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Abstract A direct multiple shooting (MS) method is implemented to solve optimal
control problems (OCP) in the Mayer form. The use of an MS method gives rise to
the so-called ‘continuity conditions’ that must be satisfied together with general al-
gebraic equality and inequality constraints. The resulting finite nonlinear optimiza-
tion problem is solved by a first-order descent method based on the filter methodol-
ogy. In the equivalent tri-objective problem, the descent method aims to minimize
the objective function, the violation of the ‘continuity conditions’ and the violation
of the algebraic constraints simultaneously. The numerical experiments carried out
with different types of benchmark OCP are encouraging.
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1 Introduction

An optimal control problem (OCP) is a constrained optimization problem that has a
set of dynamic equations as constraints. Application domains of OCP are varied [1].
There are three types of OCP that differ in the formulation of the functional to be
optimized. For example, an OCP of the Lagrange form has the objective functional
in its pure integral form as shown

J∗ = min
u(t)∈U

J(y(t),u(t))≡
∫ T

0
f2(t,y(t),u(t))dt

s.t. y′(t) = f1(t,y(t),u(t)), for t ∈ [0,T ]
y(0) = y0, y(T ) = yT ,

(1)

where y ∈ Rs̄ is the vector of state variables of the dynamic system, u ∈ U ⊂ Rc

is the vector of control or input variables and U represents a class of functions
(in particular functions of class C1 and piecewise constant) and usually contains
limitations to the control [2]. To convert problem (1) into the Mayer form, a new
variable is added to the states vector y, such that y′s(t) = f2(t,y(t),u(t)) with the
initial condition ys(0) = 0, where s = s̄ + 1 represents the total number of state
variables. Thus, problem (1) becomes:

min
u(t)∈U

J(y(t),u(t))≡ ys(T )

s.t. y′(t) = f1(t,y(t),u(t))
y′s(t) = f2(t,y(t),u(t)), for t ∈ [0,T ]
y(0) = y0, ys(0) = 0, y(T ) = yT .

(2)

In the OCP we want to find u that minimizes the objective functional J sub-
ject to the dynamic system of ordinary differential equations (ODE). The prob-
lem may have other more complex ‘terminal constraints’ H(T,y(T ),u(T )) = 0.
States y and control u may also be constrained by algebraic equation constraints
he(t,y(t),u(t)) = 0, e ∈ E and ‘path constraints’ g j(t,y(t),u(t)) ≤ 0, j ∈ F , where
E = {1,2, . . . ,m} and F = {1,2, . . . , l}.

Methods for solving OCP like (2) can be classified into indirect and direct meth-
ods. Indirect methods use the first-order necessary conditions from Pontryagin’s
maximum principle to reformulate the original problem into a boundary value prob-
lem. On the other hand, direct methods solve the OCP directly [3] transforming the
infinite-dimensional OCP into a finite-dimensional optimization problem that can be
solved by effective and well-established nonlinear programming (NLP) algorithms.
All direct methods discretize the control variables but differ in the way they treat the
state variables [4] . They are also classified as Discretize then Optimize strategies in
contrast to the Optimize then Discretize strategies of the indirect methods [1] .

This paper explores the use of a first-order descent method based on the filter
methodology [5, 6] to solve the NLP problem, within a direct method for solving an
OCP in the Mayer form. The use of a direct multiple shooting (MS) method gives
rise to the so-called ‘continuity conditions’ that must be satisfied. The novelty here
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is that a filter methodology is used to minimize the objective function, the viola-
tion of the ‘continuity conditions’ and the violation of algebraic constraints simul-
taneously. The NLP problem is a tri-objective problem and the first-order descent
method generates a search direction that is either the negative gradient of one of
the functions to be minimized or a convex combination of negative gradients of two
functions. To overcome the drawback of computing first derivatives, the gradients
are approximated by finite differences.

The paper is organized as follows. Section 2 briefly describes the direct MS al-
gorithm for solving the OCP in the Mayer form. The herein proposed first-order de-
scent filter algorithm is discussed in Sect. 3, the numerical experiments are shown
in Sect. 4 and we conclude the paper with Sect. 5.

