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Resumo

Desenvolvimento de Software Confiável assistido por Simulação em QEMU

Sistemas altamente confiáveis asseguram uma baixa probabilidade de falha por meio de redundância,

a qual garante a funcionalidade do sistema replicando componentes ou módulos. Estes módulos inter-

agem entre eles, tomando decisões sobre o estado do sistema e, por esse motivo, tanto os mecanismos

de redundância como as interações entre módulos devem ser validados para garantir a gestão correta

de redundância. A utilização de um ambiente de co-simulação que consegue replicar todos os módulos

e a comunicação entre eles permite validar tais interações antes do deployment, pois não está pendente

de nenhum recurso de hardware. Além disso, a adoção da co-simulação permite um desenvolvimento

mais rápido ao mesmo tempo em que, regra geral, auxilia na detecção de problemas no início do ciclo de

desenvolvimento, evitando possíveis problemas que se manifestam tarde no ciclo de desenvolvimento. O

uso de simulação também habilita estimações de confiabilidade do sistema, garantindo que as métricas

de confiabilidade sejam cumpridas ao longo do ciclo de desenvolvimento e prevenindo reiterações tardias.

Embora essas sejam grandes vantagens, elas acarretam um desafio de simulação, uma vez que a maioria

dos simuladores não contemplam cenários de redundância.

O objetivo desta dissertação é auxiliar no desenvolvimento de sistemas confiáveis, adotando uma

abordagem de simulação e estendendo as funcionalidades do simulador para cobrir o caso de uso de

redundância. Usando QEMU (Quick Emulator) para emular o comportamento do sistema, três exten-

sões foram conceptualizadas e desenvolvidas para permitir a validação correta de sistemas redundante

e estimativas de confiabilidade por meio de simulação. O ambiente de simulação resultante auxiliou no

desenvolvimento de um estudo de caso que se encaixa no conceito Steer by Wire. O sistema desenvolvido

resultou numa configuração tolerante a falhas com características de redundância homogênea. A partir

do uso das extensões, o software do sistema resultante pôde ser validado antes de qualquer implantação

de hardware e permitiu ober uma estimativa do tempo antes da falha do sistema.

Palavras-chave: co-simulação, design e estimação de confiabilidade, QEMU, redundância
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Abstract

Reliable Software Development aided by QEMU Simulation

Highly reliable systems guarantee low system failure probability during its operational lifetime with the

help of redundancy, which ensures system functionalities by replicating components or modules. Such

modules interact with each other allowing to make decisions about the system state, and for that reason

both the redundancy mechanisms and interactions between modules need to be validated to ensure

correct redundancy management. The usage of a co-simulation environment that can replicate all the

modules and communications between them allows to validate interactions before deployment, since

it is not bound to any hardware resource. Additionally, the adoption of co-simulation allows for faster

development while assisting on problem detection early on the development cycle, avoiding possible late

design problems. The usage of simulation also enables early system reliability evaluations, ensuring that

reliability metrics are fulfilled throughout the development cycle and preventing design reiterations later

on the development cycle. Although these are great advantages, it brings a simulation challenge since

most full development board simulators do not contemplate such redundancy scenarios on their tools.

The aim of this dissertation is to assist reliable system development by adopting a simulation approach

and extending simulator functionalities to cover the redundancy use case. Using QEMU (Quick Emulator)

as the simulation tool to emulate system behaviour, three extensions were conceptualized and developed

to cover features to allow for both correct redundant system validation and reliability estimations, supported

by fault injection, through simulation.

The resulting simulation environment assisted the development of a case study that fits under the

Steer by Wire concept. The developed system resulted in a fault tolerant configuration with homogeneous

redundancy characteristics. From the usage of the extensions, the resulting system software could be

validated for both its algorithms and redundancy management before any hardware deployment, and it

allowed for an early time to failure estimation during the design phase.

Keywords: reliability design and estimation, co-simulation, QEMU, redundancy
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Chapter 1

Introduction

The world is undergoing a day by day technological growth, with an increasing tendency for the usage

of digital systems to perform everyday tasks. With the fast growth and ubiquity of technology in human life,

there is a also a growing need for better and more robust digital system solutions. Most of these digital

solutions come in the form of embedded systems.

Embedded systems cover applications ranging from General Purpose systems, such as household

electronics, to Safety Critical systems such as flight control and nuclear control [2]. The development of

Safety Critical applications requires particular attention since system failures can incur on loss of money

or possibly human lives. The possibility of disasters under such type of applications brought system

reliability concepts to the foreground. Reliability is a system metric that is directly related to the system

failure probability, meaning that highly reliable systems present the lowest probabilities of failure during

its operational lifetime. High reliability systems are mostly found in the fields of avionics, life support, and

more recently in the automotive sector.

One way to increase system reliability is to replicate its components, allowing the system to achieve an

higher time before failure, consequently reducing its failure probability. This replication technique is known

as redundancy, and it can be implemented on both software and hardware. Typically, redundant com-

ponents interact with each other managing and deciding about the operation state of the system. These

interactions are mostly only validated when testing directly on hardware late on the development, greatly

affecting time spent on debugging and possibly going back to early development phases to correct design

or implementation bugs. An increasing system complexity caused by the addition of redundancy mech-

anisms aggravates the consequences of late validation. A way to validate despite interactions is through

the use of full system simulation but most simulators do not contemplate the use case of redundancy,

making it harder to retrieve meaningful results.

1
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Although redundancy improves reliability, there is no guarantee that the system meets reliability re-

quirements only by using this technique. Estimations of reliability throughout the development cycle

provide an overview on how the reliability metrics are being met, avoiding possible later and costly devel-

opment reiterations. These estimations can be done with the help of simulation-based methods, allowing

to have feedback early on the development cycle.

Adopting a simulation environment contemplating redundancy as a use case, would bring a lot of

advantages to the reliability development cycle, such as easier validation of redundancy interactions and

a consequent ability to perform reliability estimations. Also, the development process would be speeded

up, and also resource independent, since the system could be developed in its entirety in a host platform

without being bound to a physical target platform.

1.1 Motivation and Objectives

The widening usage of embedded systems on safety critical applications consequently leads to an

increase in the demand for reliable systems. As reliability development is a large covering area, there

are plenty of research possibilities. The opportunity to study reliability comes from a new research team

under the Embedded System Research Group (ESRG) that is tackling reliability in an research approach.

With that in mind, this type of work pretends to take pioneer steps into maturing the research knowledge

of the reliability topic. Another interesting point is that no reliability development cycle is written in stone,

meaning that new research on this topic may help to achieve a better and unified reliability development

flow.

The work to be developed on this dissertation aims to provide simulation extensions that aid reliability

systems development, focusing on the redundancy aspect and on reliability estimations early on develop-

ment cycle. With that in mind, one of the goals is to take a pragmatic step into a simulation environment

that allows to simulate redundant systems and their interactions without the need for physical hardware.

Furthermore, a second goal aims to extend such simulation environment to allow early estimation of

reliability metrics during development.
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1.2 Dissertation Structure

The document presents the development of simulation extensions that aid reliability development,

along with a case study that contemplates reliability characteristics. It contains six chapters, which will be

briefly described next.

Chapter two presents the concepts and methodologies used during the progress of this dissertation. It

starts by introducing concepts about embedded systems and its development cycle, along with operating

systems and its concurrency mechanisms. Afterwards, it presents notions about reliable systems, their

metrics and development flow, alongside the concept of redundancy and fault tolerant architectures. Fur-

thermore it is also presented techniques to evaluate and estimate system reliability. After reliability, the

advantages and techniques of embedded simulation are explored with a special focus on co-simulation.

Finally, a special attention is given to QEMU, uncovering its features, namely in embedded platform emu-

lation.

Chapter three presents and describes the work developed to support reliability development through

simulation extensions. It features the develop extensions explained in a functionality oriented approach,

providing insight into how development was made and the needed information for developers to use the

extensions. Examples and usage guidelines are given, helping the reader to understand how to use the

provided work as a developer.

Chapter four contains both case-study’s development and its usage to validate the simulation exten-

sions. It shows the steps taken to develop the case-study and the results of each of the development

phases. The case study chosen was based on a redundant architecture, presenting all the characteristics

needed to validate the developed extensions.

The last chapter discusses results and concludes about the work developed during the thesis. It also

presents the current limitations of the extensions developed as well as the future improvements that may

help their usability and performance.



Chapter 2

State of the art

This chapter aims to contextualize the dissertation regarding the technological landscape as of the

current year, and give a broad view on the state of the art concerning the technologies and theoretical

basis on which it was conceived, hopefully clarifying the nature of its conception as a logical step to make

a contribution in the literature.

Since this dissertation is embedded system oriented, a brief contextualization about the concepts and

development techniques regarding embedded systems is made. In the embedded world, safety and relia-

bility are important characteristics that need to be taken into account during the development cycle. Thus

an introduction about reliability oriented systems follows the embedded development contextualization.

Later, simulation and co-simulation topics are approached since simulation is an important technique that

is present during the whole development cycle. There are several simulation tools, but in this dissertation

QEMU will have the spotlight, therefore, an overview about this tool is made, finishing the chapter.

2.1 Embedded Systems

Currently, embedded systems can be found everywhere in our every day lives, ranging from consumer

electronics and electrical appliances to office automation, industrial automation, military defense systems,

transportation systems, aerospace systems, medical systems and so forth. At home, they come in all sizes

and formats, from modern washing machines to a simple MP3 player, to more elaborate systems like an

ADSL router or printers. Embedded systems became so intrinsic in our daily lives that we are mostly

unaware of their presence.

4
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2.1.1 Definition

An embedded system is a combination of computer hardware and software, and perhaps additional

mechanical or other parts, designed to perform a specific function [3]. Although this seems a correct

definition of an ”embedded system”, the definition is hard to pin down, since embedded systems are

constantly evolving with advances in technology.

An embedded system has a specific purpose and is designed and optimized for that purpose. Its

development is application-oriented, so engineers developing these types of systems should design them

with the least amount of resources to perform the proposed task in order to optimize variables such as

cost, energy consumption, weight, and performance. However, as an embedded system is always subject

to requirements and restrictions, a balance and management of the resources used is always required.

Some common features of embedded systems include:

• Containing (a generic type) processing unit: microprocessor, microcontroller, SoC (System On

Chip), etc;

• Typically designed and configured with hardware strictly necessary to perform a specific task, or a

restricted set of tasks;

• May have restrictions on energy consumption, being powered by batteries, or even a combination

of alternative forms of energy, such as renewable wind and solar;

• Most of these systems are used in stand-alone applications, i.e. without any human intervention.

Compared to traditional computer systems, an embedded system has severe hardware constraints:

the processing unit is strictly necessary for the tasks it has been designed for, it has a small amount of

memory, and there may not even be a graphical interface.

2.1.2 Embedded Development

Usually, an embedded system’s hardware and respective boards are designed and developed along-

side the software, being tailored and designed specifically for the target scenario. However, mixing soft-

ware with board development may not be a very good idea, as it may be hard to trace system faults and

differentiate them as software bugs or board malfunctions.
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To easily develop and debug software, development platforms are used as a more practical way of

prototyping embedded systems. Embedded development platforms are often designed by the process-

ing chip’s manufacturers, containing a general set of components and interfaces that complement the

chip’s functionality, such as memories, communication connectors (e.g Ethernet, Controller Area Network

(CAN)), Local Interconnect Network (LIN), and General Purpose Input/Output (GPIO), which combined

produce a platform to easily prototype embedded systems. Figure 2.1 presents a block diagram of a

possible development board, designed around a SoC.

JTAG

USB

MAC

PWM I2CGPIO

LIN

GPIO Connectors

JTAG

USB

Ethernet

Ethernet
PHY

LIN

CAN

LIN PHY

CANCAN
Transceiver

EBI Flash memory

Figure 2.1: Embedded platform block diagram

Development on these platforms can be made using a host-based approach i.e, developing the soft-

ware on a host desktop system and later deploying it on the target embedded platform [4]. This plays a

decisive role in the correctness of the software to deploy, as it facilitates software defect detection.

To be able to do all of this, a toolchain is needed for the target architecture. This toolchain is usually

provided by the development board manufacturer. A toolchain comprises programming tools needed to

effectively use the target platform, such as compilers, linkers, debuggers, loaders, and other utilities. The

act of compiling software for an architecture that’s different from the one where the compilation is being

done is called cross-compiling.

After a prototype is developed and ready for production, the system may be integrated into a final

board that is adjusted for the application’s purpose and possibly leaving out elements present in the

development platform that were not used.
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2.1.3 Development Flow

The development of a new embedded system project goes through several phases until a final proto-

type is ready. Whilst no embedded development flow is written in stone, iterating through certain phases

of development can contribute for not only for a better end product but also has positive influence on

the development time. The development cycle that will be presented next is internally adopted by the

Embedded Systems Research Group and its phases are presented in figure 2.2.

On project start, during the Requirements phase, both the functional and non-functional requirements

are gathered, along with the possible restrictions imposed. Upon having all requirements well-defined, the

system application (or its purpose), is conceptualized into systems tasks. By specifying possible system

tasks, one can have a better overview on both how the systemwill fulfill its requirements and on the possible

needed processing. Such conceptualization can be made on software by having a threaded execution of

the possible system tasks, allowing early validation of models or algorithms used on the system.

After application conceptualization, an architecture that satisfies system requirements is designed,

contemplating the blocks that allow the system to meet such requirements, e.g. an ADC, a microcon-

troller, etc. The resulting architecture is further validated by simulating its behaviour, which can be ex-

pressed as Finite State Machines. A way to validate is through a software-only approach, where the system

state machines are transposed on software and both the states and the transitions are checked for their

correctness. This may also allow for software reuse.

As the modelling and validation finishes, decisions about the platform and resources are made. In this

phase there is a trade-off between project cost and development time when selecting the target platform

and resources. Such trade-off decides on the the usage of off-the-shelf products or the development

of a new platform specially designed for the requirements. Depending on this decisions, the resources

are also allocated on software and hardware, providing the basis to develop both software and hardware

architectures. Development of both these architectures is decoupled, meaning that development of both

software and hardware is made in parallel. Under hardware, development comprises of the definition of

the architecture, the selection of the components and the design of both circuits and layout. Validation

of the design effort is made through simulation of both components and circuits. Under the software

development, an architecture is defined, along with all the interfaces, classes and modules that will support

the system application. Validation can be made not only through full system simulation but also through

a software-only approach where all the hardware is abstracted and hardware calls are substituted by host
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mechanisms. The software-only approach is typically made before full system simulation, since software-

only occurs on only host platform while full system simulation occurs on an emulated target platform.

Both the validated hardware and software architectures are later deployed into a single platform, which is

finally tested to validate requirement fulfillment.

Requirements

Application Modelling

Architecture
Modelling

Definition of platform

Hardware
development

Software
development

Deployment

Testing

Figure 2.2: Embedded systems development flow

2.2 Operating Systems

An operating system is the layer of software that manages a computer’s resources for its users and

their applications [5]. This software layer is invisible to the high level developer, controlling embedded

devices such as toasters, gaming systems, and the many computers inside modern automobiles and

airplanes. Operating systems are also an essential component of more general-purpose systems such
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as smartphones, desktop computers, and servers. They are responsible for facilitating the execution of

programs (even running many at the same time), allowing programs to share memory and managing

interactions between devices.

The core of an operating system is the kernel. It manages many of the fundamental details that an

operating system needs to deal with, including memory, concurrency, scheduling, and I/O events. In

general, the kernel is the part of the operating system that interacts directly with the hardware; it presents

an abstracted interface to the rest of the operating system components and user applications.

A typical operating system is layered and implements at least two execution spaces: the kernel space

and the user space. An overview of the common layers of an OS is shown in figure 2.3. The two outter

layers, user applications and user services, compose the user space while the kernel layer composes the

kernel space. All code that accesses memory, I/O or any hardware resource, runs on the kernel space,

interfacing with the upper layers through system calls. User services and user applications run in user

space and use the interfaces provided by the kernel to access specific hardware resources. These two

layers run all user programs from shells and date services, to code editors and graphical interfaces.

Figure 2.3: Layers of an OS

2.2.1 Concurrency

In real-world systems many things are happening simultaneously and must be addressed within time

constraints, thus systems must be reactive. They must respond to external events which may occur at
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somewhat random times and in random order. This can be complex since microprocessors are only

capable of executing one instruction at a time, and if an external event triggers a processing task, it should

mean that the processor would be unavailable for any other external events. Thus a way to avoid processor

block on a specific task is to use a technique called virtual parallelism, which shares multiple task execution

to achieve the illusion of multiple tasks running concurrently. This technique can dramatically speed things

up, for example by preventing one task from blocking another while waiting for I/O.

A single program can contain multiple tasks. These tasks are executed, in a single processor, only

one at a time by timely switching the currently executing task. An example is presented on figure 2.4. The

example program contains three tasks, where each of them is assigned a timeslot in processor execution

time, and all of them run during that time. A high-level view of the execution shows the tasks running

concurrently, but, in reality, only one task runs at a time.

Figure 2.4: Concurrency between tasks

The time tasks spend running is managed by the OS, more specifically the scheduler. The scheduler

decides which task depending on the type of task switching algorithm. There are two main groups of

switching algorithms: cooperative scheduling and preemptive scheduling. The first one assumes that the

tasks are the ones that give up execution for other tasks. An obvious downside is that poorly implemented

tasks may compromise system execution. On the other hand, preemptive scheduling implements a timer,
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managed by the OS, that interrupts task execution and devices what task to run next. Comparatively to

the latter, the level of abstraction of this scheduling mechanism guarantees that poorly written tasks do

not block the processor.

Within the OS, a running program is called a process and the multiple tasks that run within the

process are called threads. Threads share the same memory region, as they all belong to the same

process, however, different processes have different memory regions. As shown in figure 2.5, processes

are assigned independent memory regions and the threads within the process share the process memory

between them. A combination of registers and stack represents the execution context. A single-threaded

process only contains a single stack and a set of registers, while a multi-threaded process contains a stack

and registers proportionally to the number of threads. This set of stack and registers is needed to have

context switching between threads.

Figure 2.5: Process and thread memory block diagram

A challenge that arises from having multiple processes running is memory management. As multiple

processes are running, one process could take up the same memory region or read a memory space

that is currently occupied by another process. This overlap would come at a high cost since the develop-

ment of the process would need to consider this, forcing processes to be responsible for managing their

own memory space and avoiding overlapping any other region. The Virtual Memory technique relieves
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processes of this responsibility by letting any process assume that all system’s memory is his. The mem-

ory addresses used in the process are interpreted by the OS as virtual addresses and then translated to

physical addresses.

Usually, physical memory organized in page frames. For each process, the OS assigns a memory

map that associates a virtual page to a physical page. The memory maps provide different virtual memory

mappings for different processes, as they may use identical virtual addresses. As shown in figure 2.6, the

memory map contains entries that are the translation between the virtual memory and physical memory.

Figure 2.6: Virtual memory overview

Virtual memory can be extended with secondary storage such as hard drives, SSD’s and SD cards, with

the latter being the most common choice in embedded systems. Memory page frames can be swapped

between the system’s main memory and secondary storage, moving in and out of the main memory

according to the process execution needs. In this case, the page tables must keep additional information

for each page, usually in the form of bits like the present bit and the dirty bit representing their states in the

secondary storage memory space. The present bit indicates what pages are currently in physical memory

or on disk and can indicate how to treat these different pages, i.e., whether to load a page from disk and

page another page in physical memory. The dirty bit allows for performance optimization by keeping track

of which pages have been modified and must be written to disk before they are replaced.
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2.2.2 Inter-Process Communication

Another challenge of designing concurrent systems arises because of the interactions which happen

between concurrent activities. Although processes run independently, they may need to share data be-

tween them.

An independent process is, typically, not affected by the execution of other processes, but one process

can depend on the computation of another process. Interprocess communication (IPC) is a mechanism

that allows processes to communicate with each other and synchronize their actions. The communica-

tion between these processes can be seen as a method of co-operation between them. Processes can

communicate with each other through both shared memory and data transfer.

Shared memory allows processes to exchange information by placing it in a region of memory shared

between the processes. A process can make data available to other processes by placing it in the shared

memory region. Because communication does not require system calls, shared memory can provide

high-speed communication.

On the other hand, data transfer uses the notion of writing and reading. In order to communicate,

one process writes data to the IPC facility, and another process reads it. Examples of this type of IPC are

Sockets (figure 2.7), Pipes, and Message Queues. All these types of IPC use file descriptors, although

message queues provide a notification facility that can send signals to a process. Regarding direction,

sockets are bidirectional, meaning that signal socket instances provide writing and reading capabilities

under the same entity, while pipes and message queues are unidirectional, providing only reading or

writing capabilities on the same entity.

Application A Application B

socket socketKernel

Buffer

Buffer
Kernel
socket
driver

Kernel
socket
driver

Figure 2.7: Exchanging data between sockets

Concurrent systems also require synchronization between processes or threads. The synchronization

facilities allow processes or threads to coordinate their actions, avoiding things such as simultaneously

updating a shared memory region or the same part of a file. Without synchronization, such updates

could cause an application to produce incorrect results. Different synchronization facilities provide optimal



Chapter 2. State of the art 14

solutions for different problems. The UNIX system provides the following facilities: Semaphores, Mutexes

and Condition Variables, and File Locks.

Mutexes and Condition Variables are blocking mechanisms used with POSIX threads (which is the

UNIX interface for threads) that guarantee exclusiveness to a resource, i.e., in a given instance only one

thread can perform read or write operations on the said resource. The condition variable signals the end

of an operation on the resource.

A semaphore is signaling mechanism that keeps track of the number of accesses permitted to the

resource. The number possible concurrent acesses is tracked by an integer variable that accessing threads

either decrement or increment as they request or give up a execlusive access to the resource. Similarly

to the mutex, if the resource is being used, the requesting thread blocks until semaphore count become

greater than one.

Lastly, File Locks are explicitly designed to coordinate the actions of multiple processes operating on

the same file. They can also be used to coordinate access to other shared resources. File locks come

in two flavors: read locks and write locks. Any number of processes can hold a read lock on the same

file. However, when one process holds a write lock on a file, other processes are prevented from holding

either read or write locks on that file.

2.3 Reliability-oriented Systems

The growing complexity of equipment and systems, as well as the rapidly increasing cost incurred by

loss of operation due to system failures, have brought the aspects of system reliability to the foreground [2].

Reliable systems are systems that have low failure probability during their operational lifetime, providing

the intended functionality even in adverse environments. The application spectrum of reliable systems

ranges from even simple general purpose commercial systems up to critical ones that typically represent

human hazards upon failure. The typical approach for developing reliable systems is to apply techniques

that allow the system to tolerate faults, on both hardware and software. In order to understand fault

tolerance concept, a definition of fault, error, and failure is of high importance.

2.3.1 Fault, Error, and Failure

A fault is an abnormal condition that can cause an element or item to fail. This is the possible cause

of an error. An error refers to the offset between a computed, observed, or measured value and the true
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theoretical value. Errors can propagate within a component or system into failures. A failure refers to

the termination of the ability of a system or component to perform a function as required. The diagram

on figure 2.8 shows how a fault on a component could evolve to a failure on the target system. A fault in

a component can provoke an error followed by failure, which in turn provokes a fault in the target system

that can evolve to a failure. In short, fault is a defect, an error is an abnormal state, and a failure is an

event to avoid.

Figure 2.8: Fault, error and failure diagram

Faults can be classified according to many criteria. Regarding domain, they can be classified as

hardware or software faults. In terms of their causes, they can be divided into three groups [6]: (1) design

faults that include all the faults occurring during development of both software and hardware; (2) physical

faults that include all faults that affect hardware; and (3) interaction faults that include all external faults,

such as environmental induced. Since software presents, typically, a higher complexity than hardware,

design faults are more prone to happen in software. This difference is explained by the fact that hardware

machines have usually a smaller number of internal states than software programs [7]. The hardware

faults can be due to a physical or an interaction fault and indirectly interfere with the data or the program

in execution. Hardware faults are classified according to their duration as permanent or transient [8].

Permanent faults remain in the system until they are removed and are caused by physical defects of the

hardware; transient faults appear and disappear with no explicit intervention from the system. Unlike

permanent faults, transient faults can be tolerated and mitigated as they may not compromise the correct

operation of the system [9].
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2.3.2 Dependability

Systems that aim to avoid all types of failures by preventing faults and recovering from them, typically

have dependability requirements. The definition of dependability is the ability to avoid service failures

that are more frequent and more severe than acceptable [6]. In other words, dependability is the justifi-

able amount of trust, one can put in the system to deliver the correct service. This measure is of most

importance since all the design effort to avoid faults is put into improving system dependability. The

dependability concept consists of the following attributes [10]:

• Availability - readiness for correct service.

• Reliability - probability of continuity of the correct service.

• Safety - absence of catastrophic consequences on the user(s) and the environment. For many

systems, high reliability and safety is a constraint, such as flight control systems [11].

• Integrity - absence of improper system state alterations.

• Maintainability - the ability to undergo repairs and modifications.

• Confidentiality - absence of unauthorized disclosure of information.

Within dependable system, there is a large spectrum of type of systems that follow, in different weights,

some of these attributes. Such systems can range from various applications such as [12]: (1) General

Purpose Commercial Systems, (2) High Availability, (3) Long Life and (4) Critical Systems. General Pur-

pose systems are the least demanding system regarding dependability attributes, since typically, they are

not very complex. High availability systems demand of a very high probability that the system will be

ready to provide the intended service when required, such as transaction processing systems. Long Life

systems require that it operates as intended for a long time without maintenance. This includes satellites

and other aerospace systems. Lastly, critical systems require a high degree of reliability and safety. This

category includes safety-critical systems, in which a failure can cause loss of lives, and mission-critical

systems, in which a failure can cause damage in equipment, or the loss of efforts and the mission failure.

Such systems are flight control systems, nuclear plants, X*-by-wire systems (Fly, Steer, Brake...).

The main focus, under the dissertation context, will be the Reliability attributes regarding Critical

Systems. As such, the next sections will tackle reliability engineering and how it applies to, not only but

mostly, critical systems.



Chapter 2. State of the art 17

Reliability engineering is the engineering branch that aims to develop complex systems that are resis-

tant to faults by applying techniques to prevent or to reduce their likelihood or frequency [13]. As previously

mentioned, reliability is the ability to provide correct service even in adverse environments. This is not an

absolute attribute, meaning that a system or component will not always, during its lifetime, be able provide

correct service. One example of such are any hardware component, which wear out during their lifetime,

resulting on increasing possible failure and loss of ability to provide correct service. That being said, relia-

bility can be seen as a probabilistic function, which provides the probability, over time, of providing service

correctness [2].

2.3.3 Reliability Metrics

The reliability function is given by a cumulative distribution function:

R(t) = 1−Q(t) = 1−
∫ t

0

f(t)dt =

∫ ∞

t

f(t)dt

where Q(t) is the unreliability function, which defines the probability of failure by a certain time. Subtracting

this probability from 1 gives the reliability function. This function gives the probability of success of a

component or system to accomplish its service. The diagram on figure 2.9 presents an example of such

probability.

Figure 2.9: Reliability probability function distribution diagram [14]
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The failure rate metric plays an important role in reliability analysis as an awareness of component

reliability. This metric determines of the number of failures occurring per unit time. The function, named

hazard rate, that characterizes such metric as an instantaneous value is given as:

h(t) =
f(t)

R(t)

where, R(t) is the reliability function and f(t) is the probability of failure distribution. The diagram on

appendix A.1 shows the relation between the previous mentioned functions.

Another expression that is always part of reliability is Mean Time To Failure (MTTF) used for non-

repairable systems, which are systems that have their service terminated after any failure. The Mean

Time Between Failures (MTBF), is used if the system recovers to the same state after each failure. MTBF

values must be computed with different reliability distributions for different time periods between failures.

By using the mathematical expectation theorem, MTBF can be expressed as:

MTBF (t) =

∫ ∞

0

t× f(t)dt

where, t is the time in hours and f(t) is the failure probability distribution.

When the hazard rate is constant (λ), the MTBF can be given as the inverse of the failure rate, being

MTBF = 1
λ
. A typical figure of this value for safety-critical systems is 10−9 failures per hour [10].

2.3.4 Failure Distribution

Component failure can be expressed in a probability distribution function or as a constant failure

rate, as was previously stated. The typical time versus failure rate curve for components is known has

the ”bathtub curve”, which is presented on figure 2.10. This representation has proven to be particularly

appropriate for electronic equipment and systems and is widely accepted in the reliability community [15].

The characteristic pattern for the curve is a period of decreasing failure rate (DFR), or infant mortality,

followed by a period of constant failure rate (CFR), or normal life, followed by a period of increasing failure

rate (IFR), or wear out.

In the period of infant mortality the high failure rate is the result of poor design, the use of substandard

components, or lack of adequate controls in the manufacturing process. During normal life, the failure

rate remains constant, which can be seen as useful operating life. Finally, the wear out period has high

failure rate as a result of equipment deterioration due to age or use.
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Figure 2.10: Example of a failure distribution of a hardware component [1]

The ”bathtub” failure curve gives a good insight into the life cycle reliability performance of a system.

Depending on the physical meaning, the random quantities obtained can have different probability dis-

tributions laws (exponential, normal, Weibull, gamma, Rayleigh, etc.). Over the infant mortality period of

operation, the bathtub curve can be represented by gamma and/or Weibull laws [16]; over the normal

period of operation, by the exponential distribution; over the wear out period of operation, by gamma and

normal distributions. Thus, most component failure patterns involve a superposition of different distribu-

tion laws.

2.3.5 Concepts of Redundancy and Fault Tolerance

Alongside the system functional requirements that may impact the techniques and components used

during development, reliable systems also present reliability requirements that must be met. Design of

such system focus on augmenting system reliability by applying practices that allow for longer time to

system failure. An example of practice regarding hardware design, is the selection of components that

have longer durability, i.e. lower failure rate, which can improve the overall system time to failure.

The most common practice to achieve system reliability is the usage of fault tolerance techniques,

which guarantee system functionality even in the presence of faults. These techniques are largely sup-

ported by the use of redundancy.
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Redundancy

Redundancy is providing functional capabilities that would be unnecessary in a fault-free environment.

Redundancy technique rests on having extra components designed to have the same functionality as the

original ones. By adding these redundant components, or replicas, it is ensured that if some part of the

system fails, a redundant component resumes the functionality of the faulty one. This way the system

maintains correct service delivery [8].

