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Abstract

At a time where available data is rapidly increasing in both volume and variety, descrip-
tive data mining (DM) can be an important tool to support meaningful decision-making
processes in dynamic supply chain (SC) contexts. Up until now, however, scarce attention
has been given to the application of DM techniques in the field of inventory management.
Here, we take advantage of descriptive DM to detect and grasp important patterns among
several features that coexist in a real-world automotive SC. Principal component analysis
(PCA) is employed to analyze and understand the interrelations between ten quantita-
tive and dependent variables in a multi-item/multi-supplier environment. Afterwards,
the principal component scores are characterized via a K-means clustering, allowing us
to classify the samples into four clusters and to derive different profiles for the multiple
inventory items. This work provides evidence that descriptive DM contributes to find
interesting feature-patterns, resulting in the identification of important risk profiles that
may effectively leverage inventory management for improved SC performance.

Keywords: Supply chain, Data mining, K-means clustering, Principal component

analysis (PCA).

1. Introduction

Aiming to cope with the fast and real time changes on the modern business environ-
ments, it is fundamentally important to perceive supply chain (SC) dynamics [19], [42],
especially at a time where there is a pressing need for SC integration and coordination

[7, 12| 26]. Bearing in mind that organizations are commonly structured in SCs [20], SC
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management (SCM) plays a paramount role in promoting their success, achieving their
objectives and, above all, guaranteeing customer satisfaction [36, [38]. In this context,
the inventory management process is considered to be an important driver for the success
of a company, notwithstanding the challenges related to demand and supply uncertainty
attached thereto [23]. In the literature, this process is closely bound up with the volatility
of inventory components [§]. In highly volatile and dynamic markets, as in the case of
the automotive sector, SC managers tend to order components well beforehand in order
to avoid stock-outs. This potentially leads to excess inventory, as well as to increased
holding costs and higher risks of product obsolescence. It is, therefore, essential to strike
the proper balance between stock-outs and overstock so that customer service levels are
maintained whilst minimizing total SC costs. Thus, for a given inventory component, a
comprehensive knowledge of its typical profile, based on the dynamic interplay between
the various logistic parameters associated with it, might provide important insights on how
to manage it. On the other hand, since the inventory of components is directly influenced
by interactions with suppliers, the buyer-supplier relationship can also be enhanced during
this profiling process [58]. Yet, although dynamic behavior is an inherent feature within
any SC, especially regarding the stochasticity of SC parameters, it tends to be undervalued
or even neglected, particularly with regard to risk assessment [I8]. This, together with
the complex business environments characterized by the rapid growth of generated data
[52], puts pressure on companies to take advantage of new approaches and techniques able
to support decision-making processes. At this point, the ultimate purpose relates to the
extraction of valuable insights from raw data, in order to generate new competitive advan-
tages. The application of such techniques is particularly interesting in the framework of
the automotive electronics sector, for which estimates point to a 8% growth forecast over
2017-2024 with an associated market share of more than $390 billion by 2024 [24]. Increas-
ingly, data mining (DM) approaches [25] have been proposed to improve SC processes, for
instance relating to the ranking, selection and evaluation of suppliers [50, 37, [60, [14]). Up
until now, however, the application of DM techniques in the field of inventory management
has not been fully explored [45]. For example, [6I] introduced an association clustering
algorithm capable to group a large number of products with identical demands in a hier-
archical fashion, under the can-order policy model. Simulation experiments showed the
benefits of the proposed approach when compared with different replenishment models in

terms of total profit, sales revenue, as well as holding, shortage and ordering costs. [4]



applied K-means clustering to group inventory parts according to different features. The
obtained clusters served as a guideline for warehouse space optimization. [35] considered
the joint application of multi-criteria decision making approaches with machine learning
algorithms in the field of multi-attribute inventory classification (MCIC). The proposed
approach was conducted in a real-world automotive production company in Turkey and
revealed to be applicable to multiple inventory structures. The benefits resultant of the ap-
plication of supervised machine learning methods for MCIC purposes are also highlighted
in the work of [40].