2 Direct Multiple Shooting Method

In a direct single shooting (SS) method, only the controls are discretized in the
NLP problem [3] . The dynamic system is solved by an ODE solver to get the state
values for the optimization. Thus, simulation and optimization are carried out se-
quentially. On a specific grid defined by 0 = t1 < t2 < · · · < tN−1 < tN = T , where
N − 1 is the total number of subintervals, the control u(t) is discretized, namely
using piecewise polynomial approximations. The simplest of all is a piecewise con-
stant, u(t) = qi, for t ∈ [ti, ti+1] and i = 1, . . . ,N− 1 so that u(t) only depends
on the control parameters q = (q1,q2, . . . ,qN−1) and u(t) = u(t,q). When the hori-
zon length T is not fixed, the control parameter vector also includes T to define
the optimization variables. The dynamic system is solved by (forward numerical in-
tegration) an ODE solver and the state variables y(t) are considered as dependent
variables y(t,q). The main advantage of a direct SS method is the reduced number
of decision variables (control parameters) in the NLP even for very large dynamic
systems. However, unstable systems may be difficult to handle.

In a direct MS method, discretized controls and state values at the start nodes of
the grid (grid points) – xi ∈Rs, i= 1,2, . . . ,N−1, known as MS node variables – are
the decision variables for the NLP solver [7]. After the discretization of the controls,
the ODE system is solved on each shooting subinterval [ti, ti+1] independently, but
they need to be linked by the auxiliary variables xi, i = 1,2, . . . ,N−1. They are the
initial values for the state variables for the N−1 independent initial value problems
on the subintervals [ti, ti+1]:

y′(t) = f(t,y(t),qi)≡
{

f1(t,y(t),qi)
f2(t,y(t),qi)

with y(ti) = xi, for t ∈ [ti, ti+1] ,

where y ∈ Rs. Trajectories yi(t;xi,qi) are obtained where the notation “(t;xi,qi)”,
for the argument, means that they are dependent on t as well as on the specified
values for the node variables xi and control parameters. The initial state values xi

should satisfy the ‘continuity conditions’
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yi(ti+1;xi,qi) = xi+1, i = 1, . . . ,N−1 , (3)

(ensuring continuity of the solution trajectory), the initial value x1 = y0 and the final
state constraints xN = yT [4, 8].

We choose to implement a direct MS method since it can cope with differential
and algebraic equations that show unstable dynamical behavior [7]. The main steps
of the direct MS algorithm are shown in Algorithm 1.

Input: T , N, f(t,y,u), y0, yT , constraint functions.
Output: Optimal control and state variables.
Define the grid points in the interval [0,T ]: 0 = t1 < · · ·< tN−1 < tN = T .
Discretize the control: u(t) = qi for t ∈ [ti, ti+1], i = 1, . . . ,N−1.
Define the starting values for the state vector xi for each [ti, ti+1], i = 1, . . . ,N−1, and xN .
(Invoke the NLP algorithm)
while Stopping conditions are not satisfied do

With qi, i = 1, . . . ,N−1, xi, i = 1, . . . ,N, use an ODE solver to evaluate the state
trajectories in [ti, ti+1], i = 1, . . . ,N−1:

for yi(ti) = xi, (yi)′(t) = f(t,yi(t),qi);
Evaluate the ‘continuity conditions’ yi(ti+1;xi,qi) = xi+1, i = 1, . . . ,N−1, as well as

x1 = y0 and xN = yT ;
Evaluate algebraic equality and inequality constraints for t ∈ [ti, ti+1], i = 1, . . . ,N−1;
Evaluate the objective function;
Generate new qi, i = 1, . . . ,N−1 and xi, i = 1, . . . ,N.

end

Algorithm 1: Direct MS algorithm

3 First-Order Descent Filter Method

The herein proposed first-order descent filter method relies on descent directions for
two constraint violation functions (handled separately) and for the objective func-
tion in order to converge towards the optimal solution of the NLP problem. One of
the constraint violation functions emerges from the ‘continuity constraints’ violation
(including initial state and final state constraints) and the other comes up from the
state and control algebraic equality and inequality constraints. We assume that the
NLP problem is a non-convex constrained optimization problem (COP). For prac-
tical purposes, we assume that the OCP is in the Mayer form, the ODE system has
initial and boundary state values, state and control variables are constrained by al-
gebraic equality and inequality constraints, and the explicit 4th. order Runge-Kutta
integration formula is used to solve the dynamic system in each subinterval [ti, ti+1]
using 5 points.

