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ABSTRACT

Metabolic models have been widely used in studies of areas that interface with metabolic
engineering. Metabolic modeling has proven itself useful in phenotype prediction, having
been used to simulate the behaviors and interactions of microbial organisms with in silico
techniques such as Flux Balance Analysis (FBA). Throughout time, the increase in information
available and model quality allowed shifting the attention to community metabolic models,
as microbial organisms rarely appear alone in the wild.

In silico metabolic engineering strategies are also used for optimizing microbial pheno-
types, to achieve or improve the production of the desired target compound with microbial
organisms. Following along with the interest in community models, optimization strategies
for community models have also started to appear in recent years.

Metaheuristic algorithms, such as Evolutionary Algorithms (EAs), have been developed
in the last decades and deliver problem-independent cost-efficient strategies to solve opti-
mization problems. These algorithms are highly flexible and can adapt to most optimization
problems.

In this work, a Python framework was developed to perform in silico optimization of the
composition of microbial communities given a specified objective with EAs. The objective
of this work came to fruition by building community metabolic models and then knocking
out organisms during simulations through constraints. This strategy was shown to exhibit
advantages over creating a new community metabolic model for every candidate of the EA,
while being interchangeable regarding the output, as well as perform faster than available
options.

The work was successfully validated by testing examples found in the literature and
obtaining the desired microbial community replicated in the outcome from the algorithm.
The framework also exhibited the possibility to expand this work to multi-objective EAs
strategies in the future.

Keywords: Microbial Communities, Community Metabolic Models, Optimization, Evolu-
tionary Algorithms



RESUMO

Os modelos metabdlicos tém sido amplamente usados em estudos nas dreas relacionadas
com a engenharia metabdlica. A modelagdo metabdlica tem provado ser ttil para previsao
de fenétipos, tendo ja sido usada para simular comportamentos e intera¢des entre micror-
ganismos usando técnicas in silico como a Andlise de Balango de Fluxos. Ao longo do tempo, o
aumento da informacao disponivel e a qualidade dos modelos construidos permitiu mudar o
foco de investigagdo para a construgdo de modelos metabélicos de comunidades microbianas,
visto que os microrganismos raramente surgem sozinhos na natureza.

As estratégias de engenharia metabdlica in silico sdo também usadas para otimizar
fendtipos de microrganismos de modo a atingir ou melhorar a producdo de um composto
de interesse produzido por microrganismos. Este facto, aliado ao crescente interesse em
modelos de comunidades microbianas, criou a necessidade de se desenhar estratégias de
otimizacdo para modelos de comunidades.

Para resolver estes problemas de otimizagdo, nas tltimas décadas tém sido utilizados
algoritmos metaheuristicos, como os algoritmos evoluciondrios, sendo estratégias eficientes e
independentes do problema. Estes algoritmos sdo altamente flexiveis e conseguem adaptar-se
a maior parte dos problemas de otimizagéo.

Neste trabalho, foi desenvolvida uma plataforma computacional em Python para executar
optimizagdo in silico da composi¢do de comunidades microbianas segundo objectivos pré-
definidos através de Algoritmos Evoluciondrios. O objetivo deste trabalho foi concretizado con-
struindo modelos metabdlicos de comunidades e eliminando organismos durante simulagGes
através da adigdo de restri¢oes. Esta estratégia mostrou apresentar vantagens face a construir
um novo modelo de comunidades para cada candidato do algoritmo evoluciondrio, sendo
intercambidvel no que diz respeito ao resultado, assim como apresenta resultados mais
rapidos do que alternativas existentes.

Este trabalho foi validado com sucesso ao testar exemplos encontrados na literatura
e obtendo a comunidade microbiana replicada no resultado do algoritmo. A plataforma
abre também a possibilidade de expandir este trabalho com algoritmos evoluciondrios
multi-objetivo no futuro.

Palavras-chave: Comunidades Microbianas, Modelos Metaboélicos de Comunidades

Microbianas, Otimizagdo, Algoritmos Evolucionarios
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INTRODUCTION

1.1 CONTEXT AND MOTIVATION

Genome-scale metabolic models have been used for the last decades to study cell behavior
under different conditions and to predict the impact that genetic modifications have in the
metabolism [1].

Metabolic models, specifically stoichiometric models, are defined by a m x n matrix (S)
comprised of m metabolites and n metabolic reactions involving said metabolites, and a
vector, v, comprised of n reaction rates [2], with the purpose of mimicking the organism
behavior in silico. The internal metabolite concentrations are assumed to be in a quasi-
steady state, as internal metabolic reactions are relatively faster than growth rates and
environmental changes. Thus, all fluxes that lead to the formation or degradation of internal

metabolites are assumed to be mass balanced [3]. This system can be represented as:
S-v=0

As all possible phenotypes are described as a steady-state flux space, this system can
be explored using a Linear Programming (LP) approach [4]. Constraint-based modeling
approaches, such as Flux Balance Analysis (FBA), introduce lower and upper bounds to the
flux rates, thus limiting the solution space of the LP problem, which, given an objective, will
then find the respective phenotype solution [5].

Usually metabolic models only consider one organism. However, most of in vivo mi-
croorganisms live in complex communities [6]. Therefore, studying microbial communities
provides better insight into each microorganism behavior in the community as well as the
interactions between the members of the community. With that in mind, an increasing num-
ber of studies concerning microbial community metabolic models are being published [7].
As the reconstruction of community models is challenging, the focus lies on the high-quality
reconstruction of single organism metabolic models to be combined into community models,

such as the Assembly of Gut Organisms through Reconstruction and Analysis (AGORA) provides
[8].



1.2. Goals

Naturally, to respond to this need, several methods for community metabolic model
simulation have appeared as well, such as Community Flux Balance Analysis (cFBA) [9] and
SteadyCom [10].

Several different strategies have been developed over time to manipulate organisms
towards a specific objective. Metabolic engineering focuses on the manipulation of the
metabolism of a given organism to improve its properties [11]. With community models,
this can be achieved by defining the best community composition for the desired outcome.

Defining the best composition for a community can be seen as an optimization problem.
Evolutionary Algorithms (EAs), inspired by natural selection, form a set of optimization
methods [12] that have already been used for strain design of single organism models in
order to maximize production of industrial interest [13]. However, until now no methods are
provided to find the best community composition in a systematic way in order to optimize a
given objective of the community.

This work aims to use EAs to find the best community composition of a given microbial

community for a defined objective.

1.2 GOALS

The purpose of this work is the development of methods that given a collection of
metabolic models, would be capable of using Evolutionary Algorithms to optimize the compo-
sition of a microbial community for a defined objective.

To achieve that purpose, the goals of this work are:

e Reviewing the state of the art in community metabolic models and related methods

and software tools;

Developing methods to create community metabolic models from single organism
metabolic models that allow excluding organisms from in silico communities;

Developing methods using evolutionary algorithms that optimize the composition of a

microbial community, for a given purpose;

Validating the results obtained from the developed methods with other strategies and

current available alternatives;

Testing the performance of the developed methods and validating the optimization
with a case study.

1.3 DOCUMENT ORGANIZATION

This document is structured as follows:



1.3. Document Organization

State of the Art
- Synopsis of the overall subject, which frames this work, Systems Biology.

— Overview of metabolic models encompassing constraint-based modeling, commu-
nity metabolic models and model simulations.

— Detailing metabolic engineering in the context of this work, highlighting EAs.

Materials and Methods
— Detailing of the used tools.
— Overall view of the developed work.

- Descriptive detailing of all of the components of the developed work.

Results
— Performance analysis of the developed work against existing alternative.

— Validating the optimization methods with a case study.

Conclusions

- Takeaways of the dissertation.



STATE OF THE ART

2.1 SYSTEMS BIOLOGY

Systems biology is the field of biology that targets the development of a system-level
understanding of biological systems, requiring a series of rules and methods that make
the connection between the behavior of molecules to the characteristics and functions of a
biological system [14].

The system-level approach to biology has been a recurring theme in the scientific com-
munity for a long time. One of the first supporters was Norbert Wiener, whose book led, in
1948, to the birth of biological cybernetics [15]. In 1968, based on the concept of homeostasis
proposed by Cannon [16], a general systems theory was proposed by Ludwig von Bertalanffy,
in an effort to establish a general theory for systems biology [17]. The work was, however,
too abstract.

While the pursuit of system-level understanding in biology is not new, only recently,
the knowledge framework based on the molecular level has been sufficient to grant the
opportunity to study biological systems at the level of genes and proteins. Past attempts did
not make the connection between system level description and molecular level knowledge.
The essence of system-level understanding of biological systems is obtained from four main
points [18]:

i Structure Identification: The relationships that make up the structure of the system
need to be identified. Primarily, regulatory relationships of genes and protein inter-
actions responsible for signal transduction and metabolic pathways and the physical
structure of the biological system.

ii Behavior Analysis: Metabolic, sensitivity and dynamic analysis methods allow for an

understanding of the system-level characteristics that underlie specific behaviors.

iii Control: Minimization of malfunctions by modulating mechanisms that systematically
control the state of the biological system required to use the information obtained

about its structure and behavior.
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iv Design: Strategies with definite design principles and simulations can be devised to
construct systems with desired properties.

One essential characteristic of biological systems is robustness, the ability to preserve
certain characteristics in spite of uncertain components or the environment [19]. The

characteristics of robust systems can be divided into three categories:
i Adaptation: Pertains to the capability to endure environmental changes;

ii Parameter Insensitivity: An indicator of a system’s relative sensitivity to kinetic

parameters;

iii Graceful Degradation: After a system takes damage, its functions degrade slowly,
rather than catastrophically.

Regarding systems, the robustness is obtained with system control, redundancy of functions,
structural stability promoters and, as sub-systems are insulated, modularity [14].

As any full description of a biological system is extremely extensive, systems biology
manages to deal with this vast quantity of information by condensing the current knowledge
into quantitative and qualitative descriptors and incorporating those into metabolic models
[20].