Focusing on methods that do not require a-priori knowledge of underlying patterns,
also known as unsupervised methods [10], this paper addresses the problem of identifying
different profiles for multiple inventory components based on the interplay between several
variables collected from a real-world automotive SC with multiple suppliers. In particular,
the mathematical relationship between ten quantitative and dependent variables is firstly
studied by taking advantage of classical theory of principal component analysis (PCA).
Afterwards, K-means clustering based on the principal component (PC) scores is used to
identify and characterize different inventory component profiles. The derived clusters are
further validated via 10-fold cross-validation using different benchmark clustering models
and validity indexes, stressing the relevance of this work in bridging the literature gap
related to the application of DM strategies in the field inventory management, already
pointed out by [45]. By simplifying the complexity in the dataset without much loss of
information, this work contributes to extant literature by proposing a descriptive DM
approach that acts as a monitoring mechanism for the status of multiple inventory com-
ponent groups in real-world SC contexts. Moreover, it can be used by SC managers and
practitioners as a supporting tool for the decision-making process, whilst contributing to
the continuous improvement of inventory management.

The rest of the paper is organized as follows. Section [2| presents the data collection
procedure, as well as the selected unsupervised learning models. In Section [3| we describe
the modeling framework. Afterwards, the numerical results derived from the application
of K-means based on PCA are analyzed and discussed in Section [l Finally, conclusions

are carried out in Section [B



2. Materials and methods
2.1. Dataset

A total of 9806 records, associated with 59 inventory components and 39 worldwide
suppliers, were collected from a major automotive electronics supply chain, located in
Europe, for the years of 2016 and 2017. Each record represents information of a given
component for a particular day and supplier. Concretely, 12 features were measured, from
which 10 of them are quantitative and dependent variables. A short descriptive analysis

of each feature is provided in Table

Table 1: Basic descriptive analysis of the dataset.

Feature Notation Domain ~ Mean/Mode Std.Dev. Description

qty.rec. P [1,134136] 3572.08  7405.94 Stock quantity received

saf.time Fy [1,15] 3.26 2.16 Time buffer added to the supply lead
time that pushes a delivery order ear-
lier

val.stock  F3 [0,791907.2] 30477.99 65237.26 Monetary value of stock on-hand

cons.stock Fy [0,14178] 1320.37 1670.86  Quantity of stock expected to be con-
sumed

supp.otd  F5 [1,100] 75.85 25.62 Supplier on-time delivery (OTD)
score

wh.occup Fp [0,82] 10.71 10.78 Number of warehouse bins occupied

stock F7 [0,861172] 16300.98 53068.48 Quantity of stock on-hand

moq Fy [0, 72000] 1285.86  6294.94 Agreed minimum order quantity

(MOQ) with supplier
supp.lt Fy [1,38] 7.34 9.01 Time interval between ordering and
receiving a component order

nr.end Fio [1,109] 21.63 28.28 Number of end-items that make use
of the component in their Bill of Ma-

terials
High
rm.cat. Fiq - — Component category ({“Stable”,
runner
“High runner”, “Special freights”,
“Critical”, “Commodity”, “Common
among plants” })
geo.loc. Fi2 - Portugal —  Geographical location of the supplier

(e.g., {“Germany”, “Spain”, “Portu-
gal”, “China”, “Japan”})




After data cleansing, the company managers manually grouped each component in one of
6 different categories, namely: “high runner” (4818 records), for fast-moving components;
“special freights” (1202 records), referring to components with high marginal propensity
to incur in a premium freight (motivated by stock-out events); “critical” (1324 records), to
represent problematic components (e.g., in terms of quality issues or highly demand fluc-
tuation); “stable” (934 records), to identify components without deviant behaviors; “com-
modity”, to represent undifferentiated components (577 records), and “common among
plants” to represent components that are used in several company plants (951 records).
For this particular dataset, we found that the categories are non-overlapping, i.e, each com-
ponent belongs to one and only one category. However, it should be noted that further

datasets can naturally contain components belonging to more than one category.

2.2. Selected unsupervised learning models

Two unsupervised learning methods, namely PCA and K-means clustering, were tested
in order to describe, in a quantitative fashion, the relationships between the variables
F;,i =1,...,10, in the data matrix Xggoex10. A short theoretical introduction of both

methods is provided as follows (see [31) 28] and references cited therein for details).

