffolding (Gibb, 1999, p.38, Khalili, 2013, pp.30-32).

 Better for the environment

Relying on factory-produced components ensures less material wastage, which can happen more often
on-site (Rathnapala, 2009, p.20), with reported waste reduction levels up to 52% compared to traditional
construction (Jaillon et al., 2009, pp.309-320). Material savings could also be achieved by using more
efficient components that can only be factory-built, like hollow-core slabs (instead of solid slabs)
(Bachmann and Steinle, 2011, p.5).

 Safer working environment

Factory conditions usually ensure a safer, more controlled environment for workers, where safety and
security standards can be more strictly applied.

 Improved standardization and modularization

Building parts can be structured in modules, where similar modules are grouped in one type (Mohamad
et al., 2013, pp.289-298). Modularity is key to achieving mass-customization because it helps
standardize repetitive building components (Farr et al.,2014, pp.119-125).

 Layout flexibility

Some prefabricated components can offer construction solutions that are otherwise not doable on-site.
For example, precast double tee slabs and hollow-core pre-stressed slabs provide longer spans that can
open up interior spaces to maximize layout functionality (PCI Industry Handbook Committee, 2010)

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 22

Figure 4 – Labour productivity indices of manufacturing, on-site, and off-site construction in

period 1967 – 2015 in the American market, Serdar Durdyev & Syuhaida Ismail (2019)

It is also important to mention some obstacles of pre-fabrication in construction, namely, the rigor in the
dimensions and assembly of the elements, the feasibility of transport and storage, and applicability in
the work (Pauchet, 2004). Once on site, they are pointed out as barriers the need to use additional
connection elements, the rigor and control in the connection of the elements and greater accuracy in the
study of the project and details (Couto and Couto, 2007b).

Above all, the main obstacle lies in the production of prefabricated elements, because unlike other
industries, one has to wait for an order, a general unitary rule and only after that the production is
considered (Resendiz-Vazquez, 2010).

It is also important to mention some obstacles of pre-fabrication in construction, namely, the rigor in the
dimensions and assembly of the elements, the feasibility of transport and storage, and applicability in
the work (Pauchet, 2004). Once on site, they are pointed out as barriers the need to use additional
connection elements, the rigor and control in the connection of the elements and greater accuracy in the
study of the project and details (Couto and Couto, 2007b).

Above all, the main obstacle lies in the production of prefabricated elements, because unlike other
industries, one has to wait for an order, a general unitary rule and only after that the production is
considered (Resendiz-Vazquez, 2010).

2.5. Prefabricated panel construction

2.5.1. Introduction

Panelised systems have been considered by the industry as a viable building prefabricated system due

to its flexibility in constructing exterior building façade and interior partitions offsite under varying

design requirements. Panelised wall system involves dividing the wall length into panels that are

fabricated using either wood or metal studs, with panel widths usually controlled by trucking width that

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 23

does not allow special transportation permits (around 10 ft. in the USA). Wall panels can be fabricated

for either interior partition or exterior façade, with a height ranging between one to two floors. PWS is

classified as a non-volumetric pre-assembly OPP approach, which provides more flexibility in satisfying

varying design requirements than the opposite strategic OPP approach, modular building. (Hisham M.
Said, Tejaswini Chalasani, Stephanie Logan, 2015)

2.5.2. Definition and history

In recent years, there has been a growing interest in the prefabricated houses industry from both investors
and buyers, and it is quickly becoming a new standard in residential building. Prefabricated houses offer
a number of attractive advantages compared to the traditional on-site construction method such as
substantial reduction of construction time, higher quality control, and potential cost savings. But just as
traditional construction has several construction methods, the prefabricated homes category
encompasses two main construction methods: panelised and modular. A modular building is
a prefabricated building that consists of repeated sections called modules, Lasey et al.
(2017). Modularity involves constructing sections away from the building site, then delivering them to
the intended site. Installation of the prefabricated sections is completed on site. Prefabricated sections
are sometimes placed using a crane. The modules can be placed side-by-side, end-to-end, or stacked,
allowing for a variety of configurations and styles. After placement, the modules are joined together
using inter-module connections, also known as inter-connections. The inter-connections tie the
individual modules together to form the overall building structure. Lasey et al. (2019)

2.5.3. Prefabricated Panels

Prefabricated elements are a particular case of prefabrication, being a form of industrialisation of the
walls molded on the site - conventional bricks or masonry wall. Within the wide range of prefabricated
panels, it is possible to find elements produced with different materials that respond to the most diverse
requirements, such as structural, thermal and acoustic.

These are essentially applied in large industrial buildings, although their applicability in hospitals,
residential buildings, offices and practically all types of structures is also verified. The diversity of
materials that can constitute a panel and the quality in its manufacturing process, combined with the
speed of construction, represent attractive characteristics for the use of this type of elements.

The use of these prefabricated elements is mainly conditioned by the economic viability and transport
conditions. The construction with prefabricated panels requires a project with high degree of repetition
or the possibility of using elements standardized by the manufacturers, since the production of unique
and personalized elements is an obstacle to its viability economic. It is important to note that economic
viability can be leveraged by the unavailability of manpower and the planning of the work.

Another fundamental aspect is the possibility of transporting from the production site to the construction
site, the weight, the dimensions of the elements and the quality of the access roads, which can also be
essential factors. Monty Sutrisna , Jack Goulding,(2019). In addition, the numerous advantages
underlying pre-fabrication can sometimes be diminished by the existence of pathologies in the
connection between panels and by the monolithic of the structure, requiring a adequate dimensioning of

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 24

the connections with the structure and with other panels (Jonatan Francisco Fernandes Salgado, L,
2019).

2.6. Mass customization and platform design

 Mass customization was investigated intensively in the manufacturing industry that inspired
construction engineering and management research to apply its concepts in mainly home and residential
construction. Consumer products and automobile manufacturing industries attempted to overcome the
commonality-distinctiveness trade off by developing new design approaches following the principals of
mass customization (MC). The main goal of MC is to satisfy the unique needs and design requirements
of different customers/projects while still being close the efficiencies of mass production. A well-known
strategy to implement MC is the development of product family architecture, which involves the design
of generic product architectures that can capture commonalities between different products with design
features added or changed between products.

2.7. Smart BIM Object

2.7.1. Introduction

Building information modelling (BIM) is one of the most promising recent developments in the
architecture, engineering, and construction (AEC) industry. As the various professionals in the AEC
industry become more experienced in the use of BIM, they will utilize an increasing number of
intelligent design applications. Numerous BIM applications can be classified over several dimensions.
One dimension addresses the integration of BIM tools used in the different stages of the building life
cycle, such as code checking, building performance simulations, spatial configuration, and so on.
Another addresses the development of smart BIM objects that can be shared, adapted, and reused across
different projects within any stage in the life cycle. Designers can insert the smart BIM objects directly
into a building model, ranging from low-level building products like doors, windows, to high-level
design configuration, such as building core, and façade elements. Overall, this is the anticipated
transition to design intelligence, where each of these BIM tools and smart objects encapsulates the
domain knowledge to put a building together for better quality and greater efficiency, (Chuck Eastman
et al., 2011).

This research explores the concept of smart BIM objects for design intelligence. By enabling
geometrical programming in heart of BIM environment, a building element can be designed by a set of
objects that carry detailed information about how they are constructed and also capture the relationship
with other objects in the building model. Each building elements in a BIM model has typical building
rules and relations. Some of those are defined by the user (fabricator or designer) and some can be
predicted and defined by a few parameters and constraints. While domain-specific BIM tools combined
with parametric rules that are defined by users, allow a building design to be better-informed, there is a
lack of research to develop the procedure of utilizing smart BIM objects in transforming their properties
automatically and in identifying requirements for object evolution throughout the building life cycle.

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 25

2.7.2. Different solution for creating Smart BIM Object in BIM platforms:

Nowadays, in AEC industry, there are several BIM platforms that are progressing fast and introduce
new abilities every day to market. Parametric modelling as an important and advanced feature, is
implemented in various BIM platforms. BIM services developer are aware of importance of parametric
modelling capability in their software and try and compete to improve it continuously, (Chuck Eastman
et al., 2011).

Ease of Developing Custom Parametric Objects is a complex capability which can be defined at three
different levels:
1- Existence and ease-of-use of a sketching tool for defining parametric objects; determining the

extent of the system’s constraint or rule set (a general constraint rule set should include distance,
angle including orthogonally, abutting faces and line tangency rules, “if-then” conditions and
general algebraic functions)

2- ability to interface a new custom parametric object into an existing parametric class or family, so
that an existing object class’s behaviour and classification can be applied to the new custom object

3- ability to support global parametric object control, using 3D grids or other control parameters that
can be used to manage object placement, sizing, and surface properties, as required for the design.

Chuck Eastman et al. in BIM handbook 2011 explained the options to create new parametric objects
when they are not available in BIM software:

1- Creating an object in another system and importing it into your BIM tool as a reference object,
without local editing capabilities

2- Laying out the object instance manually using solid modelling geometry, assigning attributes
manually, and remembering to update the object details manually as needed

3- Defining a new parametric object family that incorporates the appropriate external parameters and
design rules to support automatic updating behaviours, but the updates are not related to other object
classes

4- Defining an extension to an existing parametric object family that has modified shape, behaviour,
and parameters; the resulting object(s) fully integrate with the existing base and extended objects

5- Defining a new object class that fully integrates and responds to its context.

Considering these capabilities regarding to Parametric objects, here are some main methods have been
used for Parametric Modelling. These methods are practical and focused on tools that can be used for
the purpose:

1- Inbuilt parametric objects such as Wall system family in Autodesk Revit
2- Family templates that allow users to define their own parameters and formula.
3- Macro scripts in almost all BIM software that provides a simple programming language to define

complex parametric objects.
4- Visual programming software such as Dynamo and Grasshopper.
5- SDK (Software Develop Kit) and API (Application Programming Interface) that can be used for

programming with different programming languages like C# and Visual Basic for creating a
plugin.

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 26

3. METHODOLOGY

3.1. Research scope and limitations

This research work focuses in exploring the ways BIM in general and Artificial Intelligence in a
narrowed way, can be leveraged to assist the creating Smart BIM objects as representatives of real
building elements that can adjust themselves in different positions according defined rules. These digital
Smart Objects can distribute AEC industry to automate processes and take advantages of prefabricated
elements. As it is obvious, the issue is very expanded and cannot be handled in this research. Therefore,
here the scope has been limited to a practical challenge that a building structural elements fabricator –
Fractus – located in Portugal, Marinha Grande has faced: Prefabricated Panels for floors and walls of
buildings.

3.2. Main Phases

This research work is divided in 4 phases:

Phase 1) An extensive literature review, focusing on the state of the art of the following topics:

1) Modular Construction in AEC industry, 2) BIM and Artificial Intelligence, 3) Building Information
Modelling uses, especially with Artificial Intelligence in context of Modular Construction.

During this stage, the different methods of modular construction with emphasize on Engineered to Order
have been reviewed and a framework for producing the selected elements defined by the fabricator has
established. Selection the BIM Authoring software, programming interface, and proper API was
performed.

Phase 2: Formulation of the BIM-based framework for panelising building parts (walls, floors, and
roofs) automatically regarding to rules and constraints defined by panel fabricator. This stage also
includes development of an application in line with the selected BIM tools and programming language
that aims to automate the process of designing and arranging panels in specific parts of building.

Phase 3: Development of a case study to validate the applicability of the proposed framework and test
the application operation.

Phase 4: Formulation of results and conclusions derived from the research work.

A particular limitation of this research work is that it focuses solely on the panelising of the floors of
building, considering the special kind of panels produced by Fractus Company.

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 27

Figure 5 – Proposed framework

3.3. Key assumptions

Before expanding the framework, it is necessary to explain the main assumptions that define the borders
of the work area and framework.

 This research has focused on Engineered-To-Order components. It means that prefabricated
components should be produced considering the shape of building. It can be a bidirectional
relation, both sides (component and final product) influence in each other shape. In ETO
process, the manufacturer tries to produce the needed elements completely fitted with design
documents of final product. But in some cases, applying some changes in design can increase
the productivity and optimisation in ETO elements production processes. In addition, due to
some technical limits, it is common that the manufacturer is not able to create a specific element
fitted to design.

 As mentioned in the previous chapter, there are two main prefabrication systems in AEC
industry: Non-volumetric and Volumetric. This research worked on non-volumetric
prefabrication systems. This system has been divided to a couple sub-systems: Component and
sub-element, and Panel based elements. As it is obvious, the research focuses on Panel-based
component and other systems are excluded.

 The elements are addressed in this research, are limited to floors of buildings. They should have
only perpendicular angles. The boundary of elements that have arcs or non-perpendicular angles

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 28

are excluded from this research. In fact, complicated shapes need a huge effort and time to
handle and the scope of this research is not proper for it.

 The processes are designed for of the special panels produced by the construction company
Fractus, located in Portugal. Therefore, the work has been more focused on those panels,
although general uses are also considered. It should be mentioned that due to the nature of AEC
industry (local elements and local standards) it is hard to develop an algorithm fitted to all kind
of panels.

3.4. Identification of the problem

Fractus is a new established company, working on development of a novel kind of prefabricated panels
that will be used in walls, roofs and floors of buildings.

