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O conectoma cerebral humano no envelhecimento: biomarcadores de RM de preservação 

e declínio cognitivo 

Resumo 

O envelhecimento normal é caracterizado por alterações no cérebro e na cognição, mesmo na ausência 

de doença. Visivelmente, as trajetórias de desempenho cognitivo no envelhecimento apresentam alta 

variabilidade inter-individual e vários fatores são conhecidos por contribuir para essa variabilidade. No 

entanto, os mecanismos neurais que provocam diferentes níveis de desempenho cognitivo em idosos 

ainda são mal compreendidos. O surgimento de novas ferramentas de análise na investigação em 

neuroimagem, tais como a análise de redes e parcelamento baseado em conectividade, pode ajudar a 

clarificar o envelhecimento do cérebro e as trajetórias cognitivas diferenciais. Contudo, até ao momento, 

poucos estudos aplicaram essas novas ferramentas para estudar alterações relacionadas com a idade 

nas redes cerebrais estruturais de matéria branca. O objetivo principal desta tese foi fornecer novo 

conhecimento sobre as mudanças induzidas pelo envelhecimento nas redes cerebrais estruturais de 

matéria branca e a sua associação com o estado cognitivo, através do uso de novas ferramentas de 

neuroimagem e estudos longitudinais. Os resultados obtidos revelaram que o envelhecimento é 

caracterizado por uma deterioração da integridade de matéria branca, que está associada a mudanças 

longitudinais na cognição. Também identificamos pela primeira vez uma sub-rede com mudanças 

significativas na conectividade estrutural ao longo do envelhecimento, que englobou diminuições 

sobretudo nas conexões intra-hemisféricas e aumentos principalmente nas conexões inter-hemisféricas. 

A análise das propriedades topológicas das redes cerebrais revelou uma diminuição na integração e 

aumento na segregação, sugerindo um cérebro mais “desconectado” com o envelhecimento. Por fim, 

também desenvolvemos um novo método para criar um parcelamento do cérebro baseado em 

conectividade e aplicámo-lo para estudar o envelhecimento do cérebro. Replicando o nosso resultado 

anterior, encontramos uma sub-rede com diminuições significativas nas conexões intra-hemisféricas e 

aumentos nas conexões inter-hemisféricas. A análise das características topológicas revelou resultados 

desafiadores que podem ser explicados pela maior resolução do parcelamento desenvolvido. De um 

modo geral, estes resultados podem ajudar a identificar os principais impulsionadores das alterações de 

matéria branca em diferentes níveis cognitivos, o que pode levar ao desenvolvimento de novos 

biomarcadores cerebrais in vivo de variabilidade inter-individual em trajetórias cognitivas. 

Palavras-chave: envelhecimento; RM de difusão; matéria branca; performance cognitiva; rede cerebral; 

parcelamento cerebral 
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The human brain connectome in aging: MRI biomarkers of cognitive preservation and 

decline 

Abstract 

Normal aging is characterized by alterations in the brain and in cognition, even in the absence of disease. 

Noticeably, cognitive performance trajectories in aging exhibit high inter-individual variability and multiple 

factors are known to contribute to this variability. Still, the neural mechanisms which elicit different levels 

of cognitive performance in older adults are yet poorly understood. The emergence of new analytical tools 

in neuroimaging research, such as network analysis and connectivity-based parcellation, can help shed 

new light regarding the aging brain and the differential cognitive trajectories. However, to date few studies 

have applied these new tools to study age-related alterations in white matter structural brain networks. 

The main goal of this thesis was to provide new insights about the changes induced by aging in white 

matter structural brain networks and their association with cognitive status, through the use of new 

neuroimaging tools and longitudinal designs. Our findings revealed that aging is characterized by a 

deterioration of white matter integrity which is associated with longitudinal changes in cognition. We also 

identified for the first time a sub-network with significant changes in structural connectivity along aging, 

which encompassed decreases mainly in intra-hemispheric connections and increases mostly in inter-

hemispheric connections. The analysis of the topological properties of brain networks revealed a decrease 

in integration and an increase in segregation, suggesting a more “disconnected” brain along aging. 

Finally, we also developed a new method to create a connectivity-based parcellation of the brain and 

applied it to study the aging brain. Replicating our previous result, we found a sub-network with significant 

decreases in intra-hemispheric connections and increases in inter-hemispheric connections. The analysis 

of the topological features revealed challenging results which could be explained by the higher resolution 

of the developed parcellation. Altogether, these findings may help identify the main drivers of white matter 

alterations at different cognitive levels, which could lead to the development of new in-vivo brain 

biomarkers of inter-individual variability in cognitive trajectories. 

Keywords: aging; diffusion MRI; white matter; cognitive performance; brain network; brain parcellation 
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CHAPTER II 

Figure 1. Statistically significant changes along time in a) FA, b) AD, c) RD and d) MD maps. Blue/light-

blue gradient indicates decreases along time. Red/yellow gradient indicates increases along time. All 

results were considered significant at p<0.05 (FWE corrected for multiple comparisons). We observe a 

decrease in FA with a left hemisphere dominant pattern, while the other metrics (AD, RD and MD) exhibit 

an increase between timepoints with the changes being spread throughout the brain. 

Figure 2. Trajectories of DTI metrics (FA, AD, RD and MD) of each cluster with significant differences 

between timepoints. The x-axis represents time of assessment and y-axis, the average values of each 

metric. Error bars represent standard deviation. FA clusters show a decrease along time, while AD, RD 

and MD clusters exhibit an increase. Overall, these results suggest that aging induces a deterioration of 

white matter integrity. 

Figure 3. Significant repeated measures correlations between long-term storage (LTS) test score and 

DTI metrics (FA, AD, RD and MD) of clusters with significant changes between timepoints. The x-axis 

represents average values of each DTI metric and y-axis, the average values of LTS. Observations from 

the same individual are represented with the same color, with corresponding lines showing the repeated 

measures correlation fit for each subject. Dashed black line represents the overall regression line. All 

clusters, with the exception of RD cluster 1, were significantly associated with LTS. For FA clusters, we 

found a positive correlation, meaning that higher FA values are associated with higher LTS scores. For 

AD, RD and MD clusters, a negative correlation was found, showing that lower AD, RD or MD values are 

associated with higher LTS scores. Overall, these results suggest that higher WM integrity is associated 

with higher cognitive performance in the memory domain. 

Figure 4. Significant repeated measures correlations between Stroop test variables (Stroop colors – SC, 

Stroop words/colors – SWC) and DTI metrics (FA, AD, RD and MD) of clusters with significant changes 

between timepoints. The x-axis represents average values of each DTI metric and y-axis, the average 

values of SC/SWC. Observations from the same individual are represented with the same color, with 

corresponding lines showing the repeated measures correlation fit for each subject. Dashed black line 

represents the overall regression line. All clusters, with the exception of RD cluster 1, were significantly 

associated with SC. For FA clusters, we found a positive correlation, meaning that higher FA values are 
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associated with higher LTS scores. For AD, RD and MD clusters, a negative correlation was found, showing 

that lower AD, RD or MD values are associated with higher SC scores. Regarding SWC, FA cluster 1 was 

positively correlated and AD was negatively correlated. Overall, these results suggest that higher WM 

integrity is associated with higher cognitive performance in the executive function domain. 

Figure 5. Significant repeated measures correlations between Mini-Mental State Examination (MMSE) 

and DTI metrics (FA and RD) of clusters with significant changes between timepoints. The x-axis 

represents average values of each DTI metric and y-axis, the average values of MMSE. Observations from 

the same individual are represented with the same color, with corresponding lines showing the repeated 

measures correlation fit for each subject. Dashed black line represents the overall regression line. Only 

FA cluster 2 and RD cluster 1 were significantly associated with MMSE. FA exhibited a positive correlation, 

meaning that higher FA values are associated with higher MMSE scores. RD was negatively correlated 

with MMSE, showing that lower RD values are associated with higher MMSE scores. Overall, these results 

suggest that higher WM integrity is associated with higher general cognition. 

Figure S1. Trajectories of cognitive test scores for memory (LTS, CLTR, DR), executive function (SW, 

SC, SWC) and general cognition (MMSE) along time. The x-axis represents time of assessment and y-axis, 

the average values of each test. Error bars represent standard deviation. All cognitive test scores exhibit 

a decrease between timepoints, with the exception of SW that remains practically constant. 

Figure S2. Statistically significant changes along time in a) FA Cluster 1, b) FA Cluster 2, c) RD Cluster 

1 and d) RD Cluster 2. Blue/light-blue gradient indicates decreases along time. Red/yellow gradient 

indicate increases along time. All results were considered significant at p<0.05 (FWE corrected for 

multiple comparisons). 

 

CHAPTER III 

Figure 1. Significant changes in structural connectivity between timepoints. A) Binarized version of the 

connected component of significantly altered structural connectivity. B) Weighted version of A), with edge 

thickness representing the amplitude of differences. Blue represents decreases in connectivity strength 

between timepoints and red represents increases. Connections with decreases are mostly intra-

hemispheric, while most of the increases are composed of intra-hemispheric connections.  Both increases 

and decreases are mainly composed by links between subcortical and frontal regions. 
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Figure 2. Mean connectivity values of the significant connected component. (A) all the connections; (B) 

connections with increases in connectivity along time; (C) connections with decreases in connectivity. For 

each plot, we present the connectivity values for all connections (black), intra-left (red), intra-right (green) 

and inter-hemispheric (purple) connections. Intra-hemispheric connections exhibit a decrease along time, 

while inter-hemispheric links show an increase. Most of the decreases in SC are due to connections within 

the right hemisphere. 

Figure 3. Proportion of change between timepoints in the mean number of streamlines of the overlap 

between each seed region of the sub-network with decreases in structural connectivity and WM tract. 

Seed regions are presented in rows and white matter tracts in columns. For most of the connections, we 

found a common WM tract and the majority were association fibers.  

Figure 4. Proportion of change between timepoints in the mean number of streamlines of the overlap 

between each seed region of the sub-network with increases in structural connectivity and WM tract. Seed 

regions are presented in rows and white matter tracts in columns. There were more than a single WM 

tract connecting the regions, probably due to the fact that almost all the connections were inter-

hemispheric.   

Figure 5. Global hubs identified in the two timepoints as measured by the normalized nodal efficiency. 

Here, we observe the plot of the normalized nodal efficiency for all the 90 AAL regions, sorted in 

descending order of efficiency values, for timepoint 1 (left) and timepoint 2 (right). We observe a 

reorganization of brain structural networks in aging, characterized by the loss of two hubs (left inferior 

parietal cortex and left fusiform gyrus). 

Figure 6. Global hubs identified in the two timepoints as measured by the normalized nodal efficiency. 

Here, we represent in the brain the identified hubs for timepoint 1 (top row) and timepoint 2 (bottom 

row). We observe a reorganization of brain structural networks in aging, characterized by the loss of two 

hubs (left inferior parietal cortex and left fusiform gyrus). 

Figure 7. Modularity structure (A), connector-hub connectivity (B) and matrices of RSNs overlap (C) at 

timepoint 1 (top row) and timepoint 2 (bottom row). Filled circles represent connector hubs and unfilled 

circles represent provincial hubs. Although very similar modular arrangements were found at both 

timepoints (A, B), the undirected structural connectivity profile for the connector hubs was different (C). 

These differences are probably due to the loss of two connector hubs from first to last timepoint, namely 
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left caudate and right midcingulate cortex, while left middle occipital gyrus was identified as a connector 

hub only in the last timepoint. Giving the role of connector hubs in inter-modular communication, the 

reduction in their number between timepoints reflects a decrease in integration of brain structural 

networks in aging.  

Figure 8. Fingerprints of modular connectivity at timepoint 1 (top row) and timepoint 2 (bottom row). 

Left column represents the inter-modular connectivity, middle column the intra-module connectivity and 

right column the connector-hub driven inter-modular connectivity. Modular connectivity strength is 

quantified as the total number of connections (degree) of all nodes forming a module. Community 

structure of timepoint 2 was selected as the reference scheme, since it had higher group goodness-of-fit. 

We observe different patterns only in connector-hub driven inter-modular connectivity. Overall, there was 

a decrease of around 19% in this connectivity between timepoints, which is probably due to the loss of 

one connector hub. This results again suggests a decrease in integration of brain SC during aging. 

Figure S1. Correlation between head-motion relative displacement values and age for all subjects and 

both timepoints. Head-motion displacement values were extracted using FSL tools and averaged across 

all volumes acquired for one subject. Correlation is not significant (r = 0.019, p = 0.85) meaning that age 

is not associated with head-motion.  

Figure S2. Comparison of head-motion relative displacement values between timepoints. A paired t-test 

was performed, and it was not significant (p = 0.95) meaning that head-motion values did not differ 

between timepoints. 

Figure S3. Percentage of connections lost in each subject when applying consistency-based 

thresholding. Percentage is calculated as the proportion of connections removed in the subject SC matrix 

relative to the total number of connections removed in the group consistency mask. Plot on the left 

illustrates results for timepoint 1 and on the right, results for timepoint 2.  

Figure S4. Frequency distribution for the connection strength of the links removed when applying 

consistency-based thresholding. Plot on the left illustrates results for timepoint 1 and on the right, results 

for timepoint 3.  

Figure S5. Percentage of connections that were present in the group consistency mask but were not 

present in all subjects’ SC matrices. Percentage is calculated as the proportion of connections not present 
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in the subject SC matrix relative to the total number of connections in the group consistency mask. Plot 

on the left illustrates results for timepoint 1 and on the right, results for timepoint 2. 

Figure S6. Frequency distribution for the connection strength of the links from the group consistency 

mask not present in all subjects, when applying consistency-based thresholding. Plot on the left illustrates 

results for timepoint 1 and on the right, results for timepoint 3.  

Figure S7. Consistent signatures of SC for M1 and M2 timepoints. Left panel shows intra-timepoint 

consistency measured as the association between individual SC signatures and timepoint average SC 

and we can observe that the two timepoints reveal a very high level of intra-timepoint consistency (M1: 

97.6%; M2: 97.5%). Right panel shows the degree of association between the signatures of SC for all 

pairs of subjects in the same timepoint. Once again, we notice a high level of timepoint consistency in 

SC (100% and 99.8% of all pairwise combinations in M1 and M2 timepoints respectively have a correlation 

higher than r=0.9137, with number of occurrences peaking at approximately r=0.96 for both timepoints). 

The overlap between the distributions of intra-timepoint consistency of both timepoints is additionally 

confirmed by the inter-timepoint consistency distribution (M1-M2: peak at approximately r=0.95). Taken 

together, these results suggest that, at a global level, the patterns of SC are highly consistent within and 

between timepoints, and thus potential differences due to age and sex do not have a significant impact 

on the estimation of SC patterns.   

Figure S8. Relationship between F-threshold and number of connections/nodes, that detected a 

significant component. The F-threshold used in this study (17.0) was selected based on the maximal F-

threshold that detected a single component with more than two connections. This generated an NBS 

component with 19% nodes of the network and 16 links. 

Figure S9. Repeated measures correlation between mean SC values of the network with increases and 

mean factor scores of general cognition and executive function.  

Figure S10. Values of the mean number of streamlines for seed regions of the sub-network with 

decreases in structural connectivity. Top row shows values for timepoint M1 and bottom row shows values 

for timepoint M2. Seed regions are presented in rows and white matter tracts in columns.  
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Figure S11. Values of the mean number of streamlines for seed regions of the sub-network with 

increases in structural connectivity. Top row shows values for timepoint M1 and bottom row shows values 

for timepoint M2. Seed regions are presented in rows and white matter tracts in columns.  

 

CHAPTER IV 

Figure 1. Overview of the workflow employed for the CBP method. Yellow boxes represent the initial 

input, blue boxes represent intermediate outputs and green boxes the final output. 

Figure 2. Example of silhouette scores of one brain region for different clustering algorithms (hierarchical 

and k-means clustering) and different clustering algorithms in conjunction with different data 

dimensionality reduction techniques (PCA and SOM). Different clustering solutions (2 to 6 clusters) were 

tested. SOM + k-means clustering is the solution with the highest values of silhouette coefficient and with 

more balanced cluster sizes. 

Figure 3. Final group parcellations for the different validity metrics: A) silhouette, B) Davies-Bouldin, C) 

Calinski-Harabasz. Parcellations are displayed in MNI standard space.  

Figure 4. Mean connectivity homogeneity fingerprint (CHF) scores of the different group parcellations 

for all subjects. The three solutions resulted in parcellations with higher CHF in comparison to the original 

partition. Calinski-Harabasz parcellation had the highest homogeneity values but also the highest number 

of clusters. 

Figure 5. Mean CHF values for the two timepoints and the initial parcellation. At both timepoints, the 

homogeneity is higher in comparison to the original partition.  

Figure 6. Significant changes in structural connectivity between timepoints. A) Binarized version of the 

connected component of significantly altered structural connectivity. B) Weighted version of A), with edge 

thickness representing the amplitude of differences. Blue represents decreases in connectivity strength 

between timepoints and red represents increases. Connections with decreases are mostly intra-

hemispheric, while most of the increases are composed of intra-hemispheric connections.  

Figure 7. Modularity structure (A) and connector-hub connectivity (B) at timepoint 1 (top row) and 

timepoint 2 (bottom row). Filled circles represent connector hubs and unfilled circles represent provincial 
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hubs. The same number of modules was found at both timepoints but there were evident differences in 

modular arrangements (A, B) and in the undirected structural connectivity profile for the connector hubs 

(C). These differences are probably due to the higher number of connector hubs at the last timepoint. 

Giving the role of connector hubs in inter-modular communication, the increase in their number between 

timepoints reflects an increase in integration of brain structural networks in aging.  

Figure 8. Hubs (global, provincial and connector) identified in the two timepoints. Blue represents hubs 

only identified at timepoint 1, green represents hubs only identified at timepoint 2 and red represents 

hubs identified at both timepoints. We observe an increase in all type of hubs (global, provincial and 

connector) between timepoints. Furthermore, some hubs change their role between timepoints (from 

provincial to connector – left precuneus 2, right precuneus 2 and right precentral 1; and from connector 

to provincial – left putamen 2 and right putamen 1). 

Figure 9. Fingerprints of modular connectivity at timepoint 1 (top row) and timepoint 2 (bottom row). 

Left column represents the inter-modular connectivity, middle column the intra-module connectivity and 

right column the connector-hub driven inter-modular connectivity. Modular connectivity strength is 

quantified as the total number of connections (degree) of all nodes forming a module. Community 

structure of timepoint 2 was selected as the reference scheme, since it had higher group goodness-of-fit. 

We observe different patterns only in connector-hub driven inter-modular connectivity. Overall, there was 

an increase of around 33% in this connectivity between timepoints, which is probably due to the increase 

in the number of connector hub. This results again suggests an increase in integration of brain SC during 

aging. 

Figure S1. Example of the distribution of structural connectivity values for a region and the different 

transforms applied to normalize values. The BoxCox transform is the one achieving a distribution more 

approximated to a normal distribution.  

Figure S2. Plot with the minimum cluster size of all subjects for each threshold and each metric. The 

threshold of 300 voxels gives a minimum cluster size above 5 voxels for all metrics.  

Figure S3. Structural connections surviving the different methods accounting for intra-cluster 

connectivity. 1 represents connections with intra-cluster connectivity set to 0; 2 represents connections 

with intra-cluster connectivity set to 1; 3 represents connections with original intra-cluster connectivity 

values; 4 represents connections common to intra-cluster connectivity set to 0 and 1; 5 represents 
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connections common to intra-cluster connectivity set to 0 and original values; 6 represents connections 

common to intra-cluster connectivity set to 1 and original values; 7 represents connections common to 

the three strategies. 

Figure S4. Relationship between F-threshold and number of connections/components, that detected a 

significant component. The F-threshold used in this study (7.0) was selected based on the maximal F-

threshold that detected a single component with more than two connections. This generated an NBS 

component with 59% nodes of the network (100 nodes) and 122 links. 

Figure S5. Davies-Bouldin parcellation with the region displaying a checkerboard pattern highlighted. 
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1. Introduction 

Population aging is a phenomenon occurring worldwide and can be considered a story of success. It 

reflects the evolution of different areas, such as medicine, public health, economic and social 

development, that contributed to the extension of human longevity. This has led to a growth both in size 

and in proportion of older persons in the population. In 2019, the number of persons aged 65 years or 

over in the global population was 703 million, and this number is expected to double to 1.5 billion in 

2050. This shift in the population age distribution is known to have a considerable impact on societies 

and should be taken into account in order to assure a sustainable development (United Nations, 2019). 

Normal aging is characterized by functional and structural alterations at the brain level accompanied with 

changes in cognition, even in the absence of disease (Andrews-Hanna et al., 2007; Davis et al., 2009; 

Fjell et al., 2016a; Madden et al., 2017; Meunier et al., 2014; O’Sullivan et al., 2001a). Importantly, 

cognitive trajectories in aging present high inter-individual variability. In fact, while some individuals 

maintain relatively high levels of cognitive performance, others exhibit steep trajectories of cognitive 

decline (Ghisletta et al., 2012; Habib et al., 2007; Josefsson et al., 2012). Several factors, such as 

genetic, environmental, health and lifestyle factors, are known to contribute to these individual differences 

in the response to the aging process (Barter and Foster, 2018; Josefsson et al., 2012; Paulo et al., 2011; 

Santos et al., 2014). Understanding the factors and neural pathways that affect inter-individual variability, 

leading to either cognitive preservation or decline, is of paramount importance to promote healthier 

cognitive aging.  

Of relevance for this Thesis, neuroimaging techniques, particularly Magnetic Resonance Imaging (MRI), 

can be used to understand how functional and structural brain changes that occur in aging relate with 

alterations in cognition (Antonenko and Flöel, 2013; Fjell et al., 2016b; Grady, 2012; Madden et al., 

2017; Salat, 2011). The results obtained with these techniques open the possibility for the identification 

of in vivo brain biomarkers of inter-individual variability in cognitive trajectories, that could help to provide 

a healthier aging to the population.  
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2. Aging and Cognition 

Normal aging is associated with alterations in cognition, that could be either a decline, which is the case 

for many individuals, or preservation of cognitive performance (Cabeza et al., 2018). One of the research 

goals for cognitive neuroscience in aging is to understand the brain mechanisms that could underlie these 

distinct cognitive trajectories (Grady, 2012).  

Cognition is composed of different dimensions, which display also distinct patterns of age-related 

changes. As an example, memory is one of these cognitive dimensions, being particularly affected by 

age. There are several classifications for memory sub-types, including its temporal attributes (e.g., acute- 

versus long-term memory). Long-term memory can be further divided into declarative/explicit memory 

(conscious recollections of factual information and events) and nondeclarative/implicit memory 

(collection of unconscious memory abilities) (Schacter and Tulving, 1994). Declarative memory can be 

even further divided into episodic (memories related with past personal experiences) and semantic 

memory (memories related with general world knowledge) (Shachter et al., 2020). Aging studies in the 

different types of memory systems have demonstrated that episodic memory shows greater decline in 

comparison to semantic and nondeclarative memory (for a review, see (Lighthall et al., 2019)). In 

contrast, semantic memory appears to be relatively spared throughout the lifespan, even though there 

exist some age differences, particularly with increasing task demands. Regarding nondeclarative memory, 

many earlier studies claimed that this type of memory is quite preserved in normal aging; recent studies, 

however, have disputed this view, though the effect is smaller in comparison to that observed for explicit 

memory, which is one of the reasons why previous studies may have failed to find an age effect (Ward et 

al., 2020, 2013). In summary, the effect of normal aging in memory is heterogeneous, ranging from 

steep declines (e.g., episodic memory) to relatively spared (e.g., semantic memory), but in general, all 

memory systems are susceptible to age effects.  

Another cognitive dimension that exhibits declines during aging is executive function. Executive function 

typically encompasses a set of cognitive processes, such as working memory, inhibitory control, cognitive 

flexibility, planning, reasoning and problem solving, which are essential to formulate, plan and achieve 

goals, adapt to novel, unanticipated daily life situations and manage social relationships (Cristofori et al., 

2019). These abilities are critical for everyday life, having an impact in mental and physical health, quality 

of life, school and job success, as well as social interactions (Diamond, 2013). Other cognitive functions 

remain stable or, even, improve with age - one example is language. In fact, despite some observed age-
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related declines in language production, language comprehension is preserved in aging, and vocabulary 

knowledge improves throughout the adult lifespan (Shafto and Tyler, 2014). Another case of improved 

cognitive function with aging is emotion regulation, where older adults display a bias toward positive 

stimuli which may contribute to explain the increased emotional well-being and life satisfaction reported 

in some older subjects (Carstensen et al., 2011; Kim et al., 2019).  

In conclusion, aging affects multiple aspects of cognition in quite different ways. Various factors influence 

cognitive aging and its inter-individual variability, such as brain functional and structural alterations, life 

experiences, education, diet, physical activity, genetic factors, among others (Grady, 2012).  Studies 

integrating multiple influencing factors can help advance our understanding of aging and what causes 

individuals to present distinct cognitive trajectories.  

 

3. The Aging Brain 

The aging process affects both brain structure and function. These alterations occurring at the brain level 

are thought to account for age-related cognitive changes (Cabeza et al., 2017; Craik and Salthouse, 

2008). Therefore, understanding the neural mechanisms underlying these brain alterations and how they 

associate with cognition can help to identify in-vivo brain biomarkers of cognitive preservation and decline 

(Cabeza et al., 2018; Grady, 2012).  

3.1. Structural alterations 

Brain structural alterations are usually reported in terms of volume or cortical thickness. The global 

patterns of structural changes most consistently reported with aging are gray matter (GM) and white 

matter (WM) atrophy and concomitant increases in cerebrospinal fluid (CSF) and ventricular volumes 

(Fjell et al., 2014; Good et al., 2001; Resnick et al., 2003; Shaw et al., 2016; Storsve et al., 2014; 

Thambisetty et al., 2010; Vinke et al., 2018) (for a review see (Toepper, 2017)).  

GM alterations can be described with three neuroimaging metrics: volume, cortical thickness and surface 

area. Previous studies found evidence of GM atrophy with aging, characterized by decreases in all these 

metrics, with surface area exhibiting the weakest association with age (Fleischman et al., 2014; Lemaitre 

et al., 2012; Rettmann, 2005; Storsve et al., 2014). Furthermore, observed age-effects on cortical 

thinning are more widespread in comparison to GM volume, which may indicate higher sensitivity of this 
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metric to the effects of aging in brain’s structure. In fact, volume is calculated from the product of cortical 

thickness and surface area, which can explain its reduced sensitivity due to the attenuation exerted by 

the surface area component. Thus, the evaluation of different morphological measures is important since 

they might reflect different age-related brain structural changes (Fleischman et al., 2014; Lemaitre et al., 

2012). Of notice, associations between all these metrics of GM alterations and cognitive decline were 

found for distinct cognitive domains (executive function, processing speed and episodic memory) (Fjell 

and Walhovd, 2010; Fleischman et al., 2014; Head et al., 2008; Kalpouzos et al., 2009; Zimmerman et 

al., 2006).  

When looking at individual brain regions we observe distinct patterns of age-related structural brain 

changes. This regional variability, reported in several previous studies (Fjell et al., 2009; Fjell and 

Walhovd, 2010; Raz, 1997; Raz et al., 2005; Resnick et al., 2003; Salat, 2004), is the basis for the 

formulation of different hypothesis that try to explain the heterogeneity of aging processes in the brain.  

One of such hypothesis is the “last-in, first-out” which postulates that regions reaching complete 

myelination later, such as association cortices or the neostriatum, are more vulnerable to the effects of 

aging (Raz, 2005, 1999). Previous studies found evidence supporting this hypothesis in terms of regional 

brain volumes (Good et al., 2001; Grieve et al., 2005; Raz et al., 2005) and cortical thickness (Fjell et 

al., 2009; Salat, 2004; Yang et al., 2014). This theory was later extended to the “developmental-sensory” 

hypothesis which suggests that early aging is associated with atrophy in heteromodal association regions, 

as stated in the “last-in, first-out” hypothesis, while later aging processes are marked by declines in 

primary sensory/motor regions (McGinnis et al., 2011).   

Age-associated brain structural changes, however, are not confined to GM. The WM is also affected by 

age and there are several neuroimaging metrics to measure such changes. One of these metrics is WM 

lesion volume. These WM lesions are thought to reflect axonal loss and demyelination as a result of 

ischemic events (Prins and Scheltens, 2015). Its prevalence and severity increase as a function of age 

(Breteler et al., 1994; Prins and Scheltens, 2015; Zupan, 2016), and they have been associated with 

vascular risk factors (Debette et al., 2011; Habes et al., 2018). Past studies have found a clear link 

between WM lesions and cognitive impairment in domains such as processing speed, executive function 

and general cognition (Deary et al., 2003; Debette and Markus, 2010; Prins et al., 2005).   

WM changes in aging can be further characterized through diffusion imaging methods, which allow the 

characterization of WM microstructural integrity. Degradation of WM integrity with aging has been reported 

across multiple cross-sectional (de Groot et al., 2015; de Lange et al., 2016; Lebel et al., 2012; Salat et 
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al., 2005; Westlye et al., 2010) and longitudinal studies (Sexton et al., 2014; Vinke et al., 2018). 

Importantly, WM integrity changes during aging have also been associated with cognitive decline 

(Andrews-Hanna et al., 2007; Bartzokis, 2004; Bennett and Madden, 2014; Fjell et al., 2016a; Madden 

et al., 2017; Marques et al., 2015; O’Sullivan et al., 2001a). Moreover, distinct patterns of deterioration 

are also observed for different WM tracts. Interestingly, these are, at least in part, consistent with the 

“last-in, first-out” hypothesis (Bender et al., 2016; Brickman et al., 2012; Davis et al., 2009; Slater et al., 

2019), as association fibers (WM tracts connecting different regions within a hemisphere) which reach 

the peak of maturation later in comparison to commissural fibers (WM tracts connecting regions between 

the two hemispheres) had increased vulnerability to age effects. These WM neuroimaging findings, and 

their association with cognitive results, constitute the basis for one of the most prevalent hypothesis in 

brain aging - the “disconnection” hypothesis. According to this theory, originally proposed by Geschwind 

(Geschwind, 1965a, 1965b), the disruption of communication between distinct cortical regions is the 

potential sources of cognitive decline. Simply, WM tracts provide the anatomical connections between 

cortical regions and disruption of their integrity can lead to a “disconnected” brain and, consequently, to 

cognitive impairments (O’Sullivan et al., 2001a). A note to highlight that all these theories are not mutually 

exclusive and most likely, there is truth in each of these perspectives. 

Noticeable, network analysis has emerged as a tool to characterize brain’s structural and functional 

organization (Bullmore and Sporns, 2009). In this framework, the brain is conceptualized as a complex 

network of inter-connected regions. Using graph theory analysis, the brain network can be modeled as a 

graph where nodes represent brain regions and edges characterize the structural/functional connections 

between regions. Then, quantifiable topological properties of the graph can be estimated which can help 

elucidate about the organization and function of the brain network (Rubinov and Sporns, 2010). Several 

non-trivial topological properties of the human brain network have been identified with these tools, such 

as small-worldness, modular architecture, hubs and cores and rich club structure (Bullmore and Sporns, 

2009; van den Heuvel and Sporns, 2011; Wang et al., 2010). Structural networks can be estimated from 

structural or diffusion imaging methods. For the case of structural data, the structural connectivity 

measure is defined as the structural covariance of gray matter volumes or cortical thickness (Bassett et 

al., 2008). Regarding diffusion data, the structural connectivity measure could be either the number of 

WM fibers connecting a pair of brain regions, or the probability that a connection between two brain 

regions exists (Damoiseaux, 2017). Importantly, all these tools are of relevance for aging studies. In fact, 

studies exploring the effects of the aging process in structural covariance networks have consistently 

reported a shift from distributed to a more localized organization (Li et al., 2013; Montembeault et al., 
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2012; Wu et al., 2012). Other studies described a decrease in integrity of structural covariance patterns 

in networks that support different cognitive functions, such as executive function, language-related 

semantics and visual imagery and mentalization (default mode network) (Chen et al., 2011; DuPre and 

Spreng, 2017; Li et al., 2013; Montembeault et al., 2012; Spreng and Turner, 2013). Regarding white 

matter structural networks estimated from diffusion data, evidence suggests a decrease in connectivity 

strength (Gong et al., 2009; Madden et al., 2020) and topological efficiency of the whole-brain network 

during aging (Betzel et al., 2014; Madden et al., 2020; Wen et al., 2011; Zhao et al., 2015), and also a 

regional pattern of decreased efficiency most prominent in frontal and temporal regions (Gong et al., 

2009; Zhao et al., 2015). Recent reports also describe a decline in connectivity strength within and 

between network modules (Madden et al., 2020; Zhao et al., 2015). Moreover, the topological properties 

of the white matter structural network have been associated with distinct cognitive functions, such as 

information processing speed, visuospatial reasoning, crystallized ability and executive function (Wen et 

al., 2011; Wiseman et al., 2018). In summary, the use of these tools has significantly contributed to our 

knowledge of the impact of age upon brain structure and has provided a more comprehensive perspective 

of the morphological phenomena underpinning age-associated cognitive trajectories. 

