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Abstract— Falls are a major concern for society. They may re-
sult in death or in several injuries that require motor assistance,
representing an economic burden. To overcome these problems,
a diversity of fall prevention strategies implemented on assistive
devices such as smart walkers, have been widely explored. This
study presents a novel strategy by using exclusively information
from wearable sensors to detect near-falls while the subject uses
a conventional rollator. A comparative analysis was performed
to identify the most suitable classifier and the most relevant
subset of features for detecting near-fall events. Ten able-bodied
subjects performed 240 trials and simulated 180 near-falls
with the rollator. The Ensemble Learning with the first 51
ranked features by the mRMR presented the best performance
results (Accuracy = 95.18%; Detection time before recovery=
1.48+0.68 s). The results show that this strategy is suitable
for use with conventional rollators, which are more used than
smart walkers.

I. INTRODUCTION

WHEN smart walkers detect situations that may lead to
a fall, they usually stop providing support to the user [1].
Current fall prevention strategies usually require information
from non-wearable sensors placed on the walker, e.g. laser
range finders (LRF) [2], stereo cameras [3], force/torque
sensors [2], and depth cameras [4]. Smart walkers are less
used than conventional rollators. However, the number of
near-fall detection strategies for conventional rollators is
lower. To the best knowledge of the authors, there is yet
no near-fall detection strategy completely independent from
the rollator and based only on an Inertial Measurement Unit
(IMU) placed at the user’s lower trunk and Force Sensitive
Resistors (FSRs) in the feet. These sensors have already been
studied as mentioned in [5] but without the support of any
conventional rollator. This study aims therefore to implement
the abovementioned strategy. A comparative analysis was
performed to understand which is the most suitable machine
learning classifier for near-fall detection, as well as the subset
of most representative feature. This will allow to understand
what information is really important for this classification
problem towards the minimal sensor setup and computational
load for real-time application.
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II. METHODS
A. System Overview and Experimental Protocol

The proposed system (Fig. 1) comprises an IMU located
near to L5 lumbar vertebra and S1 sacral vertebra where the
Center of Mass (CoM) is usually considered; shoes equipped
with four FSRs to detect foot contacts with the ground;
and Arduino for sensor data acquisition at 100 Hz. Trunk’s
acceleration and angular velocity were measured on three
directions: Anteroposterior (AP), Vertical (V) and Mediolat-
eral (ML). The experiments involved 10 able-bodied subjects
(5 females and 5 males) with a mean age of 25.00£1.61
years old, a mean height of 1.69£0.11 m and a mean weight
of 66.504+11.32 kg. All participants provided written and
informed consent, respecting the ethical conduct defined by
the University of Minho Ethics Committee. Participants were
asked to walk with the support of a rollator for 4 different
activities at 2 different gait speeds (comfortable and slow):
walk forward for 10 meters; and walk forward and simulate
near-falls to the right, left and forward. Each simulation was
performed after an audible sound randomly applied by the
assessor. Participants performed three trials per condition.

B. Data Processing and Machine-Learning Approach

We performed the following procedures after data col-
lection: 1) data processing using a lst order lowpass filter
(exponential smoothing) with 0.5 as the smoothing factor and
a cut-off of 10 Hz [6]; ii) feature calculation which resulted
in a data set with a total of 169 features (Table I); iii) feature
normalization by subject’s height and min-max scaling [0;1];
iv) feature selection by using two methods - Minimum-
Redundancy Maximum-Relevancy (mRMR) and Relief-F -
and adapting Principal Component Analysis (PCA); v) data
labelling where near-falls only were considered after the last
valid and regular step before the near-fall simulation; and vi)
splitting data by using the hold-out method (70% and 30%
for training and test, respectively). Subsequently, we imple-
mented a 5-fold cross-validation (CV) with 10 repetitions
using only training data to: i) select the best subset of features
respecting the rankings; and ii) compare machine learning
classifiers (Discriminant Analysis, K-Nearest Neighbors -
KNN, Ensemble Learning, Decision Tree - DT, and Support
Vector Machine) using only the subset of features found
previously. From these procedures, we identified the most
accurate machine learning classifier for near-fall detection
and conducted a hyperparameter optimization. Lastly, we
implemented a post-processing method that uses the current
and past classifier outputs to eliminate misclassifications.
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Fig. 1. System description: a) Waistband IMU and rollator; b) Wearable
sensors location (IMU - back lower trunk; FSR - heel and toe).