2.2.1. Principal Component Analysis

As a descriptive and multivariate statistical technique, PCA was firstly studied by [49]
and [27]. PCA intends to compress the dimension of a given dataset, whilst minimizing
statistical information loss [32]. Let X be an n X p data matrix with rank(X) = r, contain-
ing p features on n observations. PCA sequentially finds unit vectors vi,vs, ..., v, that
maximize var(Xv) with the additional constraint that vj;1 is orthogonal to vy, va, ..., vj.
These vectors are known as PC loadings, whereas the Xv;’s are the corresponding PCs
[56]. The PCs are thus linear combinations of the original features and are uncorrelated
with each other in a descending order of relevance in terms of total variance explained
[1]. Each component can be then interpreted according to the inter-correlated variables
that comprise it. A natural problem that may arise relates to determine how many PCs
should be retained. Albeit this problem continues to be unresolved, some methods have
been proposed in the literature to tackle it [I]. Typically, two approaches are often used
to select the number of PCs to retain. The first one consists in selecting the PCs whose

eigenvalues are larger than 1 [34]. The second involves retaining the largest number of



PCs that, together, account from 70% to 90% of total variance explained in the dataset.

Nonetheless, this interval may vary depending on the data concerned [31].

2.2.2. K-means clustering

Driven by the studies of [57, [6, 4T, B9], K-means is an iterative descent clustering
method [22], considered to be the most widely used algorithm for partitional clustering
[64]. Let X = {x;;}, wherei=1,...,nand j =1,...,p, be the set of observations in the
data matrix X to be assigned into a K-dimensional set C = {Cj,k = 1...,K}. Given
the a-priori number of desired clusters K, the main idea of K-means is to partition the
n p-dimensional observations into K clusters in such a way that the total within-cluster
variation, W (C}), is minimized. Following the formulations of [29], the within-cluster
variation for the kth cluster is typically expressed as the sum of all the pairwise squared
Euclidean distances between the observations in the kth cluster, divided by the total
number of observations, |C%|, therein contained. This reasoning can be translated into the

following optimization problem
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Despite this optimization problem be NP-hard, a local optimum can be derived by taking
advantage of a simple algorithm in which each observation is assigned to the cluster whose
centroid, defined by >, . z;|Ck| ™1, is closest (in our case in terms of the Euclidean
metric). The computation of the K-means depends on three pre-specified parameters,
namely: (1) the number of clusters, K, for which there is no theoretical approach to
define it [28]; (2) the distance metric considered — typically the Euclidean, notwithstanding
other distance metrics can be used (e.g., Mahalanobis and Gower); and (3) the initial
cluster assignment, also called cluster initialization. Regarding the third parameter, it
is a common practice to test different random initial assignments for a predefined value
of K, inasmuch as K-means does not provide a global optimum. Then, it is chosen the
solution for which the optimization problem is minimized [28, 29]. In this work, the
optimal number K is selected via the R-squared (RS) [55] and the prediction strength
[59] validity indexes. Algebraically, the RS index is defined as RS =1 —5S,,/5S;, where
5SS, and SS; are the sum of squares within each group and the total sum of squares for
the whole dataset, respectively. The RS index takes values in the compact interval [0, 1].

If the value of RS is 0, then there exists no significant differences between clusters. By



contrast, values of RS close to 1 indicate a well separation between clusters, as well as a
high degree of homogeneity intra-cluster. Regarding the prediction strength approach, it
treats clustering as a supervised classification problem in which the main idea is to cluster
both train and test data into K clusters and compute, for each test cluster, the proportion
of observation pairs therein contained that are also classified into the same cluster by the

training centroids (see [59] for details).

3. Modeling framework

The numerical experiments presented throughout this section were conducted in the
R programming language [51] with suitably selected packages.

Firstly, we adopted PCA in order to transform a set of correlated variables into a
smaller set of linearly uncorrelated variables, which retain the most relevant information
from the original dataset whilst minimizing information lost. With the application of PCA
we intended to identify the most relevant logistic information patterns from a dimensional
feature subspace with less than the number of original features. In the literature, several
applications of PCA have been proposed in the context of SCM, showing relevant benefits
on the supplier selection problem in multi-item/multi-supplier environments [21] or on the
extraction of the most relevant sustainability indicators to conduct eco-efficiency perfor-
mance analyses in industrial companies [48]. PCA can also contribute to the identification
of operational risk sources [see, e.g., 47] and, for our case in particular, to better com-
prehend the risk profiles of the different inventory items according to the logistic features
associated with them. With this knowledge base, we expect that company experts can
develop more effective action plans to improve and support the inventory management
decision-making process.