There are two kinds of redundancy: spatial and computation. Spatial redundancy provides additional

components, functions, or data items to mask faults that may happen on the original components. Space

redundancy is further classified into hardware, software, and information redundancy, depending on the

type of redundant resources added to the system. In computation redundancy the computation or data

transmission is repeated and the result is compared to a stored copy of the previous result. All these types

of redundancy will be explored in the next sections.

Hardware Redundancy

Hardware redundancy is when two or more physical copies of the hardware component are used.

These hardware components perform some of the functions already provided by the original system.

Depending on how the redundant components actuate on the system, they can be classified as passive,

active or hybrid. Passive components mask the fault that occurs without requiring any action from the

system. This type of components guarantees that only the correct value is passed to the system. Active

redundancy requires a fault to be detected before it can be recovered from. After the detection of the fault,

the actions of location, containment and recovery are performed to remove the faulty component from

the system. Active techniques require that a system is stopped and reconfigured to tolerate faults. Hybrid

redundancy combines passive and active approaches. Fault masking is used to prevent the generation of

erroneous results and fault detection is used to detect or reconfigure a faulty component.

A natural evolution of active hardware redundancy consists of having two or more component replicas

operating in parallel. Duplication with comparison (DWC) is a common solution [8], where two processing

units execute the same task at the same time and their results are compared by a checker module (figure

2.11). Depending on the application, the duplicated modules can be processors, memories, data buses

or even computational subsystems. This technique allows error detection but does not correct error by

itself.
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Figure 2.11: Duplication with comparison

Under the passive redundancy techniques, N-modular redundancy (NMR) (figure 2.12) allows both

error detection and error correction at an extra cost of hardware area and power. NMR uses voting entities

that dictate the correct output from the redundant modules. The main problem with this technique is that,

although it can mask N module faults, if a fault happens on the majority of the modules, the voter would

produce an erogenous result [8]. Figure 2.12 presents an example of NMR, particularly the triple module

redundancy configuration which uses three identical modules, performing identical operations, with a

majority voter determining the output.

Module 1

Module 2

Module 3

Input
Voter 

Output

Figure 2.12: Triple Module Redundancy

Software Redundancy

Software redundancy can be divided into two groups: single-version and multi-version software tech-

niques. Single version aims to improve the fault tolerance of a software component by adding to it mech-

anisms for fault detection, containment, and recovery. Multiple version uses redundant software compo-

nents which are developed following design diversity rules. This mechanisms that mitigate faults can be
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applied to different software layers and software elements [17], such as at the operating system level, the

application level, the process level, object level and function/method level.

Single-version techniques are based on redundancy applied to a single software version to detect and

recover from faults. Such techniques include error detection, exception handling, checkpoint and restart,

process pairs and data diversity.

Multi-version techniques, also called design diversity approach, concerns developing two or more

versions of the same software component. This mirrored software components can be executed either in

sequence or in parallel and can be used as alternatives (containing different error detection methods), in

pairs (different means of error detection by replication), or in larger groups (to enable masking through

voting). The thought behind using multiple versions is expecting that components built differently (i.e.,

different designers, different algorithms, different design tools) should fail differently [18]. Thus, if one

software component fails to output the correct value, there is at least one more alternative version that

may be able to provide a correct output. Multi-version techniques include Recovery Blocks, N-Version

Programming and N-Self Checking Programming.

Computation Redundancy

Computation redundancy involves repeating the computation or data transmission two or more times

and comparing results with previously stored copies. The outputs are verified if they match, and, if they

do not match, one can assume that an error occurred. This type of redundancy is effective mainly against

transient faults. Because the majority of hardware faults are transient, it is unlikely that the separate

executions will experience the same fault. Computation redundancy can thus be used to detect transient

faults in situations in which such faults may otherwise go undetected. There are two ways to apply this type

of redundancy: (1) by having the same computation unit repeat the specific computation in a different point

in time during program execution; (2) have a second computation unit perform the same computation at

the same time. Comparing both methods, the first one has much lower hardware and software overhead

but suffers a high-performance penalty, while the second one uses the additional hardware in favor of

performance. The main problem with computation redundancy is the assumption that the data required

to repeat a computation is available in the system [19]. Since a transient fault may cause system failure,

the computation may be difficult or not possible to repeat. An example of a computation redundancy

technique is Lockstep [20], where two processors run, at the same time, the same software and provide

feedback when the computations mismatch between processors.
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Information Redundancy

Information redundancy adds some redundancy to the original data to tolerate errors. The most

common form of information redundancy is coding, which adds check bits to the data, allowing to verify

the correctness of the data before using it and, in some cases, even allowing the correction of the erroneous

data bits [21]. There are different forms of information redundancies such as parity codes, checksum,

linear codes and cyclic codes. One information redundancy form that is widely used in applications for

harsh environments is the error-correcting code (ECC). This technique protects memory modules from

radiation that may cause bit-flips. Usually, the ECC maintains a stored data immune to single-bit errors,

ensuring that the read data is the same that was previously written.

Fault Tolerant Architectures

It is worthing noting that although redundancy is required to achieve reliability, it is not sufficient to just

put a group of components together in a ”fault tolerant” configuration. How redundancy is managed is as

important as the redundancy itself in order to contribute for higher reliability [17]. For this reason, both the

software and hardware architectures must support the redundant mechanisms. Such architectures are

largely applied on avionics [17][22], life support [23], aerospace [22][23], and, lately, on the automotive

sector [24].

The usage of this type of architectures is connected with an increase in cost and/or complexity as

well as synchronization problems [25]. This is the main reason why both hardware and software archi-

tectures must manage redundancy well. A redundant architecture can have several modules with the

same functionality. These modules can communicate with each other and make decisions depending on

the exchanged data. This implies that redundant modules present at least on channel of communication

between them. Lack of solid synchronization mechanisms can disrupt the interactions between redundant

systems, defeating the purpose of redundancy.

One example of such architecture is the flight control computer of the Boeing 777 (figure 2.13). Re-

dundancy is present at both the computation modules and data buses. The computation modules (or

channels) are tripled and connected to each one of the three data buses, despite each module only out-

putting data to its specific lane but reading from all three. This setup enables the channels to communicate

with each other without the possibility of one bad channel interrupting all the communications. Internally,

each computation module contains three processing units, in a command-monitor-standby arrangement,

where one unit writes to the bus while the others monitor its operations. The processing units present
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different processors architectures and different application software between them. Differences on archi-

tecture can be regarding processor architecture and different component manufacturers, while on software

can be differences on computation algorithms or even compiler technology used. These internal modules

communicate between them, allowing for sanity checks and rapid reconfiguration of a processing unit in

case of failure [17]. When one processing unit is declared bad, it is taken offline and one of the spare

processing units assume its functionality.

Figure 2.13: Architecture of B777 Flight Control Computer [17]

2.3.6 Reliability System Development

Reliable systems do not have a determined development method nor a procedure to follow in order to

reach a certain level of reliability. Instead, there are guidelines provided by some authors, such as [15],

that focus on the techniques that aid reliability design, prediction and testing. To assist reliabble system

development, the ESRG adopted the development flow presented in figure 2.14. It contemplates five

development phases, supported by development methodologies and phases from embedded development

flow.

Similar to the embedded development flow, the reliability flows starts by gathering requirements and

conceptualizing the system application. After this, the design phase is where the system architecture is

modelled, along with the development of both hardware and software architectures. This phase is very

similar to the embedded system flow as shown on figure 2.15.
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Figure 2.14: Example of development cycle of a reliable system

2. 
Design

Architecture
Modelling

Definition of platform

Hardware
development

Software
development

Figure 2.15: Design phase of the development cycle of a reliable system

Depending on the requirements, the system must meet specific reliability metrics, and, for that pur-

pose, fault tolerance techniques such as redundancy are applied to augment overall system reliability.

It is mainly during the design phase that these techniques are applied, both on hardware and software.

When a system design, considering both the resulting software and hardware architectures, is assumed

to meet reliability requirements, it goes through verification to have an insight about its reliability metrics.

Only after architecture design, on the verification phase, is that the resulting architectures are checked if

they fit the reliability requirements.

Since up until the verification phase the development of both hardware and software is decoupled,

the estimation of the reliability metrics should also be decoupled. For this reason, simulation comes as

a tool to provide an estimation of the reliability metrics of both the software and hardware architectures
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[13]. Using simulation on reliability development carries the main advantage of providing an early reliability

metric estimation, allowing design reiteration without additional costs later on the development cycle. The

estimations, done on hardware and software, can be supported by methods such as Monte Carlo (section

2.4) and techniques such as Fault Injection (section 2.5).

The resulting simulation-based estimations are checked with the initial reliability requirements and

the violation of the these requirements causes new design iterations, until a good enough solution is

found. Upon having both an hardware and a software architecture meet the reliability requirements, a

new estimation is made contemplating the results of both architectures. Once again, if this estimation

does not match requirements, the system must go through another design iteration. Such reiterations

can make the development go back to as early as the first steps of the Design phase, in order to find a

better solution that fits all reliability requirements, as shown in figure 2.16.

3. 
Verify

2. 
Design

Hardware reliability
estimation

Software reliability
estimation

System reliability
estimation

Figure 2.16: Verification phase of the development cycle of a reliable system

Upon having good reliability estimates, the hardware can be produced and the final architecture can

be put into test. As simulations are not 100% accurate and there are hardware manufacturing factors that

affect the quality of the components, testing aims to provide not only a more accurate reliability metric

but also validation of the functional requirements. The typical tests made are accelerated life tests which

use stress factors such as temperature and vibration to provide an early system failure rate. Once again,

the reliability metrics upon testing are checked with the initial requirements, and if they do not meet

them, the prototype goes once again into production, if the manufactured component does not match

specification, or even back into design, if the real prototype happens to not meet reliability requirements
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even with flawless production quality. Development ends when the final prototype is able to perform all

the functional requirements and address the reliability requirements.

2.3.7 Reliable Software Development

Software reliability is affected not only by the fault tolerance mechanisms implemented, but also by

the quality of the software itself. Unlike hardware, which has associated reliability metrics such as failure-

rate and mean time between failures from manufacturers, software does not present such predefined

metrics. It differs from hardware reliability in that software reliability reflects the design perfection, rather

than manufacturing perfection.

Software reliability is hard to achieve, due to the high complexity that software tends to have. Highly

complex system, with software, are harder to reach a certain reliability level, but even in this case, com-

plexity tends to still be pushed into the software layer, resulting on a rapid growth of system size. While the

complexity of software is inversely related to software reliability [26], it is directly related to other important

factors in software quality and functionality. Emphasizing these features will tend to add more complexity

to software.

Increasing complexity leaves the system more prone to design errors that may resonate on errors

during development. Software failures may be due to errors, ambiguities, specification misinterpretation,

incompetence in writing code, inadequate testing, incorrect or unexpected usage of the software or other

unforeseen problems [13]. To mitigate these type of issues, software should adhere to stricter standards

and developers should adopt a meticulous approach to software development [27].

While no software development process or certification standard can guarantee software reliability,

attention to and prevention of typical software errors and application weaknesses can significantly reduce

possible development errors and help developers better understand potential risks. Examples of practices

that can help with the latter are using coding guidelines and consistent programming rules, so it can

be easier to read, verify and test the software. Also, using pre-defined interfaces giving possibilities for

reusability and reused components seem to strengthen the quality. This is also the case with standardiza-

tion, whether it concerns components or layers. When a standard becomes well-known to most developers

it becomes easier to work with, causes fewer mistakes, and for this reason reduces the complexity and

increases the reliability.

One of the programming standards that aims toward a more reliable development is MISRA-C. The

first draft on this standard came public in 1997 by the Motor Industry Software Reliability Association, and
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proposed a set of software development guidelines that promote safety, reliability, ease of maintenance,

and portability for safety-critical systems. At the moment, MISRA-C has evolved to its third-generation

guideline (MISRA-C:2012), and has come to be widely adopted as practice that improves the reliability,

maintainability and portability of all software, not just safety critical. The guidelines range from simple

usage of brackets for easier code readings to prohibition of language keywords, such as the goto (from C

language).

AUTOSAR

AUTOSAR (AUTomotive Open Software Architecture) is an example of a standard that not only dictates

a software architecture, but also development methodologies and templates, conformance test suites and

application interfaces. The technical goal of this standard is to achieve scalability, portability, modularity

and ease of complexity management of automotive systems.

Regarding the architecture, its layered layout offers the mechanisms needed to allow software and

hardware independence. It distinguishes between three main software layers which run on a Microcon-

troller (MCU): Application Software, Runtime Environment (RTE) and Basic Software (BSW). The diagram

on figure 2.17 presents the layered architecture. The Basic Software layer contains all the device drivers

and all the abstraction for the microcontroller and the Electronic Control Unit (ECU) of the vehicle. The

RTE abstracts the application layer from the basic software and organizes the data and information ex-

change between them. The application layer above the RTE contains the application specific software

components, which are completely ECU-independent and work without specific knowledge of the used

hardware.

The architecture’s definition, internals and development guidelines are integrated with MISRA-C. These

guidelines, made public by the AUTOSAR association, provide the developer the needed information to

implement the correct interfaces and behaviour of the modules, alongside with the needed MISRA rules

to follow upon coding. A few examples of rules and guidelines, particularly affecting the MCAL layer, are

presented on appendix A.

The standardization and MISRA rules adoption are two reasons that this architecture is considered

to promote reliable system development. Although this does not seem a direct way to augment system

reliability, the usage of such architecture and guidelines provides a good foundation for reliable software

development. This is backed by the conclusions made in [28], which admits that not only the system

complexity is more controllable due to the use of standardized and well defined interfaces, specifications,
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Figure 2.17: AUTOSAR layered architecture

and processes, but also that the reliability is increased as defined specifications give less human erroneous

interference.

2.4 Monte Carlo Simulation

Although reliability metrics can be calculated by traditional methods, complex systems with large

number of different components makes calculation impractical. Some techniques and methods can be

used to synthetize a prediction of such metrics, avoiding the inevitable hard and time consuming work

that normally would come with traditional methods. The Monte Carlo method fits the available techniques

by providing numerical estimation of an unknown parameter or metric by the mean of repeated sampling.

Monte Carlo methods may vary, but tend to follow a process which starts by the definition of a do-

main of possible inputs, followed by generation of random inputs from a probability distribution over the

domain. After creating the input sets, a computation is made using the specified inputs and the results

are aggregated for later analysis. The diagram on figure 2.18 shows the process taken when perform-

ing this method. On the example, suppose the function whose probability of success to be estimated is

y = y(XA, XB, XC), and that XA, XB, XC are the chosen variable domains whose distributions are

P (XA), P (XB), P (XC). The procedure is to pick a set of X’s randomly from the distributions, calculate
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y for that set, and store that value. This is repeated many times until enough values of y are obtained to

create a value distribution. In order to have signification results, the process of generating random inputs,

computing and getting results is repeated a large number of times, this is the reason why this process is

usually made in simulation environment.

P(XA) P(XB) P(XC)

Assumed
distributions

XA
Take random

sample XB XC

Model
y = y(XA, XB, XC)Obtain result

Repeat process a large
number of times to

generate output
distribution

Repeat a large
number of

times

AInput data and
variables B C

Figure 2.18: Monte Carlo method process

In principle, this method can solve any problem that has a probabilistic interpretation. The underlying

principle is the law of large numbers, which states that the larger the sample the more certainly the sample

mean will be a good estimate of the population mean [15].

This method is applied is several areas from physical sciences to finance and business, but the focus

here is the appliance on reliability engineering. In this area, Monte Carlo method is used to compute

system-level response given the component-level response. By feeding inputs based on probability distri-

bution to the system, the system probability of success can be predicted from the individual component

probabilities [15]. For example, a system failure rate prediction can be synthetized by having the inputs

follow a probability dictated by a failure rate distribution, such as the one presented on 2.10. Under reli-

ability engineering, this method can also be combined with fault injection techniques, in order to gather

insight about system-level behaviour, as will be seen on section 2.5.



Chapter 2. State of the art 31

An example of a Monte Carlo simulation in reliability engineering context to evaluate system failure

probability, consists in running a large number of repetitive trials and changing component states ac-

cording to a probability distribution. On each one of these trials, there are time steps which represent

advancement of system lifetime. On each of these steps, component states are changed by generat-

ing random numbers and comparing them to the components failure distribution. If the random value

is lower than the component failure rate at the given time, component state is changed, otherwise no

change is made. The process is done until system failure, and the resulting time step is stored. As the

trials are done several times, the time step results of each trial will create a system failure distribution,

which approximates to the real system failure rate, with an uncertainty.

The number of trials done during the simulation can vary as the number required to have a good

estimation is not well defined. These trials can take considerable computer time that may not fit under the

development time budget. If time is scarce, such method may not fit during project lifetime. A solution to

such problem is to only perform a limited number of trials, then apply ensemble techniques to have better

results with less available data. These techniques aim to combine resulting data from multiple models

instead of using a single one. Performance is increased since this techniques help minimize bias and

variance of the data [29]. Examples of ensemble techniques are Bagging and Boosting.

2.4.1 Bagging and Boosting

Both Bagging (Bootstrap Aggregating) [30] and Boosting [31] are ensemble methods that use multiple

weak models to build a strong one. These ensemble techniques have the advantage to alleviate the small

sample size problem by averaging and incorporating over multiple models to reduce the potential for

overfitting the initial data. Each model is fed a different set of data, which is dictated by either bootstraping

the original data or by attributing weights to each sample. By having multiple models with different data,

there is a better overview over the classical bias/variance tradeoff, which may by hard to reach with only

a single model.

Regarding Bagging, input data is drawn by the bootstraping method. This method consists in gener-

ating sets of size B from an initial set of data N, by randomly drawing with replacement B samples. This

means that in new sets, due to the fact that the original set is randomly sampled, some observations may

be repeated. After creating the input sets, each of them is fed to a different model, being the number

of models equal to the number of bootstrapped sets. The result of each model is than averaged for a

final prediction result [32]. A diagram of the process is presented on figure 2.19, where the blue circles
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are the samples chosen as model inputs, after bootstrapping. This techniques mainly aims to reduce the

variance of the results.

Bootstraping Bootstraping Bootstraping

 Initial Data

Set 1 Set 2 Set 3

Model 1 Model 2 Model 3

Average

Figure 2.19: Bagging method diagram

Contrarily to Bagging, where each model runs independently and then the outputs are aggregated

at the end without preference to any model, in Boosting each model that runs dictates what data the

next model will focus on. In this technique a weight distribution is maintained over the samples, and it

is adjusted at each iteration. The adjusted weights are chosen so that higher values are associated to

previously lower performance estimation [32]. Upon having model results, a second set of weights is

assigned to each model, in order to make a weighted average of each of the model results. Similarly to

Bagging, data variance is also decreased but Boosting has a better bias error reduction. A diagram of this

process is presented on figure 2.20.

The main difference between these methods resides on how the samples are drawn from the original

set. In the case of Bagging, any element has the same probability to appear in a new data set. However,

for Boosting the observations are weighted and therefore some of them will take more importance in the

input data.

One of the most common boosting algorithms was proposed in 1995 by Freund and Schapire [31]

and its called Adaptive Boosting, or AdaBoost for short. It was originally designed for classification prob-

lems, but its usage can be extended to regression as well as other statistical problems. This algorithm is

described next.
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Figure 2.20: Boosting method diagram

From a data distribution of {Xi, yi} where X is the model input data and y the hypothesis result of

the input data:

1. Initialize the observation weights wi = 1/N, i = 1, 2, ..., N .

2. For m = 1 to M :

3. (a) Fit a model G(x) with the input data using weights wi.

(b) Compute

errm =

∑N
i=1wiI(yi 6= Gm(xi))∑N

i=1wi

where I(yi 6= Gm(xi)) is the model result compared with the hypothesis result.

(c) Compute αm = log((1− errm)/errm).

(d) Set wi ← wiexp(αmI(yi 6= Gm(xi)), i = 1, 2, ..., N .

4. Output the weighted average of G(x)

2.5 Fault Injection

The goal of fault injection is to provoke (inject) faults, or stimulus, that are as close as possible to real

faults that could occur on real hardware. This technique can be used to stimulate systems in order to

determine whether the system response matches its fault-tolerance specifications. Normally, faults are
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injected in perfectly chosen system states and points, previously determined by an initial system analysis,

in order to gather knowledge about system behavior under controlled conditions. Performing this type of

test yields several goals [33]:

• An evaluation of the efficacy of the fault tolerance mechanisms included into the target system

and thus a feedback for their correctness (e.g., for removing designs faults in the fault tolerance

mechanisms);

• Estimating the failure coverage and latency (i. e timing) of fault tolerant mechanisms;

• Identifying weak links in the design, such as single point failures of the system within which a single

fault could lead to severe consequences;

• Studying the system’s behavior in the presence of faults, for example propagation of fault effects

between system components or the degree of fault isolation and determining the coverage of a

given set of tests;

• Evaluating system reliability, in which safety-critical systems are tested with fault-injection.

Four main types of fault injection techniques exist: hardware-based implemented, simulation-based,

software implemented and hybrid. Hardware-based is done at physical level, disturbing the hardware with

parameters of the environment (heavy ion radiation, electromagnetic interferences, etc.), injecting voltage

sags on the power rails of the hardware (power supply disturbances), laser fault injection or modifying the

value of the pins of the circuit [33]. Software-based fault injection consists on reproducing, at software

level, the errors that would have been produced upon occurring faults in the hardware. Simulation-based

consists in injecting fault at high-level models (e.g. VHDL or Verilog models). Hybrid techniques mix

software implemented fault injection and hardware monitoring. Each of these techniques have advantages

and drawbacks. For the sake of having an overview of each technique, a compilation of advantages and

drawbacks of each technique is presented on table 2.1.

A fault injection environment typically consists of several components such as fault injector, fault

library, controller, data collector and data analyzer [33]. The fault injector evokes faults into the target

system, as specified in the fault library. The fault library stores fault specifications such as fault type,

locations and time. The controller runs on the injector host injecting faults and controlling the experiment

by using a hook at the target system. In order to verify that the injection really caused a fault and to record

other data, a readout collector sends measurements to the data collector. The data analyzer performs
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Table 2.1: Summary of main advantages and disadvantages of fault injection techniques.

Types Advantages Disadvantages

Hardware-

based

•Can access locations that is hard to be

accessed by other means.

•High time-resolution for triggering and

monitoring.

•Well suited for the low-level fault mod-

els.

•Experiments are fast.

•No model development or validation

required.

•High risk of damage to hardware.

•Low portability and observability.

•Limited set of injection points and limited set

of injectable faults.

•Requires special-purpose hardware in order to

perform some experiments.

Software-

based

•Can target applications and operating

systems.

•Experiments can be run in near real-

time.

•Does not require any special-purpose

hardware.

•No model development or validation

required.

•Limited set of injection instants.

•It cannot inject faults into locations that are in-

accessible to software.

•Does require a modification of the source

code.

•Limited observability and controllability.

Simulation-

based

•Can support all system abstraction lev-

els.

•Full control of both fault models and

injection mechanisms.

•Low cost computer automation.

•Does not require any special-purpose

hardware.

•Maximum amount of observability and

controllability.

•Large development efforts.

•Time consuming (experiment length).

•Model is not readily available.

•Accuracy of the results depends on the good-

ness of the model used.

•Model may not include design faults that may

be present in the real hardware.

data processing and analysis. A block representation of fault injection components is presented in figure

2.21.

Fault injection has been already been explored on multiple system levels, from software level through-

out RTL level. In [34] fault injection was used to emulate software faults, in order to have an overview on

how injected faults compare with real software faults. Regarding reliability evaluation, the authors of [35]

and [36], used this technique to evaluate robustness of digital circuits against faults, at RTL level. Also,

in [37] and [38], frameworks were presented that allowed to perform fault injection, on VHDL designs

and on software running on emulated hardware, respectively. The latter is rather important since the

methodologies and work developed highly contributed for the work done on this dissertation.

As mentioned before, fault injection has been considered very useful to evaluate reliability of a system.

By injecting faults into an operational system, it can provide information about the failure process, which

means that metrics such as mean time between failures (MTBF) can be taken from fault injection results.
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Figure 2.21: Typical fault injector architecture

2.6 Embedded System Simulation

Much like in every development project, the engineering effort needs to be validated, and embedded

development is no exception. Although, testing embedded systems, mostly embedded software, is differ-

ent than testing conventional systems since this type of systems have a close integration of hardware and

software.

As mentioned early on this chapter, embedded systems are tightly coupled, meaning a close inte-

gration of hardware and software. A single embedded system can contain user designed specialized

hardware, a processing unit used to control that hardware and to process and retransmit the acquired

data, and software running on that processor. Testing of all listed parts separately is difficult, or even

impossible [39].

An approach to test this type of systems is to test directly on the developed hardware but it presents

several downsides. One of them is the chance of damaging the hardware, increasing costs of new hardware

or even redesign costs. Furthermore, hardware dependency and the fact that the embedded software is

often developed in parallel with the hardware, may lead to stall in testing since there is no physical hardware

to test the software.

Another reason is that it may be difficult to distinguish software bugs from hardware bugs as the mod-

ules may not been previously tested independently. Also, defects are harder to reproduce in embedded

systems, so embedded testing process needs to gather as much information as possible, in order find the

root of the defect. Combined with the very limited debug capabilities of embedded products, that gives

testing another challenge.

Such challenges have led to wide development of adoption of various simulation-based development

and testing approaches in the embedded software industry called X-in-the-Loop [40].
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2.6.1 X-in-the-Loop

X-in-the-Loop (XiL) is an integrated in-loop method where X refers to the unit under test, which can be a

model (model in the loop, MiL), software (software in the loop, SiL), processor (processor in the loop, PiL)

and hardware (hardware in the loop, HiL). These methods have gained acceptance due to the increased

adoption of model–based development (MBD) industry, especially in the automotive domain [41]. They

are widely used on V cycle development and each phase uses a particular method as shown on figure

2.22.

Figure 2.22: X-in-the-loop testing applied on reliability-aware development cycle (adapted

from [41])

Model-in-the-Loop happens early on the development phase. It aims to validate the interactions of

the system to develop with the environment, i.e, the environment stimuli (such as signals) effects on the

system. It abstracts system-specific behaviour in order to correctly validate the model to be used. A simple

example are Finite State Machines, in which the model is the machine itself and the state transitions are

the responses to the environment.

Upon model verification, the software-in-the-loop phase aims to test the software algorithms that will

run on the target platform. The testing is made on a host platform which usually greatly differs from the

target platform. This process can be fully abstracted from the target hardware since test is made regarding

the correctness of the algorithm. On this phase, all hardware-specific functionalities (e.g. hardware-

accesses) are substituted by host-specific mechanisms that allow to emulate read/writes from the real

hardware, e.g. offline caching.

The Processor-in-the-Loop phase uses an emulated target platform to execute the algorithm. In PiL,
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the target processor, both characteristics and behaviour, is emulated in a simulation environment, allow-

ing to achieve more realistic simulation results. The simulation environment is still integrated in the host

platform, but the algorithm is executed as it was already on the target processor. The simulation environ-

ment can be seen as layered where: the outer layer is the host PC and the operating system, the next layer

is the simulation environment, e.g. KEIL Simulator by Arm, and the last ones are the emulated processor

and the algorithm running on it. A good simulation environment can emulate the processor in such way

that one can not tell the difference between running the application by emulation or on real hardware.

Lastly, in Hardware-in-the-Loop, the target hardware running the algorithm is connected to a real-

time simulation that simulates real signals. It uses the hardware platform’s IO ports to interface with the

simulation environment. This type of testing is particularly beneficial since the tests can be made fearlessly

and comprehensively without risk to a physical, costly system.

For a better understanding of each X-in-the-loop method, table 2.2 presents the entities that are tested

on each phase and the interfaces used for each test method.

Table 2.2: Types of X-in-the-Loop testing

Types Entity Under Test Test Interfaces

Model-in-the-Loop (MiL) System model
Behaviour and events of the model

e.g: FSM transitions

Software-in-the-Loop (SiL) Control software (e.g., C code)
Methods, procedures, parameters,

variables

Processor-in-the-Loop (PiL)
Binary code on a host machine

emulating the target processor

Register values and memory contents

of the emulator

Hardware-in-the-Loop (HiL) Binary code on the target architecture
I/O pins of the target microcontroller

or board

Simulating a system has always carried the advantage of increased insight and flexibility, at a cost

in execution speed and timing fidelity comparatively to the real machine. However, this has not always

been the practice, since the use of simulation technology for large-scale embedded systems software

development and testing has been relatively limited up until a decade ago [42].

In this context, focus will be made on two types of simulation: instruction-accurate, which mimic the

behavior of a microprocessor, and cycle-accurate, which are optimized for precise simulation of hardware

components. The first type of simulators allow to test the user software, while providing functional simu-

lation of the hardware by creating the emulated platform. QEMU [43] is a simulator that fits this category,

allowing both instruction-accurate simulation of the software and hardware behaviour emulation. The

second type of simulators offer cycle-accurate simulations that accurately simulate hardware behavior.
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This kind of simulation is generally used to validate hardware components themselves. Under this type

of simulators, GHDL, Icarus Verilog and ModelSim are examples of hardware simulators which provide

cycle-accurate Register Transfer Level (RTL) simulation.

2.6.2 Full System Hardware Simulation

A simple approach to simulate the whole system, including embedded system and newly developed

hardware, is to use an hardware simulator. Although it can be done, the performance is usually very poor

[39], as the hardware level simulators are not suited for simulation of such complex systems as embedded

systems. In this type of simulation, the states of all logic gates and registers are simulated, which is

not needed to provided the needed accuracy to run software. A solution for this slowdown would be to

avoid software simulation in hardware simulators altogether, running software parts externally of hardware

simulation. Figure 2.14 presents a diagram of full-system hardware simulation on a development host.

Figure 2.23: Simulation of a system using an hardware simulator [39]

2.6.3 Hardware Simulation with Host Software

A different approach is to use an hardware simulator to emulate the user designed hardware, while

the user software runs directly on the development machine. The diagram on figure 2.24 shows a hard-

ware simulator being provided with stimuli from software that is being executed on the host development

machine.