As stated in the last section, the decision variables of the COP are the initial
state values at the nodes xi ∈ Rs, i = 1, . . . ,N and the control variables qi ∈ Rc,
i = 1, . . . ,N − 1. Besides possible algebraic constraints on the state and control
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variables, the ‘continuity constraints’ (3), the initial state and the final state con-
straints must be added to the optimization problem formulation. Thus, our COP has
the following form:

min
xi, i∈IN ;qi, i∈I

ys(T )

s.t. g j(yi(t;xi,qi),qi)≤ 0, t ∈ [ti, ti+1], i ∈ I, j ∈ F
he(yi(t;xi,qi),qi) = 0, t ∈ [ti, ti+1], i ∈ I,e ∈ E
yi(ti+1;xi,qi)−xi+1 = 0, i ∈ I
x1−y0 = 0,xN−yT = 0 ,

(4)

where I = {1, . . . ,N−1} and IN = I∪{N}. To solve the optimization problem (4),
the set of ODE must be solved so that the ‘continuity constraints’ yi(ti+1;xi,qi)−
xi+1 = 0, the initial state and the final state constraints, the other equality and in-
equality constraints and the objective function are evaluated (see Algorithm 1).
Since problem (4) has constraints, we seek optimal values for x and q such that
all the constraints are satisfied – a feasible solution of the COP – and the objective
function takes the least value.

3.1 Filter Methodology

To check solution feasibility, a measure for the violation of the constraints is
adopted. To implement the herein proposed filter methodology, the constraints are
fractionated into two sets and their violations are computed and handled separately.
We denote the violation of the ‘continuity constraints’, initial state and final state
constraints by the non-negative function:

θ(x,q) = ∑
l∈L

∑
i∈I

(yi
l(ti+1;xi,qi)− xi+1

l )2 +∑
l∈L

(x1
l − yl0)

2 +∑
l∈L

(xN
l − ylT )

2 , (5)

where L = {1,2, . . . ,s}, noting that θ(x,q) is zero if the solution (x,q) satisfies
these constraints, and is positive otherwise. These are the constraints that are more
difficult to be satisfied and we need to prioritly drive the violation θ to zero as soon
as possible so that the ODE integration runs as close as possible to the exact values
of the state variables.

To evaluate the algebraic equality and inequality constraints violation, a non-
negative function p, also based on the Euclidean norm of vectors, is used

p(x,q) = ∑
j∈F

∑
i∈I

max
{

0,g j(yi(t;xi,qi),qi)
}2

+ ∑
e∈E

∑
i∈I

he(yi(t;xi,qi),qi)2, (6)

and similarly, p(x,q) = 0 when the corresponding constraints are satisfied, and
p(x,q) > 0 otherwise. The violation of these constraints is also forced to converge
to zero.
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The extension of the filter methodology [5] into the descent algorithm to solve
the COP is equivalent to the reformulation of the problem (4) as a tri-objective
optimization problem that aims to minimize both the feasibility measures, defined
by the constraint violation functions θ(x,q) and p(x,q), and the optimality measure
defined by the objective function ys(T ):

min
xi, i∈IN ;qi, i∈I

(θ(x,q), p(x,q),ys(T )) . (7)

In our filter methodology, a filter F is a finite set of triples (θ(x,q), p(x,q),ys(T ))
that correspond to points (x,q), none of which is dominated by any of the others in
the filter. A point (x̂, q̂) is said to dominate a point (x,q) if and only if the following
conditions are satisfied simultaneously:

