Generalized F-Semigroups'
E. Giraldes, P. Marques-Smith and H. Mitsch

Abstract. A semigroup S is called generalized F -semigroup if there
exists a group-congruence on S, such that the identity-class contains a greatest
element with respect to the natural partial order <g of S. Using the concept of
anticone all partially ordered groups, which are epimorphic images of a semigroup
(S,.,<s), are determined. It is shown that a semigroup S is a generalized F'-
semigroup if and only if S contains an anticone, which is a principal order ideal of
(S, <s). Also a characterization by means of the structure of the set of idempotents
resp. by the existence of a particular element in S is given. The generalized
F-semigroups in the following classes are described: monoids, semigroups with
zero, trivially ordered semigroups, regular semigroups, bands, inverse semigroups,
Clifford-semigroups, inflations of semigroups, and strong semilattices of monoids.

1. Introduction

A semigroup (5,-) is called F-inverse if S is inverse and for the least
group-congruence o on S, every o -class has a greatest element with respect to
the natural partial order <g of S (see [16] or [10] for a detailed treatment of this
class of semigroups). This concept appeared originally in [19]. A construction of
such semigroups was given in [12] by means of groups acting on semilattices with
identity obeying certain axioms.

Dropping the condition that the semigroup is inverse we will call a semi-
group S an F'-semigroup if for some group-congruence p on S every p-class of
S contains a greatest element with respect to the natural partial order <g of 5.
Recall that for any semigroup S, <g is defined by

a <g bif and only if a = 2b = by , za = a for some z,y € S*

(see [13]). Note that for e, f € E(S5),e <g f iff e = ef = fe. In this paper we
will more generally study generalized F -semigroups, which are semigroups S for
which there exists a group-congruence p such that the identity-class (only) has a
greatest element with respect to the natural partial order <g of S (equivalently,
there exists a homomorphism of S onto a group G such that the preimage of the
identity element of G has a greatest element with respect to <g). Thus we are
dealing with semigroups, which are extensions of a subsemigroup 7" with greatest
element by a group (the semigroups of type T were first characterized in [18]).
The particular case of F'-semigroups will be considered in a subsequent paper.
This generalization of F'-inverse semigroups is motivated by a class of
partially ordered semigroups (i.e., semigroups S endowed with a partial order
< which is compatible with multiplication): (.S,-, <) is called Dubreil-Jacotin
semigroup if there exists an isotone semigroup-homomorphism of (.5, -, <) onto a
partially ordered group (G, -, <) such that the preimage of the negative cone of GG
is a pricipal order ideal of (S, <). This concept was introduced in [6] (see also [4],
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Theorem 25.3). Specializing the partial order < given on S to the natural partial
order <g and dropping the compatibility condition for <g (which is not satisfied,
in general) it turns out that in this case the partial order < given on G reduces
to the equality relation, so that the negative cone of GG consists of the identity
element of G' alone. Thus we arrive at the concept of generalized F'-semigroup.

In Section 2 we determine all partially ordered groups, which are isotone
semigroup-homomorphic images of an arbitrary semigroup S - with .S considered
as partially ordered by its natural partial order. In the particular case that S is
inverse this question was dealt with in [3], where the greatest such partially ordered
group was considered. For this purpose we use the concept of anticone of S defined
in [2] (see also [4]). In Section 3 we specialize the concept of anticone to be principal
in the sense that it is also a principal order ideal of (S, <g). In analogy with F'-
inverse semigroups we show that for generalized F'-semigroups S the congruence p
appearing in the definition is the least group-congruence on S. Characterizations
by the existence of a principal anticone, of a particular element, and by properties
of the set of all idempotents are provided. Also, generalized F'-semigroups, which
are regular or contain an identity, are considered. The characterization of the
latter allows a construction of all generalized F'-inverse monoids. In Section 4
the generalized F'-semigroups in the following classes are described: semigroups
with zero, trivially ordered semigroups, bands, inflations of semigroups, and strong
semilattices of monoids (in particular, Clifford-semigroups).

2. Epimorphic partially ordered groups

Throughout the paper, S stands for an arbitrary semigroup, unless specified
otherwise, and <g for the natural partial order defined on S. No other partial
order on S will be considered.

Since we are interested in homomorphic images of a semigroup S onto
groups, we first observe that for any group G and every homomorphism
p:S — G,a <g b implies ap = by, i. e., ¢ is trivially isotone.