2.1.1  Metabolic Models

Mathematical modeling is a very useful tool used in a diverse range of scientific areas
to interpret and predict natural events [21]. Given that, modeling any kind of natural
phenomena comes down to a simplification, depending on the available data and objectives,
it is possible to construct different mathematical models for the same event [22].

The sudden increase in biological experimental data propelled several attempts to con-
struct mathematical models for biological systems. In areas such as biotechnology, there is
a specific focus on cellular metabolism, with the objective of exploring the production of

certain compounds [23].

2.1.1.1 Kinetic Models vs Stoichiometric Models

There are two main different metabolic model strategies, kinetic models, based on
microbial or enzyme kinetics as well as stoichiometry, and stoichiometric models, based on

invariable characteristics of metabolic networks:

i Kinetic: Kinetic models introduce reaction fluxes and metabolite concentration changes
as a function of time. Requiring more details than stoichiometric models, these usually

reach several metabolic reactions and transport processes within few pathways [24].
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This type of model includes details from mass action, reaction mechanisms such as
Michaelis-Menten reaction, information on types of inhibition and more, and param-
eters including the catalytic constant, maximal rate of reactions, Michaelis-Menten
constant. Kinetic models provide a chance to simulate the perceptible variations of
metabolite concentration and flux values over time [25]. Some detailed metabolic mod-
els at pathway-scale have been constructed, e.g. glycolysis [26] and Entner-Doudoroff
pathway [27].

=

ii Stoichiometric: Stoichiometric models are capable of covering a biological system
genome-wide requiring less detail on individual reactions than kinetic models [28].
These models are used to analyze feasible steady states with just information on
the stoichiometry of the reactions present, by assuming extracellular dynamics to be
virtually unchanged compared to intracellular ones. Additional parameters such as
the direction of reactions, bounds of fluxes and more, improve the accuracy of the
prediction of the model. Having less information per reaction allows the creation
of large models [25]. Hundreds of stoichiometric models at genome-scale have been
manually constructed for different organisms, along with thousands of automatic

reconstructions [29, 30].

The main component in constructing a stoichiometric metabolic model is the stoichio-
metric matrix [2]. Assuming a set of n reactions that establish relationships between an m
number of metabolites, we can create a matrix, S, with the size of m x n, comprised of the
stoichiometry from the respective reactions, as depicted in Figure 1. Every flux rate from the

defined reactions is stored in a vector, v [3]. This is shown in the form of:
S-v=0 (1)

where the product between the matrix S and the vector v, corresponding to the net metabolite
uptake, is usually zero, due to the assumption that intracellular dynamics are vastly faster
than extracellular ones, i.e. quasi-steady state [31].

2.1.1.2 Constraint-Based Modeling

Constraint-based modeling is based upon the notion that the behavior of a biological
system, such as a cell, will be limited by its natural properties. These properties can be
classified into 4 distinct categories [33]:

i Physicochemical: Inviolable hard constraints on cellular functions such as energy, mass
and momentum that must be conserved. Cells are densely packed and so its viscosity
can be hundreds of times of that of water. This makes the diffusion rates of some
molecules, depending on molecular size, limiting and slow [34]. The confinement of
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metabolic network. (A) Sample Network; (B) Stoichiometric Matrix; (C) Gene-Protein-
Reaction and Regulation Rules. Source: Maia, P., Rocha, M. and Rocha, I. [32]

molecules in semi-permeable membranes demands mechanisms to deal with osmotic
pressure [35]. Enzyme-turnover values are usually below 10* s~! and maximal reaction
rates equal to enzyme concentration multiplied by the turnover [36]. Additionally,

reactions proceeding in the forward direction require negative free-energy.

Topological: Fitting molecules inside cells leads to three-dimensional constraints the
affecting form and function of the biological system. Physical arrangement of molecules
inside the cell follow two clashing needs, to be packed tightly but also to be easy to
access [37], e.g. bacterial DNA is 1000 times longer than a cell. At pH of 7.6, E. coli has
around 16 hydrogen ions [38]. These low numbers make the tracking of hydrogen ions
crucial, as it turns the discussion around bulk average pH of the intracellular spaces

meaningless [39].

Environmental: Dependent on time and condition, environmental constraints include
nutrient availability, osmolarity, temperature, pH and presence of electron acceptors.
These constraints are fundamental for quantitative analysis of microorganisms. Well
documented media environments are necessary to incorporate data from various
sources into descriptive and predictive quantitative models. Experiments with a media

composition undefined are of limited use in quantitative models [33].
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V3 V3 V3
Optimization
maximize Z

Constraints
1)Sv=0
2) Vmin < V s Vmax

Vi

Unconstrained Allowable
solution space solution space

V2 V2 ]

Optimal solution

Figure 2: Conceptual basis of constraint-based modeling, showing the solution space constrained by
mass balance (1) and lower and upper bounds (2), and the optimal solution found by FBA
through the optimization of an objective function. Source: Orth, |., Thiele, I. and Palsson, B.

[5]

iv Regulatory: Unlike the previous categories, regulatory constraints are self-imposed
and subject to evolutionary change. In contrast to the hard constraints, these can
be referred as regulatory restraints. These constraints permit the cell to eliminate

suboptimal phenotypes and confine to behaviors with better fitness [40].

The constraints can be represented mathematically in metabolic models. These constraints
work either as balances, values linked with conserved quantities, such as mass and energy,
and events such as osmotic pressure, solvent capacity, or bounds, numerical ranges that limit
parameters and variables, such as fluxes and concentrations, of the metabolic model [33].

The most common example of a balance constraint is the conservation of mass. When
assuming a quasi-steady state in a metabolic network, every metabolite must be produced
and consumed at the same rate. This flux balance is represented trough the abovementioned
equation 1 [41].

Bounds are represented trough limit values that constrain individual variables. To every
individual flux from the vector v, a lower and upper limit is defined as v,,;, < v < Vyyy.
Elementary irreversible reactions have v,,;, = 0. Upper limits based on enzyme capacities
might be imposed on reactions [40].

Every set of flux rates, vector v, describes a phenotype of the biological system corre-
sponding to the metabolic model. Thus, constraint-based modeling limits the available
phenotypes possible for a metabolic model. This allows for simulation methods such as FBA
to find the best real phenotype for a defined objective, as depicted in Figure 2.

2.1.1.3 Community Models

While microorganisms have a vital role in various industrial processes, it cannot go
unnoticed that in the vast majority of cases, microorganisms do not work in isolation, but
rather, in microbial communities. Microbial communities are multi-species aggregations

where organisms interact with each other [42]. These communities exist in various sizes

8
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from dozens of “species” [43] to hundreds in human microbiomes [44] to tens of thousands
per gram of soil [45].

The importance of studying microbial communities over single microorganisms sparkled
the emergence of community metabolic models [7]. In terms of constructing community

metabolic models, there are two main strategies [46]:

i Supra-Organism: One of the options is to consider the microbial community as a
modeling unit that performs various functions. Through this lens, the microbial
community is viewed as the collection of reactions and genes from all species in
the community without considering cell boundaries and not as a set of different
species. Therefore, it works as a single species prokaryotic model, with one internal
compartment and one extracellular compartment. This type of approach is mostly
used to study the interactions of the microbial community with the environment [47].

=3

ii Population-based: In this approach, every species in the model is interpreted as
an interacting modeling unit. The internal states and functions are assumed to be
unchangeable across organisms from the same species. This involves containing every
species in its specific compartment of the model, similarly to the way eukaryotic

models assume quasi-steady state between inter- and intra-compartmental reactions
[46].

However, when considering population-based models, it is possible for species to grow
at a faster rate than others, changing significantly the community structure. Accordingly,
considering the basis of constraint-based modeling, quasi-steady state assumptions might
not hold [48]. Thus, to predict non-steady state interactions, multi-species dynamic models
are required, adding exchange rates for each individual species [47]. These community
metabolic model reconstruction strategies can be represented as illustrated in Figure 3.
Other community metabolic model reconstruction approaches include graph-based [49] and
network expansion strategies [50].

The construction of reliable community metabolic models is a difficult exercise. Even
for single species models, genome-scale metabolic network reconstruction is a process
that takes a significant time [51]. Community modeling reconstruction is, therefore, even
more challenging, given the interactions present between the organisms in the biological
system. Instead, it is conventional to focus the construction of community models in the
reconstruction of high-quality individual metabolic models. The combination of these
models should result in quantitative predictions of the interactions and behaviors of the
community [52]. This strategy proves unfruitful if there is a lack of enough data required for
individual models. Several projects have focused on the construction of these high-quality
metabolic models. Magnusdéttir et al. created AGORA, having generated 773 genome-scale
models, claiming it could provide the starting point for generating high-quality curated
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A B /—\ C
A Species 1 ® Compartment 1 ©

/

1
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Figure 3: Alternative strategies for the construction of community models: (A) Multi-species dy-
namic modeling; (B) Population-based modeling; (C) Supra-organism modeling. Colors
correspond to metabolic pathways associated with species 1 (purple), species 2 (green) and
common for both organisms (orange). Solid circles are extracellular metabolites, open circles
are intracellular ones. Solid lines boxes correspond to compartments outside of which
quasi-steady state assumptions are not guaranteed, dashed lines boxes are compartments
inside of which quasi-steady state assumptions do hold true. In A kinetically modeled
exchange rates are represented. Source: Henry ef al. [47].

metabolic reconstructions [8]. AGORA models, however, are constructed from the human
microbiome and, therefore, may vary from the species found in soil microbial communities,
especially from extreme environments, as conditions such as temperature, pH and salinity
may influence the behavior of the species.