There are two main challenges in design and production of these panels:

3.4.1. The arrangement of panels on a wall, floor or a roof:

It is a time-consuming task that never has a unique solution. Each trial can result in a different solution
and the designer is never sure whether the solution found is the best or not.

3.4.2. Designing the details of panels

According to Engineered -To-Order approach in the panels production process, each panel can have
different properties that respond to its specific situation. Details includes various aspects: shape of frame
profile, junctions, thickness of different part of panel, structural form, holes for pipes and conduits, and
so on. These details are designed manually and consume a huge amount of time and resources.

A list of issues that have impact on the mentioned challenges is presented in the following.

3.4.3. Issues related to the Design Process:

 There are some rules that should be followed due to some limitation in production process.
 There are rules about the connection between panels - when they are located side by side or

when they are close to structural elements. The connections have a large impact on the
definition the panels’ shape.

 The design process due to production process needs to be enriched with different details. These
details include junctions, shape of frame, thickness of metal sheets used on frames, the overall
thickness of panels and so on. These details should be designed according to the location of the
panels, the loads imposed to them, their neighbourhoods, facilities embedded inside them, and
many other factors. These processes are vital and are usually are done manually.

 The panels are considered as structural and also non-structural elements in a building. When
they are structural elements such as floors, the loads imposed on them must be calculated and
panel should be designed considering that calculations. This process is time consuming and
needs to be optimised.

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 29

3.4.4. Issues related to Production process:

 The size of panels in one direction was limited between 30 cm to 122 cm, due to limitations in
production tools and in the size of polyester sheets were used to cover the panels.

 If the size or length of a panel is more than 350 cm, the structure of the panel must be
strengthened and some more metal elements should be added in the middle of the panel.

 Using panels with similar size is preferred because the production time will be reduced and the
probability of error will decrease. So, dividing a building element into panels should be done in
a way to reduce the variety of panel size as much as possible.

3.4.5. Which challenges were selected to deal in the research and why?

Choosing the practical challenges to be solved in this dissertation are dependent to some main abilities
and limitations:

- Scope and domain of author’s knowledges:
Some of the mentioned problems, need structural knowledge and experiences and for an architect as the
author, it may be unsuccessful.

- The time that is assigned for dissertation:
Due to the dissertation period of 5 months, it should be considered to submit the result in due time.

- The domain that results can be applied to:
Often between industry and education (university) a famous gap appears: General approach or Narrow-
downed approach to solve a problem? The industry tends to receive an exact solution for a real and
technical problem, while scientific researches want to solve a more general problem. In this research it
is important to balance this situation and lead it such that addition solving a general problem, a specific
technical problem of Fractus, be solved.

 Table 2 presents a list of challenges that are evaluated according to the mentioned criteria and explains
the selection of challenges.

Challenge Needed knowledge
Needed

time
General use

Specific

solution for

Fractus

The arrangement of

panels on a wall, floor

or a roof

Geometry
Architecture
Programming

4 months High Yes

Designing the details

of panels

Geometry
Structure calculation
Detailing
Programming

10 months Low Yes

Table 2 – Evaluating the possibility of solving the challenges

The challenge chosen for further development is the process of automatic panel arrangement on a surface
of a given building. This case is fitted by the time limitation of the research. in fact the selected challenge

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 30

has kind of balance in one side, it is a general solution that other designers and fabricators can adapt it
on their process and in another side it can be a practical solution for Fractus as industrial representative.

3.5. Steps of the solution

The development of a process that can automatically arrange the distribution of panels in a floor includes
five main sections, presented in the following.

Analysing the challenge: In this part we tried to analyse the problem from a general perspective and to
review current existing solutions.

Defining and evaluating the tools available: This section is focused on tools such as BIM authoring
software, Visual Programming tools, Programming Languages, and available algorithms for Artificial
Intelligence. The purpose of this section is to find the best tools to develop our solution.

Proposing the possible solutions: In this section, some different but possible solutions are explained.
The solutions are described briefly through flowcharts, diagrams, and even programming scripts.

Evaluating the solutions and selecting the proper one: It is important to evaluate and select the best
solution. The evaluation criteria is defined carefully and the evaluation process relies on it.

Implementing the selected solution in practice: This section is explained in detail, in a separated
chapter.

3.6. Analysing the Challenge:

 The most usual way to manufacture walls, floors, and roofs, is to construct with prefabricated panels.
These elements cannot be prefabricated in one piece due to the limitation in transferring and erecting
huge building elements. These parts of buildings in term of size, usually are oversized for transportation.
So, the challenge is to cover a floor of a building with prefabricated panels. But these panels are
produced as an ETO element not mass-produced element. It means that the designing process is not a
linear process. There are two factors to be solved: arrangement of panels and the size of the breadth and
length of panels. As a sequence, there are more than a single solution. For each arrangement alternative,
there is a set of dimensions for panels. So the main challenge is not about dividing the element by panels
but to divide it by panels and to find the size of panels in the most optimized way. In fact, the problem
is about optimization.

 The 2D boundary of a given element will be covered by panels according to rules and restrictions of
panels production. But is should be examined from optimization perspective. Can it be improved? Or
the solution is the most optimized. Here the challenge has been described by a diagram.

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 31

Figure 6 – General work-flow of analysing the problem

3.6.1. Assumptions

To cover a partitioning 2D element of building (wall, floor, and roof) with prefabricated panels
Panels are produced through Engineered To Order (ETO) approach.

3.6.2. Rules and restrictions

The width or length of panels cannot be less than 30 cm.
The length of panels cannot be more than 700 cm.
The width of panels cannot be larger than 122 cm.

3.6.3. Optimization goals

The panels should have same size as much as possible.
The direction of locating panels is free and they can be located in any direction fits better.

3.7. Define and evaluate the tools available:

It is necessary to find the tools available for solving the problem. Each stage of solving work-flow needs
a specific digital environment to get the needed information, to do a calculation process, and to submit
the result. Here, each stage and related digital environment is explained.

3.7.1. Main stages

 Collecting needed data from a given building element;
 In the first step, the geometrical data includes 2D shape dimensions of the element (regardless

of its thickness);
 To perform the arrangement process and to optimize the result. First we should get data related

to rules and restrictions that are defined by user (panel fabricator). This data is non-graphical
and should be adjustable. After that, arrangement and optimization process must be performed.

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 32

 To submit the result and to transfer it to the element digital representative. In this stage, the
building element should be covered by panels.

Figure 7 – Domain of solution and related tools

3.7.2. Selecting software

In this research, two alternative BIM authoring software were considered: Tekla Structures and
Autodesk Revit. The given building element should be extracted from models, as provided by one of
these software.

As it is shown in Figure 8, Autodesk Revit is chosen as the BIM authoring tool for stages 1 and 3. This
software transfers geometrical data of given elements to stage 2 and applies the result back to that
element. Stage 2 can be done by Python scripts in Dynamo environment. Dynamo is a visual
programming application that has recently been embedded in Revit. The work flow between Revit and
Dynamo is bidirectional and completely automatic.

An alternative, Tekla structures is also chosen as the BIM authoring software. Tekla does not have a
visual programming application but one of the most famous and popular visual programming
applications - Grasshopper - can be used by Tekla. There is a plugin for Grasshopper called Tekla Live
Link that connects models from Tekla to Grasshopper bidirectionally and returns back the results to it.
It must be mentioned that Grasshopper itself is a plugin that must be installed on Rhinoceros.

In fact, the core of calculation is handled by Python or C# or any other proper programming language
and the other mentioned applications only are used as a platform, digital environment or Visual
application. So, the alternative paths are almost equal. The programming language may use the
Application Programming Interface (API), especially in geometrical areas. Each individual software has
its own API and specific instruction to use. Fortunately, now a days almost all 3D software uses a couple
of globally accepted standard frameworks in geometrical data structure. For this reason, we can almost
exchange all geometrical data between all 2D and 3D modelling applications. So in this case, APIs of

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 33

different BIM authoring software, in geometrical area, are almost similar or at least have the same
structure that do not make a big difference in overall process of finding a solution.

In the end, Tekla Structures was selected as BIM authoring tool because the case study was modelled in
Tekla and Fractus company uses that software.

Figure 8 – Three stages of solution and selected tools and software

3.8. Optimization

Some different but possible solutions have been explained. The solutions are described briefly through
flowcharts, diagrams, and even programming scripts. Two main concepts for solving the problem were
created and developed:

 Optimization by generative design algorithm: It is called “Blind Optimization” due to its
structure.

 Creating an algorithm by exhaustive search method: It is called “Rational Optimization”,
considering the solution structure.

3.9. Blind Optimization

The main idea is to divide the surface of a building element with an arrangement of panels. Then they
should be moved in both directions (X and Y)by the size of one panel to generate new alternatives for
arrangement. Moving the arrangement in both direction (X and Y) in distance of breadth and length of
panel, generates a new arrangement. If the movement goes further length and breadth, the generated
arrangement is similar to ones generated before. See Figure 9. after collecting all results, all must be
examined and the most optimised one should be selected.

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 34

Figure 9 – Moving arrangement in X and Y directions by length and breadth of a panel to

generate new arrangements

Figure 10 – An overview of blind optimization in Rhino and Grasshopper

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 35

The work flow of” Blind optimization” is described in Figure 11. The main steps include:

 Getting Data - geometry and rules
 Performing the panel arrangement
 Creating different genes of arrangement
 Evaluating results against the goals
 Selecting the optimal result

Figure 11 – General work-flow of Blind optimization

The structure of this solution was developed in Grasshopper. As shown in Figure 12, all the process is
done by Grasshopper nodes.

Steps in a brief explanation include:

 Getting 2D boundary of element (floor) as an input.
 Surrounding the boundary by a bounding box. Bounding box is the smallest possible rectangle

that can surround the boundary.
 Finding the longest and shortest edges and the corners of bounding box.
 Calculating the number of panels in each direction according the given panel size.

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 36

 Creating the arrangement and calculating the number of regular and irregular panels that are
placed in the original curve.

 Defining and extracting the properties of arrangement includes:
o The rate between the number of regular panels and the number of irregular panels.
o The rate between the overall area of regular panels and the area of irregular panels.
o The total number of panels (regular and irregular).

 Creating the possibility of moving arrangement in two directions by size of one panel.
 Making possible to start arrangement from each corner of bounding box.
 Using the optimization node and define the adjustable parameters.
 Creating a proper number of genes according to the parameters and gathering the results.
 Finding the best result:

o Maximum rate between number of regular panels and number of irregular panels or,
o Maximum rate between total area of regular panels and total area of irregular panels, or
o Minimum number of total panels.

Figure 12 – Galapagos plug in and generative design

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 37

Figure 13 – Grasshopper script, Analysing part (for detailed image, refer to appendix 2)

Figure 14 – Grasshopper script, Panelling part (for detailed image, refer to appendix 2)

Figure 15 – Grasshopper script, Optimization part (for detailed image, refer to appendix 2)

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 38

3.9.1. Cons and pros:

The “Blind optimization” presents some vital disadvantages:

 It is a time-consuming approach: for an average number of genes creation, with a normal Core i7
processor, it needs more than 30 minutes to produce results.

 It is not proper for Engineered To Order panels because it assumes that all panels have the same
size.

 All the panels are oriented in one direction.

 The “Blind optimization” also presents advantages:

 The process is easy and fast.
 It can analyse all kind of 2D shapes.

Figure 16 – A sample result of Blind Optimisation by grasshopper and Galapagos

3.10. Rational Optimization

The main concept is to perform the arrangement process in a linear way. It means that the solution is
created based on a human logic of solving the problem. As it was explained in the first alternative, that
solution ignores some key factors: a) the possibility to locate the panels in different directions and b) the
possibility to use panels with different sizes when it needed. It is not claimed that this solution returns
the best result. In fact it cannot be proved. This solution as it is shown following, has been extracted

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 39

from human method. A human starts to simplify a boundary by dividing it to some rectangles and tries
to arrange panels in those rectangles.

The first step is to recognize the boundary and openings located in it and to find the biggest rectangle
that is surrounded in its boundary and does not have intersection with voids. Then, it necessary to find
the next biggest rectangle and repeat this function until the original boundary is completely divided into
different rectangles.

The work flow of ”Rational optimization” is described in Figure 17. The main steps include:

 Getting Data
 Organizing the boundary and openings
 Finding the biggest rectangle surrounded in boundary that does not intersect with voids
 Subtracting the rectangle from boundary and defining the rest of the area as a new boundary
 Finding the next biggest rectangle and repeat this cycle
 Collecting the rectangles found and arranging panels in each one.

Figure 17 – General work-flow of Rational Optimization solution

The structure of this solution was developed in Python and using Grasshopper API. Implementing this
solution by Grasshopper alone is not easy because the algorithm needs to repeat itself frequently. As it
is shown in Figure 17, all processes were done in Python, within the Grasshopper environment.