The software application that runs on this simulator is compiled for the host development machine,

replacing device driver system calls (or hardware register access) with Application Program Interface (API)
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Figure 2.24: Hardware simulator with software on host [39]

calls that allow to communicate with the hardware simulator, emulating system bus transactions. The

interface must also be implemented on the hardware simulator side, by providing access to the software

calls. This approach is significantly better than full system hardware simulation, as native performances

are achieved for software with hardware simulation only requiring hardware that is relevant to the scenario.

However, in most cases, the development includes testing of both hardware and low level software com-

ponents such as device drivers, performance of data transfers and so forth. To emulate these elements,

software simulation must be combined with hardware simulation. The act of simulation such different

domains such as software and hardware is called co-simulation, which will be discussed in great detail in

section 2.7.

2.6.4 Full System Software Simulation

On full system simulation approach, the hardware is emulated on the development machine, while

running the user software. Figure 2.25 presents a diagram of full system software simulation. In this ap-

proach, hardware modules are functionally emulated and integrated into software simulation. Depending

on the simulator used, the hardware modules may or may not be available for the target machine, mean-

ing that the simulator chosen must meet the application scenario or allow to extend the list of supported

hardware modules, like QEMU. Having the hardware model behavior emulated is a very useful feature for

design space exploration early in the project [44], allowing validation before any commitment to an hard-

ware component or HDL implementation. Furthermore, this does not only allow not only for a flexibility

that suits design space exploration very well, but also concurrent development given that software design

teams may start device driver development concurrently with hardware design teams. For such reasons,

this approach will be used in this dissertation.
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Figure 2.25: Full system software simulation [39]

2.7 Co-simulation

Truly complex engineered systems that integrate physical, software and network aspects, are cur-

rently used in several development areas [45]. Due to time-to-market pressure, the development of these

systems has to be concurrent and distributed, that is, divided between different teams and/or external

suppliers, each in their own domain and each with their own tools. Each participant develops a par-

tial solution within the domain that they have the skillset for, being software, analog circuits, FPGA’s or

mechanical parts. Figure 2.26 represents the domains that typically integrate the development of an

embedded system.

The teams that tackle each domain under a complex system work on different abstraction levels,

whereby each team, use simulators that work within the abstraction level necessary for their domain [45].

This means that, for example, teams that work on the software domain, simulate source code execution,

while teams that work on the hardware level, run simulations at analog circuitry level. By using simulators

with only the necessary functionality for the domain in question, simulations can be fast enough to achieve

near real-time execution.

Typically, within a complex system, models developed in different domains are independently vali-

dated, meaning that no real interactions exist between them. Although testing is independent, the models

need information from other domains to have meaningful simulation results. In order to validate the model



Chapter 2. State of the art 42

Analog
Applica�on-

specific
(...)

RTL /
Processing Unit

So�ware

Iterate through fault list to find 
“MEMORY” fault

Start

Found?

End

Overwrite memory  with fault 
mask value

FA == MA

1

Opcode
bbbbbbbb

Instruc�on Decoder + Prog Counter

Detect ZeroCondi�onal 
bit

Top

Next

ALU

Embedded Development Domains

Figure 2.26: Domains of a complex system

behaviour, static stimuli are used with the help of local caches, which store typical stimuli that occur on

the target scenario. Figure 2.27 presents a diagram that represents a single domain simulation using a

local cache to retrieve information that otherwise would come from a different domain.

This type of testing is enough for validating the behaviour of a single model, but as the domain inter-

actions were not tested nor validated, upon integration of all models, system interactions may be erratic.
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This is due to the fact that, as the interactions were not really tested, there may be failures regarding

domain interactions that can not be observable on isolated domain simulations. For this reason, there is

the need to validate all interactions when deploying the system, avoiding additional development costs.

On this context, co-simulation is a technique to simulate several domains and the interactions between

them. It consists on enabling global simulation of a complex system through composition and interfacing

of simulators from different domains. This technique has already been applied in many different engineer-

ing domains such as Automotive [46][47][48], Robotics [49], HVAC [50][51], and Integrated Circuit and

SoC Designs [52].

Several simulators allow extending their functionalities through the usage of dynamic libraries with

callback APIs. Such libraries allow simulation tools to exchange information, such as hardware access

information and simulation time. An example usage of such libraries is SimCoupler [53], which allows

PSIM simulations to interface with Simulink. Extensions can be developed to implement real-time interac-

tions between simulators from different domains, allowing easier validation of interactions across domains.

However, if no API’s are provided, the simulator can also be extended to allow such interactions, as long

as it is open-source.

Although this may seem an excellent way to validate a complex system, the act of simulating in differ-

ent domains makes interactions difficult due to the different temporal abstraction levels. Since different

domains simulators run on different abstraction levels, the time granularity may be different across sim-

ulators, which means, at a given wall-clock time, the simulators may all have different simulation times,

with different execution advancements. This presents a synchronization problem since simulations are

independent and interactions should be correctly timed for both simulations.

Before going into detail about simulation synchronization, the concepts behind simulation and types of
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simulation should be clearly defined in order to get a better understanding of the next section. In the sim-

ulation world, two separate classes of simulation exist: discrete and continuous. In discrete simulations,

changes in the state of the system take place at discrete points in time and are instantaneous, whereas in

continuous simulations, changes in state occur continuously in time [54]. For this next section, simulation

characteristics and assumptions are all borrowed from the discrete simulation domain since the level of

abstraction of this type of simulations is enough to represent digital world functionality.

Simulations can be further divided into time- and event-driven regarding the sequence of values of the

simulation time. The time of a simulation is an abstraction of real time (or wall-clock time), which may not

behave as real time does, that is, it may not change at a fixed rate relative to the host computer real time

or even be monotonic. In time-driven simulation, the sequence of simulation time values is an increasing

arithmetic sequence, which means time increments are constant. In event-driven, the simulation is also

monotonic and non-decreasing, but it is not an arithmetic sequence; the sequence values represent times

at which the state of the system changes, which such state changes are called ”events”.

2.7.1 Synchronization

Interactions in different simulation times can result in causality errors, where information sent between

simulations is received out of local computation order. An example of a such error can be explained with

a simulation of a warehouse, where transport robots that carry boxes are simulated (adapted from [55]).

A robot’s simulation is triggered by an incoming message which tells him to pick up a box that is then

transported to a storage area. During transportation, the robot gets a second message by another robot,

being warned to change his route to prevent collisions. If the simulation of the first robot is much faster

than the simulation of the second robot, the second message is received, when the first robot has already

reached its destination, whereas it should have been received while driving. Such errors can render a

simulation useless since the results do not reflect to correct behaviour of the system in question. Hence,

all simulation tools must be synchronized.

Figure 2.28 exemplifies, visually, a causality error where two simulations execute simultaneously and

exchange messages on specific time events. When simulation 1 sends a message to simulation 2, sim-

ulation 1 has already advanced as no messages were received up until the current time. Consequently,

the execution of simulation 1 since that time produces erreneously results.

To deal with synchronization between simulations, there are some algorithms to mitigate or even

eliminate any causality error. Algorithms generally fall into two major classes of synchronization [56]:
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conservative, which strictly avoid causality errors; and optimistic, which allow errors and recovers from

them.

Conservative synchronization is based on the work of Chandy and Misra [57], in which events are

processed in sequential chronological order and simulations communicate through time-stamped mes-

sages. In execution terms, these mechanisms assure that no message is delayed or received too late,

therefore guaranteeing that all messages are attended on time. To do so, the simulations are blocked from

further processing until the next message can be safely sent and received on both simulations. The main

issue of any conservative simulation is determining how much can a simulation can execute to avoid any

causality error. This issue was explored by Ayani [58], who presented a method to identify time-windows

in which simulations can safely process events without risking possible causality errors. Altough these

type of mechanism eliminate these type of errors, blocking simulations from executing can slow down the

speed of the simulation.

On the other hand, optimistic synchronization algorithms allow causality errors to happen and have

the ability to detect them. If a causality error is detected, the simulation has to be rolled back, meaning

that all preceding simulation results have to be undone until the causality error is resolved. Before the

occurrence of a causality error, the simulations are not synchronized and run independently of each other,

therefore only being synchronized when causality error occurs. For realizing an optimistic synchronization,

all previous states of the simulation have to be saved, as they are needed again in case of a roll back.

Additionally a mechanism to call back previous states has to be installed, as in case of a causality error

those states can also be wrong. One of the best known optimistic synchronization algorithms is the “Time

Warp algorithm” [59]. This algorithm contains two main parts: the local control mechanism that ensures

that events are executed and messages received in correct order, and the global control mechanism that
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manages memory space, flow control, I/O, and error handling. One big disadvatange of this algorithm is

that a single message can cause a chain of rollbacks of every object in the simulation, which comes a big

slowdown problem, specially in large simulations.

In order to implement such algorithms and functionalities, the simulation tools, as said before, must

have interfaces to allow share of information between them. An example of such tools is QEMU, which is

a open-source emulator that allows the developer to modify its internal source code to add new features.

As this is the tool used in this dissertation, an overview about it is made later in this chapter.

2.7.2 Functional Mock-up Interface

The Functional Mockup Interface (FMI) is a tool independent standard to support the exchange of

dynamic models and co-simulation using a combination of XML files, binaries (shared objects or DLLs)

and C code [60]. The first version, FMI 1.0, was published in 2010 and its goal was to support the

exchange of simulation models between suppliers and OEMs even if a large variety of different tools are

used. As of today, the FMI is currently on version 2.0 [60] and is supported by over 100 simulation tools.

The FMI defines an interface to be implemented by an executable called an FMU (Functional Mock-up

Unit) (figure 2.29) [60]. The FMI functions are used (called) by a simulation environment to create one or

more instances of the FMU and to simulate them, typically together with other models. An FMU contains

an eXtensible Markup Languague (XML) file with description of the interface, and source code or dynamic

library which implements the interface. Source code is used if target platform independence is desired,

however the latter solution is used whenever the suppliers want to hide the source code to secure the

contained know-how [61].

Figure 2.29: FMU instance interface
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Depending on the type of simulation, an FMU may either have its own solvers (FMI for Co-Simulation)

or require the simulation environment to perform numerical integration (FMI for Model Exchange). The

diagram on figure 2.30 presents the two use cases for the different types of simulations supported by the

FMI.

(a) FMI Model Exchange diagram
(b) FMI Co-Simulation diagram

Figure 2.30: FMI simulation type support

FMI for Model Exchange

The Model Exchange interface is used to describe models of dynamic systems, i.e., models defined

by differential, algebraic and discrete equations and to provide an interface to evaluate these equations

as needed in different simulation environments, as well as in embedded control systems, with explicit

or implicit integrators and fixed or variable step-size [60]. The resulting FMU from a model description

is an input/output block that contains only the implementation of the model while the solver belongs to

the simulation tool, as shown on figure 2.31. The solver sets the FMU internal state, asks for the state

derivatives, and determines the step size and how to compute the state at the next time step.

Figure 2.31: FMU for Model Exchange interface
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Many FMU instances can be connected to create a larger model, as shown on figure 2.32. They are

connected hierarchically through their input and output variables.

Figure 2.32: Example of three connected FMU instances

FMU for Co-Simulation

FMI for Co-Simulation is designed both for the coupling of simulation tools (simulator coupling, tool

coupling), and coupling with subsystem models, which have been exported by their simulators together

with its solvers as runnable code. These scenarios are presented on figures 2.33, 2.34 and 2.35, where

the FMI interfaces have a coupling job on both simulation tools and distributed co-simulation.

Figure 2.33: Co-simulation with generated code on a single computer

In tool coupling (figure 2.34), FMU implementation wraps the FMU function calls to API calls which

are provided by the simulation tool. Additionally to the FMU the simulation tool is needed to run a solver.

Figure 2.34: Co-simulation with tool coupling on a single computer
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In its most general form, a tool coupling based co-simulation is implemented on distributed hardware

with subsystems being handled by different computers with different OS (cluster computer, computer

farm, computers at different locations). The data exchange and communication between the subsystems

is typically done using one of the network communication technologies (for example, MPI, TCP/IP). The

definition of this communication layer is not part of the FMI standard. However, distributed co-simulation

scenarios can be implemented using FMI as depicted in figure 2.35.

Figure 2.35: Distributed co-simulation infrastructure

Instead of coupling simulation tools directly, it is assumed that all communication is handled via a

master. The master plays an essential role in controlling the coupled simulation. Besides distribution of

communication data, the master analyses the connection graph, chooses a suitable simulation algorithm

and controls the simulation according to that algorithm. The slaves are the simulation tools, which are pre-

pared to simulate their model. The slaves are able to communicate data, execute control commands and

return status information [61]. The diagram on figure 2.36 shows how all simulations tools communicate

with each other by interfacing with the master.

Figure 2.36: Simulation control through master-slave interface

In co-simulation stand alone, an FMU contains not only a model, but also solver code exported by

another simulation tool to solve the model during simulation. Figure 2.37 represents a co-simulation slave

FMU, which contains both model and solver.
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Figure 2.37: FMU for Co-simulation interface

2.7.3 FMI usage in the industry

FMI was used, and still is, in industrial and scientific projects by several companies and research

institutions. The gearbox projects for Mercedes-Benz passenger cars used FMI in software-in-the-loop

simulations [62]. In mechatronic gearshift simulations for commercial vehicles at Daimler AG, the standard

was utilized twice by having powertrain software simulated in SimulationX and the multibody system in

Simpack [46]. At IFP Energies Nouvelles, FMI for Model Exchange is used to parallelize the execution of

complex internal combustion engine models in the tool xMOD [63]. Their use is mainly intended to validate

engine controls with the help of hardware in the loop simulations. In [64], an algorithm was implemented

in Python for derivative-free optimization implemented in Python and applied to parameter optimization of

FMUs. The optimization algorithm is applied to a Volvo truck engine to identify model parameters based

on measurement data from a test cycle. In [65] the FMI based co-simulation master from Fraunhofer is

used to develop, implement and test sophisticated algorithms for the co-simulation of FMUs generated by

Dymola.

2.8 QEMU

QEMU (which stands for Quick Emulator) is an open-source machine emulator and virtualizer. It uses

a portable dynamic translator, which translates target binary code to host binary code. QEMU is very

versatile and can run x86, x86-64 and PowerPC systems, and it can emulate x86, x86-64, ARM, SPARC,
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PowerPC and MIPS architectures. For most of these, it can be run in two ways: full-system emulation and

user-mode emulation. User mode emulation allows QEMU to launch processes compiled for one CPU

on another CPU, translating system calls on the fly. The full system emulation capability emulates a full

system, including a processor, memories, interrupt controllers and peripherals. Given the scope of the

dissertation, QEMU will be used in full system emulation, while user mode emulation will be ignored. This

latter feature is very useful in the embedded context, since it enables development, debugging and testing

without the physical target hardware.

Being an open-source software, its source code can be changed in order to edit its features or even

add new ones. For this reason, one of the main focus of this dissertation is using QEMU as a simulation

tool, with efforts to extend its features to support co-simulation using full-system software simulation.

Currently, QEMU is poorly documented, which means that analyzing the source code is required to

understand QEMU’s internal architecture. Documentation is sparse and almost non-existent, and source

code comments are frequently outdated. The main communication channels between QEMU developers

are QEMU’s development mailing list, which is used to search for insights in emails and conversations

between developers, or the QEMU IRC channel which provides a live-chat between developers. Given the

low amount of available QEMU literature and information, it is relevant to provide an insight into its internal

architecture, with special focus on functional hardware emulation, binary translation and emulation time,

in order to understand the work developed in this dissertation.

2.8.1 Binary Translation

QEMU uses dynamic binary translation to execute target code on the host platform. The translation

is done by a module called the Tiny Code Generator or TCG for short. This module is the core binary

translation engine and works by translating each disassembled guest instruction into a sequence of host

instructions. A simplified overview of QEMU instruction translation is presented on figure 2.38. It starts

by disassembling the target binary code and generating an intermediate representation of it. Then, the

generated intermediate code representation is transformed into host instructions with the help of the Tiny

Code Generator (TCG).

Translation is made on-the-fly, during runtime. Instead of translating every single instruction, guest

code is split into chunks of instructions called ”translation blocks”. This block is similar to a basic block

of instructions but it always executed as whole, meaning that there are no jumps in the middle of the

block. Translation blocks are then cached into a translation cache, that is used to speed up execution of
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Host platform (i.e. x86)

Host Operating System

Embedded application

Target code

Disassembler

Tiny code generator Host instructions

Intermediate code

Figure 2.38: QEMU translation overview (adapted from [66])

similar code blocks, and the program is mapped into a lookup table. The length of the block is established

upon translation up until the nearest jump or an instruction that changes the CPU state in a way that

can not be deduced at translation time, this being the reason the block will always execute as a whole.

If the flow forces a conditional jump, the virtual Program Counter (PC) takes an address of an already

cached translation block. This mechanism speeds up execution since there is no target code translation

overhead. For this reason, cached blocks are indexed using their guest virtual addresses, so they can be

found easily using the virtual PC value, and are purged every time the cache fills up [67]. The translation

block is executed when it is translated and already on the cache. If that is not the case, a new block must

be prepared for execution. The diagram on figure 2.39 presents the dynamic translation process.

One other mechanism that QEMU employs on binary translation is TB chaining. Normally, the ex-

ecution of every translation block is surrounded by the execution of special code blocks: the prologue,

which initializes the processor for generated host code and jumps to the code block; and the epilogue,
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Miss

Hit

Emulation
Manager

Data flow

Control flow

Figure 2.39: Dynamic translation diagram (adapted from [67])

that restores normal state and returns to the main loop. However, returning to the main loop after each

block adds signification overhead. To reduce this overhead, the TB’s are chained in order to jump directly

to an already translated block instead of jumping to the epilogue. The diagram on figure 2.40 presents a

simplification of the TB chaining process.

Pre-generated code

Prologue

Return to 
main loop Epilogue

Translation cache

TB

TB

TB

TB

Entry

Figure 2.40: Translation Block chaining diagram (adapted from [67])
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2.8.2 Deadlines and Emulation Time

QEMU’s internal timers, called deadlines, provide a mean of calling a given routine (a callback) after

a time interval has elapsed, passing an opaque pointer to the routine. This is particularly important for

emulated devices such as timers, that need to be aware of the execution time. QEMU offers three clock

sources: Realtime, Host and Virtual clocks. The Realtime clock runs even when the emulation is stopped,

with a resolution of 1000Hz. The Host clock runs even when the emulation is stopped, but is sensitive to

time changes of the host clock. Lastly, the Virtual clock only runs when the emulation is running and has

a high resolution. Most emulated devices use this clock as the clock source in their behaviour.

The emulation time is a particular tricky feature on QEMU since emulation is made as fast as the host

platform can run it. This differs from a physical guest platform since, typically, the physical guest has a

lower clock than the host platform. This means that the time spent on code execution may not correspond

to a real execution time, even when using the Virtual clock. This results on a non-deterministic execution.

To mitigate this issue, newer versions of QEMU implement the ’icount’ parameter.

The ’icount’ parameter affects the increment of the Virtual clock and when not used it does not match

real time and its advancement speed depends on how fast host CPU runs guest instructions. When

’icount’ is not specified virtual time ticks synchronously with real time. With this parameter, the Virtual

clock assumes that one guest instruction counter tick equals 2N nanoseconds, being N the user specified

on the ’icount’ parameter, as shown below.

1 guest instruction counter tick = 1 emulated nano second << N

2.8.3 Translation Block Execution

The target code executes in a fetch-decode-execute fashion, by continuously creating and executing

translation blocks. This process occurs on the qemu_tcg_rr_cpu_thread_fn thread for all architectures.

The thread is responsible to create translation blocks from target code, if no translation blocks exist in

cache, execute the generated translation block and increment the total emulation time and the deadlines

elapsed time. As translation blocks execute atomically, the time increment is proportional to the size of the

translation block, i.e. the number of instructions executed. The ’icount’ parameter takes great importance

here, since its usage forces a straight conversion from number of instructions executed to nanoseconds,

providing deterministic translation block execution.
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The size of the translation blocks is not only dictated by the existence of a jump instruction but also

by the next occurring deadline. This means that, before the creation of a translation block, the next

deadline to finish is checked, and the translation block size is affected by the remaining time until the

deadline finishes. The diagram on figure 2.41 expresses the creation and execution of translation block,

when deadlines are running. It is worth noting that, during a deadline, several translation blocks can

be executed, as the target code may contain jump instructions. That being said, the translation blocks

always run between deadlines and the existence of several deadlines implies execution slowdown since

the translation block cache needs to be updated more frequently.

Execution time
Deadline of 100ns Deadline of t ns

RSB
MUL

...

...

...

JMP ADDR

MOV
STR

JMP ADDR

MOV
STR

...

...
JMP ADDR
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Takes
100ns
to run

4ns
8ns
...

96ns

100ns

Takes t
ns to
run

Figure 2.41: Deterministic translation block execution

2.8.4 Device Model

As previously mentioned, QEMU can perform full system emulation with emulated hardware devices.

The emulated devices are connected to the QEMU System Bus which is the entity responsible for the

interface between all the emulated devices. Figure 2.42 presents a simplification of a full system emulated

with multiple emulated devices and an embedded application.

QEMU handles peripheral hardware access by calling a set of functions and routines that emulate

hardware behaviour. Whenever a read or write operation is made, the functions that emulate the device

read or write transactions are called. The function calls are responsibility of the QEMU system bus, which

keeps a list of devices and their respective address. Although the behaviour is emulated, latencies specific

to writes and reads on the hardware cannot be emulated.
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The creation of an emulated device is made by instantiating an object class and attaching it to the

system bus. This way, one device model can be instantiated multiple times into multiple emulated devices,

as long as they have different addresses. For example, a development board may have multiple instances

of the same ADC device model mapped into different addresses. They share the same behaviour but are

independent devices. Most of the device models inherit the classes SysBusDevice, MemoryRegion and

the IRQ interface.

The SysBusDevice class represents the device mapped to the system bus. It contains functions to

bind the device memory region to a specific address space, assign a IRQ to the device and other helper

functions for creating devices. The MemoryRegion class contains functions to register the device to a

specific memory region. Each device is responsible for transaction behavior implementation, and as such,

each SysBusDevice is associated with a function that implements read operations, and a function that

implements write operations. These functions are registered as callbacks in MemoryRegionOps structure

present in the MemoryRegion class. The IRQ interface provides API’s to assert and handle interrupts. The

IRQs are connected to the interrupt controllers or CPUs as input and to the emulated devices as outputs,

in order to generate the corresponding hardware interrupt.

Emulated Hardware

Host platform (i.e. x86)

Host Operating System

Emulated
CPU

Emulated
GPIO

Emulated
CAN

Emulated
Timers

Emulated
ADC

QEMU system bus

Embedded application

Target Machine

Figure 2.42: Full system emulation overview diagram
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2.8.5 Using QEMU on research

QEMU has already been used for several research purposes. One of the topics where it is frequently

used is fault injection. The authors of [68], [38] and [69] proposed frameworks for fault injection, that

allow to inject faults at the CPU and memory levels. The last two are more complex, since both allow

to inject transient and permanent fault at specific times and durations, while the first only implemented

permanent faults. Furthermore, an effort on binary mutation was made by [70], which used QEMU’s

translation to apply mutations to application binary code for testing purposes.

Regarding co-simulation, in [44] QEMU’s functionalities were extended to allow for both dynamic

instantiation of peripherals and interfacing with external hardware accelerated devices. This allowed for

hardware devices that are modelled externally in other simulation tools to still be able to interact with

QEMU instances. Similarly, the authors of [71] developed an interface between hardware-accelerated

systems and QEMU, with the purpose of validating GPU designs.

Alongside the mentioned research, there are many others that used QEMU to develop and validate

their applications. The ability to make changes to its source code makes it a very versatile tool when it

comes to complex systems. This versatility is particularly useful on co-simulation, since bridges between

simulation tools can be easily implemented allowing for information exchange between tools. This is the

main reason QEMU was chosen as the foundation for the work developed on this dissertation.

2.9 Summary

The goal of this chapter was to describe the methodologies and theoretical concepts that aided the

development of this thesis. It started by approaching embedded systems and the development cycle

adopted. Following this topic, an overview about reliability oriented systems was given, featuring reliability

metrics, the Monte Carlo method for reliability estimation and the Fault Injection technique to support such

estimations. Futhermore, simulation under embedded development was tackled, with special attention

to co-simulation and the synchronization issues that arise from it. Finally, QEMU capabilities and inter-

nal mechanisms were highlighted, mainly regarding its binary execution method, device model topology,

deadline mechanisms and translation block execution.
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Simulation Extensions for Reliability

Development

Simulation is a very important part of resilient embedded systems development, as reliability estima-

tions by means of simulation provide a good overview of reliability related metrics early in the design phase.

By using these metrics for early assessment, designs can be reiterated, and fault-tolerant mechanisms

may be validated, refined or even expanded upon with new approaches if the design is not robust enough

for the desired operation conditions.

Typical embedded full system emulators that allow software simulation are very useful to validate entire

software stacks before deploying them on a physical target. However, in reliable embedded development,

most redundant processing architectures require some for of interaction and synchronization in order to

manage and coordinate redundant modules. Validation of software layers that manage redundancy is

often done on physical prototypes, as they are not easy to be simulated even on full development board

simulators, given that co-simulation scenarios with multiple processing boards are not often contemplated

in these tools.

To improve software development cycles in redundant architecture scenarios, QEMU was extended

to integrate functionalities that allow validation of these software stacks and evaluation of fault tolerant

software, with development of a practical case study scenario also being done to stimulate simulation

environment solutions. This chapter describes the simulation extensions that were developed with the

main goals of multi-modular processing system software validation and reliability estimation with fault

injection.

With all this in mind, three extensions were developed. The Synchronization extension aiming to

mitigate causality errors during co-simulation. The Shared Bus extension that allows for redundant mod-

ules to communicate with each other. The Fault Injection extension which enables reliability estimation

58
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capabilities, by providing mechanisms to inject faulty stimuli to system components.

A simple example of redundant architectures is presented on figure 3.1. The redundant subsystems

use the same inputs to compute a value which contributes to the system output. The computed values

should be equal across subsystems if all of them do the same operations and receive the same inputs.

This happens when the architecture presents subsystems that are homogeneous. Such behaviour dif-

fers from heterogenous architectures which can have different inputs and outputs between subsystems.

Alongside data output and computation, redundant subsystems may also be connected between them for

N connections depending on the number of redundant subsystems present.

Redundant 
subsystem 1

System 
input System 

output

Target system

OutputInput

Input Output

Redundant subsystem N

Input Output

Redundant 
subsystem 2

...N connections each

Figure 3.1: Redundant architecture diagram

In this scenario, a target system can have multiple redundant subsystems, each contributing for the

output. The redundant modules have independent hardware and computations are made within each

subsystem processor. Each redundant module is conceptualized as a QEMU instance (or simulation),
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running all the software stack and emulating all the hardware that composes the subsystem. The diagram

on figure 3.2 presents the conceptualization of the redundant modules as QEMU instances.

Target system

OutputInput
Redundant subsystem 1

QEMU instance

OutputInput Redundant subsystem N

QEMU instance

OutputInput Redundant subsystem 2

QEMU instance

...N connections each

Figure 3.2: Redundant architecture conceptualized on QEMU diagram

As the instances are independent from each other, there must be guarantee that causality errors do

not happen. That being said, a synchronization mechanism was implemented to mitigate any simulation

synchronization issues between redundant subsystem simulations.

3.1 Synchronization between redundant subsystems

The synchronization method between simulations guarantees that no causality errors happen. This

type of errors are avoided by ensuring that up until any interaction, the total simulation time between
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simulation instances is equal. The diagram on figure 3.3 shows a conservative synchronization method

based on a time budget concept. Both instances are allowed to run for a specific time budget, and, at the

end of each budget, running instances wait for the remaining instances to finish operations, synchronizing

their global simulation time. The value of the time budget is application-specific since different applications

have different deadlines up until causality errors can occur.

Timet0

Instance 1

Instance 2

t0 + 1t t0 + 2t t0 + nt

Sync Sync Sync Sync

Run in t time
increments

Sync Sync SyncSync

Instance 1
paused

Instance 2
running

Figure 3.3: Synchronization timely sequence diagram

For this purpose, a process was created, which handles synchronization between simulations using

the time budget concept. The diagram on figure 3.4 shows an example of a co-simulation environment

with redundant subsystems running on QEMU instances being controlled by the synchronization process.

This simulation environment is scalable for multiple redundant module simulations or even other external

domain integrations, given that the synchronization process is not limited to QEMU connections, allowing

interconnection with any simulation tool in scenarios where other simulation domains are desirable. All

simulation tools and QEMU instances communicate with the synchronization process and obey its requests

to either stop or resume their simulations. The user is responsible to choose the time budget for synchro-

nization purposes in each of the simulation tools, independently. For this purpose, each simulation tools

must have a mechanism to allow the simulation to run for a specified time.

3.1.1 Synchronization Process

The simulation instances communicate with the synchronization process through TCP/IP sockets. The

process creates a master server socket and listens to incoming connections and synchronization requests.

When a QEMU instance connects to the server socket, the connection is saved on a list of sockets in order

to keep track of the number of simulations that need synchronization. When an ”out of budget” message
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Figure 3.4: Co-simulation environment example

is received, meaning that the simulation reached the end of its execution budget, the process checks if

all other connected simulations have already reached the same simulation time. If that is the case, a

resume message is sent to every simulation, allowing them to resume execution. If any simulation did not

reach the same execution time, all other simulations are blocked from further execution until all reach the

same time. An interaction between the process and a simulation tool is shown on the sequence diagram

on figure 3.5, where one QEMU instance finishes budget and blocks simulation execution until a resume

message is received.

During runtime, the process always listens for new simulation connections, making it scalable for

multiple simulations to synchronize. The flowchart on figure 3.6 presents the fully working principle of the

synchronization process.

3.1.2 QEMU’s Internal Synchronization

QEMU instances establish connection to the synchronization process during the initialization sequence,

before machine emulation starts. During this initialization, QEMU reads the arguments provided by the

’-sync’ command line flag, which was added to the supported command line arguments, to both provide

the correct synchronization process server port and the time budget, in nanoseconds, to be used for

synchronization. An usage example of this argument is presented on the following command line snippet:

$ qemu-system-arm [flags] -sync <time budget>,<server port>
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Figure 3.5: Synchronization of QEMU instances sequence diagram
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Figure 3.6: Synchronization process flowchart
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During QEMU emulation, simulation time advancements occur as translation blocks are executed.