θ(x̂, q̂)≤ θ(x,q), p(x̂, q̂)≤ p(x,q) and ŷs(T )≤ ys(T ) ,

with at least one inequality being strict. The filter is initialized to F = {(θ , p,ys) :
θ ≥ θmax, p ≥ pmax}, where θmax, pmax > 0 are upper bounds on the acceptable
constraint violations. Let Fk be the filter at iteration k of the algorithm. To avoid
the acceptance of a trial point (x̄, q̄) (approximation to the optimal solution), or the
corresponding triple (θ(x̄, q̄), p(x̄, q̄), ȳs(T )), that is arbitrary close to the boundary
of the filter, the conditions of acceptability to the filter define an envelope around
the filter and are as follows:

θ(x̄, q̄)≤ (1− γ)θ(x(l),q(l)) or p(x̄, q̄)< (1− γ)p(x(l),q(l))

or ȳs(T )≤ y(l)s (T )− γ

(
θ(x(l),q(l))+ p(x(l),q(l))

) (8)

for all points (x(l),q(l)) that correspond to triples (θ(x(l),q(l)), p(x(l),q(l)),y(l)s (T ))
in the filter Fk. Points with constraint violations that exceed θmax or pmax are not
acceptable. The constant γ ∈ (0,1) is fixed and the smaller the tighter is the envelope
of acceptability. The above conditions impose a sufficient reduction on one of the
feasibility measures or on the optimality measure for a point to be acceptable. When
the point is acceptable to the filter, the filter is updated and whenever a point is added
to the filter, all the dominated points are removed from it.

3.2 The First-Order Descent Filter Algorithm

The proposed first-order descent method is based on using gradient approximations
of the functions, θ , p or ys, of the tri-objective problem (7), to define search direc-
tions coupled with a simple line search to compute a step size that gives a simple
decrease on one of the measures θ , p or ys. Since θ is the most difficult to reduce,
priority is given to searching along the (negative) gradient of θ or a (negative) com-
bination of the gradient of θ with the gradient of p or ys. See Algorithm 2. For easy
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of notation v=
(
x1

1, . . . ,x
1
s , . . . ,x

N
1 , . . . ,x

N
s ,q

1
1, . . . ,q

1
c , . . . ,q

N−1
1 , . . . ,qN−1

c
)T

is used to
denote the vector of the decision variables (v ∈ RnD ,nD = Ns+(N−1)c).

Each component i of the gradient of θ with respect to the variable vi, at an itera-
tion k, is approximated by

∇iθ(v(k))≈
(

θ(v(k)+ εei)−θ(v(k))
)
/ε , i = 1,2, . . . ,nD (9)

for a positive and sufficiently small constant ε , being the vector ei ∈ RnD the i col-
umn of the identity matrix. Similarly for the gradients approximation of p and ys.

To identify the best point computed so far, the below conditions (10) are imposed.
Let vbest be the current best approximation to the optimal solution of problem (7).
A trial point, v̄, will be the best point computed so far (replacing the current vbest ) if
one of the conditions

Θ(v̄)<Θ(vbest) or ȳs(T )< ybest
s (T ) (10)

holds, where Θ = θ + p. At each iteration, the algorithm computes a trial point
v̄, approximation to the optimal solution, by searching along a direction that is the
negative gradient of θ , or a negative convex combination of the gradients of θ and p,
θ and ys, or p and ys, at the current approximation v. The selected direction depends
on information related to the magnitude of θ and p, at v. For example, if p(v) is
considered sufficiently small, i.e., 0≤ p(v)≤ η1, while θ(v)> η1 (for a small error
tolerance η1 > 0), then the direction is the negative gradient of θ at v. The search
for a step size α ∈ (0,1] goals the reduction of θ (‘M← θ ’ in Algorithm 2). On the
other hand, if both p and θ are considered sufficiently small, then the direction is
the negative convex combination of the gradients of θ and ys, although the search
for α forces the reduction on θ .