Steps in a brief explanation include:

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 40

 Extracting the geometrical data from BIM elements in Tekla structures
 Getting the rules defined by user:

o The minimum size for opening to be considered as void
o The minimum and maximum possible size for panels

 Finding and organizing the boundary curve and voids and small holes (columns)
 Finding the biggest rectangle that:

o Is surrounded in the boundary curve
o Does not intersect with voids

 Subtracting the rectangle from boundary and getting the resulting shape
 Repeating the cycle of finding the biggest rectangle until the rest shape is a rectangle itself.
 Dividing each rectangle by the most fitted panel size and the most proper direction
 Exporting the shape of panels to Tekla Structures for creating the panel on model element

3.10.1. Cons and pros:

The “Rational optimization” also presents advantages:

 The process is fast and takes between 1 to 4 minutes;
 It is fitted with Engineered-To-Order manufacturing processes;
 Changing the direction of panels and size of them are considered,

and also disadvantages:

 Changing and improving the algorithm needs programming skills.

Figure 18 – A sample result of Rational Optimisation by Python in Grasshopper

(for detailed image, refer to appendix 2)

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 41

3.11. Conclusion

Usually, there are several solutions for a problem and each solution has its own specifications. Here we
tried to compare both of solutions in 9 criteria. It must be mentioned that each solution has its own
attributes and characteristics. These attributes and characteristics may be advantages or disadvantages,
depends our goals. Here, for comparing the two alternatives, the criteria are extracted from our goals,
and each solution has gained a score against each criteria. At the end, we have selected the solution that
has gained the highest total score.

C
o
lu
m
n

Subject
Evaluation Grade

Low = 0 | Medium = 1 | High = 2

Requirements

D
om

ai
n

Evaluation criteria

Alternative 1:

Blind

Optimization

Alternative 2:

Rational

Optimization

1

H
ar

dw
ar

e
an

d

re
so

ur
ce

s Processor usage 0 2 Less processor use

2 Time consuming 0 2 Short time

3

M
an

u
fa

ct
u

ri
n

g

ap
p

ro
ac

h
 Fitted to Mass production 2 1

Engineered to Order
production process 4 Fitted to ETO production 1 2

5

G
eo

m
et

ry

co
ve

ri
n

g

Shape with arc or non-
perpendicular angles

1 0
Shape with
perpendicular angles

6
Shape with perpendicular
angles

2 2

7

D
ev

el
op

m
en

t

Possibility of developing
the solution

1 2
Improve the ability of
algorithm is needed

8
Possibility to implement
in other BIM platforms

1 2
Implementing in
different BIM platform
is required

9
Maintenance and
modification

1 2
Easy Maintaining and
modifying

10 Total Grade 9 15

Table 3 – comparison two solution (Blind optimization and Rational optimization)

As it is obvious in Table 3, the “Rational optimization” approach has an upper grade. Therefore, it was
selected for continuing the research.

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 42

4. RATIONAL OPTIMISATION SOLUTION

Development of selected solution

The selected solution has been performed by using programming language, with software API in a visual
programming software.

4.1. Main Parts:

The process of solution has been divided to five main parts that include:

 The Input Algorithm: collects needed data from BIM model.
 The Division algorithm: divides the given area into rectangles.
 The Joining algorithm: finds the rectangles that are not able to be covered with panels

(considering the production rules of the factory) and joins them with neighbour rectangles.
 The Panelising algorithm: arranges the panels in each rectangle.
 The Output algorithm: sends the panel arrangement to the BIM model.

Figure 19 – Main stages of Rational optimisation solution

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 43

4.1.1. Input Algorithm:

This algorithm has been developed to collect, refine and extract geometrical data from the element
modelled in Tekla Structures.

4.1.2. Division Algorithm:

Main concept: the Division algorithm is the most creative part of the solution. This algorithm is inspired
by the way human think to solve the problem. The method used by engineers in Fractus company to
divide a floor, roof or wall and panelising it, is implemented in the algorithm. As can be observed in
Figure 20, a human can find at least four alternatives for dividing the floor area. So, which division is
better? Often, the best alternative is the largest rectangle. Here, we evaluate the largest rectangle by its
area.

Figure 20 – Alternatives of solution carried out by human

The solution with the rectangle that presents the largest area (alternative 1) will be selected. Based on
this alternative, the search process will be done repeatedly. The work-flow of a human addressing this
problem is mapped in Figure 21.

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 44

Figure 21 – General work flow for the rational optimisation solution

Figure 22 – A geometrical sample of different steps of Rational optimization solution

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 45

4.1.3. From human method to computer method

Translating the method of solving this problem by a human into a digital method which can be performed
by a computer processor, presents several difficulties. Computer science concepts, as Heuristic technic
and Brute-force search are used to solve this problem.

4.1.3.1. Heuristic technic

“In mathematical optimization and computer science, heuristic (from Greek εὑρίσκω "I find, discover")
is a technique designed for solving a problem more quickly when classic methods are too slow, or for
finding an approximate solution when classic methods fail to find any exact solution. This is achieved
by trading optimality, completeness, accuracy, or precision for speed. In a way, it can be considered a
shortcut.” (https://en.wikipedia.org/wiki/Heuristic_(computer_science))

Why in our human method, the largest rectangle should be found? Is there another way more efficient?
We do not know!

Dividing a given shape into some rectangles is a shortcut that seems logical but we cannot say if it is the
most efficient way. The objective of a heuristic approach is to produce a solution in a reasonable time
frame that is good enough for solving the problem at hand. This solution may not be the best of all the
possible solutions to this problem, or it may simply be an approximation to the exact solution. However,
it is still a valuable solution, because finding it does not require a prohibitively long time.

4.1.3.2. Brute-force search

As it is shown in Figure 21, there is a challenging part in the algorithm: finding the largest rectangle in
the boundary. A human, due to his/her limitation in considering and calculating various alternative,
might choose a wrong option or even not collect the best answer in the candidate pool. How The human
brain solves such challenges is not completely clear. To adapt this process to a digital algorithm, we
used Exhaustive search method. In computer science, Exhaustive search or Brute-force search is a very
general problem-solving technique and algorithmic paradigm that consists of systematically
enumerating all possible candidates for the solution and checking whether each candidate satisfies the
problem's statement.” (Mark Burnett, 2007)

Brute-force search technic is here used to find all possible rectangles that fit to the statements: 1)
surrounded in the boundary and 2) does not intersect with voids. This method is not appropriate for
human’s brain calculation because it may take hours our days to survey all possible candidates. This
method also has some limitation for computer processors.

“While a brute-force search is simple to implement and will always find a solution, if it exists,
implementation costs are proportional to the number of candidate solutions – which in many practical
problems tends to grow very quickly as the size of the problem increases.” (Wikipedia, exhaustive search
https://en.wikipedia.org/wiki/Brute-force_search)

Therefore, brute-force search is typically used when the problem size is limited, or when there are
problem-specific heuristics that can be used to reduce the set of candidate solutions to a manageable

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 46

size. The method is also used when the simplicity of implementation is more important than speed. In
this case, if the given shape is too difficult, the process time increases strongly and the program may
collapse or take a long time to proceed. In typical buildings, elements like walls, floors or roofs do not
have too complex geometries and often this technic can perform the calculation easily.

By using these two techniques, human solving process can be transferred to a digital process done by
computers. Figure 23 shows the digital work-flow.

Figure 23 – Digital work-flow of rational optimisation extracted from Human work-flow

4.1.4. Structure of the algorithm

In this part, Division algorithm (stage 2 – according to Figure 19) is explained in detail. To see the
Python codes, please refer to Appendix 1.

4.1.4.1. Main concept

As it is shown in Figures 24, 25, and 26 (Process flow), the algorithm should perform all the defined
steps. To do those, various functions were defined using Cartesian geometry, point and line, and some
of geometrical concepts such as Union, Difference, and Intersect. Three types of Functions were defined
in the algorithm:

 Checker functions: they test a condition and always return True or False. These
functions help the algorithm to decide and find out which statement is true in a
particular condition.

 Recogniser functions: they recognise, organize and modify curves. These functions
help the algorithm to recognize the shape properties, the relationship between given
shapes and to reorganize them for other functions.

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 47

 Executive functions: they perform a work on inputs and extract or produce outputs.
These functions usually do the main process and produce new shapes, data or other
outputs.

Here we have defined some new data structures that are used as input and output in different
functions. They are described in Table 4 and include:

 Curve
 Group
 Branch
 Void
 Boundary
 Ignorable Curve
 BigBoy

Some items from Grasshopper API were used to generate the algorithm. We tried to use as few
API items as possible. The way these items are defined is aligned with specific goals of software
developers and, in some cases, achieving desired goals with them is not completely possible.
These items include:

 Area
 RegionDifference
 RegionIntersection
 RegionUnion
 Decostruct
 Explode

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 48

No Type Name Input Output Description

1

D
at

a
T

yp
e

Curve - - Any kind of shape with only perpendicular
angles

2 Group - -
A list of curves

3 Branch - -
An organised group of curves consist of a
boundary, some voids and some ignorable
curves surrounded in boundary

4 Void - -
A curve that is surrounded in a boundary and
represent an opening in a building element
such as a window in a wall

5 Boundary - - The outer edge of a building element like a
floor, as a 2D closed curve

6 Ignorable curve - -
A curve surrounded in a boundary but the area
is less than the Minimum Area defined by
user and algorithm ignore them in calculation
process

7 BigBoy - -
The largest rectangle found in a Branch

8

Ch
ec

ke
r f

un
ct

io
n

AreSimilar
‐ Two Curves ‐ Boolean

Check two curves if they are completely
similar in shape and location (duplicated
curve)

9 IsCurveInCurve
‐ Two Curves ‐ Boolean

Check if the first Curve is surrounded in the
second Curve or not

10 HasIntersect
‐ Two curves ‐ Boolean check if two curves have intersection or not

11 HasCommonEdge
‐ Two curves ‐ Boolean

Check if two curves have a common edge
(touch each other) or not

12 IsInandAligned
‐ Two curves ‐ Boolean

‐ Boolean

Check two conditions: one of curves is
surrounded in the other curve or not, and they
have a common edge or not

13 IsRectangle
‐ A curve ‐ Boolean heck if a curve is a rectangle or not

14
IsBoundaryBigbo
y ‐ A Branch ‐ Boolean

Check if there is not any voids in branch and
the boundary is a rectangle too, so the
boundary is a bigboy.

15

Re
co

gn
ise

r
fu

nc
tio

ns
 ExtractBranch ‐ Group of

curves
‐ Double

‐ Branch
‐ Group of curves

Get a list of curves and find the largest
boundary, voids and ignorable curves in it.
the double can be set by user and defines the
minimum area of voids. The surrounded
curves with less area are recognised as
Ignorable curves. This

Table 4 – Data types and function of Division Algorithm

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 49

Table 4 – data types and function of Division Algorithm

Figures 24,25, and 26, the detailed work-flow of Division Algorithm is shown. After introducing the
functions and object types in Table 4, now the detailed work-flow for dividing the shapes and preparing
it for next stage – stage 3: Joining algorithm – is explained. Here we tried to describe the work-flow in
point of view of programming language. In fact, we tried to connect the primary idea to Python scripts
that has been developed for second stage of solution, stage 2: Division Algorithm.

16 CleanBranch
‐ Branch ‐ Branch

Get a branch and check if any void is touching
the boundary

17 RectAreaMat
‐ A curve

‐ A list consists of
curve and its
area

Creating n*2 Matrix of a curve and its Area
as a double

18 BiggestCurve ‐ List of
curves ‐ A curve Finding the largest curve based on its area

19

Ex
ec

ut
iv

e
fu

nc
tio

ns

XYSet ‐ List of
curves

‐ Two list of
double

It gets the x and y coordinates of one or more
curves and collect them in two separated list.

20 UnitRectangles
‐ Branch ‐ List of rectangles

Finding smallest Rectangular Units in a
bunch of curves and negative curve based on
the virtual cartesian coordination extracted by
XYSet function

21 NegativeCurve
‐ A curve ‐ A curve

Negative part of a curve when surrounded in
a smallest possible rectangle.

22 BoundingRect
‐ A curve ‐ A rectangle

The smallest possible rectangle that the curve
can be surrounded in it

23 AllRectangles
‐ A curve ‐ List of rectangles

The all-possible rectangles that can be created
by virtual cartesian coordinates for a curve

24
allRectanglesOrg
Void ‐ A Branch ‐ List of rectangles

The all-possible rectangles that can be created
by virtual cartesian coordinates for a branch

25 EnterBigboy
‐ A branch ‐ A rectangle

‐ A Group

Find the largest rectangle surrounded by
boundary and does not have intersection with
voids, and subtract it from boundary and
returns the remaining shapes as a group

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 50

 Figure 24 – Detailed process-flow of Division Algorithm (Part 1)

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 51

 Figure 25 – Detailed process-flow of Division Algorithm (Part 2)

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 52

 Figure 26 – Detailed process-flow of Division Algorithm (Part 3)

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 53

4.2. Joining Algorithm:

4.2.1. Main concept

The Joining algorithm is the third stage of the solution. This algorithm has been developed to simulate
a part of human way of thinking in the problem solution. This part happens implicitly in a human brain
and it is not possible to realise the exact process. When a human starts to divide a curve and prepare it
for panelising, there are always some small rectangles that can be added to a neighbour larger rectangle
and the resulting shape may be panelised in a more optimized way.

As it is shown in previous pages, the Division Algorithm produces a list of rectangles that cover the
boundary. Not all of these rectangles can be panelised, due to an important production rule: the
manufacturer, here Fractus, cannot produce panels with a width that is smaller than 30 cm. This means
that if there is a rectangle where one of its edges is less than 30 cm, that rectangle cannot be covered by
a panel. Here are two solutions for such cases:

 Change the geometry of the boundary, voids, or both, so that the design of that element is
changed; or

 Join that irregular rectangle with another acceptable rectangle and create a L or T shape
boundary and pass it for the Panelising algorithm.