3.2. Functional alterations 
 

The aging process also induces changes in brain function. One of the most important patterns observed 

across age-related functional studies is neural dedifferentiation. This process is characterized by a 

reduction in neural specificity, meaning that regions which are selectively recruited for a preferred 

stimulus in younger adults will activate/respond to a broader range of stimuli in older adults (Koen and 

Rugg, 2019; Park and Reuter-Lorenz, 2009). Neural dedifferentiation can manifest in different forms, 

such as: i) contralateral recruitment, in which older adults engage homologous brain regions compared 

to young adults, ii) unique recruitment, where different brain regions are additionally recruited and iii) 

substitution, where a completely new neural network is engaged for a specific function (Spreng and 

Turner, 2019). This pattern of changes has been observed across multiple cognitive tasks (Eyler et al., 

2011; Spreng et al., 2010; Turner and Spreng, 2012). Still, there is no consensus if neural 

dedifferentiation reflects compensatory mechanisms or is the cause of cognitive impairment. While that 

is being investigated, several theoretical perspectives/models have been developed to encapsulate the 

age-associated functional findings.    
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One of the first models proposed was the Hemispheric Asymmetry Reduction in Older Adults (HAROLD) 

developed in 2002 by Roberto Cabeza (Cabeza, 2002). It posits that under similar conditions (i.e., when 

performing the same cognitive task), older adults exhibit a pattern of less lateralized prefrontal activity in 

comparison to younger adults. This pattern was observed across multiple cognitive tasks, such as 

episodic memory, semantic memory, working memory, perception and inhibitory control, and was 

suggested to reflect either compensatory mechanisms or a struggle to recruit specialized neural circuitry 

(Cabeza, 2002). The HAROLD model was revised in 2012, to include a distinction between successful 

and unsuccessful compensation. Briefly, successful compensation occurs when the increase in neural 

activity, as an attempt to counteract the mismatch between task demands and cognitive processing, 

results in improved cognitive performance, whereas in the case of unsuccessful compensation it leads to 

no change or even worse performance (Cabeza and Dennis, 2012). 

Another proposed model is the Posterior-Anterior Shift in Aging (PASA) formulated by Davis in 2008 (Davis 

et al., 2008). It considers two patterns co-occurring in older adults: i) diminished activation of posterior 

brain regions and ii) increased activation of anterior brain regions. The frontal overactivation is suggested 

to be compensatory as evidence demonstrates that this increased frontal activation is usually positively 

correlated with performance and negatively correlated with decreased occipital activity (Davis et al., 

2008). Of relevance, the PASA pattern has been observed in distinct cognitive tasks (e.g., visual 

perception, memory encoding, working memory, episodic memory retrieval) (Festini et al., 2018).  

Of notice, both HAROLD and PASA models were applied only to older adults and HAROLD was restricted 

to differences in prefrontal cortex. However, not all models suffer from these constraints; one of these is 

the Compensation-Related Utilization of Neural Circuits Hypothesis (CRUNCH) model (Reuter-Lorenz and 

Mikels, 2006; Reuter-Lorenz and Cappell, 2008; Reuter-Lorenz and Lustig, 2005). It interprets 

overactivation as a compensation for inefficiencies in neural processing and that it is influenced by the 

level of task demand. Briefly, it postulates that at lower levels of task demands, older adults exhibit 

increased activation compared to younger adults with minimal differences or equivalent performance. In 

contrast, at higher levels of task demands, older adults show decreased activation and worse 

performance, and this is thought to occur due to the fact that older adults have reached their capacity for 

compensatory recruitment (Reuter-Lorenz and Mikels, 2006; Reuter-Lorenz and Cappell, 2008; Reuter-

Lorenz and Lustig, 2005). The CRUNCH pattern is not limited to older adults, as it can occur whenever 

the recruitment of additional neural resources is necessary to meet cognitive challenge, and it can also 

happen in any region of the brain (Festini et al., 2018). 
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One last model of brain function in aging is the Scaffolding Theory of Aging and Cognition (STAC), which 

differs from the previous models above described because it incorporates both structural and functional 

brain changes to predict cognitive function. It hypothesizes that as a response to declines in structure 

and function, the adaptive brain recruits compensatory scaffolding, which involves the enrollment of 

additional neural resources to preserve cognitive performance (Park and Reuter-Lorenz, 2009). Thus, the 

levels of neural degeneration, neural challenge, and the capacity for compensatory scaffolding will 

determine the cognitive function of an individual. This theory can also be applied to any age and can 

occur at any brain region. It was revised in 2014 to include life-course experiences as factors that can 

influence brain structure and function, and the capacity for compensatory scaffolding (Reuter-Lorenz and 

Park, 2014). These factors can either enhance (e.g., education, physical fitness, multilingualism, 

intellectual engagement) or deplete (e.g., stress, vascular disease, depression) neural resources. This 

revision also included longitudinal changes in cognition and in brain’s structure and function. In sum, the 

revised STAC model postulates that life-course experiences can enhance, preserve or compromise brain 

status and the potential for compensatory scaffolding, which altogether influence cognitive function over 

time. Interestingly, it is the only model that incorporates longitudinal changes. 

In summary, all these theoretical perspective/models helped advance research in the neurocognitive 

aging field and are partially supported by neuroimaging studies. Still, future research will benefit from 

more longitudinal studies and interference studies which allow causal inferences, to clarify if age-related 

changes in functional activation are truly part of a compensatory mechanism or simply a result of the 

aging process (Festini et al., 2018).  

 

4. Neuroimaging techniques and data analysis  

Neuroimaging techniques allow the study of the brain structure and function in vivo and non-invasively. 

As already stated, their emergence was crucial in advancing our knowledge of the processes triggered by 

aging upon the brain. Recently, the application of analytical tools from other fields, such as graph theory 

or machine learning, to study the brain have opened the possibility to combine measures of brain 

structure and function with the ultimate goal of developing personalized biomarkers of age-related 

cognitive preservation and decline (Spreng and Turner, 2019). In the next paragraphs, a brief description 

of the most commonly used neuroimaging techniques for studying the age-associated processes in the 

brain is provided. 
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4.1. Image acquisition 

MRI has the advantage of allowing structural and functional acquisitions within the same imaging session 

and scanner, which makes it adequate to investigate the aging brain. T1-weighted acquisitions are a 

particular type of structural MRI that is often used to study whole-brain or regional brain volumes and 

cortical thickness (Yousaf et al., 2018). On the other hand, T2-weighted acquisitions allow, amongst 

others, the quantification of WM lesion volumes through the identification of WM hyperintensities (Prins 

and Scheltens, 2015).  

Diffusion Weighted Imaging (DWI) enables the study of WM microstructural integrity based on the principle 

that the diffusion of water molecules in the brain has different directionality according to the tissue type 

(Basser et al., 1994; Le Bihan, 2003; Pierpaoli and Basser, 1996). By applying the Diffusion Tensor 

Imaging (DTI) model to DWI data it is possible to extract different metrics to evaluate microstructural 

integrity. The most frequently reported is fractional anisotropy (FA), which measures the anisotropic (i.e., 

directional diffusion) fraction of the total diffusion, and higher values indicate higher tissue integrity 

(Bennett and Madden, 2014). Other metrics are mean diffusivity (MD) which measures the average rate 

of diffusion and lower values are associated with higher tissue integrity (Bennett and Madden, 2014), 

axial diffusivity (AD) which indexes the rate of diffusion along the principal direction and is assumed to be 

sensitive to axonal integrity (Budde et al., 2007; Song et al., 2003, 2002; Sun et al., 2008), and radial 

diffusivity (RD) which measures the average rate of diffusion orthogonal to the principal direction and is 

usually associated with the degree of myelination (Klawiter et al., 2011; Song et al., 2005, 2003, 2002). 

Moreover, DWI allows the reconstruction of WM pathways, a technique called tractography (Jbabdi and 

Johansen-Berg, 2011; Jones, 2010). This can be used to estimate the structural connectivity (SC) 

between brain regions, which can be either the number of reconstructed WM tracts or the probability that 

a connection exists between each pair of regions (Damoiseaux, 2017). In the end, structural connectivity 

networks can be built by combining the SC of all regions of the brain and topologic properties of these 

networks can be assessed using network analysis tools.  

Functional MRI (fMRI) provides an indirect measure of brain activity through the blood oxygen level 

dependent (BOLD) contrast. This contrast appears due to differences in the levels of oxyhemoglobin and 

deoxyhemoglobin, which are a result of the increased supply of oxygenated blood to a brain region when 

it is active (Sutton et al., 2009). The BOLD contrast can be captured while the individual is at rest or 

performing a task. The former is known as resting state fMRI (rs-fMRI) and allows the estimation of 
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functional connectivity (FC) which represents the inter-correlations between temporal fluctuations in the 

BOLD signal across brain regions (Damoiseaux, 2017). As in SC networks, the FC of all pairs of regions 

can be combined to create FC networks that can be further analyzed with network analysis tools.  

4.2. Network analysis 
 
Network analysis tools emerged from the conceptualization of the brain as a complex network of inter-

connected regions. It enables the characterization of brain’s structural and functional organization 

(Bullmore and Sporns, 2009). In this framework, the brain network is modeled as a graph constituted by 

nodes and edges. The nodes are the different brain regions, usually defined from a pre-existing atlas, 

while the edges are the functional or structural connectivity measures between brain regions, which were 

described in previous sections. Using graph theory analysis, it is possible to extract quantifiable topological 

properties which can shed light on the organization and function of the brain network (Rubinov and 

Sporns, 2010). This analysis can be performed at distinct levels, namely edge, local and global level.  

At the edge level, it is possible to identify which connections are significantly altered under a specific 

condition or pathology. A powerful technique to perform this analysis is the network-based statistics (NBS) 

procedure implemented in the NBS toolbox (https://sites.google.com/site/bctnet/comparison/nbs). It 

is a non-parametric statistical method that allows the identification of significantly altered sub-networks, 

while controlling for the family-wise error rate (FWER) (Zalesky et al., 2010). This is important, since 

testing the hypothesis of interest at the edge level poses a multiple comparisons problem. 

Different measures can be extracted to quantitatively describe the brain network topology, which 

characterize global and local features of brain connectivity. These metrics can reflect aspects of 

integration (e.g., shortest path length, global efficiency), segregation (e.g., modularity, clustering 

coefficient), centrality (e.g., node degree, participation coefficient, betweenness centrality), patterns of 

local connectivity (e.g., network motifs) and resilience (e.g., degree distribution, assortativity coefficient) 

(Rubinov and Sporns, 2010). 

Several studies already employed network analysis tools to characterize the aging brain. They found a 

reorganization of the brain’s structural and functional network during aging, characterized as reduced 

global and local efficiency (Gong et al., 2009; Wu et al., 2012; Zhao et al., 2015), increased shortest 

path length and clustering coefficient (Otte et al., 2015; Sala-Llonch et al., 2014), and modularity 

architecture reorganization (Betzel et al., 2014; Wu et al., 2012). Moreover, significant associations 
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between these topological properties of brain networks and cognitive function have been reported 

(Bernard et al., 2015; Wen et al., 2011; Wiseman et al., 2018). Still, at the edge level, the existing studies 

have focused on the connectivity of the whole-brain or of specific networks usually associated with some 

cognitive dimension. To date, and to the best of our knowledge, no study has explored the existence of 

sub-networks with significant age-related changes in connectivity using the NBS approach.  

4.3. Connectivity-based Parcellation 

Functional integration and segregation are the two main principles of brain organization, with functional 

integration characterized through long-range connections and functional segregation through local 

differentiation (Tononi et al., 1994). The notion that these two concepts are entangled, since each 

specialized brain region might be depicted by a different set of long-range connections, inspired the 

development of a new neuroimaging method known as connectivity-based parcellation (CBP) (Eickhoff et 

al., 2015). CBP divides a brain region according to its voxels’ connectivity profiles (Eickhoff et al., 2015; 

Reuter et al., 2020). Specifically, first the connectivity profiles are estimated by computing the connection 

strengths between each voxel in the region of interest (ROI) and a set of target voxels. Then, ROI voxels 

are grouped in a way that voxels within a group have similar connectivity profiles and voxels between 

groups have distinct connectivity profiles. Usually, the grouping of voxels is performed using clustering 

algorithms and the resulting clusters/parcels represent homogeneous units with respect to the measured 

connectivity. Connectivity between voxels is often derived from rs-fMRI which represents functional 

connectivity, DWI that characterizes anatomical connectivity or meta-analytic connectivity modeling 

(MACM) which measures task-dependent functional connectivity and co-activation patterns (Reuter et al., 

2020). Another option is to compute connectivity from structural covariance, but its use is very limited, 

probably due to its complex interpretation (Eickhoff et al., 2018).  

CBP method can be fundamental to advance our understanding of brain organization and function. It can 

lead to the development of new hypotheses on regional differentiation (Eickhoff et al., 2015) and can be 

used as biologically informed strategies of data reduction (Eickhoff et al., 2018). The latter has a relevant 

importance in network analysis, since these tools require the division of the brain in nodes. The typical 

approach is to define the nodes using parcellations derived from local properties (e.g., anatomical 

landmarks or cytoarchitectonic information). Although these parcellations provide biologically significant 

nodes, they may not adequately reflect brain organization and inter-individual variability (Arslan et al., 

2018). Nodes derived from CBP will be more adequate for network analysis due to its data-driven 
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approach which originates clusters with high homogeneity and functional coherence and with different 

connectivity patterns between them (Arslan et al., 2018). Additionally, the data reduction feature of CBP 

can be applied to study brain-behavior associations in big-data projects (Eickhoff et al., 2018).  

There are already numerous parcellations derived from CBP using both functional and structural 

connectivity measures (for a review see (Arslan et al., 2018; Eickhoff et al., 2018). Moreover, some 

studies suggest that individual brain parcellations can predict inter-individual variability in demographics, 

cognition, emotion, personality and behavior (Bijsterbosch et al., 2018; Kong et al., 2018; Salehi et al., 

2018). Nevertheless, the high heterogeneity in the procedures that were developed, since different 

approaches can be applied at different steps within the CBP method, combined with the lack of a ground 

truth makes it difficult to evaluate the proposed solutions (Arslan et al., 2018; Reuter et al., 2020). As a 

result, to date there is no universal method to perform CBP. Furthermore, the application of CBP methods 

to study the aging brain is very scarce and limited to particular brain regions (Fritz et al., 2019).  
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5. Objectives 

Despite age-related changes in brain network are already described in several studies, most of them use 

cross-sectional designs and conventional analysis methods. The aim of this thesis is to provide new 

insights about the changes induced by the aging process in brain networks and how these changes 

associate with cognitive trajectories, through the use of sophisticated neuroimaging tools and longitudinal 

designs. The identification of brain correlates of cognitive dysfunction in aging is of relevance, as it could 

drive the development of new in vivo brain biomarkers of inter-individual variability in cognitive trajectories 

and, ultimately, customized interventions.  

In order to achieve this goal, network analysis and CBP methods were applied to MRI data of a group of 

older subjects followed longitudinally. This sample is part of the Switchbox project (www.switchbox-

online.eu/) and, at each evaluation, cognitive and neuroimaging characterization was performed.  

In order to accomplish the main aim of this thesis, different tasks were performed: 

1. Characterize whole-brain signatures of white-matter microstructural change during aging and its 

association with cognition (Chapter 2) 

2. Characterize longitudinal changes in the organization of structural brain networks and explore its 

relationship with cognitive trajectories (Chapter 3) 

3. Describe the organization of structural brain networks in aging using CBP and investigate its 

advantages over conventional analysis methods (Chapter 4) 
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1. Abstract 

Previous studies have shown an association between cognitive decline and white matter integrity in aging. 

This led to the formulation of a “disconnection hypothesis” in the aging-brain, which states that the 

disruption in cortical network communication may explain the cognitive decline during aging. Although 

some longitudinal studies have already investigated the changes occurring in white matter microstructure, 

most focused on specific white matter tracts. Our study aims to characterize the longitudinal whole-brain 

signatures of white matter microstructural change during aging. Furthermore, we assessed the 

relationship between distinct longitudinal alterations in white matter integrity and cognition. White matter 

microstructural properties were estimated from diffusion magnetic resonance imaging, and cognitive 

status characterized from extensive neurocognitive testing. The same individuals were evaluated at two 

timepoints, with a mean interval time of 52.8 months (SD = 7.24) between first and last assessment. Our 

results show that age is associated with a decline in cognitive performance and a degradation in white 

matter integrity. Additionally, significant associations were found between diffusion measures and 

different cognitive dimensions (memory, executive function and general cognition). Overall, these results 

suggest that age-related cognitive decline is related to white matter alterations, and thus give support to 

the “disconnected hypothesis” of the aging brain.  

Keywords: diffusion MRI, white matter, tract-based spatial statistics, cognitive performance, aging 
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2. Introduction 

Normal aging is a heterogeneous process characterized by functional (Damoiseaux, 2017; Hakun et al., 

2015) and structural alterations (Lockhart and DeCarli, 2014; Soares et al., 2014) at the brain level, 

along with declines in several cognitive dimensions (Meunier et al., 2014). The “disconnection 

hypothesis” tries to establish a link between these age-related cognitive and brain changes, postulating 

that a disruption of communication between cortical regions can lead to a decline in cognitive 

performance (Andrews-Hanna et al., 2007; Bartzokis, 2004; Fjell et al., 2016a; Madden et al., 2017; 

O’Sullivan et al., 2001b). One potential source of brain disconnection is white matter (WM) integrity and 

there is already evidence suggesting this relationship between WM disruption and cognitive decline in 

“normal” aging (Bennett and Madden, 2014; Marques et al., 2015). 

WM integrity can be indirectly measured with diffusion tensor imaging (DTI), which measures the diffusion 

of water molecules in the brain (Basser et al., 1994; Pierpaoli and Basser, 1996). Tissue integrity can be 

assessed using different DTI-based measures: fractional anisotropy (FA), mean diffusivity (MD), axial 

diffusivity (AD) and radial diffusivity (RD). Higher values of FA and lower values of diffusivity (MD, AD and 

RD) indicate higher tissue integrity (Bennett and Madden, 2014). Previous cross-sectional and longitudinal 

studies have reported a WM degradation pattern with aging, with the most consistent findings being a 

decrease in FA and increase in MD with increasing age(de Groot et al., 2015; de Lange et al., 2016; 

Lebel et al., 2012; Salat et al., 2005; Sexton et al., 2014; Vinke et al., 2018; Westlye et al., 2010). Other 

studies also report changes in RD and AD, being the observed changes usually more salient for RD than 

AD (Davis et al., 2009; Madden et al., 2009; Zhang et al., 2010) and the direction of change in AD is still 

controversial (Burzynska et al., 2010; Sullivan et al., 2010). Since RD is thought to be more sensitive to 

myelin degeneration, it suggests that age-related WM alterations may be driven by myelination changes 

(Bennett and Madden, 2014; Davis et al., 2009). Moreover, DTI studies also report an association 

between WM integrity and cognitive performance within older adults, with larger effect sizes for specific 

cognitive dimensions, such as executive function and information processing speed (for a review see 

(Madden et al., 2012)). Additionally, some DTI studies report a mediation effect of WM integrity in the 

relationship between age and cognitive functions (e.g. associative learning, executive functions, 

processing speed, episodic memory) (Borghesani et al., 2013; Brickman et al., 2012; Burgmans et al., 

2011; Gazes et al., 2016; Li et al., 2018; Samanez-Larkin et al., 2012), which suggests a causal role for 

WM integrity on age-related differences in cognitive performance.  
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Most of these studies, however, used a cross-sectional design and the existing longitudinal studies focused 

on specific WM tracts, despite the evidence for the existence of a global effect alongside the regional 

effects (Bennett and Madden, 2014; Johnson et al., 2015). Furthermore, a previous study from our lab 

(Marques et al., 2015) used DTI to assess which WM microstructural properties could discriminate 

between different profiles of cognitive performance, in a cross-sectional design. In this study, we continue 

this previous work, using longitudinal data from the same group of individuals. Our main goal was to 

investigate: i) WM integrity changes along time and ii) associations between WM microstructure alterations 

and cognition. We hypothesized that aging would trigger a degradation of white-matter integrity and this 

deterioration will be associated to cognitive decline. To test this, we estimated white-matter 

microstructural properties of a group of older adults that were followed longitudinally from diffusion MRI. 

We characterized cognitive status from extensive neurocognitive testing and tested relationships between 

longitudinal changes in white-matter integrity and cognition.  

3. Methods 

3.1. Ethics Statement 

The present study was conducted in accordance with the principles expressed in the Declaration of 

Helsinki and was approved by the national ethical committee (Comissão Nacional de Proteção de Dados) 

and by the local ethics review boards (Hospital de Braga, Braga; Centro Hospitalar do Alto Ave, 

Guimarães; and Unidade Local de Saúde do Alto Minho, Viana-do-Castelo/Ponte-de-Lima). The study 

goals and procedures were explained to the participants and all gave informed written consent. 

3.2. Participants 

The participants included in this study are part of the sample recruited for the SWITCHBOX Consortium 

project (www.switchbox-online.eu/). These participants were recruited from a larger sample randomly 

selected from Guimarães and Vizela local area health authority registries, that is representative of the 

general Portuguese population for age, gender and education (Costa et al., 2013; Santos et al., 2014, 

2013). Primary exclusion criteria were inability to understand the informed consent, participant’s choice 

to withdraw from the study, incapacity and/or inability to attend the MRI session, dementia and/or 

diagnosed neuropsychiatric and/or neurodegenerative disorder and/or cerebrovascular disease (medical 

records). Mini Mental State Examination (MMSE) scores below the adjusted thresholds for cognitive 

impairment were also used as exclusion criteria. Following recommendations, the thresholds were 
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adjusted depending on factors such as age and/or education (Busch and Chapin, 2008; Grigoletto et al., 

1999). This resulted in the following adjusted thresholds for cognitive impairment: MMSE score <17 if 

individual with ≤4 years of formal school education and/or ≥72 years of age, and MMSE score <23 

otherwise (follows the MMSE validation study for the Portuguese population) (Guerreiro et al., 1994).  

In the first assessment, 100 subjects were contacted for MRI screening. From these, three subjects did 

not finish the diffusion acquisition and four subjects were excluded after the visual inspection of the MRI 

scans by a certified neuroradiologist concluded that they had brain lesions/pathology. For the last 

assessment, all participants from the baseline were contacted to perform the follow-up evaluation but 

subjects presenting diseases that could affect both cognition and white matter microstructure (e.g., 

cerebrovascular disease) were excluded. In the end, 55 subjects accepted to be re-evaluated and were 

able to perform the MRI acquisition protocol, but one did not finish the diffusion acquisition. A total of 51 

individuals with diffusion data from both the first and last assessments met all the inclusion criteria for 

this study.  

3.3. Neurocognitive assessment 

A team of certified psychologists performed a battery of neurocognitive tests in the two timepoints. This 

included the following tests validated for the Portuguese population: Stroop color and word test, selective 

reminding test (SRT) and mini-mental state examination (MMSE). Stroop test was used to evaluate 

cognitive flexibility and inhibitory control and it was composed of three parameters: words (SW), colors 

(SC) and words/colors (SWC) evaluated at three parts. In the first part, different words of colors printed 

in black are presented to the participant which has to read the word (Stroop words). In the second part, 

the ‘XXXX’ word is printed in different ink colors and the participant has to name the ink color (Stroop 

colors). The third and final part corresponds to the interference (Stroop words/colors) component of the 

test, where the participant is presented with inconsistent association between the word and the ink in 

which the word is printed (e.g., word “blue” printed in red ink). In this case, the participant has to name 

the ink color instead of reading the word. SRT was also constituted of three variables: long-term storage 

(LTS), consistent long-term retrieval (CLTR) and delayed-recall (DR) and assessed verbal learning and 

memory.  MMSE was performed to evaluate general cognition through the assessment of different 

cognitive domains, such as orientation, word recall, attention and calculation, language and visual-

construction abilities. Test scores were transformed to be expressed in the same scale. Since we are 

dealing with longitudinal data, z-score standardization has some limitations, namely the loss of 
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information about mean-level changes across time. In order to overcome this issue, we transformed test 

scores using the proportion of maximum scaling (POMS), according to the formula: 

!"#$ =	
'()*+,*- − /010/2/
/340/2/ −/010/2/ 

The transformed test scores range from 0 (minimum possible value) to 1 (maximum possible value) 

(Moeller, 2015). 

3.4. MRI Data Acquisition 

All MRI assessments were performed at Hospital de Braga (Braga, Portugal) on a clinical approved 

Siemens Magnetom Avanto 1.5T MRI scanner (Siemens Medical Solutions, Erlangen, Germany) with a 

12-channel receive-only head-coil. The imaging protocol included several different acquisitions. For the 

present study, only the Diffusion Weighted Imaging (DWI) acquisition was considered.  For this, a spin-

echo echo-planar imaging (SE-EPI) sequence was acquired with the following parameters: TR=8800 ms, 

TE=99 ms, FoV=240x240 mm, acquisition matrix=120x120, 61 2-mm axial slices with no gap, 30 non-

collinear gradient direction with b=1000 s mm-2, one b=0 s mm-2 and 1 repetition. 

All acquisitions were visually inspected by a certified neuroradiologist, before data pre-processing, to 

ensure that none of the individuals included in this study had brain lesions and/or critical head motion 

or artifacts that could comprise the quality of the data and reliability of our findings.  

3.5. DWI data pre-processing and tensor fitting 

All data was pre-processed using FMRIB Diffusion Toolbox (FDT) provided with the FMRIB Software Library 

(FSL v5.0; https://fsl.fmrib.ox.ac.uk/fsl/). Pre-processing included: correction for motion and eddy 

current distortions; rotation of gradient vectors accordingly to the affine transformations used to register 

each volume; extraction and skull stripping of the first b0 volume of each subject; removal of non-brain 

structures by applying the brain mask created in the previous step to the remaining volumes.  

Tensor fitting and scalar maps computation steps were performed with DTIFIT that is part of FDT toolbox. 

Briefly, DTIFIT fits a diffusion tensor model at each voxel and generates scalar maps of FA and MD, as 

well as eigenvector and eigenvalues maps. AD scalar map was defined as the principal diffusion 

eigenvalue and RD as the mean of the second and third eigenvalues. 
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3.6. Longitudinal Tract-based spatial statistics 

Voxel-wise analysis of scalar maps across subjects and timepoints was performed using TBSS procedures 

(Smith et al., 2006), part of FSL. While this method aims to solve issues of aligning data from multiple 

subjects, it does not take into account variation from multiple timepoints. Thus, in this study, we 

implemented a modified TBSS pipeline that improves anatomical longitudinal alignment, as described in 

(Engvig et al., 2012). First, linear transformations between the b0 images of the first and second 

timepoints were computed using FLIRT. Then, the b0 images and scalar maps of both timepoints were 

resampled to a space halfway between the two, that was previously computed with MIDTRANS. Next, a 

subject-wise mid-space template was created by averaging the two halfway registered FA-maps. These 

subject’s templates were then used in the normal TBSS procedures. Initially, each subject’s FA template 

was slightly eroded, and the end slices were zeroed in order to further remove potential outliers. Next, all 

FA templates were nonlinearly registered into a 1x1x1 mm standard space. In order to accomplish this 

particular step, each subject’s FA template was nonlinear registered to each other to find the “most 

representative one” (i.e., the one that requires the least warping to align all images) that served as the 

study specific target image. Then, the chosen target was affine transformed into Montreal Neurological 

Institute (MNI) 152 standard space and each subject’s FA template was transformed into standard space 

through the combination of the nonlinear transformation to the study specific target with the affine 

transformation into MNI space. Next, FA templates of all subjects were averaged, and the resulting image 

skeletonized and thresholded. Thresholding the mean FA value between 0.2 and 0.3 was found to 

successfully remove from the skeleton regions encompassing multiple tissue types (Smith et al., 2006). 

Thus, after visual inspection we thresholded the skeleton image at 0.3. Finally, all scalar maps (FA, AD, 

MD and RD) from the two time points were projected into this FA skeleton using the same transformation 

applied to the FA templates.   

3.7. Statistical analysis 

Statistical analysis of the skeletonized maps of FA, AD, MD and RD was performed in order to discriminate 

which WM tracts exhibit statistically significant differences.  This was accomplished using the permutation 

methods employed in “randomise”, distributed with FSL. We performed a paired sample t-test to 

investigate age-related trajectories of WM microstructure. Five thousand random permutations were used 

in the inference of the contrasts of interest. Widespread significant differences were detected with 

threshold-free cluster enhancement (TFCE), whereas multiple comparisons were corrected using family-



 33 

wise error rate (FWE-R) at a=0.05. Clusters showing significant results were labeled according to the 

Johns Hopkins University ICBM-DTI-81 WM labels atlas (Hua et al., 2008) and dilated with tbss_fill tool 

(distributed with FSL) for visualization purposes. We also calculated the Dice coefficient between each 

pair of significant clusters to evaluate the degree of similarity between them. Dice coefficient ranges 

between 0 and 1, with values of 1 meaning that the two clusters are a perfect match. Subsequently, we 

investigated the associations between the significant results from this analysis and the scores of 

neurocognitive tests. To do this, the mean DTI metrics (FA, AD, MD and RD) were extracted from each 

significant cluster of each contrast of interest and correlation analyses were performed between the mean 

DTI metric and each cognitive test, for all timepoints. Subjects with missing values in cognitive scores 

were excluded from the analyses and p-values were corrected for multiple comparisons, using the false 

discovery rate (FDR) method. The rmcorr R package (https://cran. r-project.org/web/packages/rmcorr/) 

was used to compute a repeated measures correlation coefficient between each DTI metric and cognitive 

score. Repeated measures correlation analysis computes the correlation within each individual between 

two variables measured longitudinally and then estimates the common regression slope, which is the 

association shared between individuals. This technique takes into account non-independence between 

observations of repeated measures data and has greater statistical power than the standard Pearson 

correlation coefficient using averaged data (Bakdash and Marusich, 2017). 

Additionally, we calculated the percentage of change between timepoints for each significant cluster of 

each DTI metric, and for each cognitive test score. The following formula was used: 

5!" =
#" −#!
|#!|

× 100 

where #! and #" are the metric values at timepoint 0 and :, respectively. We also tested differences 

between slopes of each significant cluster. For this, we first performed a linear regression for each cluster 

and then an Analysis of Covariance (ANCOVA) with DTI metric as dependent variable, cluster as the factor 

and timepoint as the covariate and analyzed the significance of the interaction term. We transformed 

values to reflect only increases in time, in order to compare slopes independently of the direction. 
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4. Results 

4.1. Sample characteristics 

Table 1 shows the demographic characterization of the participants included in this study. In summary, 

mean age at baseline was 63.5 years (range, 51 – 82 years) and mean interval between evaluations was 

52.8 months (range, 45 – 73 months). Interval time was not significantly associated with age at baseline 

(r = - 0.12, p = 0.41). The sample was balanced for males and females (51% females, 49% males) and 

they did not differ with respect to interval time (;(30) = 0.14, B = 	0.89). Mean education level was 

5.98 years (range, 0 – 17 years). Regarding neurocognitive test scores, all variables show a decrease 

along time, with the exception of Stroop words parameter that remains constant (Supplementary Fig. 1). 