In this Section we give a method for constructing all groups G and all
partial orders on G such that the partial ordered group G is a semigroup and
order homomorphic image of S. For this purpose we follow the account given
in [4, Section 24] using the concept of anticone in a partially ordered semigroup
introduced in [2]. Since the natural partial order of S need not be compatible
with multiplication, the theory developed in [4] cannot be applied directly to our
case. At several stages other proofs have to be given in order to establish the
corresponding results needed in the sequel.

Let X C S and a,b € S. Define

Xoa={x € Slar € X} and X.a = {z € S|zra € X}.
It is readily seen that
X.ab= (X.a). band X .ab= (X".b).a.

Say that X # O is reflexive if ab € X implies ba € X (a,b € 5). If X is
reflexive then X..a = X .a for any a € S, in which case we will use the notation
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X :a. Say that X is neat if X is reflexiveand X : ¢ £ @ forall ce€ S. If X is a
reflexive subsemigroup of S, define

Ix={zxe S| X :z=X}

Call a subsemigroup H of S an anticone of S if Iy N H # () and both H
and Iy are reflexive and neat. As we will see later, this definition is equivalent to
the definition given in [4] in the context of partially ordered semigroups.

A subset T' of a semigroup S is called unitary in S if (¢) t, ta € T implies
that a € T', and (i7) t, at € T implies that a € T (see [5]). If T is reflexive then
(i) and (i7) are equivalent.

Proposition 2.1. @« Let H be an anticone of S. Then Iy is a mazimal unitary
subsemigroup of S contained in H. In particular, Iy, = Iy is also an anticone
of S, and Iy = H if and only if H is unitary in S'.

Proof.  Clearly, by the definition of anticone, Iy # (). That Iy is a unitary
subsemigroup follows easily from the fact that H : zy = (H : z).y = (H : y).x
forall z,y € S. f x € Iy then H:x=H andso xH C H . Let k€ IgyNH.
Then k€ H,ie., x € H:k=H. Thus Iy C H.

Next consider any unitary subsemigroup K of S such that Iy C K C H.
Let u € K. Since I,, is neat, choose v € S such that uv € Iy. But K is unitary,
sove K. If ze€ H:u then uz € H, so vuz € H, giving z € H : vu. Since
Iy is reflexive and wv € Iy, vu € Iy. Thus H : vu = H and so z € H. Since
HCH:u,weget H:u= H, proving v € Iy. Hence K C Iy and so Iy is a
maximal unitary subsemigroup of S contained in . We now show that I, = Iy.
As Iy is unitary, Iy, € Iy. If © € Iy and y € Iy : x then zy € Iy and so,
since [y is unitary, y € Iy. Since Iy is a subsemigroup of S, it follows that
Iy : v = Iy, that is « € I;,. That Iy is an anticone is now immediate. The
assertion follows and the proof is complete. [ |

Let H be an anticone. Since H is reflexive, we can define the Dubreil
equivalence Ry on S by

(a,b) € Ry <= H:a=H:b.

Following the proof in [4, Section 24] we obtain that S/Ry is a group whose
identity is Iy . Also, the binary relation on S/Ry given by

aRgy bRy <—= H:bCH:a

is a partial order which is compatible with multiplication. Hence G = (S/Ry, -, <)
is a partially ordered group. Moreover, following the arguments given in [4,
pages 250-251], H is the pre-image, under the natural homomorphism, of the
set {Ry € S/RylrRy =X Iy}, called the negative cone of S/Ry .
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Remark 2.2. 1. Notice that any anticone H of (S,<g) is an order ideal of
(S,<g). In fact, if h € H and = € S, then hRy belongs to the negative cone of
S/Rg and

r<gh = x=th=tx forsometecS
— xRy = hRy < Iy
= x € H.

2. From the observation of the beginning of this Section, it follows that the
natural homomorphism ¢ : S — S/Ry is isotone.

3. Since Iy is a subsemigroup of H (Proposition ??) and H is an order ideal
of S, the definition of anticone that we have given is equivalent to the definition
given in [4] in the context of partially ordered semigroups.

We summarize the previous results in the following

Theorem 2.3.  Let S be a semigroup and H an anticone. Then S/Ry, par-
tially ordered by the relation < defined by aRyg < bRy <= H : b C H : a, is an
(isotone) homomorphic group image of S under the natural homomorphism such
that H is the preimage of the negative cone of (S/Ry, =< ).

The next result shows that every partially ordered group, which is an
(isotone) homomorphic image of a semigroup S, arises in this way, i.e., is given
by an anticone of S.