Here, both of these alternatives are considered and the algorithm tries to respond to both. Some times
the design stage has been proved and changing it is not possible. On the other hand, in some cases joining
an irregular rectangle with one of its neighbours leads to a non-acceptable result. Considering Figure
27, it is possible to see regular and irregular rectangles in the output of the Division Algorithm that are
respectively called BigBoy and TadBoy.

 Figure 27 – Regular and irregular Rectangles resulted from Division Algorithm

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 54

Joining algorithm uses a simple logic to find the Tad Boys, recognise its neighbours, perform the
junction and, at the end, evaluate the junction and select the best one, regarding the evaluation criteria.
The evaluation rules are defined by the manufacturer considering their production methods.

Here the main work-flow is shown in Figure 28.

 Figure 28 – Detailed work-flow of the joining Algorithm

4.2.2. Structure of Joining algorithm:

The structure of Joining algorithm is dependent on the rules that the user defines for it. Two different
parts should be defined by the user:

 Minimum acceptable size for panel production. The Algorithm can separate acceptable
rectangles from not-acceptable rectangles called TadBoy. At present, the minimum size
declared by manufacturer is 30 cm.

 The criteria for evaluating junction. Three factors have been defined for this evaluation:
o The direction of joining rectangles
o The size of parent neighbour
o Number of corners or edges of the resulting shape

This part explained by some figures in following tables.

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 55

Table 5 – Evaluation of direction of junctions

Table 6 – Evaluation of the number of corners of junctions

Table 7 – Evaluation of joining to the larger or smaller neighbour.

Evaluation Criteria
low High

Joining with Larger

or smaller

neighbour?

Evaluation

Criteria
High Medium Low

Number of

edges of

resulted

shape after

junction

Evaluation

Criteria
High Medium Low

The

direction

of joining

rectangles

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 56

4.2.3. etailed work-flow

The Joining algorithm performs two vital tasks: creates the junctions for each TadBoy (rectangles with
an edge shorter than the defined minimum size), and evaluates the junction in order to select the best
one. The steps of these processes are explained below:

 Get the list of rectangles from the previous stage.
 Get the minimum possible size for the panel. This parameter is set by the user.
 Distinguish panelise-able rectangles from non-panelise-able rectangles, respectively called

BigBoys and TadBoys.
 Find the neighbours of each TadBoy in four directions (up, right, bottom, and left).
 Join each TadBoy with its neighbours, one by one, and collect them in a list.
 Get the evaluation criteria that are defined by user.
 Evaluate each junction regarding the evaluation criteria.
 Select the best junction.
 Modify the shapes and return the results that consist of:

o Single BigBoys that do not join to any other rectangles.
o Families that include one or more TadBoys adopted by a BigBoy.
o OrphanBoys that cannot be adopted by any BigBoys.

Some data structures and functions were created to perform the described steps. Beyond the new data
structures that were defined in the Joining algorithm, some functions were defined in tree context: 1)
Recogniser functions, 2) Executive functions, and 3) Ev aluation functions.

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 57

No Type Name Input Output Description

1

D
at

a
T

yp
e

Real BigBoy
The rectangles that the
dimension of their edges is
equal or more than
Minimum Panelling size.

2 TadBoy
The rectangles that one or
both edges of them are
shorter than Minimum
Panelling size.

3
Minimum
Panelling size

A number defined by user
that rectangles with an
edge shorter than that
number, cannot be
panellised due to
production limits.

4 Neighbourhood
A list consists of a TadBoy
and its neighbours in for
directions

5 Junction

A 4*4 matrix consists of
four list of a direction
name, TadBoy, a
neighbour in specific
direction such as top, and
the united shape of
TadBoy and the neighbour

6 Evaluation
A list of scores that
represents each evaluation
score and total score of
junctions.

7

R
ec

og
n

is
er

 f
u

n
ct

io
n

s

Find_TadBoys List of
Rectangles
Double

List of
rectangles
(real
BigBoys)
List of
rectangles
(TadBoys)

Get a list of rectangles and
a number as Minimum
penalizable size defined by
user and separate them to
two list of rectangles
called TadBoys which
cannot be panellised and
Real_BigBoys which can
be panellised.

8 Tad_neighbors A TadBoy
List of
BigBoys

A list of
rectangles

Find the neighbours of a
TadBoy in 4 directions

T
ab

le
 8

 –
 d

at
a

ty
p

es
 a

n
d

 f
u

n
ct

io
n

 o
f

Jo
in

in
g

A
lg

or
it

h
m

 -
 c

on
ti

n
u

e

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 58

(top, right, bottom, and
left) if exist and collect
them in a list. If there is not
a neighbour in specific
direction, it returns None.

9 RectangleProp
A rectangle A list of

number

Extracts some properties
of a rectangle consist of X
and Y coordinates, edge
dimensions and area

10

E
xe

cu
ti

ve
 f

u
n

ct
io

n
s BoundingRect A Curve A rectangle

Create the smallest
possible rectangle that can
surround the given curve.

11 Adoption A
neighbourhood A Junction

Join the neighbours of a
TadBoy and create a
junction for each direction.

12

E
va

lu
at

io
n

 F
u

n
ct

io
n

s

EvJunctionDirection
A junction A number

Evaluate the junction edge
in TadBoy if it is longer
edge or not and give a high
or low value. If TadBoy be
a square, It returns zero.

13 EvJunctionCorners
 A junction A number

Evaluate the number of
corners of a united shape.
Less the number of
corners, get higher score.

14 EvAreaRate
 A junction A number

Evaluate the rate of
TadBoy area divided by
BigBoy area. As a
requirement, joining with
smaller BigBoy is
demanded.

15 EvaluateJunction
A junction

 A list
consists of
string and
numbers

Collect the scores of
junctions and returns a list
consist of direction of
junction, scores of 3 kind

T
ab

le
 8

 –
 d

at
a

ty
p

es
 a

n
d

 f
u

n
ct

io
n

 o
f

Jo
in

in
g

A
lg

or
it

h
m

 -
 c

on
ti

n
u

e

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 59

Table 8 – data types and function of Joining Algorithm

of evaluations, and total of
them.

16 Eva_Result
An Evaluation string

Evaluate if the best
junction based on its
scores.

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 60

Figure 29 – Detailed process-flow of Joining Algorithm (Part 1)

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 61

Figure 30 – Detailed process-flow of Joining Algorithm (Part 2)

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 62

 Figure 31 – Detailed process-flow of Joining Algorithm (Part 3)

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 63

4.3. Panelising Algorithm

4.3.1. Main Concept

The Panelising algorithm is the last stage of the calculation process and ends up the “Calculation”
algorithms. Contrary to its simple appearance, the calculation associated with this stage is complex and
needs an extra effort to be solved. The main reasons that make it difficult are:

 Engineering to Order approach for creating panels that tha dimension of panels can be various.
 Various adjustable factors that are set by user
 Existing of non-rectangular shapes in the panelling process.

As previously described, the third stage, “Joining” algorithm finalizes the division of the element
boundary, creates a group of rectangular and non-rectangular shapes and pass them to the fourth stage,
the Panelising algorithm. In this stage, the algorithm tries to find the best arrangement direction and the
best size of panels for each shape separately, considering some predefined requirements. As it mentioned
before, the manufacturer, Fractus company, has some limitation and rules for producing the panels:

 The edge of a panel cannot be shorter than 30 cm.
 The longest edge possible to produce is 700 cm.
 Due to the size of composite boards that are used to cover the surface of panels, the maximum

breadth size of a panel is 122 cm. (see figure 32)
 For the length of the panels, it is possible to go up to 700 cm but 350 cm is preferred.
 when one of a shape edge is divided by 122 cm and the remaining number is shorter than 30 cm,

only the last two panels should be divided equally and the others must be kept 122 cm.
 The direction of panels is not important and depends on which arrangement direction is more

optimised.
In another word, we can say that one edge of a panel should be longer than 30 cm and shorter than
122 cm. The other edge of that panel should be longer than 30 cm and shorter than 700 cm but, 350 cm
is preferred (see Figure 33).

Figure 32 – Rules for dividing the breadth of panels, considering regular panels and irregular

panels

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 64

 Figure 33 – Production rules of breadth and length of panels

4.3.2. Structure of the Panelling algorithm

According to the rules and requirements established by Fractus Company, a work-flow was designed.
The main steps defined in work-flow are listed below:

 Getting the final shape from previous stage (Joining algorithm)
 Extracting the length and breadth of the various shapes.
 Arranging the panels in both directions X and Y.
 Counting the number of panels in each direction.
 Selecting the direction with a smaller number of panels.
 Arranging the panels in the selected direction.
 Getting the intersection of panels with the shape, if the shape is not rectangular.
 Collecting the panels.

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 65

Figure 34 – Work-flow of Panelling Algorithm

4.3.3. Detailed work-flow

At a first step, the algorithm draws a rectangle around the shape, called Bounding rectangle. As it is
possible to see in the previous stage – Joining algorithm – to create both type of rectangular and non-
rectangular shapes and passes them to Panelling Algorithm. So, for panelling them, the algorithm should
convert them into rectangles. The next step is to examine the length and breadth of the resulting
rectangles according to the defined rules. In other words, each edge of the rectangle is divided,
considering two groups of rules:

 Dividing the edge by breadth of panel
 Dividing the edge by length of panel

The mentioned rules can be organised in two groups for length and breadth of panels:

Rules of group A: Division rules considering the breadth of panels:

 The breadth of panels cannot be shorter than 30 cm
 The breadth of panels should be 122 cm
 If the remaining distance, after dividing the edge by 122 cm is less than 30 cm, this panel must

be added to a previous panel and the result should be divided by 2.

Rules group B: Division rules considering the length of panels:

 The length of panels should be longer than 30 cm and shorter than 700 cm.

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 66

Figure 35 – Arrangement of panels in a same rectangle in both direction X and Y

For example, in the above figure, Panelising algorithm starts to divide both sides of the shape (green
rectangle) according to the two groups of rules. The result is an integer or a natural number that can
calculate the number of panels in each direction. The algorithm compares these numbers and selects the
smaller one and the corresponding direction of arrangement.

Based on selected direction, the panels should be arranged. When the shape is a rectangle, the panels
are directly sent to repository. When the shape is not a complete rectangle, the intersection between each
panel and the original shape will be calculated and after that will be sent to repository.

As in previous parts, the data types and functions defined for the algorithm in Python are explained and
also show the detailed work-flow through a diagram.

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 67

Figure 36 – Arrangement of panels in both direction X and Y and the results: 10 panels in X

direction and 9 panels in Y direction.

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 68

No Type Name Input Output Description

1

D
at

a
T

yp
e

Curve
‐ ‐

a boundary by only perpendicular
angles

2 Shape
‐ ‐

A curve that is ready for
panelising

3
Minimum possible

dimension ‐ ‐

The dimension that defined by
user and each edge of panels
should be larger than it.

4 Dimension of Breadth
‐ ‐

The maximum and optimised
dimension defined by user for
breadth of panels

5

Dimension of optimized

length

‐ ‐
Dimension that is defined for
optimised length

6

Dimension of maximum

length

‐ ‐

The maximum dimension that is
possible for the length

‐

7

E
xe

cu
ti

ve
 f

u
n

ct
io

n
s

BoundingRect
‐ A Curve ‐ A rectangle

Create the smallest possible
rectangle that can surround the
given curve.

8 Generate_Panels

‐ A Shape
‐ Dimension of

Breadth
‐ Dimension of

optimized
length

‐ Dimension of
maximum
length

‐ Minimum
possible
dimension

‐ Panels

Generate the panels for each
shape. All the evaluation
functions are embedded in it. It
can evaluate the optimized
direction, performs the division
and intersect panels with original
shape and returns the final panels.

‐

9

E
va

lu
at

io
n

F
u

n
ct

io
n

s

Division_A

‐ An edge
‐ Dimension of

Breadth
‐ Minimum

dimension

‐ Number of
regular panels
‐ Dimension of
regular panels
‐ Number of
irregular panels

Divides the edge by the first
group of rules and return the
number and dimension of regular
and irregular panel.

T
ab

le
 9

 –
 d

at
a

ty
p

es
 a

n
d

 f
u

n
ct

io
n

 o
f

P
an

el
li

n
g

A
lg

or
it

h
m

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 69

‐ Dimension of
irregular panels

10 Division_B

‐ An edge
‐ Dimension of

optimized
length

‐ Dimension of
maximum
length

‐ Minimum
possible
dimension

‐ Number of
regular panels
‐ Dimension of
regular panels
‐ Number of

Divides the edge by the second
group of rules and return the
number and dimension of panels.

11

Evaluate_DirectionX

‐ A rectangle
‐ Dimension of

Breadth
‐ Dimension of

optimized
length

‐ Dimension of
maximum
length

‐ Minimum
possible
dimension

‐ Number of
panels in X
direction

Returns the number of panels
created in X direction
arrangement for the given
rectangle.