If both θ and p are not small yet (situation that occurs during the initial iterations)
the direction is along the negative convex combination of the gradients of θ and
p, although the line search forces the reduction on θ . However, if 0 ≤ θ(v) ≤ η1
but p(v) > η1, then the direction is along the negative convex combination of the
gradients of p and ys and the line search forces the reduction on p. Further details
are shown in the Algorithm 2.

The new trial point is accepted for further improvement if it satisfies the condi-
tions to be acceptable to the current filter (see conditions (8)), although each trial
point is considered as a new approximation to the optimal solution only if it is bet-
ter than the previously saved best point, according to (10). In this situation, a new
outer iteration - indexed by k in Algorithm 2 - is carried out unless the convergence
conditions are satisfied (see (11) below). If the trial point is accepted but it does not
satisfy (10), θ , p and ys are evaluated at the trial point and a new inner iteration -
indexed by It - is carried out. This inner iterative process runs for a maximum of
Itmax iterations.

The trial point might not be acceptable to the filter, in which case another inner
iteration is tried. If the number of iterations with non acceptable trial points reaches
Itmax, the new direction is along the negative convex combination of the gradients of
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Input: N, T , kmax > 0, Itmax > 0, η1 > 0
Output: vbest ,θ best , pbest ,ybest

s
Set k = 0, exit = “false”; Initialize F ;
Set initial v;
Compute θ = θ(v), p = p(v),ys = ys(T ); Update F ;
Set vbest = v,θ best = θ , pbest = p,ybest

s = ys;
while k < kmax and exit = “false” do

Set k = k+1, It = 0, itno = 0, accept = “true”, stop = “false”;
while It < Itmax and stop = “false” do

Set It = It +1, FIt = It/Itmax;
Compute Gθ ≈ ∇θ(v), Gp ≈ ∇p(v), Gys ≈ ∇ys(T ) using (9);
if accept = “true” then

if θ ≤ η1 and p≤ η1 then
Set G = (1−FIt)Gθ +FIt Gys ; M← θ ;

else
if p≤ η1 and θ > η1 then

Set G = Gθ ; M← θ ;
else

if θ ≤ η1 and p > η1 then
Set G = (1−FIt)Gp +FIt Gys ; M← p;

else
Set G = (1−FIt)Gθ +FIt Gp; M← θ ;

end
end

end
else

Set itno = itno +1;
if itno < (Itmax−1) then

Set G = (1−FIt)Gθ +FIt Gp; M← θ ;
else

Set G = (1−FIt)Gys +FIt Gθ ; M← ys;
end

end
Compute α ∈ (0,1] such that M(v−αG)< M(v); Set

v̄ = v−αG, θ̄ = θ(v̄), p̄ = p(v̄), ȳs = ȳs(T );
if v̄ is acceptable to filter (according to (8)) then

Set v = v̄,θ = θ̄ , p = p̄,ys = ȳs;
Set accept = “true”; Update F ;
if v̄ is the best computed so far (see (10)) then

vbest = v̄,θ best = θ̄ , pbest = p̄,ybest
s = ȳs;

if convergence conditions (11) are satisfied then
Set stop = “true”, exit = “true” (convergence);

end
Set stop = “true”;

end
else

Set accept = “false”;
end

end
end

Algorithm 2: Descent-filter algorithm
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θ and ys (with a reduction on ys in the line search); otherwise, the negative convex
combination of the gradients of θ and p (with a reduction on θ in the line search) is
tested.

The convergence conditions are said to be satisfied at a new trial point – the best
point computed so far, vbest , – if

θ(vbest)< η1 and p(vbest)< η1 and perror =
(∣∣ybest

s − ypr.best
s

∣∣/∣∣ybest
s
∣∣)< η2,

(11)
for small error tolerances η1 > 0 and η2 > 0, where the superscript pr.best refers to
the previous best point. The outer iterative process also terminates if the number of
iterations exceeds kmax.