2.1.2  Model Simulation

The main objective of reconstructing in silico constraint-based metabolic models of bi-
ological systems is to predict the interactions and behavior of such systems. While the
definition of an S matrix defines reactions and metabolites present in a biological system, the
constraints applied to said system limit the possible phenotypes. Hence, model simulation
strategies work, given a biologically relevant objective function such as biomass growth
rate [53], to find the best solution for such an objective. Model simulations, or phenotype
predictions, can be achieved through several methods, the most common of which is FBA
(3]

FBA attempts to find the optimal solution for an objective by interpreting the issue as an
LP problem [54]. Thus, calculating an objective function described by the following equation:

Maximize z=cT v

Subjectto: S-v =0 ()
Vjmin < Vj < Vjmax

10
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where ¢ corresponds to a vector responsible for the relation between the fluxes, vector v,
and the objective function z. The LP problem is also subject to the constraints defined
of stoichiometry consistency and lower and upper bounds for every j metabolite of the
vector v [2]. The wide use of FBA has led to several variants of this method that use
additional information to surpass limitations of the regular FBA. Regulatory Flux Balance
Analysis, developed by Covert et al. [55], introduced transcriptional regulatory events as
another time-dependent constraint in FBA to study the effects of transcriptional regulation
on cellular metabolism. However, these methods require more information than their regular
counterparts do, thus fewer models are able to use them.

Flux Variability Analysis (FVA) is able to test the flexibility and robustness of a model
by maximizing and minimizing every flux and thus providing a range to each flux rate in

which the model still obeys objective function [56], according to the following LP problem.

Maximize/Minimize v,
Subject to: S-v =0
zgpj =T -0

(3)

Vjmin < Uj < Ujax forj=1..k

To perform FVA, a first FBA must be performed to define z,,;. Then the problem is solved
for all k fluxes existent. A significantly more efficient version of FVA, fastFVA, was developed
by Gudmundsson and Thiele [57]. Using Simplex-type algorithms, instead of starting each LP
problem from scratch, it starts from the optimum solution found in the previous LP problem
solved, therefore turning the run times from 20 up to 220 times faster than regular FVA, and
thus making it feasible to use in larger models.

While the maximal biomass growth rate is assumed in normal conditions, genetic pertur-
bations, such as cases of gene deletion, might override this principle. Different methods have
been developed to address this problem. Minimization Of Metabolic Adjustment (MOMA) mini-
mizes the sum of squared differences between a reference flux distribution and a mutant one,
defining the problem, not as linear, but as quadratic programming [58]. Regulatory On/Off
Minimization (ROOM) simulates genetic perturbations and then minimizes the amount of
significantly changed fluxes compared to the original, with a mixed-integer LP problem [59].

2.1.2.1  Community Model Simulation

The development of community models and their implied complexity sparked a need for
simulation methods that better fit the needs and specificities of community models.

One of the first steps in this direction is cFBA, a direct translation from single organism
FBA to community models, involving only the addition of community-related constraints
concerning the preservation of steady state assumptions. The constraint equations added

imply that to maintain steady state, one of two scenarios must be true: (1) organism
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abundances remain stagnant and the net growth rate is zero, meaning that organisms
exchange metabolites while not growing, consistent with periods of dormancy; (2) if all
organisms grow at the same rate and exchange rates to the exterior increase as much as
the biomass, where the community growth rate does not have to match any of the growth
rates of the microorganisms present [9]. cFBA implies the existence of a balanced growth of
the microbial organisms involved, therefore, it is apt for studies of stable communities. It
predicts flux distribution, growth rates and abundance of each species and exchange fluxes
between them and the environment.

In 2012, Zomorrodi and Maranas [60] published OptCom, a generalized computational
framework to implement cFBA. OptCom generates a multi-level optimization problem. At
the inner species-specific level, it creates a separate problem for the biomass growth of each
species. The interactions between each species are modeled with constraints in the outer
level of the optimization problem, as illustrated in Figure 4.

Maximize/Minimize z = Community-level objective function
(e.g., total community biomass)
subject to
( k
Maximize v ' Maximize v )
biomass biomass
s.t. s.t.
Network stoichiometry Network stoichiometry
ﬁ Bounds on uptake/export reactions | > * * * 2 | Bounds on uptake/export reactions >
for the shared metabolites for the shared metabolites
Other physiological & Other physiological &
environmental constraints environmental constraints
\ )
Inter-organism flow constraints

Figure 4: The multi-level structure of the OptCom optimization problem. A separate biomass
maximization problem is defined for each species. These inner problems are integrated into
the outer level through the inter-organism flow constraint to optimize a community-level
objective function. Source: Zomorrodi, A. and Maranas, C. [60]

In a following study, dynamic OptCom (d-OptCom) was introduced, as an extension to their
previous work that used kinetic information to perform dynamic simulations. d-OptCom
adds constraints to the outer level of the optimization problem. These constraints concern
mass conservation equations for the biomass of each community member, mass conservation
equations for shared metabolites with kinetic information, and uptake rates of shared
metabolites [61]. This approach was preceded by other dynamic simulation methods such as
Dynamic Multi-species Metabolic Modeling [62] and Dynamic Flux Balance Analysis [63].

Recently, SteadyCom was introduced by Chang et al. [10], showcasing a simulation
method for community models able to predict the flux distributions abiding by the steady-
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state requirement. In cFBA, the number of LP problems increases exponentially with the
number of organisms present in the community [9]. On the contrary, in SteadyCom, the
number of LP problems required depends on the precision of the maximum growth rate and

the distance of the solution to the initial estimate, thus providing a clear advantage when

simulating larger models. Another advantage is the compatibility with the FVA formulation.

When developing community model simulation methods, it is common to use the sum
of the biomass reactions of each species, the community biomass, as the overall objective
function [10], which may not be an accurate representation of natural occurrences. The
interaction between species might not be beneficial and so the maximization of growth rate
would not reflect the behavior of the community.

The development of community model simulation methods is a growing area as new
works continue to appear. FLexible sYnthetic Consortium OPtimization (FLYCOP), developed
to design synthetic microbial consortia [64], using Computation of Microbial Ecosystems in Time
and Space (COMETS) [65] to find the best parameters of the microbial community for one
or more objective functions. The composition of the community is, however, fixed and the
algorithm allows only for a small number of strains. Community Metabolism Design Algorithm
(CoMiDA), a graph-based algorithm to find the smallest community composition to yield a
target compound [66], considers the metabolites as nodes and reactions as edges through
an LP problem, returning the smallest group of species capable of together producing the
compound. This method, however, is not optimizing the production of that compound
and thus, there can be other, better, alternatives to achieve the same goal, albeit with more

organisms.

2.1.3 Tools

Systems Biology Markup Language

The Systems Biology Markup Language (SBML) is a model definition language based on
eXtensible Markup Language (XML) [67], a simple machine-readable text-based substrate that
has high acceptance in bioinformatics and computational biology [68], as shown in Figure
5. SBML emerged from the necessity of the community to share their models with each
other. As several projects were being developed, easy communication between the models
generated by each project was necessary, and so SBML served as an intermediary that could
be used to facilitate the sharing of information. Despite the initial purpose of it being just a
facilitation tool, SBML is the most popular model language [69].
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1 | <?xml version="1.0" encoding="UTF-8"7>
2 | <sbml xmlns="http://www.sbml.org/sbml/levell"
3 level="1" version="2">

4 <model name="gene_network_model">
5 <list0fUnitDefinitions>

6 T i

7 </1ist0fUnitDefinitions>

8 <list0fCompartments>

9 -

10 </list0fCompartments>

11 <list0fSpecies>

12 i

13 </1list0fSpecies>

14 <list0fParameters>

15 e

16 </list0fParameters>

17 <list0fRules>

18 £ &

19 </1listO0fRules>

20 <list0fReactions>

21 52

2 </listO0fReactions>

23 </model>

24 | </sbml>

Figure 5: Depiction of the schematics of an SBML file. Source: Hucka, M. et al. [70]
SBML is developed in levels, to maintain the support of earlier versions. SBML Level 2,
which is currently the latest fully developed level, includes these features [70]:
i Compartment: A container where reactions take place.
ii Species: An entity partaking in a reaction, such as ions or molecules.

iii Reaction: A description of a transformation, binding or transport process changing
one or more species. Includes rate laws describing the way they take place.

iv Parameter: A nameable quantity. Parameters in SBML can be global or local to certain

reactions.
v Unit definition: A name of a unit used in expressing quantities in the model.

vi Rule: A mathematical expression added to the equations of the model generated from

the reactions.

vii Function: A mathematical expression used in place of repeated expression throughout

the model in rate equations or other formulas.

viii Event: A set of mathematical expressions used at specified times in the evolution of

the system.

Level 3, currently under development, will support more features, including: Layout,
Hierarchical Model Composition, Arrays, Spatial Processes and Flux Balance Constraints [69].
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Constraint-Based Modeling Software

One of the most well-known software for constraint-based modeling is the COnstraint-
Based Reconstruction and Analysis (COBRA) Toolbox [71], an open source software package
developed for MATLAB [72] first developed to ease phenotype prediction using the available
constraint-based modeling methods at the time. The growth of the community led to
more recent versions of the COBRA Toolbox, including methods to simulate and analyze
phenotypes and new modeling strategies.

Several other constraint-based modeling software tools have been developed for a different
multitude of platforms, including Java [73], R [74], Python [75], C++ [76] and web-based
format, as shown in Table 1. Each of these tools was developed with a specific interest in
mind and thus their capabilities are not completely overlapping. Constraint-based modeling
tools perform a variety of functions including simulation, analysis, design, reconstruction,
data integration and visualization.

Table 1: Examples of sofware with contraint based modeling capabilities and respective platform and

status [71].