12 Evaluate_DirectionY

‐ A rectangle
‐ Dimension of

Breadth
‐ Dimension of

optimized
length

‐ Dimension of
maximum
length

‐ Minimum
possible
dimension

‐ Number of
panels in Y
direction

Returns the number of panels
created in Y direction
arrangement for the given
rectangle.

13 Select_Direction

‐ A rectangle
‐ Dimension of

Breadth
‐ Dimension of

optimized
length

‐ Division in X
direction
‐ Division in Y
direction

calculates the number of panels
created in each direction and
returns two integer.

T
ab

le
 9

 –
 d

at
a

ty
p

es
 a

n
d

 f
u

n
ct

io
n

 o
f

P
an

el
li

n
g

A
lg

or
it

h
m

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 70

Table 9 – data types and function of Panelling Algorithm

Here the detailed work-flow of Panelling algorithm is shown in figure 37 and 38.

‐ Dimension of
maximum
length

‐ Minimum
possible
dimension

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 71

Figure 37 – Detailed process-flow of Panelling Algorithm (Part 1)

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 72

Figure 38 – Detailed process-flow of Panelling Algorithm (Part 2)

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 73

Figure 39 – A sample result of Algorithms calculation

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 74

5. CONCLUSION AND FUTURE DEVELOPMENTS

Prefabrication and manufacture in the AEC industry can be a way to increase the productivity, and
reduce costs, time and other resources used in buildings life cycle. The main challenge in this
improvement is the specific characteristics of the final product: each building is as a product of the AEC
industry and at the same time is unique. This means that the ordinary and common methods of
manufacturing, such as Mass-production, cannot be easily adapted by the AEC industry. Each product
is unique and so many of its sub-products (elements) will be unique.

This research went through the new technologies related to the industrialization of building production
and gradually narrowed down to the goals set.

The main challenges were extracted from practical experiences experienced in the AEC industry: How
can we make the process of designing specific elements automatic? In this case the specific challenge
was: how to cover a building floor with panels automatically?

The main aspects reviewed include:

 Manufacturing methods in AEC industry
 Panel properties, rules and restrictions of the production process
 BIM tools that can be used in the process
 Programming logic associated with the division and optimization of panel arrangement

There are two main approaches in manufacturing: Mass-production and Engineer-To-Order. ETO is a
method that can be adapted in AEC industry. It provides enough freedom for the designer to satisfy
client’s requirement and meanwhile respond to production rules and limits. The coordination of these
two far sides of design and fabrication is difficult, complex and error pron.

Building information Modelling (BIM) and Artificial Intelligence (AI) can be associated to achieve a
solution. BIM provides an environment for geometrical and non-geometrical data and AI can perform
the process automatically and accurately. In this research, a task that is usually done manually by a
human, was analysed and translated to a digital process. The thinking process was extracted from
human’s behaviour. BIM as an environment provides a context for the whole process. Enquiring data
from model, processing, generating result and applying the results back to the model were performed in
the BIM environment. BIM is able to support all these aspects without interruption, errors, and data loss.

For certain challenges, such as the one addressed in this research work, there is more than one solution.
One of the alternatives is to use Heuristic. A heuristic, or a heuristic technique, is an approach to
problem-solving that uses a practical method or various shortcuts in order to produce solutions that may
not be optimal but are sufficient given a limited timeframe or deadline. In this research, the human logic
for solving the problem was examined and analysed and the digital process was extracted from it. The
algorithm may not find the best solution, but in comparison to a human, its performance is much higher
in quality, takes less time and always finds a single solution.

There are always some rules and restrictions in the process of designing and fabrication of an element.
These should be considered. Also, some of them may be changed by the designer, the producer, the

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 75

client or even depended on the condition they are in. The algorithm should provide a situation that can
be changed and modified by user. They can be called adjustable parameters.

Python is a programming language, that has been more and more popular in recent years. Using it in
this research because of its simple syntax, flexibility and rich library and users’ community, was a great
success. Grasshopper plug-in in Rhinoceros works with Python version 2 and some new functions
defined in version 3, are not supported.

There are two alternatives for usage the APIs. Rhinoceros API and Grasshopper API. Both alternatives
were examined in this research. Rhinoceros API is really richer and stronger than Grasshopper API but,
working with lists and matrixes posed some problems. The solution was to switch to Grasshopper API
and regenerate all the codes to fix the problems.

To work with API, regarding to the first developer logic and goals, each function should be examined
and carefully tested in a separated environment by as much as possible conditions.

The algorithm generated in this research has more than 50 functions. Creating functions for the algorithm
instead of using API, during the developing process, can lead to a stronger and more accurate algorithm.
Also maintaining and modifying the algorithm in the future is easier and more accessible.

This research can be developed in some different directions in the future:

 Transferring to a plug-in for BIM authoring software like Revit, Tekla structures, Bentley and
so on

 Be able to work with shapes which have some non-perpendicular angles.
 To provide the ability to define more rules and restrictions to the user.
 To make it possible for users to have more than a single solution and to select one of them based

on their properties.

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 76

REFERENCES

Journal article

Abdul Nabi, M., & El-adaway, I. H. (2020). Modular Construction: Determining Decision-Making
Factors and Future Research Needs. Journal of Management in Engineering, 36(6), 04020085.
https://doi.org/10.1061/(asce)me.1943-5479.0000859

Almashaqbeh, M., & El-Rayes, K. (2021). Optimizing the modularization of floor plans in modular
construction projects. Journal of Building Engineering, 39(November 2020), 102316.
https://doi.org/10.1016/j.jobe.2021.102316

Curletto, G. (2014). Parametric modeling in form finding and application to the design of modular
canopies. WIT Transactions on the Built Environment, 136, 223–234.
https://doi.org/10.2495/MAR140181

Gharehbaghi, K., Mulowayi, E., Rahmani, F., & Paterno, D. (2021). Case studies in modular
prefabrication: Comparative analysis and discoveries. Journal of Physics: Conference Series,
1780(1). https://doi.org/10.1088/1742-6596/1780/1/012009

Hammad, A. W. A., & Akbarnezhad, A. (2017). Modular vs conventional construction: A multi-criteria
framework approach. ISARC 2017 - Proceedings of the 34th International Symposium on
Automation and Robotics in Construction. https://doi.org/10.22260/isarc2017/0029

He, R., Li, M., Gan, V. J. L., & Ma, J. (2021). BIM-enabled computerized design and digital fabrication
of industrialized buildings: A case study. Journal of Cleaner Production, 278, 123505.
https://doi.org/10.1016/j.jclepro.2020.123505

Lu, N., & Korman, T. (2010). Implementation of Building Information Modeling (BIM) in Modular
Construction: Benefits and challenges. Construction Research Congress 2010: Innovation for
Reshaping Construction Practice - Proceedings of the 2010 Construction Research Congress.
https://doi.org/10.1061/41109(373)114

Messaoudi, M., & Nawari, N. O. (2021). Virtual Permitting Framework for Off-site Construction Case
Study: A Case Study of the State of Florida. In Lecture Notes in Civil Engineering (Vol. 98).
https://doi.org/10.1007/978-3-030-51295-8_52

N. Nawari (2012). BIM Standard in Offsite Construction. Journal of Archit. Eng., no. June, pp. 107–
113.

Samarasinghe, T., Mendis, P., Ngo, T., & Fernando, W. J. B. S. (2015). BIM software framework for
prefabricated construction: case study demonstrating BIM implementation on a modular house.
6th International Conference on Structural Engineering and Construction Management 2015.

Singh, M. M., Sawhney, A., & Borrmann, A. (2015). Modular Coordination and BIM: Development of
Rule Based Smart Building Components. Procedia Engineering, 123, 519–527.
https://doi.org/10.1016/j.proeng.2015.10.104

Wei, P., Liu, Y., Dai, J. G., Li, Z., & Xu, Y. (2021). Structural design for modular integrated construction
with parameterized level set-based topology optimization method. Structures, 31(March), 1265–
1277. https://doi.org/10.1016/j.istruc.2020.12.090

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 77

Mohamad Abdul Nabi, (2020). Modular Construction: Determining Decision-Making Factors and
Future Research Needs

Singh, M. M., Sawhney, A., & Borrmann, A. (2015). Modular Coordination and BIM: Development of
Rule Based Smart Building Components. Procedia Engineering, 123, 519–527.
https://doi.org/10.1016/j.proeng.2015.10.104

Serdar Durdyev & Syuhaida Ismail (2019): Offsite Manufacturing in theConstruction Industry for
Productivity Improvement, Engineering Management Journal,
DOI:10.1080/10429247.2018.1522566To link to this article:
https://doi.org/10.1080/10429247.2018.1522566
(PDF) Offsite Manufacturing in the Construction Industry for Productivity Improvement.

He, R., Li, M., Gan, V. J. L., & Ma, J. (2021). BIM-enabled computerized design and digital fabrication
of industrialized buildings: A case study. Journal of Cleaner Production, 278, 123505.
https://doi.org/10.1016/j.jclepro.2020.123505

Monty Sutrisna , Jack Goulding,(2019). Managing information flow and design processes to reduce
design risks in offsite construction projects

S. Taylor and HSE, “Offsite Production in the UK Construction Industry – prepared by HSE: A Brief
Overview,” 2012.

Lopes, G., Vicente, R., Azenha, M., & Ferreira, T. M. (2018). A systematic review of Prefabricated
Enclosure Wall Panel Systems: Focus on technology driven for performance requirements.
Sustainable Cities and Society, 40, 688–703. doi:10.1016/j.scs.2017.12.027

Lacey, A. and Chen, W. and Hao, H. and Bi, K. 2018. Structural response of modular buildings – An
overview. Journal of Building Engineering. 16: pp. 45-56.

Modular construction: From projects to products by Nick Bertram, Steffen Fuchs, Jan Mischke, Robert
Palter, Gernot Strube, and Jonathan Woetzel, 2019

Hisham M. Said, Tejaswini Chalasani, Stephanie Logan, (2015), Exterior prefabricated panelized
walls platform optimization

Lacey, Andrew William; Chen, Wensu; Hao, Hong; Bi, Kaiming (2019). "Review of bolted inter-
module connections in modular steel buildings". Journal of Building Engineering. 23: 207–
219. doi:10.1016/j.jobe.2019.01.035

Lacey, Andrew William; Chen, Wensu; Hao, Hong; Bi, Kaiming (2018). "Structural Response of
Modular Buildings – An Overview". Journal of Building Engineering. 16: 45–
56. doi:10.1016/j.jobe.2017.12.008

Mark Burnett, "Blocking Brute Force Attacks" Archived 2016-12-03 at the Wayback Machine, UVA
Computer Science, 2007

Book

BIM handbook : a guide to building information modelling for owners, managers, designers, engineers
and contractors / Chuck Eastman . . . [et al.]. — 2nd ed.

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 78

BIM Handbook: A Guide to Building Information Modeling for Owners, Designers, Engineers,
Contractors, and Facility Managers / Rafael Sacks, Chuck Eastman, Ghang Lee, Paul Teicholz; John
Wiley & Sons, Aug 14, 2018

Prefab Architecture: A Guide to Modular Design and Construction; By Ryan E. Smith, John Wiley &
Sons, Dec 14, 2010

Dissertations

Jonatan Francisco Fernandes Salgado, L (2019) ‘Ciclo de Estudos Integrados Conducente ao Grau de
Mestre em Engenharia Civil’ Master dissertation, University of Uminho, Braga, Portugal

Camilo Mercado Siles, 2020 ‘BIM-based Framework forDeconstructability Assessment of Steel
Structures’ Master dissertation, University of Uminho, Braga, Portugal

 Mohammed Refaat Mekawy Mohammed, 2020 ‘A Framework for Using BIM in Mass-Customization
and Prefabrication in the AEC Industry’ Master Dissertation, Technische Universität München

Website

Mitchell, J.A. (2017) How and when to reference [Online]. Available at:
https://www.howandwhentoreference.com/ (Accessed: 27 May 2017)

(https://en.wikipedia.org/wiki/Prefabrication

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 79

LIST OF ACRONYMS AND ABBREVIATIONS

List of acronyms and abbreviations

2D 2 dimension
3D 3 dimension
AEC Architecture, Engineering and Construction
AI Artificial Intelligence
API Application Programming Interface
BIM Building Information Modelling
C# C-Sharp programming language
CAD Computer Aided Design
Python Python programming language

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 80

This page is intentionally left blank

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 81

Appendices

APPENDIX 1: PANELLING CODES IN PYTHON

Division Algorithm codes in Python

_author__ = "parsa"
__version__ = "2021.06.14"

import rhinoscriptsyntax as rs
import ghpythonlib.components as gh
import Grasshopper.Documentation
import math as math
Decimal = Decimal_No
ok # Organize curves in Bigboy Curve, Void Curve and ignor Curve
def OrganizeCrv(crvs,minArea):
 bigboyCrv = BigBoy(crvs)
 restCrv = []
 inCrv = []
 ignorCrv = []
 VoidCrv = []
 for crv in crvs:
 if gh.Area(crv)[0] < gh.Area(bigboyCrv)[0]:
 restCrv.append(crv)
 for rc in restCrv:
 if IsCurveInCurve(rc,bigboyCrv):
 inCrv.append(rc)
 for ic in inCrv:
 if gh.Area(ic)[0] <= minArea:
 ignorCrv.append(ic)
 else: VoidCrv.append(ic)
 return bigboyCrv,VoidCrv,ignorCrv

cleaning a bunch of curves
def CleanBranch(Branch):
 new_Boundary = Branch[0]
 new_VoidCurves = [i for i in Branch[1]]
 new_IgnoredCurves = [j for j in Branch[2]]
 for v in Branch[1]:
 if IsCurveInCurve(v,new_Boundary) and
HasCommonEdge(v,new_Boundary):
 new_Boundary = gh.RegionDifference(new_Boundary,v)
 new_VoidCurves.remove(v)
 Branch = [new_Boundary, new_VoidCurves, new_IgnoredCurves]
 return Branch

ok # check if two are completely similar in shape and location
(duplicated curve)
def AreSimilar(a,b):