Secondly, the PC scores are used as input features for K-means clustering. Note that,
following this approach, we intend to apply K-means clustering on a low-dimensional
dataset rather than on the original 10-dimensional feature subspace. This represents a
relevant advantage in real-world business contexts as it facilitates the use of this approach
by improving its interpretability. Indeed, it is common to combine these two unsupervised
strategies for data dimensional reduction purposes [I7, [I5] [2]. In the next subsections, we

provide the details of both PCA and K-means experimental setups.



3.1. PCA experimental setup

The features F;,i = 1,...,10, presented in Table [T] have different units of measure-
ment. At this point, the use the covariance matrix in the original data space would give
greater weight to features with more variance and, in contrast, less weight to features with
smaller variance. Thus, to treat all input features on an equal basis, we preferred the use
of the correlation matrix rather than the covariance matrix. Note that the correlation
matrix of the original data boils down to the covariance matrix of the standardized data.
In this context, performing PCA on the standardized data is commonly referred to cor-
relation matrix PCA [32]. Since classical PCA is not robust to outliers and noise data,
we further considered a Minimum Covariance Determinant (MCD)-based PCA [16]. The
MCD method adopts a highly robust estimator of multivariate locator and scatter and has
been explored to develop robust multivariate approaches [54]. Following this strategy, it
is expected that the results derived by PCA based on a robust correlation matrix are not
overly influenced by the presence of pre-existing outliers [16]. Concerning the selection
of the number of PC to be included, there exists a trade-off between increasing variance
explained while reducing the number of PCs containing noise. Following common yet sub-
jective practice [32], we retain the components which account for at least 70% cumulative
explained variance. This leads to the selection of the first 4 PCs, accounting for approxi-
mately 78% of cumulative total variance explained in the dataset (see Fig. [I). Under the
Kaiser’s rule [33], the exclusion of the remaining PCs can be justified by the fact that the
respective eigenvalues are not equal to or greater than 1. We additionally found through
background analyses (not presented) that the different samples showed a strong overlap
on the higher-order PCs, which represent the remaining 22% of the variability. Thus, this
indicates that there is no relevant logistic information contained therein, and the inclusion
of such higher-order PCs would essentially represent noise.

For the sake of interpretability, since PCs are linear combinations of all the dataset fea-
tures, we identified, for each PC, which features can be discarded while preserving as much
as possible statistical information. Typically, this identification is based on the magnitude
of the feature loadings, neglecting those with low magnitude, which can be potentially
misleading [13]. In a bid to reduce the subjective nature inherent to the interpretation of
PCs, we also analyzed the relationships between the features F; ,i = 1,2,...,10, and the
different PCs via correlation circles, in which the features are represented as points in the

PC space using their correlations with each PC as coordinates [I].
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Figure 1: Variance (left) and cumulative variance (right) explained as a function of the number of PCs.

Figure [2] plots the correlation circles for the first four PC dimensions. In both circles,
particular attention should be given to the distance between the features and the origin.
The closer a feature is to the unit circle, the higher its relevance for interpreting the
concerned components. In addition, two arbitrary features projected in the PC space
are said to be positive (negative) correlated variables if they are pointing in the same
(opposite) direction. In contrast, they are said to be unrelated if they are orthogonal to
each other. By way of example, examination of the left circle plotted in Fig. [2| shows that
the first PC (PC1) reflects the components’ inventory levels since it is mostly correlated
with the stock quantity received (F}), the warehouse occupation (Fg) and the quantity of
stock on-hand (F7). Yet, with the exception of F, these features seem to have no strong
correlation with PC2, which essentially contrasts the safety time (F) and the supplier
lead time (Fy) with both the stock quantity received (F3) by the organization and the
number of end-items that make use of the component in their Bill of Materials (Fy).

Combined, the results derived from the correlation circles together with both the mag-
nitude and signs of the PC loadings allowed us to obtain truncated PCs (PCi'",i =
1,...,4). Each PCi'" is defined as follows:

PC1"" = 0.3983F; + 0.3288F + 0.4491F5 + 0.5126 F; + 0.2684F3
PC2'" = 0.3243F; — 0.3771F; — 0.4338Fy
PC3" = 0.4953F3 — 0.3836F%

PC4Y = 0.0577F; + 0.4485F5 — 0.6148F5 — 0.5702F
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Figure 2: Correlation circles for the first and second (left), and third and fourth (right) PCs.

