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Abstract

Preferential sampling in time occurs when there is stochastic

dependence between the process being modeled and the times of the

observations. Examples occur in fisheries if the data are observed when

the resource is available, in sensoring when sensors keep only some records

in order to save memory and in clinical studies, when a worse clinical

condition leads to more frequent observations of the patient. In all such

situations the observation times are informative on the underlying process.

To make inference in time series observed under Preferential Sampling we

propose, in this work, a numerical method based on a Laplace approach

to optimize the likelihood and to approximate the underlying process

we adopt a technique based on stochastic partial differential equation.

Numerical studies with simulated and real data sets are performed to

illustrate the benefits of the proposed approach.
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1. Introduction

Real time series sometimes exhibit various types of “irregularities”: missing

observations, observations collected not regularly over time for practical reasons,

observation times driven by the series itself, or outlying observations. However,

the vast majority of methods of time series analysis are designed for regular time

series only. There are few methods available in the literature for the analysis of

irregularly spaced series. Some authors, such as [8], [9], [1] and [3] have suggested

an embedding into continuous diffusion processes, with the aim of using the

well established tools for univariate autoregressive moving average (ARMA)

processes. A particular case of irregularly spaced time series is that in which the

sampling procedure over time depends also on the observed values. Typically, in

medical studies, a patient is observed most frequently when he presents a worse

clinical condition. Otherwise, if the patient shows a better medical condition, the

follow-up time process will not occur so often. As such, observed measurements

can bring information about diseases condition, but also the frequency at which

these measurements are made can provide information about the health status

of the patients. In such situations, there is stochastic dependence between the

process being modeled and the times of the observations.

In this context, following [5] in the context of spatial statistics, [13] introduce

the concept of Preferential Sampling in the temporal dimension as a formal

definition for the dependence between the process generating the times of the

observations and the data values. The authors propose a model-based approach

to make inference and prediction also able to deal with irregularly spaced time

series, under Preferential Sampling or not. They consider a Monte Carlo

approach for maximum likelihood estimation of the model. The suggested

framework considers the observed time points as the realization of a time

point process stochastically dependent on an underlying latent process (e.g.

an individual health indicator, when subjected to regular monitoring).

The convergence of the estimation algorithm proposed by [13] is very slow

and the running time becomes burdensome for longer time series and a large

number of Monte Carlo samples. Besides these, the algorithm is sensitive

to starting values and the large variability between likelihood values in each

Monte Carlo iteration makes the likelihood difficult to optimize. In view of

the aforementioned issues, in this work we suggest an alternative numerical

method that uses the Laplace approximation for the marginal likelihood and we

adopt a technique based on stochastic partial differential equation (SPDE) to

approximate the underlying process.

The above mentioned numerical techniques based on the Laplace

approximation and SPDE have become usual when dealing with complex models

and large data sets, [6] and [4]. These changes will hopefully result in a large

increase in the stability of our parameter estimates, particularly in comparison
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with previous method based on Monte Carlo approximation.

The paper is organized as follows. In Section 2, based on [13], we describe

the model for preferential sampling in time dimension. In Section 3 we present

the methodological details of the proposed numerical method based on a Laplace

approach to optimize the likelihood and the approximation of the underlying

process using SPDE. In Section 4, using numerical studies, we document the

performance of suggested approach. We further compare the estimates with

those obtained under traditional approach for irregularly spaced data and with

those obtained under INLA Bayesian approach. In Section 5 we show the

application of the previously described methodology to a real data set related to

monitoring the level of a biomedical marker, after a cancer patient undergoes a

bone marrow transplant. Section 6 is devoted to make some concluding remarks.

2. A model for Preferential Sampling in time

Consider an unobserved stochastic process in time S(t), represented by a

Continuous Time Autoregressive model of order 1, CAR(1), that satisfies the

differential equation

dS(t) + α0S(t)dt = dW (t)

where, α0 is the autoregressive coefficient and W (t) is a Wiener process with

variance parameter σ2
w.