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 82

 if IsCurveInCurve(a,b)==True and IsCurveInCurve(b,a) == True:
 return True
 return False

ok # Getting x and y coordinat of a rectangular curve
def XYSetCurve(Curve):
 while type(Curve) == type([]):
 Curve = Curve[0]
 points = []
 points = gh.Explode(Curve,True)[1]
 #points.pop(‐1)
 xpoint=[]
 ypoint=[]
 zpoint=[]
 for point in points:
 f = gh.Deconstruct(point)
 i = round(f[0],Decimal)
 j = round(f[1],Decimal)
 xpoint.append(i)
 ypoint.append(j)
 #Sorting and removing duplicated values of X and Y lists
 X=set(xpoint)
 Y=set(ypoint)
 Xcord = sorted(list(X))
 Ycord = sorted(list(Y))
 return (Xcord,Ycord)

ok # get the x and y of a list of curves
def xySets(Curves):

 #if Curves == None:
 #return False,"No Input!"
 if type(Curves) != type([]):
 Curves = [Curves]
 if len(Curves)==0:
 return None,None
 points = []
 xpoint=[]
 ypoint=[]
 zpoint=[]
 for curve in Curves:
 points = gh.Explode(curve,True)[1]
 if type(points) == type([]):
 for point in points:
 f = gh.Deconstruct(point)
 i = round(f[0],Decimal)
 j = round(f[1],Decimal)
 xpoint.append(i)
 ypoint.append(j)
 else: return None,None
 #Sorting and removing duplicated values of X and Y lists
 X=set(xpoint)
 Y=set(ypoint)

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 83

 Xcord = sorted(list(X))
 Ycord = sorted(list(Y))
 return (Xcord,Ycord)

def xySetsNew(Curves):
 if type(Curves) != type([]):
 Curves = [Curves]
 if len(Curves)==0:
 return False,"No Input"
 else:
 for crv in Curves:
 x , y = XYSetCurve(crv)
 x += x
 y += y
 Xpoint = set(x)
 Ypoint = set(y)
 Xcord = sorted(list(Xpoint))
 Ycord = sorted(list(Ypoint))
 return (Xcord,Ycord)

def IsCurveInCurve(inc,outc):
 if inc == None or outc == None:
 return False
 unc= gh.RegionUnion([inc,outc])
 if type(unc)==type([]) or unc==None:
 return False
 else:
 uncAr= round(gh.Area(unc)[0],4)
 incAr = round(gh.Area(inc)[0],4)
 outcAr = round(gh.Area(outc)[0],4)
 if uncAr == outcAr:
 return True
 if uncAr != outcAr:
 return False
ok # check if two curves has intersection or not.
def HasIntersect(curve,refCurve):
 result = gh.RegionIntersection(curve,refCurve)
 if result == None:
 return False
 return True
ok # Check if two curve have a common edge without intersect
def HasCommonEdge(incurve,outcurve):
 p0=gh.ConstructPoint(0,0,0)
 p1=gh.ConstructPoint(1,0,0)
 p2=gh.ConstructPoint(0,1,0)
 Inincurve = gh.OffsetCurve(incurve,+0.01, gh.Plane3Pt(p0,p1,p2),1)
 Outincurve = gh.OffsetCurve(incurve,‐0.01, gh.Plane3Pt(p0,p1,p2),1)
 if IsCurveInCurve(incurve,outcurve):
 if IsCurveInCurve(Inincurve,outcurve)==True and
IsCurveInCurve(Outincurve,outcurve)==False:
 return True

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 84

 elif IsCurveInCurve(Inincurve,outcurve)==False:
 if HasIntersect(Outincurve,outcurve)==True and
HasIntersect(Inincurve,outcurve)==False:
 return True
 return False

def IsInandAligned(Curve1,Curve2):
 p0=gh.ConstructPoint(0,0,0)
 p1=gh.ConstructPoint(1,0,0)
 p2=gh.ConstructPoint(0,1,0)
 a = gh.OffsetCurve(Curve1,‐0.01, gh.Plane3Pt(p0,p1,p2),0)
 if IsCurveInCurve(Curve1,Curve2)==True:
 if IsCurveInCurve(a,Curve2) == True:
 return True,False
 elif IsCurveInCurve(a,Curve2) == False:
 return True,True
 elif IsCurveInCurve(Curve1,Curve2)==False and HasIntersect(Curve1,
Curve2)==False and HasIntersect(a, Curve2)==True:
 return False,True
 else:
 return False, False
ok # Finding smalest Rectangular Units in a Curve and negative curve
def UnitRectangles (OrgCurve):

 Xcord = XYSetCurve(OrgCurve)[0]
 Ycord = XYSetCurve(OrgCurve)[1]
 #Creating smallest possible rectangles called Rectangular Unit
 RecPoints = []
 UnitRecList = []
 for m in range(len(Xcord) ‐ 1):
 for n in range(len(Ycord) ‐ 1):
 p01 = gh.ConstructPoint(Xcord[m],Ycord[n],0)
 p02 = gh.ConstructPoint(Xcord[m+1],Ycord[n],0)
 p03 = gh.ConstructPoint(Xcord[m+1],Ycord[n+1],0)
 p04 = gh.ConstructPoint(Xcord[m],Ycord[n+1],0)
 Rec = gh.x4PointSurface(p01,p02,p03,p04)
 #if IsCurveInCurve(Rec,OrgCurve):
 UnitRecList.append(Rec)
 return UnitRecList

ok # Finding smalest Rectangular Units in a bunch of curves and
boundingbox curve
def UnitRectangles (Curves):

 Xcord = xySets(Curves)[0]
 Ycord = xySets(Curves)[1]
 #Creating smallest possible rectangles called Rectangular Unit
 RecPoints = []
 UnitRecList = []
 for m in range(len(Xcord) ‐ 1):
 for n in range(len(Ycord) ‐ 1):
 p01 = gh.ConstructPoint(Xcord[m],Ycord[n],0)
 p02 = gh.ConstructPoint(Xcord[m+1],Ycord[n],0)

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 85

 p03 = gh.ConstructPoint(Xcord[m+1],Ycord[n+1],0)
 p04 = gh.ConstructPoint(Xcord[m],Ycord[n+1],0)
 Rec = gh.x4PointSurface(p01,p02,p03,p04)
 #if IsCurveInCurve(Rec,OrgCurve):
 UnitRecList.append(Rec)
 return UnitRecList

ok # Negative part of a curve when surrounded in a smallest possible
rectangle.
def NegativeCurve(Curve):
 bRect = BoundingRect(Curve)
 negCurve = gh.RegionDifference(bRect,Curve)
 return negCurve

ok # Bouding Rectangle of a Curve
def BoundingRect(Curve):

 bbXcord,bbYcord = XYSetCurve(Curve)
 xs = bbXcord[0]
 xe = bbXcord[‐1]
 ys = bbYcord[0]
 ye = bbYcord[‐1]
 p01 = gh.ConstructPoint(xs,ys,0)
 p02 = gh.ConstructPoint(xe,ys,0)
 p03 = gh.ConstructPoint(xe,ye,0)
 p04 = gh.ConstructPoint(xs,ye,0)
 return gh.x4PointSurface(p01,p02,p03,p04)

ok # finding all rectangles possible with x , y coordination
def AllRectangles(OrgCurve):
 Xcord, Ycord = xySets([OrgCurve])
 xLen = len(Xcord)
 yLen = len(Ycord)
 Rectangles = []
 for a in range(xLen‐1):
 for b in range (a+1,xLen):
 for c in range (yLen‐1):
 for d in range (c+1,yLen):
 corner=[]
 p01 = gh.ConstructPoint(Xcord[a],Ycord[c],0)
 p02 = gh.ConstructPoint(Xcord[b],Ycord[c],0)
 p03 = gh.ConstructPoint (Xcord[b],Ycord[d],0)
 p04 = gh.ConstructPoint(Xcord[a],Ycord[d],0)
 rec = gh.x4PointSurface(p01,p02,p03,p04)
 Rectangles.append(rec)
 return Rectangles

ok # finding all rectangles possible with x , y coordination in a Curve
and voidcurves surrounded by it, this function ignores the curves are in
ignore curves such as columns
def allRectanglesOrgVoid(OrgCurve,VoidCurves):
 curves = [OrgCurve]
 if type(VoidCurves)==type([]):
 for vc in VoidCurves:

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 86

 curves.append(vc)
 else:
 curves.append(VoidCurves)
 Xcord, Ycord = xySets(curves)
 xLen = len(Xcord)
 yLen = len(Ycord)
 Rectangles = []
 for a in range(xLen‐1):
 for b in range (a+1,xLen):
 for c in range (yLen‐1):
 for d in range (c+1,yLen):
 corner=[]
 p01 = gh.ConstructPoint(Xcord[a],Ycord[c],0)
 p02 = gh.ConstructPoint(Xcord[b],Ycord[c],0)
 p03 = gh.ConstructPoint (Xcord[b],Ycord[d],0)
 p04 = gh.ConstructPoint(Xcord[a],Ycord[d],0)
 rec = gh.x4PointSurface(p01,p02,p03,p04)
 Rectangles.append(rec)
 return Rectangles

ok # Creating a n*2 Matrix of Rectangles and Area /// input: list of
rectangles /// output: List of list of each rectangles and its area
[rectangle, area]
def RectAreaMat(Curve):
 area = gh.Area(Curve)[0]
 mat = [Curve,area]
 return mat

ok #
def BigBoy(Curves):
 RectAreaMat = []
 if not type(Curves) == "list":
 Curves = [Curves]
 for r in Curves:
 area = gh.Area(r)[0]
 mat = [r,area]
 RectAreaMat.append(mat)
 objects = RectAreaMat
 a = objects[0][1]
 r= None
 for obj in objects:
 if a <= obj[1]:
 a = obj[1]
 r = obj[0]
 return r
finding the biggest curve by area
def BiggestCurve(curves):
 mat=[]
 if curves == []:
 return False
 if type(curves) != type([]):
 curves = [curves]
 crv = [i for i in curves]
 for c in crv:

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 87

 mat.append(RectAreaMat(c))
 a = mat[0][1]
 for obj in mat:
 if a <= obj[1]:
 a = obj[1]
 r = obj[0]
 return r

Check if a curve is rectangle or not
def IsRectangle(shape):
 if shape:
 if len(XYSetCurve(shape)[0])==2 and len(XYSetCurve(shape)[1])==2 :
 return True
 return False
ok # divide a curve to bigboy and the rest shapes
def CurveDivision(OrgCurve,ViodCurve):
 allRect = allRectanglesOrgVoid(OrgCurve,VoidCurve)
 InOrgCrvRects = []
 for i in allRect:
 if IsCurveInCurve(i,OrgCurve):
 InOrgCrvRects.append(i)
 tshape = [i for i in InOrgCrvRects]
 fshape = []
 print len(InOrgCrvRects)
 for r in InOrgCrvRects:
 for v in VoidCurve:
 if HasIntersect(v,r) == True:
 fshape.append(r)
 if r in tshape:
 tshape.remove(r)
 bigboy = BigBoy(tshape)
 restboys = gh.RegionDifference(OrgCurve,bigboy)
 return bigboy,restboys

def ReorgnOrgViod(Shape, ViodCurves):
 NewVoids = []
 newShape = Shape
 for vc in VoidCurves:
 if IsInandAligned(vc,Shape):
 newShape = gh.RegionDifference(Shape,vc)
 elif IsInandAligned(vc,Shape)[0] == True and
IsInandAligned(vc,Shape)[1] == False:
 NewVoids.append(vc)
 #else:
 return newShape,NewVoids

#**** finding boundary, void, columns and out curves = branch
Check if a curve is in a bigger curve and have an aligned common edge,
then subtract the curves
def ExtractBranch(Curves,minArea):
 restCrv = []

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 88

 group = []
 ignorCrv = []
 VoidCrv = []
 bb01 = BiggestCurve(Curves)
 for crv in Curves:
 if AreSimilar(bb01,crv)==False:
 restCrv.append(crv)
 for rc in restCrv:
 if IsCurveInCurve(rc,bb01):
 if gh.Area(rc)[0] <= minArea:
 ignorCrv.append(rc)
 else:
 VoidCrv.append(rc)
 else:
 group.append(rc)
 branch = [bb01, VoidCrv,ignorCrv]
 return branch, group

def EnterBigboy(branch):
 SC_Boundary,SC_Viods,SC_Ignores = branch
 #**** find the rectangles are surraounded by boundary curve and don't
have intesect with void curves
 SC_allRect = allRectanglesOrgVoid(SC_Boundary,SC_Viods)
 inBoundRect = []
 for i in SC_allRect:
 if IsCurveInCurve(i,SC_Boundary):
 inBoundRect.append(i)
 #print(len(inBoundRect))
 inBoundNotIntersect = [i for i in inBoundRect]
 for j in inBoundRect:
 for k in SC_Viods:
 if (HasIntersect(j,k) or IsCurveInCurve(j,k) or
IsCurveInCurve(k,j)) and j in inBoundNotIntersect :
 inBoundNotIntersect.remove(j)
 print(len(inBoundNotIntersect))
 #**** find the bigboy rectangle
 SC_bigboy = BiggestCurve(inBoundNotIntersect)