Statistically significant differences were found between timepoints for long-term storage (;(50) =

3.40, B = 0.003, - = 0.48), Stroop colors (;(50) = 4.48, B = 0.0003, - = 0.63) and MMSE 

variables (;(50) = 4.04, B = 0.0006, - = 0.57).  

Table 1. Basic demographic and cognitive characterization of the study’s cohort. Statistical results FDR 

corrected at p<0.05.  

Abbreviations: LTS, long-term storage; CLTR, consistent long-term retrieval; DR, delayed-recall; SW, Stroop words; SC, Stroop colors; SWC, Stroop 
words/colors; MMSE, Mini-Mental State Examination.  
Significance codes: * p < 0.05, ** p < 0.01, *** p < 0.001 

 

 Baseline 

Mean ± SD (range) 

Follow-up 

Mean ± SD (range) 

Test Statistic 

N (Females/Males) 51 (26/25) -  - 

Age (years) 63.5 ± 7.41 (51 – 82) 68.0 ± 7.25 (55 – 86)  

Interval (months) 52.8 ± 7.24 (45 – 73) -   

Education (years) 5.98 ± 3.97 (0 – 17) -   

LTS  0.53 ±	0.24 (0.069 – 1) 0.43 ± 0.24 (0 – 1) t(50) = 3.40, p = 0.003**, d = 0.48 

CLTR 0.38 ± 0.26 (0 – 1) 0.33 ± 0.25 (0 – 1)  t(50) = 1.86, p = 0.096 

DR 0.50 ± 0.27 (0 – 1) 0.45 ± 0.25 (0 – 1)  t(50) = 1.11, p = 0.32 

SW 0.55 ± 0.27 (0.013 – 1) 0.55 ± 0.22 (0 – 1)  t(50) = 0.30, p = 0.77 

SC 0.63 ± 0.21 (0 – 0.99) 0.53 ± 0.26 (0 – 1) t(50) = 4.48, p = 0.0003***, d = 0.63 

SWC 0.53 ± 0.23 (0 – 1) 0.49 ± 0.24 (0 – 1)  t(50) = 1.98, p = 0.094 

MMSE 0.82 ± 0.22 (0 – 1) 0.72 ± 0.23 (0.077 – 1)  t(50) = 4.04, p = 0.0006***, d = 0.57 
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4.2. Age-related trajectories in WM microstructure 

Statistical analysis of the skeletonized maps revealed statistically significant differences between 

timepoints for all DTI metrics (Fig. 1). Significant longitudinal decreases for the FA maps were found in 

two clusters. One of these clusters (Cluster 1) comprises the body of corpus callosum, and right superior 

and posterior corona radiata (Supplementary Figure 2A). The other cluster (Cluster 2) includes the genu, 

body and splenium of corpus callosum, anterior limb of internal capsule, anterior, superior and posterior 

corona radiata, external capsule and superior longitudinal fasciculus, with most of these tracts located in 

the left hemisphere (Supplementary Figure 2B). For AD and MD metrics, significant longitudinal increases 

were found in a large cluster spread throughout the brain. This cluster includes WM tracts such as the 

genu, body and splenium of corpus callosum, cerebral peduncle, internal capsule, corona radiata, 

posterior thalamic radiation, sagittal stratum, external capsule, cingulum, fornix, superior longitudinal 

fasciculus, superior fronto-occipital fasciculus, tapetum and uncinate fasciculus. Regarding RD, two 

clusters were found, with one of them comprising only the right superior longitudinal fasciculus (Cluster 

1) (Supplementary Figure 2C), while the other (Cluster 2) includes the same tracts as the cluster found 

for AD and MD (Supplementary Figure 2D). A summary of these results, with cluster size, coordinates 

and corresponding white matter tract of the peak are present in Supplementary Table 1.  
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Figure 1. Statistically significant changes along time in a) FA, b) AD, c) RD and d) MD maps. Blue/light-

blue gradient indicates decreases along time. Red/yellow gradient indicates increases along time. All 

results were considered significant at p<0.05 (FWE corrected for multiple comparisons). We observe a 

decrease in FA with a left hemisphere dominant pattern, while the other metrics (AD, RD and MD) exhibit 

an increase between timepoints with the changes being spread throughout the brain. 

Regarding the similarity of the obtained significant clusters, measured with Dice coefficient, we found that 

FA Cluster 2 and RD Cluster 1 did not overlap with any other cluster. FA Cluster 1 had a small overlap 

with AD, MD and RD Cluster 2, while FA Cluster 2 had increased similarity with the same clusters.  AD, 

MD and RD Cluster 2 had the highest degrees of similarity between them. A summary of these results is 

present in Table 2. 
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Table 2. Dice coefficient between each pair of significant clusters. 

Metric FA Cluster 1 FA Cluster 2 AD Cluster 1 MD Cluster 1 RD Cluster 1 RD Cluster 2  

FA Cluster 1 1 - - - - - 

FA Cluster 2 0 1 - - - - 

AD Cluster 1 0.001 0.22 1 - - - 

MD Cluster 1 0.060 0.37 0.76 1 - - 

RD Cluster 1 0 0 0 0 1 - 

RD Cluster 2 0.072 0.42 0.63 0.87 0 1 

 

Our analysis of the mean DTI metrics of the significant clusters revealed a linear decrease of FA and a 

linear increase of AD, MD and RD, from the first to last timepoint (Fig. 2).  All slopes were significantly 

different from zero, with the exception of the first cluster of RD. Table 3 presents the percentages of 

change between timepoints, the linear regression slopes and the significance of each slope for the 

different DTI metrics of these significant clusters. We found a significant interaction in the relationship of 

DTI metric to time for the different clusters (H(5,600) = 6.35, B < 0.001), which suggests that there 

are differences in the slopes. Post-hoc tests with Bonferroni correction revealed that slopes of both FA 

clusters were significantly different from slopes of the other metrics (AD, RD and MD) (Supplementary 

Table 2). We can see that slopes of FA clusters are three orders of magnitude higher in comparison to 

the other metrics, but in terms of percent of change between timepoints, the values are similar for all 

metrics. 



 38 

 

Figure 2. Trajectories of DTI metrics (FA, AD, RD and MD) of each cluster with significant differences 

between timepoints. The x-axis represents time of assessment and y-axis, the average values of each 

metric. Error bars represent standard deviation. FA clusters show a decrease along time, while AD, RD 

and MD clusters exhibit an increase. Overall, these results suggest that aging induces a deterioration of 

white matter integrity. 

Table 3. Percentage of longitudinal changes in DTI metrics, linear regression slopes and significance of 

slopes of each significant cluster.  

Metric M2 – M1 (%) Slope Test Statistic 

FA Cluster 1 -4.35 -0.020 F(1,100)=7.62, p=0.007** 

FA Cluster 2 -3.94 -0.016 F(1,100)=8.42, p=0.005** 

AD Cluster 1 3.30 0.00004 F(1,100)=20.51, p<0.0001*** 

RD Cluster 1 5.45 0.00004 F(1,100)=1.74, p=0.19 

RD Cluster 2 4.78 0.00003 F(1,100)=9.09, p=0.003** 

MD Cluster 1  3.69 0.00003 F(1,100)=11.96, p=0.0008*** 

Abbreviations: FA, fractional anisotropy; AD, axial diffusivity; MD, mean diffusivity; RD, radial diffusivity; M1, timepoint 1; M2, timepoint 2.  
Significance codes: * p < 0.05, ** p < 0.01, *** p < 0.001 
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4.3. Associations with cognition 

Significant correlations were found for the different DTI metrics and some of the neurocognitive variables. 

Specifically, LTS parameter was significantly associated with both FA clusters (FA Cluster 1 – r = 0.33, p 

= 0.047; FA Cluster 2 - r = 0.39, p = 0.020), AD cluster (r = -0.42, p = 0.010), RD cluster 2 (r = - 0.46, 

p = 0.005) and MD cluster (r = -0.46, p = 0.005) (Fig. 3). The other parameters of SRT (CLTR and DR) 

did not display any significant correlation with DTI metrics. Regarding Stroop test, SC was significantly 

correlated with both FA clusters (FA Cluster 1 – r = 0.51, p = 0.001; FA Cluster 2 – r = 0.45, p = 0.005), 

AD cluster (r = -0.54, p = 0.001), RD cluster 2 (r = - 52, p = 0.001) and MD cluster (r = -54, p = 0.001), 

while SWC had significant correlations with FA cluster 1 (r = 0.35, p = 0.04) and the AD cluster (r=-0.35, 

p = 0.04) (Fig. 4). Finally, MMSE was significantly associated with FA cluster 2 (r = 0.35, p = 0.04) and 

RD cluster 1 (r = -0.40, p = 0.01) (Fig. 5). Table 4 summarizes results of all correlations performed. 

Interestingly, the cognitive variables with significant associations have the higher rates of decrease along 

time, with the exception of CLTR that has the third highest rate of decrease but no significant correlation 

with any DTI metric (Table 5).  

 

Figure 3. Significant repeated measures correlations between long-term storage (LTS) test score and 

DTI metrics (FA, AD, RD and MD) of clusters with significant changes between timepoints. The x-axis 

represents average values of each DTI metric and y-axis, the average values of LTS. Observations from 

the same individual are represented with the same color, with corresponding lines showing the repeated 
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measures correlation fit for each subject. Dashed black line represents the overall regression line. All 

clusters, with the exception of RD cluster 1, were significantly associated with LTS. For FA clusters, we 

found a positive correlation, meaning that higher FA values are associated with higher LTS scores. For 

AD, RD and MD clusters, a negative correlation was found, showing that lower AD, RD or MD values are 

associated with higher LTS scores. Overall, these results suggest that higher WM integrity is associated 

with higher cognitive performance in the memory domain. 

 

Figure 4. Significant repeated measures correlations between Stroop test variables (Stroop colors – SC, 

Stroop words/colors – SWC) and DTI metrics (FA, AD, RD and MD) of clusters with significant changes 

between timepoints. The x-axis represents average values of each DTI metric and y-axis, the average 

values of SC/SWC. Observations from the same individual are represented with the same color, with 

corresponding lines showing the repeated measures correlation fit for each subject. Dashed black line 

represents the overall regression line. All clusters, with the exception of RD cluster 1, were significantly 

associated with SC. For FA clusters, we found a positive correlation, meaning that higher FA values are 

associated with higher LTS scores. For AD, RD and MD clusters, a negative correlation was found, showing 
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that lower AD, RD or MD values are associated with higher SC scores. Regarding SWC, FA cluster 1 was 

positively correlated and AD was negatively correlated. Overall, these results suggest that higher WM 

integrity is associated with higher cognitive performance in the executive function domain. 

Figure 5. Significant repeated measures correlations between Mini-Mental State Examination (MMSE) 

and DTI metrics (FA and RD) of clusters with significant changes between timepoints. The x-axis 

represents average values of each DTI metric and y-axis, the average values of MMSE. Observations from 

the same individual are represented with the same color, with corresponding lines showing the repeated 

measures correlation fit for each subject. Dashed black line represents the overall regression line. Only 

FA cluster 2 and RD cluster 1 were significantly associated with MMSE. FA exhibited a positive correlation, 

meaning that higher FA values are associated with higher MMSE scores. RD was negatively correlated 

with MMSE, showing that lower RD values are associated with higher MMSE scores. Overall, these results 

suggest that higher WM integrity is associated with higher general cognition. 

Table 4. Correlations between DTI metrics and scores of cognitive tests at all timepoints (results FDR 

corrected at p<0.05). 

 FA Cluster 1 FA Cluster 2 AD Cluster 1 RD Cluster 1 RD Cluster 2 MD Cluster 1 

LTS r=0.33* 
(p=0.047) 

r=0.39* 
(p=0.020) 

r=-0.42* 
(p=0.010) 

r=-0.31 (p=0.069) r=-0.46** 
(p=0.005) 

r=-0.46** 
(p=0.005) 

CLTR r=0.17 (p=0.32) r=0.19 (p=0.28) r=-0.25 (p=0.13) r=-0.13 (p=0.44) r=-0.25 (p=0.13) r=-0.25 (p=0.13) 

DR r=0.079 (p=0.66) r=0.14 (p=0.40)  r=-0.072 (p=0.68) r=-0.16 (p=0.35)  r=-0.13 (p=0.44)  r=-0.10 (p=0.55)  

SW r=0.15 (p=0.37)  r=0.017 (p=0.91)  r=0.057 (p=0.72)  r=-0.16 (p=0.36)  r=0.053 (p=0.73)  r=0.063 (p=0.71) 

SC r=0.51** 
(p=0.001)  

r=0.45** 
(p=0.005)  

r=-0.54** 
(p=0.001)  

r=-0.33 (p=0.054)  r=-0.52** 
(p=0.001)  

r=-0.54** 
(p=0.001)  
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Abbreviations: FA, fractional anisotropy; AD, axial diffusivity; MD, mean diffusivity; RD, radial diffusivity; LTS, long-term storage; CLTR, consistent long-term 
retrieval; DR, delayed-recall; SW, Stroop words; SC, Stroop colors; SWC, Stroop words/colors; MMSE, Mini-Mental State Examination. 
Significance codes: * p < 0.05, ** p < 0.01, *** p < 0.001 

 

Table 5. Percentage of longitudinal changes in neurocognitive test scores. 

Metric M2 – M1 (%) 

LTS -17.8 

CLTR -14.6 

DR -9.48 

SW -0.27 

SC -16.5 

SWC  -7.40 

MMSE -11.9 

Abbreviations: LTS, long-term storage; CLTR, consistent long-term retrieval; DR, delayed-recall; SW, Stroop words; SC, Stroop colors; SWC, 
Stroop words/colors; MMSE, Mini-Mental State Examination; M1, timepoint 1; M2, timepoint 2.  

 

5. Discussion 

Herein we explore the effect of age on WM microstructure, by combining diffusion magnetic resonance 

imaging with neurocognitive testing. Our results reveal that aging is characterized by a degradation in 

white matter integrity and cognitive decline. Furthermore, we found significant associations between 

diffusion measures and cognitive dimensions of memory, executive function and general cognition. In 

sum, these findings are in line with the “disconnection” hypothesis of the aging brain, by demonstrating 

a relationship between white matter integrity deterioration and cognitive decline. 

Our analysis of the DTI metrics revealed decreased FA and increased diffusivity (AD, MD and RD) with 

aging in brain areas where these parameters are statistically different across the 52.8 months of 

observation, which is consistent with previous longitudinal studies (Sexton et al., 2014; Vinke et al., 

2018). While for diffusivity measures, the results were relatively widespread, comprising several WM 

tracts in both hemispheres, for FA the results were localized. Decreased FA with aging was found in 

SWC r=0.35* 
(p=0.040)  

r=0.28 (p=0.092)  r=-0.35* 
(p=0.040)  

r=-0.21 (p=0.23)  r=-0.30 (p=0.083)  r=-0.31 (p=0.066)  

MMSE r=0.26 (p=0.12)  r=0.35* 
(p=0.040)  

r=-0.20 (p=0.26)  r=-0.40* 
(p=0.014)  

r=-0.28 (p=0.092)  r=-0.25 (p=0.13)  
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corpus callosum, left anterior limb of internal capsule, left external capsule, left/right corona radiata and 

left superior longitudinal fasciculus, which have already been reported in previous longitudinal studies 

(Hakun et al., 2015; Sexton et al., 2014). This pattern of left-dominant deterioration was already reported 

in studies with cognitively impaired patients. Specifically, a rightward lateralization of functional 

connectivity in patients with mild cognitive impairment (MCI) and Alzheimer’s Disease (AD) has been 

reported (Liu et al., 2018), which is possibly due to a compensation mechanism for the loss of cognitive 

function or because of disease-induced damage in the left hemisphere. Furthermore, Low and colleagues 

(Low et al., 2019) showed the existence of a higher degree of asymmetry of white matter hyperintensities 

towards the left hemisphere in AD patients, when compared to MCI and healthy controls, which is 

associated with poorer global cognition, memory, executive function and language. 

Correlation analysis between cognitive scores and age-related WM changes showed significant 

associations between all diffusion measures (FA, AD, RD and MD), and cognitive variables of memory 

(LTS) and executive function (SWC). These results may suggest that longitudinal changes in cognition are 

associated with changes in WM integrity, thus supporting the “disconnection hypothesis”.  This 

association has already been extensively reported in the literature, with several studies showing the 

existence of a clear association between WM integrity deterioration and poorer performance in executive 

function tasks (Bendlin et al., 2010; Brickman et al., 2012; Cremers et al., 2016; Hedden et al., 2016; 

Kennedy and Raz, 2009; Sasson et al., 2012; Ystad et al., 2011), with results spanning over different 

regions in the brain. Particularly, Hedden and colleagues (Hedden et al., 2016) found a mediation effect 

of WM integrity, along with cortical thickness and glucose metabolism, in age-related differences in 

executive function. Noticeably, the majority of the studies report larger effect sizes for associations 

between WM integrity and cognitive dimensions, such as executive function and processing speed, than 

for memory (Bennett and Madden, 2014; Madden et al., 2012). Still, there is evidence of a relation 

between WM integrity and memory (Bendlin et al., 2010; Carlesimo et al., 2010; Davis et al., 2009; 

Gazes et al., 2016; Kennedy and Raz, 2009; Sasson et al., 2012). In our study, the effect sizes for 

memory and executive function are very similar. We also revealed significant associations between 

diffusion measures and the color naming parameter (SC) of the Stroop test. Although only the interference 

parameter (SWC) measures executive function, the other two parameters (SW and SC) are considered 

measures of processing speed (Jensen, 1965). Previous studies found significant age effects in the SC 

parameter, which can be the result of a general slowing induced by age (Uttl and Graf, 1997). Uttl and 

colleagues also found that the age effects on the interference condition was directly related to the 

performance on the other two conditions. Thus, the longitudinal changes that we observe in the 
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interference component might be attributed to longitudinal changes in the performance of the color 

naming task. Regarding general cognition, evaluated through MMSE, significant correlations were found 

for FA and RD. This result is in accordance with previous literature showing that age effects on WM 

integrity are often stronger for RD than AD (Davis et al., 2009; Madden et al., 2009; Zhang et al., 2010). 

Davis and colleagues (Davis et al., 2009), in addition to this, also found that the impact of age-related 

WM changes in cognitive performance was more prominent for RD than for AD. Additionally, the cognitive 

variables revealing significant associations with WM integrity presented accentuated declines in 

subsequent observations, which indicates that steeper declines in cognition are associated with steeper 

declines in WM integrity along time. Once again, this reinforces the theory that deterioration of WM causes 

a disruption in the communication between cortical regions, which, in turn, leads to cognitive decline. 

One of the limitations of this study was the use of a whole-brain approach to investigate alterations in WM 

integrity. Although this allowed us to explore the global effect of aging in WM microstructure and its 

relationship with cognition, it was not possible to examine the contribution of each individual WM tract. 

Future work may include the analysis of age effects in the integrity of each WM tract and its association 

with cognitive function. Another limitation is the use of a 1.5T MRI scanner which has lower signal to 

noise ratio (SNR) when compared to 3T MRI scanners (Lee and Shannon, 2007). Furthermore, the 

parameters used to acquire the DWI sequence, namely 30 gradients directions and only a single b=0 s 

mm-2 volume, also impact on the resolution diffusion data.  

In summary, our findings confirm the existing evidence of a degradation of the WM with aging. We also 

found significant associations between DTI metrics and the different cognitive dimensions evaluated 

(memory, executive function and general cognition). This result indicates a relationship between age-

related changes in WM microstructural properties and cognitive function, which brings further support to 

the “disconnection hypothesis”.  Furthermore, this association between the effects of aging on WM 

integrity and cognition is only possible with the use of a longitudinal design (Damoiseaux, 2017), such as 

what we present here. Finally, our findings open new perspectives for future studies to identify the main 

drivers in WM integrity levels at different levels of cognitive ability. Hence, this could help in the 

development of new in-vivo brain biomarkers of inter-individual variability in cognitive trajectories.   
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7. Supplementary Material 

 

 

Figure S1. Trajectories of cognitive test scores for memory (LTS, CLTR, DR), executive function (SW, 

SC, SWC) and general cognition (MMSE) along time. The x-axis represents time of assessment and y-axis, 

the average values of each test. Error bars represent standard deviation. All cognitive test scores exhibit 

a decrease between timepoints, with the exception of SW that remains practically constant. 
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Figure S2. Statistically significant changes along time in a) FA Cluster 1, b) FA Cluster 2, c) RD Cluster 

1 and d) RD Cluster 2. Blue/light-blue gradient indicates decreases along time. Red/yellow gradient 

indicate increases along time. All results were considered significant at p<0.05 (FWE corrected for 

multiple comparisons). 
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Table S1. Clusters presenting significant results between timepoints. 

Abbreviations: FA, fractional anisotropy; AD, axial diffusivity; MD, mean diffusivity; RD, radial diffusivity. 

 

Table S2. Pairwise comparisons between slopes of the different significant clusters of each DTI metric 

(results Bonferroni corrected at p<0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Abbreviations: FA, fractional anisotropy; AD, axial diffusivity; MD, mean diffusivity; RD, radial diffusivity. 
Significance codes: * p < 0.05, ** p < 0.01, *** p < 0.001 

 

Metric White Matter Tract 
Cluster Size 

(Number of Voxels) 
Peak Coordinates in 

mm (x, y, z) 
Peak Value (1-p) 

FA 
Right Posterior corona radiata 1335 19, -29, 35 0.984 

Left Superior corona radiata 9813 -18, -23, 36 0.999 

AD Unclassified 28881 -12, 23, -14 1 

RD 
Unclassified 533 43, -21, 51 0.973 

Unclassified 35144 -41, -25, -20 1 

MD Unclassified 35502 -41, -25, -20 1 

Contrast Test Statistic 

FA Cluster 1 – FA Cluster 2 t(600) = 0.65, p=1 

FA Cluster 1 – AD Cluster 1 t(600) = 3.75, p=0.003** 

FA Cluster 1 – RD Cluster 1 t(600) = 3.75, p=0.003** 

FA Cluster 1 – RD Cluster 2 t(600) = 3.75, p=0.003** 

FA Cluster 1 – MD Cluster 1 t(600) = 3.75, p=0.003** 

FA Cluster 2 – AD Cluster 1 t(600) = 3.10, p=0.03* 

FA Cluster 2 – RD Cluster 1 t(600) = 3.10, p=0.03* 

FA Cluster 2 – RD Cluster 2 t(600) = 3.10, p=0.03* 

FA Cluster 2 – MD Cluster 1 t(600) = 3.10, p=0.03* 

AD Cluster 1 – RD Cluster 1 t(600) = 0.001, p=1 

AD Cluster 1 – RD Cluster 2 t(600) = 0.002, p=1 

AD Cluster 1 – MD Cluster 1 t(600) = 0.002, p=1 

RD Cluster 1 – RD Cluster 2 t(600) = 0.002, p=1 

RD Cluster 1 – MD Cluster 1 t(600) = 0.001, p=1 

RD Cluster 2 – MD Cluster 1 t(600) = -0.0002 , p=1 
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1. Abstract 

Normal aging is characterized by structural and functional changes in the brain contributing to cognitive 

decline. Structural connectivity describes the anatomical backbone linking distinct functional subunits of 

the brain and disruption of this communication is thought to be one of the potential contributors for the 

age-related deterioration observed in cognition. Several studies already explored brain network’s 

reorganization during aging, but most focused on average connectivity of the whole-brain or in specific 

networks, such as the resting state networks. Here, we aimed to characterize longitudinal changes of 

white matter structural brain networks, through the identification of sub-networks with significantly altered 

connectivity along time. Then, we tested associations between longitudinal changes in network 

connectivity and cognition. We also assessed longitudinal changes in topological properties of the 

networks. For this, older adults were evaluated at two timepoints, with a mean interval time of 52.8 

months (SD = 7.24). White matter structural networks were derived from diffusion magnetic resonance 

imaging, and cognitive status from neurocognitive testing. Our results show age-related changes in brain 

structural connectivity, characterized by both decreases and increases in connectivity weight. 

Interestingly, decreases occur in intra-hemispheric connections formed mainly by association fibers, while 

increases occur mostly in inter-hemispheric connections and involve association, commissural and 

projection fibers, supporting the last-in-first-out hypothesis. Regarding topology, two hubs were lost, 

alongside with a decrease in connector-hub inter-modular connectivity, reflecting reduced integration. 

Simultaneously, there was an increase in the number of provincial hubs, suggesting increased 
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segregation. Overall, these results confirm that aging triggers a reorganization of the brain structural 

network.  

Keywords: diffusion MRI, white matter, aging, cognitive performance, network 

2. Statement of Significance 

Normal aging is characterized by structural and functional alterations in the brain contributing to cognitive 

decline, with structural connectivity being the anatomical backbone for the communication between 

different functional subunits. Previous studies have suggested that the disruption of this communication 

contributes to the age-related deterioration observed in cognition, but most have focused on average 

connectivity of the whole-brain or in specific networks, such as the resting-state networks. Here, using a 

longitudinal design, we show that aging induces a reorganization of the brain structural network, that is 

characterized by connectivity decreases in intra-hemispheric connections and increases in inter-

hemispheric connections, alongside with a reduction in integration and an increase in segregation. 

Structural connectivity decreases were mainly due to loss of association fibers, an observation which is 

consistent with the last-in-first-out hypothesis. 

3. Introduction 

Human brain undergoes structural and functional changes during aging, even in the absence of disease 

(Damoiseaux, 2017; Grady, 2012; Hakun et al., 2015; Lockhart and DeCarli, 2014; Soares et al., 2014). 

According to the “disconnected brain” theory, originally proposed by Geschwind in 1965 (Geschwind, 

1965a, 1965b),  these alterations are thought to account for the cognitive decline that is observed during 

normal aging  (Andrews-Hanna et al., 2007; Bartzokis, 2004; Fjell et al., 2016a; Madden et al., 2017; 

O’Sullivan et al., 2001). Since cognitive functions rely on the communication between distinct functional 

subunits that are anatomically connected (Bressler and Menon, 2010; Bullmore and Sporns, 2009; 

Craddock et al., 2013; Park and Friston, 2013; van den Heuvel and Hulshoff Pol, 2010), the disruption 

of this communication (measured either as changes in structural or functional connectivity between 

different brain regions) in aging could be one of the potential sources of cognitive decline (Antonenko and 

Flöel, 2013; Salat, 2011; Zimmermann et al., 2016).   

Network analysis has emerged as a tool to characterize brain’s structural and functional organization 

(Bullmore and Sporns, 2009). In this context, brain is conceptualized as a complex network of inter-
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connected regions, and thus it can be modeled as a graph, with nodes defined as brain regions and edges 

as the structural/functional connections between regions. Graph theory analysis allows the extraction of 

quantifiable topological properties of networks that can clarify the organization and function of the brain 

network (Rubinov and Sporns, 2010). Functional networks can be constructed from resting-state 

functional MRI (rs-fMRI), where functional connectivity (FC) reflects the temporal coherence in the blood 

oxygen level dependent (BOLD) signal across brain regions (Damoiseaux, 2017). On the other hand, 

structural networks can be built from structural MRI, where the structural connectivity (SC) measure is 

the structural covariance of gray matter volumes or cortical thickness (Bassett et al., 2008). Another 

option for determining SC is to use diffusion MRI which allows the estimation of white matter (WM) 

pathways, and in this case the SC measure will be the number of streamlines or the probability of 

connection between brain regions (Damoiseaux, 2017). Previous studies have revealed a number of non-

trivial properties of the human functional and structural networks, such as small-worldness, modular 

architecture, hubs and cores, rich club structure, among others (Bullmore and Sporns, 2009; van den 

Heuvel and Sporns, 2011; Wang et al., 2010).  

Normal aging induces a reorganization of brain’s structural and functional networks, characterized as 

reduced global and local efficiency (Gong et al., 2009; Wu et al., 2012; Zhao et al., 2015), increased 

shortest path length and clustering coefficient (Otte et al., 2015; Sala-Llonch et al., 2014), reduced rich 

club organization (Zhao et al., 2015),  modularity architecture reorganization (Betzel et al., 2014; Wu et 

al., 2012), and also a decrease in long-range connections accompanied by simultaneous increase in 

short-range connections (Andrews-Hanna et al., 2007; Cao et al., 2014; Sala-Llonch et al., 2014; Wu et 

al., 2012). Recent studies have emphasized the role of brain network connectivity in cognitive 

performance in aging. Associations between network connectivity changes and multiple cognitive 

domains, such as, visuospatial reasoning, information processing speed, crystallized ability, executive 

function and memory have been reported (Bernard et al., 2015; Fjell et al., 2016a, 2016b; Persson et 

al., 2014; Wen et al., 2011; Wiseman et al., 2018). Nevertheless, most of these studies focus on graph 

theory metrics that reflect the topological organization of brain networks or in the connectivity weight of 

the whole-brain or of specific networks, such as resting-state networks. In this study, in addition to explore 

longitudinal changes of topological properties of brain structural networks during normal aging, we also 

inspect the existence of sub-networks that present significant age-related alterations in connectivity 

weight. To our knowledge, this is the first study to explore the presence of these sub-networks in aging. 

We hypothesized that aging will induce a reorganization of the brain structural network, characterized by 

disrupted connectivity in specific sub-networks, consistent with the findings of previous longitudinal 
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diffusion MRI studies which demonstrated alterations in diffusion tensor imaging (DTI) based measures 

as a function of age (Sexton et al., 2014; Vinke et al., 2018). Furthermore, we hypothesized that changes 

in brain structural connectivity would affect differently distinct WM tracts, consistent with the last-in-first-

out hypothesis which posits that brain regions that reach full maturation later are more vulnerable to age-

related atrophy (Raz, 1999) and this was already observed for WM tracts (Bender et al., 2016; Slater et 

al., 2019). Brain network reorganization will also be characterized by changes in topological features, as 

it has already been reported in some cross-sectional studies (Betzel et al., 2014; Gong et al., 2009; Otte 

et al., 2015; Zhao et al., 2015), but to date no longitudinal study using diffusion MRI has explored changes 

in brain structural network topology. To test this, we construct structural connectomes for a group of older 

adults who were followed longitudinally, with a mean time interval of 52.8 months (SD = 7.24). We 

characterized longitudinal topological alterations in structural connectivity using advanced structural 

connectomics analysis. Furthermore, we tested associations between longitudinal changes in network 

connectivity and cognition.  

4. Methods 

4.1. Ethics Statements 

The present study was conducted in accordance with the principles expressed in the Declaration of 

Helsinki and was approved by local and national ethics committees. The study goals and tests were 

explained to the participants and all gave informed written consent. 

4.2. Participants 

The participants included in this study are part of a larger sample recruited for the SWITCHBOX 

Consortium project (www.switchbox-online.eu/), and are representative of the general Portuguese 

population with respect to age, gender and education (Costa et al., 2013; Santos et al., 2014, 2013). 

Primary exclusion criteria were inability to understand the informed consent, participant choice to 

withdraw from the study, incapacity and/or inability to attend MRI sessions, dementia and/or diagnosed 

neuropsychiatric and/or neurodegenerative disorder (from medical records). Mini Mental State 

Examination (MMSE) scores below the adjusted thresholds for cognitive impairment were also used as 

exclusion criteria. The adjusted thresholds were the following: MMSE score <17 if individual with ≤4 years 

of formal school education and/or ≥72 years of age, and MMSE score <23 otherwise (follows the MMSE 

validation study for the Portuguese population) (Guerreiro et al., 1994). These exclusion criteria were 
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applied at both evaluations. Subjects were evaluated at two timepoints, with a mean interval time between 

first and last assessments of 52.8 months (SD = 7.24). At each evaluation, participants underwent an 

imaging session and a battery of neurocognitive/neuropsychological tests.  

In the first assessment, 100 subjects were contacted for MRI screening. From these, one subject did not 

finish the diffusion acquisition and four subjects had brain lesions/pathology. In the last assessment, 55 

subjects accepted to participate and underwent MRI acquisition protocol, but one did not finish the 

diffusion acquisition. A total of 51 individuals with data from both the first and last evaluations met all the 

inclusion criteria for this study.  