This occurs on the translation thread, which fetches (or creates if not already in cache) a translation block,

executes it and increments the simulation time according to instructions executed. A simple flowchart

of execution is presented on figure 3.7. With that in mind, synchronization is made by monitoring the

translation block execution and blocking further execution upon reaching a time budget.

Find Transla�on Block that 
fits deadline

Execute Transla�on Block

Increment simula�on �me 
according to the number of 

instruc�ons executed

...

Figure 3.7: Translation block execution thread simplified flowchart

For this purpose, the thread algorithm was modified to take into consideration the time budget. Ev-

erytime a new translation block is executed, the current simulation time is compared with the remaining

execution time budget. Both these values, simulation time and remaining budget, are updated when a

translation block finishes execution. Before getting a translation block, there is a check if the is any more

execution budget left. If so, translation blocks keep executing. If the budget is expired, execution reaches

a synchronization point and waits for feedback after sending an ”Out of budget message” to the synchro-

nization process. Upon receiving feedback, the budget is reset and a new deadline is created according to

that same budget. The new deadline is set to the current simulation time plus the time budget, preventing

the generation of translation blocks that would otherwise atomically execute for a longer time than the time

budget. The flowchart on figure 3.8 shows the budgeted execution of translation blocks that was previously

described. The yellow blocks represent the added steps to the translation block execution thread.

Time budget granularity depends on the time per instruction, which is directly related to the ’icount’

parameter chosen for the simulation. The lowest number possible for the time budget is the time to

execute one instruction, meaning that, in this case, synchronization would occur at instruction level.

Upon having synchronization between instances, communication with other tools or between QEMU

instances is possible without risking causality errors.
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Figure 3.8: Budgeted translation block execution flowchart
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3.2 Shared Bus Extension

Under a redundant architecture, there are often communication channels between subsystems. These

communication channels are typically associated with communication peripherals such as LPUART or

SPI modules. The Shared Bus extension allows for interactions between communication peripherals on

different redundant subsystems.

Alongside the usage for redundant architectures, the extension provides a way for other simulation

tools to interact with each other. This allows for different simulation approaches such as Hardware-in-the-

Loop to be easily integrated in the development cycle. Figure 3.9 presents a further detailed co-simulation

environment with the addition of the a Shared Bus extension, allowing communication between simulation

tools.
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Figure 3.9: Example of a co-simulation environment with the Shared Bus extension
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3.2.1 Extension Overview

The extension aims to emulate a data bus and its transactions. It covers the typical R/W operations

done by common protocols such as UART, and, at the same time allows for multiple peripherals to connect

to it, attending to the bus characteristics of more complex protocols such as CAN or SPI. As such, the

developed extension is composed by two parts: (1) An independent process (called Shared Bus) that

manages all communication connections to an emulated bus; (2) An interface allowing tools to interact

with the emulated bus for read and write operations.

The diagram on figure 3.10 shows the conceptualization of the Shared Bus extension. For exemplifi-

cation purposes, a CAN bus interfacing with two QEMU instances is used. Along with this interface, the

peripherals that facilitate communication are also represented (which allow performing read and write

operations on the data bus, much like in every communication protocol). The explanation of the extension

will be done using this QEMU communication peripheral as the entity interfacing with the Shared Bus,

even though its working principles translate to any other simulation tool.

One thing to notice is that, unlike write operations which are always synchronous, the read operations

can be synchronous or asynchronous. What this means is that, on the first case, the peripheral makes

a request and blocks execution until that request is finished, while on the second case, the request is

made and the data resulting from the request is buffered, preventing execution block. In order to cover

the behaviour of many bus kinds, the option of having synchronous writes and both asynchronous and

synchronous reads was considered on the implementation, allowing easy adaptation to different kinds of

protocols. With that in mind, a pair of sockets in a client-server configuration is used for communication

between simulation tools and the emulated bus. On the QEMU side, the peripheral contains two sockets:

(1) A client socket which is used for synchronous read/write operations; (2) A server socket which is used

for asynchronous reads from the peripheral. More details about this configuration are given later on this

section.

On the Shared Bus process side, there are also a pair of sockets that connect to each instance. This

process is responsible to receive and save the data, and broadcast it to other simulation tools. It always

listens for more connections to the bus, making it scalable for multiple simulation tools to share data

between them. For a general overview, the flowchart on figure B.1 presents the working principle of the

Shared Bus process. This kind of implementation fully abstracts the communication protocols timings and

working principles. It only concerns the behavior of the communication by saving the data and relaying it

to other communication peripherals. For this reason, every peripheral implementation needs to consider
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invalid data writes or reads to the bus, and check of the integrity of the data received.
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Figure 3.10: Shared Bus extension conceptualization diagram

The communication between QEMU instances and the Shared Bus is made through the socket pairs

as seen on figure 3.11. The client-server socket interaction between QEMU and Shared Bus allows for

synchronous read and write operations. This client-server communication is bidirectional, meaning that

commands and data can be shared between both entities. On the other hand, the server-client interaction

between QEMU and Shared Bus is a one way communication for asynchronous reads by the peripheral.

On this interaction, the Shared Bus only sends data to the peripheral, leaving the peripheral with the

responsibility of all processing and data validation according to its protocol. The commands used for the

communication protocol are presented on appendix table B.1.

3.2.2 Extension Operations

In order to interface with the Shared Bus process, QEMU needs to connect as a client to the master

server socket of the Shared Bus process and create its own server socket to allow incoming asynchronous

data from the bus. After connecting to the Shared Bus, a connect command is sent to signal the process

to wait for a server port to connect. QEMU follows by creating a server socket for the asynchronous

events and sends its resulting port to the Shared Bus process. The latter connects to it by dynamically
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Figure 3.11: Communication between Shared Bus socket pairs

creating a client connection. At this point, both QEMU and the Shared Bus, have a pair of sockets that

allow read/write operations and asynchronous data reception/transmission. This initialization process is

shown on figure 3.10 as a sequence diagram.

Upon connection of all socket pairs, the peripheral configured to interact with the emulated bus can

realize read and write operations on it. The write operation sends data to the Shared Bus which stores

it and broadcasts it to the other peripherals connected to the bus. This means that everytime a write on

the bus happens, every peripheral receives an asynchronous event and its the peripheral’s responsibility

to or not to attend to that event. This operation only goes through if the Shared Bus acknowledges the

write command, else no data is written on the bus and no broadcast is made. Figure 3.13 presents the

sequence diagram relative to this operation.

The read operation is a simple request and response operation for synchronous operations. Asyn-

chronous reads occurs when data is broadcast by the Shared Bus. Figure 3.14 shows the read operation

sequence diagram.
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Figure 3.12: QEMU connection to the Shared Bus
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Figure 3.14: Synchronous read operation on the Shared Bus

3.2.3 Extension Interface

The Shared Bus can be used by multiple QEMU communication peripherals of different types. To

improve portability and ease of development, the interface used by the peripherals should be abstracted

from the peripheral behaviour itself in order to avoid designing a specific interface for each peripheral. For

that purpose, an API that allows any QEMU peripheral to interface with the Shared Bus was developed and

its specification is presented on figure 3.15. The interface is composed by the following data structures:

• ClientSocket: socket descriptor for synchronous read and write operations;

• ServerSocket: server socket descriptor for asynchronous operations;

• SharedData: temporary storage for the most recent data from the bus;

• DataMutex: mutex for operations on peripheral memory;

• ServerThread: pointer to the asynchronous events thread, which will be discussed in more detail

next;

• write_on_shared: API for write operation on the Shared Bus;

• read_from_shared: API for read operation on the Shared Bus.

Alongside extending the interface, a mechanism that allows listening to asynchronous reads needs

to be implemented. This mechanism must not block execution since asynchronous events can happen

anywhere along execution timeline. To do so, a thread needs to run along main execution, monitoring the
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Figure 3.15: Shared Bus node interface diagram
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peripheral’s server socket for asynchronous data. An implementation of such thread is presented on figure

3.16. It monitors the server socket for any events and handles the data received. The data received is

written in the peripheral memory space if the peripheral’s configuration allows it so. Since the translation

block execution thread can also access peripheral memory space, read and write operations need to be

protected by a mutex, to guarantee no concurrent accesses. Beside writing on memory, if the peripheral

is configured to interrupt on asynchronous reads, the peripheral specific interrupt is asserted.

Listen to server socket and 
accept client connec�on

Start

Data on socket?No

Read data from socket

Yes

Peripheral 
configura�on 
accepts data?

Lock data mutex

Write data on peripheral’s 
memory

Unlock data mutex

Assert peripheral interrupt

Peripheral 
interrupt?

Yes

Yes
No
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Figure 3.16: Shared bus extension thread flowchart

In order to use the Shared Bus extension, the peripherals within QEMU need to have information about
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the available emulated buses to connect to. Each peripheral, depending on the type of communication,

is responsible to retrieve the correct master server socket port to initially connect to the Shared Bus. The

diagram on figure 3.17 shows an example usage where CAN and GPIO peripherals connect each to an

instance of the Shared Bus.
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Figure 3.17: Usage of multiple Shared Bus instances by multiple peripherals

For that purpose a command line argument was added to QEMU to signal the available Shared Bus

instances. The command arguments are presented on the following command line snippet:

$ qemu-system-arm [flags] -sb <bus type>=<server port>,

<bus type>=<server port>,...

From figure 3.17, the corresponding command that reflects such situation is:

$ qemu-system-arm [flags] -sb can=7777,gpio=8888

3.3 Fault Injection Extension

As mentioned on the previous chapter, fault injection can be used to evaluate reliability oriented

systems. By providing faulty stimuli, and by gathering information about the running state of the simulation,

the behaviour of the system can be evaluated on a software perspective, along with the efectivessness

of its fault tolerance mechanisms. Under that perspective, QEMU was extended to allow fault injection

capabilities on different system components.
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The extension is based on the research of Andrea Höller [72]. On her thesis, a virtualization-based

fault injection framework on QEMU (named FIES) was developed, aiming to assess fault tolerance during

software development. The framework supports several types of faults, with the ability to be injected

on different system components and at different emulation times, providing a wide use case reach. An

overview of the Fault Injection framework is presented on figure 3.18.

Figure 3.18: Fault injection framework from Andrea Höller PhD thesis [72]

As seen on the figure above, fault injection occurs during the dynamic translation of target code and

it is supported by several modules which assist the injection. During translation, all CPU and memory

operations are monitored in order to accurately inject faults. The framework injection capabilities include

the faults detailed on table 3.1. All these faults can be triggered by time, program counter value or memory

access, and all of them can be transient or permanent. Such capabilities provide a good starting point to

adapt framework functionalities in order to cover the needs of the case study that will be explored on the

next chapter.

The framework was developed for QEMU 1.7 and made public. This version of QEMU is outdated,

so the framework was ported into QEMU 4.1. Since a great effort would be needed to port all fault type



Chapter 3. Simulation Extensions for Reliability Development 76

Table 3.1: Details about fault locations and fault modes supported by FIES

Location Fault Name Fault Description

Memory Memory cell fault Change the content of addressed memory cell

Memory Address decoder fault Access an incorrect memory address

CPU Instruction decoder fault Replace an instruction by another instruction

CPU CPSR cell fault Change CPU condition flag value

Register Register cell fault Change CPU register value

Register Register decoder fault Causes an incorrect register to be addressed

modules to the new version of QEMU, only the required faults for the case-study were selected to be

ported. This resulted on the port of theMemory cell and Instruction decoder fault types.

3.3.1 Fault Injection Components

The fault injection extension follows a similar layout as the one on figure 3.18. It integrates some of

the components from the FIES framework and adds an external coordinator, as shown on figure 3.19.

The fault injection coordinator is responsible to generate faults, transmit them to the simulation instances

and make decisions according to their state, while the components within QEMU are responsible to decide

how and where the faults are injected. Each one of the fault injection components will be described next.

Fault Injection Coordinator

Fault Library

Monitor Controller

Status
Collector

Injector

Instruction
Decoder

Memory Cell

Peripheral
Access

Power

Fault List

Figure 3.19: Fault injection components

Fault Injection Coordinator This independent entity generates faults and creates a fault list with

them. Within the coordinator, the monitor manages incoming simulation connections for fault injection
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and controls simulations based on data received from the collector. Also within the coordinator, the fault

library generates the definitions of the faults using XML files. The schema of these files will be described

later on the section.

Controller This component decides how to inject faults according to the fault list. The faults specified

on the fault list remain on the system for a user-specified amount of execution time. Based on this

information and the QEMU built-in timer, the controller decides when and where a fault should be triggered

or stopped. The controller is parses the fault list, which comes as an XML file from the coordinator.

Injector The injector is the core of the fault injection. It contains functions and methods that allow

injection of the different types of faults. Faults can be of four different types which occur on different

execution locations: instruction decoder, memory cells, peripheral access and system power. According

to the faults present on the fault list received by the controller, the fault specific functions are called.

Collector The collector gathers information about the status of the simulation after any fault is

injected. The goal of this component is to gain knowledge on how the system responds to the fault by

retrieving the system’s internal execution status using monitor variables. This status is sent as feedback

to the coordinator monitor, allowing it to make decisions regarding simulation management.

3.3.2 Fault Types

As previously mentioned on the fault injector description, faults can occur on instruction decoding,

memory cells, peripheral access or system power. The first two were ported from the FIES framework

while the latter ones were added to cover the needs for the case-study. Besides these type of faults, a

clock fault type was also added, which is a type of fault addded specially for the case study. Each one of

these type of faults will be addressed on the next subsections.

Instruction Decoder

Instruction decoder faults occurs before execution of translation blocks, when the target code is disas-

sembled. This disassembling process happens on the translation block execution thread, specifically on

the arm_tr_translate_insn function. This type of fault replaces the current disassembled host instruction

by a different one. The before-mentioned type of faults are injected by modifying instruction variables

directly before the translation from target to host architecture occurs. At the moment of injection, the
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disassembled instruction is overwritten by the specified instruction on the fault definition and is later con-

verted to host instructions and added to a translation block. The diagram on figure 3.20 shows how and

where instruction decoding faults occur.

With this type of fault, one can observe two types of fault effects, on system-level and hardware-level.

On system level, instruction faults can mean code error or data error, if the instruction performs unintended

data manipulation. On hardware-level they can mean a fault on the code segment of system memory, any

fault from control flow violation or even faults on the internal CPU instruction decoders or registers.
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Host Operating System

Embedded application

Target code

Disassembler

Tiny code generator Host instructions

Intermediate code

7F 45 4C 46
03 00 01 00
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Disassembled code

replaced by

Figure 3.20: Injection of fault on instruction decoding

Memory Cell

Memory faults occur during read and write operations on physically addressable memory. Such

operations are monitored and as they are realized, available memory faults are injected. This is done by

checking the addresses on the R/W operations on QEMU’s Soft-MMU translation functions flatview_write

and flatview_read. Regarding write operations, before writing on the designated address, the value defined
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in the fault overwrites the value to be written on the memory space. On read operations, the value is not

overwritten on memory but the resulting value from the read operation is swapped by the value defined on

the fault. Both these possibilities are shown on figure 3.21. Such faults can be used to mimic system-level

fault effects such as data errors or hardware-level fault sources such as faults in RAM or data buses, or

even faults in the read/write logic of the RAM controllers.
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Figure 3.21: Faults during memory read and write operations

Peripheral Access

This type of fault prevents access to peripheral memory regions by the QEMU system bus. When an

access to a peripheral’s memory region is made, this type of fault blocks calls to the read/write operations

functions that emulate peripheral behaviour. Meaning that these type of faults makes the peripheral

unavailable for usage. This is done by monitoring memory access during both read and writes on the

QEMU system bus (functions memory_region_read_accessor and memory_region_write_accessor) and

blocking any access that matches the fault specified address. Figure 3.22 shows a diagram of this type

of fault, where interactions between an emulated peripheral and the system bus are blocked, preventing

transactions. Peripheral access blocks can be used to emulate real hardware faults on the peripherals,

such as component failure by power spikes or electrostatic discharges.

Power

Power faults aim to simulate a power failure on the system. This is done by forcing the QEMU instance

to reset the CPU and every peripheral using the native API qemu_system_reset_request. Although this

resets the simulation, the total simulation time is not affected, as QEMU keeps track of the simulation
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Figure 3.22: Injection of faults blocking peripheral access

time up until shutdown of the instance. This type of fault is particularly important for redundant systems,

since it allows to evaluate the system behaviour when a redundant module fails.

Clock

A special case of faults that were added to the extension are clock faults. This was added aiming to

emulate clock drift type of situations between redundant subsystems. Since QEMU does not emulate real

clock timings (code runs as fast as possible), real clock speed drifts are not possible to represent. With that

in mind, and knowing that all simulations obey to the synchronization process, a clock fault means loss

of synchronization between a simulation and the synchronization process. This is done by dropping the

communication between them and letting the simulation run at its own pace. Although it is not possible

to know exactly how much the simulation will be delayed or sped up in relation to other simulations, the

outcome is always considered a clock drift since execution speed varies in relation to the wall-clock time.

3.3.3 Fault Description XML file

Fault description and parameters are contained in an XML file, which is written by the coordinator and

read by the fault controller. This file contains the fault list, described by the following fields:

• <id> Defines fault ID

• <component> Location of fault: CPU (for instruction decoder), MEMORY, PERIPHERAL, POWER or

CLOCK
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• <params>

<address> Memory address to inject memory fault or peripheral address to block operations

<mask> Bit mask for memory fault or new instruction for instruction decoder fault

An example of an XML file containing faults is presented on the listing below.

1 < ? xm l v e r s i o n = ” 1 . 0 ” e n c o d i n g = ” UTF−8” ? >

2 < i n j e c t i o n >

3 < f a u l t >

4 < i d >1</ i d >

5 < componen t >CPU</ componen t >

6 < pa rams >

7 <mask >0 xE7FE0000 </mask >

8 </ pa rams >

9 </ f a u l t >

10 < f a u l t >

11 < i d >2</ i d >

12 < componen t > PER IPHERAL </ c omponen t >

13 < pa rams >

14 < a d d r e s s >0 x40048004 </ a d d r e s s >

15 </ pa rams >

16 </ f a u l t >

17 < f a u l t >

18 < i d >3</ i d >

19 < componen t >MEMORY</ componen t >

20 < pa rams >

21 < a d d r e s s >0 x20000174 </ a d d r e s s >

22 <mask >0 xFE </mask >

23 </ pa rams >

24 </ f a u l t >

25 </ i n j e c t i o n >

Listing 3.1: Example of a fault list XML file

3.3.4 Fault Injection Coordinator

The fault injection coordinator is responsible to generate the fault list as an XML file and manage

incoming and running simulation connections. The implementation of the coordinator is not generic and
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it is the developer burden to implement it in a way it satisfies the simulation needs. This is because the

Fault Library and simulation management decisions are case-study specific and depend on what the user

wants to observe as simulation result. With that in mind, the current section describes the coordinator

that was specifically designed for the case-study that will be addressed in the next chapter.

This coordinator starts by allowing QEMU simulations to connect to it through a TCP/IP socket. Upon

connecting, instances can request new fault lists. The fault list is generated according predefined faults

already present on the Fault Library. Everytime the simulations request a new fault list, a new list is created

from the predefined faults and the XML file is overwritten with this new list. After adding all the faults, the

instances are notified that a new fault list is available for reading. The sequence diagram on figure 3.23

shows the interactions between QEMU and the coordinator when a fault list is requested.

QEMU 
Instance

FI Coordinator

Connect to socket

Connected

loop

un�l simula�on
stops

Wait for fault 
requests

Fault list request

Generate fault 
list XML file

Fault list genera�on complete

Fault Injec�on

Figure 3.23: Fault request interactions sequence diagram

The data logged by the collector and read by the coordinator, allows to make decisions wether to

restart or keep simulations running in order to gather overview the simulation state. For example, if both

simulations keep running on an error state, it may be reasonable to restart the simulations to allow another

experiment to occur. Everytime a fault request occurs, the coordinator monitor checks the variables logged
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by the collector and makes a decision on the running state of the simulation. The flowchart on figure 3.24

presents the working principle of the coordinator, where simulations are reset upon an error condition.
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Figure 3.24: Fault Coordinator flowchart

3.3.5 Fault Injection Interface

For all fault injection purposes, a command line argument was added to define the coordinator port,

the name of the XML file that contains the library, the start time to inject faults, the fault time period
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which faults are requested and a list of monitor variables. An usage example is presented on the following

snippet:

$ qemu-system-arm [flags] -fi <server port>,<xml filename>,

<start time>,<time period>,<monitor variable list>

Before starting emulation, QEMU retrieves fault injection arguments and both connects to the coordi-

nator server and retrieves the addresses of the monitor variables. These addresses are retrieved by using

the Linux readelf command and getting the assigned addresses of the variables on the application .elf file.

After executing this command along with the .elf filename argument, the variable names are searched in

the resulting command output. Upon finding them, the corresponding addresses are added to the list of

variables to be logged upon fault injection. The flowchart on figure 3.25 shows the initialization process.

During runtime, fault requests are made at a timed period as provided by the user. This is done using

QEMU’s deadline timers assuring that injection is made at the correct time. At each deadline, monitor

variables are logged, providing feedback to the coordinator about the results of the injection. Then a new

fault list XML file is requested, read and parsed by the fault controller, in order to retrieve the next faults to

inject. For every fault present, the corresponding injection functions and methods are called to allow said

fault in the system. Since CPU and memory faults are injected through monitoring execution, these type

of faults are not immediately injected upon receiving the fault list. After all faults are injected, or signaled

for injection, a new deadline is created with the same time period that the user previously specified. The

injection process is presented on the flowchart on figure 3.26.

Before fault lists are requested, the data from the monitor variables are logged. These variables

are application specific and user specified at the start of the simulations. To get the data relative to

the monitor variables, QEMU’s native function cpu_memory_rw_debug is used to retrieve the data from

these variables, taking advantage of the soft-MMU capabilities to access application’s memory space.

The resulting variable values are saved on a file which both QEMU instances and the FI coordinator have

access.
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Figure 3.25: Fault injection initialization flowchart
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Figure 3.26: Fault injection flowchart
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3.4 Summary

This chapter described the extensions that were developed in the context of reliability development.

Three extensions were developed, tackling the problems that arise from simulation of multiple processing

system, and allowing for reliability estimation through simulation. These extensions were developed to be

integrated with QEMU, taking advantage of its full system emulation capabilities.

The Synchronization extension mitigates the synchronization issues that arise from simulating pro-

cessing systems independently. For that purpose, a time budget execution concept was implemented,

avoiding potential causality errors. The Shared Bus extensions allows for different simulations to commu-

nicate through their peripherals, enabling interactions between them. This was done by emulating data

buses, allowing peripherals to connect to them and make read and write operations on them. Lastly, the

Fault Injection extension provides support for reliability estimations, by allowing to inject faults in instruc-

tion decoding, memory, peripheral access and power supply. Alongside the description of the extensions

and their mechanisms, information about how to use the extensions was also provided, giving developers

the needed knowledge to take advantage of them.



Chapter 4

Case Study

The integration of the developed extensions presented on the previous chapter results in a simulation

environment that assists not only redundant architectures design and testing, but also evaluation of relia-

bility metrics. To validate such work, a case study that meets redundant architecture characteristics was

used. This chapter describes the case study that was chosen and demonstrates the work developed in

a practical context. The selected case study is the Steering Angle Sensor (SAS), which is an automotive

sensor that fits in a Steer-by-Wire paradigm.

The SAS is a joint effort between University of Minho and Bosch Technology and Development Center.

While Bosch dictated the requirements and initial architectural approach, the University team had great

influence on both hardware and software decisions. Under the system and product imposed requirements,

an iteration of hardware and software was developed by the University team, but in the context of this

dissertation, software will be the main focus.

The case study followed the previously proposed development flow for reliable systems, supported

by development methodologies that are part of the embedded development flow. The extent of the work

done on the case-study covers development phases up to reliability estimation of the system software. All

remaining steps that occur in parallel, such as hardware reliability estimation, will not be addressed in the

context of this dissertation.

4.1 Steering Angle Sensor

Advances made in the automotive sector over the last two decades are largely associated with the use

of Electric/Electronic (E/E) systems instead of mechanical systems [24]. The introduction of the Steer-by-

Wire concept fits these advancements as it aims to replace the mechanical linkage between the steering

wheel and the motor wheels with an E/E system. Under the Steer-by-Wire, the Steering Angle Sensor (SAS)

88
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is a solution, providing the handwheel angle that is used to steer the vehicle. As such, vehicle stability is

directly dependent on the correctness of this information and any discrepancies may lead to an accident.

Due to the fact that this type of system may lead to potential human hazard upon failure, it is classified

as the top Automotive Safety Integrity Level (ASIL), known as ASIL-D. This means that it must follow

reliability characteristics that allow the system to still operate in case of failure (fail-operational), which, in

this case, is mainly done by the use of redundancy.

Regarding the functional requirements, the SAS system must acquire angle data from the sensing

elements and send the processed angle via CAN every 10 milliseconds. For this purpose and to meet

fail-operational characteristics, the architectural concept that will support this system is presented in figure

4.1.

Subsystem 1
Gear angle 

info 1

Subsystem 2

GND1

GND2

Gear angle 
info 2

ECU

Figure 4.1: SAS architecture concept block diagram

The system is composed by two completely identical subsystems that perform the same operations

and run the same software. Both subsystems are isolated from each other, although there is a commu-

nication channel between them to exchange information. They both connect to the same output channel,

sending angle information through CAN bus. Both subsystems send the angle information every 20 mil-

liseconds, but one of them is 10 milliseconds delayed from the other. This way, the 10 milliseconds

output requirement is still accomplished, even when subsystem outputs happen every 20 milliseconds.

The diagram in figure 4.2 visually shows the messages sent by the subsystems in a timely manner.

If a subsystem fails, redundancy allows for the system to be operationalby reconfiguring the working

subsystem to meet the 10 milliseconds deadline. This mode of operation is named Fail Degraded and it

assures that the working module outputs a valid angle message every 10 milliseconds. The diagram in

figure 4.3 visually shows the messages sent in a timely manner when one of the subsystems fails.

Typically, development would start by gathering the requirements but since that was already done by

Bosch, this step was skipped and development started by modelling the application.
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Time
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Subsystem 1
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Angle Data Angle Data
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Angle Data
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20 ms Angle Data
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Figure 4.2: SAS angle messages timely diagram
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Failure

Angle Data
10ms
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Figure 4.3: SAS Fail Degraded angle messages timely diagram
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4.1.1 Application Modeling

The application modelling phase aimed to gather knowledge about the possible system tasks, by only

taking into consideration project requirements. Although redundancy is already a requirement, validation

in this phase contemplated the system without redundancy. This allows to have an insight about the

system behaviour regardless of its fault tolerance mechanisms, and their influence on the system.

This process of validation went through a software-only approach, implementing system tasks as

threads running on the host computer. The system was summed up in a threaded execution as presented

in figure 4.4, supported by the class diagram included in appendix C.1. From the diagram, three main

system tasks were identified: (1) a sampling task, which retrieves data from the sensing elements; (2) a

calculation task that applies an algorithm to convert the sample data to nominal angle value in degrees;

(3) a transmission task responsible to output the data from the system.

Task Angle Sampling

Producer-Consumer
Buffer

Sensor Sample
Data

Task Angle Calculation

Sensor Sample
Data

Producer-Consumer
Buffer

Angle Value

Task Transmission

Angle Value

Figure 4.4: System tasks modelling through threaded execution

After this validation, the next step is to design a system architecture that fits the project requirements.

This architecture provides the basis for both the software and hardware architectures that will be developed

on the design phase.

4.1.2 Architecture Modelling

A system architecture conceived from the concept in figure 4.1 was initially proposed by Bosch,

containing the needed components to tackle project requirements. The ESRG team suggested a change on

the architecture, which consisted in adopting an isolated communication channel between the subsystems,

instead of relying on combinational logic to inform about the operation state of the microcontroller. This

opens up the usage of various types of communication protocols, and the possibility to interchange more

complex message exchange between systems.

The resulting architecture and its constituent elements is depicted in figure 4.5. Each subsystem is

composed by a microcontroller, a CAN transceiver, and an external Watchdog, and can interact with each
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other using a communication channel. The subsystems are powered by independent power supplies,

avoiding possible common power faults. Each subsystem connects to a sensing element of the same

type, providing both subsystems with homogeneous information.

Subsystem 1

CAN
Transceiver

Watchdog

MicrocontrollerSensing element A

Power Supply A

CAN Line
Subsystem 2

Watchdog

CAN
Transceiver

MicrocontrollerSensing element B

Power Supply B

Figure 4.5: SAS system architecture diagram

Following the architecture design and project requirements, system functionalities were designed and

described as a state machine, providing an overview of its behaviour and allowing for easier validation. The

flow of the system will be described next, followed by sections of the state machine. The state machine

describes the behavior of a single redundant module, given that both modules will run the same software.

This means that the described behaviour happens on both subsystems, although not at the same time.

The full state machine is included in appendix C.2.

Both redundant modules start on a Reset state (figure 4.6). On this state, the microcontroller is

initialized, the CAN transceiver is enabled and an initial error check is made. This error check verifies the

occurrence of a previous watchdog reset or initializations errors. These errors are assumed to be Boot

Time Error Conditions. If no errors are found, both modules jump to a Race Condition state, otherwise

they are prevented from booting, entering Error State. The Error State is a state that disables all redundant

module functionalities by disabling the CAN transceiver and entering an infinite loop.

The Race Condition (figure 4.7) state solves the race condition that occurs when both redundant

modules access the CAN bus resource. In this state, both modules check for the two serial numbers
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Start

Race
ConditionError State

Not Boot Time Error ConditionsBoot Time Error Conditions

Reset

Figure 4.6: SAS state machine section (1)

stored on non-volatile memory, which correspond to the factory issued microcontroller serial numbers of

both redundant subsystems. Depending on this number, one of the modules takes the lead and is the

first one to transmit an angle value through the CAN bus. The remaining redundant module is delayed

by entering the Halt state, while the lead module jumps to the Angle Sampling state. When the delayed

module enters the Halt state, the modules no longer are on the same state at the same time. In the Halt

state, the delayed module waits for a synchronization pulse through the communication channel, which

occurs after 10 milliseconds passed, when the lead module transmits data.