Theorem 2.4.  Let S be a semigroup, G a group with compatible partial order
< and ¢ : S — G an (isotone) epimorphism. Let H ={x € S:xp < 1g}. Then
H is an anticone and ¢ : S/Ry — G, given by Ry —— xp, is an isomorphism
such that ¥ and ¥~ are order preserving.

Proof.  To justify that H is an anticone of S we can apply the arguments given
in [4, Section 24| since compatibility of the partial order given on S is not used in
those arguments. By Theorem 7?7, S/Ry is a partially ordered group, where Ry
denotes the Dubreil equivalence with respect to H and =< is the partial order given
above. Following the proof of Theorem 24.1 in [4], we obtain that the mapping
Y :S/Ry — G, (xRy)y = xp is an isomorphism such that ¢ and ¢! are order
preserving. ]

Corollary 2.5.  Let ¢ : S — G be an isotone epimorphism where G is a group
with compatible partial order <. Then < s trivial if and only if the anticone
H={z¢eS:zxp<l1g} is unitary in S.

Proof. By Theorem 2.4, since 1) is an isomorphism, Iy = 1gp~1. If < is trivial
then clearly H = Iy, by definition of H. Conversely, if H = Iy and ap < bp
(a,b € S) then, by Theorem ??, aRy < bRy, i. e, H:b C H : a. Hence for
any x € S such that bx € Iy, ax € I. So (bx)p = 1¢ = (az)p giving by = ap.
Thus, < is trivial if and only if H = Iy, and this is equivalent to H be unitary,
by Proposition ?77?. [ |
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Example 2.6. Let B be a band, (G,<) a partially ordered group and let
S = B X G be their direct product. Then the natural partial order on S is given
by

(e,a) <g (f,b) <= e <p fand a =b.

Notice that <g is not compatible with multiplication, in general. The
projection ¢ : S — G, defined by (e,a)p = a, is an isotone epimorphism. By
Theorem 7?7, the set H = {(e,a) € S : a < 1g} is an anticone of S and the
mapping ¢ : S/Ryg — G defined by xRy —— xy is an isomorphism such that
and 1! are order preserving. By Corollary ??, the anticone H is not unitary if
the partial order < on G is not trivial.

Example 2.7. Let S be an inverse semigroup. Then the natural partial order
of S has the form:

a <gb<= a = eb for some e € Eg (see [16]).

It was shown in [17] that H = {h € S : e < h for some e € Eg} is the least
anticone of S yielding the greatest isotone homomorphic group image of S. The
latter is given by the congruence o on S defined by:

ach <= ea = eb for some e € Eg;

in fact, Ry = o by [3]. We show that H is unitary in S. Let h,ha € H. Then
e <s h, f <g ha for some e, f € Eg, whence e = jh, f = itha for some i,j € Eg.
Since the idempotents of S commute, we get jf = ijha = iea, where ie € Fg.
Thus jf <ga with jf € Eg; hence a € H and so H is unitary.

We next introduce a class of semigroups, which contain (unitary) anticones:
the class of E-inversive, E-unitary semigroups.

(i) A semigroup S is called E-inversive if for every a € S there exists
x € S such that az € Eg (see [5], Ex. 3.2 (8)). In this case there also exists y € S
such that ay,ya € Eg. Examples are provided by periodic (in particular, finite)
or regular semigroups (see [14]).

(ii) S is called E -unitary if Eg is unitary in S, that is, if e, ea € Eg implies
that a € Eg, and if e,ae € Eg implies that a € Fg. In fact, these two conditions
on S are equivalent (see the beginning of Section 3, in [14]).

Let S be an E-unitary semigroup and a,b € S such that ab € Eg. Then

(ba)? = bababa = b(ab)*a = b(ab)a = (ba)?
and
(ba)* = (ba)?.

Hence (ba)? € Eg and (ba)(ba)? = (ba)® = (ba)? € Eg. It follows that
ba € Eg. So Eg is reflexive.
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If S is also E-inversive, easy calculations show that Eg is a neat subsemi-
group of S and Ig, = Eg. Hence Eg is an anticone of S. Also, if H is an anticone
of S, then by Theorems ?? and ??, H = {z € S: xp < 1g}, ¢ being the natural
homomorphism ¢ : S — S/Ry = G. Since, for every idempotent e € S, ep = 1¢,
it follows that Fg C H. Thus we have the following

Proposition 2.8.  Every E-inversive, E-unitary semigroup S has a (least)
anticone, namely H = Eg.