4 Numerical Experiments

The new direct MS method based on descent directions and the filter methodology
has been tested with seven OCP. The MATLABr (MATLAB is a registered trade-
mark of the MathWorks, Inc.) programming language is used to code the algorithm
and the tested problems. The numerical experiments were carried out on a PC Intel
Core i7–7500U with 2.7GHz, 256Gb SSD and 16Gb of memory RAM. The values
set to the parameters are shown in Table 1.

Table 1 Parameter values

Parameter Value Parameter Value

θmax 1E +03θ(v(0)) η1 1E−04
pmax 1E +03max{p(v(0)),1} η2 1E−03
γ 1E−05 kmax 750
ε 1E−06 Itmax s

First, three problems with free terminal time T are solved. A simple approach
is to apply the change of variable t = T τ , (with dt = T dτ) which transforms the
problem into a fixed boundary problem on the interval [0,1] and treats T as an
auxiliary variable. When the objective is to minimize T , an alternative is to add a
new variable to the states vector y ∈ Rs−1 such that y′s(t) = 1, with initial value
ys(0) = 0.

Problem 1 A simple car model (Dubins car) is formulated with three degrees of
freedom where the car is imagined as a rigid body that moves in a plane [2]. The
position of the car is given by (x,y,β ) where x and y are the directions and β is
the angle with the X axis. The problem is to drive in minimum time the car from a
position to the origin:
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min
u(t)

J(x(t),y(t),β (t),u(t))≡ T

s.t. x′(t) = cos(β (t))
y′(t) = sin(β (t))
β ′(t) = u(t), t ∈ [0,T ]
x(0) = 4, y(0) = 0, β (0) = π

2 , x(T ) = 0, y(T ) = 0,
|u(t)| ≤ 2, t ∈ [0,T ] .

The results from both strategies to handle T free are shown in Table 2. The initial
guesses were x(ti) = 2, y(ti) = 0, β (ti) = 1, i ∈ IN and u(ti) = 0, i ∈ I. The num-
ber of points considered in [0,T ] is 11. The table shows the values of J, θ and p
achieved at iteration k, as well as the number of function evaluations, n f e, and the
time in seconds, time. Optimal solution reported [2] is J∗ = 4.32174. The results
are considered quite satisfactory. We show in Figs. 1(a) and 1(b) the optimal states
trajectory and control respectively, obtained from the run that considers the change
of variable t → τ . Fig. 1(c) displays the optimal control required to achieve iden-
tical states trajectory from the run that adds a new state variable. Slightly different
optimal controls were obtained to reach identical states trajectory.

Table 2 Results obtained for the problems 1, 2 and 3

Problem Handling T k J θ p n f e time

Dubins car 1 4.7539 2.7003E +01 0.0000E +00
adding new ys 388 4.3329 9.9908E−05 0.0000E +00 44255 50.0
change of variable 192 4.3658 9.6149E−05 0.0000E +00 18044 19.8

R allocation 1 0.5714 1.0484E +02 0.0000E +00
adding new ys 472 0.7219 9.7083E−05 0.0000E +00 44486 48.9
change of variable 638 0.7232 9.9168E−05 0.0000E +00 47223 49.7

Zermelo 1 3.8500 1.3863E +01 0.0000E +00
adding new ys 323 3.5143 9.6343E−05 2.8735E−05 29595 32.3
change of variable 644 3.5249 9.9618E−05 9.6530E−06 46160 48.2

Problem 2 The resource allocation problem (R allocation) goals the assignment of
resources in minimum time [2]:

min
u(t)

J(y(t),u(t))≡ T

s.t. y′1(t) = u1(t)y1(t)y2(t)
y′2(t) = u2(t)y1(t)y2(t), t ∈ [0,T ]
y1(0) = 1, y2(0) = 2, y1(T )y2(T ) = 10,
y1(t)≥ 0,y2(t)≥ 0, u1(t)+u2(t) = 1, u1(t)≥ 0, u2(t)≥ 0, t ∈ [0,T ] .