Name Platform Interface Development | Distribution
COBRA Toolbox [71] | MATLAB Script open source git
CellNetAnalyzer [77] | MATLAB Script/GUI closed source zip
OptFlux [78] Java Script/GUI open source svn
Sybil [79] R Script open source Zip
COBRApy [80] Python | Script/Narrative | open source git
CBMPy [81] Python Script open source zip
FRAMED [82] Python Script open source zip
SurreyFBA [83] C++ Script/GUI open source zip
KBase [84] Web-based | Script/Narrative | open source git

FRAmework for Metabolic Engineering and Design (FRAMED) is a python package capable
of analysis and simulation of different metabolic models [82]. While also performing
constraint-based modeling strategies, its main focus is to provide support for different
modeling approaches: constraint-based models, kinetic models and bioprocess models. It
includes several functions for each of the model types supported, including FBA, time-course
simulation and Dynamic Flux Balance Analysis (DFBA).

2.2 METABOLIC ENGINEERING

The idea of manipulating metabolic pathways to improve cellular processes is old and has
been broadly used in the past, from classical breeding and crossing of Saccharomyces strains
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for beer fermentation to improving penicillin production of Penicillium chrysogenum through
repeated mutation [85]. The emergence of DNA recombinant technology, however, made it
possible to outline more precise, targeted strain improvements. This approach was titled
cellular and metabolic engineering. The term was coined in 1991 by Bailey [86], describing
it as an "Improvement of cellular activities by manipulation of enzymatic transport and regulatory
functions to the cell with the use of recombinant DNA technology.” A more lenient definition
was proposed by Cameron and Tong as a "Purposeful modification of intermediary metabolism
using DNA techniques” [87]. Thus, metabolic engineering encompasses the following: (1)
introducing new pathways in microbial organisms with the objective of producing novel
metabolites; (2) producing heterologous peptides; (3) improving new and existing processes
[85].

As with many other engineering subjects, metabolic engineering comprises two main
steps: analysis and synthesis [88]. The analysis component of metabolic engineering can be
achieved through [85]:

i Physiological Studies: With the advances in genome characterization, a combination
of genetic studies with classic cultivation work comes up as extremely important to

identify unknown regulatory compounds and patterns.

ii Metabolic Flux Analysis: Especially relevant in studies where the objective is to
redirect the metabolic production to a certain pathway, metabolic flux analysis out-
puts valuable information when the quantification of fluxes is estimated at different

environmental conditions or with mutant strains.

iii Metabolic Control Analysis: As several molecular events were identified, such as
feedback inhibition, covalent modification and co-operativity in enzymes, identifying
the one responsible for flux control often generate disputes, in many cases conflicting.
Metabolic Control Analysis reports than all processes influence the flux and that some
have higher influence than others.

iv Thermodynamic Analysis: Information on if a reaction can occur and in which di-
rection can be obtained through the Second Law of Thermodynamics and the Gibbs
chemical equilibrium principle. It is also possible to determine a range of concen-
trations in which each reaction is feasible, thus allowing to identify reactions that
compromise the thermodynamic unfeasibility.

v Mechanistic Modeling: Without needing to assume steady state, dynamic models
obtain information from changes in metabolite concentrations over time, providing

detail of how individual processes influence the performance of the system.
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The synthesis component refers to the processes used to obtain new strains of desired

organisms. Several different techniques have been used for this purpose, pertaining to these

categories [89]

i

i Construction of Synthetic Metabolic Pathways: Many target compounds are not

=34

natural to the studied organisms and so strategies to build synthetic pathways are

required to attain efficient formation of those targets. With de novo pathway design the

best candidate enzymes are heterologously or combinatorially introduced to reconstruct

a new metabolic pathway [90]. Another approach is enzyme engineering and creation

for synthetic pathways. When enzymes for the required pathway are not present, it is

possible to develop new enzymes through directed evolution and mutagenesis [91].

Systems metabolic engineering strategies: After assuring the production of the desired

target, the objective turns to enhance its production, through the application of systems

metabolic engineering strategies. These can be divided into rational-intuitive and

systematic-rational-random strategies:

a)

=

Rational and Intuitive approaches: Engineering of carbon source utilization has had
a lot of focus to enhance its uptake and efficiency to enhance the production of
target metabolites [92]. Sometimes the target needs to be excreted, thus minimiz-
ing its concentration inside the cell and avoiding inhibitions will maximize the
production of the target metabolite from a transporter engineering standpoint [93].
By-product elimination and precursor enrichment are also one of the most used
strategies. By removing competing pathways with gene deletion and enhancing
the target pathway with gene amplification techniques [94]. Cofactor optimization
is often required as they are important to the production of target compounds.
Aspects such as the balance of electron-mediating cofactors are controlled with
the generation of highly required cofactors [95].

Systematic and rational-random approaches: These approaches rely on randomness
and are driven by a defined rationale, mimicking natural evolution. The intro-
duction of synthetic metabolic pathways, usually from heterologous sources,
imbalances the tightly controlled regulation, possibly leading to growth delay
or accumulation of metabolites. Optimization and modulation of the metabolic
pathways strategies are used to control the expression of enzymes to desired
values [96]. Finding the necessary enzyme may not be enough, thus enzyme
evolution for activity optimization is crucial in improving the synthesis rate of a
target compound [97]. Using the natural selection dogma, metabolite evolution
obtains desired phenotypes, which are too complex to enhance using rational

strategies [98]. Adaptive evolution with resequencing and re-engineering mimics
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natural evolution by exposing cells to rationally devised environmental conditions,
which are then sequenced to identify responsible genes [99].

In accordance with the in silico use of metabolic models, most of these strategies have in
silico counterparts and/or complements.

2.2.1  In silico Metabolic Engineering

When translated to the in silico frame, metabolic engineering focuses on the prediction of
modifications to the wild type strain of an organism to design a new strain that will improve
the yield of a product of interest. These modifications include gene deletion, gene over or
under-expression, heterologous insertion and cofactor binding specificity [32].

Gene deletion is the suppression of metabolic functions through the inactivation of specific
genes. This can be obtained by forcing the inactivation of some fluxes when simulating a
model and evaluating the effects of that suppression [100]. When inactivating a specific gene
can be fatal to the organism, it is possible to use gene over or under expression. Defining
bounds close to their theoretical limits, when performing a simulation, allows achieving
the desired outcomes without compromising the organism [101]. Heterologous insertion
consists of adding new pathways or genes to the model, not native to the organism. It is
performed by searching through databases for reactions that could be inserted in the model
that fulfil the desired outcome [102]. Cofactor binding specificity can be modulated by
simulating changes to the specificity between some reactions and evaluating the predicted
phenotypes [103].

In an effort to optimize strains through gene deletion, OptKnock was introduced in
2003 by Burgard et al. [100], as a bi-level optimization method that couples drain reactions
needed for biomass growth, such as energy and carbon sources, with the production of the
target compound as depicted in Figure X. Thus making the target compound a mandatory
by-product of biomass growth. OptKnock outputs which reactions should be removed from
the metabolic network, which is achieved by deleting the responsible genes.

OptStrain, an extension of OptKnock, was later developed as a method to include
nonnative functionalities through the addition of heterologous enzymes [104]. Pulling
information from sources such as BRaunschweig ENzyme DAtabase (BRENDA) [105], Kyoto
Encyclopedia of Genes and Genomes (KEGG) [106] and MetaCyc [107], OptStrain is loaded with
a reaction database used to find reactions that can be added to a metabolic model.

Likewise, OptReg was introduced a few years later to include gene over or under-
expression in strain optimization problems. OptReg works similarly to OptKnock with some
additional constraints. Apart from knocked out genes, it introduces upregulated genes and
downregulated genes as variables to create new strains [108].
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maximize bioengineering objective
(through gene knockouts)
subject to imaximize cellular objective
(over fluxes)
subject to - fixed substrate uptake
o network stoichiometry
o blocked reactions identified
by outer problem
number of knockouts < limit

Figure 6: Bi-level optimization framework of OptKnock. The inner problem focuses on a cellular
objective such as biomass growth, while the outer layer maximizes the product of interest
by restricting the reactions available to the inner layer. Source: Burgard et al. [100]

These works brought forth a plethora of similar computational methods to optimize
strain design. However, due to the elemental complexity of the computational complexity of
these optimization methods, despite outputting an exact solution, they often are limited to a
small maximum number of alterations [109].

The limitations of these previous methods led to the utilization of metaheuristic methods.
Metaheuristic methods present a less computationally expensive alternative. Despite not
being able to guarantee the optimal solution for a problem, they allow for optimization
across a larger subset of phenotypes. Some well-known metaheuristic optimization methods
include EAs, Simulated Annealing and Tabu Search [110].

2.3 METAHEURISTIC ALGORITHMS

Metaheuristic is a term established by Glover [111] to define higher-level problem-
independent framework designed to select heuristics that provide solutions to optimization
problems. Metaheuristic algorithms are reliant on stochastic processes and as such are not
guaranteed to find the best solution. Regardless, these algorithms are able to efficiently find
optimal solutions with less effort than most alternatives [112]. Most metaheuristic algorithms
are inspired by natural phenomena, leading to a multitude of different algorithms. The
easiness with which these are generated has, however, gathered some criticism [113].

The diversity of existing metaheuristic methods can be classified within the following
[114]:

i Nature-inspired vs Non-nature-inspired: Methods can be inspired by natural events,
such as the Genetic Algorithm [115] or not, e.g. Tabu Search [111]. This classification is

merely indicative and, sometimes, ambiguous.
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ii Population-based vs single point approach: Related to the number of solutions the
algorithms works with at the same time. Trajectory methods work with only one solu-
tion with local search strategies. Algorithms working with a population of solutions,

on the other hand, showcase the evolution of the solutions through the search space.

iii Dynamic vs static objective function: Some algorithms keep the objective function
intact through the whole process, while others will modify it by incorporating infor-
mation collected throughout the search to escape local minima.

iv One vs various neighborhood structures: While most metaheuristics work with a
single pool of solutions, it is possible for algorithms to jump between neighborhoods,

diversifying the search if needed.

v Memory usage vs memory-less methods: Whether or not the algorithm makes use
of its search history. Algorithms can use only the current state of the search, use
short-term memory, such as the recently performed moves or long-term memory by
accumulating parameters related to the search.