Notice that since by Theorem 7?7 every anticone of a semigroup S gives
rise to a group G, which is an isotone homomorphic image of S, the result of
Proposition ?? is implicitly contained in [1] Theorem 3.1.

3. Generalized F-semigroups

We will now specialize our study to the case of semigroups S containing
an anticone H with a greatest element, i.e., an anticone which (by Remark ?7?)is
a principal order ideal of (S,<g). Such an anticone will be called a principal
anticone. This additional condition leads to the class of generalized F'-semigroup.
We call a semigroup generalized F -semigroup if there exists a group-congruence p
on S such that the identity p-class 15 € G = S/p has a greatest element £. The
element ¢ will be called a pivot of S.

If a semigroup S has a principal anticone H with greatest element ¢ | i.e.
H=({ ={z€S:x<5&}, then Ry is a group congruence. Using the natural
homomorphism of S onto the group S/Ry whose identity is Iy, we have

t,ta € H=t,ta <¢§ =—=tRy.aRy =&Ry =1tRy
= aRy = IS/RH =1y
—a€ly CH. [by Proposition ?7?]

Hence H is unitary and so, by Proposition ??, H = Iy . It follows that the
identity Rpy-class Iy has a greatest element. So S is a generalized F'-semigroup
with pivot &.

Conversely, let S be a generalized F-semigroup, p a corresponding group
congruence on S and ¢ : S — G = S/p the natural epimorphism. Considering
on G the identity relation for < we have by Theorem 7?7, that
H={x €S :xp=1¢} is an anticone of S. By hypothesis, the identity p-class
lg € S/p, that is, H = 1gp~! has a greatest element &, say. Therefore H is a
principal (hence unitary) anticone and H = Iy = (.

We have proved the following characterization:

Theorem 3.1.  Let S be a semigroup. Then S is a generalized F -semigroup if
and only if S has a principal (unitary) anticone H. In this case H = Iy = (§],
where £ is a piwot of S'.

Remark 3.2. 1. An unitary anticone is not necessarily principal. Indeed,
consider any F-unitary inverse semigroup S. By Proposition 77, Eg is an unitary
anticone and by [10] Proposition 7.1.3, Es contains a greatest element if and only
if S has an identity.
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2. Since for any anticone H of a semigroup S, Iy is unitary (by Proposition
??), the natural partial order on Iy is just the restriction of <g to [.

3. If § is a generalized F-semigroup then any group G appearing in
the definition admits as a compatible partial order only the identity relation (by
Theorem ?7 and Corollary ??7). Hence the negative cone of G consists of the
identity alone.

Our next aim is to show that the group in the definition of generalized
F'-semigroup is unique. We show even more:

Theorem 3.3. Let S be a generalized F -semigroup and p a corresponding
group congruence. Then p is the least group congruence on S. In particular, both
the congruence and the pivot of S are uniquely determined.

Proof. Let 7 be any group congruence on S and a,b € S be such that apb.
If ¢ € (ap)™" = (bp)~! then cp = (ap)~' so that (cp).(ap) = Iy, the identity
of S/Ry (H being the principal (unitary) anticone of S corresponding to p in
Theorem ?7?). Therefore, ca € Iy = H = (£], by Theorem ?7?, that is, ca <g &.
Similarly, ¢b <g &. If ¢ denotes the natural homomorphism corresponding to 7,
then it follows that (cy).(ap) = € = (c).(y)) (see the beginning of Section 77).
Therefore, aip = by (by cancellation), that is, arb. [

Due to the definition, the knowledge of semigroups T containing a greatest
element is relevant to the study of generalized F'-semigroups. A characterization
of such semigroups 7" was given in [18]. Here we provide an independent proof.
For this purpose, we show first

Lemma 3.4.  Let S be a semigroup with greatest element €. Then &3 = €2 and
£ ¢ Eq.

Proof. By hypothesis 2 <g &. If €2 = £ then £ € Eg. If €2 <g & then
E=af=¢y =12 forsome z,y €S . Thus & =2 =¢? andso 2 € E5. =

Theorem 3.5. ([18]) A semigroup S admits a greatest element if and only if
S is one of the following types:

(i) S is a band with identity;

(ii) S =T U{E}, where T is a band with identity e such that £ = e and
af =&a = a for every a €T.