Race condition lost

Race condition won

Race
Condition

Lead
Module

Sync pulse

Halt

Angle
Sampling

Figure 4.7: SAS state machine section (2)

The Angle Sampling (figure 4.8) state starts both the sampling sequence and a timeout value of 10

milliseconds, and jumps to Angle Calculation when the sensing elements have been sampled by the ADC.

On the Angle Calculation state, the nominal steering angle is calculated from the sampled ADC values.
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The first time a system goes through this state, the 10 millisecond timeout has no effect and the system

goes immediately to the Transmission state (if lead module) or to the Redundant Module Check (if delayed

module), accordingly to the previously solved race condition. In this same state (Angle Calculation), there

is also a check for a CAN transmission error from a previous CAN transmission, and if that happens, the

system goes to Error State.

Transmission Error

Timeout=10ms OR 
(Not Lead Mode AND First Transmission)

Angle
Calculation

Samples ready

Angle
Sampling

TransmissionError State
Redundant 

Module
Check

First Transmission 
AND 

Lead Mode

Figure 4.8: SAS state machine section (3)

The Redundant Module Check state (figure 4.9) verifies synchronization between redundant modules

by checking if a CAN transmission was made within a time window. If a transmission was made within

a time window of 2 milliseconds upon reaching this state, the module assumes correct synchronization

with the redundant module and stays in that state for 10ms. After this time, it jumps to the Transmission

state. If no transmission was made, the system assumes that there was an error by the redundant module

and goes to Fail Degraded state. This state ensures that the system has a correct throughput of the Angle

value every 10 milliseconds by both modules.

Timeout=10ms
AND 

Redundant Module Transmitted 

Transmission Fail 
Degraded 

Redundant module
not transmittedRedundant 

Module
Check

Figure 4.9: SAS state machine section (4)

Upon reaching the Transmission state (figure 4.10), there is a check if the redundant module is

transmitting data. If that is the case, it means that an error has happened and the system goes to the
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Error State. Otherwise, a synchronization pulse as feedback is sent through the isolated communication

channel indicating transmission. If no failure occurred at the moment this feedback is sent, the redundant

module is on Redundant Module Check state. Upon successful transmission, the module goes back to

the Angle Sampling state.

Angle
Sampling

Not CAN BusyCAN Busy

Transmission

Error State

Figure 4.10: SAS state machine section (5)

The Fail Degraded state (figure 4.11) is the state where, upon failure, the working module reconfigures

itself and assures a message throughput of 10 milliseconds. Upon entering this state, an indication of fail

degraded operation is saved on the non-volatile memory.

Fail 
Degraded

Transmission Timeout=10ms

Transmission Error 

Angle
Calculation

Samples ready

Angle
Sampling

Error State

Single Mode
Transmission

Figure 4.11: SAS Fail Degraded state machine

After system architecture and corresponding state machine completion, validation of the latter was

done to check if all the functional requirements were attended. After validation, development was split

into the hardware and software architecture design and implementation. As this dissertation is software

oriented, the hardware development will not be addressed.
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4.1.3 Platform Decision

Platform selection for this project was a Bosch decision. Due to the ASIL-D requirements of the project,

the S32K2 architecture by NXP, which is scheduled for AUTOSAR support, was selected. The platform was

not available at the start of the project, and to allow for an immediate start, an architecturally compatible

platform was adopted, more specifically the S32K1. The lack of AUTOSAR support for this platform led to

Bosch deciding to use to use a bare-metal environment for the application. Despite this decision, software

was agreed to follow the AUTOSAR API as closely as possible. This would enable easy future application

porting for the S32K2 platform in case of de facto full AUTOSAR support, and even module porting in case

of partial support availability.

As such, the platform used for the project was the S32K1 from NXP, more specifically, the S32K116

microcontroller. The platform is based on a 32-bit ARM Cortex M0+ machine within a SoC that is specially

designed for Automotive applications. The most important platform features for the project, regarding

peripherals, are: 12-bit Analog-Digital Converter, CAN modules, and a wide variety of peripherals.

4.1.4 Software Architecture

Based on the agreed requirements and restraints of the platform selection, the developed software

architecture is based on two layers: the Microcontroller Abstraction Layer (MCAL) and the Application. The

MCAL provides support drivers for the Application to interact with the hardware, while the Application layer

runs code relative to the system state machine, as previously shown. The diagram in figure 4.12 presents

the software stack used for the SAS. Initially, The ESRG team, only had the responsibility to develop the

MCAL, following the AUTOSAR interface specification and guidelines. As the project progressed and due

to other factors, the ESRG team also implemented the Application layer.

Microcontroller

Microcontroller Abstraction Layer

Application

Complex
Device
Drivers

Services
ECUAL

Developed following
AUTOSAR standard

Figure 4.12: SAS software stack



Chapter 4. Case Study 97

By Bosch decision, the software was set to be developed in C language, using the NXP native toolchain

for the chosen platform, which is based on the GNU Arm Embedded Toolchain.

Microcontroller Abstraction Layer

MCAL is the layer that interacts directly with the microcontroller hardware, providing drivers and the

needed interfaces for the upper layers to interact with it. Within the MCAL layer specification, there are

several modules that operate on microcontroller hardware modules, but not all of them are needed for

the case-study. The diagram in figure 4.13 shows the modules that were developed, to cover case-study

needs.

Microcontroller

Microcontroller Abstraction Layer

Application

Complex
Device
Drivers

Services
ECUAL

ADC CANGPTMCU PORT WDG

Figure 4.13: MCAL modules developed

The modules follow the specification of the AUTOSAR standard, providing all the necessary function-

alities and the correct interfaces. Each module is described as follows:

• ADC - The ADC module initializes and controls the internal Analogue Digital Converter Unit(s) of

the microcontroller. It provides services to start and stop conversions, enable and disable trigger

sources and notification mechanisms and routines to query the status of a conversion. The con-

versions can be continuous, being periodically done, or one-shot, and can be triggered by either

software or by hardware modules, such as a time peripherals. Additionally, the ADC can be con-

figured as streaming, allowing to save previous conversions in either circular or linear buffers, or

single access, discarding previous conversions. Internally, conversions are controlled by state ma-

chines, which greatly depend on how the ADC is configured. These state machines are specified

on the AUTOSAR standard.
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• MCU - The MCU module provides services for basic microcontroller initialization, run state, power

down and reset functionalities, and microcontroller specific functions required from other MCAL

software modules. This module is responsible for initializing modules such as peripheral clocks,

initialize memory regions, set the microcontroller power mode, etc.

• PORT - The PORT module applies to the on-chip ports and port pins, providing services to initialize

the whole port structure of the microcontroller. Assignment of pins can be made to peripherals

such as analog conversions, PWM output, general purpose I/O, etc.

• GPT - This module initializes and controls all the internal General Purpose Timer(s) (GPT) of the

microcontroller. The GPT module provides services to start and stop hardware timers, get timer

values and control interrupt triggered notifications. It is assumed that any timer module within the

microcontroller, that allows for multiple functionalities, is a general purpose timer, but the number

of timer channels controlled by the GPT module depends on the available hardware, implemen-

tation and system configuration. In this case, three timers were implemented, resulting in eight

independent timer channels.

• WDG - This module provides services for initialization, changing the operation mode and triggering

watchdogs. Since there is an external watchdog, this module was developed for both the internal

and external watchdogs.

• CAN - The CAN module provides services for initiating transmissions and managing callback func-

tions for notifying events. Since this module was initially meant to be provided by Bosch, only the

basic functionalities were developed.

Before starting MCAL development, the diagrams that specify each module were designed as a way

to guide further development. The diagrams include class diagrams, use cases and sequence diagrams.

The class diagrams, as the one presented in figure 4.14, define the interfaces used on each module,

which are specified by AUTOSAR. The full version of the class diagrams developed for each module are

shown on appendix C.3.1.

The use case diagrams identify, for each functionality, the required microcontroller hardware periph-

erals and the dependencies on other software modules. An example of a simplified use case diagram for

the ADC module is presented in figure 4.15. The ADC module interacts with other MCAL modules such

as the MCU and PORT, in order to initialize itself. It also accesses peripherals or hardware modules such
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Adc

CurrentConfig : Adc_ConfigType *
CurrentGroup : Adc_GroupType

Adc_Init(const Adc_ConfigType* ConfigPtr) : Std_ReturnType

Adc_SetupResultBuffer( Adc_GroupType Group, const Adc_ValueGroupType* DataBufferPtr) : Std_ReturnType
Adc_StartGroupConversion(Adc_GroupType Group) : void
Adc_StopGroupConversion(Adc_GroupType Group) : void
Adc_ReadGroup(Adc_GroupType Group, Adc_ValueGroupType* DataBufferPtr) : Std_ReturnType  
Adc_EnableHardwareTrigger(Adc_GroupType Group) : void  

Adc_GetGroupStatus(Adc_GroupType Group) : Adc_StatusType
Adc_GetStreamLastPointer(Adc_GroupType Group, Adc_ValueGroupType** PtrToSamplePtr) : Adc_StreamNumSampleType  

Adc_DeInit(void) : void

Adc_Pdb_Init (void) : void

Adc_DisableHardwareTrigger(Adc_GroupType Group) : void

...

Figure 4.14: Section of the ADC module interface diagram

as the PDB and ADC to configure the hardware level registers. Under other interfaces, such as reading or

starting conversions, the module only needs to interact with the ADC peripheral. The remaining use case

diagrams are included in appendix C.3.2.

ADC Module

Adc ini�aliza�on Peripheral clock configura�on<<include>>

DMA configura�on

<<extend>>
Interrupt request configura�on

<<include>>

Read group conversion
Start conversion

ADC trigger source 
configura�on

MCU Module

NVIC

DMA

PDB

Port Module

Port configura�on

<<include>>
<<include>>

ADC

Access ADC registers

<<include>>

<<include>>

<<extend>>

Figure 4.15: ADC module use cases diagram

The sequence diagrams specify the transactions between the modules identified on the use case

diagrams. Such diagram joins both the class diagram specification and use case interactions to further

clarify how to use the interfaces specified on the class diagram. A simplified example sequence diagram

for the ADC module is presented in figure 4.16. The simplified diagram shows only the interactions with
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the ADC peripheral and the PDB peripheral, although one can see from the use case diagram that several

other interactions occur when a MCAL interface is used. The remaining sequence diagrams are presented

on appendix C.3.3.

ADC MCAL 
Module

User

Adc_Init

Adc_Init (const Adc_ConfigType * )

ADC 
Peripheral

Adc_StartGroupConversion (Adc_GroupType)

Adc_StartGroupConversion

Start conversion (group)

Adc_SetupResultBuffer (Std_ReturnType, Adc_GroupType, 
Adc_ValueGroupType * )

Adc_SetupResultBuffer

Register configura�on

Configured registers

Start conversion

PDB 
Peripheral

Register configura�on

Configured registers

Figure 4.16: ADC module sequence diagram

SAS Application

Implementation of the application layer closely followed the state machine previously described, as

the implementation on bare-metal eases a direct transposition from state machine to software. During the

implementation, care was taken when mapping the behaviour and actions into MCAL functions, in order

to correctly interface the application with the hardware. All the actions mentioned on the state diagrams,

such as ”initialize microcontroller ADC...” and ”start timer”, were mapped into MCAL functions such as

ADC_Init and Gpt_StartTimer. Since there are no middle layers between the application and the MCAL, the

application is responsible to create the necessary structures to configure all the MCAL modules and call

the necessary interfaces to manipulate the hardware. An example of the interface between the application

and the MCAL, is presented in figure 4.17 which regards the ADC initialization on the Reset state of the

application. In the sequence diagram it is possible to see the initialization of the ADC peripheral using the

MCAL interfaces, Adc_Init and Adc_SetupResultBuffer.

Since the functionalities are already presented on the previous section, the particular implementation

will not be explained in-depth. For a more detailed overview of the implementation, each state is presented

on the flowcharts include in appendix C.4.
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Applica�on
ADC MCAL 

Module
Hardware 

Peripherals

Adc_Init (config structure)

Create ADC 
config structure

Set ADC config structure 
SW triggered

Set ADC config structure 
for 4ms conversion �me

Set ADC config structure 
to convert 8 channels

Register configura�on

Configured registers

Adc_Init (config structure)

Adc_SetupResultBuffer (group 1, pointer )

Adc_SetupResultBuffer

Figure 4.17: Example usage of the MCAL ADC module during Reset state
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4.2 Application simulation using QEMU

With software development finished, the next step was to simulate and validate the software, in order

to find any implementation errors or possible improvements by design reiterations. For this purpose, the

SAS platform was created as a QEMU machine, emulating its real behaviour and allowing for reliability

estimations, as will be shown later on the chapter.

4.2.1 Target machine on QEMU

In order to emulate the SAS platform on QEMU, a new machine that reflects the platform’s behaviour

was created from scratch and added to QEMU. Before any development was made, a gathering of the

needed peripherals and hardware modules was made, which resulted on the list presented in figure 4.18.

The list contains the peripherals divided by modules and the addresses that will be used to map each in

machine memory space.

Uart

LPUART0 40069000

LPUART1 4006A000

Peripheral Address

Mcu

SCG 40064000

PCC 40065000

Peripheral Address

PMC 4007D000

SMC 4007E000

RCM 4007F000

Port

PORTA 40049000

PORTB 4004A000

Peripheral Address

PORTC 4004B000

PORTD 4004C000

PORTE 4004D000
Adc

ADC0 4003B000

PDB 40036000

Peripheral Address

General Purpose Timers

LPIT0 40037000

FTM0 40038000

Peripheral Address

FTM1 40039000

Wdg

WDOG 40052000

Peripheral Address

Gpio

PTA 400FF000

PTB 400FF040

Peripheral Address

PTC 400FF080

PTD 400FF0C0

PTE 400FF100

SIM 40048000

Can

FLEXCAN0 40024000

Peripheral Address

Figure 4.18: QEMU S32K116 machine peripherals

Upon gathering all the required on-chip peripherals, the machine itself was designed to support all

these modules. The diagram in figure 4.19 presents a small section of the class diagram that specifies both
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the machine and all the peripherals contained on it. The machine matches the target platform, ARMv7, and

contains the attached peripherals as objects. The peripherals contain the respective hardware registers

and the needed functions to emulate their behaviour. The full class diagram for the S32K116 machine is

presented on appendix D.2. One thing to notice is that the communication peripherals LPUART, CAN and

GPIO were extended to interact with the Shared Bus, thus they depend on the interface specified on the

last chapter.

S32K116State

parent_obj : SysBusDevice
cpu_type : char*
armv7m : ARMv7MState
lpuart[S32K_NUM_LPUARTS] : S32KLpuartState
adc : S32KAdcState

lowpower�mer : S32KLpitState  
flex�mer[S32K_NUM_FTMS] : S32KFtmState
watchdog : S32KWdogState
can : S32KCanState
port[S32K_NUM_PORTS] : S32KPortState
gpio[S32K_NUM_GPIOS] : S32KGpioState
scg : S32KScgState
pcc : S32KPccState
smc : S32KSmcState
rcm : S32KRcmState
sim : S32KSimState

pdb : S32KPdbState

S32KAdcState

parent_obj : SysBusDevice
mmio : MemoryRegion

adc_sc1[16] : uint32_t
adc_cfg1 : uint32_t

adc_r[16] : uint32_t
adc_sc2 : uint32_t

adc_cfg2 : uint32_t

adc_sc3 : uint32_t

irq : qemu_irq

adc_get_trigger_mode(void) : uint32_t
adc_generate_values(void) : void

s32k_adc_write(void *, hwaddr, unsigned 
int, unsigned int) : void

s32k_adc_read(void *, hwaddr, unsigned 
int ) : uint64_t

s32k_adc_reset(DeviceState * ) : void
s32k_adc_init(Object * ) : void

Figure 4.19: S32K116 machine and peripherals class diagram example

Machine development started by implementing the SoC of the target machine without any peripheral.

This includes setting the correct processor architecture, which in this case was the ARMv7, create the

memory map and configure the IRQ vector. The snippet below shows an extract of the memory mapping

and processor assignment for the target machine.

1 s t a t i c v o i d s 3 2 k 1 1 6 _ s o c _ r e a l i z e ( D e v i c e S t a t e * de v_ s o c , E r r o r ** e r r p ) {

2 . . .

3 Memo r y R e g i o n * s y s t em_memo r y = g e t _ s y s t em_memo r y ( ) ;

4 Memo r y R e g i o n * s ram = g_new ( Memo r yReg i o n , 1 ) ;

5 Memo r y R e g i o n * f l a s h = g_new ( Memo r yReg i o n , 1 ) ;

6 m em o r y _ r e g i o n _ i n i t _ r a m ( f l a s h , NULL , ” S32K116 . f l a s h ” , FLASH_S IZE , &

e r r o r _ f a t a l ) ;

7 m em o r y _ r e g i o n _ a d d _ s u b r e g i o n ( s y s t em_memory , FLASH_BASE_ADDRESS , f l a s h ) ;

8 m em o r y _ r e g i o n _ i n i t _ r a m ( sram , NULL , ” S32K116 . s ram ” , SRAM_SIZE , &

e r r o r _ f a t a l ) ;
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9 m em o r y _ r e g i o n _ a d d _ s u b r e g i o n ( s y s t em_memory , SRAM_BASE_ADDRESS , s ram ) ;

10 armv7m = DEV ICE (& s−>armv7m ) ;

11 q d e v _ p r o p _ s e t _ u i n t 3 2 ( armv7m , ”num− i r q ” , 3 2 ) ;

12 . . .

Listing 4.1: QEMU machine processor configuration snippet

After creating the machine with basic configurations, peripherals were added to it. For every peripheral

described on the previously mentioned class diagram, at least one source file and an header file were

developed. The header file contains not only the interfaces but also the memory offsets and sizes of the

peripheral registers. The source file contains reset, write and read functions that emulate the behaviour

when such operations occur, other QEMU specified functions and behaviour help functions. The snippet

below provides an example of a read function of the developed ADC peripheral.

1 s t a t i c u i n t 6 4 _ t s 3 2 k _ a d c _ r e a d ( v o i d * opaque , hwadd r add r , u n s i g n e d i n t s i z e )

{

2 S 3 2 K A d c S t a t e * s = opaque ;

3 . . .

4 e l s e i f ( a d d r >= ADC_R_OFFSET && a d d r < ADC_R_END ) {

5 u i n t 3 2 _ t i n d e x = ( ( a d d r − ADC_R_OFFSET ) / ADC_REG_OFFSET ) ;

6 s−>ad c_ s c 1 [ i n d e x ] &= ~ADC_SC1_COCO_MASK ;

7 i f ( ( s−>ad c_ s c 1 [ i n d e x ] & ADC_SC1_AIEN_MASK ) ! = 0 ) {

8 q em u _ s e t _ i r q ( s−> i r q , 0 ) ;

9 }

10 r e t u r n s−>a d c _ r [ i n d e x ] ;

11 }

12 e l s e {

13 s w i t c h ( a d d r ) {

14 c a s e ADC_CFG1_OFFSET :

15 r e t u r n s−>a d c _ c f g 1 ;

16 c a s e ADC_CFG2_OFFSET :

17 . . .

18 }

These functions are assigned as callbacks in the MemoryRegionOps structure which is registered in

the correct memory regions on the module initialization (init function). This initialization function, which all

modules contain, assigns the correct interrupt request to the peripheral, registers the peripheral into the
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correct memory region and sets its memory size. The snippet below shows an example of an initialization

function. To show all functions put together, the full version of a peripheral is included in appendix D.1.

1 s t a t i c c o n s t Memo r yR e g i o nOp s s 32 k_ a d c _ o p s = {

2 . r e a d = s 32 k_ a d c_ r e a d ,

3 . w r i t e = s 3 2 k _ a d c _ w r i t e ,

4 . e n d i a n n e s s = DEV ICE_NAT IVE_END IAN ,

5 } ;

6 s t a t i c v o i d s 3 2 k _ a d c _ i n i t ( O b j e c t * o b j )

7 {

8 S 3 2 K A d c S t a t e * s = S32K_ADC ( o b j ) ;

9 c u r r e n t _ d e v i c e = s ;

10 s y s b u s _ i n i t _ i r q ( SYS_BUS_DEV ICE ( o b j ) , &s−> i r q ) ;

11 m e m o r y _ r e g i o n _ i n i t _ i o (& s−>mmio , o b j , & s32k_adc_op s , s , TYPE_S32K_ADC , 0

x208 ) ;

12 s y s b u s _ i n i t _ mm i o ( SYS_BUS_DEV ICE ( o b j ) , &s−>mmio ) ;

13 }

After developing the required peripherals, they were attached to the machine. The attachment proce-

dure is presented on the snippet below. It starts by specifying the bus device that will be added, which

in this case is the ADC. Then, the device is registered on the correct memory address. During this step,

the memory assignment of the machine has already happened, meaning that MMIO devices can be safely

mapped. After registering it on memory, the peripheral’s interrupt request is assigned to the correct IRQ

table vector position and the device is attached to the QEMU system bus.

1 . . .

2 /* A t t a c h ADC */

3 d e v = DEV ICE ( & ( s−>adc ) ) ;

4 o b j e c t _ p r o p e r t y _ s e t _ b o o l ( OBJECT (& s−>adc ) , t r u e , ” r e a l i z e d ” , & e r r ) ;

5 i f ( e r r ! = NULL ) {

6 e r r o r _ p r o p a g a t e ( e r r p , e r r ) ;

7 r e t u r n ;

8 }

9 b u s d e v = SYS_BUS_DEV ICE ( d e v ) ;

10 sysbus_mmio_map ( bu sde v , 0 , 0 x4003b000 ) ;

11 s y s b u s _ c o n n e c t _ i r q ( bu sde v , 0 , q d e v _ g e t _ g p i o _ i n ( armv7m , 28 ) ) ;

12 . . .
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13 s y s b u s _ i n i t _ c h i l d _ o b j ( o b j , ” adc ” , &s−>adc , s i z e o f ( s−>adc ) ,

TYPE_S32K_ADC ) ;

14 . . .

The machine with all the peripherals was wrapped in a development board, which allowed to add

on-board devices. This was needed since the SAS’s architecture presented an external watchdog. The

emulation of on-board devices does not follow the same development layout as previously shown, as these

devices are not attached to the QEMU bus nor are registered in the machine’s memory space. As such,

the external watchdog was developed to use QEMU’s native deadline timers as a way to emulate real

watchdog timed behaviour.

Upon finishing development, the platform was ready to be used on QEMU. For this purpose, a new

entry was added to the native supported machines, in order to allow the developed machine to be used.

The usage of the machine is shown on the following snippet:

$ qemu-system-arm [flags] -machine s32k116evb

To add all the peripherals and machines to QEMU, the internal Makefiles needed to be extended in

order to compile the new modules. Some of of the changes made are shown on appendix D.5.

4.2.2 Validation of the SAS application

With the completed target machine and the simulation extensions developed on the previous chap-

ter, the SAS application could be correctly emulated. The emulation environment combined two QEMU

instances, one for each redundant module, two Shared Bus instances, for CAN data output and GPIO for

communication between redundant modules, and one synchronization process, as seen in figure 4.20.

All these entities executed on different terminals under a Linux environment, as shown in figure 4.21.

On the right side of the figure, the two terminals are the QEMU running instances that emulate each one

of the redundant subsystems. The terminals output the monitor variable CurrentState that was chosen

on the command line argument. The printed values ’5’ and ’7’ correspond to the internal state of the

application which, on this context, meant that the program is jumping from Angle Sampling to Redundant

Module Check every 10 milliseconds.

On the bottom left side, the synchronization process shows the time increments of both instances.

This value matches the user chosen value of 50016 nanoseconds for the time budget, which for the case

study is very conservative since the maximum tested time budget was 500000 nanoseconds. On the top
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TCP/IP
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TCP/IP
Port 7779

TCP/IP
Port 7777

Figure 4.20: Co-simulation environment diagram

left, the CAN bus shows messages that are sent from both redundant subsystems, alongside with the

timestamp at which they were sent. As seen in the figure, the messages are sent every 10 milliseconds,

validating the initial system requirement. The process that handles the GPIO bus is not shown since it

follows similar layout of the CAN bus.

Figure 4.21: Co-simulation environment running the SAS application (1)
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As one of the redundant module fails, which in this case was done by shuting down one of the in-

stances, the system correctly enters Fail Degraded operation, as seen in figure 4.22. The internal state

maintains a value of ’10’, meaning Fail Degraded state, and the messages are still sent every 10 millisec-

onds, as seen on the CAN bus output. At the moment of redundant module failure, the synchronization

process disconnects from the module that was shut down since it is not needed for further synchronization.

Figure 4.22: Co-simulation environment running the SAS application (2)

The test regarding redundant module failure was destructive, meaning that, upon failure, the redun-

dant module did not boot again. To validate the system on non-destructive failures, such as a micro-

controller reset or clock drifts, the power and clock faults from the Fault Injection extension were used

to mimic such behaviours. Upon injecting a power fault, the module that was powered down correctly

entered a permanent Reset state and was constantly being reset by the external watchdog, while the other

one entered Fail Degraded operation. Upon injecting a clock drift fault, both redundant modules entered

Fail Degraded operation, sending messages every 10 milliseconds. Although it does not go against the
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initial requirements, this behaviour is an issue to consider on possible design reiterations. To possibly mit-

igate this issue, the redundant modules should adopt a more complex protocol when it comes to deciding

about the operating states.

4.3 Reliability Estimation

Despite the fact that there were no required reliability metrics to achieve, the system still went through

a reliability analysis as a proof of concept of simulation-based estimations using the work developed on the

previous chapter. For this purpose, the system went through Monte Carlo simulations to get an estimation

of its reliability metrics. During each simulation, faults were injected into system components, according

to their failure distributions, emulating failures on: system power, microcontroller, CAN communication,

clock integrity, isolated communication channel and sensing elements. The faults were generated for

each redundant subsystem independently, so they can occur on one redundant subsystem and not on the

other. The diagram in figure 4.23 shows the possible faults mapped into system blocks.

Subsystem 1

CAN
Transceiver

Watchdog

MicrocontrollerSensing element A

Power Supply A

CAN Line
Subsystem 2

Watchdog

CAN
Transceiver

MicrocontrollerSensing element B

Power Supply B

Clock

Clock

Figure 4.23: Subsystem blocks susceptible to faults
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Each simulation trial aimed to execute until system failure or up until a total time of 1500000 hours

of component operating time. Since there was not enough data to get an accurate probability of failure

distribution of each component, failure rate probability curves were created according to the MTBF values

of the components. The curves were parameterized to fit a Weibull distribution, alongside with a cumulative

failure rate of 1× 10−4 in the first 100 hours. Figure 4.24 shows the resulting probability density and

cumulative density curves when the component mean time before failure is 2.5× 105 hours. The MTBF

values used for each system block are presented in table E.1.

Figure 4.24: Parameterized failure probability density curves

Regarding the simulations, each Monte Carlo step was considered to represent 10 hours of component

lifetime. For this purpose, the previously generated curves were integrated into periods of 10 hours,

dictating the correct failure probability at each simulation step.

4.3.1 Fault Modeling

To induce failure on different system blocks, different faults were modelled. The possible faults were

specified as following:

• Microcontroller - Inject a CPU fault and overwrite the current translated instruction to value 0xE1A0.

This new instruction, on ARM Thumb architecture, is an absolute jump instruction to an address

out of application range. This renders the microcontroller unable to execute further instructions.

• Power supply - Inject the power specific fault to reset the simulation.
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• Clock integrity - Inject the clock specific fault, dropping synchronization between redundant mod-

ules.

• CAN communication - Block access to the CAN peripheral, by injecting the peripheral access fault

on address 0x40024000.

• Communication Channel - Block access to the GPIO C peripheral which is connected to the com-

munication channel, by injecting the peripheral access fault on address 0x4004B000.

• Sensing Elements - Use the memory fault to overwrite the memory of the ADC sampling result regis-

ters with randomly generated values. The target address ranges from 0x4003B048 to 0x4003B068.

4.3.2 Simulation Environment Wrapper

The simulation environment used for fault injection used the same entities as the one used to validate

the SAS, alongside the Fault Injection Coordinator, implemented as a Python script, controlling simulation

trials. The resulting environment is shown in figure 4.25.

QEMU Instance

TCP/IP
Port 7778

Redundant subsystem

CAN Bus

QEMU Instance

Redundant subsystem

TCP/IP
Port 7779

GPIO

FI
Interface

TCP/IP
Port 7778

FI
Interface

CAN CAN GPIO

TCP/IP
Port 7779GPIO Bus

TCP/IP
Port 7777

TCP/IP
Port 7777

Synchronization
Process

TCP/IP
Port 8000

TCP/IP
Port 8000

FI Coordinator
(Python script)

Figure 4.25: Co-simulation environment used for simulations

The script used was an extended version of the Fault Injection Coordinator flowchart that was presented

on the previous chapter. At startup, the script retrieved all fault distributions for each component from

the parameterized curves. The Fault Library was also created, containing the needed faults for each

component.

To ease system behaviour analysis during the simulations, it was assumed that the subsystems op-

erated in three possible states: state ’OK’, in which both redundant modules correctly sent the angle
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information every 20 milliseconds, with a 10 milliseconds offset; state ’FD’, in which the subsystem is

in fail degraded operation, and state ’KO’, meaning that the subsystem fails to send any angle message.

This latter state is assumed to be a system failure state.

During simulation, faults were injected until system failure, which was known by checking the status of

both simulations from the monitored variables. If both simulations were ’KO’, the current simulation trial

is over and the final emulation time was saved, as it was considered system failure. When this happened,

a new trial started by restarting simulations. If the system was still operating normally or in fail-degraded,

the trial continued by generating new faults until system failure. New faults were created by generating

random values during runtime and checking them against the fault probabilities. The resulting simulation

states, simulation time and the injected faults were all logged into a text file for later processing. The

script flowchart is presented on appendix E.2. Regarding simulation speed, each 10 hour increment of

component lifetime (or Monte Carlo step) during the trials took approximately 75ms to complete.

4.4 Simulation Results

The simulations resulted in 181 trials, 10 of which reached the maximum simulation time of 1500000

hours of component lifetime, with the remaining ones resulting in system failure. The resulting distribution

of the times before failure from the trials are presented in figure 4.26. From the collected data, the resulting

system mean time to failure value is greater than 378797 hours.