2.3.1  Evolutionary Algorithms

Inspired by the evolutionary theory [116], EAs constitute a family of population-based
optimization algorithms [12]. Search methods based on natural selection can be traced as far
back as 1954 [117].

In 1975, John Holland introduced the genetic algorithm [115], being the first to introduce
crossover and recombination techniques to diversify the population of solutions. Around
the same time, Fogel et al. [118], with the intent to simulate evolution to study artificial
intelligence, created a programming technique that featured random mutations to the
solutions in each generation. This combination of crossover, recombination and mutations
events in the generation of new populations of solutions is the staple in EAs [112].

While EAs are known for their huge flexibility, it is possible to identify five main
components [12]:

i Evaluation function, rating solutions in terms of fitness: The fitness function is the most
flexible component of an EA. Every member of a population is evaluated by it and
attributed a score value. If a goal value set beforehand is reached, the algorithm is
signaled to stop, as the objective has been fulfilled.

ii Genetic representation of solutions: The representation of each solution is, therefore,
highly dependent on the evaluating function, as it will consist of the parameters
required by evaluating function. Usually, every solution is represented by an array
with a set number of elements, which can be represented as any kind of data type,
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such as real, integer, boolean or string, depending on the nature of the parameter.

Therefore, every element of the solution acts as a chromosome.

=4

iii Creating a population of solutions: Every iteration of the evolutionary algorithm will need
a different population. The first population is usually set randomly from the possible
values every element can take. After going through the evaluating function once,
every member of the population will have an associated score, which will influence
how the next generation is produced. Creating a new population can be achieved
by a potentially infinite number of ways. Using the associated scores, the elements
of the best scoring solutions are used to generate solutions for the next generations.
New generations can be entirely new or keep a number of members from previous

iterations.

iv Genetic operators that change the composition of children during reproduction: With the goal
of imitating their in vivo counterparts, the generation of new individuals is done by
choosing two solutions from the current generation and performing a combination of
the following strategies, as depicted below: (1) recombination: where every element of
a new solution is chosen randomly from the parent elements; (2) crossover: where one
or more points in the sequence are randomly set, marking the intervals of elements
given by each parent; (3) mutation: singular stochastic alterations to one of the elements
of the offspring.

Parents: P;[0,0,0,0,0], P[1,1,1,1,1]

Recombination: ~ C;[1,0,1,1,0], C,[0,0,0,1,0]

Crossover: C1[1,1,1,0,0] & C2[0,0,0,1,1],
C3[0,1,1,1,0] & C4[1,0,0,0,1]

Mutation:  C;[0,0,1,0,0] — C;[1,0,1,0,1]

v Values for the parameters: Finally, the values for the sizes of the population and of the
solutions, the stopping criterion, which can be a goal score value and/or a number
of iterations, the probabilities of some of the genetic operators acting or not and any
other required value of the evolutionary algorithm.

EAs are widely used as they are extremely flexible, allowing them to perform general
optimization problems using any representation, fitness function, selection and variation
mechanisms, as illustrated in Figure 7, providing them with a tailored advantage over other

optimization methods [119].
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Figure 7: Conceptual basis of evolutionary algorithms.

Strain optimization software has been developed using EAs. For instance, OptGene
performs optimization through gene deletion, where each gene is an element of every
solution, represented by an array of Boolean elements [120]. The population is therefore
defined as a set of different strains of the same organism, in which simulating methods
such as FBA or MOMA are used as a fitness evaluation function, returning the objective
function score as the associated score for each solution. Variation is performed by simulating

crossover of genes between the individuals.

2.3.1.1  Multi-objective Evolutionary Algorithms

Evolutionary Multi-objective Optimization (EMO) was judged one of the fastest growing
research areas amongst every computational intelligence topic during the World Congress
of Computational Intelligence (WCCI) in Vancouver, 2006 [121] which is reflected in the
number of multi-objective EAs suggested over the years [122, 123, 124].

One of the main objectives of multi-objective optimization is to find Pareto-optimal
solutions, also known as non-dominated, non-inferior or efficient solutions. A solution
is called Pareto-optimal, when in a minimization problem, if for all of the values on the
solution vector there is not another vector in the solution space in which each value is lower
or equal than those of the solution and at least one of the values is lower [125]. Put simply, a
solution is Pareto-optimal if there is no other solution possible that perform better in one of
the parameters without compromising the others.

The main point of attractiveness of this field is the ability of this sort of algorithms to
find multiple Pareto-optimal solutions in a single run, in opposition to other multi-objective
strategies. These will generate multiple solutions, which, when plotted will form the

recognizable, Pareto-front, as demonstrated in Figure 8
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X

Figure 8: Given a set of solutions with two parameters each, X and Y, represented by circles, in a
problem of maximization, the orange circles represent the Pareto front: the set of Pareto-
optimal solutions where no solution outperforms the others. Image adapted from wikipedia
contributors [126].

Since, however, there can be multiple optimal solutions, no solution can be stated as
better than the rest. Therefore, selecting the best solution for the desired objective involves
external information and each option will present a trade-off situation to be considered

[125].
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MATERIALS AND METHODS

An evolutionary algorithm was designed to achieve the proposed goals, with community
metabolic models in mind. This algorithm creates a community model from an existing list
of single organism metabolic models.

Afterwards, it creates an initial population of candidates (described in section 3.1), with
which it starts by evaluating every candidate and, subsequently, generating new populations
of candidates based on the evaluation outcome.

This is repeated until a predefined number of evaluations is performed or a specific

evaluation outcome is hit, as shown in Figure 9 and detailed throughout this chapter.

3.1 TERMINOLOGY

Due to the high plasticity of evolutionary algorithms, it is necessary to detail the terminology
used as it is specific to the developed work. In this light, considering a set of 10 metabolic
models, labeled o to 9, representing 10 different organisms, the following terminology is

used:

o Candidate: A candidate is portrayed as a representation of the composition of a
microbial community. Candidates describe the composition of a community either
through binary representation (a list of ones and zeros, where the indexes of the ones
reflect which organisms are present) or through integer representation (a list of integers

corresponding to the models present) as depicted in Figure 10 a).

e Population: A population is a set of candidates, that is, a collection of representations
of possible compositions of microbial communities, as depicted in Figure 10 b); not to
be confused with microbial populations.

o Generation: A generation is one iteration of the evolutionary algorithm, characterized
by a population of candidates. After the population is evaluated and its candidates
used to generate new ones, a new generation starts, as depicted in Figure 10 c); not to

be confused with the reproduction based concept of generation.
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Figure 9: General work flow of the evolutionary algorithm designed to perform optimization of
microbial community composition. The algorithm, creates a community model, generates
candidates, evaluates them, and continues generating new candidates until it outputs the
best performing one. The blue sections pertain to classes developed for the algorithm
and its attributes, the orange to candidate generating sections, and the green to candidate
evaluating sections.

3.2 HARDWARE AND SOFTWARE

The present work was developed and tested in a computer with an Intel Core iy-500U
processor (2.40GHz, 4MB Cache) and 8GB of RAM on a Windows 10 operating system.

The speed performance comparisons were performed in SErvices and Advanced Research
Computing with HTC/HPC clusters (SeARCH), a computing infrastructure, from which only 5
out of 54 nodes were used: three with 1024GB of space and supporting Gigabit Ethernet
network, one of which with a E5-2683v4 dual CPU, 2.10GHz, 32 cores and 256GB of RAM
and two with E5-2660v4 dual CPUs, 2.00GHz, 28 cores and 128GB of RAM; and two with
Es5-2650 dual CPU, 2.00GHz, 16 cores and 64GB of RAM, supporting Gigabit Ethernet and
Myrinet 16Gbps networks. SeARCH runs Linux (CentOS 6.3 at the node level and Rocks 6.1
(Emerald Boa) to manage the cluster).

The programming language chosen to develop this work was Python 3.7. All python
packages were installed through Anaconda Navigator 1.9.7 [127] and the code was written
with PyCharm 2019.2.3 [128].

Two Python packages were essential to the development of this project, namely FRAMED
and Inspyred. The former was used to handle the SBML metabolic models within the Python
framework. The following classes and functions were imported from the FRAMED package:
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Figure 10: Visual depictions of several concepts used throughout the developed work, considering a
pool of 10 models labeled o through 9. a) Candidate: A candidate represents a possible
composition of a microbial community. It is depicted the composition in both binary
and integer representation for a composition with models 1, 2, 5, 7 and 8 present. The
filled squares represent which models are present in the candidate. The associated
numbered circles indicate the positional index of the model in the binary representation.
b) Population: A population refers to a series of candidates. Here depicted is a set of n
random representations. c) Generation: A generation is one iteration of the evolutionary
algorithm, characterized by its population. After a generation undergoes evaluation,
selection and variation processes, a new generation starts, with a new population.
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o The load_model function loads the model to the Python console, creating a FRAMED
Model object. This object creates a metabolic model in python by organizing every
metabolite, reaction and compartment in its dedicated object. Creating a Model object
requires the file name of the model to be loaded and the flavor parameter, indicating
the format of the model (cobra, cobra:other, seed, bigg or fbcz).

e The FBA functions performs a FBA on a Model object, returning a CPLEX [129]
Solution object, containing the status of said FBA and the values of the calculated
fluxes. Running the FBA function requires a FRAMED Model object. Additionally, the
function can take parameters such as constraints to limit the value of certain fluxes and

objective to define a non default objective for the simulation.

o The Community and Environment classes create the community model from existing
FRAMED Model objects. The Community takes, as parameters, an IDentifier (ID), a list
of FRAMED Model objects and the ID of the external compartment (which must me
the same across all pertaining individual models), and creates the community model as
a FRAMED Model object. The Environment class is then called to generate a complete
growth medium for the community model.