4.3. Neurocognitive Assessment 

A team of certified psychologists performed an identical battery of neurocognitive tests at both timepoints. 

This included the following tests previously validated for the Portuguese population: Stroop color and word 

test, selective reminding test (SRT) and mini-mental state examination (MMSE). A previous report from 

our group examined the longitudinal measurement invariance of this set of cognitive tests (Moreira et al., 

2018). Using confirmatory factor analysis, we observed that a two-factor solution encompassing (1) a 

general cognition and executive functioning dimension (EXEC) and (2) a memory dimension (MEM) was 

reliable over time. The MEM factor was comprised of long-term storage (LTS), consistent long-term 

retrieval (CLTR) and delayed-recall (DR) variables assessed with SRT. The EXEC factor was composed of 

the variables MMSE and Stroop parameters: words, colors and words/colors. We obtained evidence of 

partial strong invariance which indicates an equivalence of the factorial structure and factor loadings for 

all the items, as well as of the intercepts of most items comprising this factorial solution. Thus, we 

estimated factor scores for each of these dimensions, based on the estimates for the model with strictest 

measurement invariance. The analytical pipeline was based on a maximum likelihood mean- and 

variance- adjusted (MLMV) implemented with MPlus. The mean factor scores for the two dimensions were 

extracted for each participant. 

4.4. MRI Data Acquisition 

All imaging sessions were performed at Hospital de Braga (Braga, Portugal) on a clinical approved 

Siemens Magnetom Avanto 1.5T MRI scanner (Siemens Medical Solutions, Erlangen, Germany) with a 

12-channel receive-only head-coil. The imaging protocol included several different acquisitions. For the 

present study, only the Diffusion Weighted Imaging (DWI) acquisition was considered.  For this, a spin-
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echo echo-planar imaging (SE-EPI) sequence was acquired with the following parameters: TR=8800 ms, 

TE=99 ms, FoV=240x240 mm, acquisition matrix=120x120, 61 2-mm axial slices with no gap, 30 non-

collinear gradient direction with b=1000 s mm-2, one b=0 s mm-2 and 1 repetition. 

All acquisitions were visually inspected by a certified neuroradiologist, before any pre-processing step, in 

order to ensure that none of the individuals had brain lesions and/or critical head motion or artifacts that 

could affect the quality of data.  

4.5. MRI Data pre-processing 

Data was pre-processed using FMRIB Diffusion Toolbox (FDT) provided with the FMRIB Software Library 

(FSL v5.0; https://fsl.fmrib.ox.ac.uk/fsl/). First, DWI images were corrected for motion and eddy current 

distortions, followed by rotation of gradient vectors according to the affine transformations used to register 

each volume. Then, the first b0 volume of each subject was extracted and skull stripped, which generated 

a brain mask that was applied to the remaining volumes in order to remove non-brain structures. Finally, 

local modelling of diffusion parameters was performed using bedpostx algorithm which employs Markov 

Chain Monte Carlo sampling to build up probability distributions of the diffusion parameters at each voxel, 

thereby allowing modelling of crossing fibers (Behrens et al., 2007). In addition, we also extracted the 

levels of head-motion in a diffusion scan, using FSL tools, for all subjects at both timepoints. We then 

sought to determine if these values were associated with age (Supplementary Figure 1) or if they were 

different between timepoints (Supplementary Figure 2). Since there was no significant correlation with 

age neither differences in head motion levels between assessments, we thus concluded that there was 

no need to account for this variable in subsequent statistical analyses.  

4.6. Network construction 

Network nodes were defined as the 90 regions of the Automated Anatomical Labeling (AAL) template.  

These regions were normalized to each subject native diffusion space. This was done by applying the 

inverted affine transformation from diffusion space to MNI space. Probabilistic tractography was used to 

estimate connections between nodes (i.e., edges).  This was accomplished using probtrackx2 algorithm 

from FDT toolbox. 5000 streamlines were sampled from each voxel in the seed mask. This resulted in a 

structural connectivity (SC) matrix, for each subject, representing the number of streamlines leaving each 

seed mask and reaching any of the other regions. This matrix was normalized by first dividing each line 

by the waytotal value (i.e., the total number of generated tracts not rejected by inclusion/exclusion mask 
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criteria) and then dividing by the maximum SC value of each individual, in order to have connectivity 

values between [0, 1]. Each element of this matrix, !!", represents the connectivity probability between 

region i and region j. Since tractography is dependent on seeding location, the connectivity probability 

from i to j is not necessarily equal to that from j to i. Still, these two probabilities are highly correlated 

across the brain for all participants. Thus, we defined the undirected connectivity probability as the 

average of these two probabilities, !!" and !"!, which originated an undirected connectivity matrix. At the 

end of this process, a 90 x 90 symmetric connectivity matrix for each subject was obtained. A threshold 

set to 1% of the strongest connection was then applied to each subject’s SC matrix, in order to remove 

spurious connections. An additional threshold was applied, based on a consistency-based thresholding 

technique. This method measures the consistency of edge weights across subjects and retains the most 

consistent ones, with the goal of reducing the false-positives in group-averaged connectivity matrices (for 

a description of the method see (Roberts et al., 2017)). It was proven to preserve more long-distance 

connections, than the traditional weight-based thresholding, which often removes such connections since, 

in general, they represent weak edges. In this work, we applied consistency-based thresholding at 30% 

density (the same density used in (Roberts et al., 2017)) and then we performed a validation of the 

method by analyzing the connections that were removed. Specifically, we analyzed the connections that 

were removed in each individual after applying the threshold, both the number of connections removed 

(Supplementary Figure 3) and the strength of these connections (Supplementary Figure 4). Furthermore, 

the consistency-based threshold method generates a group consistency mask that is then applied to each 

subject’s SC matrix, in order to retain only the most consistent connections. Thus, we also analyzed the 

connections that were present in this group consistency mask but were not present in all subjects SC 

matrices. Once again, we evaluated the number of connections that were not present in all subjects 

(Supplementary Figure 5) and their strength (Supplementary Figure 6). We can observe that, in each 

subject, a small percentage of connections is removed (Supplementary Figure 3) and they represent 

mostly weak connections (Supplementary Figure 4). Also, for each subject, the connections from group 

consistency mask that are not present in its SC matrix do not represent more than 50% of all group 

consistency links (Supplementary Figure 5) and once again, the majority of these edges are characterized 

by low connection strength (Supplementary Figure 6). Together, these results support the use of this 

threshold technique to remove spurious connections.   

Given that our sample covers a 30-year age range and the rate of white matter change is known not to 

be homogeneous across age (Sexton et al., 2014; Westlye et al., 2010), we performed an additional 
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analysis to evaluate the potential impacts of both age and sex on our estimations of SC. To perform this, 

we analyzed the levels of intra- and inter-timepoint consistency in the resulting signatures of individual 

SC, i.e., how consistent are the patterns of estimated SC across all subjects in a timepoint, as well as 

between timepoints. To do this, we used the following two strategies for evaluating timepoint consistency 

(TC) in SC: 

 TC-I: Intra-timepoint consistency measured as the Pearson’s correlation between each subject’s 

SC and timepoint mean SC (considering upper diagonal matrix elements). The resulting r values were z-

transformed (Fisher-Z transformation) before averaging and converting (inverse of Fisher-Z) the resultant 

timepoint consistency back to r scale. This value represents the within-timepoint consistency, i.e., for 

each timepoint, how well all subjects’ SC correlate with the timepoint’s average SC. 

 TC-II: Intra-timepoint consistency measured as the distribution of Pearson’s correlations between 

all possible pairs of subjects in a timepoint. The resulting distribution of all pairwise (pairs of subjects) SC 

comparisons is represented as a histogram. This indicates how well SCs in a timepoint correlate with 

each other. Inter-timepoint consistency was also assessed by considering all subjects as part of the same 

timepoint. 

4.7. Graph Theoretical Analysis 

Brain networks can be described in terms of its topological organization, using graph theory measures. 

Brain Connectivity Toolbox (https://sites.google.com/site/bctnet/) was used to extract these metrics. 

The following local and global measures were computed:  

Degree. The degree of a node J!, in a binary undirected network, is the number of links connecting node 

0 with the other : = 1…L − 1 nodes: 

J! =MN!"
"#$

 

where N is the adjacency matrix. 

The mean degree of an undirected network is the average of all node degrees: 
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〈J〉 =
1
LMJ!

%

!&$
 

Connection Density. The connection density of a network is the proportion of the actual number of edges 

in the network relative to the total possible number of connections. For an undirected network with L 

nodes without self-connections, the total number of possible connections is given by L(L − 1)/2. Thus, 

the connection density, S , of an undirected network can be measured as:  

S = 	
2T

L(L − 1) 

where T is the total number of edges in the adjacency matrix. 

Global Efficiency. Global efficiency is a measure of integration that reveals how efficiently information can 

be exchanged between nodes. It is defined by the mean of the inverse shortest path length, U!" , between 

each pair of nodes: 

T'()* =
1

L(L − 1)M
1
U!"!#"

 

Nodal Efficiency. Nodal efficiency measures how well a node is integrated within the network via its 

shortest paths, i.e., how well a given node connects to all other nodes in the network. It is defined as the 

mean of the inverse shortest path length, U!", between a given node and all other nodes in the network: 

T+),-((:) =
1

(L − 1)M
1
U!"!

 

Local Efficiency. Local efficiency reflects globally how information is exchanged within the neighborhood 

of a given node. It is defined as the average nodal efficiency: 

T().-( =
1
LMT+),-((0)

!
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Characteristic Path Length. The characteristic path length, V, is the mean shortest path length between 

all possible pairs of nodes in a network. The shortest path between nodes 0 and : is equal to the minimum 

number of connections or the minimum cost needed to connect nodes 0 and :, where connection cost is 

defined as the inverse of connection weight. So, the characteristic path length is defined as:  

V = 	
1
LMU!

!
=

1
L(L − 1)MU!"

!#"
 

where U! is the average shortest path length from node 0 to all other nodes in the network and U!" is the 

shortest path length from node : to node 0. 

Clustering Coefficient. The clustering coefficient is measured as the fraction of closed triangles that are 

connected to node 0, relative to the total number of possible closed triangles between 0’s neighbors. It is 

a measure of local interconnectivity in a network and is calculated as follows: 

WU =
1
LM

2;!
J!(J! − 1)!∈%

 

where J! is the degree of node 0 and ;! is the number of closed triangles attached to 0. 

Small-World index. Networks with high clustering and low average shortest path length are considered 

small-world networks. This is quantified by the index X, that is a ratio of the normalized clustering 

coefficient and shortest path length. The normalization of these measures is done by dividing their 

empirical value by the average measure of an ensemble of randomized networks that preserves the 

degree distribution of the original network. When X > 1, the network is considered to present small-world 

properties.  

X =
WU/〈WU0-+,〉
V/〈V0-+,〉

 

where 〈WU0-+,〉 is the average clustering coefficient of the randomized networks and 〈V0-+,〉 is the 

average shortest path length of the randomized networks. In this work, we generated an ensemble of 100 

randomized networks.  

In addition, the following topological features were also assessed. 
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Modularity. Modularity quantifies the degree to which nodes of a network may aggregate into densely 

connected non-overlapping modules or communities (Fornito et al., 2016). Nodes within a community 

are more strongly connected with each other than with nodes outside this community. Thus, the optimal 

community structure will be the partition of the network that maximizes intra-module connectivity and 

minimizes inter-module connectivity. The index of modularity, Q, is given by the difference between the 

empirical degree of intra-module connectivity and the degree expected by chance (Fornito et al., 2016). 

The optimal community structure can be found by searching for the partition that maximizes Q. One 

popular algorithm used to find the optimal partition is the Louvain algorithm and, shortly, this is how it 

works: first, it starts with all nodes in a distinct module, then it chooses a node at random and merges it 

with the module that produces the largest gain in Q, these steps are repeated until no additional gains in 

Q are possible (Blondel et al., 2008). Given that at each iteration, nodes are chosen randomly, running 

the algorithm multiple times can lead to different solutions. Also, another limitation is the so-called 

degeneracy problem, that can cause the existence of large number of different solutions, since there is 

not a clear global maximum of Q (Good et al., 2010). To circumvent this problem, we ran the Louvain 

algorithm 10000 times and selected the partition having the higher number of occurrences in the set of 

10000 partitions, i.e., the partition that was more consistent. To compare the optimal community 

structures found at each timepoint, we defined a similarity metric. For each module in a partition, we 

found the module in the other partition that was more similar to this one (by finding the maximum of the 

number of shared regions divided by the total number of regions in the two modules). The similarity 

metric was then calculated as the mean of the maximum values for each module. Values close to 1 

indicate higher similarity between the partitions. 

Additionally, we characterized the overlap between each module of the optimal partition and resting-state 

networks (RSN). For this, we calculated a matrix where each entry represents the percentage of 

intersection between all anatomical regions in a module and a given RSN, normalized by the total 

intersected volume between all regions of the anatomical atlas and each of the RSNs. The anatomical 

atlas used was the AAL as it was also used to construct the SC matrices, and the RSN atlas used was the 

parcellation into 7 RSNs from (Yeo et al., 2011).  

Hubs. Hubs can be defined as nodes with high regional efficiency (T+),-() (Achard and Bullmore, 2007). 

Specifically, for each node, if the normalized T+),-( (divided by the mean T+),-( of all nodes) is larger 

than the normalized mean T+),-( of all nodes of the network plus one standard deviation (SD), the node 

is considered a hub (Lo et al., 2010).  
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Furthermore, we analyzed the topological roles of nodes in the communication within and between 

modules. This allowed the classification of nodes into provincial and connector hubs. The definition of 

these roles is described below. 

Provincial Hubs are nodes with high within-module degree z-score (greater than the mean plus SD of all 

nodes) and low participation coefficient (PC ≤ 0.3). Positive values of within-module degree z-score 

indicate high (above the average) intra-module connectivity, and thus higher values of this measure 

suggest that the node plays a central role in intra-modular communication. Participation coefficient (PC) 

compares the number of connections of a node with other nodes in different modules, to the total number 

of connections to other nodes in the same module. Values close to one indicate that the edges of a node 

are distributed uniformly across modules while a value of zero means that all edges of a nodes are limited 

to its own module. Thus, provincial hubs are characterized by comprising most of their connections within 

their own module (Fornito et al., 2016).  

Connector Hubs were also defined as nodes with high within-module degree z-score and high participation 

coefficient (PC > 0.3). This means they have many connections with other modules, and thus play a key 

role in inter-modular communication (Fornito et al., 2016).  

4.8. Statistical analysis 

Statistical comparison of the SC matrices between first and last assessments, at the edge level, was 

performed by applying a paired sample t-test with SC as the dependent variable and time of evaluation 

as independent variable. The obtained SC networks are comprised of 90 nodes, yielding a total number 

of possible edges of 4005 (90*89/2). Testing the hypothesis of interest at the edge level, therefore poses 

a multiple comparisons problem. In order to increase the statistical power of the analysis, we used the 

network-based statistics (NBS) procedure implemented in the NBS toolbox 

(https://sites.google.com/site/bctnet/comparison/nbs). This is a non-parametric statistical method that 

allows the identification of significantly different sub-networks, while controlling for the family-wise error 

rate (FWER) (Zalesky et al., 2010). First, it independently tests the hypotheses at every connection in the 

network and threshold the ones exceeding a user defined primary threshold, then it identifies sub-

networks constituted by interconnected edges that survived the primary threshold. The significance of 

these sub-networks is then calculated by comparing their sizes to the distribution of the size of sub-

networks obtained through random permutations of the original hypothesis. It is important to note that 

the primary threshold only affects the sensitivity of the method and thus, FWER is assured independently 
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of this threshold. In this study, the primary threshold was set to F = 17.0, which was the maximum 

threshold that detected a unique significant connected component having more than two connections 

(Supplementary Figure 8). Longitudinal changes in structural connectivity detected with NBS are 

represented by significantly connected components at a corrected level of p < 0.05 FWE corrected. 

Additionally, we extracted, for each subject, the mean connectivity values of the significant component 

resulting from the NBS approach. We analyzed these values separately for the connections with increases 

in connectivity between timepoints, the connections with decreases and both types of connections. We 

then examined, for these three types, the values of mean connectivity of all connections, intra-left, intra-

right and inter-hemispheric connections. Moreover, we tested potential associations between the 

connectivity values of these networks and cognitive scores of MEM and EXEC. The rmcorr R package 

(https://cran. r-project.org/web/packages/rmcorr/) was used to compute a repeated measures 

correlation coefficient between each sub-network and cognitive score. This coefficient, unlike simple 

correlation, does not violate independence assumptions nor requires averaging the data and thus is 

suitable to use with repeated measures data (Bakdash and Marusich, 2017). The p-values of all 

correlations were corrected for multiple comparisons, using the false discovery rate (FDR) method. 

The comparison of graph measures between timepoints was performed using paired sample t-tests and 

p-values were corrected for multiple comparisons, using the FDR method. In addition, we analyzed, for 

each timepoint, the network fingerprints of inter-modular (global and connector-hub-driven) and intra-

modular connectivity. The same method of analysis as described in (Fernandes et al., 2019), was applied 

in this work. In summary, modular connectivity strength was defined as the degree (total number of 

connections) of all nodes constituting a module. To quantify this connectivity at both timepoints, a 

reference scheme of community structure was chosen based on the mean score of community-structure 

goodness-of-fit. Then, matrices of inter-modular and intra-modular connectivity were created for both 

timepoints.  

4.9. White matter tracts analysis 

After identifying sub-networks with significant longitudinal changes, using the NBS approach described 

before, we performed an additional analysis designed to identify the white matter tracts that are 

responsible for connecting the brain regions comprising the identified sub-networks. For this, we used 

streamline density maps obtained with probabilistic tractography. These maps represent the number of 

streamlines reaching each voxel and one map is generated for each seed region. So, we first normalized 
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the streamline density maps of each subject to the MNI space using the affine transformation computed 

previously, and then applied a threshold of 1% of the maximum number of streamlines to remove spurious 

connections (same threshold as applied to construct the SC matrices). Next, we extracted WM tract masks 

from the JHU white-matter tractography atlas (Hua et al., 2008; Wakana et al., 2007) and computed the 

mean intensity (i.e. mean number of streamlines) of the overlapping region between each of these WM 

tracts and the streamline density map of each region. We repeated the process for each subject and each 

timepoint, then we grouped all this information in two matrices (one for each timepoint) that represent 

the mean intensity values of the overlap between each seed region and each WM tract averaged across 

subjects. Then, we applied a threshold of 5% of the maximum value to each matrix. Finally, we calculated 

the proportion of change between timepoints by computing the difference between the matrices of the 

last and first timepoints and then dividing by the matrix of the first timepoint. To identify WM tracts 

connecting a pair of regions, we inspected the proportion of change matrix and we selected WM tracts 

that had, for both brain regions, negative or positive values if that connection represented an SC decrease 

or an SC increase, respectively. In case regions shared multiple WM tracts, we chose the tract with the 

highest mean intensity value at both timepoints. When there wasn’t any common tract, we also chose 

based on the mean intensity values at both timepoints instead of the proportion of change. 

5. Results 

5.1. Sample Characterization 

Table 1 shows the demographic characterization of the participants included in this study. In summary, 

mean age at baseline was 63.5 years (range, 51 – 82 years) and mean interval between evaluations was 

52.8 months (range, 45 – 73 months). Interval time was not significantly associated with age at baseline 

(r = - 0.12, p = 0.41). The sample was balanced for sex (51% females, 49% males) and they did not differ 

with respect to interval time (;(30) = 0.14, B = 	0.89). Mean education level was 5.98 years (range, 

0 – 17 years). Regarding memory, at baseline, the mean factor score was 0.24 (range, -1.51 – 2.23) 

and at follow-up it was lower, with a mean value of 0.063 (range, -1.64 – 2.67). EXEC scores also 

decreased between assessments, with a mean value of 0.20 (range, -2.46 – 1.72) at baseline and 0.098 

(range, -1.90 – 2.05) at follow-up.  
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Table 1. Basic demographic characterization of the study’s cohort. 

 

 

 

 

 

 

Abbreviations: F-MEM, Mean Factor Scores for the memory composite dimension; F- EXEC, Mean Factor Scores for the general cognition 
and executive function composite dimension  

5.2. Timepoint Consistency 

High levels of intra- and inter-timepoint consistency were found for both timepoints in the estimation of 

whole-brain SC (Supplementary Figure 7). We thus concluded that potential bias due to age and/or sex 

did not have a significant impact on the estimation of SC so that the inclusion of additional confounds for 

these variables in the statistical analysis was not necessary. 

5.3. Structural Connectivity Longitudinal Changes 

From first to last timepoint there were significant changes in structural connectivity in a brain sub-network 

(p < .001), comprising 16 connections, where 9 correspond to decreases and 7 to increases in structural 

connectivity between timepoints (Fig. 1). Analyzing the individual connections of this network, we observe 

that the connections with longitudinal decreases in connectivity are composed by 3 intra-left, 5 intra-right 

and 1 inter-hemispheric connections. On the other hand, the connections with increasing connectivity are 

constituted by 2 intra-left and 5 inter-hemispheric connections. The summary of the connections is 

present in Table 2.  

 

 

 Mean ±	SD (range) 

N (Females/Males) 51 (26/25) 

Age at baseline (years) 63.5 ± 7.41 (51 - 82) 

Age at follow-up (years) 68.0 ± 7.25 (55 - 86) 

Interval (months) 52.8 ± 7.24 (45 - 73) 

Education (years) 5.98 ± 3.97 (0 - 17) 

F-MEM at baseline 0.24 ± 0.98 (-1.51 – 2.23) 

F-EXEC at baseline 0.20 ± 1.01 (-2.46 – 1.72) 

F-MEM at follow-up 0.063 ± 1.00 (-1.64 – 2.67) 

F-EXEC at follow-up 0.098 ± 0.99 (-1.90 – 2.05) 
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Figure 1. Significant changes in structural connectivity between timepoints. A) Binarized version of the 

connected component of significantly altered structural connectivity. B) Weighted version of A), with edge 

thickness representing the amplitude of differences. Blue represents decreases in connectivity strength 

between timepoints and red represents increases. Connections with decreases are mostly intra-

hemispheric, while most of the increases are composed of intra-hemispheric connections.  Both increases 

and decreases are mainly composed by links between subcortical and frontal regions. 

Table 2. Description of the connections comprising the connected component of significant structural 

connectivity differences between timepoints (p < .001).  

Area 1 Area 2 
Difference Intra-Left Intra-Right Inter-Hemispheric 

N Name N Name 

Increases 

77 Thalamus L 74 Putamen R 0.008 0 0 1 

78 Thalamus R 73 Putamen L 0.009 0 0 1 

76 Pallidum R 73 Putamen L 0.009 0 0 1 

77 Thalamus L 33 Cingulum Mid L 0.013 1 0 0 

73 Putamen L 31 Cingulum Ant L 0.013 1 0 0 

78 Thalamus R 77 Thalamus L 0.019 0 0 1 

34 Cingulum Mid R 33 Cingulum Mid L 0.044 0 0 1 

Decreases 

78 Thalamus R 72 Caudate R -0.088 0 1 0 

34 Cingulum Mid R 20 Supp Motor Area R -0.040 0 1 0 

72 Caudate R 4 Frontal Sup R -0.028 0 1 0 
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Next, we examined the mean connectivity values of the significant sub-network (Fig. 2). In the network 

with all connections, we observe an overall decrease in connectivity. When examining the three types of 

connections (intra-left, intra-right and inter-hemispheric) we see that connections within the same 

hemisphere exhibit a decrease between the two timepoints, with a more pronounced decrease for the 

right hemisphere, while inter-hemispheric connections show an increase along time. In the network of 

increases, inter-hemispheric connections are the major contributors for this increase, while intra-

hemispheric connections have lower connectivity values. In the network of decreases, most of the 

decrease in connectivity is due to connections within the right hemisphere, while intra-left and inter-

hemispheric connections present lower connectivity values. Rates of change for the different sub-networks 

are reported in Table 3.   

 

Figure 2. Mean connectivity values of the significant connected component. (A) all the connections; (B) 

connections with increases in connectivity along time; (C) connections with decreases in connectivity. For 

each plot, we present the connectivity values for all connections (black), intra-left (red), intra-right (green) 

and inter-hemispheric (purple) connections. Intra-hemispheric connections exhibit a decrease along time, 

while inter-hemispheric links show an increase. Most of the decreases in SC are due to connections within 

the right hemisphere. 

34 Cingulum Mid R 32 Cingulum Ant R -0.026 0 1 0 

72 Caudate R 24 Frontal Sup Medial R -0.022 0 1 0 

71 Caudate L 3 Frontal Sup L -0.016 1 0 0 

73 Putamen L 7 Frontal Mid L -0.014 1 0 0 

24 Frontal Sup Medial R 3 Frontal Sup L -0.011 0 0 1 

77 Thalamus L 7 Frontal Mid L -0.010 1 0 0 
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Table 3. Percentage of longitudinal changes in the mean connectivity of the significant connected 

component. Percentages are given for all the connections comprising the connected component, only the 

connections with increases in connectivity and connections with decreases.  

 

 

 

 

Regarding associations between mean connectivity values and cognition, only the correlation between the 

network with increases and EXEC was significant, although it did not survive the multiple comparisons 

correction (Supplementary Table 1). In order to verify if the multiple comparisons correction was too 

conservative, we calculated the bootstrap confidence interval of the correlation coefficient using 10000 

draws. We obtained the following result: r=0.31, 95% CI [-0.40, -0.18]. Thus, we estimate with 95% 

confidence that the true correlation coefficient between the network with increases and EXEC is between 

-0.40 and -0.18. Analyzing this association, we see that higher values of SC in this network are related to 

lower values of EXEC (Supplementary Figure 9).  

5.4. White matter tracts analysis 

Figures 3 and 4 present the proportion of change between timepoints in the mean number of streamlines 

encompassed by the volume of overlap between each WM tract and seed region of the sub-network with 

decreases (Fig. 3) and the sub-network with increases (Fig. 4). The values of the mean number of 

streamlines for each timepoint are displayed in Supplementary Figures 10 and 11. For the regions of the 

sub-network with decreases, connections were composed of association (anterior thalamic radiation, 

uncinate fasciculus, superior longitudinal fasciculus, cingulate gyrus part of cingulum bundle) and 

commissural fibers (forceps minor). While for the sub-network of increases, connections were attributed 

to all types of fibers, namely, association (inferior fronto-occipital fasciculus, cingulate gyrus part of 

cingulum bundle), commissural (forceps minor) and projection fibers (corticospinal tract). There was one 

special case in the network of increases that were the connections involving the left middle cingulate 

cortex. This region had only decreases in the mean number of streamlines, so we chose the WM tract 

with the highest value in both timepoints that was the left cingulate gyrus part of the cingulum.  

Network 
All 

connections 
Intra-Left Intra-Right 

Inter-
Hemispheric 

All Connections -6.53 -8.70 -15.07 13.04 

Increases 20.35 76.54 0 16.86 

Decreases -16.40 -30.10 -15.07 -15.9 
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Information of which WM tract connects each pair of regions along with mean number of streamlines 

values is summarized in Table 4.  

 

Figure 3. Proportion of change between timepoints in the mean number of streamlines of the overlap 

between each seed region of the sub-network with decreases in structural connectivity and WM tract. 

Seed regions are presented in rows and white matter tracts in columns. For most of the connections, we 

found a common WM tract and the majority were association fibers.  
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Figure 4. Proportion of change between timepoints in the mean number of streamlines of the overlap 

between each seed region of the sub-network with increases in structural connectivity and WM tract. Seed 

regions are presented in rows and white matter tracts in columns. There were more than a single WM 

tract connecting the regions, probably due to the fact that almost all the connections were inter-

hemispheric.   

Table 4. WM tracts connecting each pair of regions of the significant sub-networks with structural 

connectivity differences between timepoints. 

Area 1 Area 2 
WM Tract 

N Name N Name 

Increases 

77 Thalamus L 74 Putamen R CST L; IFOF R 

78 Thalamus R 73 Putamen L IFOF R; IFOF L 

76 Pallidum R 73 Putamen L IFOF R; IFOF L 

77 Thalamus L 33 Cingulum Mid L CST L; CGC L 

73 Putamen L 31 Cingulum Ant L IFOF L; FMI 

78 Thalamus R 77 Thalamus L IFOF R; CST L 
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Abbreviations: ATR, anterior thalamic radiation; IFOF, inferior fronto-occipital fasciculus; SLF, superior longitudinal fasciculus; UF, uncinate 
fasciculus; FMI, forceps minor; CGC, cingulate gyrus part of cingulum; CST, corticospinal tract. 

 

5.5. Topological Organization Longitudinal Changes 

5.5.1. Graph Theory Metrics 

Characteristic path length decreased significantly from the first to the second timepoint (t(50) = 3.45, p = 

.009, d = 0.29). Regarding the other graph measures (node degree, connection density, global efficiency, 

local efficiency, clustering coefficient and small-world index) no statistically significant differences were 

found (see Supplementary Table 2).  

5.5.2. Hubs 

Network hubs were defined as regions with high normalized nodal efficiency. In the first assessment, 13 

regions were identified as hubs (Fig. 5-6, Table 5). In timepoint 2, two hubs were lost in comparison to 

timepoint 1, that were left inferior parietal and left fusiform gyrus. 

 

 

 

34 Cingulum Mid R 33 Cingulum Mid L CST R; CST L 

Decreases 

78 Thalamus R 72 Caudate R ATR R 

34 Cingulum Mid R 20 Supp Motor Area R CGC R 

72 Caudate R 4 Frontal Sup R FMI 

34 Cingulum Mid R 32 Cingulum Ant R CGC R 

72 Caudate R 24 Frontal Sup Medial R CGC R 

71 Caudate L 3 Frontal Sup L UF L 

73 Putamen L 7 Frontal Mid L SLF L 

24 Frontal Sup Medial R 3 Frontal Sup L CGC R; CGC L 

77 Thalamus L 7 Frontal Mid L ATR L; SLF L 
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Figure 5. Global hubs identified in the two timepoints as measured by the normalized nodal efficiency. 

Here, we observe the plot of the normalized nodal efficiency for all the 90 AAL regions, sorted in 

descending order of efficiency values, for timepoint 1 (left) and timepoint 2 (right). We observe a 

reorganization of brain structural networks in aging, characterized by the loss of two hubs (left inferior 

parietal cortex and left fusiform gyrus). 
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Figure 6. Global hubs identified in the two timepoints as measured by the normalized nodal efficiency. 

Here, we represent in the brain the identified hubs for timepoint 1 (top row) and timepoint 2 (bottom 

row). We observe a reorganization of brain structural networks in aging, characterized by the loss of two 

hubs (left inferior parietal cortex and left fusiform gyrus). 
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Table 5. Hubs of the brain for the two timepoints, according to three classification methods used. Global 

hubs are sorted by nodal efficiency, and provincial and connector hubs are sorted by modularity degree 

z-score. 

Abbreviations: M1, Timepoint 1; M2, Timepoint 2. 

In the case of the provincial hubs, which play a central role in intra-modular communication, eight hubs 

were detected at timepoint 1 and ten at timepoint 2. Only the right parahippocampal and bilateral fusiform 

gyrus were detected at both timepoints (Table 5).  

Connector hubs represent a central role in inter-modular communication. At timepoint 1, five regions 

were identified as connector hubs, while at timepoint 2 only four regions were detected (Table 5). Left 

and right putamen were common to both timepoints. 