 #**** finding the rest shape after subtracting bigboy from boundary
curve
 SC_RestShapes = gh.RegionDifference(SC_Boundary,SC_bigboy)

 #**** creating new group of curvs after finding the bigboy and rest
shapes
 void = SC_Viods[:]
 ignore = SC_Ignores[:]
 group = void + ignore
 if type(SC_RestShapes) != type([]):
 SC_RestShapes=[SC_RestShapes]
 for rc in SC_RestShapes:
 group.append(rc)

 return SC_bigboy,group

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 89

def EvaluateBoundary(branch):
 SC_Boundary, SC_Viods, SC_Ignores = branch
 if IsRectangle(SC_Boundary) and len(SC_Viods) == 0 :
 bigboy = SC_Boundary
 group = SC_Viods + SC_Ignores
 newbranch = ReOrganize(group,minArea)
 return newbranch, bigboy
 return branch,None

def IsBoundaryBigboy(branch):
 SC_Boundary, SC_Viods, SC_Ignores = branch
 if IsRectangle(SC_Boundary) and len(SC_Viods) == 0:
 return True
 return False

def MakeGroup(branch):
 SC_Boundary, SC_Viods, SC_Ignores = branch
 void = SC_Viods[:]
 ignore = SC_Ignores[:]
 group = void + ignore
 group.append(SC_Boundary)
 return group
"""

"""
Voids = ExtractBranch(Sample_Curves, minArea)[0][1]
Ignored_Curves = ExtractBranch(Sample_Curves, minArea)[0][2]
Main_Boundary = ExtractBranch(Sample_Curves, minArea)[0][0]

i = 0
Groups = []
BigBoys = []
while len(Sample_Curves) > 0 :
 i +=1
 branch , group0 = ExtractBranch(Sample_Curves, minArea)
 cl_branch = CleanBranch(branch)
 Groups.append(group0)
 if IsBoundaryBigboy(cl_branch):
 BigBoys.append(cl_branch[0])
 group1=[]
 else:
 bigboy,group1 = EnterBigboy(cl_branch)
 BigBoys.append(bigboy)
 Sample_Curves = group0 + group1
 print i

ignore = [i for i in Ignored_Curves]
for i in ignore:
 for b in BigBoys:
 if AreSimilar(i,b) and b in BigBoys:
 BigBoys.remove(b)

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 90

#‐‐‐‐ Cleaning BigBoys list: check if they are similar to voids.
voids_backup = [v for v in Voids]
for i in voids_backup:
 for b in BigBoys:
 if (AreSimilar(i,b) or IsCurveInCurve(b,i) or IsCurveInCurve(i,b))
and b in BigBoys:
 BigBoys.remove(b)

#‐‐‐‐ Finding negative curve of boundary
Negative_Curve = NegativeCurve(Main_Boundary)

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 91

Joining Algorithm codes in Python

__author__ = "parsa"
__version__ = "2021.07.20"

import rhinoscriptsyntax as rs
import ghpythonlib.components as gh
import Grasshopper.Documentation
import math as math
Decimal = 6
a = 0
ok # check if two are completely similar in shape and location
(duplicated curve)
def AreSimilar(a,b):
 if IsCurveInCurve(a,b)==True and IsCurveInCurve(b,a) == True:
 return True
 return False

ok #Check if a Curve is surrounded in another Curve
#def IsCurveInCurve(inCurve,outCurve):
int = gh.RegionDifference(inCurve,outCurve)
if int == None:
return True
return False
def IsCurveInCurve(inc,outc):
 if inc == None or outc == None:
 return False
 unc= gh.RegionUnion([inc,outc])
 if type(unc)==type([]) or unc==None:
 return False
 else:
 uncAr= round(gh.Area(unc)[0],4)
 incAr = round(gh.Area(inc)[0],4)
 outcAr = round(gh.Area(outc)[0],4)
 if uncAr == outcAr:
 return True
 if uncAr != outcAr:
 return False

ok # check if two curves has intersection or not.
def HasIntersect(curve,refCurve):
 result = gh.RegionIntersection(curve,refCurve)
 if result == None:
 return False
 return True

ok # Bouding Rectangle of a Curve
def BoundingRect(Curve):

 bbXcord,bbYcord = XYSetCurve(Curve)
 xs = bbXcord[0]
 xe = bbXcord[‐1]
 ys = bbYcord[0]
 ye = bbYcord[‐1]

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 92

 p01 = gh.ConstructPoint(xs,ys,0)
 p02 = gh.ConstructPoint(xe,ys,0)
 p03 = gh.ConstructPoint(xe,ye,0)
 p04 = gh.ConstructPoint(xs,ye,0)
 return gh.x4PointSurface(p01,p02,p03,p04)

def XYSetCurve(Curve):
 while type(Curve) == type([]):
 Curve = Curve[0]
 points = []
 points = gh.Explode(Curve,True)[1]
 #points.pop(‐1)
 xpoint=[]
 ypoint=[]
 zpoint=[]
 for point in points:
 f = gh.Deconstruct(point)
 i = round(f[0],Decimal)
 j = round(f[1],Decimal)
 xpoint.append(i)
 ypoint.append(j)
 #Sorting and removing duplicated values of X and Y lists
 X=set(xpoint)
 Y=set(ypoint)
 Xcord = sorted(list(X))
 Ycord = sorted(list(Y))
 return (Xcord,Ycord)

def RectangleProp(Rectangle):
 x,y = XYSetCurve(Rectangle)
 Dx = abs(x[0] ‐ x[1])
 Dy = abs(y[0] ‐ y[1])
 area = Dx * Dy
 return [x[0],x[1],y[0],y[1],Dx,Dy,area]

def Find_TadBoys(rectangles):
 Real_BigBoys = []
 TadBoy_rects = []

 for r in rectangles:
 rect_prop = RectangleProp(r)
 if rect_prop[4] < Minimum_Edge_Size or rect_prop[5] <
Minimum_Edge_Size:
 TadBoy_rects.append(r)
 else:
 Real_BigBoys.append(r)

 return Real_BigBoys,TadBoy_rects

#*** to find rectangles are likely neibour with the given rectangle.
def Tad_neighbors(tadboy, BigBoys):

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 93

 Top_neighbor = None
 Right_neighbor = None
 Bottom_neighbor = None
 Left_neighbor = None
 Neighborhood=[]
 tadboy_prop = RectangleProp(tadboy)
 for bg in BigBoys:
 bg_prop = RectangleProp(bg)
 if bg_prop[0] == tadboy_prop[1] or bg_prop[1] == tadboy_prop[0] or
bg_prop[2] == tadboy_prop[3] or bg_prop[3] == tadboy_prop[2]:
 Neighborhood.append(bg)

 for nr in Neighborhood:
 nr_prop = RectangleProp(nr)
 if nr_prop[2] == tadboy_prop[3] and nr_prop[0] <= tadboy_prop[0]
and nr_prop[1] >= tadboy_prop[1]:
 Top_neighbor = nr
 else:
 if nr_prop[0] == tadboy_prop[1] and nr_prop[2] <=
tadboy_prop[2] and nr_prop[3] >= tadboy_prop[3]:
 Right_neighbor = nr
 else:
 if nr_prop[3] == tadboy_prop[2] and nr_prop[0] <=
tadboy_prop[0] and nr_prop[1] >= tadboy_prop[1]:
 Bottom_neighbor = nr
 else:
 if nr_prop[1] == tadboy_prop[0] and nr_prop[2] <=
tadboy_prop[2] and nr_prop[3] >= tadboy_prop[3]:
 Left_neighbor = nr
 return
tadboy,Top_neighbor,Right_neighbor,Bottom_neighbor,Left_neighbor

def Adoption(Neighborhood):
 tadboy = Neighborhood[0]
 topNeib = Neighborhood[1]
 rightNeib = Neighborhood[2]
 bottomNeib = Neighborhood[3]
 leftNeib = Neighborhood[4]
 dx = RectangleProp(tadboy)[4]
 dy = RectangleProp(tadboy)[5]

 if topNeib:
 top_union = gh.RegionUnion([tadboy,topNeib])
 top_junction = ["Top", tadboy,topNeib,top_union]
 else: top_junction = ["Top",None]

 if rightNeib:
 right_union = gh.RegionUnion([tadboy,rightNeib])
 right_junction = ["Right",tadboy,rightNeib,right_union]
 else: right_junction = ["Right",None]

 if bottomNeib:
 bottom_union = gh.RegionUnion([tadboy,bottomNeib])
 bottom_junction = ["Bottom",tadboy,bottomNeib,bottom_union]

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 94

 else: bottom_junction = ["Bottom",None]

 if leftNeib:
 left_union = gh.RegionUnion([tadboy,leftNeib])
 left_junction = ["Left",tadboy,leftNeib,left_union]
 else: left_junction = ["Left",None]

 return top_junction, right_junction, bottom_junction, left_junction

def EvJunctionDirection(junction):
 if not None in junction :
 Direction,tadboy, bigboy, union = junction
 bound_rect = BoundingRect(union)

 it,jt,mt,nt,xt,yt,areat = RectangleProp(tadboy)
 ib,jb,mb,nb,xb,yb,areab = RectangleProp(bigboy)

 if xt/yt == 1:
 result = 1
 if nt == mb or mt == nb:
 if xt/yt > 1:
 result = 2
 elif xt/yt < 1 and xt < Minimum_Panel:
 result = ‐10
 else: result = 0

 if it == jb or ib == jt:
 if xt/yt < 1:
 result = 2
 elif xt/yt > 1 and yt < Minimum_Panel:
 result = ‐10
 else: result = 0
 return result
 return None

def EvJunctionCorners(junction):
 if not None in junction :
 Direction,tadboy, bigboy, union = junction
 x,y = XYSetCurve(union)
 if len(x) + len(y) == 4:
 result = 10
 if len(x) + len(y) == 6:
 result = 1
 if len(x) + len(y) > 6:
 result = 0
 return result
 return None

def EvAreaRate(junction):
 if not None in junction :
 Direction,tadboy, bigboy, union = junction
 r = gh.Area(tadboy)[0]/gh.Area(bigboy)[0]
 return r
 return None

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 95

def EvaluateJunction(junction):
 Direction = junction[0]
 total = None
 Dir = EvJunctionDirection(junction)
 Cor = EvJunctionCorners(junction)
 Ar = EvAreaRate(junction)
 if not None in junction:
 total = Dir+Cor+Ar
 return Direction,Dir , Cor , Ar,total

def Eva_Result(Evaluations):
 result = Evaluations[0]
 for eva in Evaluations:
 if type(eva[4]) == type(1.23456) and eva[4] < 0:
 return False
 if eva[4] > result[4]:
 result = eva
 if None in result:
 return False
 return result[0]

#**** finding TadBoys and their Neighborhoods
Neighborhoods = []
Real_Bigboys,TadBoys = Find_TadBoys(BigBoys)
for tady in TadBoys:
 neighbors = Tad_neighbors(tady,Real_Bigboys)
 Neighborhoods.append(neighbors)

if len(TadBoys)>0:
 Neighborhood = Neighborhoods[a]
 Tadboy = TadBoys[a]

#**** Making Junction and Evaluate them
Scores_list = []
Adoptoin_list = []
for nei in Neighborhoods:
 adoptions = Adoption(nei)
 Scores = []
 for junc in adoptions:
 Ev = EvaluateJunction(junc)
 Scores.append(Ev)
 Scores_list.append(Scores)
 Adoptoin_list.append(adoptions)

if len(TadBoys)>0:
 junc_score = Scores_list[a]
adoption = Adoptoin_list[1][1]

#**** finding the best junction for each tadboy and finding the related
United shape
results = []

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 96

if len(TadBoys)>0:
 scores = Scores_list[a]

for scores in Scores_list:
 n = Eva_Result(scores)
 results.append(n)

#**** Finding tadboys that can not be adopted
Orphans_index=[]
Final_Junctions=[]
for index in range(len(results)):
 print results[index]
 junction = Adoptoin_list[index]
 if results[index]==False or results[index]=="impossible":
 orphanboy_index = index
 Orphans_index.append(orphanboy_index)

 for j in junction:
 if j[0] == results[index]:
 Final_junction = j
 Final_Junctions.append(Final_junction)
OrphanBoys = []
for i in Orphans_index:
 OrphanBoys.append(TadBoys[i])
#**** finding the selectet junctions and cleaning them because
#**** some have a same bigboys. in such cases, we union them.
Families=[]

Final_Junction3=[]

for i in Final_Junctions:
 Final_Junction3.append(i[3])
 Families.append(i[3])

step_counter = 0
for i, curve_a in enumerate(Families):

 if step_counter == k:
 import sys
 break
 step_counter += 1
 for j, curve_b in enumerate(Families):

 if j <= i : # j = 1 and i = 1 continue
 continue

 # i = 0 and j = 1

 if curve_a!=None and curve_b!=None and HasIntersect(curve_a,
curve_b):