The selected subsets of features and the interpretation of each PCi'" appear summarized
in Table Note that the interpretation of each PCi'" depends both on the magnitude
and signs of the variable loadings. For instance, the algebraic formulation of PC1!" given
by Eq. (2) shows that all the variables that comprise it are inventory-related and the
corresponding loadings are positive. Thus, this suggests that PC1'" can be interpreted as
a weighted average of the inventory level, where samples with high PC1!" scores exhibit
high inventory levels, and vice versa. In contrast, PC2!" comprises two variables with
negative loadings and one variable with positive loading. Therefore, high values of PC2%"
reflect the contrast of the stock quantity received with the safety time and supply lead
time. Overall, it is noteworthy that the truncated PCs are easier to be interpreted when
compared to the original PCs, due to the smaller subset of features which constitute them.
In addition, whatever the truncated PC concerned, its correlation with the original PC is
quite reasonable (> 0.8559), which corroborates the quality of approximation of the four

extracted PCs using the truncated components.

Table 2: Summary of the truncated PCs.

PCitr Subset of features Corr(PCit™, PCi) Interpretation

1=1 {F1, Fy4, Fs, F7, Fg} 0.8914 Weighted average of Fi, Fy, Fg, F7, F3
i =2 {F1, F2, Fy} 0.8559 Contrast between I and F5, Fy
i=3 {F3, Fs} 0.8759 Contrast between F3 and Fj

i =4 {F3,Fs, Fs, Fo} 0.8833 Contrast between F3, F5 and Fy, Fy

10



3.2. K-means experimental setup

When choosing the initial centroids and selecting the number of clusters K to retain,
multiple random initial configurations are typically tested. In fact, this approach is con-
sidered to be the most widely used [3]. However, apart from this strategy, there exist other
initialization methods suitable for this purpose. In this work, 24 sets of cluster centers
were obtained via the Ward’s hierarchical agglomerative clustering method [63]. Then, the
derived centroids are used as starting centroids in the regular K-means approach. Former
studies had already pointed the benefits of this adoption for obtaining good clusters [44] [3].
In this process, we considered the Euclidean metric and the Ward2 algorithm [46]. Based
on the RS indexes resulting from the different initializations, the number of clusters was
then set at K = 4 (left of Fig. [3)). This choice was corroborated by the averaged prediction
strength value (right of Fig.|3]) attained for K = 4 (ps|x=4 = 0.8384 with cutoff = 0.8 and
100 resampled datasets), which represents a proper threshold for obtaining well separated

clusters [59].
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Figure 3: R-squared and prediction strength indexes as a function of K.

4. Results

We hypothesized that PCA can provide valuable information to identify relevant rela-
tionships among samples, and to collect some information regarding the logistic behavior
of the various components over time. Thus, we studied the changes of PC scores in the
first two PC dimensions, which explain roughly 54% of the variability, with increasing
number of samples from the first semester of 2016 (S1) until the end of 2017 (S4) (Fig. [4)).
To confirm this hypothesis, four time frames are considered in subsequent analyses: S1,
containing numerical data related to the first semester of 2016; [S1, S2], representing sam-

ples related to the entire year 2016; [S1, S3], referring to collected data from S1 to the first
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semester of 2017; and [S1, S4], containing the whole dataset from 2016 to 2017. In Fig.

each sample is related to a particular component category (pre-defined by the company

managers).
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Figure 4: Evolution of the first two PC scores with increasing number of samples over four distinct time

frames.

Since such categories are non-overlapping, we therefore coded each category with a specific
color. Figure {4] shows that the samples distribution on the PC subspaces differs over the
time frames considered. In particular, it reveals that with an increase of the number of
samples from [S1, S3] to [S1, S4] some commodities are no longer located on the positive
semi-axis of PC2, meaning that the averaged stock quantity received related to those
components decreased substantially in that period. In addition, over the year 2016 ([S1,
S2]), the samples of components prone to special freights were mainly located on the
negative semi-axis of PC2, attaining minimum PC scores of close to -20. However, by
gathering the data of 2016 together with the first semester of 2017 ([S1, S3]) we have
noticed that the same PC scores have become increasingly negative over the PC2, which
have translated into higher safety times and supply lead times for some materials that
fall within that specific component category. Nevertheless, the overall samples showed
a strong overlap on these two PC-dimensions, making it difficult to identify any further
relevant information. In this case, PCA fails to properly separate the samples in such a
way so as to be able to extract further insights from the dataset. Yet, we were interested to
study if this apparent drawback of PCA could be motivated by an incorrect classification
of the samples during the data preparation stage, in the sense that there may be samples
from distinct component categories that, due to their similarity, could be grouped into

the same category or cluster. Thus, in the following subsections, we use the PC scores as

12



inputs for K-means to investigate if samples grouped into different component categories

by the company managers are classified into the same cluster by K-means clustering.