5.5.3. Modularity 

The optimal modularity structure had six modules at both timepoints, and the two arrangements had a 

similarity of 0.80. Modules 4, 5 and 6 were common to both partitions. Module 3 changed from a leftward 

Global Hubs Provincial Hubs Connector Hubs 

M1 M2 M1 M2 M1 M2 

Heschl R Heschl R Frontal Sup Orb L Rolandic Operculum R Cingulum Mid R Occipital Mid L 

SupraMarginal L Occipital Inf L ParaHippocampal R ParaHippocampal R Postcentral Gyrus L Putamen R 

Parietal Inf R Parietal Inf R Insula R Temporal Inf L Caudate L Postcentral Gyrus R 

Occipital Inf R SupraMarginal L Parietal Inf L Rectus R Putamen L Putamen L 

Rolandic Operculum L Occipital Inf R Rolandic Operculum L Parietal Inf R Putamen R  

Occipital Inf L Heschl L Rectus L Frontal Med Orb R   

Rolandic Operculum R Angular R Fusiform L Caudate R   

Angular R Rolandic Operculum R Fusiform R Fusiform L   

Heschl L Rolandic Operculum L  Fusiform R   

Angular L Angular L  Insula L   

SupraMarginal R SupraMarginal R     

Parietal Inf L      

Fusiform L      
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lateralization at timepoint 1 to a rightward lateralization at timepoint 2, which caused slight differences in 

the arrangement of the frontal regions of modules 1 and 2 (Fig. 7A). Details of the regions belonging to 

each module are given in Supplementary Table 3. Furthermore, analyzing the connectivity profile of the 

connector hubs (Fig. 7B), we observe distinct patterns at the two timepoints. Even regions that were 

classified as connector hubs at both timepoints (left and right putamen), have different profiles of 

connectivity.  

 

Figure 7. Modularity structure (A), connector-hub connectivity (B) and matrices of RSNs overlap (C) at 

timepoint 1 (top row) and timepoint 2 (bottom row). Filled circles represent connector hubs and unfilled 

circles represent provincial hubs. Although very similar modular arrangements were found at both 

timepoints (A, B), the undirected structural connectivity profile for the connector hubs was different (C). 

These differences are probably due to the loss of two connector hubs from first to last timepoint, namely 

left caudate and right midcingulate cortex, while left middle occipital gyrus was identified as a connector 

hub only in the last timepoint. Giving the role of connector hubs in inter-modular communication, the 
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reduction in their number between timepoints reflects a decrease in integration of brain structural 

networks in aging.  

Regarding the overlap between modules and RSNs, despite their differences in the arrangement, the 

percentage of overlap has only very subtle differences in the first three modules. Module 1 has the highest 

overlap with both fronto-parietal and somatomotor networks, with slightly higher overlap with fronto-

parietal network at timepoint 1. Module 2 again overlaps with fronto-parietal (higher value at timepoint 2) 

and somatomotor, but also with the ventral attention network, and module 3 overlaps with limbic and 

default mode networks with higher value for the limbic network at both timepoints. In relation to the last 

three modules, module 4 overlaps with limbic and somatomotor networks, and modules 5 and 6 with 

visual and limbic networks. The matrices with the values of overlap at both timepoints are represented in 

Figure 7C.  

5.5.4. Fingerprints of Modular Connectivity 

The reference scheme chosen to analyze fingerprints of modular connectivity was the community 

structure of timepoint 2. Significant alterations in connector-hub driven inter-modular connectivity were 

found (Fig. 8). From timepoint 1 to timepoint 2, a decrease of around 19% of overall connectivity is found. 

Focusing on the specific connections that contribute to this decrease, at timepoint 1, we observe 

increased connectivity from module 2 (left hemisphere; frontal and parietal regions, insula, 

supramarginal, angular, putamen, pallidum, thalamus and superior temporal gyrus) to module 4 (bilateral 

supplementary motor area, middle and posterior cingulate cortex, precuneus and paracentral lobule) as 

well as from module 3 (frontal regions most on the right hemisphere, bilateral anterior cingulate cortex, 

caudate, right putamen, right pallidum and right thalamus)  to modules 2, 4 and 6 (left hemisphere; 

occipital and temporal regions, hippocampus, parahippocampal, amygdala, calcarine, cuneus, lingual 

and fusiform gyrus). Of notice, at timepoint 1 there are two connector hubs that belong to module 2 (left 

postcentral gyrus and left putamen) and also two connector hubs in module 3 (left caudate and right 

putamen), while at timepoint 2 there is only one connector hub in each of these modules (left putamen 

in module 2 and right putamen in module 3). Furthermore, modules 1 and 6, at timepoint 1, have no 

connectivity with any other modules, and the same happens with module 4 in timepoint 2 and module 5 

at both timepoints. This is because there is a lack of connector hubs belonging to any of these modules, 

at the referred timepoints. No differences were found for intra-modular and inter-modular connectivity.   
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Figure 8. Fingerprints of modular connectivity at timepoint 1 (top row) and timepoint 2 (bottom row). 

Left column represents the inter-modular connectivity, middle column the intra-module connectivity and 

right column the connector-hub driven inter-modular connectivity. Modular connectivity strength is 

quantified as the total number of connections (degree) of all nodes forming a module. Community 

structure of timepoint 2 was selected as the reference scheme, since it had higher group goodness-of-fit. 

We observe different patterns only in connector-hub driven inter-modular connectivity. Overall, there was 

a decrease of around 19% in this connectivity between timepoints, which is probably due to the loss of 

one connector hub. This results again suggests a decrease in integration of brain SC during aging. 

6. Discussion 

In this study, we explored the longitudinal changes in the topological organization of brain structural 

networks in normal aging, using diffusion magnetic resonance imaging. Our results revealed both 

decreases and increases in white matter structural connectivity along time. Interestingly, the sub-network 

with decreasing connectivity is composed mainly of intra-hemispheric connections, while inter-

hemispheric connections are in majority in the sub-network of increases. Both networks are mainly 

comprised by connections between subcortical and frontal regions. This differential pattern of changes in 

different types of connections could be explained by the last-in-first-out hypothesis, which claims that 
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regions developing later are more prone to age-related decline (Raz, 1999). In terms of white matter 

tracts, association fibers, that connect different regions within a hemisphere, have a later peak of 

maturation when compared to commissural fibers that connect regions between the two hemispheres 

(Hermoye et al., 2006). According to this hypothesis it is expected that association fibers will undergo a 

steeper decline in comparison to commissural fibers, which was already demonstrated in studies of white 

matter microstructural properties indirectly estimated from DTI-based metrics (Bender et al., 2016; 

Brickman et al., 2012; Davis et al., 2009; Slater et al., 2019). Our results are in line with these findings, 

since intra-hemispheric links decline along aging, while inter-hemispheric links appear to be maintained 

and even enhanced. This enhance in connectivity between hemispheres along aging, has been reported 

in recent functional studies. One such study found stronger functional connectivity between bilateral 

frontoparietal control network that was associated with better cognition in the visuospatial domain (Jiang 

et al., 2020). Moreover, there are also reports of increased bilateral frontal activation in episodic memory 

retrieval tasks, for high-performing older adults (Cabeza et al., 2002). Another study found that higher 

cognitive status in healthy older adults was associated with higher between-network and inter-hemispheric 

functional connectivity (Sullivan et al., 2019). Our findings add to this evidence by demonstrating that this 

increase in bilateral connectivity also occurs in structural connectivity. In terms of white matter structural 

connectivity, there are few reports showing age-related increases. Of those, Lee and colleagues (Lee et 

al., 2015) found age-related increases between the prefrontal cortex and temporal regions, and between 

occipital and posterior brain regions. In our study, we found age-related increases between frontal and 

subcortical regions.  

Our analysis of the WM tracts involved in the connections of each sub-network further supports the last-

in-first-out hypothesis. The sub-network with decreases in SC was mainly composed of association fibers, 

with only one commissural fiber (forceps minor). While the sub-network with increases in SC, although it 

also included association fibers, was comprised by many commissural and projection fibers. It should be 

noted that connections with increasing connectivity are mainly inter-hemispheric, so it is very probable 

that the corpus callosum is involved in all these connections. Association fibers are the latest to develop 

in comparison to commissural and projection fibers and previous studies have reported more pronounced 

decline of DTI-based metrics for association fibers, which may possibly indicate a steepest decline in WM 

integrity (Bender et al., 2016; Benitez et al., 2018; Bennett and Madden, 2014; Cox et al., 2016; de 

Groot et al., 2015). Our results conform with these findings by demonstrating that disruption in WM 

structural connectivity occurs primarily in association fibers.   
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Furthermore, we analyzed the association between the mean connectivity of these sub-networks and 

cognitive scores of memory (MEM) and global cognition and executive function (EXEC). We found a trend 

in the correlation between the sub-network of increases and EXEC. Specifically, higher SC values were 

associated with lower EXEC scores. Previous studies reported that age-related functional connectivity 

increase was associated with poorer cognitive performance (Chen et al., 2019; Nashiro et al., 2017). Our 

finding is in line with the dedifferentiation hypothesis of the aging brain, which suggests that age is 

accompanied by a loss of specificity in the neural response to cognitive tasks (Chan et al., 2014; Dennis 

and Cabeza, 2011; Geerligs et al., 2015, 2014; Goh, 2011; Park et al., 2004). Our result on structural 

connectivity might suggest that the increase in SC is necessary to recruit additional areas in order to try 

to compensate for the cognitive decline these older adults are experiencing. Although we still see a decline 

in cognitive performance, this increase in SC is probably critical for the older adults to be able to perform 

cognitive tasks. Further research will be needed to confirm that this association reflects a compensatory 

mechanism. 

Analysis of the topological features of brain white matter structural networks revealed some, although 

few, longitudinal alterations. No significant differences were found in most of the analyzed graph metrics, 

namely, node degree, connection density, global and local efficiency. Although some studies report age-

related declines in some of these metrics, others present null results. Regarding global efficiency, (Wen 

et al., 2011; Zhao et al., 2015) report reduced global efficiency in advanced ages, whereas (Gong et al., 

2009) found no significant age effect on this metric. Thus, the existence of controversial results might 

explain the lack of significant results in our study. Moreover, the limited sample size used in this study is 

a limitation which may have contributed to the lack of significant alterations in these measures. 

Characteristic path length was the only metric found to be significantly different between timepoints, 

having lower values in the last timepoint. This finding means that the average shortest path length 

between all possible pairs of nodes in the network was lower in the last assessment and thus, globally, 

the communication between different regions was more efficient. This result is not in accordance with 

earlier studies which reported increases in characteristic path length (Fischer et al., 2014; Zhu et al., 

2012), but it should be noted that the effect size for this significant difference was rather small (d = 0.29) 

and this metric is inversely related to global efficiency, in which we found no significant differences.  

In nodal efficiency, differences were found between assessments, with the loss of two hubs (left inferior 

parietal and left fusiform gyrus) from the first to last timepoint. Left inferior parietal cortex (IPC) is known 

to be associated with language processing, namely reading, phonology and semantic processing (Amici 
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et al., 2006; Gorno-Tempini et al., 2004; Graves et al., 2010; Price and Mechelli, 2005; Turkeltaub and 

Branch Coslett, 2010; Vigneau et al., 2006). Additionally, it also plays a significant role in episodic 

memory (Wagner et al., 2005), attention (Corbetta and Shulman, 2002; Fan et al., 2005), action and 

salience processing (Behrmann et al., 2004; Caspers et al., 2010; Iacoboni, 2005), and social cognition 

(Bzdok et al., 2016). It is also an important node of the default mode network (DMN) (Greicius et al., 

2003). Previous aging studies have found age-related changes in the functional connectivity (FC) of this 

region and an association between these changes and cognitive decline in different domains, specifically, 

executive function (Lou et al., 2019; Zhao et al., 2020), semantic knowledge (Hoffman and Morcom, 

2018), inhibitory control (Hu et al., 2018) and memory (Huo et al., 2018; Lamichhane et al., 2018). In 

line with our results, there is evidence of the loss of hub role for left IPC in aging, which was demonstrated 

using cortical thickness covariance networks (Carey et al., 2019). Regarding fusiform gyrus, this region 

is involved in object recognition (Grill-Spector et al., 2001), face perception (Kanwisher et al., 1997), 

including haptic and visual identification of faces (Kitada et al., 2009), reading (Cohen et al., 2000; 

Wandell et al., 2007) and memory (Wagner et al., 1999). Functional studies of aging using face 

recognition tasks have demonstrated a relationship between patterns of activation in the fusiform gyrus 

and age-related declines in face recognition or perception (Dennis et al., 2008; Lee et al., 2011; Wright 

et al., 2008). There is also evidence of age-related atrophy of the fusiform gyrus (Hogstrom et al., 2013; 

Shah et al., 2020). Supporting our results, previous studies found the loss of hub role for the left fusiform 

characterized by reduced betweenness centrality in cortical networks of regional gray matter volumes (Li 

et al., 2018).  

Concerning modularity structure, we found very similar modular arrangements at both timepoints, with 

only some differences in frontal regions. Regarding fingerprints of modular connectivity, longitudinal 

differences were found in connector-hub driven inter-modular connectivity.  Overall, there was a decrease 

of around 19% in this connectivity from timepoint 1 to timepoint 2, which could be the result of the loss 

of one connector hub. This decrease suggests a reduction of integration of brain structural networks 

during aging, since connector hubs play an important role in inter-modular communication (characterized 

by high participation coefficient) and thus, there is less communication between different functional 

modules of the brain. There is already evidence suggesting a decrease in integration and increase in 

segregation of brain functional networks during the aging process (Sala-Llonch et al., 2014).  

Between assessments, two regions lost their connector hub role, namely left caudate and right 

midcingulate cortex, while left middle occipital gyrus was identified as a connector hub only at the last 
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timepoint. Both left caudate and right midcingulate cortex were part of the identified sub-network with 

decreases in connectivity between timepoints. Thus, this decrease in the anatomical connections between 

either left caudate or right midcingulate cortex and other regions of the brain would be expected to isolate 

these two regions and could explain the loss of these two nodes as connector hubs. Caudate is associated 

with different aspects of cognition, including motor and action planning, decision-making (particularly, 

goal-directed behavior), motivation and reward processing (Bick et al., 2019; Grahn et al., 2008; Tartaro, 

2019; Wilson, 2018). Previous studies exploring age-related changes in the caudate have shown 

associations with different cognitive domains, such as episodic memory (Fjell et al., 2016b; Rieckmann 

et al., 2018), instrumental learning (Perosa et al., 2020), cognitive flexibility (Verstynen et al., 2012) and 

reward processing (Bowen et al., 2020; Dhingra et al., 2020). Interestingly, (Esteves et al., 2018) reported 

that older adults had overall longitudinal rightward lateralization of the caudate volume and subjects with 

extreme increase in this rightward asymmetry had increased Stroop interference scores (i.e. a measure 

of cognitive flexibility) but decreased scores of general cognition. Our results provide additional support 

to this, by showing that the left caudate also loses its role of integrating different regions of the brain. 

Midcingulate cortex is associated with motor control (from self-initiated movements to reflexive motor 

activity), and also with the response to acute nociceptive stimuli, fear and pain (Hoffstaedter et al., 2015; 

Vogt, 2016). A previous study found age-related reductions in FC between dorsal anterior insula and 

midcingulate cortex, which are part of the dorsal salience sub-network and these changes were found to 

be a mediator of age-related declines in executive function (Touroutoglou et al., 2018). Another study 

elucidated the role of midcingulate cortex in motor functions. Specifically, this region is involved in a 

network associated with intentional movement initiation and it was found to present decreased FC with 

anterior cingulate motor area in aging, and there was also a decrease of gray matter volume with age 

(Hoffstaedter et al., 2015). These previous studies suggesting decreased connectivity and atrophy of this 

region with aging could explain the loss of connector hub status of the midcingulate cortex in our results.   

At the last timepoint, left middle occipital gyrus emerged as a connector hub. This region is associated 

with visual information processing and communication (Anurova et al., 2015; Teng et al., 2018; Wandell 

et al., 2007), and also plays a role in the perception of facial emotion as well as in category-selective 

attention modulating unconscious face/tool processing (Tu et al., 2013). Previous studies found age-

related differences in the patterns of activation of the middle occipital gyrus during visual tasks (Berghuis 

et al., 2019; Piefke et al., 2012). Additionally, in a study of autobiographical memory retrieval, increases 

in activation of middle occipital gyrus in older adults were found during episodic memory retrieval, which 

could reflect a compensatory mechanism due to impairment of vivid visual imagery, or higher use of 
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visuospatial processing during episodic memory retrieval (Donix et al., 2010). This compensatory increase 

in activation of middle occipital gyrus might explain its appearance as a connector hub at the last 

timepoint.  

Lastly, there was an increase of detected provincial hubs along time, which may reflect higher 

segregation/specialization of structural networks. These hubs are characterized by having most of their 

connections within their own module and thus play a key role in intra-modular communication. The 

additional regions detected at timepoint 2 were right caudate and left inferior temporal gyrus. As described 

before, caudate was found to have a rightward asymmetry in aging, what may explain the gain of provincial 

hub status along time. Inferior temporal gyrus is associated with semantic processing, particularly the 

selection and controlled retrieval of information from memory (Thompson-Schill, 2003), and it has also 

been involved in intelligence and executive function (Jung and Haier, 2007). Some studies report relative 

preservation of cortical thickness of this region until later in life (Fjell et al., 2009; Lee et al., 2018), and 

this can be related to the preservation of semantic memory also observed in aging (Gold et al., 2009). 

Our results also support the maintenance of this region along aging as it was characterized as an 

important hub of the brain network in the last timepoint.   

This study has some limitations, particularly the low sample size and the period between evaluations. 

This could explain why there were almost no differences in graph theory metrics, and thus an extended 

period of evaluation and a larger sample could allow to observe differences in these measures. Another 

limitation is the use of a 1.5T MRI scanner which has lower signal to noise ratio (SNR) when compared 

to 3T MRI scanners (Lee and Shannon, 2007). Future studies will benefit from using a 3T scanner, which 

will allow to obtain high-quality images. While these limitations may have had some influence on the 

obtained results (changes in network connectivity, hubs and modularity structure), we believe these 

effects were minimal since the same protocol (same scanner, acquisition parameters and data processing 

pipeline) was used at both evaluations.  

In summary, our findings bring further support of the existing evidence of the reorganization of brain 

structural networks during aging. Specifically, we found decreases in intra-hemispheric connectivity and 

increases in inter-hemispheric connectivity. Association fibers were primarily responsible for the 

decreases in white matter structural connectivity and their functional loss is consistent with the last-in-

first-out hypothesis. Additionally, we found a trend for an association between cognition and a sub-network 

with increasing connectivity, exhibiting lower general cognition and executive functioning scores for higher 
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SC values, possibly suggesting some form of a compensatory mechanism. Regarding topological features 

of brain networks, we found evidence suggesting reduced integration, characterized by a decrease in 

connector-hub driven inter-modular connectivity, and increased segregation, portrayed as an increase in 

the number of detected provincial hubs, of brain structural networks in aging. Taken together, these 

findings elucidate the changes occurring in the brain during aging, in terms of communication between 

the hemispheres and between specialized modules. This can help identify brain regions responsible for 

this disruption, that could be targeted as biomarkers to prevent cognitive decline in aging.   
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8. Supplementary Material 

 

 

 

 

 

 

 

 

Figure S1. Correlation between head-motion relative displacement values and age for all subjects and 

both timepoints. Head-motion displacement values were extracted using FSL tools and averaged across 

all volumes acquired for one subject. Correlation is not significant (r = 0.019, p = 0.85) meaning that age 

is not associated with head-motion.  
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Figure S2. Comparison of head-motion relative displacement values between timepoints. A paired t-test 

was performed, and it was not significant (p = 0.95) meaning that head-motion values did not differ 

between timepoints. 

 

 
Figure S3. Percentage of connections lost in each subject when applying consistency-based 

thresholding. Percentage is calculated as the proportion of connections removed in the subject SC matrix 

relative to the total number of connections removed in the group consistency mask. Plot on the left 

illustrates results for timepoint 1 and on the right, results for timepoint 2.  
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Figure S4. Frequency distribution for the connection strength of the links removed when applying 

consistency-based thresholding. Plot on the left illustrates results for timepoint 1 and on the right, results 

for timepoint 3.  

 

Figure S5. Percentage of connections that were present in the group consistency mask but were not 

present in all subjects’ SC matrices. Percentage is calculated as the proportion of connections not present 

in the subject SC matrix relative to the total number of connections in the group consistency mask. Plot 

on the left illustrates results for timepoint 1 and on the right, results for timepoint 2. 
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Figure S6. Frequency distribution for the connection strength of the links from the group consistency 

mask not present in all subjects, when applying consistency-based thresholding. Plot on the left illustrates 

results for timepoint 1 and on the right, results for timepoint 3.  

 
Figure S7. Consistent signatures of SC for M1 and M2 timepoints. Left panel shows intra-timepoint 

consistency measured as the association between individual SC signatures and timepoint average SC 

and we can observe that the two timepoints reveal a very high level of intra-timepoint consistency (M1: 

97.6%; M2: 97.5%). Right panel shows the degree of association between the signatures of SC for all 

pairs of subjects in the same timepoint. Once again, we notice a high level of timepoint consistency in 

SC (100% and 99.8% of all pairwise combinations in M1 and M2 timepoints respectively have a correlation 

higher than r=0.9137, with number of occurrences peaking at approximately r=0.96 for both timepoints). 

The overlap between the distributions of intra-timepoint consistency of both timepoints is additionally 

confirmed by the inter-timepoint consistency distribution (M1-M2: peak at approximately r=0.95). Taken 
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together, these results suggest that, at a global level, the patterns of SC are highly consistent within and 

between timepoints, and thus potential differences due to age and sex do not have a significant impact 

on the estimation of SC patterns.   

 
Figure S8. Relationship between F-threshold and number of connections/nodes, that detected a 

significant component. The F-threshold used in this study (17.0) was selected based on the maximal F-

threshold that detected a single component with more than two connections. This generated an NBS 

component with 19% nodes of the network and 16 links. 

 

 

 

 
 
 
 
 
 
 
 
 
 
Figure S9. Repeated measures correlation between mean SC values of the network with increases and 

mean factor scores of general cognition and executive function.  
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Figure S10. Values of the mean number of streamlines for seed regions of the sub-network with 

decreases in structural connectivity. Top row shows values for timepoint M1 and bottom row shows values 

for timepoint M2. Seed regions are presented in rows and white matter tracts in columns.  

Decreases
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Figure S11. Values of the mean number of streamlines for seed regions of the sub-network with 

increases in structural connectivity. Top row shows values for timepoint M1 and bottom row shows values 

for timepoint M2. Seed regions are presented in rows and white matter tracts in columns.  

Increases
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Table S1. Correlations between mean SC values of sub-networks and cognitive composite dimensions 

(MEM and EXEC). 

 MEM EXEC 

 #!" p-value 
p-value 

(FDR corrected) 
#!" p-value 

p-value 

(FDR corrected) 

All Connections -0.055 0.70 0.70 -0.11 0.46 0.70 

Increases -0.27 0.062 0.19 -0.31 0.030 0.18 

Decreases 0.087 0.55 0.70 0.066 0.65 0.70 

Abbreviations: !!", repeated measures correlation coefficient	
 

Table S2. Timepoint differences in graph theory metrics (results FDR corrected at p < 0.05).  

Network Metric Timepoint 1 Timepoint 2 t-test 

 mean SD mean SD t-stat p-value 

Mean Connectivity 0.013 0.001 0.013 0.001 -0.17 0.90 

Degree 1541 114 1539 104 0.082 0.90 

Connection Density 0.19 0.014 0.19 0.013 0.14 0.90 

Global Efficiency 0.11 0.006 0.11 0.007 -0.36 0.90 

Local Efficiency 0.11 0.005 0.11 0.006 -1.23 0.90 

Clustering Coefficient a 3.25 0.24 3.24 0.23 0.44 0.90 

Characteristic Path Length a 1.46 0.026 1.45 0.029 3.45 0.009** 

Small-World Index 2.22 0.16 2.23 0.15 -0.13 0.90 

a divided by 100 random networks; * p < .05, ** p < .01, *** p < .001 
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Table S3. Brain regions belonging to the different modules of each timepoint’s modularity community 

structure.  

Timepoint 1  Timepoint 2 

Module Area  Module Area 

1 

Precentral R  

1 

Precentral L 

Frontal Sup R  Frontal Sup L 

Frontal Sup Orb R  Frontal Sup Orb L 

Frontal Mid R  Frontal Mid L 

Frontal Mid Orb R  Frontal Mid Orb L 

Frontal Inf Oper R  Frontal Inf Oper L 

Frontal Inf Tri R  Frontal Inf Tri L 

Frontal Inf Orb R  Frontal Inf Orb L 

Rolandic Oper R  Rolandic Oper L 

Insula R  Insula L 

Postcentral R  Postcentral L 

Parietal Sup R  Parietal Sup L 

Parietal Inf R  Parietal Inf L 

SupraMarginal R  SupraMarginal L 

Angular R  Angular L 

Caudate R  Putamen L 

Putamen R  Pallidum L 

Pallidum R  Thalamus L 

Thalamus R  Heschl L 

Heschl R  Temporal Sup L 

Temporal Sup R  

2 

Hippocampus L 

2 

Precentral L  ParaHippocampal L 

Frontal Sup L  Amygdala L 

Frontal Mid L  Calcarine L 

Frontal Inf Oper L  Cuneus L 

Frontal Inf Tri L  Lingual L 

Rolandic Oper L  Occipital Sup L 

Insula L  Occipital Mid L 

Postcentral L  Occipital Inf L 
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Parietal Sup L  Fusiform L 

Parietal Inf L  Temporal Pole Sup L 

SupraMarginal L  Temporal Mid L 

Angular L  Temporal Pole Mid L 

Heschl L  Temporal Inf L 

Temporal Sup L  

3 

Supp Motor Area L 

3 

Frontal Sup Orb L  Supp Motor Area R 

Frontal Mid Orb L  Cingulum Mid L 

Frontal Inf Orb L  Cingulum Mid R 

Olfactory L  Cingulum Post L 

Olfactory R  Cingulum Post R 

Frontal Sup Medial L  Precuneus L 

Frontal Sup Medial R  Precuneus R 

Frontal Med Orb L  Paracentral Lobule L 

Frontal Med Orb R  Paracentral Lobule R 

Rectus L  

4 

Precentral R 

Rectus R  Frontal Sup R 

Cingulum Ant L  Frontal Mid R 

Cingulum Ant R  Frontal Inf Oper R 

Caudate L  Frontal Inf Tri R 

Putamen L  Rolandic Oper R 

Pallidum L  Insula R 

Thalamus L  Postcentral R 

4 

Supp Motor Area L  Parietal Sup R 

Supp Motor Area R  Parietal Inf R 

Cingulum Mid L  SupraMarginal R 

Cingulum Mid R  Angular R 

Cingulum Post L  Heschl R 

Cingulum Post R  Temporal Sup R 

Precuneus L  

5 

Frontal Sup Orb R 

Precuneus R  Frontal Mid Orb R 

Paracentral Lobule L  Frontal Inf Orb R 

Paracentral Lobule R  Olfactory L 

5 Hippocampus R  Olfactory R 
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ParaHippocampal R  Frontal Sup Medial L 

Amygdala R  Frontal Sup Medial R 

Calcarine R  Frontal Med Orb L 

Cuneus R  Frontal Med Orb R 

Lingual R  Rectus L 

Occipital Sup R  Rectus R 

Occipital Mid R  Cingulum Ant L 

Occipital Inf R  Cingulum Ant R 

Fusiform R  Caudate L 

Temporal Pole Sup R  Caudate R 

Temporal Mid R  Putamen R 

Temporal Pole Mid R  Pallidum R 

Temporal Inf R  Thalamus R 

6 

Hippocampus L  

6 

Hippocampus R 

ParaHippocampal L  ParaHippocampal R 

Amygdala L  Amygdala R 

Calcarine L  Calcarine R 

Cuneus L  Cuneus R 

Lingual L  Lingual R 

Occipital Sup L  Occipital Sup R 

Occipital Mid L  Occipital Mid R 

Occipital Inf L  Occipital Inf R 

Fusiform L  Fusiform R 

Temporal Pole Sup L  Temporal Pole Sup R 

Temporal Mid L  Temporal Mid R 

Temporal Pole Mid L  Temporal Pole Mid R 

Temporal Inf L  Temporal Inf R 
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1. Abstract 

Connectivity-based parcellation (CBP) methods have gained popularity in neuroimaging research and lead 

to a high heterogeneity of developed methods. This technique is used to group voxels with similar 

connectivity profiles to form homogeneous parcels based on structural or functional patterns of brain 

connectivity. It is commonly used to define highly homogenous and biologically meaningful nodes; the 

basic foundation for brain network fingerprinting. To date there is no standard method for CBP and its 

application to study the aging brain is very scarce. In this study, we aimed to 1) create a novel CBP 

method from diffusion MRI data and 2) use the generated parcellation to characterize the signatures of 

longitudinal brain network alteration underlying aging, both in terms of structural connectivity and 

topological properties. For this purpose, we constructed whole-brain connectivity maps from diffusion 

tensor imaging data of older adults, for two timepoints (interval time: mean = 52.8; SD = 7.24 months). 

State-of-the-art clustering techniques were implemented and tested to identify the best performing 

technique. Furthermore, we developed a new metric (connectivity homogeneity fingerprint - CHF) to 

evaluate the final CBP. Our results show that the developed method was successful in generating highly 

homogeneous parcels, as described by the significantly larger CHF score of the final parcellation, when 

compared to the original anatomical parcellation. Additionally, we demonstrated that the developed 
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parcellation provides a robust anatomical framework to assess longitudinal changes in the aging brain. 

We found that aging was predominantly characterized by a reorganization of the brain’s structural network 

which involves the decrease of intra-hemispheric and increase of inter-hemispheric structural. 

connectivity. These findings are consistent with previous literature, particularly with the “last-in, first-out” 

hypothesis. Moreover, our results revealed a rearrangement in the topological roles of brain network 

nodes. Overall, this study proposes a new methodology to perform and evaluate CBP of the human brain 

with high accuracy and robustness. Hence, the method here proposed can open new avenues to advance 

our understanding of brain connectivity in health and disease.  

Keywords: diffusion MRI, structural connectivity, brain parcellation, network neuroscience, clustering, 

pattern recognition, aging, humans 

2. Introduction 

Human brain organization is ruled by two main functional principles: integration and segregation. 

Functional integration is characterized by long-range connections and functional segregation through local 

differentiation (Tononi et al., 1994). Each functionally specialized brain region might be described by a 

different set of connections, so the two concepts of functional integration and segregation are not mutually 

exclusive, but instead they are closely entangled (Eickhoff et al., 2018, 2015). This view inspired the 

development of a new family of methods in neuroimaging research known as connectivity-based 

parcellation (CBP) (Eickhoff et al., 2015). CBP exploits the heterogeneity of connections within a brain 

region and divides it according to its voxels’ connectivity profiles (Eickhoff et al., 2015; Reuter et al., 

2020). After estimating the connectivity profiles (i.e., connection strengths between a seed voxel and a 

set of target voxels) of each voxel inside a region, voxels with similar connectivity profiles are grouped 

together. This is usually performed using clustering algorithms (e.g., J-means clustering, hierarchical 

clustering, spectral clustering) and results in subregions which represent homogeneous units with regard 

to the measured connectivity. Connectivity between voxels can be defined as functional connectivity which 

is estimated from resting-state functional Magnetic Resonance Imaging (rs-fMRI), structural connectivity 

which is derived from diffusion weighted imaging (DWI), or task-dependent functional connectivity which 

is computed from meta-analytic connectivity modeling (MACM). 

Network analysis tools allow the characterization of brain’s structural and functional organization through 

quantifiable topological properties, based on the concept that the brain is a complex network of 

interconnected regions (Bullmore and Sporns, 2009). In this sense, the brain network is modeled as a 
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graph composed of nodes and edges. While edges, defined as either functional or structural connectivity, 

were already subject of many studies in recent years, nodes are most of the time defined arbitrarily 

(Tittgemeyer et al., 2018). The most common approach is to use a pre-existing parcellation that divides 

the brain into different regions based in local properties, such as cytoarchitecture (Brodmann, 1909), 

myelo-architecture (Vogt, 1919) or receptor-architecture (Zilles et al., 2002). Early efforts to define brain 

nodes using these local criteria usually required post-mortem tissues or invasive studies and were 

extremely time consuming (Gao et al., 2018). As an alternative, local properties can be estimated using 

measurements derived from MRI, such as myelin density maps, but these will only reflect an indirect 

measure since these properties are not directly observable through MRI (Eickhoff et al., 2018). 