Since u2 = 1−u1 the control vector can be reduced to a scalar u1 ≡ u∈ [0,1]. Using
the initial guesses y1(ti) = 1, y2(ti) = 0, i∈ IN , u(ti) = 0, i∈ I and N = 11, the results
are shown in Table 2. Optimal solution reported [2] is J∗ = 0.714118. Figures 1(d)
and 1(e) show the optimal states y1, y2 and control u1, u2 respectively, for the case
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Fig. 1 a States trajectory for Dubins car. b Optimal control for Dubins car. c Optimal control
for Dubins car (when adding new ys). d States trajectory for R allocation. e Optimal control for
R allocation. f Optimal control for R allocation (when adding new ys). g States trajectory for
Zermelo. h Optimal control for Zermelo. i Optimal control for Zermelo (when adding new ys)

where a change of variable is applied. Figure 1(f) shows the control for the case of
handling T free through the adding of a new state variable. The states trajectory are
similar to Fig. 1(d).

Problem 3 Consider an unmanned aerial vehicle (Zermelo) flying in a horizontal
plane with constant speed V , although the heading angle u(t) (control input) (with
respect to the X axis) can be varied. Winds are assumed to be in the Y direction with
speed w. The objective is to fly from point A=(0,1) to B=(0,0) in minimum time:
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min
u(t)

J(x(t),y(t),u(t))≡ T

s.t. x′(t) =V cos(u(t))
y′(t) =V sin(u(t))+w, t ∈ [0,T ]
x(0) = 0, y(0) = 1, x(T ) = 0, y(T ) = 0
|u(t)| ≤ π/2, t ∈ [0,T ] .

For V = 1, w = 1/
√

2 and using the initial guesses x(ti) = 0, y(ti) = 1, i ∈ IN and
u(ti) = 0, i ∈ I, the results are shown in Table 2 for N = 11. A value near T = 3.5
is exhibited in [9]. The optimal states x, y and control u (from the run based on the
change of variable T → τ) are shown in Figs. 1(g) and 1(h) respectively. Figure 1(i)
presents the optimal control obtained from the run that adds a new variable to the
states vector.

The next three problems are OCP of the Lagrange form and the last problem is
already in the Mayer form.

Problem 4 In a continuous stirred-tank chemical reactor (Tank reactor), y1 repre-
sents the deviation from the steady-state temperature, y2 represents the deviation
from the steady-state concentration and u is the effect of the coolant flow on the
chemical reaction [10]:

min
u(t)

J ≡
∫ T

0
(y1(t)2 + y2(t)2 +Ru(t)2)dt

s.t. y′1(t) =−2(y1(t)+0.25)+(y2(t)+0.5)exp
(

25y1(t)
y1(t)+2

)
−(y1(t)+0.25)u(t)

y′2(t) = 0.5− y2(t)− (y2(t)+0.5)exp
(

25y1(t)
y1(t)+2

)
, t ∈ [0,T ]

y1(0) = 0.05, y2(0) = 0 .

The optimal solution reported in [10], for T = 0.78 and R = 0.1, is J∗ = 0.0268.
Using the initial guesses y1(ti) = 0.05, y2(ti) = 0, i ∈ IN and u(ti) = 0.75, i ∈ I, with
N = 11, the results are shown in Table 3. The proposed strategy has produced again
a reasonably good solution. Figures 2(a) and 2(b) show the optimal states y1,y2 and
control u respectively.

Problem 5 In the point mass maximum travel example (masstravel), the force u(t)
that moves a mass to the longest distance is to be found (with T = 10 fixed):

max
u(t)

J ≡
∫ T

0
v(t)dt

s.t. s′(t) = v(t)
v′(t) = u(t)− k0− k1v(t)− k2v(t)2, t ∈ [0,T ]
s(0) = 0, v(0) = 0, v(T ) = 0
|u(t)| ≤ g+ k3v(t)2, t ∈ [0,T ] .