4.1. Visualizing PC scores via K-means

The first four PC scores are now used as features for unsupervised clustering. The
results of K-means based on the PC scores are presented in Fig. f] Panels A and B
represent different combinations of PC subspaces. A comparison between the sample
distribution projected in the score plot of Fig. 4] with that observed in Fig. [5| reveals
that the six component categories are now grouped into 4 different clusters. Thus, we
may argue that the manually classification of some samples might have been conducted
incorrectly by the company managers, in the sense that some similar samples (grouped
into the same cluster) seem to have been previously classified into distinct component
categories. A descriptive analysis of the variables in each cluster appears summarized in
Table[3] The dynamics and location of the clustered samples on the different PC subspaces
provide useful information concerning the behavior of the different types of components.

In particular:

e All of the samples classified into Cluster 2 tend to assume highly positive values
on the PC1 (Panel A Fig. , particularly indicating that inventory levels for this

component typology tend to be well-above average.

e The majority of the samples within Cluster 3 tend to strongly assume negative
values over PC2, demonstrating that both the safety time and supply lead time for
this class of components are above average. At this point, since safety time pushes
delivery orders earlier, the larger the value of this parameter the greater the amount
of stock on-hand and holding costs. Thus, attending to the high averaged stock levels
recorded for components within Cluster 3 (in terms of quantity and monetary value),
company managers should analyze the possibility of improving demand forecasts for
some components within this cluster in order to decrease the respective safety time
parameters. This reduction is particularly relevant in the automotive industry in
which carrying the lowest possible level of inventory without neglecting service level

is a primary concern [43].

e We found that all samples in the Cluster 2 are plotted in the negative direction of
PC3, thus particularly suggesting that the values of agreed MOQs with suppliers

13



are well-above average for commodities. This opens a space so that the company
can negotiate less MOQs with suppliers in order to decrease the high averaged stock

levels related to this component typology (see Table .

e The Cluster 1 is the only one containing samples located in the positive direction of
PC4 (Panel B of Fig. . Concretely, 35% of the samples therein contained satisfy
that condition. This suggests that, in general, averaged supplier on-time delivery
(OTD) scores for some inventory components within this category tend to be higher

than those recorded for components classified into the remaining clusters.
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Table 3: Descriptive statistics of the features for different clusters.

Cluster 1 (n = 8257) Cluster 2 (n = 77) Cluster 3 (n = 1376) Cluster 4 (n = 96)

Feature

Mean Std.Dev. Mean Std.Dev. Mean Std.Dev. Mean Std.Dev.
qty.rec. 2811.96  3644.45 3.52 1.67 4247.35 5050.92 62133.88 24589.42
saf.time 2.94 1.87 3.03 0.23 5.14 2.81 4.07 0.62

val.stock 23827.93 42600.12 13249.77 16386.74 69987.24 132501.93 49972.12 11700.65
cons.stock 1286.56 1384.23  6857.42 3152.33  669.99 870.99  9109.10 3211.48

supp.otd. 80.11 24.26 64.68 19.70 52.52 20.48 52.21 8.34

wh.occup.  11.57 11.13 0.00 0.00 6.69 7.27 3.02 1.89
stock 8766.68 10722.34 372110.78 212060.78 17120.40 19482.01 367195.32 85015.91
moq 678.51 1190.89 70784.42 1818.26 953.67 965.59  2541.46  562.97
supp.lt 3.96 3.99 4.49 3.73 26.40 4.77 26.82 1.74
nr.end 23.82 29.64 22.40 20.05 9.68 14.57 3.97 0.31

4.2. Guaining insights from clustered data
To further get an insight into the results, we also analyzed the proportion of samples

of each one of the 6 categories in the different clusters (Table [4).

Table 4: Distribution of categories within the four clusters derived by 4-means. Component categories

with a strong presence in each cluster are highlighted in boldface.