Furthermore, and although these parcellations define nodes with a biological meaning, they might not 

adequately reflect brain organization and inter-individual variability, as connectivity also plays a role in 

brain differentiation (Arslan et al., 2018; Eickhoff et al., 2015). In contrast, nodes generated with CBP 

present high homogeneity and functional coherence and distinct connectivity patterns between them, 

making them suitable for network analysis (Arslan et al., 2018). 

First studies performing CBP segmented only a single region of the brain. Examples include the thalamus 

(Behrens et al., 2003), medial frontal cortex (Johansen-Berg et al., 2004) and Broca’s area (Anwander 

et al., 2007). With the advent of new computational tools, whole-brain approaches are becoming popular, 

yielding a great heterogeneity of methods (Eickhoff et al., 2018). However, to date a robust and standard 

method to perform whole-brain CBP is still missing. Moreover, the application of CBP methods to study 

the aging brain is very scarce and limited to specific brain regions (Fritz et al., 2019). Herein we propose 

a new method to create a CBP of the human brain using diffusion MRI data. For this, we implemented 

and tested different state-of-the-art clustering techniques and selected the best performing according to 

different criteria (Silhouette scores and consistency of clusters’ sizes). Additionally, we developed a new 

metric (connectivity homogeneity fingerprint - CHF) to evaluate the final CBP and prove its possibly 

advantage over the original parcellation. This metric reflects if the voxels inside a region establish more 

homogeneous connections (i.e., if they are connected to the same parts of the brain) or more 

heterogeneous connections (i.e., if they are connected to different parts of the brain) and thus it 

demonstrates if the main goal of CBP was accomplished. We hypothesized that the generated CBP would 

present higher values of CHF in comparison to the original partition. Moreover, with the developed CBP 

we characterized longitudinal changes in topological features of white matter structural connectivity 

networks during normal aging. To the best of our knowledge, this is the first study applying CBP methods 

to study age-related longitudinal changes in the whole brain.  
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3. Methods 

3.1. Ethics Statement 

The present study was conducted in accordance with the principles expressed in the Declaration of 

Helsinki and was approved by the national ethical committee (Comissão Nacional de Proteção de Dados) 

and by the local ethics review boards (Hospital de Braga, Braga; Centro Hospitalar do Alto Ave, Guimarães 

and Unidade Local de Saúde do Alto Minho, Viana do Castelo/Ponte de Lima). The study goals and 

procedures were explained to the participants and all gave informed written consent. 

3.2. Participants 

The participants included in this study are part of a larger sample recruited for the SWITCHBOX 

Consortium project (www.switchbox-online.eu/), and are representative of the general Portuguese 

population with respect to age, gender and education (Costa et al., 2013; Santos et al., 2014, 2013). 

Primary exclusion criteria were inability to understand the informed consent, participant choice to 

withdraw from the study, incapacity and/or inability to attend MRI sessions, dementia and/or diagnosed 

neuropsychiatric and/or neurodegenerative disorder (from medical records). Mini Mental State 

Examination (MMSE) scores below the adjusted thresholds for cognitive impairment were also used as 

exclusion criteria. The adjusted thresholds were the following: MMSE score <17 if individual with ≤4 years 

of formal school education and/or ≥72 years of age, and MMSE score <23 otherwise (follows the MMSE 

validation study for the Portuguese population) (Guerreiro et al., 1994). These exclusion criteria were 

applied at both evaluations. Subjects were evaluated at two timepoints, with a mean interval time between 

first and last assessments of 52.8 months (SD = 7.24). At each evaluation, participants underwent an 

imaging session and a battery of neurocognitive/neuropsychological tests.  

In the first assessment, 100 subjects were contacted for MRI screening. In the last assessment, 55 

subjects accepted to participate and underwent MRI acquisition protocol, but one did not finish the 

diffusion acquisition. From these, one subject did not finish the diffusion acquisition and four subjects 

had brain lesions/pathology. A total of 51 individuals with data from both the first and last evaluations 

met all the inclusion criteria for this study.  
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3.3. MRI Data Acquisition 

All MRI assessments were performed at Hospital de Braga (Braga, Portugal) on a clinical approved 

Siemens Magnetom Avanto 1.5T MRI scanner (Siemens Medical Solutions, Erlangen, Germany) with a 

12-channel receive-only head-coil. The imaging protocol included several different acquisitions. For the 

present study, two types of acquisition were considered: Diffusion Weighted Imaging (DWI) and structural 

scans.  For the DWI acquisition a spin-echo echo-planar imaging (SE-EPI) sequence was acquired with 

the following parameters: TR=8800 ms, TE=99 ms, FoV=240x240 mm, acquisition matrix=120x120, 61 

2-mm axial slices with no gap, 30 non-collinear gradient direction with b=1000 s mm-2, one b=0 s mm-2 

and 1 repetition. For the structural acquisition, a T1-weighted magnetization prepared rapid gradient echo 

(MPRAGE) sequence was acquired with the following parameters: 176 sagittal slices, TR/TE = 2730/3.48 

ms, FA = 7º, slice thickness = 1 mm, slice gap = 0 mm, voxel size = 1x1 mm2, FoV = 256 mm. 

All acquisitions were visually inspected by a certified neuroradiologist, before any pre-processing step, in 

order to ensure that none of the individuals had brain lesions and/or critical head motion or artifacts that 

could affect the quality of the data and reliability of our findings.  

3.4. MRI Data pre-processing 

DWI data was pre-processed using FMRIB Diffusion Toolbox (FDT) provided with the FMRIB Software 

Library (FSL v5.0; https://fsl.fmrib.ox.ac.uk/fsl/). Pre-processing included: correction for motion and 

eddy current distortions; rotation of gradient vectors accordingly to the affine transformations used to 

register each volume; extraction and skull stripping of the first b0 volume that created a mask which was 

then applied to remove non-brain structures of the remaining volumes; local modelling of diffusion 

parameters using bedpostx algorithm that runs Markov Chain Monte Carlo sampling to build up probability 

distributions of the diffusion parameters at each voxel and allows modelling of crossing fibers (Behrens 

et al., 2007).   

Structural data was processed using the standard semi-automatic workflow implemented in FreeSurfer 

toolkit version 6.0 (http://surfer.nmr.mgh.harvard.edu/). In summary, the entire pipeline involves 31 

processing steps which include the spatial normalization to Talairach standard space, skull stripping, 

intensity normalization, tessellation of gray matter (GM)-white matter (WM) boundary, and cortical, 

subcortical, and WM segmentation. This pipeline has been validated against manual 

segmentations (Fischl et al., 2002) and is considered reliable across sessions, scanner platforms, 
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updates and field strengths (Jovicich et al., 2009). It has suffered several improvements throughout the 

years and details of the procedures are described in several publications (Desikan et al., 2006; Destrieux 

et al., 2010; Fischl et al., 2002). For the present study the cortical segmentation according to the Desikan-

Killiany-Tourville (DKT40) template (Klein et al., 2017) and the subcortical segmentation according to the 

Buckner (Buckner40) template (Fischl et al., 2002) were considered.  

3.5. Voxel-wise Structural Connectivity Network Construction 

Probabilistic tractography was used to estimate connections between brain voxels. The 76 regions of the 

DKT40 and Buckner40 templates obtained with FreeSurfer were used as seed masks. These masks were 

first converted to the volumetric space of FSL using in-house scripts, and then normalized to each subject 

native diffusion space by applying the affine transformation from diffusion space to structural space. 

Then, probabilistic tractography was run using probtrackx2 algorithm from FDT toolbox. 5000 streamlines 

were sampled from each voxel in the seed mask. This allowed to obtain the structural connectivity (SC) 

profiles of each voxel, by counting the number of streamlines that reached any voxel belonging to any 

seed mask. Tractography was performed only for data of the first assessment.  

3.6. Connectivity-based Parcellation 

After running probabilistic tractography, each region was subdivided based on its voxels’ connectivity 

patterns and the results of all subjects were merged in a group-wise parcellation. The multiple steps 

performed are described below and an outline of the method can be seen in Figure 1.  
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Figure 1. Overview of the workflow employed for the CBP method. Yellow boxes represent the initial 

input, blue boxes represent intermediate outputs and green boxes the final output. 
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3.6.1. Pre-processing structural connectivity data 

The output of probabilistic tractography was a sparse voxel-wise SC matrix for each region, which contains 

the connectivity values between each voxel of the seed mask and the voxels in all 76 masks (including 

the mask used as seed). These matrices were pre-processed before applying the clustering algorithm to 

group voxels with similar connectivity patterns. Firstly, we performed sparse to dense format conversion, 

which resulted in a matrix per region with each row representing a voxel of the seed mask and each 

column the voxels of all 76 masks. Secondly, a threshold of 1% of the strongest connection was applied 

to each matrix to remove spurious connections resulting from the probabilistic nature of tractography. 

After this, the columns of each matrix containing only null elements were removed, given that these 

represent brain voxels with no connections to seed mask voxels, and thus do not add valuable information 

for the clustering step. Finally, the connectivity values of each matrix were normalized by applying the 

Box-Cox transformation. Different options for normalization of connectivity values were tested, namely log, 

cubic and Box-Cox transform, and the latter was selected since it gave the best approximation of a normal 

distribution (Supplementary Figure 1). 

3.6.2. Choice of Clustering Algorithm 

Several different clustering algorithms can be used to group voxels according to their connectivity profiles. 

Here, we applied two of the most common used clustering algorithms in CBP: k-means and hierarchical 

clustering. After clustering was performed, we evaluated the performance of the two algorithms on our 

dataset to identify the best method for our CBP pipeline. This was done by calculating the silhouette 

coefficient of the clustering results for each method and selecting the one that scored highest. Silhouette 

coefficient is an internal cluster validation metric that is used when the ground truth labels are not known, 

and its value is higher when the clusters are dense and well separated (Rousseeuw, 1987). Furthermore, 

since the total number of voxels in all brain regions can go up to 200000 and we are considering 

connectivity between voxels, our data is high-dimensional which can undermine the performance of the 

clustering algorithm. This is known as the curse of dimensionality as termed by Richard Bellman (Bellman, 

1957) and dimensionality reduction techniques can help overcome this issue. As such, we used the 

silhouette coefficient to evaluate the performance of the two clustering algorithms in conjunction with a 

dimensionality reduction applied prior to the clustering. Two methods were used, namely Principal 

Component Analysis (PCA) and Self-Organizing Maps (SOM). PCA is a linear technique which reduces a 

large set of variables to a smaller set, known as principal components (PC), while preserving as much of 
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the data’s variance as possible (Bishop, 2006). Here, we selected the PCs that preserved 95% of the 

variance. SOMs are unsupervised learning neural networks that are trained to produce a low-dimensional 

representation of the data while preserving the topology of the input space and were inspired by the 

topographical organization of the sensory cortex of the mammalian brain (Kohonen, 1990, 1982). This 

method has already been applied to perform CBP of functional data (Mishra et al., 2014).  

3.6.3. Determination of optimal clustering solution 

After choosing the clustering algorithm, we applied it to each subject and each region for a range of 

different number of clusters, J = [2 ∶ 6]. For each J value, we estimated multiple internal cluster 

validation metrics. Specifically, we computed the Silhouette, Davies-Bouldin and Calinski-Harabasz 

metrics, which are often used when the ground truth labels are unknown. To circumvent the random 

initialization associated with clustering algorithms, we run 10 iterations of this procedure for each subject 

and region. For each run we selected the best J according to each metric and computed the mode of all 

these J (i.e., we choose the most frequent J in the 10 iterations run for each metric), which resulted in 

a J for each subject and region for the three metrics. Following this, we computed the mode of the J per 

region, over all subjects, to obtain a single J value per region and metric. Finally, we computed the 

clustering solution for each subject and region according to the selected J of each region and metric. By 

combining all the clustered regions of a subject, we obtained the individual clustered parcellations. Since 

we selected different J	values based on each of three metrics, this step resulted in three individual 

parcellation solutions per subject.  

3.6.4. Register individual parcellations to standard space 

After obtaining the individual clustered parcellations, they were normalized to the Montreal Neurological 

Institute (MNI) space so that we could combine them to generate the group-level parcellation. The 

normalization to the MNI space was performed using Advanced Normalization Tools (ANTs) software 

package, available at http://stnava.github.io/ANTs/. First, the transformation from native structural 

space to MNI space was computed, which was composed by an affine and a non-linear transform. Then, 

once again an affine and non-linear transform were concatenated to create the transformation from 

diffusion to structural native spaces. Finally, the two transformations (diffusion to structural, structural to 

MNI) were sequentially applied to normalize the subjects’ individual clustered parcellations to the MNI 

space.  
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3.6.5. Group-wise clustered parcellation 

Group-wise parcellation was obtained by combining all individuals clustered parcellations through a 

consensus clustering algorithm. This algorithm is used to aggregate multiple partitions of the same 

dataset (either coming from different clustering algorithms, different runs of the same algorithm, different 

samples of data) into a single partition (Vega-Pons and Ruiz-Shulcloper, 2011). We used the package 

Cluster Ensembles available at: https://pypi.org/project/Cluster_Ensembles/. This package combines 

three approximation algorithms to solve the problem of maximizing the average similarity between 

partitions and the one with the best performance is selected (Giecold et al., 2016; Strehl, 2002).  

First, we created a group reference parcellation, since our initial parcellation (DKT40 and Buckner40) 

was obtained for each individual as a result of FreeSurfer’s segmentation. For this, we normalized each 

individual parcellation from structural native space to the MNI space using ANTs, as described before. 

Then, for each voxel we attributed a label that was the mode of all subjects. Finally, we applied a threshold 

of 20% of the total number of subjects in order to remove voxels that were only present in few subjects. 

After obtaining the group reference parcellation, we masked each individual clustered parcellation using 

this reference and then applied consensus clustering to each region. In the end, we combined all regions 

to create a group clustered parcellation of the whole brain. 

3.6.6. Clusters postprocessing 

Since the clustering algorithm can generate spatially disjoint clusters, we forced these to be spatially 

contiguous by relabeling connected components. Thus, each connected component in a region was 

assigned to a different cluster. This means that for some regions the final number of clusters was higher 

than the chosen J. 

Finally, clusters with a size under 300 voxels were removed by merging them with its neighborhood. The 

size of 300 voxels was chosen after evaluating the clusters’ sizes of the group parcellation registered to 

each individual’s native diffusion space. Since subjects’ diffusion space had lower resolution (2x2x2 mm) 

when compared to the resolution of the group parcellation (1x1x1 mm), the clusters’ sizes registered in 

the native diffusion space had less voxels. We opted for selecting the threshold level leading to a minimum 

cluster size higher than 5 voxels in the subjects’ diffusion space (Supplementary Figure 2).   
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3.7. Connectivity Homogeneity Fingerprint 

We developed a metric to evaluate parcellation homogeneity and thus compare the accuracy of different 

parcellations in terms of regional connectivity fingerprint homogeneity – connectivity homogeneity 

fingerprint (CHF). This metric reflects homogeneity level of the structural connectivity fingerprint of all 

voxels in a region (i.e., the magnitude of overlap between the structural connectivity fingerprint of all 

voxels contained a region). Higher values mean that a region contains a larger pool of voxels with 

homogeneous connectivity profiles to the rest of the brain. It is calculated using the voxel-wise SC matrix 

of each region with the following steps: (1) the matrix is binarized; (2) the sum of each column is 

computed and divided by the size of the region, which results in a vector; (3) the CHF is equal to the 

average of the vector. 

Since the main goal of CBP is to group voxels with similar connectivity patterns, we evaluated the CHF of 

the original and the final parcellation to verify if our CBP method resulted in a parcellation with higher 

CHF. To do this, we performed probabilistic tractography with the obtained group parcellation. First, the 

group parcellation was registered to each individual’s diffusion space with ANTs, by applying sequentially 

the transformation from MNI space to native structural space (composed by an affine and a non-linear 

transform) and the transformation from structural to diffusion native spaces (composed by an affine and 

a non-linear transform). Gray matter and white matter masks, estimated with FreeSurfer for each 

individual, were applied to the group parcellation to exclude voxels outside these regions (e.g., voxels 

belonging to cerebrospinal fluid (CSF)). Then, probabilistic tractography was run using the group 

parcellation clusters as seed masks (5000 streamlines were sampled from each voxel in the seed mask). 

This allowed to obtain the voxel-wise SC matrix for each cluster (i.e., SC between each voxel of the cluster 

and the voxels of all clusters in the parcellation) and then we calculated the CHF of each cluster for all 

subjects. The CHF of the original parcellation was computed with the voxel-wise SC matrices that were 

used as the input of CBP. Statistical comparison of the CHF between each developed parcellation and 

the original parcellation was performed using independent samples t-tests and p values were corrected 

for multiple comparisons, using the false discovery rate (FDR) method. 

3.8. Selection of group parcellation and network construction 

After evaluating the CHF of the group parcellations estimated with each cluster validity metric (i.e., 

Silhouette, Davies-Bouldin, Calinski-Harabasz), we selected one group parcellation to assess longitudinal 

changes in the topological properties of white matter structural connectivity networks.  To do this, we 
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repeated the steps described in the previous section for the second timepoint dataset, with the selected 

partition (registration of group parcellation to individual’s diffusion space, probabilistic tractography and 

calculation of CHF).  

Then, we created the SC network matrices, for each subject and timepoint, by performing probabilistic 

tractography using the clusters of the selected group parcellation as seed masks. This resulted in a SC 

matrix, for each subject, representing the number of streamlines leaving each seed mask and reaching 

any of the other regions. This matrix was normalized by dividing each line by the waytotal value (i.e., the 

total number of generated tracts not rejected by inclusion/exclusion mask criteria). We further divided 

the matrix by its maximum value, in order to have connectivity values between [0, 1]. Since tractography 

is dependent on seeding location, the connectivity probability from i to j is not necessarily equal to that 

from j to i. Still, these two probabilities are highly correlated across the brain for all participants. Thus, 

we defined the undirected connectivity probability as the average of these two probabilities, !!" and !"!, 

which originated an undirected connectivity matrix. Next, a consistency-based threshold at 30% density 

was applied, which retains the most consistent connections across subjects with the aim of reducing the 

false-positive in group-average connectivity matrices (Roberts et al., 2017). Subsequently, we tested 

different strategies to account for connectivity between clusters of the same region: 1) set intra-cluster 

connectivity to 0 and normalize regional connectivity values by the maximum; 2) set intra-cluster 

connectivity to 1 and normalize regional connectivity values by the maximum (excluding the intra-cluster 

connectivity) and 3) use the original intra-cluster connectivity values. Supplementary Figure 3 shows the 

example for one subject of the connections surviving each of these strategies. We opted to use the original 

intra-cluster connectivity values as the other two strategies seem to include more connections which could 

lead to the inclusion of false-positive connections. Finally, a threshold set to 1% of the strongest connection 

was applied to each SC matrix, in order to remove spurious connections.  

3.9. Graph Theoretical Analysis 

Brain networks can be described in terms of its topological organization, using graph theory measures. 

Brain Connectivity Toolbox (https://sites.google.com/site/bctnet/) was used to extract these metrics. 

The structural connectivity networks built with the selected group parcellation were used. The following 

topological features were evaluated for both timepoints. 

Modularity. Modularity quantifies the degree to which nodes of a network may aggregate into densely 

connected non-overlapping modules or communities (Fornito et al., 2016). Nodes within a community 



 122 

are more strongly connected with each other than with nodes outside this community. Thus, the optimal 

community structure will be the partition of the network that maximizes intra-module connectivity and 

minimizes inter-module connectivity. The index of modularity, Q, is given by the difference between the 

empirical degree of intra-module connectivity and the degree expected by chance (Fornito et al., 2016). 

The optimal community structure can be found by searching for the partition that maximizes Q. One 

popular algorithm used to find the optimal partition is the Louvain algorithm and, shortly, this is how it 

works: first, it starts with all nodes in a distinct module, then it chooses a node at random and merges it 

with the module that produces the largest gain in Q, these steps are repeated until no additional gains in 

Q are possible (Blondel et al., 2008). Given that at each iteration, nodes are chosen randomly, running 

the algorithm multiple times can lead to different solutions. Also, another limitation is the so-called 

degeneracy problem, that can cause the existence of large number of different solutions, since there is 

not a clear global maximum of Q (Good et al., 2010). To circumvent this problem, we ran the Louvain 

algorithm 10000 times and selected the partition having the higher number of occurrences in the set of 

10000 partitions, i.e., the partition that was more consistent.  To compare the optimal community 

structures found at each timepoint, we defined a similarity metric. For each module in a partition, we 

found the module in the other partition that was more similar to this one (by finding the maximum of the 

number of shared regions divided by the total number of regions in the two modules). The similarity 

metric was then calculated as the mean of the maximum values for each module. Values close to 1 

indicate higher similarity between the partitions.  

Hubs. Hubs can be defined as nodes with high regional efficiency (T+),-() (Achard and Bullmore, 2007). 

This measure reflects how well a node is integrated within the network via its shortest paths and is defined 

as the mean of the inverse shortest path length, U!", between a given node and all other nodes in the 

network: 

T+),-((:) =
1

(L − 1)M
1
U!"!

 

If the normalized T+),-( (divided by the mean T+),-( of all nodes) is larger than the normalized mean 

T+),-( of all nodes of the network plus one standard deviation (SD), the node is considered a hub (Lo et 

al., 2010).  
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Furthermore, we analyzed the topological roles of nodes in the communication within and between 

modules. This allowed the classification of nodes into provincial and connector hubs. The definition of 

these roles is described below. 

Provincial Hubs are nodes with high within-module degree z-score (greater than the mean plus SD of all 

nodes) and low participation coefficient (PC ≤ 0.3). Positive values of within-module degree z-score 

indicate high (above the average) intra-module connectivity, and thus higher values of this measure 

suggest that the node plays a central role in intra-modular communication. Participation coefficient (PC) 

compares the number of connections of a node with other nodes in different modules, to the total number 

of connections to other nodes in the same module. Values close to one indicate that the edges of a node 

are distributed uniformly across modules while a value of zero means that all edges of a nodes are limited 

to its own module. Thus, provincial hubs are characterized by comprising most of their connections within 

their own module (Fornito et al., 2016).  

Connector Hubs were also defined as nodes with high within-module degree z-score and high participation 

coefficient (PC > 0.3). This means they have many connections with other modules, and thus play a key 

role in inter-modular communication (Fornito et al., 2016).  

3.10. Fingerprints of modular connectivity 

We also analyzed, for each timepoint, the network fingerprints of inter-modular (global and connector-

hub-driven) and intra-modular connectivity. The same method of analysis as described in (Fernandes et 

al., 2019), was applied in this work. In summary, modular connectivity strength was defined as the degree 

(total number of connections) of all nodes constituting a module. To quantify this connectivity at both 

timepoints, a reference scheme of community structure was chosen based on the mean score of 

community-structure goodness-of-fit. Subsequently, matrices of inter-modular and intra-modular 

connectivity were created for both timepoints.  

3.11. Statistical analysis 

Statistical comparison of the SC matrices between first and last assessments, at the edge level, was 

performed by applying a paired sample t-test with SC as the dependent variable and time of evaluation 

as independent variable. The obtained SC networks are comprised of 170 nodes, yielding a total number 

of possible edges of 14365 (170*169/2). Testing the hypothesis of interest at the edge level, therefore 
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poses a multiple comparisons problem. In order to increase the statistical power of the analysis, we used 

the network-based statistics (NBS) procedure implemented in the NBS toolbox 

(https://sites.google.com/site/bctnet/comparison/nbs). This is a non-parametric statistical method that 

allows the identification of significantly different sub-networks, while controlling for the family-wise error 

rate (FWER) (Zalesky et al., 2010). First, it independently tests the hypotheses at every connection in the 

network and threshold the ones exceeding a user defined primary threshold, then it identifies sub-

networks constituted by interconnected edges that survived the primary threshold. The significance of 

these sub-networks is then calculated by comparing their sizes to the distribution of the size of sub-

networks obtained through random permutations of the original hypothesis. It is important to note that 

the primary threshold only affects the sensitivity of the method and thus, FWER is assured independently 

of this threshold. In this study, the primary threshold was set to F = 7.0, which was the maximum 

threshold that detected a unique significant connected component having more than two connections 

(Supplementary Figure 4). Longitudinal changes in structural connectivity detected with NBS are 

represented by significantly connected components at a corrected level of p < 0.05 FWE corrected. 

4. Results 

4.1. Sample Characterization 

Table 1 shows the demographic characterization of the participants included in this study. In summary, 

mean age at baseline was 63.5 years (range, 51 – 82 years) and mean interval between evaluations was 

52.8 months (range, 45 – 73 months). Interval time was not significantly associated with age at baseline 

(r = - 0.12, p = 0.41). The sample was balanced for sex (51% females, 49% males) and they did not differ 

with respect to interval time (;(30) = 0.14, B = 	0.89). Mean education level was 5.98 years (range, 

0 – 17 years). 

Table 1. Basic demographic characterization of the study’s cohort. 

 

 

 

 

 Mean ±	SD (range) 

N (Females/Males) 51 (26/25) 

Age at baseline (years) 63.5 ± 7.41 (51 - 82) 

Age at follow-up (years) 68.0 ± 7.25 (55 - 86) 

Interval (months) 52.8 ± 7.24 (45 - 73) 

Education (years) 5.98 ± 3.97 (0 - 17) 
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4.2. Clustering algorithm 

The analysis of the silhouette scores of different clustering algorithms revealed that the best solution was 

the k-means algorithm in conjunction with SOM for dimensionality reduction. Figure 2 represents the 

silhouette coefficient scores of the different solutions for one brain region. This solution in addition to 

result in higher silhouette scores also originated clusters more balanced in terms of size.  

Figure 2. Example of silhouette scores of one brain region for different clustering algorithms (hierarchical 

and k-means clustering) and different clustering algorithms in conjunction with different data 

dimensionality reduction techniques (PCA and SOM). Different clustering solutions (2 to 6 clusters) were 

tested. SOM + k-means clustering is the solution with the highest values of silhouette coefficient and with 

more balanced cluster sizes. 
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4.3. Optimal clustering solution 

Table 2 presents the optimal number of clusters for each brain region according to each cluster validity 

metric (Silhouette, Davies-Bouldin and Calinski-Harabasz). For the Silhouette coefficient, most of regions 

were partitioned in two clusters, with the exception of right entorhinal cortex, left and right caudate, right 

amygdala and left and right acumbens area which were subdivided in six clusters. Davies-Bouldin score 

also subdivided almost all brain regions in two clusters, with the exception of right transverse temporal, 

left and right acumbens area that were subdivided in six clusters and right amygdala which was partitioned 

in three clusters. According to the Calinski-Harabasz coefficient, all brain regions were split in six clusters. 

Table 2. Optimal number of clusters for each brain region according to each clustering validity metric. 

 Silhouette Davies-Bouldin Calinski-Harabasz 

ROI Name $#$%& $!'()& $#$%& $!'()& $#$%& $!'()& 
Caudal Anterior Cingulate 2 2 2 2 6 6 
Caudal Middle Frontal 2 2 2 2 6 6 
Cuneus 2 2 2 2 6 6 
Entorhinal 2 6 2 2 6 6 
Fusiform 2 2 2 2 6 6 
Inferior Parietal 2 2 2 2 6 6 
Inferior Temporal 2 2 2 2 6 6 
Isthmus Cingulate 2 2 2 2 6 6 
Lateral Occipital 2 2 2 2 6 6 
Lateral Orbitofrontal 2 2 2 2 6 6 
Lingual 2 2 2 2 6 6 
Medial Orbitofrontal 2 2 2 2 6 6 
Middle Temporal 2 2 2 2 6 6 
Parahippocampal 2 2 2 2 6 6 
Paracentral 2 2 2 2 6 6 
Pars Opercularis 2 2 2 2 6 6 
Pars Orbitalis 2 2 2 2 6 6 
Pars Triangularis 2 2 2 2 6 6 
Pericalcarine 2 2 2 2 6 6 
Postcentral 2 2 2 2 6 6 
Posterior Cingulate 2 2 2 2 6 6 
Precentral 2 2 2 2 6 6 
Precuneus 2 2 2 2 6 6 
Rostral Anterior Cingulate 2 2 2 2 6 6 
Rostral Middle Frontal 2 2 2 2 6 6 
Superior Frontal 2 2 2 2 6 6 
Superior Parietal 2 2 2 2 6 6 
Superior Temporal 2 2 2 2 6 6 
Supramarginal 2 2 2 2 6 6 
Transverse Temporal 2 2 2 6 6 6 
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Insula 2 2 2 2 6 6 
Thalamus Proper 2 2 2 2 6 6 
Caudate 6 6 2 2 6 6 
Putamen 2 2 2 2 6 6 
Pallidum 2 2 2 2 6 6 
Hippocampus 2 2 2 2 6 6 
Amygdala 2 6 2 3 6 6 
Accumbens Area 6 6 6 6 6 6 

 

The final group clustered parcellations according to each metric are represented in Figure 3. Silhouette 

coefficients generated a group partition with 170 clusters, Davies-Bouldin a group parcellation with 163 

clusters and Calinski-Harabasz produced a group partition with 472 clusters.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Final group parcellations for the different validity metrics: A) silhouette, B) Davies-Bouldin, C) 

Calinski-Harabasz. Parcellations are displayed in MNI standard space.  
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4.4. Connectivity Homogeneity Fingerprint 

The three group parcellations present higher values of CHF in comparison to the initial parcellation 

(DKT40 + Buckner40) (Fig. 4). The parcellations produced from Silhouette and Davies-Bouldin 

coefficients exhibit similar values of CHF (Silhouette - # = 0.057, $^ = 0.031); Davies-Bouldin – # =

0.052, $^ = 0.038); the one originating from Calinski-Harabasz has the highest value (# =

0.10, $^ = 0.035). The initial partition displays the lowest value (# = 0.020, $^ = 0.020). 

Statistical comparison of CHF values revealed that the three parcellations had statistically significant 

higher CHF values in comparison to the original parcellation (Silhouette – ;($23.5) = 	8.86	, B <

0.001, - = 	1.44; Davies-Bouldin – ;($$7.2) = 	6.65, B < 0.001, - = 1.08; Calisnki-Harabasz – 

;($$8.9) = 	17.4, B < 0.001, - = 	2.82).  

Figure 4. Mean connectivity homogeneity fingerprint (CHF) scores of the different group parcellations 

for all subjects. The three solutions resulted in parcellations with higher CHF in comparison to the original 

partition. Calinski-Harabasz parcellation had the highest homogeneity values but also the highest number 

of clusters. 
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We selected the estimated group parcellation based on the Silhouette score to assess longitudinal 

changes in white matter structural connectivity. The Calinski-Harabasz parcellation has a very high 

number of clusters, which may in part explain its high value of CHF, but this increased granularity may 

not be beneficial and can make subsequent analyses computationally expensive.  Furthermore, the 

Davies-Bouldin partition had some regions that were clustered in a pattern that may not be biologically 

plausible (checkerboard pattern, Supplementary Figure 5). Thus, we selected the Silhouette parcellation 

which does not present these limitations and still has higher CHF in comparison to the initial parcellation. 

Details of the label and coordinates of the regions belonging to this parcellation are given in 

Supplementary Table 1. 

In addition, in the second timepoint, the values of CHF for the Silhouette parcellation are very similar 

when compared to the first timepoint (# = 0.060, $^ = 0.032, Fig. 5).  

Figure 5. Mean CHF values for the two timepoints and the initial parcellation. At both timepoints, the 

homogeneity is higher in comparison to the original partition.  
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4.5. Longitudinal Changes in Brain Structural Connectivity 

Using the Silhouette parcellation, we found significant changes in structural connectivity between 

timepoints in a brain sub-network (p < 0.001), comprising 122 connections, from which 52 correspond 

to decreases and 70 to increases in structural connectivity (Fig. 6). When analyzing the individual 

connections of this sub-network, we concluded that the connections with longitudinal decreases in 

connectivity are represented by 19 intra-left, 24 intra-right and 9 inter-hemispheric connections. The 

connections with longitudinal increases in connectivity are composed by 16 intra-left, 22 intra-right and 

32 inter-hemispheric connections. The summary of the connections is present in Table 3.  