The cumulative distribution function of the resulting data is presented in figure 4.27. This function is

equivalent to the unreliability function.

Although the system presented such time before failure, certain faults caused the system to output

wrong data while still being in an operational state. This behaviour was caused by the occurrence of sensor

faults. In order to get an overview about the time the system outputs wrong data while being operational,

the distribution in figure 4.28 shows the data relative to such behaviour. The resulting mean time before

wrong data output is 194361 hours.

Since the amount of simulation data was low comparing with the original plan of 10000 trials, ensem-

ble methods were applied to try to gather a better approximation of the uncertainty of the data. First, the

bagging method was applied to the original time before failure data. From the original data, 10000 sets of

20 samples were bootstrapped, resulting on data with a mean value of 379148 hours and a standard

deviation of ±36302, as seen in figure 4.29.
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Figure 4.26: Histogram and probability density function of the simulation results

Figure 4.27: Histogram and cumulative distribution function of the simulation results
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Figure 4.28: Distribution of the probability of wrong data output by the system

Figure 4.29: Distribution of the mean time to failure after applying bagging method
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On the resulting data from bagging, a boosting method was applied. From the bootstrapped sets, each

one was assumed to be a different estimation of the mean time to failure. The boosting process followed

the algorithm presented on section 2.4.1. The hypothesis was assumed to be equal to the population mean

(378797 hours). Consequently, the comparison between the hypothesis and the estimation was expressed

into an error calculation where I(yi 6= Gm(xi)) =
xi−mean
mean

. The algorithm ran for 10 iterations and the

results of both the weighted mean of each estimation and the alpha weights are presented on table 4.1.

Table 4.1: Results of each iteration of the Boosting method

Iteration Alpha weight Mean

1 0.272 357076.826

2 0.109 349373.807

3 0.096 343060.015

4 0.088 337670.933

5 0.082 332963.504

6 0.077 328786.569

7 0.073 325036.849

8 0.070 321639.555

9 0.068 318538.394

10 0.065 315689.836

After all the iterations, each estimation was weight averaged, which resulted on the time before failure

distribution in figure 4.30. The distribution presented a mean value of 338910 hours and a standard

deviation of±14566 hours. Comparing the original data with the Boosting results, it can be seen that the

difference between means is around 10%.

Under the same context, the data regarding the times before wrong system output went through the

bagging and boosting process. First, bagging was applied, generating 10000 sets of 30 samples resulting

on data with a mean value of 194392 hours with a standard deviation of±9804 hours. Then, boosting

was applied, following the same algorithm and number of iterations used on the time before failure data.

The process resulted on a data distribution with a mean value of 184991 hours with a standard deviation

of 4149 hours, as shown in figure 4.31. Comparing with the original data, the difference between means

is around 4.8%.

Regarding fault occurrence, the histogram in figure 4.32 shows the amount of faults occurred before

system failure. The data shown on the histogram disregards the operational state of the redundant sub-

systems, meaning that, even if a subsystem was already on a failure state, the occurred faults were still

considered. Since there were two redundant subsystems, the maximum possible amount of faults was

12, since 6 types of system block faults could happen in each module. Due to the fact that the system has
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Figure 4.30: Distribution of the mean time to failure after applying boosting method

Figure 4.31: Distribution of the time before wrong system output after applying boosting

method
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components that do not contribute to system failure i.e, faults on such components are not destructive

for the system, it tolerated a significant amount of faults before failing.

Figure 4.32: Fault occurrence before system failure

4.5 Deployment on the hardware platform

An iteration of the SAS software was deployed on the hardware platform before the simulation-based

validation was done. This step was done to allow the accelerated tests to be started as early as possible,

supporting another dissertation that was developed at the same time as this one, by another member of the

research group. This was an exception made to avoid delaying progression of the mentioned dissertation.

During testing of the deployment, a design bug regarding redundant module synchronization was

detected and mitigated on a new version of the design (which is already contemplated on the previously

presented system state machine) and on the resulting software. Also, an issue that arises from clock drifts

between redundant modules was also observed, which was then confirmed during the simulation. The

debugging of these problems took a considerable amount of time and could have been avoided if system

simulation was made prior to the deployment.
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Conclusion

By developing this dissertation, different knowledge areas were tackled and skills that will surely trans-

pose into further projects were solidified. Knowledge areas included reliability oriented and embedded

system development and design, reliability estimation, full-system emulation through QEMU, adequate

software development, Linux operating system and its internal mechanisms, network sub-systems and

Python scripting.

Regarding the work developed on this dissertation, the simulation extensions assist reliability oriented

development, aiming mainly for redundant architectures. Since reliable systems do not have a well defined

development flow, the usage of co-simulation environments supported by such extensions aid development

from the design phase up until testing. Design iterations and respective software stacks can be validated

before any physical prototype is available, reducing the overall development effort and time. The addition

of the fault injection capabilities also support early reliability estimations, avoiding possible reiterations

later on the development cycle.

The problems that were observed upon deployment of the SAS software on the hardware platform,

confirmed that validation through simulation is an advantage to the development cycle. The usage of a

solid simulation environment can prevent errors late on the development cycle, reducing time spent on

debugging or even avoiding the need for it.

Developed software based on AUTOSAR did not directly affect system reliability by providing fault

tolerance mechanisms, but instead gave foundation to the software architecture and helped avoiding

typical design bugs. Although it made software design sturdier, the used methodologies are already

based on classical software development standards, which are not new and are already widely adopted in

numerous other development fields.

In regards to the fault tolerance mechanisms used on the case study, only hardware redundancy was

considered, leaving the software to only manage it. Other types of fault tolerance mechanisms could be

118
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implemented on software but such mechanisms were not implemented since, at the time, they were not

a priority.

About the simulation results, the system used for the case study presented a mean time to failure of

about 338910 hours (39 years). Although the system is operational up until this time, it starts outputting

wrong data at a mean time of 184991 hours (21 years). This results from the lack of data sanity checks

by the system, leaving the ECU to deal with wrong data outputs.

The usage of the homogeneous redundancy technique on the case-study showed that this technique

has limitations when aiming for highly reliable redundant architectures. As system components present

the same characteristics, component failures can affect the redundant modules at similar times with the

same probability. This means that redundant modules following the same failure distribution would fail at

similar times, not taking full advantage of redundancy capabilities.

The project partnership between the University and Bosch provided a better understanding of how

projects are tackled in the industry. Such partnership allowed to experience great aspects from both

worlds: the knowledge and freedom to experiment from the University, and the product development

methodologies and team organization practices from the real industry. These aspects help to pave the

way for the entry in the labor market by providing experience on how real industry works.

5.1 Future Work

Concerning possible future work, there are several improvements and additions that can enhance the

general performance and usability of the simulation extensions.

Firstly, it is decisive to increase the overall performance of the fault injection mechanisms. This will

allow for increased throughput when performing simulation trials. This improvement could be imple-

mented by replacing current fault request mechanism during runtime to an initialization time mechanism,

by creating, reading and parsing the fault list during QEMU’s initialization.

Secondly, the fault injection capabilities could be extended to allow more types of faults with different

characteristics. The step towards this direction could be to port all the remaining fault types of the FIES

framework, allowing a wider range of use cases covered by the FI extension.

Thirdly, the synchronization process should be tested with heterogenous architectures. Due to the

fact that the case-study only covered a homogeneous architecture, this test is important to validate the

usage of this synchronization method on different types of redundant architectures. The test should mostly
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focus the internal synchronization mechanism of QEMU, since it is significantly more complex than the

synchronization process itself. By validating the usage on both types of architectures, it opens doors for

experimentation on different kinds of architectures. Alongside this advantage, this could also allow for a

further exploration when it comes to emulating Lockstep processors.

Fourthly, the Shared Bus peripheral interface within QEMU could also be redesigned to use only one

thread per Shared Bus instance instead of one per peripheral. This could reduce peripheral overhead and

ease of development, although it is not known if this change is trully advantageous. Also, on the current

version of the Shared Bus, peripherals always use localhost IP address to connect to the instances. To

support instances within a different computer or different networks, the IP address should be given on

QEMU’s argument command line, allowing to have networked communication between peripherals.

Finally, since the extensions developed fit under co-simulation, FMI support could be added to QEMU,

adopting the usage of both the Shared Bus and the synchronization extensions under the FMI standard.

This would be a significant upgrade on the usability of QEMU with the extensions, since it would allow

other domains to easily integrate a co-simulation environment. Such integration could open possibilities

for more complex experiments between domains.

Regarding the case-study, besides the imposed requirements by Bosch, there are some improvements

and different designs that could be explored. One of the improvements regards the communication proto-

col used to exchange messages between redundant modules, which is a simple digital feedback. A more

complex communication protocol could allow for a better synchronization management and decisions be-

tween the redundant modules. Relatively to the system architecture, an heterogenous approach could

be explored, by having different types of microcontrollers from different manufacturers and with different

characteristics. This would provide better sturdiness when it comes to common mode faults. Finally,

as mentioned before, software fault tolerance mechanisms, such as N-Version Programming or Recovery

Blocks, were not implemented but, as future work, they could be explored as further improvement to

system reliability.
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A.1 Relationships between Reliability Functions

Figure A.1: Relation between the Failure rate density, reliability and hazard rate functions
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A.2 AUTOSAR Coding Guidelines Example
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A.3 Embedded development Flow
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Figure A.2: Embedded systems development flow (detailed)



Appendix B

Developed Simulation Extensions Diagrams

B.1 Shared Bus Diagrams

Create shared bus server 
socket

Add client to socket 
list

Start

Yes

Socket ac�vity?

Client on socket 
list?

No

Add server socket 
to list sockets

Connect 
request?

Yes Read request?

Send data to client 
socket

Yes

No

Yes

No

No

Listen to incoming 
connec�ons

Get server socket to 
connect to

Create client socket 
and connect to 

peripheral server

Write request? No

Retrieve data

Broadcast data to 
all server sockets

Yes

Figure B.1: Shared Bus process flowchart
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Table B.1: Communication commands between QEMU and the Shared Bus.

Command Purpose

SB_ACK Acknowledge

SB_NACK No acknowledge

SB_CONNECT Connect shared bus to peripheral server

SB_WRITE Write on shared bus

SB_READ Read from shared bus

B.2 Fault Injection Diagrams

Binary Translation

target-arm/translate.c

cpu-exec.c

Code Generation

No

Yes

Known PC?

Fetch Decode Execute

No

Yes

Branch?

Tiny Code
Generator

(TCG)

Micro-ops
buffer

exec.c

Instruction

Target binary file
.elf

Entry

Translation Cache
(host binary code)

Instruction fault
memory_ldst.inc.c 

Softmmu

CPUArmState

Memory address fault
memory.c

Peripheral access fault
exec.c

Figure B.2: Change on QEMU for the Fault Injection extension
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B.2.1 Fault Injection Functions Flowcharts

Iterate through fault list to 
find “MEMORY” fault

Start

Found?No

Yes

End

Overwrite memory  with 
fault mask value

Fault address == 
memory address?

Yes

No

Fault Memory 
Injec�on

Figure B.3: Memory fault injector function flowchart
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Translate memory region

Start

Do memory 
fault?

No
Yes

End

flatview_read / flatview_write

Fault Memory Injec�on

Dispatch read accessor

Figure B.4: Usage of the memory fault injection function on flatview_read and

flatview_write functions
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Start

No

End

memory_region_read_accessor / 
memory_region_write_accessor

Blocked peripheral 
address == accessor 

address?

Yes

Iterate through blocked 
peripheral list

Dispatch R/W opera�on

Set flag for peripheral 
access block

Access block 
flag?

Yes

End of list?

Yes

No

Figure B.5: Peripheral block fault functions flowchart
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Start

Yes

End

arm_tr_translate_insn

Do instruc�on 
decoder fault?

No

Get instruc�on to decode

Increment program counter

Disassemble instruc�on

Iterate through fault list to 
find “CPU” fault

Found and fault 
not ac�ve?

Yes

Overwrite instruc�on  with 
fault mask value

No

Set fault ac�ve

Figure B.6: Changes to arm_tr_translate_insn function
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Steering Angle Sensor Development

C.1 Application Validation Diagram

CCan

-mCanBus : ofstream
-mCanBusFileName : char *

+CCan()
+~CCan()
+init ( void ) : void
+write ( string ) : void

CAdc

-mAdcValuesFile : ifstream
-mCurrentAdcValue : int
-mAdcValuesFileName : char *

+CAdc()
+~CAdc()
+init ( void ) : void
+read ( int ) : int

CSystem

-mAdc_obj : CAdc
-mCan_obj : CCan
-mAdcProcFillCount : sem_t
-mAdcProcEmptyCount : sem_t
-mProcComFillCount : sem_t
-mProcComEmptyCount : sem_t
-mAdcProcMutex : mutex
-mProcComMutex : mutex
-queue <AdcValues_st> mAdcProcBuffer
-queue<int> mProcComBuffer

+CSystem()
+~CSystem()
+init (void ) : void
+�medTrigger ( void ) : void
+threadSampling (void *) : void *
+threadCalcula�on (void * ) : void *
+threadTransmission (void * ) : void *

Figure C.1: Class diagram of the software-only SAS validation
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C.2 State Machine Diagram

Start

Race condition lost

Race condition won

Race
Condition

Lead
Module

Sync pulse

Halt

Timeout=10ms
AND 

Redundant Module Transmitted 

Transmission Error

Timeout=10ms OR (Not Lead Mode AND First Transmission)

Angle
Calculation

Samples ready

Angle
Sampling

Not CAN Busy

CAN Busy

Transmission

Error State

Not Boot Time Error Conditions

Boot Time Error Conditions
Reset

Fail 
Degraded 

Redundant
module

not
transmited

Redundant 
Module
Check

First Transmission 
AND 

Lead Mode

Figure C.2: SAS State Machine diagram
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C.3 MCAL Module Diagrams

C.3.1 Class Diagrams

Wdg

Wdg_ConfigType ConfigPtr

Wdg_Init(Wdg_ConfigType ConfigPtr) : 
void

<<Struct>>
Wdg_ConfigType

WdgIf_Cs_et Wdg_DefaultCs_e

Wdg_SetTriggerCondi�on(uint16 
�meout) : void  

uint32 Wdg_DefaultCnt_u32

<<Enum>>
WdgIf_Clk_et

WDGIF_BUS_CLK
WDGIF_LPO_CLK

uint32 Wdg_DefaultToval_u32

uint32 Wdg_DefaultWin_u32

<<Enum>>
WdgIf_Update_et

WDGIF_DISABLE_UPDATES
WDGIF_ENABLE_UPDATES

<<Enum>>
WdgIf_Debug_et

WDGIF_ENABLE_WDG_DBG_MODE
WDGIF_DISABLE_WDG_DBG_MODE

<<Enum>>
WdgIf_Int_et

WDGIF_DISABLE_INTERRUPTS
WDGIF_ENABLE_INTERRUPTS

<<Enum>>
WdgIf_Win_et

WDGIF_WINDOW_MODE_DISABLE
WDGIF_WINDOW_MODE_ENABLE

<<Enum>>
WdgIf_Cmd32en_et

WDGIF_DISABLE_32B_SUPPORT
WDGIF_ENABLE_32B_SUPPORT

<<Enum>>
WdgIf_Pres_et

WDGIF_256_PRES_DISABLE
WDGIF_256_PRES_ENABLE

<<Enum>>
WdgIf_Wait_et

WDGIF_ENABLE_WDG_WAIT_MODE
WDGIF_DISABLE_WDG_WAIT_MODE

<<Enum>>
WdgIf_Enable_et

WDGIF_DISABLE_WDG
WDGIF_ENABLE_WDG

<<Enum>>
WdgIf_Cs_et

WdgIf_Win_et
WdgIf_Cmd32en_et

WdgIf_Update_et

WdgIf_Wait_et
WdgIf_Debug_et

WdgIf_Int_et

WdgIf_Clk_et
WdgIf_Enable_et

WdgIf_Pres_et

WDGIF_INTCLK_CLK
WDGIF_ERCLK_CLK

Wdg_Refresh (void) : void

Figure C.3: Class diagram of the WDG MCAL module
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<<Struct>>

Adc_ConfigType

Resolu�on : Adc_Resolu�onType
Prescaler : Adc_PrescaleType
SampleTime : Adc_SamplingTimeType
NumGroups : Adc_GroupType
GroupDefs : Adc_GroupDefType *

<<Enumera�on>>

Adc_ChannelType

ADC_CHANNEL_0 = 0U,
ADC_CHANNEL_1 = 1U,
ADC_CHANNEL_3 = 3U,
ADC_CHANNEL_4 = 4U,
ADC_CHANNEL_5 = 5U,
ADC_CHANNEL_6 = 6U,
ADC_CHANNEL_7 = 7U,
ADC_CHANNEL_9 = 9U,
ADC_CHANNEL_10 = 10U,
ADC_CHANNEL_11 = 11U,
ADC_CHANNEL_12 = 12U,
ADC_CHANNEL_13 = 13U,
ADC_CHANNEL_14 = 14U,
NUMBER_OF_ADC_CHANNELS = 14U

<<Enumera�on>>

Adc_Resolu�onType

ADC_RESOLUTION_8BIT
ADC_RESOLUTION_10BIT
ADC_RESOLUTION_12BIT

<<Enumera�on>>

Adc_TriggerSourceType

ADC_TRIGG_SRC_SW
ADC_TRIGG_SRC_HW

<<Enumera�on>>

Std_ReturnType

E_NOT_OK = 0U
E_OK = 0x1E

<<Enumera�on>>

Adc_StatusType

ADC_BUSY = 0u
ADC_IDLE = 3u
ADC_COMPLETED = 5u
ADC_STREAM_COMPLETED = 6u

<<Enumera�on>>

Adc_GroupConvModeType

ADC_CONV_MODE_ONESHOT
ADC_CONV_MODE_CONTINUOUS

Adc

CurrentConfig : Adc_ConfigType *
CurrentGroup : Adc_GroupType

Adc_Init(const Adc_ConfigType* ConfigPtr) : Std_ReturnType

Adc_SetupResultBuffer( Adc_GroupType Group, const Adc_ValueGroupType* DataBufferPtr) : Std_ReturnType
Adc_StartGroupConversion(Adc_GroupType Group) : void
Adc_StopGroupConversion(Adc_GroupType Group) : void
Adc_ReadGroup(Adc_GroupType Group, Adc_ValueGroupType* DataBufferPtr) : Std_ReturnType  
Adc_EnableHardwareTrigger(Adc_GroupType Group) : void  

Adc_GetGroupStatus(Adc_GroupType Group) : Adc_StatusType
Adc_GetStreamLastPointer(Adc_GroupType Group, Adc_ValueGroupType** PtrToSamplePtr) : Adc_StreamNumSampleType  

Adc_DeInit(void) : void

Adc_Pdb_Init (void) : void
Adc_Pdb_Deinit(void) : void
Adc_Pdb_ConfigPar�alConversion ( Adc_GroupDefType * PdbConfigPtr) : void

<<Struct>>

Adc_GroupDefType

ChannelCount : Adc_GroupSizeType

ConversionTime : Adc_ConversionTimeType

StartChannel : Adc_ChannelType
TriggerSource : Adc_TriggerSourceType

ConvMode : Adc_GroupConvModeType

StreamingNumSamples : Adc_StreamNumSampleType

<<Enumera�on>>

Adc_StreamBufferModeType

ADC_STREAM_BUFFER_LINEAR
ADC_STREAM_BUFFER_CIRCULAR

<<Enumera�on>>

Adc_GroupAccessModeType

ADC_ACCESS_MODE_SINGLE
ADC_ACCESS_MODE_STREAMING

ADC0_IRQHandler
Adc_ConfigConverter ( Adc_ConfigType * ConfigPtr) : void
Adc_ConfigChannels (Adc_GroupDefType * Config) : void

Adc_DisableHardwareTrigger(Adc_GroupType Group) : void

AccessMode: Adc_GroupAccessModeType
BufferMode : Adc_StreamBufferModeType

Status : Adc_StatusType

Adc_Pdb_Enable (void) : void
Adc_Pdb_Disable (void) : void
Adc_Pdb_So�wareTrigger (void) : void

Adc_SetStateMachine (Adc_GroupType Group) : void
Adc_ResetRegs(void) : void
Adc_SetChannelInterrupt(uint8_t ChannelIndex) : void
Adc_ClearEndOfConversionFlag(uint8_t ChannelIndex) : void

Adc_SetInputChannel(uint8_t ChannelIndex, Adc_ChannelType Channel) : void
Adc_ClearInputChannel(uint8_t ChannelIndex) : void

Adc_SetResolu�on (Adc_TriggerSourceType Group) : void

Figure C.4: Class diagram of the ADC MCAL module
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Port

Port_Init(const Port_ConfigType * ConfigPtr) : void
Port_SetPinMode(Port_PinType Pin, Port_PinModeType Mode): void
Port_SetDirec�on(Port_PinType Pin, Port_PinDirec�onType Direc�on) : void
Port_RefreshPortDirec�on (void) : void

<<Enumera�on>>

Port_PinModeType

PORT_PIN_DISABLED
PORT_MUX_AS_GPIO
PORT_MUX_ALT2
PORT_MUX_ALT3
PORT_MUX_ALT4
PORT_MUX_ALT5
PORT_MUX_ALT6
PORT_MUX_ALT7

<<Struct>>

Port_ConfigType

<<Enumera�on>>

Port_PinDirec�onType

PORT_PIN_DISABLED = 0U
PORT_PIN_IN = 1U
PORT_PIN_OUT = 2U

<<Struct>>

Port_PinChlConfigType

Port : Port_AddressType
PinNumber : Port_PinNumberType
PinMode : Port_PinModeType

NumPins : Port_PinType
PinChannelCfg * : Port_PinChlConfigType

PinDirec�on : Port_PinDirec�onType

DigitalFilterCfg : Port_DigitalFilterConfigType

<<Struct>>

Port_DigitalFilterConfigType

Port : Port_AddressType
FilterLength : Port_FilterLengthType
PinMask : Port_PinMaskType

PinInitValue : Port_LevelType

<<Enumera�on>>

Port_LevelType

STD_LOW
STD_HIGHPinChangeable : Port_ChangeableType

PinPull : Port_PullType

<<Enumera�on>>

Port_PullType

PORT_PULL_DISABLE
PORT_PULL_DOWN
PORT_PULL_UP

<<Enumera�on>>

Port_DriveType

PORT_DRIVE_LOW
PORT_DRIVE_HIGH

PinDrive : Port_DriveType
PinFilter : Port_FilterType

<<Enumera�on>>

Port_FilterType

PORT_FILTER_DISABLE
PORT_FILTER_ENABLE

PinInterrupt : Port_InterruptType

<<Enumera�on>>

Port_InterruptType

PORT_INTERRUPT_DISABLED = 0U
PORT_INTERRUPT_DMA_RISING_EDGE = 1U
PORT_INTERRUPT_DMA_FALLING_EDGE = 2U
PORT_INTERRUPT_DMA_EITHER_EDGE = 3U
PORT_INTERRUPT_LOGIC_LOW = 8U
PORT_INTERRUPT_RISING_EDGE = 9U
PORT_INTERRUPT_FALLING_EDGE = 10U
PORT_INTERRUPT_LOGIC_HIGH = 11U

<<Enumera�on>>

Port_ChangeableType

PORT_NOT_CHANGEABLE
PORT_CHANGEABLE

CurrentConfig : Port_ConfigType *

PORT_IRQHandler

Figure C.5: Class diagram of the PORT MCAL module
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MCU

Mcu_Init( const Mcu_ConfigType* ConfigPtr): void

<<Struct>>

Mcu_ConfigType

<<Enumera�on>>

Mcu_ResetType

MCU_POWER_ON_RESET
MCU_WATCHDOG_RESET
MCU_SW_RESET
MCU_RESET_UNDEFINED

<<Enumera�on>>

Mcu_RamStateType

MCU_RAMSTATE_INVALID
MCU_RAMSTATE_VALID

Mcu_InitRamSec�on( Mcu_RamSec�onType RamSec�on ) : Std_ReturnType

Mcu_InitClock( Mcu_ClockType ClockSe�ng ): Std_ReturnType

Mcu_GetResetReason( void ): Mcu_ResetType
Mcu_GetResetRawValue( void ) : Mcu_RawResetType

Mcu_PerformReset( void ) : void

Mcu_SetMode( Mcu_ModeType McuMode ) : void

<<Struct>>

Mcu_RamSec�onDefType

BaseAddress : Mcu_RamAddressType
Size: Mcu_RamSizeType
DefaultValue : Mcu_RamValueType

NumofRamSec�ons : Mcu_RamSec�onType
RamSec�ons: Mcu_RamSec�onDefType *

<<Struct>>

Mcu_ClockDefType

Mcu_CurConfig: Mcu_ConfigType *  

Clocks : Mcu_ClockDefType *

ResetConfig : Mcu_ResetConfigType

CpuClockConfig : Mcu_CpuClockConfigType

PeriphClockConfig : Mcu_PeripheralConfigType *

<<Enumera�on>>

Mcu_PowerModeType

MCU_MODE_RUN
MCU_MODE_VLPR

Mode : Mcu_PowerModeType

NumOfPeripherals : Mcu_PeripheralNumType

<<Struct>>

Mcu_PeripheralConfigType

PerClockName: Mcu_PeripheralClockNameType
PerClockSource : Mcu_PeripheralClockSourceType

<<Enumera�on>>

Mcu_PeripheralClockSourceType

CLK_SRC_OFF   = 0U
CLK_SRC_SOSC = 1U
CLK_SRC_SIRC  = 2U
CLK_SRC_FIRC  = 3U

<<Enumera�on>>

Mcu_PeripheralClockNameType

CLOCK_FTFC  = 32U

CLOCK_FLEXCAN = 36U

CLOCK_CRC = 50U

CLOCK_DMAMUX = 33U

CLOCK_LPSPI = 44U

CLOCK_CMP = 115U

CLOCK_PDB = 54U

CLOCK_FTM0 = 56U

CLOCK_ADC0 = 59U

CLOCK_LPIT = 55U

CLOCK_FTM1 = 57U

CLOCK_RTC = 61U

CLOCK_LPUART1 = 107U

CLOCK_CMU1 = 63U
CLOCK_CMU0 = 62U

CLOCK_LPI2C = 102U
CLOCK_LPUART0 = 106U

CLOCK_PORTA = 73U
CLOCK_LPTMR = 64U

CLOCK_PORTD = 76U
CLOCK_PORTC = 75U
CLOCK_PORTB = 74U

CLOCK_PORTE = 77U
CLOCK_FLEXIO = 90U

<<Struct>>

Mcu_SoscConfigType

Prescaler : Mcu_ClockDivideType

<<Struct>>

Mcu_FircConfigType

Prescaler : Mcu_ClockDivideType

<<Struct>>

Mcu_SircConfigType

Prescaler : Mcu_ClockDivideType

<<Struct>>

Mcu_PeripheralClockConfigType

SircConfig : Mcu_SircConfigType
FircConfig : Mcu_FircConfigType
SoscConfig : Mcu_SoscConfigType

<<Struct>>

Mcu_ResetConfigType

VoltageMonitor : Mcu_VoltageMonitorType

FilterResetPin : Mcu_ResetPinFilterType
EnableWatchdog : Mcu_WatchdogType

<<Struct>>

Mcu_CpuClockConfigType

RunConfig : Mcu_SystemClockConfigType
LowPowerConfig : Mcu_SystemClockConfigType

<<Struct>>

Mcu_SystemClockConfigType

FlashPrescaler : Mcu_CpuClockDivideType
BusPrescaler : Mcu_CpuClockDivideType
CorePrescaler : Mcu_CpuClockDivideType
Source : Mcu_CpuClockSourceType

<<Enumera�on>>

Mcu_CpuClockSourceType

SCG_SYSTEM_CLOCK_SRC_OSC
SCG_SYSTEM_CLOCK_SRC_SIRC
SCG_SYSTEM_CLOCK_SRC_FIRC
SCG_SYSTEM_CLOCK_SRC_NONE

<<Enumera�on>>

Mcu_ClockDivideType

SCG_CLOCK_DISABLE
SCG_CLOCK_DIV_BY_1
SCG_CLOCK_DIV_BY_2
SCG_CLOCK_DIV_BY_4
SCG_CLOCK_DIV_BY_8
SCG_CLOCK_DIV_BY_16
SCG_CLOCK_DIV_BY_32
SCG_CLOCK_DIV_BY_64

PeripheralClockSourceConfig : Mcu_PeripheralClockConfigType

NumOfClocks : Mcu_ClockType

<<Enumera�on>>

Mcu_CpuClockDivideType

CPU_CLOCK_DIVIDE_BY_1
CPU_CLOCK_DIVIDE_BY_2

CPU_CLOCK_DIVIDE_BY_15
CPU_CLOCK_DIVIDE_BY_16

CPU_CLOCK_DIVIDE_BY_3
CPU_CLOCK_DIVIDE_BY_4
CPU_CLOCK_DIVIDE_BY_5

CPU_CLOCK_DIVIDE_BY_14

CPU_CLOCK_DIVIDE_BY_6
CPU_CLOCK_DIVIDE_BY_7
CPU_CLOCK_DIVIDE_BY_8
CPU_CLOCK_DIVIDE_BY_9
CPU_CLOCK_DIVIDE_BY_10
CPU_CLOCK_DIVIDE_BY_11
CPU_CLOCK_DIVIDE_BY_12
CPU_CLOCK_DIVIDE_BY_13

Mcu_ConfigClockRun (Mcu_SystemClockConfigType *) : Std_ReturnType
Mcu_ConfigClockVlpr (Mcu_SystemClockConfigType *) : Std_ReturnType
Mcu_ConfigPeripheralClock (Mcu_PeripheralConfigType *) : void
Mcu_ConfigSosc (Mcu_SoscConfigType *) : Std_ReturnType
Mcu_ConfigFirc (Mcu_FircConfigType *) : Std_ReturnType
Mcu_ConfigSirc (Mcu_SircConfigType *) : Std_ReturnType
Mcu_ConfigResetPin (void) : void

ClockMonitor : Mcu_ClockMonitorType
<<Enumera�on>>

Mcu_ClockMonitorType

CLOCK_MONITOR_OFF
CLOCK_MONITOR_FIRC
CLOCK_MONITOR_SOSC
CLOCK_MONITOR_FIRC_SOSC

Figure C.6: Class diagram of the MCU MCAL module
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<<Enum>>
Gpt_ChannelType  