Cluster 1 Cluster 2 Cluster 3 Cluster 4
Category
n % n % n % n %
High runner 4818 58.4% 0 0% 0 0.0% 0 0%
Stable 752 9.1% 0 0% 181 13.2% 1 1%
Special freights 382 4.6% 0 0% 820 59.6% 0 0%
Commodity 500 6.0% 77 100% 0 0.0% 0 0%

Common among plants 484  5.9% 0 0% 372 27.0% 95 99%
Critical 1321 16.0% 0 0% 3 02% 0 0%

For the concerned company one of the core and most critical procedures is the shipment
process to the end-customers. Therefore, we analyzed the dynamics of the different clus-

ters according to two important variables, namely the averaged supplier OTD score and
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the total number of end-items that require a given component to be produced (Fig. @
In Fig. [6] each cluster traduces averaged values and is represented by a circle with ra-
dius proportional to the number of samples (n) of the concerned component category in
that cluster. Moreover, all clusters are labelled according to the category that represents
more than 50% of the total cluster size (see Table . One can observe that high run-
ner components (Cluster 1) are the ones with the highest averaged supplier OTD score.
Furthermore, they are necessary to produce several end-items. Conversely, components
prone to special freights show the smallest averaged supplier OTD score. This finding
might seem contradictory at first inasmuch as one of the primary reasons of using a spe-
cial freight is to avoid delays [B]. However, since special freights are last minute emergency
shipments, just-in-time arrivals could be undermined if there is no timely detection for
establishing the need for carrying out these shipments by the logistics planners. In such
situations, special freights are carried out but not sufficient to avoid time deviations from
due dates or even production line stoppages, if the concerned components are necessary
to produce several end-items as these ones are. Hence, as special freights are very costly,

future requests should be carefully and timely planned.

° Cluster 1 ° Cluster 3
° Cluster 2 Cluster 4
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Figure 6: Cluster dynamics according to selected logistic metrics.

Concerning the geographical distribution of the company suppliers according to the
obtained clusters (Fig. E[), we found that the majority of suppliers for high runner com-
ponents are located in Europe, in the neighbourhood of the concerned company. On the
other hand, components prone to special freights, which present a lower averaged sup-
plier OTD score, are mainly provided by Asian suppliers, normally associated with higher

supply lead times.
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Figure 7: Geographical distribution of the company suppliers according to the 4-means clustering.

4.8. Cluster validity

We compared the results obtained using K-means clustering with those using two
flexible clustering algorithms: spherical K-means clustering [II] and spectral clustering
[62]. The spherical K-means clustering is a variant of the classical K-means suitable
for high dimensional datasets, which takes advantage of the cosine dissimilarity measure
rather than the Euclidean metric. On the other hand, given a set of n p-dimensional data
points x1, o, ..., T,, the classical spectral clustering transforms the raw data information
into an affinity graph G = (V, ), where each node of V represents a particular data point
while each edge of £ traduces the similarity between two distinct data points. For each
edge (i,7) € &, there is an associated weight w;; that encodes the similarity (or affinity)
between two data points x; and x;. We denote by W = (wij)ﬁjzl the affinity matriz
of G. Then, the ultimate goal is to partition V into K subsets {Vi,...,Vk}. However,
since the classical spectral clustering generally has a computational complexity of O(n?),
as a result from the computation of the eigenvectors of the n x n affinity matrix W, its
applicability to large-scale datasets becomes limited. For this reason, we adopted the Fast
Approximate Spectral Clustering (FASP) algorithm [65], with gaussian mixture modeling

(GMM) in order to reduce the high computation cost inherent to the classical spectral
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clustering algorithm.

To obtain the optimal number of clusters K for the spherical K-means clustering
algorithm, we iterated it for K varying from 2 to 25 centers and compared the respective
RS indexes. For the case of FASP algorithm, we follow a recent approach based on
eigenvector distributional analysis proposed in [30]. As a result, we set K = 4, for both
spherical K-means and FASP. To measure the quality of clustering results, namely in
what concerns the compactness and separation of clusters, the silhouette width method
[53] and a Generalized Dunn’s index (GDI) [9] were employed using the Euclidean metric.
The Generalized Dunn’s index herein presented represents the ratio between the minimum
average dissimilarity between two clusters and the maximum average dissimilarity within
clusters. The higher the GDI, the better is the clustering. Regarding the silhouette width
metric, it takes values in the compact interval [—1,1]. For a given observation i, a value
of S(i) close to 1 translates into a good clustered observation (perfectly clustered for
S(i) = 1). Conversely, a value S(i) close to —1 indicates that ¢ is probably a misclassified
observation. In terms of internal cluster validation, we followed a 10-fold cross-validation
approach to compute both silhouette and GDI metrics for the test set. Concretely, for each
fold, each of the three clustering algorithms was applied to both train and test data. Then,
the training centroids were used to classify the test observations into different clusters. The
derived clusters were then validated according to the two distance based metrics previously
described. Table [5| presents the clustering evaluation results for the different validation
methods used.