 

Figure 6. Significant changes in structural connectivity between timepoints. A) Binarized version of the 

connected component of significantly altered structural connectivity. B) Weighted version of A), with edge 

thickness representing the amplitude of differences. Blue represents decreases in connectivity strength 

between timepoints and red represents increases. Connections with decreases are mostly intra-

hemispheric, while most of the increases are composed of intra-hemispheric connections.  

Table 3. Description of the connections comprising the connected component of significant structural 

connectivity differences between timepoints (p < .001).  

Area 1 Area 2 
Difference Intra-Left Intra-Right 

Inter-
Hemispheric N Name N Name 

Increases 

68 Left Thalamus Proper 2 99 Right Caudate 4 0.035 0 0 1 

71 Left Caudate 3 102 Right Thalamus Proper 1 0.033 0 0 1 

85 Right Amygdala 2 160 Right Entorhinal 1 0.029 0 1 0 
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102 Right Thalamus Proper 1 140 Right Paracentral 2 0.027 0 1 0 

70 Left Caudate 2 101 Right Caudate 6 0.026 0 0 1 

85 Right Amygdala 2 89 Right Amygdala 6 0.024 0 1 0 

70 Left Caudate 2 99 Right Caudate 4 0.023 0 0 1 

34 Left Pars Orbitalis 1 73 Left Caudate 5 0.022 1 0 0 

70 Left Caudate 2 96 Right Caudate 1 0.022 0 0 1 

71 Left Caudate 3 103 Right Thalamus Proper 2 0.018 0 0 1 

37 Left Pars Triangularis 2 73 Left Caudate 5 0.018 1 0 0 

115 Right Superior Frontal 2 123 Right Precentral 1 0.017 0 1 0 

20 Left Lateral Orbitofrontal 2 26 Left Middle Temporal 2 0.016 1 0 0 

73 Left Caudate 5 96 Right Caudate 1 0.016 0 0 1 

67 Left Thalamus Proper 1 99 Right Caudate 4 0.015 0 0 1 

15 Left Isthmus Cingulate 1 153 Right Isthmus Cingulate 2 0.015 0 0 1 

49 Left Rostral Anterior Cingulate 1 72 Left Caudate 4 0.015 1 0 0 

92 Right Pallidum 1 140 Right Paracentral 2 0.013 0 1 0 

68 Left Thalamus Proper 2 96 Right Caudate 1 0.013 0 0 1 

69 Left Caudate 1 102 Right Thalamus Proper 1 0.013 0 0 1 

95 Right Putamen 2 130 Right Postcentral 3 0.013 0 1 0 

73 Left Caudate 5 102 Right Thalamus Proper 1 0.012 0 0 1 

142 Right Parahippocampal 2 154 Right Inferior Temporal 1 0.011 0 1 0 

102 Right Thalamus Proper 1 139 Right Paracentral 1 0.011 0 1 0 

67 Left Thalamus Proper 1 101 Right Caudate 6 0.011 0 0 1 

94 Right Putamen 1 120 Right Rostral Anterior Cingulate 2 0.011 0 1 0 

94 Right Putamen 1 111 Right Superior Temporal 2 0.011 0 1 0 

90 Right Hippocampus 1 96 Right Caudate 1 0.010 0 1 0 

44 Left Posterior Cingulate 2 140 Right Paracentral 2 0.010 0 0 1 

115 Right Superior Frontal 2 124 Right Precentral 2 0.009 0 1 0 

67 Left Thalamus Proper 1 96 Right Caudate 1 0.009 0 0 1 

92 Right Pallidum 1 121 Right Precuneus 1 0.009 0 1 0 

83 Right Accumbens Area 1 105 Right Insula 2 0.009 0 1 0 

97 Right Caudate 2 99 Right Caudate 4 0.009 0 1 0 

15 Left Isthmus Cingulate 1 122 Right Precuneus 2 0.008 0 0 1 

30 Left Paracentral 1 122 Right Precuneus 2 0.008 0 0 1 

70 Left Caudate 2 97 Right Caudate 2 0.007 0 0 1 

71 Left Caudate 3 115 Right Superior Frontal 2 0.007 0 0 1 

34 Left Pars Orbitalis 1 68 Left Thalamus Proper 2 0.007 1 0 0 

54 Left Superior Frontal 1 71 Left Caudate 3 0.007 1 0 0 

31 Left Paracentral 2 121 Right Precuneus 1 0.007 0 0 1 

70 Left Caudate 2 140 Right Paracentral 2 0.006 0 0 1 

161 Right Entorhinal 2 164 Right Entorhinal 5 0.006 0 1 0 

3 Left Caudal Middle Frontal 1 32 Left Pars Opercularis 1 0.006 1 0 0 

15 Left Isthmus Cingulate 1 165 Right Cuneus 1 0.006 0 0 1 

7 Left Entorhinal 1 78 Left Hippocampus 1 0.006 1 0 0 
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31 Left Paracentral 2 122 Right Precuneus 2 0.006 0 0 1 

69 Left Caudate 1 140 Right Paracentral 2 0.006 0 0 1 

74 Left Putamen 1 101 Right Caudate 6 0.005 0 0 1 

35 Left Pars Orbitalis 2 73 Left Caudate 5 0.005 1 0 0 

73 Left Caudate 5 103 Right Thalamus Proper 2 0.005 0 0 1 

29 Left Parahippocampal 2 38 Left Pericalcarine 1 0.005 1 0 0 

74 Left Putamen 1 115 Right Superior Frontal 2 0.005 0 0 1 

4 Left Caudal Middle Frontal 2 37 Left Pars Triangularis 2 0.005 1 0 0 

40 Left Postcentral 1 140 Right Paracentral 2 0.005 0 0 1 

101 Right Caudate 6 149 Right Lateral Orbitofrontal 2 0.005 0 1 0 

67 Left Thalamus Proper 1 97 Right Caudate 2 0.004 0 0 1 

76 Left Pallidum 1 116 Right Superior Frontal 3 0.004 0 0 1 

26 Left Middle Temporal 2 39 Left Pericalcarine 2 0.004 1 0 0 

102 Right Thalamus Proper 1 136 Right Pars Orbitalis 2 0.004 0 1 0 

151 Right Lateral Occipital 2 166 Right Cuneus 2 0.004 0 1 0 

101 Right Caudate 6 134 Right Pars Triangularis 2 0.004 0 1 0 

31 Left Paracentral 2 67 Left Thalamus Proper 1 0.004 1 0 0 

19 Left Lateral Orbitofrontal 1 26 Left Middle Temporal 2 0.003 1 0 0 

131 Right Pericalcarine 1 158 Right Fusiform 1 0.003 0 1 0 

95 Right Putamen 2 115 Right Superior Frontal 2 0.003 0 1 0 

21 Left Lingual 1 28 Left Parahippocampal 1 0.003 1 0 0 

77 Left Pallidum 2 98 Right Caudate 3 0.002 0 0 1 

73 Left Caudate 5 78 Left Hippocampus 1 0.002 1 0 0 

1 Left Caudal Anterior Cingulate 1 126 Right Posterior Cingulate 1 0.002 0 0 1 

Decreases 

67 Left Thalamus Proper 1 77 Left Pallidum 2 -0.002 1 0 0 

88 Right Amygdala 5 155 Right Inferior Parietal 1 -0.002 0 1 0 

63 Left Transverse Temporal 1 75 Left Putamen 2 -0.003 1 0 0 

16 Left Isthmus Cingulate 2 165 Right Cuneus 1 -0.003 0 0 1 

88 Right Amygdala 5 98 Right Caudate 3 -0.003 0 1 0 

54 Left Superior Frontal 1 94 Right Putamen 1 -0.003 0 0 1 

84 Right Amygdala 1 102 Right Thalamus Proper 1 -0.003 0 1 0 

134 Right Pars Triangularis 2 167 Right Caudal Middle Frontal 1 -0.003 0 1 0 

98 Right Caudate 3 114 Right Superior Frontal 1 -0.003 0 1 0 

83 Right Accumbens Area 1 92 Right Pallidum 1 -0.004 0 1 0 

54 Left Superior Frontal 1 99 Right Caudate 4 -0.004 0 0 1 

38 Left Pericalcarine 1 153 Right Isthmus Cingulate 2 -0.004 0 0 1 

154 Right Inferior Temporal 1 161 Right Entorhinal 2 -0.004 0 1 0 

89 Right Amygdala 6 155 Right Inferior Parietal 1 -0.004 0 1 0 

159 Right Fusiform 2 160 Right Entorhinal 1 -0.004 0 1 0 

35 Left Pars Orbitalis 2 53 Left Rostral Middle Frontal 3 -0.004 1 0 0 

45 Left Precentral 1 75 Left Putamen 2 -0.004 1 0 0 

126 Right Posterior Cingulate 1 152 Right Isthmus Cingulate 1 -0.004 0 1 0 
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89 Right Amygdala 6 120 Right Rostral Anterior Cingulate 2 -0.004 0 1 0 

3 Left Caudal Middle Frontal 1 45 Left Precentral 1 -0.005 1 0 0 

30 Left Paracentral 1 70 Left Caudate 2 -0.005 1 0 0 

83 Right Accumbens Area 1 119 Right Rostral Anterior Cingulate 1 -0.005 0 1 0 

146 Right Medial Orbitofrontal 2 161 Right Entorhinal 2 -0.005 0 1 0 

58 Left Superior Temporal 1 72 Left Caudate 4 -0.006 1 0 0 

71 Left Caudate 3 74 Left Putamen 1 -0.006 1 0 0 

49 Left Rostral Anterior Cingulate 1 77 Left Pallidum 2 -0.007 1 0 0 

56 Left Superior Parietal 1 130 Right Postcentral 3 -0.007 0 0 1 

98 Right Caudate 3 120 Right Rostral Anterior Cingulate 2 -0.007 0 1 0 

86 Right Amygdala 3 146 Right Medial Orbitofrontal 2 -0.008 0 1 0 

53 Left Rostral Middle Frontal 3 76 Left Pallidum 1 -0.008 1 0 0 

142 Right Parahippocampal 2 161 Right Entorhinal 2 -0.008 0 1 0 

84 Right Amygdala 1 154 Right Inferior Temporal 1 -0.008 0 1 0 

26 Left Middle Temporal 2 78 Left Hippocampus 1 -0.009 1 0 0 

85 Right Amygdala 2 92 Right Pallidum 1 -0.009 0 1 0 

8 Left Entorhinal 2 20 Left Lateral Orbitofrontal 2 -0.009 1 0 0 

1 Left Caudal Anterior Cingulate 1 15 Left Isthmus Cingulate 1 -0.009 1 0 0 

46 Left Precentral 2 115 Right Superior Frontal 2 -0.009 0 0 1 

39 Left Pericalcarine 2 131 Right Pericalcarine 1 -0.011 0 0 1 

37 Left Pars Triangularis 2 67 Left Thalamus Proper 1 -0.012 1 0 0 

120 Right Rostral Anterior Cingulate 2 148 Right Lateral Orbitofrontal 1 -0.013 0 1 0 

111 Right Superior Temporal 2 129 Right Postcentral 2 -0.013 0 1 0 

26 Left Middle Temporal 2 81 Left Amygdala 2 -0.014 1 0 0 

67 Left Thalamus Proper 1 75 Left Putamen 2 -0.014 1 0 0 

132 Right Pericalcarine 2 153 Right Isthmus Cingulate 2 -0.014 0 1 0 

37 Left Pars Triangularis 2 70 Left Caudate 2 -0.014 1 0 0 

53 Left Rostral Middle Frontal 3 70 Left Caudate 2 -0.015 1 0 0 

21 Left Lingual 1 131 Right Pericalcarine 1 -0.017 0 0 1 

45 Left Precentral 1 115 Right Superior Frontal 2 -0.018 0 0 1 

86 Right Amygdala 3 148 Right Lateral Orbitofrontal 1 -0.029 0 1 0 

158 Right Fusiform 1 163 Right Entorhinal 4 -0.041 0 1 0 

122 Right Precuneus 2 166 Right Cuneus 2 -0.052 0 1 0 

30 Left Paracentral 1 43 Left Posterior Cingulate 1 -0.057 1 0 0 

 

4.6. Longitudinal analysis of topological properties 

4.6.1. Modularity 

The optimal modularity structure had eight modules at both timepoints, and the two configurations had 

a similarity of 0.55. The arrangement of the modules has some differences between timepoints (Fig 7). 
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Particularly, module 1 at timepoint 2 includes some occipital regions that are not included in the first 

timepoint, module 4 changes from left to right hemisphere, module 5 comprises frontal regions at 

timepoint 2 that are not present at timepoint 1, module 6 loses occipital regions between timepoints, 

module 7 shifts from frontal to occipital regions and module 8 also loses some frontal regions.  Details 

of the regions belonging to each module are given in Supplementary Table 2. Regarding the connector 

hubs’ connectivity profiles, we observe differences between evaluations, with a higher number of 

connections in the posterior regions of the brain at timepoint 2 (Fig. 7).    

Figure 7. Modularity structure (A) and connector-hub connectivity (B) at timepoint 1 (top row) and 

timepoint 2 (bottom row). Filled circles represent connector hubs and unfilled circles represent provincial 

hubs. The same number of modules was found at both timepoints but there were evident differences in 

modular arrangements (A, B) and in the undirected structural connectivity profile for the connector hubs 

(C). These differences are probably due to the higher number of connector hubs at the last timepoint. 
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Giving the role of connector hubs in inter-modular communication, the increase in their number between 

timepoints reflects an increase in integration of brain structural networks in aging.  

4.6.2. Hubs 

Global hubs were defined as regions with high normalized nodal efficiency. In the first timepoint, 19 

regions were identified as hubs, while at timepoint 2, two additional regions were classified as hubs, 

namely left lateral occipital 1 (nomenclature of anatomical parcels is done according to: [hemisphere 

region subdivision]) and left transverse temporal 1 (Table 4, Fig. 8).   

Table 4. Global hubs of the brain for the two timepoints. Hubs are sorted by nodal efficiency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Global Hubs 

M1 M2 

Left Rostral Middle Frontal 1 Left Rostral Middle Frontal 1 

Left Rostral Middle Frontal 2 Left Rostral Middle Frontal 2 

Right Amygdala 2 Right Lateral Occipital 1 

Right Lateral Occipital 1 Left Caudate 1 

Left Caudate 1 Right Inferior Parietal 2 

Right Caudate 1 Right Amygdala 2 

Right Middle Temporal 2 Right Middle Temporal 2 

Right Inferior Parietal 2 Left Caudal Middle Frontal 1 

Right Caudate 6 Left Middle Temporal 2 

Left Caudal Middle Frontal 1 Right Caudate 5 

Left Supramarginal 2 Right Caudal Middle Frontal 1 

Right Rostral Middle Frontal 2 Right Caudate 1 

Right Caudal Middle Frontal 1 Right Rostral Middle Frontal 2 

Right Caudate 5 Right Amygdala 1 

Left Middle Temporal 2 Left Supramarginal 2 

Right Amygdala 3 Right Amygdala 3 

Right Amygdala 1 Right Caudate 6 

Left Middle Temporal 3 Left Transverse Temporal 1 

Right Fusiform 1 Left Lateral Occipital 1 

 Left Middle Temporal 3 

 Right Fusiform 1 
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Figure 8. Hubs (global, provincial and connector) identified in the two timepoints. Blue represents hubs 

only identified at timepoint 1, green represents hubs only identified at timepoint 2 and red represents 

hubs identified at both timepoints. We observe an increase in all type of hubs (global, provincial and 

connector) between timepoints. Furthermore, some hubs change their role between timepoints (from 

provincial to connector – left precuneus 2, right precuneus 2 and right precentral 1; and from connector 

to provincial – left putamen 2 and right putamen 1). 

Regarding provincial hubs, which play a key role in intra-modular communication, 18 hubs were detected 

at the first timepoint and 19 at the last timepoint (Table 5). Left cuneus 2, left precuneus 2, left putamen 

1, right caudate 1, right caudate 2, right precuneus 2 and right precentral 1 were only detected at 

timepoint 1, while left fusiform 1, left fusiform 2, left middle temporal 1, left posterior cingulate 2, left 

caudate 5, left putamen 2, right putamen 1 and right posterior cingulate 2 were only detected at timepoint 

2. The rest of the regions were common to both timepoints (Fig. 8).  
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Table 5. Provincial and connector hubs for the two timepoints. Hubs are sorted by modularity degree z-

score. 

 

In the case of connector hubs, which have a central role in inter-modular communication, 9 hubs were 

detected at timepoint 1 and 12 at timepoint 2 (Table 5).  

Left putamen 2, right putamen 1 and right insula 2 were only detected at timepoint 1, while left precuneus 

2, right putamen 2, right precuneus 2, right precentral 1, right middle temporal 1 and right lateral occipital 

2 was only detected at timepoint 2 (Fig. 8).   

Provincial Hubs Connector Hubs 

M1 M2 M1 M2 

Right Precuneus 2 Right Putamen 1 Left Superior Frontal 2 Right Superior Frontal 3 

Right Precentral 1 Right Inferior Parietal 1 Right Superior Temporal 2 Left Superior Frontal 2 

Right Caudate 6 Right Posterior Cingulate 2 Right Superior Frontal 3 Left Supramarginal 1 

Left Precuneus 2 Right Caudate 6 Left Superior Temporal 2 Left Superior Temporal 2 

Left Rostral Middle Frontal 3 Left Rostral Middle Frontal 3 Left Putamen 2 Right Precuneus 2 

Right Hippocampus 2 Right Hippocampus 2 Left Superior Parietal 2 Left Superior Parietal 2 

Right Inferior Parietal 1 Right Amygdala 1 Right Putamen 1 Right Superior Temporal 2 

Right Amygdala 5 Left Posterior Cingulate 2 Right Insula 2 Right Lateral Occipital 2 

Right Amygdala 1 Right Amygdala 5 Left Supramarginal 1 Right Precentral 1 

Left Hippocampus 2 Left Putamen 2  Right Middle Temporal 1 

Left Cuneus 2 Left Hippocampus 2  Right Putamen 2 

Right Amygdala 4 Right Amygdala 4  Left Precuneus 2 

Left Putamen 1 Left Fusiform 2   

Left Inferior Temporal 2 Left Caudate 1   

Left Caudate 1 Left Inferior Temporal 2   

Right Caudate 1 Left Caudate 2   

Left Caudate 2 Left Caudate 5   

Right Caudate 2 Left Fusiform 1   

 Left Middle Temporal 1   
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Interestingly, left putamen 2 and right putamen 2 lost their connector hub status between timepoints but 

they were identified as provincial hubs at timepoint 2. In the opposite direction, right left precuneus 2, 

right precuneus 2 and right precentral 1 lost its provincial hub status and were identified as a connector 

hub at timepoint 2. Furthermore, left caudate 1, right amygdala 1, right caudate 1 and right caudate 6 

were identified as global and provincial hubs at both timepoints.  

4.6.3. Fingerprints of Modular Connectivity 

The reference scheme chosen to analyze fingerprints of modular connectivity was the community 

structure of timepoint 2. Connector-hub-driven inter-modular connectivity had significant alterations 

between timepoints (Fig. 9). Overall, there was an increase of around 33% in modular connectivity 

strength in the second timepoint. Specifically, we found increased connectivity from module 7 (right 

hemisphere; temporal, parietal and occipital regions) to modules 1 (left hemisphere; entorhinal, 

hippocampus, amygdala, parahippocampal, temporal and occipital regions), 5 (right hemisphere; 

accumbens area, pallidum, putamen, caudate, insula, cingulate and frontal regions) and 8 (right 

hemisphere; amygdala, hippocampus, parahippocampal, entorhinal, fusiform and temporal regions). 

Also, module 6 (bilateral cingulate cortex regions, bilateral paracentral, bilateral precuneus and right 

postcentral) had no connectivity with any other module at timepoint 1, but at timepoint 2 there was 

connectivity between module 6 and the other modules. Connectivity between module 2 (left hemisphere; 

caudate, putamen, pallidum, accumbens area, thalamus, insula, rostral anterior cingulate and frontal 

regions) and module 1 and 3 (left hemisphere; inferior and superior parietal, postcentral, precentral and 

supramarginal) decreased between timepoints. Of notice, at timepoint 1, module 2 had two connector 

hubs (left superior frontal 2 and left putamen 2), module 6 had none and module 7 had one (right superior 

temporal 2), while at timepoint 2, module 2 had one connector hub (left superior frontal 2), module 6 

had two (left precuneus 2 and right precuneus 2), and module 7 had three (right superior temporal 2, 

right middle temporal 1 and right lateral occipital 2). Modules 4 and 8 had no connector hubs at both 

timepoints. No differences were found for intra-modular and inter-modular connectivity.  
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Figure 9. Fingerprints of modular connectivity at timepoint 1 (top row) and timepoint 2 (bottom row). 

Left column represents the inter-modular connectivity, middle column the intra-module connectivity and 

right column the connector-hub driven inter-modular connectivity. Modular connectivity strength is 

quantified as the total number of connections (degree) of all nodes forming a module. Community 

structure of timepoint 2 was selected as the reference scheme, since it had higher group goodness-of-fit. 

We observe different patterns only in connector-hub driven inter-modular connectivity. Overall, there was 

an increase of around 33% in this connectivity between timepoints, which is probably due to the increase 

in the number of connector hub. This results again suggests an increase in integration of brain SC during 

aging. 

5. Discussion 

In this study, we developed a new CBP method, based on diffusion MRI data. We evaluated different 

clustering algorithms in conjunction with different dimensionality reduction techniques and chose the best 

performing method. K-means clustering combined with Self-Organizing Maps was the selected method 

due to its higher silhouette coefficient and resulting clusters with more evenly distributed sizes. Previous 



 140 

studies have used k-means clustering, making it the most popular clustering algorithm amongst CBP 

works, so its appropriateness for CBP has already been validated (Abivardi and Bach, 2017; Anwander 

et al., 2007; Bach et al., 2011; Klein et al., 2007; Reuter et al., 2020). We also demonstrated that SOMs 

are a suitable method for dimensionality reduction that can be applied prior to clustering. To date, this 

technique has only been used in one study performing CBP of functional data (Mishra et al., 2014). Here 

we show evidence that pre-clustering dimensionality reduction with SOM presents a valid and 

recommended solution for CBP methods which preserves the topographic organization of the input data 

(Kohonen, 1990, 1982).  

Moreover, we developed a new metric to evaluate the estimated CBP, specifically, to verify if the goal of 

grouping voxels with similar connectivity profiles was successfully accomplished – connectivity 

homogeneity fingerprint. This novel metric takes into account the connections of each voxel inside a 

region, with higher values representing a region with more homogeneous signatures of structural 

connectivity across all of its voxels (i.e., most of the region’s voxels are connected to the same brain 

regions). So far, many techniques to evaluate the quality of a parcellation have been proposed. Yet, 

choosing the most suitable evaluation method is a challenging task due to the lack of a ground truth. The 

existing methods either evaluate the reproducibility (i.e., the alignment between different parcellations 

from different subjects or different acquisitions of the same subject), quality of clustering solutions (i.e., 

the similarity of voxels grouped in the same cluster), agreement with cytoarchitecture, task fMRI activation 

and myelination or impact on network analysis (Arslan et al., 2018). One of the metrics developed to 

evaluate the quality of clustering solutions is the functional homogeneity; the average Pearson’s 

correlation coefficient between the connectivity fingerprints of each pair of voxels inside a cluster (Chong 

et al., 2017; Kong et al., 2018; Schaefer et al., 2018). The metric we propose here (CHF) does not 

consider the connectivity weights directly which can lead to lower homogeneity values, even if a pair of 

voxels is connected to the same brain regions but with different connectivity strengths. Thus, the CHF 

reflects a more adequate measure of regional homogeneity, which evaluates the strength or consistency 

level of a region’s connectivity fingerprint to the rest of the brain, thus representing a more complete and 

robust approach to evaluating a parcellation. Furthermore, the previous existing homogeneity measure 

was designed specifically for functional data, thus limiting its extension to structural data. Our results 

from CHF analysis validate the CBP method developed here, since all the parcellations exhibit higher 

homogeneity values in comparison to the original partition. Moreover, when one of the generated 

parcellations was applied to the data of a different timepoint (for the same cohort), the homogeneity 

values were very similar to the baseline, which demonstrates its appropriateness for longitudinal analysis.  
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Regarding longitudinal changes in structural connectivity, our results revealed a significant sub-network 

with both decreases and increases in WM structural connectivity along time. Increases in connectivity 

were mainly composed by inter-hemispheric connections, while decreases occurred mostly in intra-

hemispheric connections. These results are in accordance with the “last-in, first-out” hypothesis, which 

states that regions developing later are more prone to age-related decline (Raz, 1999). This theory has 

been supported by DTI studies investigating white matter microstructural properties, which report 

steepest declines for association fibers (i.e., fibers connecting regions of the same hemisphere) in 

comparison to commissural fibers (i.e., fibers crossing hemispheres).  

The longitudinal analysis of topological features of brain WM structural networks also revealed some 

alterations. Concerning nodal efficiency and the topological roles of nodes (provincial and connector), 

there was an increase in the number of hubs (global, provincial and connector) from the first to last 

timepoint. Interestingly, left caudate 1, right amygdala 1, and right caudate 6 were consistently identified 

as both global and provincial hubs in all timepoints. The caudate nuclei are involved in different cognitive 

dimensions, such as, motor and action planning, decision making, motivation and reward processing 

(Bick et al., 2019; Grahn et al., 2008; Tartaro, 2019; Wilson, 2018). Previous studies found significant 

atrophy of the caudate along aging (Hoffstaedter et al., 2015; Raz et al., 2003). Interestingly, we identified 

as hubs two clusters in the right caudate and only one in the left caudate and there is one study reporting 

a longitudinal rightward lateralization of the caudate volume in older adults (Esteves et al., 2018). The 

amygdala has been associated with emotion processing of both fearful and rewarding stimuli. It is also 

known to modulate memory and attention for emotional stimuli and to be involved in positive affect and 

motivation (Gallagher and Chiba, 1996; Janak and Tye, 2015; Mather, 2016; Sah et al., 2003; Salzman 

and Fusi, 2010). Past studies report relative preservation of both structure and function of the amygdala 

in normal aging (Good et al., 2001; Mather, 2016; Nashiro et al., 2012). Alongside with this, emotional 

processing also appears to be spared in aging (Nashiro et al., 2012). Our results align with these findings, 

since the amygdala maintains its importance in the brain structural network along time, both in terms of 

nodal efficiency and intra-modular communication. 

Two clusters (left putamen 2 and right putamen 1) lost their role as connector hubs and were identified 

as provincial hubs. This means that the participation coefficient of these clusters was lower and thus they 

established more connections with regions belonging to the same module than with regions outside their 

own module and lost their importance in integrating different regions of the brain. The putamina are 

involved in different cognitive functions, such as, reinforcement learning and motor control, language and 
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processing of sensory and motor aspects of pain (Haber, 2016; Starr et al., 2011; Viñas-Guasch and Wu, 

2017). Studies investigating age effects on this region described significant atrophy (Fjell and Walhovd, 

2010; Jäncke et al., 2015; Raz et al., 2003) and also microstructural damage (Cherubini et al., 2009) of 

these subcortical nuclei, which might explain why the putamen lost its connector hub role in the brain 

structural network. On the opposite direction, right precuneus 2 and right precentral 1 changed from 

provincial to connector hubs. Precuneus plays an important role in multiple higher-order cognitive 

functions, such as, visuo-spatial imagery, episodic memory retrieval, self-processing and consciousness 

(Cavanna and Trimble, 2006). Some aging studies report a relative preservation of precuneus’ cortical 

thickness in comparison to other regions (Fjell et al., 2009; Lee et al., 2018). In line with our findings, 

Gong and colleagues (Gong et al., 2009) found that the precuneus was consistently identified as a hub 

independent of age in white matter structural networks. Precentral gyrus is known to be involved in motor 

performance (Picard, 2003; Porro et al., 1996; Ribas, 2010; Yousry, 1997) but some studies also report 

a role of this region in emotion processing (de Gelder et al., 2004; Hajcak et al., 2007; Hardee et al., 

2017; Mazzola et al., 2013; Saarimäki et al., 2016). Although aging studies report significant atrophy of 

this region (Salat, 2004; Thambisetty et al., 2010), one recent fMRI study using graph theory analysis 

described increased degree centrality (i.e., a measure of the importance of the node in the network) of 

precentral gyrus in both cognitively normal older adults and subjects with mild cognitive impairment (MCI) 

despite existing volume declines (Behfar et al., 2020). Furthermore, Behfar and colleagues showed that 

the increased degree centrality was correlated with better scores of cognitive performance in the MCI 

group, which might represent a compensatory mechanism. Our results align with these findings, since 

the precentral gyrus increased its importance in the network along time, by moving from having a role 

only in intra-modular communication to have the function of establishing communication with different 

modules of the brain and thus being important for functional integration. 

Concerning modularity structure, the same number of modules was identified at the two timepoints but 

some differences in the modules’ configuration were found. In terms of fingerprints of modular 

connectivity, there was a longitudinal increase in connector-hub driven inter-modular connectivity, which 

could be driven by the increase in the number of detected connector hubs at timepoint 2. This result 

suggests an increase of brain structural networks’ integration during aging. Some past fMRI studies report 

increased integration along aging (Cao et al., 2014; He et al., 2020). However, a recent study exploring 

white matter structural connectivity report decreased integration with normal aging (Puxeddu et al., 

2020). Our result could be attributed to the higher resolution of our parcellation, which may have allowed 

the identification of additional connector hubs, that at lower resolutions would not be identified. 
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This study has some limitations, namely the use of a 1.5T MRI scanner. While we recognize that this 

limitation may inevitably influence to some extent our results (changes in network connectivity, hubs and 

modularity structure), we believe that its effects are minimized by the fact that we compared two 

evaluations/timepoints sharing the same neuroimaging acquisition and preprocessing protocol (same 

scanner, acquisition parameters and data processing pipeline). 

In summary, we present a new method to create a CBP of the human brain based on white matter 

structural connectivity data has accomplished the main goal of grouping voxels with similar connectivity 

profiles. Additionally, we propose a new metric (connectivity homogeneity fingerprint) to evaluate the 

quality of a parcellation by computing the consistency level of regional connectivity fingerprints, with 

potential for application to other types of neuroimaging data. Furthermore, we applied the derived 

parcellation to explore longitudinal changes in structural networks of an aging cohort and found signatures 

of brain’s reorganization along aging. Particularly, we found decreases in intra-hemispheric connectivity 

and increases in inter-hemispheric connectivity, which supports the “last-in, first-out” hypothesis and a 

rearrangement in the topological roles of the nodes in the network. We also found evidence of increased 

integration, which was not observed in previous studies, but it can be explained by the higher resolution 

of our parcellation which allowed the identification of more connector hubs. Taken together, our study 

proposes a novel and robust solution for performing and evaluating CBP of the human brain. With 

potential for application to any whole-brain DTI-based cohort, here we show its potential appropriateness 

and potential by characterizing the longitudinal changes of the structural connectome in aging, which 

were highly consistency with the existing literature.  
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7. Supplementary Material 

 

Figure S1. Example of the distribution of structural connectivity values for a region and the different 

transforms applied to normalize values. The BoxCox transform is the one achieving a distribution more 

approximated to a normal distribution.  

Figure S2. Plot with the minimum cluster size of all subjects for each threshold and each metric. The 

threshold of 300 voxels gives a minimum cluster size above 5 voxels for all metrics.  
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Figure S3. Structural connections surviving the different methods accounting for intra-cluster 

connectivity. 1 represents connections with intra-cluster connectivity set to 0; 2 represents connections 

with intra-cluster connectivity set to 1; 3 represents connections with original intra-cluster connectivity 

values; 4 represents connections common to intra-cluster connectivity set to 0 and 1; 5 represents 

connections common to intra-cluster connectivity set to 0 and original values; 6 represents connections 

common to intra-cluster connectivity set to 1 and original values; 7 represents connections common to 

the three strategies. 

Figure S4. Relationship between F-threshold and number of connections/components, that detected a 

significant component. The F-threshold used in this study (7.0) was selected based on the maximal F-
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threshold that detected a single component with more than two connections. This generated an NBS 

component with 59% nodes of the network (100 nodes) and 122 links. 