S(·) is a stationary Gaussian process with E[S(t)] = 0. Now admit that

S(t) is observed at times ti, i = 1, · · · , n, yielding a data set (ti, yi), where the

corresponding Yi = Y (ti) is the noisy version of S(ti). Following [13], a model

for the data takes the form:

Y (ti) = µ+ S(ti) +N(0, τ2) (2.1)

Admitting that the sampling times are stochastic the joint distribution of S,

T = (t1, . . . , tn) and Y = (Y1, . . . , Yn), [S, T, Y ]1 must be specified. Considering

the stochastic dependence between S and T , the model to deal with Preferential

Sampling is defined through [S, T, Y ] written as:

[S][T |S ][Y |T, S ] (2.2)

where, conditional on S and T , Y is a set of mutually independent Gaussian

variates with τ2 being the measurement error variance and conditional on S, T

is an inhomogeneous Poisson process with intensity

λ (t) = exp {a+ βS (t)} (2.3)

1[·] means “the distribution of”
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where β is the parameter that controls the degree of preferentiality, for example,

when β > 0 the sample times are concentrated, predominantly, near the

maximum of the observed values and when β = 0 it corresponds to the situation

of an homogeneous, non-preferential, sampling.

Although the construction of this model is driven by a Preferential Sampling

context, it may be applied to model any type of irregularly spaced time series.

One of its advantages is to make predictions at unobserved time points.

The predicted value of S(·) at an unsampled time point tni < t0 < tnj ,

S(t0|T ), is given by S(t0|T ) = E
[
S(t0)|Y (T )

]
. Considering that the process

CAR(1) is Markovian, [2, p.358] shows that the conditional mean of S(t0)

given Y (T ) is

S(t0|T ) = E
[
S(t0)|Y (T )

]
(2.4)

= exp (−α0(t0 − tni
))Y (T ) + µ (1− exp (−α0(t0 − tni

)))

The variance of the prediction is

σ2(t0) = V ar
[
S(t0)|Y (T )

]
=

σ2
w

2α0
(1− exp (−2α0(t0 − tni

))) (2.5)

3. Laplace approach - Methodological details

To obtain the parameters of the model we use maximum likelihood

estimation. For the shared latent process model, the likelihood function for

data T and Y can be expressed as

L(θ) = [T, Y ] =

∫
S

[T, Y, S]dS =

∫
S

[S][T, Y |S]dS =

∫
S

[S][T |S][Y |T, S]dS

(3.1)

where θ = (µ, σw, α0, τ, β) represents the set comprising the model parameters.

Previously, in [13], a partition of S into S = {S0, S1} was considered, where

S0 denotes the values of S at each of n times ti ∈ T , and S1 are the values of S

at the remaining (N − n). The integral in (3.1) has been rewritten as

L(θ) =

∫
S

[S1|S0][S0][T |S][Y |S0]
[S|Y ]

[S1|S0][S0|Y ]
dS

=

∫
S

[T |S]
[Y |S0]

[S0|Y ]
[S0][S|Y ]dS

= ES|Y

[
[T |S]

[Y |S0]

[S0|Y ]
[S0]

]
(3.2)
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Taking into account that the conditional expectation in (3.2) can be

approximated by Monte Carlo, Maximum Likelihood Estimates (MCMLE’s)

are obtained by maximizing the Monte Carlo likelihood

LMC(θ) = m−1
m∑
j=1

[T |Sj ]
[Y |S0j ]

[S0j |Y ]
[S0j ] (3.3)

where Sj are assumed as realizations of the distribution of S conditional on Y .

S0j denotes the values of Sj restricted to the n observed time points and m, is

the total number of Monte Carlo replicates.

An alternative method (henceforth LAP) to the Monte Carlo simulation

proposed by [13] is to utilize Automatic Differentiation of a Laplace

Approximation to the marginal likelihood, to evaluate directly equation (3.1).