GPT_SCHEDULER_TIMEBASE
GPT_SENSOR_VALUE_TIMEBASE

GPT_NUMBER_OF_CHANNEL_TYPES

GPT_TIMING_CONSTRAINT
GPT_TASK_MEASUREMENT_TIMER
GPT_TIMEOUT_TIMER

<<Interface>>
Gpt_CfgDefI�

Gpt_ChannelType : enum

Gpt

Gpt_GetTimeRemaining(Gpt_ChannelType) : Gpt_ValueType

Gpt_StartTimer(Gpt_ChannelType, Gpt_ValueType) : void  
Gpt_DeInit(void) : void  

Gpt_GetHwChannel(Gpt_ChannelType) : Gpt_HWChannelType

Gpt_EnableNo�fica�on(Gpt_ChannelType) : void  

Gpt_StopTimer(Gpt_ChannelType) : void  

Gpt_Init(const ConfigType*) : void  

Gpt_GetTimeElapsed(Gpt_channelType) : Gpt_ValueType  

Gpt_DisableNo�fica�on(Gpt_ChannelType) : void  

<<Struct>>
Gpt_ConfigType

Gpt_ChannelConfigType Gpt_chlConfig_at[GPT_NUMBER_OF_CHANNEL_TYPES]

<<struct>>
Gpt_ChannelConfigType

Gpt_HWChannelType Gpt_HWChannel_t

Std_FnctPtr_t Gpt_No�fica�on_pt

Gpt_ChannelModeType Gpt_ChannelMode_T

<<Enum>>
Gpt_HWChannelType

GPT_NUMBER_OF_HW_CHANNEL_TYPES

<<Enum>>
Gpt_ChannelModeType

GPT_CHANNEL_MODE_ONESHOT = 1U
GPT_CHANNEL_MODE_CONTINUOUS

GPT_HW_LPIT_CH0
GPT_HW_LPIT_CH1
GPT_HW_LPIT_CH2
GPT_HW_LPIT_CH3
GPT_HW_LPTMR_CH0

Gpt_ValueType Gpt_ChannelTickMaxValue

uint8 Gpt_GptPrescaler_u8

Gpt_FTM_CommonInterrupt(Gpt_HWChannelType)
Gpt_LPTMR_CommonInterrupt(Gpt_HwChannelType)
Gpt_LPIT_CommonInterrupt(Gpt_HwChannelType)
Gpt_FTM_CommonInterrupt(Gpt_HWChannelType)

LPIT_IRQHandler(void)

FTM0_IRQHandler(void)
FTM1_IRQHandler(void)
LPTMR_IRQHandler(void)

Gpt_Config_pt : Gpt_ConfigType *
Gpt_ChannelLookupTable_at[NUMBER_OF_HW_CHANNELS] : Gpt_ChannelType
Gpt_Ac�veMap_at[NUMBER_OF_CHANNELS_TYPES] : Gpt_ChannelStatus
Gpt_StopTime_at[NUMBER_OF_CHANNEL_TYPES] : Gpt_ValueType

<<Enum>>
Gpt_ChannelStatusType

GPT_STATUS_INITIALIZED

GPT_STATUS_STOPPED

GPT_STATUS_RUNNING

GPT_STATUS_UNINITIALIZED

GPT_STATUS_EXPIRED

Figure C.7: Class diagram of the GPT MCAL module
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C.3.2 Use Case Diagrams

Name

Wdg Module

Configure watchdog

Refresh

Disable

System clock 
configura�on

Interrupt configura�on

<<include>>

<<include>>

Clocks Module

NVIC

WDOG

Peripheral Configura�on

<<include>>

Figure C.8: Use Case diagram of the WDG MCAL module

ADC Module

Adc ini�aliza�on Peripheral clock configura�on<<include>>

DMA configura�on

<<extend>>
Interrupt request configura�on

<<include>>

Read group conversion
Start conversion

ADC trigger source 
configura�on

MCU Module

NVIC

DMA

PDB

Port Module

Port configura�on

<<include>>
<<include>>

ADC

Access ADC registers

<<include>>

<<include>>

<<extend>>

Figure C.9: Use Case diagram of the ADC MCAL module
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Gpt Module

FlexTimer Module

Low-Power
Timer Module

Low-Power
Interrupt Timer

Ini�aliza�on
<<extend>>

<<extend>>

<<extend>>

MCU  Module

Peripheral clock
and interrupt
configura�on

<<include>>

<<include>>

<<include>>

NVIC

Start
Stop

Get elapsed �me
Start Conversion

FTM

LPIT

LPTMR

Access FTM  registers

Access LPIT  registers

Access LPTMR registers

<<extend>>

<<extend>>

<<extend>>

<<include>>

Figure C.10: Use Case diagram of the GPT MCAL module

Mcu Module

System clock Ini�aliza�on

Clocks Module

Set opera�on mode

Configure RUN 
mode clock

Configure VLPR 
mode clock

<<include>>

<<include>>

Configure SMC 
power mode

SMC

<<include>>

<<include>>

Perform reset

Get reset reason

RCM

NVIC

MCU ini�aliza�on
<<include>>

<<include>>

RAM ini�aliza�on

Figure C.11: Use Case diagram of the MCU MCAL module (1)
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Clocks Module

SCG

PCC

SIM

Configure system 
clocks

Fast Internal Clock

Slow Internal Clock

SOSC

<<include>>

<<include>>

<<include>>

Configure peripheral
clocks

Configure 
Clockout / RTC

PMC

Monitor Clock

CMU

Figure C.12: Use Case diagram of the MCU MCAL module (2)
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C.3.3 Sequence Diagrams

User Port

Port_Init

Port_Init(const Port_ConfigType * )

All ports 
ini�alized

Figure C.13: Sequence diagram of the PORT MCAL module

User ADC

Adc_Init

Adc_Init (const Adc_ConfigType * )

Adc_SetupResultBuffer (Std_ReturnType, Adc_GroupType, 
Adc_ValueGroupType * )

Adc_SetupResultBuffer

Figure C.14: Sequence diagram of the ADC MCAL module (1)
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ADCUser

Adc_Init

Adc_Init (const Adc_ConfigType * )

ADC 
Peripheral

Adc_StartGroupConversion (Adc_GroupType)

Adc_StartGroupConversion
Start conversion (group 1)

loop

[ Adc_GetGroupStatus 
= ADC_BUSY] Adc_GetGroupStatus (Adc_StatusType, Adc_GroupType)

Adc_GetGroupStatus = ADC_BUSY

Conversion completed 
(group 1)

Adc_GetGroupStatus (Adc_StatusType, Adc_GroupType)

Adc_GetGroupStatus = ADC_STREAM_COMPLETED

Adc_ReadGroup (Std_ReturnType, Adc_GroupType,
 Adc_GroupValueType *)

Adc_ReadGroup()

Adc_SetupResultBuffer (Std_ReturnType, Adc_GroupType, 
Adc_ValueGroupType * )

Adc_SetupResultBuffer

Figure C.15: Sequence diagram of the ADC MCAL module (2)
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GptUser
Timer 

peripheral

Start Channel  

Gpt_GetTimeElapsed(Gpt_ChannelType) : Gpt_ValueType

Gpt_StartTimer(Gpt_ChannelType, Gpt_ValueType)

Gpt_StartTimer

Channel Time
Target reachedGpt Channel Callback  

Read Channel

Channel Count
Gpt_GetTimeElapsed()

Channel Time 
Target reached

Gpt Channel Callback  

Gpt_StopTimer(Gpt_ChannelType)
StopChannel

Gpt_StopTimer()

Gpt_EnableNo�fica�on(Gpt_ChannelType)

Gpt_EnableNo�fica�on

Figure C.16: Sequence diagram of the GPT MCAL module (1)

User GPT

Gpt_Init

Gpt_Init (const Gpt_ConfigType * )

Figure C.17: Sequence diagram of the GPT MCAL module (2)
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GptUser
Timer 

peripheral

Start Channel  

Gpt_StartTimer(Gpt_ChannelType, Gpt_ValueType)

Gpt_StartTimer
Channel Time 

Target reached
Gpt Channel Callback  

Gpt_EnableNo�fica�on(Gpt_ChannelType)

Gpt_EnableNo�fica�on

Figure C.18: Sequence diagram of the ADC MCAL module (3)

User Mcu  

Mcu_Init()

Mcu_InitClock(Std_ReturnType, Mcu_ClockType)

Mcu_InitClock()

Mcu_InitRamSec�on(Std_ReturnType, Mcu_RamSec�onType)

Mcu_InitRamSec�on()

Mcu_Init(const Mcu_ConfigType * )

Figure C.19: Sequence diagram of the MCU MCAL module



Appendix C. Steering Angle Sensor Development 151

User Wdg

Wdg_Init

Wdg_Init (const Wdg_ConfigType * )

Wdg_SetTriggerCondi�on

Wdg_SetTriggerCondi�on(uint16)

Internal 
Watchdog

Trigger
Wdg_Refresh()

Wdg_Refresh()

Watchdog counter reset

Figure C.20: Sequence diagram of the WDG MCAL module



Appendix C. Steering Angle Sensor Development 152

C.4 Software Flowcharts

Start

Set Stack pointer to 
R13 register

Disable Watchdog

Ini�alize .data and 
.bss sec�ons

.data and .bss in�aliza�on

Copy data from ROM 
to RAM

Start

Copy code from ROM 
to RAM

Copy ISR vector table 
to RAM

End

Jump to _start (main 
applica�on)

Disable interrupts  

Clear internal registers 
from r1 to r12

Enable interrupts

End

Yes

Start from 
RAM?

No

Figure C.21: Flowchart of the microcontroller startup sequence
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Start

Port_SetPin 
(transceiver pin, low)

1 == 1 ?

Yes

Figure C.22: SAS Error State flowchart

Start

Read self ID from SIM 
register

Read redundant 
module ID from flash

Self ID > 
other ID?

YesNo

Return

Unset flag for lead 
module

Set flag for lead 
module

Wait for 
synchroniza�on pulse 
from first transmission

Next State = Angle 
Sampling

Figure C.23: SAS Race Condition State flowchart
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Start

Create Mcu 
configura�on structure

Mcu_Init (configura�on 
structure)

Init 
sucessfull

?

No watchdog 
reset?

Yes

Next State = Error State

Create Adc 
configura�on structure

Adc_Init (configura�on 
structure)

Adc_SetupResultBuffer 
(buffer pointer)

Create Port 
configura�on structure

Yes

Port_Init (configura�on 
structure)

No

No

Next State = Race 
condi�on

Init 
sucessfull

?
No

Yes

Return

Create Gpt 
configura�on structure

Gpt_Init (configura�on 
structure)

Gpt_StartTimer (3ms 
�mer)

Figure C.24: SAS Reset State flowchart
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Start

Adc_ReadGroup(group)

Adc_StopGroupConver
sion (group)

Return

Calculate Angle 
from 8 ADC values

Previous 
transmission 

error?

Next State = Error state

Yes

Gpt_GetElapsedTime

Elapsed �me 
is 10 ms?

No

No

No

First transmission 
and lead module?

Next State = 
Transmission

Yes

Next State = 
Redundant module 

check

Yes

Gpt_StopTimer

Figure C.25: SAS Angle Calculation flowchart
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Start

Gpt_StartTimer(2 ms)

Return

Gpt_StartTimer(10 ms)

Yes

Yes
Feedback pulse 

within 2ms?

No

Next State = Fail 
Degraded

Gpt_StopTimer

Gpt_GetElapsedTime

Elapsed �me 
is 10 ms?

No

Next State = 
Transmission

Figure C.26: SAS Redundant Module Check State flowchart
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Start

Gpt_StartTimer(10 ms)

Adc_StartGroupConver
sion (group)

Return

Next State = Angle 
Calcula�on

Yes

Samples 
ready?

No

Adc_GetGroupStatus(g
roup)

Figure C.27: SAS Angle Sampling State flowchart
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Start

Port_GetPin(feedback 
input pin)

Return

Port_SetPin(feedback 
output pin, high)

Yes
CAN busy pin is 

low?

No

Next State = Error state

Can_SendMessage(angl
e)

Next State =Angle 
Sampling

Port_SetPin(feedback 
output pin, low)

Figure C.28: SAS Transmission State flowchart
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QEMU Machine Additional Material

D.1 Addition of command line arguments

To add new command line arguments to QEMU, the file qemu-options.hx needs to be modified. Under

this file, the new command argument needs to be specified along with the possible parameters that can

be used with it. For exemplification purposes the ”-fi” command is presented on the snippet below.

1 . . .

2 DEF ( ” f i ” , HAS_ARG , QEMU_OPT ION_f i ,

3 ”− f i a c t i v a t e s t h e f a u l t i n j e c t i o n e x p e r i m e n t \ n ” , QEMU_ARCH_ALL )

4 S T E X I

5 @ i t em − f i @va r { i t em1 } [ , . . . ]

6 @ f i n d e x − f i

7 A c t i v a t e s t h e a b i l i t y t o do f a u l t i n j e c t i o n e x p e r i m e n t s

8 E T E X I

9 . . .

After changing this file, the command can be read and attended in the vl.c file, as shown on the

snippet below.

1 . . .

2 c a s e QEMU_OPT ION_ f i :

3 o p t _ s t r = ( c h a r * ) m a l l o c ( ( s t r l e n ( o p t a r g ) + 1 ) * s i z e o f ( c h a r ) ) ;

4 s t r c p y ( o p t _ s t r , o p t a r g ) ;

5 s e p _ s t r = s t r t o k ( o p t _ s t r , ” , ” ) ;

6 f o r ( param_num = 0 ; s e p _ s t r ! = NULL ; param_num ++ ) {

7 s w i t c h ( param_num ) {

8 c a s e 0 :

9 f i _ p o r t = s t r t o l ( s e p _ s t r , NULL , 1 0 ) ;

10 b r e a k ;

159
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11 c a s e 1 :

12 f a u l t _ l i b r a r y _ n a m e = ( c h a r * ) m a l l o c ( ( s t r l e n ( s e p _ s t r ) +

1 ) * s i z e o f ( c h a r ) ) ;

13 s t r c p y ( f a u l t _ l i b r a r y _ n a m e , s e p _ s t r ) ;

14 e r r o r _ r e p o r t ( ” F a u l t l i b a r y name : % s ” , f a u l t _ l i b r a r y _ n a m e

) ;

15 b r e a k ;

16 c a s e 2 :

17 f i _ p e r i o d = s t r t o l ( s e p _ s t r , NULL , 1 0 ) ;

18 b r e a k ;

19 . . .

20 . . .

D.2 S32K116 Machine Class Diagram

Each one of the peripherals also contains write, read, init and reset functions, whose interfaces are

presented on figure D.1. These functions have the same definition across all peripherals and for that

reason, they are not presented on the class diagram to ease readability.

MemoryOps Func�ons

read(void *, hwaddr, unsigned int ) : uint64_t
write(void *, hwaddr, unsigned int, unsigned int) : void

reset(DeviceState * ) : void
init(Object * ) : void

Figure D.1: Memory Operations functions interfaces

The diagrams contain the variables that hold register values and the helper functions used by the

functions mentioned above.
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S32K116State

parent_obj : SysBusDevice
cpu_type : char*
armv7m : ARMv7MState
lpuart[S32K_NUM_LPUARTS] : S32KLpuartState
adc : S32KAdcState

lowpower�mer : S32KLpitState  
flex�mer[S32K_NUM_FTMS] : S32KFtmState
watchdog : S32KWdogState
can : S32KCanState
port[S32K_NUM_PORTS] : S32KPortState
gpio[S32K_NUM_GPIOS] : S32KGpioState
scg : S32KScgState
pcc : S32KPccState
smc : S32KSmcState
rcm : S32KRcmState
sim : S32KSimState

S32KLpuartState

parent_obj : SysBusDevice
mmio : MemoryRegion

lpuart_VERID : uint32_t

irq : qemu_irq

lpuart_PARAM : uint32_t

lpuart_PINCFG : uint32_t
lpuart_BAUD : uint32_t

lpuart_GLOBAL : uint32_t

lpuart_CTRL : uint32_t
lpuart_STAT : uint32_t

lpuart_DATA : uint32_t
lpuart_MATCH : uint32_t
lpuart_MODIR : uint32_t
lpuart_FIFO : uint32_t
lpuart_WATER : uint32_t

pdb : S32KPdbState

S32KAdcState

parent_obj : SysBusDevice
mmio : MemoryRegion

adc_sc1[16] : uint32_t
adc_cfg1 : uint32_t

adc_r[16] : uint32_t
adc_sc2 : uint32_t

adc_cfg2 : uint32_t

adc_sc3 : uint32_t

S32KLpitState

parent_obj : SysBusDevice
mmio : MemoryRegion
�mer[4] : QEMUTimer *

lpit_tval[4] : uint32_t

irq : qemu_irq

lpit_msr : uint32_t
lpit_mier : uint32_t

lpit_mcr : uint32_t

lpit_seten : uint32_t

lpit_cval[4] : uint32_t
lpit_tctrl : uint32_t

S32KFtmState

parent_obj : SysBusDevice
mmio : MemoryRegion
�mer : QEMUTimer *

�m_CnSC[8] : uint32_t

irq : qemu_irq

�m_cnt : uint32_t
�m_mod : uint32_t

�m_sc  : uint32_t

�m_status : uint32_t

�m_CnV[8] : uint32_t

S32KWdogState

parent_obj : SysBusDevice
mmio : MemoryRegion

wdg_CS  : uint32_t

irq : qemu_irq

wdg_CNT  : uint32_t

wdg_WIN  : uint32_t
wdg_TOVAL  : uint32_t

�mer : QEMUTimer *

S32KCanState

parent_obj : SysBusDevice
mmio : MemoryRegion

can_MCR  : uint32_t

irq : qemu_irq

can_CTRL1  : uint32_t
can_RAMn[128] : uint32_t

S32KPortState

parent_obj : SysBusDevice
mmio : MemoryRegion
irq : qemu_irq
port_PCR[32] : uint32_t

S32KGpioState

parent_obj : SysBusDevice
mmio : MemoryRegion
irq : qemu_irq

gpio_PDOR : uint32_t
gpio_PSOR : uint32_t
gpio_PCOR : uint32_t
gpio_PTOR : uint32_t
gpio_PDIR : uint32_t
gpio_PDDR : uint32_t
gpio_PIDR : uint32_t

S32KScgState

parent_obj : SysBusDevice
mmio : MemoryRegion
scg_CSR : uint32_t
scg_RCCR : uint32_t

scg_SOSCCSR : uint32_t
scg_SOSCDIV : uint32_t

scg_VCCR : uint32_t

scg_SIRCCSR : uint32_t
scg_SOSCCFG : uint32_t

scg_SIRCDIV : uint32_t
scg_SIRCCFG : uint32_t
scg_FIRCCSR : uint32_t
scg_FIRCDIV : uint32_t
scg_FIRCCFG : uint32_t

S32KPccState

parent_obj : SysBusDevice
mmio : MemoryRegion
pcc_pccn[116] : uint32_t

S32KSmcState

parent_obj : SysBusDevice
mmio : MemoryRegion
smc_VERID : uint32_t
smc_PARAM : uint32_t

smc_PMCTRL : uint32_t
smc_STOPCTRL : uint32_t

smc_PMPROT : uint32_t

smc_PMSTAT : uint32_t

S32KRcmState

parent_obj : SysBusDevice
mmio : MemoryRegion
rcm_VERID : uint32_t
rcm_PARAM : uint32_t

rcm_RPC : uint32_t
rcm_SSRS : uint32_t

rcm_SRS : uint32_t

rcm_SRIE : uint32_t

S32KSimState

parent_obj : SysBusDevice
mmio : MemoryRegion
rcm_CHIPCTL : uint32_t
rcm_FTMOPT0 : uint32_t

rcm_ADCOPT : uint32_t
rcm_FTMOPT1 : uint32_t

rcm_LPOCLKS : uint32_t

rcm_PLATCGC : uint32_t

S32KPdbState

parent_obj : SysBusDevice
mmio : MemoryRegion

pdb_sc : uint32_t
pdb_mod : uint32_t

pdb_idly : uint32_t
pdb_c1[2] : uint32_t

pdb_cnt : uint32_t

�mer : QEMUTimer *

pdb_s[2] : uint32_t
pdb_dly[2] : uint32_t

sharedbus : SharedBusI�

SharedBusI�_st

DataMutex : pthread_mutex_t
ServerThread : QemuThread *
SharedData : uint8_t *
ServerSocket : SocketInfo_st
ClientSocket : SocketInfo_st

SocketInfo_st

Port : uint16_t
Addr : struct sockaddr_in
Socket : int

irq : qemu_irq

adc_get_trigger_mode(void) : uint32_t
adc_generate_values(void) : void

irq : qemu_irq

qemu_�mer_interrupt(void *) : void
qemu_�mer_set_alarm(S32KPdbState *) 
: void

qemu_�mer_interrupt(void *) : void
qemu_�mer_set_alarm(S32KLpitState *) 
: void

s32k_rcm_set_reset_reason(uint32_t) : 
void

reset_file : FILE *  

can_rximr[32] : uint32_t
can_imask[32] : uint32_t

sharedbus : SharedBusI�

sb_async_events(void *) : void *

sb_async_events(void *) : void *

sb_async_events(void *) : void *

sharedbus : SharedBusI�

qemu_�mer_interrupt(void *) : void
qemu_�mer_set_alarm(S32KPdbState *) 
: void

get_port_config(uint32_t) : uint32_t

Figure D.2: S32K116 QEMU Machine class diagram
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D.3 Peripheral Example (ADC)

1 /*

2 * S32K ADC

3 */

4

5 # i n c l u d e ” qemu/ o s d e p . h ”

6 # i n c l u d e ” hw/ s y s b u s . h ”

7 # i n c l u d e ” hw/hw . h ”

8 # i n c l u d e ” qemu/ l o g . h ”

9 # i n c l u d e ” qemu/ modu l e . h ”

10 # i n c l u d e ” hw/ adc / s32 k_ad c . h ”

11 # i n c l u d e <math . h >

12 # i n c l u d e < t i m e . h >

13 # i n c l u d e ” . . / . . / f a u l t − i n j e c t i o n −v a r s . h ”

14 # i n c l u d e ” . . / . . / a d c _ v a l u e s . h ”

15

16 s t a t i c S 3 2 K A d c S t a t e * c u r r e n t _ d e v i c e ;

17

18 s t a t i c i n t a d c _ v a l u e s _ i n d e x = 0 ;

19

20 s t a t i c v o i d s 3 2 k _ a d c _ r e s e t ( D e v i c e S t a t e * d e v )

21 {

22 S 3 2 K A d c S t a t e * s = S32K_ADC ( d e v ) ;

23 /* R e s e t r e g i s t e r s */

24 f o r ( i n t i = 0 ; i < 1 6 ; i + + )

25 {

26 s−>ad c_ s c 1 [ i ] = 0 x0000003F ;

27 s−>a d c _ r [ i ] = 0 x00000000 ;

28 }

29 s−>a d c _ c f g 1 = 0 x00000000 ;

30 s−>a d c _ c f g 2 = 0 x0000000C ;

31 s−>ad c_ s c 2 = 0 x00000000 ;

32 s−>ad c_ s c 3 = 0 x00000000 ;

33 }
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34

35 s t a t i c u i n t 6 4 _ t s 3 2 k _ a d c _ r e a d ( v o i d * opaque , hwadd r add r , u n s i g n e d i n t s i z e )

{

36 S 3 2 K A d c S t a t e * s = opaque ;

37

38 i f ( a d d r >= ADC_SC1_OFFSET && a d d r < ADC_SC1_END ) {

39 u i n t 3 2 _ t i n d e x = ( a d d r / ADC_REG_OFFSET ) ;

40 r e t u r n s−>ad c_ s c 1 [ i n d e x ] ;

41 }

42 e l s e i f ( a d d r >= ADC_R_OFFSET && a d d r < ADC_R_END ) {

43 u i n t 3 2 _ t i n d e x = ( ( a d d r − ADC_R_OFFSET ) / ADC_REG_OFFSET ) ;

44 s−>ad c_ s c 1 [ i n d e x ] &= ~ADC_SC1_COCO_MASK ;

45 i f ( ( s−>ad c_ s c 1 [ i n d e x ] & ADC_SC1_AIEN_MASK ) ! = 0 ) {

46 q em u _ s e t _ i r q ( s−> i r q , 0 ) ;

47 }

48 r e t u r n s−>a d c _ r [ i n d e x ] ;

49 }

50 e l s e {

51 s w i t c h ( a d d r ) {

52 c a s e ADC_CFG1_OFFSET :

53 r e t u r n s−>a d c _ c f g 1 ;

54 c a s e ADC_CFG2_OFFSET :

55 r e t u r n s−>a d c _ c f g 2 ;

56 c a s e ADC_SC2_OFFSET :

57 r e t u r n s−>ad c_ s c 2 ;

58 c a s e ADC_SC3_OFFSET :

59 r e t u r n s−>ad c_ s c 3 ;

60 d e f a u l t :

61 }

62 }

63 r e t u r n 0 ;

64 }

65

66 s t a t i c v o i d s 3 2 k _ a d c _ w r i t e ( v o i d * opaque , hwadd r add r , u i n t 6 4 _ t v a l 6 4 ,

u n s i g n e d i n t s i z e ) {

67 S 3 2 K A d c S t a t e * s = opaque ;

68 u i n t 3 2 _ t v a l u e = ( u i n t 3 2 _ t ) v a l 6 4 ;



Appendix D. QEMU Machine Additional Material 164

69

70 i f ( a d d r >= ADC_SC1_OFFSET && a d d r < ADC_SC1_END ) {

71 u i n t 3 2 _ t i n d e x = ( a d d r / ADC_REG_OFFSET ) ;

72 s−>ad c_ s c 1 [ i n d e x ] = v a l u e ;

73 r e t u r n ;

74 }

75 e l s e {

76 s w i t c h ( a d d r ) {

77 c a s e ADC_CFG1_OFFSET :

78 s−>a d c _ c f g 1 = v a l u e ;

79 r e t u r n ;

80 c a s e ADC_CFG2_OFFSET :

81 s−>a d c _ c f g 2 = v a l u e ;

82 r e t u r n ;

83 c a s e ADC_SC2_OFFSET :

84 s−>ad c_ s c 2 = v a l u e ;

85 r e t u r n ;

86 c a s e ADC_SC3_OFFSET :

87 s−>ad c_ s c 3 = v a l u e ;

88 i f ( ( s−>ad c_ s c 3 & ADC_SC3_CAL_MASK ) ! = 0 ) {

89 s−>ad c_ s c 1 [ 0 ] |= ADC_SC1_COCO_MASK ; /* S e t COCO f l a g */

90 }

91 r e t u r n ;

92 d e f a u l t :

93 }

94 }

95 r e t u r n ;

96 }

97

98 s t a t i c c o n s t Memo r yR e g i o nOp s s 32 k_ a d c _ o p s = {

99 . r e a d = s 32 k_ a d c_ r e a d ,

100 . w r i t e = s 3 2 k _ a d c _ w r i t e ,

101 . e n d i a n n e s s = DEV ICE_NAT IVE_END IAN ,

102 } ;

103

104 s t a t i c v o i d s 3 2 k _ a d c _ i n i t ( O b j e c t * o b j )

105 {
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106 S 3 2K A d c S t a t e * s = S32K_ADC ( o b j ) ;

107 c u r r e n t _ d e v i c e = s ;

108 s y s b u s _ i n i t _ i r q ( SYS_BUS_DEV ICE ( o b j ) , &s−> i r q ) ;

109 m e m o r y _ r e g i o n _ i n i t _ i o (& s−>mmio , o b j , & s32k_adc_op s , s , TYPE_S32K_ADC , 0

x208 ) ;

110 s y s b u s _ i n i t _ mm i o ( SYS_BUS_DEV ICE ( o b j ) , &s−>mmio ) ;

111 }

112

113 s t a t i c v o i d s 3 2 k _ a d c _ c l a s s _ i n i t ( O b j e c t C l a s s * k l a s s , v o i d * d a t a )

114 {

115 D e v i c e C l a s s * dc = DEV ICE_CLASS ( k l a s s ) ;

116 dc−> r e s e t = s 3 2 k _ a d c _ r e s e t ;

117 }

118

119 s t a t i c c o n s t T y p e I n f o s 3 2 k _ a d c _ i n f o = {

120 . name = TYPE_S32K_ADC ,

121 . p a r e n t = TYPE_SYS_BUS_DEV ICE ,

122 . i n s t a n c e _ s i z e = s i z e o f ( S 3 2 K A d c S t a t e ) ,

123 . i n s t a n c e _ i n i t = s 3 2 k _ a d c _ i n i t ,

124 . c l a s s _ i n i t = s 3 2 k _ a d c _ c l a s s _ i n i t ,

125 } ;

126

127 s t a t i c v o i d s 3 2 k _ a d c _ r e g i s t e r _ t y p e s ( v o i d )

128 {

129 t y p e _ r e g i s t e r _ s t a t i c ( & s 3 2 k _ a d c _ i n f o ) ;

130 }

131

132 t y p e _ i n i t ( s 3 2 k _ a d c _ r e g i s t e r _ t y p e s )

Listing D.1: Emulated ADC peripheral example

D.4 S32K116 Machine

1 /*

2 * S32K116 SoC

3 */

4

5 # i n c l u d e ” qemu/ o s d e p . h ”
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6 # i n c l u d e ” q a p i / e r r o r . h ”

7 # i n c l u d e ” qemu/ modu l e . h ”

8 # i n c l u d e ” hw/ arm / b o o t . h ”

9 # i n c l u d e ” hw/ m i s c / un imp . h ”

10 # i n c l u d e ” e x e c / a d d r e s s−s p a c e s . h ”

11 # i n c l u d e ” hw/ arm / s32k116_so c . h ”

12

13 /* P e r i p h e r a l a d d r e s s */

14 s t a t i c c o n s t u i n t 3 2 _ t l p u a r t _ a d d r [ S32K_NUM_LPUARTS ] = { 0 x4006A000 , 0

x4006B000 } ;

15 s t a t i c c o n s t u i n t 3 2 _ t a d c _ a d d r = 0 x4003B000 ;

16 s t a t i c c o n s t u i n t 3 2 _ t p d b_ a d d r = 0 x40036000 ;