 

Figure S5. Davies-Bouldin parcellation with the region displaying a checkerboard pattern highlighted. 

Table S1. Labels and center of gravity coordinates, in mm, of each region of the Silhouette parcellation 

 Center of gravity coordinates (mm) 
Name x y z 

Left Caudal Anterior Cingulate 1 -4.71 24.02 24.08 
Left Caudal Anterior Cingulate 2 -7.15 17.85 35.08 
Left Caudal Middle Frontal 1 -43.34 11.66 38.03 
Left Caudal Middle Frontal 2 -35.12 11.33 53.19 
Left Cuneus 1 -13.89 -77.10 29.30 
Left Cuneus 2 -3.89 -84.27 18.55 
Left Entorhinal 1 -21.06 -5.00 -31.00 
Left Entorhinal 2 -28.92 -8.75 -34.92 
Left Fusiform 1 -35.56 -33.82 -20.03 
Left Fusiform 2 -36.54 -55.93 -17.80 
Left Inferior Parietal 1 -43.75 -69.80 32.95 
Left Inferior Parietal 2 -30.01 -75.87 35.05 
Left Inferior Temporal 1 -50.30 -49.66 -13.79 
Left Inferior Temporal 2 -49.65 -23.88 -31.85 
Left Isthmus Cingulate 1 -12.25 -48.91 5.02 
Left Isthmus Cingulate 2 -5.90 -45.06 24.94 
Left Lateral Occipital 1 -45.67 -75.76 2.91 
Left Lateral Occipital 2 -26.39 -93.82 0.50 
Left Lateral Orbitofrontal 1 -23.78 38.27 -19.12 
Left Lateral Orbitofrontal 2 -22.46 5.24 -15.80 
Left Lingual 1 -12.28 -72.85 -6.28 
Left Lingual 2 -18.95 -57.79 1.43 
Left Medial Orbitofrontal 1 -6.38 21.79 -19.62 
Left Medial Orbitofrontal 2 -5.37 49.93 -16.74 
Left Middle Temporal 1 -59.78 -32.12 -10.50 
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Left Middle Temporal 2 -45.74 8.94 -38.73 
Left Middle Temporal 3 -55.78 -36.57 -0.60 
Left Parahippocampal 1 -30.02 -29.00 -21.48 
Left Parahippocampal 2 -20.53 -33.71 -16.25 
Left Paracentral 1 -9.79 -31.39 54.01 
Left Paracentral 2 -4.83 -21.84 62.74 
Left Pars Opercularis 1 -45.25 14.01 5.88 
Left Pars Opercularis 2 -51.21 14.56 18.66 
Left Pars Orbitalis 1 -46.34 35.19 -15.26 
Left Pars Orbitalis 2 -39.82 26.53 -6.81 
Left Pars Triangularis 1 -41.86 26.29 1.99 
Left Pars Triangularis 2 -50.85 33.33 5.53 
Left Pericalcarine 1 -14.98 -73.68 9.55 
Left Pericalcarine 2 -8.86 -89.42 3.42 
Left Postcentral 1 -22.17 -33.83 69.91 
Left Postcentral 2 -50.83 -21.20 39.50 
Left Postcentral 3 -15.17 -45.55 76.45 
Left Posterior Cingulate 1 -8.78 -16.54 41.07 
Left Posterior Cingulate 2 -3.97 -21.90 36.04 
Left Precentral 1 -22.32 -21.57 70.60 
Left Precentral 2 -47.76 -4.59 35.59 
Left Precuneus 1 -6.99 -59.41 52.34 
Left Precuneus 2 -9.53 -58.97 30.30 
Left Rostral Anterior Cingulate 1 -4.44 29.35 -5.06 
Left Rostral Anterior Cingulate 2 -6.57 43.38 4.70 
Left Rostral Middle Frontal 1 -28.73 48.26 19.11 
Left Rostral Middle Frontal 2 -26.78 33.93 38.53 
Left Rostral Middle Frontal 3 -39.54 43.20 18.05 
Left Superior Frontal 1 -2.52 -1.40 64.85 
Left Superior Frontal 2 -13.90 35.16 39.18 
Left Superior Parietal 1 -23.97 -54.43 65.35 
Left Superior Parietal 2 -25.35 -65.63 49.27 
Left Superior Temporal 1 -32.87 12.42 -30.24 
Left Superior Temporal 2 -53.28 -14.33 -4.89 
Left Supramarginal 1 -55.20 -37.98 34.68 
Left Supramarginal 2 -58.07 -56.02 26.62 
Left Supramarginal 3 -48.28 -45.05 44.20 
Left Transverse Temporal 1 -44.57 -25.11 11.38 
Left Transverse Temporal 2 -46.05 -18.51 5.84 
Left Insula 1 -37.64 -9.66 0.77 
Left Insula 2 -36.04 8.76 -0.48 
Left Thalamus Proper 1 -13.44 -20.87 9.62 
Left Thalamus Proper 2 -13.73 -16.81 3.98 
Left Caudate 1 -13.44 8.23 13.07 
Left Caudate 2 -16.90 -2.40 16.91 
Left Caudate 3 -18.92 -3.33 22.81 
Left Caudate 4 -12.17 15.73 -1.87 
Left Caudate 5 -17.51 17.78 5.52 
Left Putamen 1 -25.93 -0.28 5.94 
Left Putamen 2 -26.05 2.38 -5.17 
Left Pallidum 1 -22.48 -9.66 1.42 
Left Pallidum 2 -18.49 -0.95 -1.86 
Left Hippocampus 1 -30.15 -25.52 -10.39 
Left Hippocampus 2 -24.93 -21.59 -16.11 
Left Amygdala 1 -21.99 -4.71 -20.55 
Left Amygdala 2 -27.77 -6.79 -18.27 
Left Accumbens Area 1 -10.34 11.45 -7.95 
Right Accumbens Area 1 9.69 12.30 -7.62 
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Right Amygdala 1 25.54 -3.52 -27.22 
Right Amygdala 2 19.11 -5.82 -19.27 
Right Amygdala 3 21.76 -1.69 -19.35 
Right Amygdala 4 27.45 -7.56 -17.68 
Right Amygdala 5 24.89 -2.81 -16.60 
Right Amygdala 6 29.06 -4.29 -16.56 
Right Hippocampus 1 29.20 -25.17 -8.30 
Right Hippocampus 2 26.14 -20.98 -15.77 
Right Pallidum 1 23.67 -10.37 1.34 
Right Pallidum 2 18.46 -0.19 -0.54 
Right Putamen 1 23.14 6.79 -0.01 
Right Putamen 2 29.76 -3.96 0.23 
Right Caudate 1 15.33 3.20 13.88 
Right Caudate 2 17.91 19.41 5.20 
Right Caudate 3 12.06 18.11 -3.13 
Right Caudate 4 18.89 -7.89 22.23 
Right Caudate 5 10.19 7.25 10.82 
Right Caudate 6 14.31 10.41 12.74 
Right Thalamus Proper 1 13.10 -15.59 4.04 
Right Thalamus Proper 2 13.42 -19.34 9.69 
Right Insula 1 38.28 -4.91 -3.65 
Right Insula 2 35.79 6.61 1.84 
Right Transverse Temporal 1 46.63 -14.94 4.90 
Right Transverse Temporal 2 44.03 -21.14 10.83 
Right Supramarginal 1 44.70 -25.22 19.71 
Right Supramarginal 2 55.79 -33.34 37.81 
Right Superior Temporal 1 30.02 14.75 -33.21 
Right Superior Temporal 2 54.48 -10.98 -4.18 
Right Superior Parietal 1 21.41 -56.28 65.80 
Right Superior Parietal 2 27.12 -65.00 47.14 
Right Superior Frontal 1 5.94 47.29 -4.53 
Right Superior Frontal 2 4.79 -2.94 62.96 
Right Superior Frontal 3 13.61 35.49 37.77 
Right Rostral Middle Frontal 1 38.83 47.47 15.39 
Right Rostral Middle Frontal 2 38.29 32.15 29.71 
Right Rostral Anterior Cingulate 1 6.81 42.18 8.86 
Right Rostral Anterior Cingulate 2 4.22 32.89 -2.64 
Right Precuneus 1 10.29 -48.01 69.24 
Right Precuneus 2 9.62 -58.33 38.25 
Right Precentral 1 46.31 -2.15 35.51 
Right Precentral 2 59.33 6.07 28.27 
Right Precentral 3 25.38 -21.00 67.83 
Right Posterior Cingulate 1 8.22 -15.20 41.73 
Right Posterior Cingulate 2 4.21 -20.98 36.46 
Right Postcentral 1 21.20 -34.63 71.40 
Right Postcentral 2 50.99 -17.43 37.36 
Right Postcentral 3 11.51 -42.59 78.25 
Right Pericalcarine 1 10.66 -90.37 3.78 
Right Pericalcarine 2 14.03 -73.38 10.89 
Right Pars Triangularis 1 43.23 27.16 2.05 
Right Pars Triangularis 2 50.52 35.78 4.29 
Right Pars Orbitalis 1 39.01 27.21 -7.13 
Right Pars Orbitalis 2 44.63 37.44 -15.29 
Right Pars Opercularis 1 43.92 17.05 5.80 
Right Pars Opercularis 2 51.20 16.74 16.60 
Right Paracentral 1 12.13 -31.00 51.20 
Right Paracentral 2 4.51 -22.99 62.16 
Right Parahippocampal 1 27.29 -33.47 -16.07 



 156 

Right Parahippocampal 2 21.86 -28.17 -20.08 
Right Middle Temporal 1 57.97 -26.91 -11.75 
Right Middle Temporal 2 52.09 -36.30 1.78 
Right Medial Orbitofrontal 1 3.72 50.54 -18.15 
Right Medial Orbitofrontal 2 5.17 23.78 -19.08 
Right Lingual 1 13.45 -68.28 -4.16 
Right Lateral Orbitofrontal 1 18.76 9.89 -15.99 
Right Lateral Orbitofrontal 2 22.70 40.24 -19.25 
Right Lateral Occipital 1 43.59 -65.72 2.06 
Right Lateral Occipital 2 31.63 -87.73 1.19 
Right Isthmus Cingulate 1 5.31 -43.25 28.77 
Right Isthmus Cingulate 2 10.86 -45.77 8.46 
Right Inferior Temporal 1 48.96 -28.54 -27.70 
Right Inferior Parietal 1 47.64 -63.84 30.98 
Right Inferior Parietal 2 44.71 -66.96 14.29 
Right Inferior Parietal 3 38.93 -61.11 41.50 
Right Fusiform 1 30.67 -43.26 -18.63 
Right Fusiform 2 35.97 -46.58 -20.74 
Right Entorhinal 1 20.27 -8.02 -32.15 
Right Entorhinal 2 21.42 3.41 -30.89 
Right Entorhinal 3 25.09 -0.01 -38.45 
Right Entorhinal 4 28.66 -5.82 -35.23 
Right Entorhinal 5 29.48 -12.87 -33.10 
Right Cuneus 1 7.28 -87.98 24.51 
Right Cuneus 2 11.38 -72.00 24.17 
Right Caudal Middle Frontal 1 38.45 16.57 44.37 
Right Caudal Middle Frontal 2 34.67 7.26 53.99 
Right Caudal Anterior Cingulate 1 5.66 19.88 30.93 
Right Caudal Anterior Cingulate 2 4.93 22.06 23.24 

 

Table S2. Brain regions belonging to the different modules of each timepoint’s modularity community 

structure.  

Timepoint 1  Timepoint 2 

Module Area  Module Area 

1 

Left Entorhinal 1  

1 

Left Cuneus 1 
Left Entorhinal 2  Left Cuneus 2 
Left Fusiform 1  Left Entorhinal 1 
Left Fusiform 2  Left Entorhinal 2 
Left Inferior Temporal 1  Left Fusiform 1 
Left Inferior Temporal 2  Left Fusiform 2 
Left Middle Temporal 1  Left Inferior Temporal 1 
Left Middle Temporal 2  Left Inferior Temporal 2 
Left Middle Temporal 3  Left Lateral Occipital 1 
Left Parahippocampal 1  Left Lateral Occipital 2 
Left Parahippocampal 2  Left Lingual 1 
Left Superior Temporal 1  Left Lingual 2 
Left Superior Temporal 2  Left Middle Temporal 1 
Left Transverse Temporal 1  Left Middle Temporal 2 
Left Transverse Temporal 2  Left Middle Temporal 3 
Left Hippocampus 1  Left Parahippocampal 1 
Left Hippocampus 2  Left Parahippocampal 2 
Left Amygdala 1  Left Pericalcarine 1 
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Left Amygdala 2  Left Pericalcarine 2 

2 

Left Caudal Anterior Cingulate 1  Left Superior Temporal 1 
Left Caudal Anterior Cingulate 2  Left Superior Temporal 2 
Left Caudal Middle Frontal 1  Left Transverse Temporal 1 
Left Caudal Middle Frontal 2  Left Transverse Temporal 2 
Left Lateral Orbitofrontal 1  Left Hippocampus 1 
Left Lateral Orbitofrontal 2  Left Hippocampus 2 
Left Medial Orbitofrontal 1  Left Amygdala 1 
Left Medial Orbitofrontal 2  Left Amygdala 2 
Left Pars Opercularis 1  

2 

Left Caudal Middle Frontal 1 
Left Pars Opercularis 2  Left Caudal Middle Frontal 2 
Left Pars Orbitalis 1  Left Lateral Orbitofrontal 1 
Left Pars Orbitalis 2  Left Lateral Orbitofrontal 2 
Left Pars Triangularis 1  Left Medial Orbitofrontal 1 
Left Pars Triangularis 2  Left Medial Orbitofrontal 2 
Left Postcentral 1  Left Pars Opercularis 1 
Left Postcentral 2  Left Pars Opercularis 2 
Left Precentral 1  Left Pars Orbitalis 1 
Left Precentral 2  Left Pars Orbitalis 2 
Left Rostral Anterior Cingulate 1  Left Pars Triangularis 1 
Left Rostral Anterior Cingulate 2  Left Pars Triangularis 2 
Left Rostral Middle Frontal 1  Left Rostral Anterior Cingulate 1 
Left Rostral Middle Frontal 2  Left Rostral Anterior Cingulate 2 
Left Rostral Middle Frontal 3  Left Rostral Middle Frontal 1 
Left Superior Frontal 1  Left Rostral Middle Frontal 2 
Left Superior Frontal 2  Left Rostral Middle Frontal 3 
Left Insula 1  Left Superior Frontal 1 
Left Insula 2  Left Superior Frontal 2 
Left Putamen 1  Left Insula 1 
Left Putamen 2  Left Insula 2 
Left Pallidum 1  Left Thalamus Proper 1 
Left Pallidum 2  Left Thalamus Proper 2 
Left Accumbens Area 1  Left Caudate 1 

3 

Left Inferior Parietal 1  Left Caudate 2 
Left Inferior Parietal 2  Left Caudate 3 
Left Postcentral 3  Left Caudate 4 
Left Superior Parietal 1  Left Caudate 5 
Left Superior Parietal 2  Left Putamen 1 
Left Supramarginal 1  Left Putamen 2 
Left Supramarginal 2  Left Pallidum 1 
Left Supramarginal 3  Left Pallidum 2 

4 

Left Thalamus Proper 1  Left Accumbens Area 1 
Left Thalamus Proper 2  

3 

Left Inferior Parietal 1 
Left Caudate 1  Left Inferior Parietal 2 
Left Caudate 2  Left Postcentral 1 
Left Caudate 3  Left Postcentral 2 
Left Caudate 4  Left Postcentral 3 
Left Caudate 5  Left Precentral 1 

5 

Right Amygdala 1  Left Precentral 2 
Right Amygdala 2  Left Superior Parietal 1 
Right Amygdala 3  Left Superior Parietal 2 
Right Amygdala 4  Left Supramarginal 1 
Right Amygdala 5  Left Supramarginal 2 
Right Amygdala 6  Left Supramarginal 3 
Right Hippocampus 1  4 

Right Caudate 1 
Right Hippocampus 2  Right Caudate 2 
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Right Superior Temporal 1  Right Caudate 4 
Right Parahippocampal 1  Right Caudate 5 
Right Parahippocampal 2  Right Caudate 6 
Right Inferior Temporal 1  Right Thalamus Proper 1 
Right Fusiform 1  Right Thalamus Proper 2 
Right Fusiform 2  

5 

Right Accumbens Area 1 
Right Entorhinal 1  Right Pallidum 1 
Right Entorhinal 2  Right Pallidum 2 
Right Entorhinal 3  Right Putamen 1 
Right Entorhinal 4  Right Putamen 2 
Right Entorhinal 5  Right Caudate 3 

6 

Left Cuneus 1  Right Insula 1 
Left Cuneus 2  Right Insula 2 
Left Isthmus Cingulate 1  Right Superior Frontal 1 
Left Isthmus Cingulate 2  Right Superior Frontal 2 
Left Lateral Occipital 1  Right Superior Frontal 3 
Left Lateral Occipital 2  Right Rostral Middle Frontal 1 
Left Lingual 1  Right Rostral Middle Frontal 2 
Left Lingual 2  Right Rostral Anterior Cingulate 1 
Left Paracentral 1  Right Rostral Anterior Cingulate 2 
Left Paracentral 2  Right Precentral 1 
Left Pericalcarine 1  Right Precentral 2 
Left Pericalcarine 2  Right Precentral 3 
Left Posterior Cingulate 1  Right Pars Triangularis 1 
Left Posterior Cingulate 2  Right Pars Triangularis 2 
Left Precuneus 1  Right Pars Orbitalis 1 
Left Precuneus 2  Right Pars Orbitalis 2 
Right Precuneus 1  Right Pars Opercularis 1 
Right Precuneus 2  Right Pars Opercularis 2 
Right Posterior Cingulate 1  Right Medial Orbitofrontal 1 
Right Posterior Cingulate 2  Right Medial Orbitofrontal 2 
Right Pericalcarine 1  Right Lateral Orbitofrontal 1 
Right Pericalcarine 2  Right Lateral Orbitofrontal 2 
Right Paracentral 1  Right Caudal Middle Frontal 1 
Right Paracentral 2  Right Caudal Middle Frontal 2 
Right Lingual 1  

6 

Left Caudal Anterior Cingulate 1 
Right Lateral Occipital 1  Left Caudal Anterior Cingulate 2 
Right Lateral Occipital 2  Left Isthmus Cingulate 1 
Right Isthmus Cingulate 1  Left Isthmus Cingulate 2 
Right Isthmus Cingulate 2  Left Paracentral 1 
Right Cuneus 1  Left Paracentral 2 
Right Cuneus 2  Left Posterior Cingulate 1 

7 

Right Insula 1  Left Posterior Cingulate 2 
Right Insula 2  Left Precuneus 1 
Right Transverse Temporal 1  Left Precuneus 2 
Right Transverse Temporal 2  Right Precuneus 1 
Right Supramarginal 1  Right Precuneus 2 
Right Supramarginal 2  Right Posterior Cingulate 1 
Right Superior Temporal 2  Right Posterior Cingulate 2 
Right Superior Parietal 1  Right Postcentral 1 
Right Superior Parietal 2  Right Postcentral 3 
Right Rostral Middle Frontal 1  Right Paracentral 1 
Right Rostral Middle Frontal 2  Right Paracentral 2 
Right Precentral 1  Right Isthmus Cingulate 1 
Right Precentral 2  Right Isthmus Cingulate 2 
Right Precentral 3  Right Caudal Anterior Cingulate 1 
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Right Postcentral 1  Right Caudal Anterior Cingulate 2 
Right Postcentral 2  

7 

Right Transverse Temporal 1 
Right Postcentral 3  Right Transverse Temporal 2 
Right Pars Triangularis 1  Right Supramarginal 1 
Right Pars Triangularis 2  Right Supramarginal 2 
Right Pars Orbitalis 1  Right Superior Temporal 2 
Right Pars Orbitalis 2  Right Superior Parietal 1 
Right Pars Opercularis 1  Right Superior Parietal 2 
Right Pars Opercularis 2  Right Postcentral 2 
Right Middle Temporal 1  Right Pericalcarine 1 
Right Middle Temporal 2  Right Pericalcarine 2 
Right Inferior Parietal 1  Right Middle Temporal 1 
Right Inferior Parietal 2  Right Middle Temporal 2 
Right Inferior Parietal 3  Right Lingual 1 
Right Caudal Middle Frontal 1  Right Lateral Occipital 1 
Right Caudal Middle Frontal 2  Right Lateral Occipital 2 

8 

Right Accumbens Area 1  Right Inferior Parietal 1 
Right Pallidum 1  Right Inferior Parietal 2 
Right Pallidum 2  Right Inferior Parietal 3 
Right Putamen 1  Right Cuneus 1 
Right Putamen 2  Right Cuneus 2 
Right Caudate 1  

8 

Right Amygdala 1 
Right Caudate 2  Right Amygdala 2 
Right Caudate 3  Right Amygdala 3 
Right Caudate 4  Right Amygdala 4 
Right Caudate 5  Right Amygdala 5 
Right Caudate 6  Right Amygdala 6 
Right Thalamus Proper 1  Right Hippocampus 1 
Right Thalamus Proper 2  Right Hippocampus 2 
Right Superior Frontal 1  Right Superior Temporal 1 
Right Superior Frontal 2  Right Parahippocampal 1 
Right Superior Frontal 3  Right Parahippocampal 2 
Right Rostral Anterior Cingulate 1  Right Inferior Temporal 1 
Right Rostral Anterior Cingulate 2  Right Fusiform 1 
Right Medial Orbitofrontal 1  Right Fusiform 2 
Right Medial Orbitofrontal 2  Right Entorhinal 1 
Right Lateral Orbitofrontal 1  Right Entorhinal 2 
Right Lateral Orbitofrontal 2  Right Entorhinal 3 
Right Caudal Anterior Cingulate 1  Right Entorhinal 4 
Right Caudal Anterior Cingulate 2  Right Entorhinal 5 
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1. Discussion 

The normal aging process induces changes in brain’s structure and function along with alterations in 

cognition (Cabeza et al., 2017). Trajectories of cognitive performance in aging differ among individuals, 

with some presenting levels similar or even higher to their middle-aged counterparts whereas others 

exhibit significant cognitive decline (Habib et al., 2007; Josefsson et al., 2012). Factors such as years of 

formal education (Habib et al., 2007; Paulo et al., 2011; Santos et al., 2014), physical activity (Josefsson 

et al., 2012), mood (Santos et al., 2014), social inclusion (Paulo et al., 2011) and genetic and 

environmental factors (Barter and Foster, 2018) are known to influence inter-individual variability in 

cognitive aging. Nevertheless, the neural mechanisms which trigger different levels of cognitive abilities 

in older individuals are still poorly understood. The identification of in-vivo brain biomarkers responsible 

for the heterogeneity of cognitive trajectories in aging could help provide a healthier cognitive aging for 

the population and thus reduce the impact of aging in societies.  

The advent of neuroimaging techniques enabled the study of the structure and function of the aging brain 

and the number of studies exploring the relations between the aging effects on the brain and on cognition 

is growing. Furthermore, the adoption of analytical tools from other fields, (e.g., graph theory and machine 

learning) motivated the emergence of new techniques in neuroimaging research, such as network analysis 

and CBP. These new methods can give new insights of the aging brain and generate predictive models 

of cognitive trajectories in aging (Spreng and Turner, 2019). Despite the growing popularity of these 

methods, their application in the aging field has been mostly limited to functional data. Particularly, 

studies exploring the existence of sub-networks with significant age-related changes in WM structural 

connectivity or applying CBP to WM structural connectivity data to investigate age-related changes in 

brain’s structural network are inexistent. Moreover, despite the number of longitudinal studies is 

increasing, they still are outnumbered by cross-sectional studies.  

The main goal of this thesis was to provide new evidence of brain WM biomarkers of healthy cognitive 

aging. In order to accomplish this, a sample of older adults, part of a larger sample representative of the 

Portuguese population, was followed longitudinally with an interval of 4 to 5 years between evaluations. 

At each evaluation, subjects underwent a multimodal MRI protocol and an extensive battery of 

neurocognitive testing. Network analysis and CBP methods were applied to the MRI data to unravel new 

insights about the age-related alterations in brain’s structural network and how they associate with 

cognitive trajectories.  
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In the first study, we characterized the longitudinal changes of WM microstructural integrity and how 

these changes were associated with cognitive trajectories. Our results revealed a deterioration of WM 

integrity between the two evaluations, which is consistent with previous longitudinal studies (Sexton et al., 

2014; Vinke et al., 2018). Moreover, we found significant associations between longitudinal changes in 

WM integrity and longitudinal changes in cognitive scores of memory, executive function and general 

cognition. These findings again replicate previous work and provide additional support to the 

“disconnection hypothesis” (Bendlin et al., 2010; Brickman et al., 2012; Carlesimo et al., 2010; Cremers 

et al., 2016; Davis et al., 2009; Gazes et al., 2016; Hedden et al., 2016; Kennedy and Raz, 2009; 

Madden et al., 2009; Sasson et al., 2012; Ystad et al., 2011). Although our study only replicates previous 

findings and uses traditional analysis techniques, it is still prominent for the aging literature since 

longitudinal studies are yet a minority and also because it allowed us to confirm that the period between 

evaluations was sufficient to detect changes in WM.    

Next, we evaluated the longitudinal changes occurring in WM structural brain networks, both in terms of 

connectivity and topological properties. Our findings revealed a sub-network with significant changes in 

SC between timepoints. This sub-network was comprised of both increases and decreases in SC along 

time. Interestingly, decreases occur predominantly in intra-hemispheric connections and thus are mainly 

composed of association fibers. On the other hand, increases occur mostly in inter-hemispheric 

connections and are constituted by different types of WM tracts, such as association, commissural and 

projection fibers. These findings are in line with the “last-in, first-out” hypothesis, which postulates that 

regions/connections reaching full maturation later during development are more prone to age-related 

decline (Raz, 1999). Regarding WM, association fibers have a later peak of maturation in comparison to 

commissural and projection fibers and previous studies have found steepest declines of WM integrity in 

aging for this type of fibers (Bender et al., 2016; Benitez et al., 2018; Bennett and Madden, 2014; 

Brickman et al., 2012; Cox et al., 2016; Davis et al., 2009; Slater et al., 2019). To the best of our 

knowledge, our study is the first to identify sub-networks with longitudinal alterations in SC in aging and 

to provide evidence supporting the “last-in, first-out” hypothesis in terms of SC.  

Regarding topological properties, our results suggest a decrease in integration and an increase in 

segregation during aging. Reduced integration was characterized by a decrease in the number of detected 

connector hubs, which play a key role in inter-modular communication, and also reduced connector-hub 

inter-modular connectivity. Increased segregation was described by an increase in the number of detected 

provincial hubs, which are regions with most of their connections within their own module. Our findings 
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are in line with a recent study (Puxeddu et al., 2020), which found differences in the modular structure 

of the brain’s structural network across the human lifespan. Specifically, Puxeddu and colleagues found 

increased segregation described by a predominance of hemispheric-specific modules, a decrease in the 

participation coefficient and an increase in modularity in late lifespan. At older ages, the number of 

clusters was higher, but their sizes were smaller. A different study which investigated age-related changes 

in the brain’s functional network also found evidence of decreased integration and increased segregation 

(Sala-Llonch et al., 2014). Overall, these findings also support the theory of a “disconnected” brain in 

aging. 

In the last study, we developed a CBP method to create a new parcellation of the brain based on diffusion 

MRI data of an aging cohort. We implemented different state-of-the-art clustering techniques (hierarchical 

and k-means clustering) and evaluated their performance alone and in conjunction with data 

dimensionality reduction methods (Principal Component Analysis (PCA) and Self-Organizing Maps 

(SOM)). Furthermore, we established a new metric (fingerprint homogeneity) to evaluate the quality of a 

connectivity-based parcellation. Since the main goal of CBP is to group voxels with similar connectivity 

profiles (Eickhoff et al., 2015; Reuter et al., 2020), this metric evaluates if this goal was accomplished by 

attributing higher values if voxels inside a region establish more homogeneous connections (i.e., 

connections with the same brain regions) and lower values if voxels’ connectivity is more heterogeneous 

(i.e., connections with different brain regions). Our metric has the advantage over other existing metrics 

(for a review of the existing metrics, see (Arslan et al., 2018)) of taking into account the type of 

connections each voxel establishes (i.e., homogeneous or heterogenous) but not the connectivity values 

which could lead to misleading results. Thus, we consider that our metric adequately evaluates a 

connectivity-based parcellation and could be used for any CBP study. In our study, we obtained higher 

fingerprint homogeneity scores for the developed CBP in comparison to the initial parcellation, meaning 

that the final parcellation is composed of parcels with high connectivity homogeneity. This result validates 

the developed CBP method and so our method could be used to create a parcellation of the human brain 

using data from any cohort.   

Next, we used the developed parcellation to study longitudinal changes of brain’s structural network in 

aging. First, we registered the parcellation to follow-up data of the same cohort and calculated the 

fingerprint homogeneity. The results were very similar to the baseline, which validates the use of the 

parcellation for the longitudinal analysis. Then, we applied the same network analysis tools of the previous 

study to evaluate longitudinal changes in connectivity and topological features of WM structural networks. 
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Our results once again revealed a sub-network with both decreases and increases in SC along time. Also 

in line with our previous study, decreases were mainly constituted of intra-hemispheric connections and 

increases occurred in inter-hemispheric connections. The replication of our previous findings further 

validates our CBP method and strengthens the importance of this finding, which has not been previously 

reported in studies of age-related changes in WM structural brain networks.  

The analysis of the topological features revealed very interesting and challenging results. More specifically, 

we found a higher number of connector hubs and connector-hub driven inter-modular connectivity. 

Although previous fMRI studies report increased integration along aging (Cao et al., 2014; He et al., 

2020), the opposite is reported in diffusion MRI studies (Puxeddu et al., 2020) and in our second study. 

It is our belief that such apparent discrepancy may be explained by the higher resolution of our 

parcellation, which might have contributed to the identification of a higher number of connector hubs that 

otherwise would not be captured due to an attenuation of the effects when considering the whole region. 

Overall, this study provided a new method to investigate brain alterations at higher resolutions which can 

give new insights regarding our understanding of the brain. 

In conclusion, this thesis revealed that aging is characterized by alterations in WM microstructure and 

WM structural connectivity and also that these changes are associated with cognitive decline. One of the 

major findings was that connectivity within hemispheres decreases, while connectivity between 

hemispheres increases, which is in accordance with the “last-in, first-out” hypothesis. Furthermore, we 

also revealed that, during aging, the brain’s structural network suffers a reorganization in terms of 

integration and segregation, which leads to a more “disconnected” brain. These findings may help identify 

the main drivers of WM alterations at different cognitive levels, that could lead to the development of new 

in-vivo brain biomarkers of inter-individual variability in cognitive trajectories.  

Finally, this thesis also made a major contribution to the neuroimaging research field by developing a 

new method to create a connectivity-based parcellation of the brain and a new metric to evaluate the 

quality of parcellations. We demonstrated the applicability of the method by performing the analysis of 

longitudinal changes in brain’s structural networks during aging. This analysis replicated our previous 

results (intra-hemispheric connectivity decreases and inter-hemispheric connectivity increases) but also 

revealed challenging aspects that could be the result of using a high-resolution partition of the brain. 

Thus, we believe our CBP method can be applied to study any research question and could reveal new 
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findings that can help advance our knowledge of the brain’s structure and function. Additionally, it allowed 

us to replicate previous findings and disclose new insights about the aging brain.  

 

2. Future Perspectives 

The work developed in this thesis provided new evidence about the aging brain and its relationship with 

cognition. Moreover, new analysis methods for neuroimaging research were developed that may 

contribute to shed new light regarding brain’s organization in health and disease. However, new questions 

were raised that we intent to address in future studies. Particularly, future work should investigate 

longitudinal changes in connectivity and topological properties of functional brain networks of the same 

aging cohort, in order to complement the longitudinal analysis of structural brain networks presented 

here. This will allow to explore structure-function relationships in aging. Additionally, the CBP method 

could be employed as a data reduction step in an age prediction framework that may give new insights 

about brain alterations in normal aging.  
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