Table 5: Clustering evaluation results under 10-fold cross-validation for K = 4 (best mean values are

highlighted in boldface).

K-means Spherical K-means FASP

Cluster validation method Mean Std.Dev. Mean Std.Dev. Mean Std.Dev.

Silhouette width 0.6839 0.0107  0.6066 0.0950 0.3742  0.2889
Generalized Dunn’s index 0.8098  0.1627  0.4652 0.3066 0.4998  0.4097

For this particular dataset, the results show that K-means generates reasonable struc-
tured clusters, outperforming the remaining clustering algorithms in terms of the con-
sidered cluster validation methods. In particular, when the Silhouette width is taken

into consideration, the improvement rate of K-means is observed as 12.7% and 82.8%
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over spherical K-means and FASP, respectively. The superiority of K-means also holds
when the GDI method is considered, leading to improvement rates of 74.1% and 62% over

spherical K-means and FASP, respectively.

4.4. Practical and managerial implications

Following a subjective cluster evaluation, the aforementioned results and analyses de-
rived therefrom were validated by the company managers, who confirmed the usefulness
of the proposed approaches to enhance future decision making processes in the field of
inventory management. For example, the strategies herein presented can bring relevant
guidelines to set new parameter values into Enterprise Resource Planning (ERP) systems
for the different components, that so far are established based on objective data analyses
rather than technique. Furthermore, the visibility of the multiple components with mul-
tiple suppliers could also be enhanced with the adoption of these unsupervised learning
techniques, enabling for instance the detection of inventory target deviations. At the end,
company managers would start adopting proactive behaviors rather than reactive ones. On
the other hand, this offers the opportunity to develop flexible demand forecasting models
to improve the management of critical components with deviant inventory performances.
These improved forecasts provide aligned decision making regarding short to middle term
inventory management operations in a data-driven fashion. Finally, the classification of
the samples into several homogeneous clusters also enables the development of forecasting
strategies suitable for multiple (but similar) time series rather than train several models,

one for each time series.

5. Conclusions

Understanding supply chain dynamics is a crucial task, especially with regard to inven-
tory management. Motivated by the permanent pressure facing the automotive industry
to meet customer orders whilst maintaining low inventory levels, we applied descriptive
data mining techniques for profiling different inventory component categories. Concretely,
we took advantage of real-world data collected from an automotive electronics SC to: (i)
explore the application of PCA as a dimensional reduction technique in order to summarize
the overall data structure, (ii) assess the relevance of combining partitional clustering with

PCA to improve the extraction of important logistic information contained in the leading
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principle components, and (iii) provide some managerial guidelines to practitioners who
intend to leverage inventory management for improved SC performance.

For the case study at stake, our findings suggest that further interpretation of the
PCA results is hampered by the fact that several data samples from distinct component
categories overlap at specific coordinates of the PC score plot. Thus, if the purpose is
to identify relevant logistic patterns between the distinct component samples, partitional
clustering is our preferred approach. Yet, when the PC scores are used as an input for
clustering, the task of profiling components according to their location on the different PC
subspaces is enhanced. Also, PCA revealed to be helpful in transforming our data into a
lower dimensional representation rather than interpreting a higher-dimensional subspace.
Therefore, we argue in favor of adopting PCA in combination with K-means. Our results
also provided evidence in favor of the application of K-means to identify major clusters of
similar components rather than, in practice, classify them in a manually fashion without
multivariate information. The obtained clusters were subsequently validated via averaged
silhouette and generalized Dunn’s indexes under 10-fold cross-validation. Overall, this
work evidenced the benefits inherent to the application of descriptive DM techniques for
profiling inventory components in a real-world context. If applied, these approaches have
the potential to extract important insights from the data that may turn out to be very
useful to enhance decision making processes related, for instance, to the definition of
suitable procurement strategies and inventory control policies. Yet, we acknowledge that
the investigated methods should not be understood as a panacea to tackle any inventory
management problem, but as a complementary tool with the ability to improve supply
chain management. As future research, we intend to explore a wider set of explanatory
variables, as well as to test different clustering algorithms under ensemble and consensus

methods to derive better data partitions.
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