 Families[i] = gh.RegionUnion([Families[i], curve_b])
 print(i, j)
 Families[j] = None

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 97

finding single bigbioys:
Single_BigBoys = [bb for bb in Real_Bigboys]
for b in Real_Bigboys:
 for u in Families:
 if (IsCurveInCurve(b,u) == True or HasIntersect(b,u)==True) and b
in Single_BigBoys:
 Single_BigBoys.remove(b)

Panelized_Shapes = []
#for i in OrphanBoys:
Panelized_Shapes.append(i)
for j in Single_BigBoys:
 Panelized_Shapes.append(j)
for k in Families:
 if k != None:
 Panelized_Shapes.append(k)

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 98

Panelling Algorithm codes in Python

__author__ = "parsa"
__version__ = "2021.07.20"

import rhinoscriptsyntax as rs
import ghpythonlib.components as gh
import Grasshopper.Documentation
import math as math
Decimal = 6
#a = 0
ok # check if two are completely similar in shape and location
(duplicated curve)
def AreSimilar(a,b):
 if IsCurveInCurve(a,b)==True and IsCurveInCurve(b,a) == True:
 return True
 return False

ok #Check if a Curve is surrounded in another Curve
def IsCurveInCurve(inCurve,outCurve):
 int = gh.RegionDifference(inCurve,outCurve)
 if int == None:
 return True
 return False

ok # check if two curves has intersection or not.
def HasIntersect(curve,refCurve):
 result = gh.RegionIntersection(curve,refCurve)
 if result == None:
 return False
 return True

ok # Bouding Rectangle of a Curve
def BoundingRect(Curve):

 bbXcord,bbYcord = XYSetCurve(Curve)
 xs = bbXcord[0]
 xe = bbXcord[‐1]
 ys = bbYcord[0]
 ye = bbYcord[‐1]
 p01 = gh.ConstructPoint(xs,ys,0)
 p02 = gh.ConstructPoint(xe,ys,0)
 p03 = gh.ConstructPoint(xe,ye,0)
 p04 = gh.ConstructPoint(xs,ye,0)
 return gh.x4PointSurface(p01,p02,p03,p04)

def XYSetCurve(Curve):
 while type(Curve) == type([]):
 Curve = Curve[0]

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 99

 points = []
 points = gh.Explode(Curve,True)[1]
 #points.pop(‐1)
 xpoint=[]
 ypoint=[]
 zpoint=[]
 for point in points:
 f = gh.Deconstruct(point)
 i = round(f[0],Decimal)
 j = round(f[1],Decimal)
 xpoint.append(i)
 ypoint.append(j)
 #Sorting and removing duplicated values of X and Y lists
 X=set(xpoint)
 Y=set(ypoint)
 Xcord = sorted(list(X))
 Ycord = sorted(list(Y))
 return (Xcord,Ycord)

def RectangleProp(Rectangle):
 x,y = XYSetCurve(Rectangle)
 Dx = abs(x[0] ‐ x[1])
 Dy = abs(y[0] ‐ y[1])
 area = Dx * Dy
 return [x[0],x[1],y[0],y[1],Dx,Dy,area]

finding the biggest curve by area
def BiggestCurve(curves):
 mat=[]
 if curves == []:
 return False
 if type(curves) != type([]):
 curves = [curves]
 crv = [i for i in curves]
 for c in crv:
 mat.append(RectAreaMat(c))
 a = mat[0][1]
 for obj in mat:
 if a <= obj[1]:
 a = obj[1]
 r = obj[0]
 return r
ok # Creating a n*2 Matrix of Rectangles and Area /// input: list of
rectangles /// output: List of list of each rectangles and its area
[rectangle, area]
def RectAreaMat(Curve):
 area = gh.Area(Curve)[0]
 mat = [Curve,area]
 return mat

Check if a curve is rectangle or not
def IsRectangle(shape):

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 100

 if shape:
 if len(XYSetCurve(shape)[0])==2 and len(XYSetCurve(shape)[1])==2 :
 return True
 return False

def XYSetCurve(Curve):
 while type(Curve) == type([]):
 Curve = Curve[0]
 points = []
 points = gh.Explode(Curve,True)[1]
 #points.pop(‐1)
 xpoint=[]
 ypoint=[]
 zpoint=[]
 for point in points:
 f = gh.Deconstruct(point)
 i = round(f[0],Decimal)
 j = round(f[1],Decimal)
 xpoint.append(i)
 ypoint.append(j)
 #Sorting and removing duplicated values of X and Y lists
 X=set(xpoint)
 Y=set(ypoint)
 Xcord = sorted(list(X))
 Ycord = sorted(list(Y))
 return (Xcord,Ycord)

organise the panel shapes in three groups: Rectangulare (4 corners), L
shape (6 corners), T shape (8 corners), and S shape (more than 8 corners)
def Organise_Shapes(curves):
 if len(curves) > 0:
 edge_list = []
 corner_list = []
 for crv in curves:
 edge = len(gh.Explode(crv,False)[0])
 corner = len(gh.Explode(crv,False)[1])
 edge_list.append(edge)
 corner_list.append(corner)
 return edge_list,corner_list
 return False

find the bounding rectangle of shape and divide the edges by panel size
def Panel_Number(curve, a , ob,sb, MinDim):
 Bound_crv = BoundingRect(curve)
 Bound_crv_prop = RectangleProp(Bound_crv)
 Dx = Bound_crv_prop[4]
 Dy = Bound_crv_prop[5]
 if Dx % a <MinDim:
 No_X_a = floor(Dx/a)‐1
 else: No_X_a = floor(Dx/a)
 if Dx % b <MinDim:
 No_X_b = floor(Dx/b)‐1
 else: No_X_b = floor(Dx/b)

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 101

ok # finding all rectangles possible with x , y coordination in a family
def AllRectangles_Family(family):
 Xcord,Ycord = XYSetCurve(family)
 xLen = len(Xcord)
 yLen = len(Ycord)
 Rectangles = []
 for a in range(xLen‐1):
 for b in range (a+1,xLen):
 for c in range (yLen‐1):
 for d in range (c+1,yLen):
 corner=[]
 p01 = gh.ConstructPoint(Xcord[a],Ycord[c],0)
 p02 = gh.ConstructPoint(Xcord[b],Ycord[c],0)
 p03 = gh.ConstructPoint (Xcord[b],Ycord[d],0)
 p04 = gh.ConstructPoint(Xcord[a],Ycord[d],0)
 rec = gh.x4PointSurface(p01,p02,p03,p04)
 Rectangles.append(rec)
 return Rectangles

def FamilyDivision(family,Real_Bigboys):
 for b in Real_Bigboys:
 if IsCurveInCurve(b,family):
 BigBoy = b
 rest_shape = gh.RegionDifference(family,BigBoy)
 if type(rest_shape) != type([]):
 rest_shape = [rest_shape]
 childs = []
 twain = []
 for r in rest_shape:
 if IsRectangle(r):
 childs.append(r)
 else:
 twain.append(r)

 return BigBoy,rest_shape
def Division_A(edge,a,Panel_Min):
 if edge <= a and edge >= Panel_Min :
 N_reg_a = 1
 D_reg_a = edge
 N_ireg_a = 0
 D_ireg_a = 0
 if edge > a and (edge % a) > Panel_Min :
 N_reg_a = math.floor(edge/a)
 D_reg_a = a
 N_ireg_a = 1
 D_ireg_a = edge % a
 if edge > a and (edge % a) <= Panel_Min :
 N_reg_a = math.floor(edge/a)‐1
 D_reg_a = a
 N_ireg_a = 2
 D_ireg_a = abs(edge ‐ (N_reg_a*a))/2
 return [N_reg_a, D_reg_a, N_ireg_a, D_ireg_a]

def Division_B(edge, ob, mb, Panel_Min):

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 102

 if edge >= Panel_Min and edge <= ob:
 N_reg_b = 1
 D_reg_b = edge
 if edge >= ob and edge <= mb :
 N_reg_b = 1
 D_reg_b = edge
 if edge > mb :
 N_reg_b = math.floor(edge/ob)
 D_reg_b = edge/N_reg_b
 return [N_reg_b, D_reg_b]

def Evaluate_DirectionX(rectangle, a, ob, mb, Panel_Min):
 edge01 = RectangleProp(rectangle)[4]
 edge02 = RectangleProp(rectangle)[5]

 m01 = Division_A(edge01,a,Panel_Min)[0]
 m02 = Division_A(edge01,a,Panel_Min)[2]
 m03 = Division_B(edge02, ob, mb, Panel_Min)[0]
 P_X_Nu = (m01 + m02)*m03

 return P_X_Nu

def Evaluate_DirectionY(rectangle, a, ob, mb, Panel_Min):
 edge01 = RectangleProp(rectangle)[4]
 edge02 = RectangleProp(rectangle)[5]

 m01 = Division_A(edge02,a,Panel_Min)[0]
 m02 = Division_A(edge02,a,Panel_Min)[2]
 m03 = Division_B(edge01, ob, mb, Panel_Min)[0]
 P_Y_Nu = (m01 + m02)*m03
 return P_Y_Nu

def Select_Direction(rectangle, a, ob, mb, Panel_Min):
 edge01 = RectangleProp(rectangle)[4]
 edge02 = RectangleProp(rectangle)[5]
 XD = Evaluate_DirectionX(rectangle, a, ob, mb, Panel_Min)
 YD = Evaluate_DirectionY(rectangle, a, ob, mb, Panel_Min)
 if XD <= YD:
 SD = XD
 XDiv = Division_A(edge01,a,Panel_Min)
 YDiv = Division_B(edge02, ob, mb, Panel_Min)
 if XD > YD:
 SD = YD
 YDiv = Division_A(edge02,a,Panel_Min)
 XDiv = Division_B(edge01, ob, mb, Panel_Min)
 else: SD = None
 return XDiv, YDiv

def XY_Coordinate(rectangle, a, ob, mb, Panel_Min):
 xl , yl = Select_Direction(rectangle, a, ob, mb, Panel_Min)
 x0 = RectangleProp(rectangle)[0]
 y0 = RectangleProp(rectangle)[2]
 if len(xl) == 4 and len(yl) ==2:

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 103

 Xcord = [x0]
 Ycord = [y0]
 for i in range(int(xl[0])):
 x0 += xl[1]
 Xcord.append(x0)
 for j in range(xl[2]):
 x0 += xl[3]
 Xcord.append(x0)
 for k in range(int(yl[0])):
 y0 += yl[1]
 Ycord.append(y0)
 if len(xl) == 2 and len(yl) == 4:
 Xcord = [x0]
 Ycord = [y0]
 for i in range(int(yl[0])):
 y0 += yl[1]
 Ycord.append(y0)
 for j in range(int(yl[2])):
 y0 += yl[3]
 Ycord.append(y0)
 for k in range(int(xl[0])):
 x0 += xl[1]
 Xcord.append(x0)
 return Xcord, Ycord

def Create_Panels(rectangle, a, ob, mb, Panel_Min):
 Xcord,Ycord = XY_Coordinate(rectangle, a, ob, mb, Panel_Min)
 RecPoints = []
 UnitRecList = []
 for m in range(len(Xcord) ‐ 1):
 for n in range(len(Ycord) ‐ 1):
 p01 = gh.ConstructPoint(Xcord[m],Ycord[n],0)
 p02 = gh.ConstructPoint(Xcord[m+1],Ycord[n],0)
 p03 = gh.ConstructPoint(Xcord[m+1],Ycord[n+1],0)
 p04 = gh.ConstructPoint(Xcord[m],Ycord[n+1],0)
 Rec = gh.x4PointSurface(p01,p02,p03,p04)
 #if IsCurveInCurve(Rec,OrgCurve):
 UnitRecList.append(Rec)
 return UnitRecList

def Generate_Panels (curve, a, ob, mb, Panel_Min):
 rectangle = BoundingRect(curve)
 panels = Create_Panels(rectangle, a, ob, mb, Panel_Min)
 Final_Panels = []
 for p in panels:
 final_panel = gh.RegionIntersection(p , curve)
 Final_Panels.append(final_panel)
 return Final_Panels

Final_Paneling = []

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 104

#Final_Paneling = Generate_Panels (Shape_to_Panels[mm], a, ob, mb,
Panel_Min)
for shape in Shape_to_Panels:
 panels = Generate_Panels (shape, a, ob, mb, Panel_Min)
 Final_Paneling += panels

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 105

APPENDIX 2: HIGH QUALITY FIGURES

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 106

Figure 13 – Grasshopper script, Analysing part

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 107

Figure 14 – Grasshopper script, Panelling part

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 108

Figure 15 – Grasshopper script, Optimization part

Smart BIM objects for intelligent modular construction

Erasmus Mundus Joint Master Degree Programme – ERASMUS+
European Master in Building Information Modelling BIM A+ 109

Figure 18 – A sample result of Rational Optimisation by Python in Grasshopper

	Dissertation - BIM A+ - MohsenParsa - Oct 2021 - Uminho - Cover
	Dissertation_BIM_A+_MohsenParsa_Oct_2021_Uminho_Context_Edit10112021_A4