ITII. RESULTS AND DISCUSSION

A total of 180 simulated near-falls using a conventional
rollator were analyzed for near-fall detection. Based on 5-
fold CV results, the best performances were achieved with
KNN, Ensemble Learning and DT with features ranked by
mRMR and Relief-F. However, the KNN stands out with
the following performance and with the first 59 ranked fea-
tures by Relief-F: Accuracy= 99.93%, Sensitivity (SENS)=
99.71%, Specificity (SPEC)= 99.97%, Precision (PREC)=
99.81%, Fl-score= 99.76% and Matthews correlation co-
efficient (MCC)= 99.71%. The following classifiers appear
below with an accuracy higher than 99%: KNN (60 features
- mRMR), Ensemble Learning (60 features - Relief-F), En-
semble Learning (51 features - mRMR) and DT (20 features
- Relief-F). The classifiers were further tested with unseen
data. The Ensemble Learning achieved the best performance
using the first 51 features ranked by the mRMR (Table
I): Accuracy= 95.18%, SENS= 71.63%, SPEC= 99.33%,
PREC= 94.96%, Fl-score= 81.66% and MCC= 79.99%).
The hyperparameter optimization outcomes are: i) Ensemble
Aggregation Method - Bag; ii) Learning Cycles - 498; iii)
Minimum Leaf Size - 1; and iv) No Learn Rate. Although
accuracy and specificity values are high, the sensitivity value
is low. Thus, we implemented a post-processing method
based on a time window that contains the current and past
classifier outputs to increase this value. A window size of
22 samples was obtained with training data. When using test
data, a near-fall was detected on average 0.71+£0.48 s after
the start and 1.48+0.68 s before the recovery, being able to
detect all 56 near-falls. The number of misclassified normal
walking samples decreased 98%. Although more detailed,
our results are in line with the scientific literature [1]-[4].

IV. CONCLUSION

We presented the Ensemble Learning with the first 51
features ranked by the mRMR from wearable data as an
effective strategy for near-fall detection when walking with
conventional walkers, advancing the state-of-the-art strate-
gies that are focused on smart walkers less usually used by

TABLE I
FEATURE TABLE (51 FEATURES RANKED BY MRMR IN BOLD)

Feature description

Acceleration - Acc (V, ML, AP), Angular velocity - Gyr (V, ML, AP)

4 FSR signals: toe right, heel right, toe left, heel left

Sum Vector Magnitude (SumVM) of Acc and Gyr*

Skewness, Kurtosis, Minimum, Maximum (AP), Mean, Variance, Stan-
dard deviation of Acc - (V, ML, AP)

Skewness, Kurtosis, Minimum, Maximum (ML), Mean (ML), Variance,
Standard deviation of Gyr - (V, ML, AP)

Skewness, Kurtosis, Minimum, Maximum (Gyr), Mean, Variance,
Standard deviation of SumVM of Acc and Gyr

Correlation between axes - Acc and Gyr - (V-ML, V-AP, ML-AP)

Acc after high-pass filter (AP, ML, V)**

SumVM of Acc raw data*, Dynamic Sum Vector*, Vertical Acc*, Total
Angular Change, Resultant Angular Acc**, Activity Signal Magnitude
Area (ASMA)**, Signal Magnitude Area (SMA)

Peak-to-peak values (PPV), Root Mean Square (RMS) (AP), Ratio Index
(RI), RI of PPV of Acc - (V, ML, AP)

PPV, RMS (V, AP), RL, RL of PPV of Gyr - (V, ML, AP)

PPV, RMS, RI, RI of PPV of SumVM of Acc and Gyr

Quaternions**, Roll**, Pitch**, Yaw** and Absolute vertical Acc*

SumVM of resultant angle change®, Maximum resultant angular acceler-
ation, Sum of Flutuation Frequency, SumVM of Resultant of Average
Acc*, SumVM of Resultant of Standard Deviation*

Resultant angle change**, Flutuation Frequency, Resultant of Average
Acc** (AP, ML), Resultant of Standard Deviation** (AP, ML), Gravity
Component*, Velocity (AP, V), Displacement (AP, V), Cumulative
horizontal sway length, Mean sway velocity (ML, V), Displacement
Range - (AP, ML, V)

Slope**, Fast Change Vector, SumVM of horizontal plane*, EMA**,
Rotational Angle using Acc**, Z-score*, Magnitude of Angular Dis-
placement®, Acc and Gyr Resultant of Delta Changes**, Cumulative
horizontal displacement

* - features that require only the current sample from initial data; **
- features that require only the current and the previous sample from
initial data; Excepting features 1-10, the remaining features require a
time-window of 5 samples (current sample and the 4 previous ones).

end-users. The proposed strategy is accurate (higher than
95%) for a considerable sample of healthy subjects and
detection times indicate a detection closer to the beginning of
the near-fall than to the recovery stage. Future work focus
on i) investigate the best IMU location and computational
load of the proposed strategy; ii) use data from older adults
to obtain results more related to end-users; and iii) use this
information in a closed-loop system capable of actuating in
high fall risk situations preventing the fall.
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