Proof. If S is a semigroup of type (i) then the identity e € S is the greatest
element of S. Also, if S is of type (4i) then af = &a = a for every a € T implies
that a < ¢ (since a € Eg). Thus ¢ is the greatest element of S.

Conversely, let S be a semigroup with greatest element £. Then, for every
a€sS,a<f. If £ € Fg, it follows by [15], Lemma 2.1, that a € Eg. Hence S is
a band with identity &, i.e., S is of type (i). If £ ¢ Eg then we have
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1. T = S\{¢} is a subsemigroup of S

Let a,b € T; then a <g £ and so a = z§ = £y = xa for some x,y € S.
Assume that ab ¢ T'. Then ab = ¢ and

a=z=z.0ab=2xa.b=ab=¢,

a contradiction. Thus ab e T.
2. af = a&?, fa = &2a for every a € S:
If a = ¢ then by Lemma 77

af =& =¢ =68 =ag’

and similarly fa = £%a.
If a # & then a <g £ and so a = ¢ = £y = xa, for some x,y € S . It
follows by Lemma 77 that

af = z€.6 = 3€% = 263 = 2£.6% = ag?
and similarly £a = £2a.
3. £2 €T is the identity of T':

Since £ ¢ Eg, € € S\{¢} = T. Let a € T. Then a <5 & and so
a = x€ =&y = za for some z,y € S. Therefore, by 2.,

aé? = af = x€.£ = €% = 2¢ = a.
Similarly, &%a = a.
4. T = S\{¢} is a band:

By 2. and Lemma ??, a <g £ for every a € T implies that a <g £2. Since
by Lemma ??, £? € Eg it follows by [15], Lemma 2.1, that a € Eg. Hence by 1.,
T is a band.

We have shown that S =T U{¢}, where T is a band with identity &2 such
that aé = a&? = a and £a = £%a = a for every a € T. Therefore, S is of type

(11). [

Corollary 3.6. If S is a generalized F -semigroup with pivot £ then either
(€] = Es or (§] = EsU{&} with €2 € Eg and e€ = e =¢ for all e € Eg.
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Proof. By Theorem ??, H = ({] is a principal anticone of S, hence a subsemi-
group of S with greatest element ¢ (note that by Remark ??, the natural partial
order on H is the restriction of <g to H). Therefore by Lemma ??, £ € Eg.
Since ep = 1¢ for any e € Eg, where ¢ is the corresponding natural homomor-
phism, we have Eg C (£]. The assertion now follows from Theorem ?7. ]

This description of the identity class yields the following properties of a
generalized F'-semigroup.

Proposition 3.7.  Fvery generalized F'-semigroup S with pivot £ is F -inversive.
Furthermore, Eg is a subsemigroup of S with greatest element £2.

Proof. By Corollary 77, either (¢] = Eg or (§] = Es U {£} where &2 is the
identity of Eg. By the proof of Theorem 7?7, T" = FEg is a subsemigroup of S.
It follows that Eg contains a greatest element: £2. We show now that S is
E-inversive. Let a € S and ¢ : S — G = S/p the surjective homomorphism
satisfying 1gp~! = (£]. Then we have

ap € G = (ap)™' = by for some b € S
= ab € lgp ! = (¢
=—abe Egorab=¢
= ab € Eg or a.bab = £2 € Es.

Hence S is E-inversive. ]

The two properties given in Proposition 7?7 are not sufficient for a semigroup
to be a generalized F'-semigroup. For example, consider the multiplicative monoid
S of natural numbers together with 0; then S is E -inversive and Eg ={0,1} is a
subsemigroup with greatest element 1. If S was a generalized F'-semigroup with
pivot £ then by Proposition 7?7, €2 =1 and so £ = 1. Hence (¢] = {0,1}, which
is not unitary, a contradiction (see Theorem 77).

The next theorem establishes a characterization of a generalized F'-semigroup

in terms of the idempotents of S. This result has several applications (see Section
?7) .

Theorem 3.8.  Let S be a semigroup. Then S is a generalized F -semigroup
with pwot & if and only if S is E-inversive, £ is an upper bound of Eg and
EsU{¢&} is unitary.

Proof.  Necessity follows by Proposition 7?7, Corollary ?? and Theorem ?7.

Conversely, let S be E-inversive, £ be an upper bound of Egs and EsU{¢}
be unitary. Suppose first that £ € EFs. Then S is an E-inversive and FE-unitary
semigroup. It follows by Proposition ??, that H = Eg is a (unitary) anticone with
greatest element &. Thus by Theorem 7?7, S is a generalized F-semigroup with
pivot £. Suppose now that £ ¢ Eg. We show that H = Eg U {{} is a principal
anticone of S'.