17 s t a t i c c o n s t u i n t 3 2 _ t l p i t _ a d d r = 0 x40037000 ;

18 s t a t i c c o n s t u i n t 3 2 _ t f t m _ a d d r [ S32K_NUM_FTMS ] = { 0 x40038000 , 0 x40039000 } ;

19 s t a t i c c o n s t u i n t 3 2 _ t s c g _ a d d r = 0 x40064000 ;

20 s t a t i c c o n s t u i n t 3 2 _ t p c c _ a d d r = 0 x40065000 ;

21 s t a t i c c o n s t u i n t 3 2 _ t pmc_add r = 0 x4007D000 ;

22 s t a t i c c o n s t u i n t 3 2 _ t smc_add r = 0 x4007E000 ;

23 s t a t i c c o n s t u i n t 3 2 _ t r cm_add r = 0 x4007F000 ;

24 s t a t i c c o n s t u i n t 3 2 _ t s im_ a d d r = 0 x40048000 ;

25 s t a t i c c o n s t u i n t 3 2 _ t wdg_add r = 0 x40052000 ;

26 s t a t i c c o n s t u i n t 3 2 _ t c a n _ a d d r = 0 x40024000 ;

27 s t a t i c c o n s t u i n t 3 2 _ t p o r t _ a d d r [ S32K_NUM_PORTS ] = { 0 x40049000 , 0 x4004A000 ,

0 x4004B000 , 0 x4004C000 , 0 x4004D000 } ;

28 s t a t i c c o n s t u i n t 3 2 _ t g p i o _ a d d r [ S32K_NUM_GPIOS ] = { 0 x400FF000 , 0 x400FF040 ,

0 x400FF080 , 0 x400FF0C0 , 0 x400FF100 } ;

29

30 /* P e r i p h e r a l I RQS */

31 s t a t i c c o n s t i n t l p u a r t _ i r q [ S32K_NUM_LPUARTS ] = { 3 1 , 3 0 } ;

32 s t a t i c c o n s t i n t a d c _ i r q = 2 8 ;

33 s t a t i c c o n s t i n t p d b _ i r q = 19 ;

34 s t a t i c c o n s t i n t l p i t _ i r q = 20 ;

35 s t a t i c c o n s t i n t f t m _ i r q [ S32K_NUM_FTMS ] = { 1 2 , 1 5 } ;

36 s t a t i c c o n s t i n t w d g _ i r q = 22 ;

37 s t a t i c c o n s t i n t c a n _ i r q = 10 ;

38 s t a t i c c o n s t i n t p o r t _ i r q = 9 ; /* C o n n e c t i n t e r r u p t t o a l l p o r t s / g p i o s

*/
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39 s t a t i c c o n s t i n t s c g _ i r q = 21 ;

40

41 s t a t i c v o i d s 3 2 k 1 1 6 _ s o c _ i n i t f n ( O b j e c t * o b j ) {

42 S 32K116S t a t e * s = S32K116_SOC ( o b j ) ;

43 i n t i ;

44 s y s b u s _ i n i t _ c h i l d _ o b j ( o b j , ” armv6m ” , &s−>armv7m , s i z e o f ( s−>armv7m ) ,

TYPE_ARMV7M ) ;

45 f o r ( i = 0 ; i < S32K_NUM_LPUARTS ; i + + ) {

46 s y s b u s _ i n i t _ c h i l d _ o b j ( o b j , ” l p u a r t [ * ] ” , &s−> l p u a r t [ i ] , s i z e o f ( s−>

l p u a r t [ i ] ) , TYPE_S32K_LPUART ) ;

47 }

48 s y s b u s _ i n i t _ c h i l d _ o b j ( o b j , ” adc ” , &s−>adc , s i z e o f ( s−>adc ) ,

TYPE_S32K_ADC ) ;

49 s y s b u s _ i n i t _ c h i l d _ o b j ( o b j , ” smc ” , &s−>smc , s i z e o f ( s−>smc ) ,

TYPE_S32K_SMC ) ;

50 s y s b u s _ i n i t _ c h i l d _ o b j ( o b j , ” s im ” , &s−>s im , s i z e o f ( s−>s im ) ,

TYPE_S32K_SIM ) ;

51 s y s b u s _ i n i t _ c h i l d _ o b j ( o b j , ” rcm ” , &s−>rcm , s i z e o f ( s−>rcm ) ,

TYPE_S32K_RCM ) ;

52 s y s b u s _ i n i t _ c h i l d _ o b j ( o b j , ” p c c ” , &s−>pcc , s i z e o f ( s−>pc c ) ,

TYPE_S32K_PCC ) ;

53 s y s b u s _ i n i t _ c h i l d _ o b j ( o b j , ” s c g ” , &s−>scg , s i z e o f ( s−>s c g ) ,

TYPE_S32K_SCG ) ;

54 s y s b u s _ i n i t _ c h i l d _ o b j ( o b j , ” wdg ” , &s−>wdg , s i z e o f ( s−>wdg ) ,

TYPE_S32K_WDG ) ;

55 s y s b u s _ i n i t _ c h i l d _ o b j ( o b j , ” pdb ” , &s−>pdb , s i z e o f ( s−>pdb ) ,

TYPE_S32K_PDB ) ;

56 s y s b u s _ i n i t _ c h i l d _ o b j ( o b j , ” l p i t ” , &s−> l p i t , s i z e o f ( s−> l p i t ) ,

T YPE_S32K_LP I T ) ;

57 s y s b u s _ i n i t _ c h i l d _ o b j ( o b j , ” f tm0 ” , &s−>f tm0 , s i z e o f ( s−> f tm0 ) ,

TYPE_S32K_FTM ) ;

58 s y s b u s _ i n i t _ c h i l d _ o b j ( o b j , ” c an ” , &s−>can , s i z e o f ( s−>can ) ,

TYPE_S32K_CAN ) ;

59 s−> p o r t _ i r q s = OR_IRQ ( o b j e c t _ n e w ( TYPE_OR_IRQ ) ) ;

60 f o r ( i = 0 ; i < S32K_NUM_PORTS ; i + + ) {

61 s y s b u s _ i n i t _ c h i l d _ o b j ( o b j , ” p o r t [ * ] ” , &s−> p o r t [ i ] , s i z e o f ( s−> p o r t [ i

] ) , TYPE_S32K_PORT ) ;
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62 }

63 s y s b u s _ i n i t _ c h i l d _ o b j ( o b j , ” p t a ” , &s−>p t a , s i z e o f ( s−>p t a ) ,

TYPE_S32K_GPIO_A ) ;

64 s y s b u s _ i n i t _ c h i l d _ o b j ( o b j , ” p t b ” , &s−>p t b , s i z e o f ( s−>p t b ) ,

TYPE_S32K_GPIO ) ;

65 s y s b u s _ i n i t _ c h i l d _ o b j ( o b j , ” p t c ” , &s−>p t c , s i z e o f ( s−> p t c ) ,

TYPE_S32K_GPIO_SB ) ;

66 s y s b u s _ i n i t _ c h i l d _ o b j ( o b j , ” p t d ” , &s−>p t d , s i z e o f ( s−>p t d ) ,

TYPE_S32K_GPIO ) ;

67 s y s b u s _ i n i t _ c h i l d _ o b j ( o b j , ” p t e ” , &s−>p t e , s i z e o f ( s−> p t e ) ,

TYPE_S32K_GPIO ) ;

68 }

69

70 s t a t i c v o i d s 3 2 k 1 1 6 _ s o c _ r e a l i z e ( D e v i c e S t a t e * de v_ s o c , E r r o r ** e r r p ) {

71 S 32K116S t a t e * s = S32K116_SOC ( d e v _ s o c ) ;

72 D e v i c e S t a t e * dev , * armv7m ;

73 S y s B u s D e v i c e * b u s d e v ;

74 E r r o r * e r r = NULL ;

75 i n t i ;

76 Memo r y R e g i o n * s y s t em_memo r y = g e t _ s y s t em_memo r y ( ) ;

77 Memo r y R e g i o n * s ram = g_new ( Memo r yReg i o n , 1 ) ;

78 Memo r y R e g i o n * f l a s h = g_new ( Memo r yReg i o n , 1 ) ;

79 Memo r y R e g i o n * f l a s h _ a l i a s = g_new ( Memo r yReg i o n , 1 ) ;

80 m em o r y _ r e g i o n _ i n i t _ r a m ( f l a s h , NULL , ” S32K116 . f l a s h ” , FLASH_S IZE , &

e r r o r _ f a t a l ) ;

81 m e m o r y _ r e g i o n _ i n i t _ a l i a s ( f l a s h _ a l i a s , NULL , ” S32K116 . f l a s h . a l i a s ” ,

f l a s h , 0 , F LASH_S I ZE ) ;

82 m em o r y _ r e g i o n _ s e t _ r e a d o n l y ( f l a s h , t r u e ) ;

83 m em o r y _ r e g i o n _ s e t _ r e a d o n l y ( f l a s h _ a l i a s , t r u e ) ;

84 m em o r y _ r e g i o n _ a d d _ s u b r e g i o n ( s y s t em_memory , FLASH_BASE_ADDRESS , f l a s h ) ;

85 m em o r y _ r e g i o n _ a d d _ s u b r e g i o n ( s y s t em_memory , 0 , f l a s h _ a l i a s ) ;

86 m em o r y _ r e g i o n _ i n i t _ r a m ( sram , NULL , ” S32K116 . s ram ” , SRAM_SIZE , &

e r r o r _ f a t a l ) ;

87 m em o r y _ r e g i o n _ a d d _ s u b r e g i o n ( s y s t em_memory , SRAM_BASE_ADDRESS , s ram ) ;

88 armv7m = DEV ICE (& s−>armv7m ) ;

89 q d e v _ p r o p _ s e t _ u i n t 3 2 ( armv7m , ”num− i r q ” , 3 2 ) ;

90 q d e v _ p r o p _ s e t _ s t r i n g ( armv7m , ” cpu− t y p e ” , s−> c p u _ t y p e ) ;



Appendix D. QEMU Machine Additional Material 169

91 q d e v _ p r o p _ s e t _ b i t ( armv7m , ” e n a b l e−b i t b a n d ” , t r u e ) ;

92 o b j e c t _ p r o p e r t y _ s e t _ l i n k ( OBJECT (& s−>armv7m ) , OBJECT ( g e t _ s y s t em_memo r y ( )

) , ” memory ” , & e r r o r _ a b o r t ) ;

93 o b j e c t _ p r o p e r t y _ s e t _ b o o l ( OBJECT (& s−>armv7m ) , t r u e , ” r e a l i z e d ” , & e r r ) ;

94 i f ( e r r ! = NULL ) {

95 e r r o r _ p r o p a g a t e ( e r r p , e r r ) ;

96 r e t u r n ;

97 }

98 /* A t t a c h LPUART */

99 f o r ( i = 0 ; i < S32K_NUM_LPUARTS ; i + + ) {

100 d e v = DEV ICE ( & ( s−> l p u a r t [ i ] ) ) ;

101 q d e v _ p r o p _ s e t _ c h r ( dev , ” c h a r d e v ” , s e r i a l _ h d ( i ) ) ;

102 o b j e c t _ p r o p e r t y _ s e t _ b o o l ( OBJECT (& s−> l p u a r t [ i ] ) , t r u e , ” r e a l i z e d ” , &

e r r ) ;

103 i f ( e r r ! = NULL ) {

104 e r r o r _ p r o p a g a t e ( e r r p , e r r ) ;

105 r e t u r n ;

106 }

107 b u s d e v = SYS_BUS_DEV ICE ( d e v ) ;

108 sysbus_mmio_map ( bu sde v , 0 , l p u a r t _ a d d r [ i ] ) ;

109 s y s b u s _ c o n n e c t _ i r q ( bu sde v , 0 , q d e v _ g e t _ g p i o _ i n ( armv7m , l p u a r t _ i r q [ i

] ) ) ;

110 }

111 /* A t t a c h ADC */

112 de v = DEV ICE ( & ( s−>adc ) ) ;

113 o b j e c t _ p r o p e r t y _ s e t _ b o o l ( OBJECT (& s−>adc ) , t r u e , ” r e a l i z e d ” , & e r r ) ;

114 i f ( e r r ! = NULL ) {

115 e r r o r _ p r o p a g a t e ( e r r p , e r r ) ;

116 r e t u r n ;

117 }

118 b u s d e v = SYS_BUS_DEV ICE ( d e v ) ;

119 sysbus_mmio_map ( bu sde v , 0 , a d c _ a d d r ) ;

120 s y s b u s _ c o n n e c t _ i r q ( bu sde v , 0 , q d e v _ g e t _ g p i o _ i n ( armv7m , a d c _ i r q ) ) ;

121 /* A t t a c h SMC */

122 de v = DEV ICE (& s−>smc ) ;

123 o b j e c t _ p r o p e r t y _ s e t _ b o o l ( OBJECT (& s−>smc ) , t r u e , ” r e a l i z e d ” , & e r r ) ;

124 i f ( e r r ! = NULL ) {
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125 e r r o r _ p r o p a g a t e ( e r r p , e r r ) ;

126 r e t u r n ;

127 }

128 b u s d e v = SYS_BUS_DEV ICE ( d e v ) ;

129 sysbus_mmio_map ( bu sde v , 0 , smc_add r ) ;

130 /* A t t a c h SIM */

131 de v = DEV ICE (& s−>s im ) ;

132 o b j e c t _ p r o p e r t y _ s e t _ b o o l ( OBJECT (& s−>s im ) , t r u e , ” r e a l i z e d ” , & e r r ) ;

133 i f ( e r r ! = NULL ) {

134 e r r o r _ p r o p a g a t e ( e r r p , e r r ) ;

135 r e t u r n ;

136 }

137 b u s d e v = SYS_BUS_DEV ICE ( d e v ) ;

138 sysbus_mmio_map ( bu sde v , 0 , s im_ a d d r ) ;

139 /* A t t a c h RCM */

140 de v = DEV ICE (& s−>rcm ) ;

141 o b j e c t _ p r o p e r t y _ s e t _ b o o l ( OBJECT (& s−>rcm ) , t r u e , ” r e a l i z e d ” , & e r r ) ;

142 i f ( e r r ! = NULL ) {

143 e r r o r _ p r o p a g a t e ( e r r p , e r r ) ;

144 r e t u r n ;

145 }

146 b u s d e v = SYS_BUS_DEV ICE ( d e v ) ;

147 sysbus_mmio_map ( bu sde v , 0 , r cm_add r ) ;

148 /* A t t a c h PCC */

149 de v = DEV ICE (& s−>pc c ) ;

150 o b j e c t _ p r o p e r t y _ s e t _ b o o l ( OBJECT (& s−>pc c ) , t r u e , ” r e a l i z e d ” , & e r r ) ;

151 i f ( e r r ! = NULL ) {

152 e r r o r _ p r o p a g a t e ( e r r p , e r r ) ;

153 r e t u r n ;

154 }

155 b u s d e v = SYS_BUS_DEV ICE ( d e v ) ;

156 sysbus_mmio_map ( bu sde v , 0 , p c c _ a d d r ) ;

157 /* A t t a c h SCG */

158 de v = DEV ICE (& s−>s c g ) ;

159 o b j e c t _ p r o p e r t y _ s e t _ b o o l ( OBJECT (& s−>s c g ) , t r u e , ” r e a l i z e d ” , & e r r ) ;

160 i f ( e r r ! = NULL ) {

161 e r r o r _ p r o p a g a t e ( e r r p , e r r ) ;
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162 r e t u r n ;

163 }

164 b u s d e v = SYS_BUS_DEV ICE ( d e v ) ;

165 sysbus_mmio_map ( bu sde v , 0 , s c g _ a d d r ) ;

166 s y s b u s _ c o n n e c t _ i r q ( bu sde v , 0 , q d e v _ g e t _ g p i o _ i n ( armv7m , s c g _ i r q ) ) ;

167 /* A t t a c h WDG */

168 de v = DEV ICE (& s−>wdg ) ;

169 o b j e c t _ p r o p e r t y _ s e t _ b o o l ( OBJECT (& s−>wdg ) , t r u e , ” r e a l i z e d ” , & e r r ) ;

170 i f ( e r r ! = NULL ) {

171 e r r o r _ p r o p a g a t e ( e r r p , e r r ) ;

172 r e t u r n ;

173 }

174 b u s d e v = SYS_BUS_DEV ICE ( d e v ) ;

175 sysbus_mmio_map ( bu sde v , 0 , wd g_add r ) ;

176 s y s b u s _ c o n n e c t _ i r q ( bu sde v , 0 , q d e v _ g e t _ g p i o _ i n ( armv7m , w d g _ i r q ) ) ;

177 /* A t t a c h PDB */

178 de v = DEV ICE (& s−>pdb ) ;

179 o b j e c t _ p r o p e r t y _ s e t _ b o o l ( OBJECT (& s−>pdb ) , t r u e , ” r e a l i z e d ” , & e r r ) ;

180 i f ( e r r ! = NULL ) {

181 e r r o r _ p r o p a g a t e ( e r r p , e r r ) ;

182 r e t u r n ;

183 }

184 b u s d e v = SYS_BUS_DEV ICE ( d e v ) ;

185 sysbus_mmio_map ( bu sde v , 0 , p d b_ a d d r ) ;

186 s y s b u s _ c o n n e c t _ i r q ( bu sde v , 0 , q d e v _ g e t _ g p i o _ i n ( armv7m , p d b _ i r q ) ) ;

187 /* A t t a c h L P I T */

188 de v = DEV ICE (& s−> l p i t ) ;

189 o b j e c t _ p r o p e r t y _ s e t _ b o o l ( OBJECT (& s−> l p i t ) , t r u e , ” r e a l i z e d ” , & e r r ) ;

190 i f ( e r r ! = NULL ) {

191 e r r o r _ p r o p a g a t e ( e r r p , e r r ) ;

192 r e t u r n ;

193 }

194 b u s d e v = SYS_BUS_DEV ICE ( d e v ) ;

195 sysbus_mmio_map ( bu sde v , 0 , l p i t _ a d d r ) ;

196 s y s b u s _ c o n n e c t _ i r q ( bu sde v , 0 , q d e v _ g e t _ g p i o _ i n ( armv7m , l p i t _ i r q ) ) ;

197 /* A t t a c h FTM */

198 de v = DEV ICE (& s−> f tm0 ) ;
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199 o b j e c t _ p r o p e r t y _ s e t _ b o o l ( OBJECT (& s−> f tm0 ) , t r u e , ” r e a l i z e d ” , & e r r ) ;

200 i f ( e r r ! = NULL ) {

201 e r r o r _ p r o p a g a t e ( e r r p , e r r ) ;

202 r e t u r n ;

203 }

204 b u s d e v = SYS_BUS_DEV ICE ( d e v ) ;

205 sysbus_mmio_map ( bu sde v , 0 , f t m _ a d d r [ 0 ] ) ;

206 s y s b u s _ c o n n e c t _ i r q ( bu sde v , 0 , q d e v _ g e t _ g p i o _ i n ( armv7m , f t m _ i r q [ 0 ] ) ) ;

207 /* A t t a c h CAN */

208 de v = DEV ICE (& s−>can ) ;

209 o b j e c t _ p r o p e r t y _ s e t _ b o o l ( OBJECT (& s−>can ) , t r u e , ” r e a l i z e d ” , & e r r ) ;

210 i f ( e r r ! = NULL ) {

211 e r r o r _ p r o p a g a t e ( e r r p , e r r ) ;

212 r e t u r n ;

213 }

214 b u s d e v = SYS_BUS_DEV ICE ( d e v ) ;

215 sysbus_mmio_map ( bu sde v , 0 , c a n _ a d d r ) ;

216 s y s b u s _ c o n n e c t _ i r q ( bu sde v , 0 , q d e v _ g e t _ g p i o _ i n ( armv7m , c a n _ i r q ) ) ;

217 /* C o n n e c t PORT i n t e r r u p t s */

218 o b j e c t _ p r o p e r t y _ s e t _ i n t ( OBJECT ( s−> p o r t _ i r q s ) , S32K_NUM_PORTS ,

219 ”num− l i n e s ” , & e r r ) ;

220 o b j e c t _ p r o p e r t y _ s e t _ b o o l ( OBJECT ( s−> p o r t _ i r q s ) , t r u e , ” r e a l i z e d ” , & e r r ) ;

221 i f ( e r r ! = NULL ) {

222 e r r o r _ p r o p a g a t e ( e r r p , e r r ) ;

223 r e t u r n ;

224 }

225 q d e v _ c o n n e c t _ g p i o _ o u t ( DEV ICE ( s−> p o r t _ i r q s ) , 0 ,

226 q d e v _ g e t _ g p i o _ i n ( armv7m , p o r t _ i r q ) ) ;

227 /* A t t a c h PORTS */

228 f o r ( i = 0 ; i < S32K_NUM_PORTS ; i + + ) {

229 d e v = DEV ICE ( & ( s−> p o r t [ i ] ) ) ;

230 o b j e c t _ p r o p e r t y _ s e t _ b o o l ( OBJECT (& s−> p o r t [ i ] ) , t r u e , ” r e a l i z e d ” , &

e r r ) ;

231 i f ( e r r ! = NULL ) {

232 e r r o r _ p r o p a g a t e ( e r r p , e r r ) ;

233 r e t u r n ;

234 }



Appendix D. QEMU Machine Additional Material 173

235 b u s d e v = SYS_BUS_DEV ICE ( d e v ) ;

236 sysbus_mmio_map ( bu sde v , 0 , p o r t _ a d d r [ i ] ) ;

237 }

238 /* A t t a c h GP IOS */

239 de v = DEV ICE (& s−>p t a ) ;

240 o b j e c t _ p r o p e r t y _ s e t _ b o o l ( OBJECT (& s−>p t a ) , t r u e , ” r e a l i z e d ” , & e r r ) ;

241 i f ( e r r ! = NULL ) {

242 e r r o r _ p r o p a g a t e ( e r r p , e r r ) ;

243 r e t u r n ;

244 }

245 b u s d e v = SYS_BUS_DEV ICE ( d e v ) ;

246 sysbus_mmio_map ( bu sde v , 0 , g p i o _ a d d r [ 0 ] ) ;

247 s y s b u s _ c o n n e c t _ i r q ( bu sde v , 0 , q d e v _ g e t _ g p i o _ i n ( DEV ICE ( s−> p o r t _ i r q s ) , 0 )

) ;

248 // PTB

249 de v = DEV ICE (& s−>p t b ) ;

250 o b j e c t _ p r o p e r t y _ s e t _ b o o l ( OBJECT (& s−>p t b ) , t r u e , ” r e a l i z e d ” , & e r r ) ;

251 i f ( e r r ! = NULL ) {

252 e r r o r _ p r o p a g a t e ( e r r p , e r r ) ;

253 r e t u r n ;

254 }

255 b u s d e v = SYS_BUS_DEV ICE ( d e v ) ;

256 sysbus_mmio_map ( bu sde v , 0 , g p i o _ a d d r [ 1 ] ) ;

257 s y s b u s _ c o n n e c t _ i r q ( bu sde v , 0 , q d e v _ g e t _ g p i o _ i n ( DEV ICE ( s−> p o r t _ i r q s ) , 1 )

) ;

258 // PTC

259 de v = DEV ICE (& s−> p t c ) ;

260 o b j e c t _ p r o p e r t y _ s e t _ b o o l ( OBJECT (& s−> p t c ) , t r u e , ” r e a l i z e d ” , & e r r ) ;

261 i f ( e r r ! = NULL ) {

262 e r r o r _ p r o p a g a t e ( e r r p , e r r ) ;

263 r e t u r n ;

264 }

265 b u s d e v = SYS_BUS_DEV ICE ( d e v ) ;

266 sysbus_mmio_map ( bu sde v , 0 , g p i o _ a d d r [ 2 ] ) ;

267 s y s b u s _ c o n n e c t _ i r q ( bu sde v , 0 , q d e v _ g e t _ g p i o _ i n ( DEV ICE ( s−> p o r t _ i r q s ) , 2 )

) ;

268 // PTD
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269 de v = DEV ICE (& s−>p t d ) ;

270 o b j e c t _ p r o p e r t y _ s e t _ b o o l ( OBJECT (& s−>p t d ) , t r u e , ” r e a l i z e d ” , & e r r ) ;

271 i f ( e r r ! = NULL ) {

272 e r r o r _ p r o p a g a t e ( e r r p , e r r ) ;

273 r e t u r n ;

274 }

275 b u s d e v = SYS_BUS_DEV ICE ( d e v ) ;

276 sysbus_mmio_map ( bu sde v , 0 , g p i o _ a d d r [ 3 ] ) ;

277 s y s b u s _ c o n n e c t _ i r q ( bu sde v , 0 , q d e v _ g e t _ g p i o _ i n ( DEV ICE ( s−> p o r t _ i r q s ) , 3 )

) ;

278 // PTE

279 de v = DEV ICE (& s−> p t e ) ;

280 o b j e c t _ p r o p e r t y _ s e t _ b o o l ( OBJECT (& s−> p t e ) , t r u e , ” r e a l i z e d ” , & e r r ) ;

281 i f ( e r r ! = NULL ) {

282 e r r o r _ p r o p a g a t e ( e r r p , e r r ) ;

283 r e t u r n ;

284 }

285 b u s d e v = SYS_BUS_DEV ICE ( d e v ) ;

286 sysbus_mmio_map ( bu sde v , 0 , g p i o _ a d d r [ 4 ] ) ;

287 s y s b u s _ c o n n e c t _ i r q ( bu sde v , 0 , q d e v _ g e t _ g p i o _ i n ( DEV ICE ( s−> p o r t _ i r q s ) , 4 )

) ;

288 }

289

290 s t a t i c P r o p e r t y s 3 2 k 1 1 6 _ s o c _ p r o p e r t i e s [ ] = {

291 DEF INE_PROP_STR ING ( ” cpu− t y p e ” , S32K116S t a t e , c p u _ t y p e ) ,

292 DEF INE_PROP_END_OF_L IST ( ) ,

293 } ;

294

295 s t a t i c v o i d s 3 2 k 1 1 6 _ s o c _ c l a s s _ i n i t ( O b j e c t C l a s s * k l a s s , v o i d * d a t a )

296 {

297 D e v i c e C l a s s * dc = DEV ICE_CLASS ( k l a s s ) ;

298

299 dc−> r e a l i z e = s 3 2 k 1 1 6 _ s o c _ r e a l i z e ;

300 dc−>p r o p s = s 3 2 k 1 1 6 _ s o c _ p r o p e r t i e s ;

301 }

302

303 s t a t i c c o n s t T y p e I n f o s 3 2 k 1 1 6 _ s o c _ i n f o = {
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304 . name = TYPE_S32K116_SOC ,

305 . p a r e n t = TYPE_SYS_BUS_DEV ICE ,

306 . i n s t a n c e _ s i z e = s i z e o f ( S 3 2K116S t a t e ) ,

307 . i n s t a n c e _ i n i t = s 3 2 k 1 1 6 _ s o c _ i n i t f n ,

308 . c l a s s _ i n i t = s 3 2 k 1 1 6 _ s o c _ c l a s s _ i n i t ,

309 } ;

310

311 s t a t i c v o i d s 3 2 k 1 1 6 _ s o c _ t y p e s ( v o i d )

312 {

313 t y p e _ r e g i s t e r _ s t a t i c ( & s 3 2 k 1 1 6 _ s o c _ i n f o ) ;

314 }

315

316 t y p e _ i n i t ( s 3 2 k 1 1 6 _ s o c _ t y p e s )

Listing D.2: S32K116 Machine

D.5 Makefile changes

Under the ARM hardware Makefile:

1 . . .

2 o b j−$ ( CONFIG_NETDUINO2 ) += n e t d u i n o 2 . o

3 o b j−y += s32 k116e v b . o

4 o b j−$ ( CONF IG_NSER IES ) += n s e r i e s . o

5 . . .

6 o b j−y += s32 k116_so c . o

Under the ARM devices Makefile:

1 # ARM d e v i c e s

2 . . .

3 common−o b j−$ ( CONFIG_ARM11SCU ) += a rm11scu . o

4 o b j−y += s32k_smc . o

5 o b j−y += s32 k_ s im . o

6 o b j−y += s32k_ r cm . o

7 o b j−y += s32 k_p c c . o

8 o b j−y += s 32 k _ s c g . o

9 o b j−y += s 3 2 k _ p o r t . o

10 o b j−y += s 3 2 k _ g p i o . o

11 o b j−y += s32 k_ c an . o
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12 o b j−y += s32k_wdg . o

13 o b j−y += s32 k_ad c . o

14 o b j−y += s 3 2 k _ l p u a r t . o

15 o b j−y += s32k_pdb . o

16 o b j−y += s 3 2 k _ l p i t . o

17 o b j−y += s 3 2 k _ f tm . o

18 . . .

D.6 Full Command Line Arguments

qemu-system-arm -M s32k116evb -kernel SAS.elf \

-nodefaults \

-serial stdio \

-nographic \

-D qemu-log-sas.log \

-icount 5 \

-sb can=8888,gpio=8887 \

-sync 7777,50016 \

-fi 7776,fault_lib_1.xml,10000000,10000000,CurrentState \

-simfile sim_file_b1.txt \

-watchdogfile wdg_b1.txt
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Monte Carlo Simulations

E.1 Component Mean Time Between Failure Values

Table E.1: Component Mean Time Between Failure Values

Component MTBF (hours)

Microcontroller 4.2× 105

CAN 1.7× 105

Digital Isolator 2.5× 105

Clock 1.6× 105

Power 5.3× 105

Sensor 2× 105

E.2 Fault Coordinator Python Script

FI Coordinator
QEMU 

Instance 1
QEMU 

Instance 2

Generate Fault 
List XML File

loop

Signal fault list genera�on complete

Request new fault list

Request new fault list

Signal fault list genera�on complete

Fault 
Injec�on

Fault 
Injec�on

Figure E.1: Fault Coordinator sequence diagram
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Start

Retrieve component failure
probabilities

Create fault injection
coordinator server

Listen to server socket and
accept client connection

YesNo Data on
socket?

No YesFault 
request?

No Yes
Number of requests
equals number of

simulations?

Increment number of requests
Get simulations states and log

results

Generate new fault list
according to fault probability

No

YesSimulations states 
are both 'KO'?

Reset simulations

Broadcast fault injection ready
to all simulations

Figure E.2: Fault Coordinator flowchart
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