The latter (Inspyred) package was used to perform evolutionary computation, in or-
der to compare an existing alternative with the algorithm developed in this work. The
main class imported from this package is the Evolutionary Computation framework, ec.
Although Inspyred allows users to create their own framework, it also provides several
preset evolutionary computation strategies, out of which the following were used:

e GA: Represents a canonical genetic algorithm; served as comparison to the developed

work.

e emo.NSGA2: Represents the Non-dominated Sorting Genetic Algorithm (NSGA); it was

used to perform multi-objective optimization of the microbial composition.

The evolve function of the chosen algorithm was called to use these algorithms. The

following parameters were used:
e pop_size: to define the size of each population of candidates;
e maximize: to decide if the optimization maximizes or minimizes;
e bounder: to force the values of each candidate inside the desired intervals; and,

o max_generations: to set the maximum number of generations the algorithm was to

endure.

Apart from these, several attributes had to be designed or imported, namely:
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e Generators: These functions generate a single candidate representation, which In-
spyred utilizes to generate new candidates for populations of each generation.

o Evaluators: Evaluator functions take a list of candidate representations and return a
list of fitness values, respective for each candidate.

e Observers: Have a mainly indicative purpose as its only purpose is to print to the
console the latest generation’s candidates and respective fitness values.

e Variators: Variators are responsible for creating new candidates from existing ones,
usually chosen based on high fitness performance. These can take multiple existing
candidates and combining them into new ones, e.g. crossing-over, or altering a single
existing candidate into a different representation, e.g. mutation.

o Terminators: Functions that determine how or when the evolutionary computation
terminates. These can stop the algorithm on a predefined setting, such as time passed,
generations evaluated or having hit a fitness goal.

Every evolutionary computation framework from Inspyred has an evolve method which needs
to be called to perform an evolutionary run. evolve takes the generator and the evaluator
function, while other parameters are to be attributed to the evolutionary computation
framework itself; it is also where the size of the population, the number of generations, the

bounder and whether the optimization is a maximization or minimization are defined.

3.3 METABOLIC MODELS

A large number of similarly annotated individual metabolic models are required to per-
form community composition optimization. In that light, it was decided to use the AGORA
models provided by Virtual Metabolic Human (VMH) [130]. This collection encompasses 818
different models from the human gut microbiome. The "AGORA 1.02 - Average European diet
constraints’ [131] version of the models, made available in 10/02/2018, was downloaded
from the VMH website (https:/ /www.vmh.life) in 12/02/2019.

A second pool of models was selected to perform the validation. These models were

collected from several sources, as shown in Table 2.

Converting SBML Format

The SBML version of the AGORA models was incompatible with the loading options
provided by FRAMED. To address this issue, every single model was loaded in Python and
written in a compatible format using the COBRApy [80] package.
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Table 2: List of models used for validation along with organism strain and source.

Model iD Organism Reference
iAF1260 Escherichia coli str. K-12 substr. MG1655 Feist et al. [132]
iAO358 Lactococcus lactis subsp. lactis 111403 Oliveira et al. [133]
iBif452 Bifidobacterium adolescentis L2-32 El-Semman et al. [134]
iBT721.v2 Lactobacillus plantarum WCFS1 Goffin et al. [135]
iCR744 Rhodoferax ferrireducens T118 (DSM 15236) Risso et al. [136]
iFap484 Faecalibacterium prausnitzii A2-165 El-Semman et al. [134]
iJB785 Synechococcus elongatus PCCy942 Broddrick et al. [137]
iJL432 Clostridium acetobutylicum ATCC 823 Lee et al. [138]
iJL846 Lactobacillus casei LC2W Xu et al. [139]
iJSPcarbinolicus | Pelobacter carbinolicus DSM 2380 Sun et al. [140]
iJSPpropionicus | Pelobacter propionicus DSM 2379 Sun et al. [140]
iLB1027 Phaeodactylum tricornutum Levering et al. [141]
iMFy21 Pseudoalteromonas haloplanktis TAC125 Fondi et al. [142]
iMMogo4 Saccharomyces cerevisiae Mo et al. [143]
iMZ1055 Bacillus megaterium WSH-002 Zou et al. [144]
iNV706 Enterococcus faecalis V583 Veith et al. [145]
iRM588 Geobacter sulfurreducens PCA (ATCC 51573) | Mahadevan et al. [146]
iRPg11 Methylobacterium extorquens AM1 Peyraud et al. [147]
iRR1083 Salmonella typhimurium LT2 Raghunathan et al. [148]
iSB1139 Pseudomonas fluorescens SBW25 Borgos et al. [149]
i5O783 Shewanella oneidensis Pinchuk et al. [150]
iSR432 Ruminiclostridium thermocellum ATCC 27405 | Roberts et al. [151]
iWZ663 Ketogulonicigenium vulgare WSH-001 Zou et al. [152]
1YS432 Corynebacterium glutamicum Shinfuku et al. [152]

Filtering

An initial FBA was performed for each of the AGORA metabolic model gathered, with the
maximization of the default biomass reaction as the objective function. However, only some

of the models registered unique objective function values, due to the propagating way in

which AGORA works. The models whose objective function value is repeated may not be as

accurate, and as such, were filtered out. Out of the 818 models that underwent simulation,

there were only 314 different biomass flux values; out of which only 277 values registered a

single model associated. These 277 were identified to be used whenever it was required to

pick models at random.

3.4 DEVELOPED WORK

The code written for the dissertation is organized in three modules: Classes, Background and
Evolutionary Algorithm.
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o The Classes represent the different types of Python objects created for this project.

o The Background is composed of auxiliary functions that create populations and mutate

candidates, among other things.

e The Evolutionary Algorithm section is composed of the evolutionary algorithm itself,
along with the evaluating functions.

3.4.1 Classes

Four different interacting classes were created in Python as gears of the developed Evolu-
tionary Algorithm: IModel, CModel, EAConfig and Candidate.

IModel

The most basic of the created classes is the Individual Model (IModel). Its purpose is to
incorporate individual metabolic models and some of their properties into the community
model further down the line. The IModel is initiated by providing a FRAMED Model object.
It starts by turning any bound set to None to a numerical value as to prevent infeasibility
issues. Then, it saves a dictionary with the name of the default objective reaction, which
should be set to the biomass reaction, and its value when run in a FBA, schematized in
Algorithm 1.

Algorithm 1 IModel Constructor - IModel()
Input: FRAMED Model

1: self .model <~ FRAMED Model
2: Fix None bounds
3: self.info(dic) < {objective reaction name, objective reaction flux value}

CModel

The Community Model (CModel), alike the IModel, incorporates the community model itself
into the code. The CModel requires the same three parameters required to call the FRAMED
Community function: a community ID, a list of FRAMED Model objects and the extracellular
compartment ID. Five attributes, which will be necessary in the latter parts of the project,
are created, as detailed in Algorithm 2:

o A dictionary with the ID of each individual model as key and the respective IModel
objects as values.

e The FRAMED Model object of the community model.
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¢ A dictionary with the objective reactions of the community metabolic model.

e A dictionary with the reactions required to knockout an organism, separated by
organism. These reactions are stored as constraints to be used by the FRAMED FBA
function, detailed in Algorithm 3. These reactions were dubbed pex reactions, for pseudo
exchange reactions, as they closely match the exchange reactions of the individual
metabolic models.

e Lastly, a dictionary with the biomass reactions of each of the individual organisms as

keys and the respective models values.

Algorithm 2 CModel Constructor - CModel()
Input: community_id(str), FRAMED Models(list), extracellular_compartment _id(str)

. self .community_id <— community_id

. self.models <~ FRAMED Models

. self .extracellular_compartment_id < extracellular_compartment_id

. self .model dic(dic) < {model_IDs : IModel objects}

. self .cmodel < Community(community_id, models, extracellular_compartment_id)
. self .objectives(dic) < {objectivereactions : 1}

- self .pex_cons(dic) < {compartment : pex reactions}

. self .biomass_reactions(dic) < {biomass reactions : model_IDs}

Ny U~ WN R

Additionally, the following methods were developed for the CModel class:

e fba(): a function that runs the FRAMED FBA function. If a biomass reaction is not an
objective or a constraint, its flux will have a lower bound of 10% of the value stored in
IModel.info.

e knockout(): takes a list of model IDs as a parameter and performs a FBA while

knocking out the input organisms, as described in Algorithm 4.

The EA Configurations (EAConfig) class coordinates most of the parameters for the func-
tions in the Background section, which will be detailed further down in this document. The
class includes the following attributes:

o mutation rate, probability of occurring mutations;
e crossover rate, probability of occurring crossover;
o candidate size, the size of the candidate representation;

o maximum candidate value, the largest value an item of the candidate representation

can take;
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Algorithm 3 Aggregates the pex reactions of a community model in the format of constraints
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. exch(list) < [exchange reactions]
. ext_comp(str) < external compartment
. exch_metas < []
: for reaction in exch do
Concatenate substrates and products to exch_metas
: end for
. pex_reacs <+ ||
: for metabolite in exch_metas do
Concatenate metabolite reactions to pex_reacs
. end for
. pex_per_comp(dic) < { }
for pex reaction in pex_reacs do
comps < pex reaction compartments
for compartment in comps do
if compartment not ext_comp then
if compartment not in pex_per_comp then
pex_per_complcomp] < [pex reaction]
else if compartment in pex_per_comp then
Add pex reaction to pex_per_comp[comp]
end if
end if
end for
end for
: for model name in self.model _dic do
for reaction in model reactions do
if all compartment names end with the model name then
if reaction not in pex_per_comp[model compartment] then
Add reaction to pex_per_comp[model compartment]
end if
end if
end for
end for
pex_constraints < { }
for compartment in pex_per_comp do
pex_constraintscompartment] <— pex_per_comp|compartment] in constraint format
end for

Output: pex_constraints
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o representation type, the type chosen for the representation, either binary or integer;
e population size, the size of the population of candidates;

o tournament size, the size of the tournament when creating a new population from an
existing one. Set at 2 4 5% of the population size;

o maximum generation, the maximum number of generations the algorithm runs for

before forcibly stopping;
e scoredic, a dictionary that saves the scores of each candidate;
e val_dic, a dictionary that saves the values of all reactions for each candidate;

o fit_dic, a dictionary that saves the values for the reactions to be used as fitness for each
candidate.