1. H is a subsemigroup of S':
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Let h,k € H. Since S is FE-inversive, there exists x € S such that
hkx € Es C H. Since H is unitary, we then have, successively kx € H, x € H
and finally hk € H.

2. H is reflexive:
Let a,b € S be such that ab € H. Consider first the case ab € Eg. Then,

(ba)® = b(ab)?a = (ba)* = (ba)*> € E5 C H.

Since (ba)(ba)® = (ba)®> € H and since H is unitary, we have that ba € H.
Consider next the case ab = £. By 1., H is a subsemigroup (with greatest element
¢). Thus by Lemma 7?7, & = &2,

(ba)* = b(ab)*a = b&3a = b€%a = (ba)?

and so (ba)® € Es C H. Thus (ba)3(ba) = (ba)® € H; since H is unitary, it
follows that ba € H.

3. H is neat:
This follows from 2. and the fact that S is E-inversive and Eq C H.

Since by 1., H is a subsemigroup of S, H C H : x for any z € H. Also,
because H is unitary, H : x C H.Thus H = H : x forany x € H . Thus H C Iy.
Conversely, let a € Iy;then H:a=H and he H=H :a = ah € H =
a € H (since H is unitary).

We have shown that H is an anticone. Since, by hypothesis, £ € H is an
upper bound of Es C EsU{{} = H, £ is the greatest element of H. Sufficiency
now follows by Theorem 77. [ |

Notice that in Theorem 77 the attribute ”with pivot £” is essential. In fact,
consider the following example.

Example 3.9. Let T ={0,1} be the two element semilattice and let
S =1{0,1,a} with a0 = 0a =0, al = la =1, a®* = 1 (see Theorem ??). Then
a € S is the greatest element of S and S satisfies the conditions of Theorem 77
with £ = a. Hence S is generalized F'-semigroup with pivot & = a. Now, 1 is also
an upper bound of Eg, but EgU{1} = FEg is not unitary in S since a.1 =1 € Eg,
a ¢ Eg. This means that S is not a generalized F-semigroup with pivot £ = 1.

As an immediate consequence of Theorem 77, we give a characterization of
those elements of a semigroup S which may serve as pivot of S. Notice that by
Theorem ?7? there is at most one such element.
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Corollary 3.10.  Let S be a semuigroup. Then S is a generalized F -semigroup
with pivot & if and only if (i) € is the greatest idempotent of S and £* <g &, (i1)
for any a € S there exists a’ € S that aa’ <g &%, (iii) Es U{&} is unitary in S .

Note that the conditions of Corollary ?7? also characterize those order ideals
of a semigroup (.5, ., <g) which are (principal) anticones of S.

As a special case of Theorem 7?7, consider a semigroup S such that Eg has
a greatest element. Then we obtain the following

Corollary 3.11.  Let S be a semigroup containing a greatest idempotent e.
Then S is a generalized F -semigroup with pivot e if and only if S is E -inversive
and E-unitary.

The condition imposed on .S in Corollary 7?7 is certainly satisfied if S has an
identity. In this case it is easy to show that the identity, being a maximal element
of (S,<g), is the pivot of S. Thus, we obtain a characterization of generalized
F-monoids:

Corollary 3.12.  Let S be a monoid. Then S is a generalized F -semigroup if
and only if S is E-inversive and E-unitary.

Next we study generalized F'-semigroups which are regular. We begin with
the more general situation where only the pivot of S is regular. First we show

Proposition 3.13.  For a generalized F -semigroup with pivot & the following
are equivalent:
(i) € is reqular; (ii) & is (the greatest) idempotent; (iii) S is E -unitary.

Proof. By hypothesis, there exists a group GG and a surjective homomorphism
¢ : S — G such that 1gp~! = (¢].

(i))=(1i). Let £ € S be such that £ = ££'€. Since £’ € Eg, we have that
(€€ )p = 1¢ so that €€ € (£]. Hence &£ <g £ and so,

€6’ = u€ = £y = at¢’

for some z,y € S'. Thus £ = 2 = €€ € Es. (It follows by Theorem ?? that &
is the greatest idempotent.)

(i1)==(iii). This follows from Corollary ?7.