The results, for k0 = 0.1, k1 = 0.2, k2 = 1, k3 = 1 and N = 11, are shown in Ta-
ble 3. The initial guesses were s(ti) = 1, v(ti) = 2, i ∈ IN and u(ti) = 5, i ∈ I. When
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Table 3 Results obtained for the problems 4, 5, 6 and 7

k J θ p n f e time

Tank reactor 1 0.0046 1.12E−02 0.0000E +00
176 0.0357 9.9503E−05 0.0000E +00 16320 18.0

masstravel 1 3.2633 6.9821E +01 1.6000E +02
69 6.0311 7.9855E−05 0.0000E +00 4830 5.3
128§ 6.0256 9.2528E−11 0.0000E +00 8963 9.7

trajectory 1 0.6457 1.6043E +01 1.0424E +01
56 0.2691 9.3978E−05 0.0000E +00 3922 4.4
307§ 0.2635 8.8477E−11 0.0000E +00 21494 22.5

obstacle 1 0.0000 2.4395E +00 0.0000E +00
341 2.3257 9.2300E−05 2.5452E−05 26208 27.1
750§ 2.4616 1.3062E−08 4.8821E−10 52702 53.7

transforming the above form into the Mayer form, the objective function value is
just s(T ) (thus no new state variable was added to the states vector). To confirm
convergence, the problem is also solved with η1 = 1E− 10, η2 = 1E− 06 in (11)
– identified with § in Table 3. Figures 2(c) and 2(d) contain the states and control
respectively.

Problem 6 (trajectory) Find u(t) that minimizes J (with T = 3 fixed) [4],

min
u(t)

J ≡
∫ T

0
(y2(t)+u2(t))dt

s.t. y′(t) = (1+ y(t))y(t)+u(t), t ∈ [0,T ]
y(0) = 0.05, y(T ) = 0,
|y(t)| ≤ 1, |u(t)| ≤ 1, t ∈ [0,T ] .

The obtained results for N = 11, with the initial guesses y(ti) = 1, i ∈ IN and u(ti) =
0, i ∈ I, are displayed in Table 3. Results with η1 = 1E−10, η2 = 1E−06 in (11)
are also included. The Figs. 2(e) and 2(f) present the states and control respectively.

Problem 7 The obstacle problem (obstacle) can be reformulated as [3] (T = 2.9):

min
u(t)

J ≡ 5y1(T )2 + y2(T )2

s.t. y′1(t) = y2(t)
y′2(t) = u(t)−0.1(1+2y1(t)2)y2(t)
y1(0) = 1, y2(0) = 1,
1−9(y1(t)−1)2− ( y2(t)−0.4

0.3 )2 ≤ 0,
−0.8− y2(t)≤ 0, |u(t)| ≤ 1, t ∈ [0,T ]

Using the initial guesses y1(ti) = 0, y2(ti) = 0, i ∈ IN , u(ti) = 0, i ∈ I and N = 11,
the results are shown in Table 3. This problem is also solved with η1 = 1E − 10,
η2 = 1E−06 in (11) to analyze the convergence issue. Figures 2(g) and 2(h) show
the states y1,y2 and control u respectively.
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Fig. 2 States trajectory and optimal control. a States for problem Tank reactor. b Control for
problem Tank reactor. c States for problem masstravel. d Control for problem masstravel. e States
for problem trajectory. f Control for problem trajectory. g States for problem obstacle. h Control
for problem obstacle.
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5 Conclusions

A first-order descent method based on a filter methodology is proposed to solve a
finite-dimensional nonlinear optimization problem that arises from the use of a di-
rect multiple shooting method for OCP. The implemented filter method relies on
three measures. The two feasibility measures are handled separately in order to give
priority to the minimization of the ‘continuity constraints’ violation over the alge-
braic equality and inequality constraints violation and the objective function. This
priority is patent by the use of search directions that are along either the negative
of the gradient of the ‘continuity constraints’ violation function or a negative con-
vex combination of that gradient and the gradient of the other constraints violation,
or the objective function. Numerical derivatives are implemented in order to avoid
computing the first derivatives of the involved functions. The numerical experiments
carried out until now have shown that the presented strategy is worth pursuing.

Issues related to the extension of the proposed method to solving retarded OCP
with constant delays in the state variables and in the control are now under investi-
gation and will be the subject of a future paper.
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