Algorithm 4 Performs Knockouts when running FBA - knockout()

Input: list_of model ids(list), objective_list(list), constraints(dic)

: if no objective_list is given then
objective_list(list) < []
end if
: if no constraints is given then
constraints(dic) < { }
end if
. for model in list_of_model_ids do
Update constraints with self .pex_cons[model compartment]
biom_reac <+ self.model_dic[model].info[reaction name]
Set biom_reac objective to zero.
: end for
. self fba(objective_list, constraints)

e XY 2 hR RN
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Output: res

Lastly, the Candidate class; an instance of this class is used for each candidate of a
population. It needs, as parameter, a representation, in the form of a list, which is handled
by the population generating functions from the Background section. Its attributes consist of
the representation, the score, returned by the FBA function, the flux values of every reaction
simulated in the FBA and the list of flux values for the fitness relevant reactions, fit_list. It
has two methods:

o set_cand_values(): which sets the values for the candidate attributes, calculated during
the evaluation process;
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e knockout(): which sets the values from the EAConfig dictionaries when the candidate
has been evaluated before.

3.4.2 Background

Several auxiliary functions support the evolutionary algorithm. These range in purpose
and are applied in different sections of the algorithm. Most of these methods have parameters
that are set by EAConfig. They can be described as:

o EAConfig auxiliary: A function was created to change the parameters of the EA
configurations, instead of changing the default code. A function to reset the dictionaries
in EAConfig, to run the EA more than once in the same script, is also available.

o Representations: Functions that create representations, both in binary and integer form,
depending on the selected options, were developed. Additionally, some representation
converters were needed, namely, a binary to integer converter and a function that

returns the inverse representation of a given integer one.

e Mutation and Crossover: These methods include bit mutations, changing one element
of the representation; uniform crossover, which takes two candidates, and randomly
attributes each element of the two candidates to two new candidates; and one point
crossover, which takes two candidates and joins the beginning of one and the end of

the other, thus creating two new candidates.

e Populations: These include creating starter populations, either completely random or
partially random, by forcing specific elements to be included in every representation.
There are different strategies to create the subsequent populations. Creating a new
population from an existing one by tournament will repeatedly take a certain amount
of the candidates of the original population, choose the two best scoring candidates
and perform or not crossing over and mutation. There is also a way to create a new
population by changing the least performing elements of each candidate for new,
random, elements. This is done by comparing the fluxes of the respective precursor
reactions of the reaction being used as fitness. Lastly, there is an option that acts
exactly as the tournament option albeit forcing specific elements to be present. All of
the above mentioned population mechanics are pictured in Figure 11.

e Other: Some other functions that serve more arbitrary purposes include a sample size
checker, to prevent errors downstream, a function to get the precursor reactions of a
reaction, and another to get the reactions to be used as fitness from a given exchange

reaction.
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3.4.3 Evolutionary Algorithm

The evolutionary algorithm is supported by the previously mentioned methods. The
evolutionary algorithm function, ea_run, detailed in Algorithm 5, is aided by the evaluating
function (evaluate) and the population generating functions. The ea_run takes the following

parameters:

e option list, this includes the options to generate populations;

list of models, a list of FRAMED Model objects;

cmodel, an already created FRAMED community model;

e objective list, a list of reaction IDs to be used as objective function of the FBA inside

the evaluating function;

quantity, this defines the number of organisms present in the candidates. If left on
default, the number of organisms per candidate is random;

e fitness, this takes an exchange reaction ID to be used as fitness by the evaluating

function;

e goal, a numeric score to stop the algorithm if met by any candidate during evaluation.

The main method inside the evolutionary algorithm functions is the evaluating function.

All parameters utilized are inherited through ea_run, either provided by the used or created
or modified by it. The function will, for each of the candidates in the population, if no
fitness is yet stored, simulate with a FBA and store the designated values, as described in
Algorithm 6

3.4.3.1 Alternative approaches

Other approaches were developed to be tested against the main strategy.

De Novo

While one of the pillars of this project knocking out organisms, through constraints when
simulating a community model, size and scalability might raise performance issues with
the introduction of increasingly large sets of models. Therefore, a version of the (Knockout)
methodology was developed, in which instead of generating a single community metabolic
model and knocking out organisms as needed, this version (De Nowvo) will instead create a
new community metabolic model for each new candidate with the organisms considered for
that candidate.

This version demanded a new ea_run and evaluate functions to be developed while the
Classes and Background are shared with the original.

35



3.4. Developed Work

Multi-objective

This is a slightly altered version of the Knockout version, in which the fitness is composed
of two variables, either maximizing the biomass and an exchange reaction, or maximizing
the biomass and minimizing the number of organism present. Every generation, at random,
one of the two fitness variables is used as fitness.

A De Novo version of this alternative was also developed. These versions share only the
Classes with their single objective counterparts while using slightly altered versions of the
Background functions, ea_run, and evaluate.

Inspyred

The Inspyred Python package was used to compare the developed work to already
available options. The Genetic Algorithm (ec. GA) was the evolutionary computational
strategy used for regular optimization, while the NSGA, emo.NSGA2 was used to test

multi-objective evolutionary algorithms.

3.4.4 Code Availability

The aforementioned work is, at the time, available in its entirety in the GitLab of the
BIOSYSTEMS Research Group Web Services at https:/ /gitlab.bio.di.uminho.pt/sousamd/ea-
com-opt.
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Figure 11: Population Generating Strategies. The initial population generating processes is depicted
in a); in 7. the population generated is completely random; whereas in ii. some positions
are locked in, represented by the yellow cells with a lock token. The subsequent generation
of populations is depicted in b); in i. parent candidates are selected based on fitness and
generate offspring by combining their representation, while being subject to mutation,
represented by the green cells with a DNA token; ii. Keep follows the same principle
of Tournament but forces desired cells to be present; iii. compares the contribution of
each present organism to the fitness value (represented through arrow tokens, where
the downwards red arrow signal a lower relative value than the upwards green arrows),
removes the worst performing candidate and introduces a random number of mutations
to generate offspring.
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Algorithm 5 Runs the Evolutionary Algorithm - ea_run()
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Input: option_list(list), list_of _models(list), cmodel (FRAMED Community Model object),
obj_list(list), cons(dic), quantity(int), fitness(str), goal(float)

: Reset existing dictionaries in EAConfig
: Creates obj_list < [] and cons < { } respectively if not provided
: if cmodel is given then

cmodel is used

: else if list_of_models is given instead then

A cmodel is created from it
end if

: EAConfig attributes are set accordingly

: Generates fitness reactions, fit_reacs, if fitness is given
: Generates initial population, popu

: Sets gens < 0 counter and exit_flag < False

: while exit_flag == False do

evaluate(cmodel, popu, obj_list, cons, quantity, fit_reacs)
best_score < fitness value of the best performing candidate
if goal is provided and best_score > goal then
exit_flag < True
end if
if exit_flag == False then
Reassigns popu to a newly generated population.
Increases gens by 1
if gens == EAConfig.max_gen then
exit_flag < True
end if
end if
: end while
. evaluate(cmodel, popu, obj_list, cons, quantity, fit_reacs)

. bestcand < Candidate object with the best performing fitness

Output: bestcand(Candidate object)
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Algorithm 6 Performs the Evaluation of the Candidates - evaluate()

Input: cmodel(FRAMED Community Model object), popu(list), obj_list(list), cons(dic),

quantity(int), fit_reacs(list)

1: if no obj_list then

2:
3:

objs <— A copy of the reactions defined as objective in the model

4 for candidate in popu do

5
6
7:
8.
9

10:
11:
12:
13:
14
15:
16:
17:
18:
19:
20:
21:

22!

if candidate in EAConfig.scoredic then

Update the candidate attributes with the ones stored

else if candidate not in EAConfig.scoredic then

indexes < A list of indexes of the models to be knocked out in this candidate
list_of _model _ids <— The model IDs correspondent of the values in indexes
model_ko < cmodel .knockout(list_o f _model_ids, obj_list, cons)
if no model_ko.values then
Updates candidate with minimal attributes
end if
if fit_reacs is provided then
fit_list < List of values of the fitness reactions
else if no fit_reacs then
fit_list < List of values of the objective reactions
end if
score <— Sum of fit_list
Updates candidate with the obtained attributes
Reset the objectives with objs

end if

23: end for

39



RESULTS AND DISCUSSION

The results obtained in this work will be discussed in this chapter, namely:

e performance comparison of different variables between the different variants developed
for this purpose;

e a comparison between Knockout and De novo versions regarding flux bounds;

e a comparison between the multi-objective variants, and validation with a case study.

4.1 PERFORMANCE SPEED

The main objective of this project was to use the ability to knockout organisms from
existing metabolic models as means to perform community composition optimization
through EAs. Thus, a comparison with another approach was mandatory, as well as
comparing existing alternatives with the developed strategies.

Figure 12 shows the recorded times of these algorithms for the following conditions: 10
generations, population size of 15 candidates, pool size of 10, 20 and 50 models across three
different methods: Knockout method creates the community model first with all models in
the pool and performs the knockouts for every candidate representation, while the remaining
methods create a new community model for each candidate representation.

The Inspyred based method takes noticeably more time than the developed work to
perform the same task, regardless of pool size. As the evaluating function is the same in
every approach tested, this difference could be explained by Inspyred not saving solutions
to save time when evaluating candidates with the same representation.