(111))=>(i). Since by Theorem ??, ({] is a semigroup with greatest element
£, € = ¢ ¢ Eg by Lemma ??. Thus, by hypothesis, €26 € Eg implies that
¢ € Eg. Hence € is regular. [ |

As a consequence of Proposition 7?7, the conditions of Corollary ?? charac-
terize the generalized F-semigroups with regular pivot. Also they yield a charac-
terization of the regular generalized F'-semigroups:

Theorem 3.14. Let S be a reqular semigroup. Then S is a genera-
lized F-semigroup if and only if S is an F-unitary monoid.
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Proof. Let S be a regular semigroup. Then S is FE-inversive.
If S is an E-unitary monoid it follows from Corollary ?? that S is a generalized
F'-semigroup.

Conversely, if S is a regular generalized F'-semigroup with pivot ¢ then by
Proposition 77, £ is the greatest idempotent of S and S is F-unitary. Following
the proof of Proposition 7.1.3 in [10], we show that ¢ is the identity of S. Let
a € S and a’ € S be such that @ = ad’a. Since ad’,d'a € Eg we have by Corollary
?7?, that ad’,d’'a <g & and so d'a = a’a and &aa’ = ad’. Hence, aé = £a = a and
so ¢ is the identity of 5. [ |

Example 3.15. Let B be a band with identity 1p, let G' be a group with
identity 14 and let S = B X G be their direct product. Then S is a regular monoid
with identity (1p,1g) and Eg = {(e,1¢) € S : e € B}. Simple calculations show
that S is E-unitary. Thus S is a generalized F-semigroup. The corresponding
group is the given group G and (1p,1g) is the greatest element of its identity
class since ¢ : S — G, (e,a) p = a, is a surjective homomorphism.

A construction of all reqular generalized F'-semigroups is given in [8].

4. Examples

In this section we characterize in several classes of semigroups those mem-
bers which are generalized F'-semigroups. Moreover, two types of constructions
are investigated with the aim to produce generalized F'-semigroups: inflations of
semigroups and strong semilattices of monoids. The proofs concerning the last two
ones are not given because they consist of extensive calculations.

1. Every group G is a (generalized) F'-semigroup (the identity relation on
G is the desired group congruence).

2. Every semigroup S with greatest element ¢ is a generalized F-semigroup
(the universal relation on S is the corresponding group congruence).

3. A band B is a generalized F'-semigroup if and only if B has an identity
(this is a consequence of 2. and of Theorem ?7).

In the class of all monoids the generalized F'-semigroups were characterized
by Corollary ??. For a much bigger class of semigroups, we have

4. Let S be a semigroup containing a maximal element m, which is
idempotent. Then S is a generalized F'-semigroup if and only if S is E-inversive,
E-unitary and has a greatest idempotent (this follows from Theorem ?7? and
Corollary 77).

5. Let S be a trivially ordered semigroup (i.e., the natural partial order of
S is the identity relation). Then S is a generalized F-semigroup if and only if S
is a group. (Necessity: Since by Theorem ??7, S is E-inversive and Eg = {{}, S
is regular by [14], Proposition 3; hence S is a group by [16], Lemma I11.2.10.)

Examples of trivially ordered semigroups S (without zero) are provided
by weakly cancellative semigroups, right-(left-) simple semigroups, right-(left-)
stratified semigroups, in particular, completely simple semigroups (see [7]).
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6. Let S be a semigroup with zero. Then S is a generalized F'-semigroup
if and only if S has a greatest element (that is, S is of type (i) or (iz) in Theorem
?7). Note that 0p is the zero of G = S/p, whence |G| = 1.

In the class of all regular semigroups, the generalized F-semigroups were
characterized by Theorem 77 as the F-unitary monoids. The inverse case deserves
to be mentioned separately. Note that every FE-unitary inverse semigroup is
isomorphic to a McAlister P-semigroup P, and that P has an identity if and
only if Y has a greatest element (see [10] Theorem 7.1.1). Thus we obtain

7. Let S be an inverse semigroup. Then S is a generalized F'-semigroup
if and only if S is isomorphic to a P-semigroup P(Y,G;X) such that Y has a
greatest element with respect to <x.

Remark 4.1.  This result provides a method for the construction of all gene-
ralized F-inverse semigroups. Take a lower directed partially ordered set X (see
[16], Lemma VII.1.3), a principal order ideal Y of X, which is also a subsemilattice,
and a group G acting on the left by order-automorphisms on X such that
G.Y = X; then S = P(Y,G; X) is a generalized F-inverse semigroup. Conversely,
every such semigroup can be constructed in this way. It is worth noting the diffe-
rence of this construction with that of all F'-inverse semigroups: by [11], Theorem
2.8, a semigroup S is F-inverse if and only if S is isomorphic to P(Y,G; X)
constructed as above with X a semilattice instead of a lower directed partially
ordered set (see also [16], Proposition VII.5.11).

