

DEVELOPMENT OF ANTIMICROBIAL POLYESTER FABRIC BY A
GREEN IN SITU SYNTHESIS OF COPPER NANOPARTICLES
MEDIATED FROM CHITOSAN AND ASCORBIC ACID

Behnaz Mehravani, Ana I Ribeiro, Majid Montazer, Andrea Zille*

behnaz.mehravani@yahoo.com

Textiles are subject to a range of microbial challenges

Medical problems

Hygienic problems

Undesirable aesthetic changes

Damage in physical properties

Antimicrobial Finishing

Ecotextile.com visited on 03/09/2021

Benefits of Antimicrobial Textiles

- **✓ Prevent the Absorption of Odors**
- ✓ Require Fewer Washes
- **✓ Prevent the Dissemination of Pathogens**
- **✓ Prevent Skin Allergies**
- ✓ Generate Longer Product Life

Universidade do Minho

Nanotechnology in Textiles

Metal Nanoparticles

Unique Chemical and Physical Properties

CuNPs Advantages

CuNPs Disadvantages

Inherent Instability

Prone to Oxidation

Agglomeration

Toxicity Depends on the Concentration

Synthesis with Toxic Chemicals

The development of efficient and safe methods for the CuNPs synthesis and their stabilization onto surfaces is crucial.

Objective

Provide antimicrobial properties to polyester fabric through an *in situ* method to synthesize CuNPs using cost-effective and safe chemicals in the presence and absence of chitosan

Characterization

UV-Vis

Characterization

XRD

- For the S1 without Chitosan, the characteristic peaks appeared at $2\theta = 43.354^{\circ}$, 50.479° and 74.152° are related to the plane index of (111) (200) (220), respectively.
- For the S2 with Chitosan, the characteristic peaks appeared at $2\theta = 43.371^{\circ}$, 50.498° and 74.164° are related to the plane index of (111) (200) (220), respectively.
- The average crystal size of the CuNPs which were calculated by using the Debar Scherrer relation and was determined as 50.3 nm and 56.0 nm for S1 and S2, respectively.

Characterization

SEM and EDS

S1 - Without chitosan

S2 - With Chitosan

Sample	Element	W%
S1 - Without Chitosan	С	66.77
	0	25.25
	Cu	7.71
	С	67.94
S2 - With Chitosan	0	30.34
	Cu	1.71

Antibacterial Tests

Antibacterial activity (percentage reduction) of the samples

Sample	S. aureus (%)	E. coli (%)	S. Aureus After 10 WC (%)	E. Coli After 10 WC (%)
Control	0	0	0	0
S1 Without Chitosan	99.9	99.9	99.9	99.9
S2 With Chitosan	99.9	99.9	99.9	99.9

Conclusion

- ✓ The synthesis and deposition of CuNPs on PES fabric using green chemicals were performed successfully;
- ✓ Both samples demonstrated suitable antibacterial properties against *Gram-positive* and *Gram-negative* bacteria opening new opportunities for the development of efficient and safe-by-design antimicrobial PES fabrics;
- ✓ The antimicrobial tests after 10 washing cycles showed a suitable durability of the functionalization.

DEVELOPMENT OF ANTIMICROBIAL POLYESTER FABRIC BY A
GREEN IN SITU SYNTHESIS OF COPPER NANOPARTICLES
MEDIATED FROM CHITOSAN AND ASCORBIC ACID

Behnaz Mehravani, Ana I Ribeiro, Majid Montazer, Andrea Zille*

behnaz.mehravani@yahoo.com