Furthermore, it is observable that both Knockout and De novo strategies have areas where
they perform better than the other. With the increase in pool size, De n0vo has an advantage
as it does not have to load a community model with the whole pool size. Moreover, the
smaller the number of models desired in the final solution, the less important the pool size

becomes, the repetition of candidate representations is less probable, thus less time to be
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Figure 12: Average performance speed comparisons varying some of the key parameters in an
EA run. These ran for 10 generations each with populations of 15 candidates and the
default biomass as the objective function. Pool size refers to the number of models the
algorithms pulls from; Quantity refers to the number of models present in the candidate
solutions, where undef means that no set number of models present was defined for the
candidates; Time in seconds is the time it took the algorithm to load the models and
run the evolutionary algorithm until the end of the defined generations. As indicated by
the legend, blue bars represent the Knockout strategy, orange bars represent the De novo
strategy and the green bars were performed with the Inspyred Python package.

saved in the run. Knockout seems advantageous with a relatively medium sized pool size

and amount of models in the solutions.

Finally, it should be noticed that the increase in generation and population sizes will
increase the preference of Knockout over De novo, as the time initially spent has less impact

in the time of the run.

4.2 MULTI-OBJECTIVE

The nature of EAs calls for the inclusion of multi-objective strategies. Given the In-
spyred Python package options to perform EMO through the NSGA method, the latter was

compared to the developed work in this project.

Ten arbitrarily selected models from the AGORA collection constituted the pool of models

the algorithms drew from:

o Yokonella regensburgei ATCC 43003,

o Acinetobacter junii SH205,

o Clostridiales sp 17 47FAA,

o Achromobacter xylosoxidans A8,

o Achromobacter xylosoxidans NBRC 15126,
o Acidaminococcus intestini RyC MRgs,

o Acidaminococcus sp D21,
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Figure 13: Multi objective results with De novo method and Inspyred package. The plot on the left
displays the maximization of the biomass flux and the minimization of the quantity of
models in the candidate solutions while the plot on the right displays the maximization
of the biomass flux and the flux of the succinate exchange reaction. Blue dots represent
solutions obtained through De novo method and orange dots represent solutions obtained
with the Inspyred Python package. Flux values units in mmol/gDW /hr.

e Acinetobacter calcoaceticus PHEA 2,
o Acinetobacter Iwoffii WJ10621 and
o Actinobacillus pleuropneumoniae L20.

This pool of models was ran in a multi-objective version of the De novo strategy, with the
Inspyred function for NSGA for 10 generations and a population size of 15. Two versions
were tested, one where the objectives were the maximization of the biomass growth rate and
the minimization of the amount of models in the candidate solutions, and a second version
where the objective was the maximization of the biomass growth rate and the maximization
of the, arbitrarily selected, succinate exchange reaction flux, as demonstrated in Figure 13.

It is possible to assert that both strategies exhibit similar results for the biomass growth
rate and amount of organisms optimization, albeit the Inspyred version admits less solutions
outside the Pareto-front, which is to be expected as the De novo version does not take Pareto
optimality into consideration. When optimizing the biomass growth rate and an exchange
reaction, there is a more spread out set of solutions. This stems from the exchange reaction
flux being a variable with a larger solution space than the number of organisms in a model,
which is limited to positive integers. The distribution along the Pareto-front is similar to the
previous example, in which Inspyred places more solutions alongside the frontier. However,
in this case, the De novo strategy displays solutions more oriented towards the optimization
of the biomass growth rate due to it not considering Pareto optimality and the significant

number of solutions in which the reaction flux value is negative or null.

42

De novo
Inspyred



4.3. Flux values of non-objective reactions

It is relevant to note that the time comparisons in 4.1 also apply to the multi-objective
versions of the algorithms, making Inspyred a slower method when compared with this
work.

4.3 FLUX VALUES OF NON-OBJECTIVE REACTIONS

When choosing fitness reactions different from the reactions defined as objective, a
situation arises where there are no guarantees that the fitness will be constant and coherent
when simulated. Due to the nature of FBA and LP in general, fluxes can display different
values despite reaching the same value in the objective reactions selected. Therefore, there
are instances where flux values are different between Knockout and De novo strategies, despite
obtaining the same result in the objective function.

Furthermore, the default flux bound, set when reactions have null values in flux bounds,
is relevant to the outcome of the aforementioned situation and small differences can lead
to completely different flux values, as demonstrated in Figure 14. To demonstrate these
differences, sequential FBA were ran for both Knockout and De novo strategies, with the
biomass maximization as the objective and Taurine exchange reaction as fitness (chosen
arbitrarily). The default bound value was increased by one between each run, from o until
2000.

Apart from the logical increase in flux value, it is possible to note the difference in flux
values between the two strategies. These results include intervals where the flux value is
present in one version an non-existent the other.

These results show the importance of having high quality metabolic models that, prefer-
ably do not contain null values in the reaction bounds. Although, it is important to notice
that these community models were loaded with complete medium thus being more likely to
produce these results. While with a more restrictive media, it is expected for the flux values
to be more coherent. The adoption of Parsimonious Flux Balance Analysis (pFBA) [153] as the

evaluating tool instead of FBA could also be of use in mitigating this issue.

4.4 VALIDATION

A case study was selected from the work from Ponomarova et al. [154], where lactic
acid bacteria Lactococcus lactis was shown to grow in mutualism with Lactoccocus plantarum
with help from a nitrogen overflow from Saccharomyces cerevisiae, to validate the developed
software.

EA runs were performed for 5 generations and population size of 15 candidates, with
a pool size of 24 models, with the biomass of L. lactis as the objective and fitness reaction.

The headstart and keep options were selected to maintain the L. lactis in every solution. A
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# Quantity Objective Function Organisms in Final Solution Fitness

1

4.4. Validation

Flux value comparison

B Knockout
I De novo
5000 4

4000 1
3000 1

2000 4

Ao i W n

Taurine exchange reaction flux value

0 250 500 750 1000 1250 1500 1750 2000
Default bound value

Figure 14: Flux value comparison of an arbitrarily chosen reaction, Taurine exchange, not used as
objective, with different default bound values. Sequential FBA was run increasing the
default bound value by one between each run from o to 2000, for each of the strategies
(Knockout in blue, De novo in orange. Flux values units in mmol/gDW /hr.

minimal medium indicated for the population described in the work of Ponomarova et al.
was selected instead of the complete default medium to attain comparable results with the
publication.

When running with a selected candidate size of 3 organisms per candidate, the solution
output by the algorithm was the community with L. lactis, L. plantarum and S. cerevisiae, with
a score of 813.0mmol /gDW /hr (the default value substituted in reactions where the bound
is null). A second run was performed, this time with both the biomass of L. lactis and L.

plantarum as the objective and fitness reactions, and again the same solution was output,

Table 3: Final solutions of EA runs based on the works of Ponomarova ef al. [154]. Run 1 maximizes
the biomass growth rate of L. lactis and L. plantarum, with L. lactis present in the solutions.
Run 2 maximizes the biomass growth rate of L. lactis with L. lactis and L. plantarum present
in the solution. Organisms in bold were forced to be present by the algorithm. Quantity
refers to the number of organisms in each candidate. Fitness units in (mmol/gDW /hr)

Maximizing biomass growth rate
of L. lactis and L. plantarum
Maximizing biomass growth rate

3 of L. lactis

3

L. lactis L. plantarum  S. cerevisize  1147.6

L. lactis L. plantarum S. cerevisine  813.0
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4.4. Validation

Fitness progression of solutions during EA run

1200
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Fitness
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Generation

Figure 15: Fitness values progression of the candidates in the EA run 1 described in Table 3. Each
generation encompasses a population of 15 candidates, distributed through different
fitness values. Dot size and color are indicative of the relative proportion of candidates
with that fitness value. Fitness value units in mmol/gDW /hr.

this time with a score of 1147.6mmol/gDW /hr. These results were replicated with both the
Knockout and De novo strategies. These results are detailed in Table 3.

Due to the nature of the medium chosen for these EA runs, it was expected that only
communities containing the organisms described would thrive in it. Accordingly, the only
candidates with relevant fitness values are communities that share some organisms with
the final solution. As such, it is expected a large number of candidates with no fitness, as
shown in Figure 15. It is observable how the number of candidates with optimal fitness
value increases each run, and how less candidates exhibit no fitness with the passing of
generations.

These results in accordance with the publications confirm the biological solidity of the
developed work and the interchangeability of the two strategies.
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CONCLUSIONS

The purpose of this work was to develop an i silico method to optimize the composition
of a microbial community, given a specified objective, through the implementation of
knockouts of certain members of a community metabolic model. This method was to use
EAs due to their high plasticity and adaptability to any kind of problem.

The desired objectives were then developed into a framework using Python as the
programming language, with FRAMED as the backbone. Different strategies were developed
to either address the objective or to serve as comparison, including replicating the work
using Inspyred, as an outside control.

Knocking out of organisms inside a community model was shown to provide advantages
in certain situations, when compared to the creation of a new community model for every
candidate in the EA, while maintaining its interchangeability between the two strategies
when it comes to the output. The replication of the examples in the work of Ponomarova et
al. [154] also serve as validation.

This work serves, once more, to stress the need for good curation processes of metabolic
models, as well as a strongly defined annotation methods. These needs will only increase
the incremental interest in community metabolic models in opposition to single organism
metabolic models.

After the initial objectives were ensured, there was also an interest in the introduction of
multi-objective strategies for microbial community composition optimization, which were

shown to be compatible with the framework developed in this work.

FUTURE WORK

Possible future work in this area could include the use of different evaluating functions
in alternative to FBA to achieve more consistent results, namely with pFBA. The further
development of the multi-objective evolutionary algorithms for optimizing community
composition of microbial communities was shown to have potential. It could also be of
interest the inclusion of the medium composition of a microbial community as a variable in

the EA, alongside the community composition.
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