In the following, for two constructions necessary and sufficient conditions on

the ingredients are given, which allow to produce further examples of generalized
F-semigroups.

8. Inflations of semigroups

Let T' be a semigroup; for every o € T' let T,, be a set such that T,NTz = O
forall « # 8 in T and T, NT = {a} for any a € T. On S = UuerT, define a
multiplication by

ab=afif acT,,becTs

Then S is a semigroup called an inflation of T'. If T" satisfies the condition
that for every a € T' there exist 3,7 € T such that a = fa = ay (for example,
if T has an identity or if 7' is regular), the natural partial order on S was
characterized in [7]:

a<gb(aeT,beTp)if andonlyif a=bora=a<rp.

In particular, if a,b € T, then a <g b if and only if a = «.
As it can be expected, the structure of S depends heavily on that of 7', in
particular, the property to be a generalized F'-semigroup.

Theorem 4.2.  Let S = UuerT, be an inflation of the semigroup T' such that
for every a € T' there exist 3,7 €T with o = fa = ay. Then S is a generalized
F -semigroup if and only if

(i) T is a generalized F -semigroup with pivot &, say;
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(ii) |T,] =1 for every a € T with a <p &;
(i) |Te| < 2.

A particular case of inflations should be mentioned.

Corollary 4.3.  Let G be a group and let S = UgeaTy, be an inflation of G.
Then S is a generalized F -semigroup if and only if |T1.| < 2.

9. Strong semilattices of monoids

Let Y be a semilattice and for every a € Y let S, be a monoid (whose
identity is 1,) such that S, NS =0 for all @ # F in Y. For any o, € Y with
B <y a,let p,5: S, — S be a homomorphism such that ¢, , = idg, for every
acY and o300y = Qo for v <y B <y ain Y. On S = UyeyS, define a
multiplication by

a.b = (apa.ap)(bsap) if a € Sy, b € Sp,

where af = inf{a,} in Y. The semigroup S is called strong semilattice of
monoids and is denoted by S = [Y; S, ¢a.s]. By [15], the natural partial order on
S is characterized by

a<gb(aeS,be Sz if and only if o <y 5,a <, bpg.a,

where <, denotes the natural partial order on S, (o € Y).

Proposition 4.4.  Let S be a strong semilattice of monoids. Then S is a
generalized F -semigroup if and only if S is an E-inversive, E-unitary monoid.

Theorem 4.5.  Let S =[Y; 54, Yas] be a strong semilattice of monoids. Then
S is a generalized F -semigroup if and only if

(1) Y has a greatest element w and for every a € Y, ¢, 405 a monoid-
homomorphism;

(11) Sais E-unitary for any o € Y and pap is idempotent pure, for all
B <y ainY;

(111) For every a € Y and a € S, there exist f <y a inY and x € S
such that (apap)r € Eg, .

Remark 4.6.  Concerning condition (744) notice that it is possible that no com-
ponent S, of S is E-inversive but that S is so. For example, let Y be a chain,
unbounded from bellow, S, = (N,.) (0 ¢ N), pa0 = idg, for every o € Y, and for
all 8 <y a, a € Sy, ap.p = 1g (the identity of Sz). Then for any a € S, a € S,
say, alg = 13 € Eg whenever 3 <y «.

Two particular cases of this construction should be mentioned.



GIRALDES, MARQUES-SMITH AND MITSCH 15

Corollary 4.7. Let S = [Y;Sa, ¢ap| be a strong semilattice of unipotent
monoids (i.e., Eg, = {14} for every a € Y). Then S is a generalized F -se-
migroup if and only if

(i) Y has a greatest element;

(11) pap is idempotent pure for all f <y a in Y ;

(i1i) for every o € Y and a € S, there exists [ <y « in Y such that
(apap)r € Eg,.

The second particular case is a specialization of Corollary 4.7, supposing
that every S, (o € Y) is a group, that is, S is a Clifford-semigroup.

Corollary 4.8.  Let S = [Y;G,, pap| be a strong semilattice of groups. Then
S s a generalized F -semigroup if and only if Y has a greatest element and ¢, g
is injective for all B <y a in Y.
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