If we assume that the likelihood function L(θ) can be written as

L(θ) =

∫
S

exp(−f(S,θ))dS (3.4)

where f(S,θ) denotes the negative joint log-likelihood of the data, θ is the

vector of parameters (fixed effects) and S the random effects. The Laplace

approximation for L(θ) is

L∗(θ) = (2π)N/2det(H(θ))−1/2exp(−f(Ŝ(θ),θ))

where

Ŝ(θ) = argSminf(S,θ) (3.5)

and H(θ) is the Hessian of f with respect to S evaluated at Ŝ(θ),

H(θ) =
∂2

∂S2
f(S,θ)|S=Ŝ(θ)

The estimate of θ minimizes the negative of the logarithm of the Laplace

approximation,

− logL∗(θ) = −N
2

log(2π) +
1

2
log det(H(θ)) + f(Ŝ(θ),θ) (3.6)

This objective function and its derivatives acquired by using automatic

differentiation, are required to apply standard nonlinear optimization algorithms

(e.g., nlmimb) to optimize the objective function and obtain the estimate for

θ. To speed up significantly the optimization of the likelihood function we use

programming language C++. Using the R package TMB, short for Template

Model Builder, [10], we define the joint log-likelihood of the data and (i.e.

conditional on) the random effects as a C++ template function. The Laplace
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approximation of the marginal likelihood is then evaluated and maximized,

where the random effects are automatically integrated out. This approximation,

and its derivatives, are obtained using automatic differentiation (up to order

three) of the joint likelihood. In the case of the Preferential Sampling model,

we have to define the joint negative log-likelihood as

f(S,θ) = −log([S][T |S][Y |S, T ])

and integrate out the latent field S to evaluate approximately (3.1).

Uncertainty of the estimate θ̂ or of any differentiable function of the estimate

ζ(θ̂) that the user specifies, is obtained by the δ-method:

V ar(ζ(θ̂)) = −

{
∂ζ(θ)

∂θ′

[
∂2(logL∗(θ))

∂θ∂θ′

]−1
∂ζ(θ)

∂θ

}
θ=θ̂

(3.7)

These uncertainty calculations also require derivatives of (3.6). However,

derivatives are not straight-forward to obtain using automatic differentiation in

this context.

To increase computational efficiency, we approximate [S] in (3.1) using a

technique based on stochastic partial differential equations (SPDE). This allows

to create a temporal mesh and corresponding components of the sparse precision

matrix of a Gaussian Markov Random Field (GMRF) in time-dimension.

Following [12], we use the representation of a Gaussian process with Matérn

covariance structure as the solution of the following SPDE,

(
φ−2 −∆

)α/2
(ωS(t)) = ε(t), t ∈ R+, (3.8)

where ε(t) is Gaussian white noise, ∆ is the Laplacian and φ is the

range parameter of the Matérn covariance function γ(u) in its standard

parametrization,

γ(u) =
σ2

Γ(ν)2ν−1
(u/φ)

ν
Kν (u/φ) : u ≥ 0

where Kν is the modified Bessel function of second kind and order ν > 0 and

σ2 is the marginal variance. The integer value of ν determines the mean square

differentiability of the underlying process, which matters for predictions made

using such a model. However, ν is usually fixed since it is poorly identified

in typically applications. The remaining parameters in (3.8) are α = ν + 1/2,

from this we can identify the exponential covariance with ν = 1/2, and ω that

controls the variance,

ω2 =
Γ(1/2)

Γ(1)(4π)1/2φ−1σ2
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We approximate the process S by S̃, where

S̃(t) =

n∑
k=1

ψk(t)Wk, t ∈ R+

where ψk(·) are piecewise linear basis functions at a set of time knots and

W = W1, ...,Wn is a zero-mean multivariate Gaussian variate with covariance

matrix Q−1. The construction is done by projecting the SPDE onto the basis

representation in what is essentially a Finite Element method. For α = 1 the

required form of Q is

Q = ω2(φ−2C +G2)

where C and G2 are sparse matrices whose explicit expressions can be found in

[12].

4. Numerical Studies

We now intend to proceed with the assessment of the LAP method,

comparing the results of its parameter estimates with those of the traditional

Kalman filter approach to irregularly spaced data (cts package [17]) and with

those obtained from INLA, proposed by [14] and available in the R-INLA

software package.

To simulate a time series under Preferential Sampling we use the thinning

algorithm, [11]. We first generate a realization of S from model (2.1) with

α0 = 0.2 and σ2
w = 1, discretized in 800 equally spaced time points. These

values correspond to V ar[S(·)] = σ2 =
σ2
w

2α0
= (1.581)2 and φ = 1

α0
= 5, being

the latter related to the lag beyond which there is no correlation for practical

purposes. To generate Y from model (2.1), we consider µ = 0 and τ = 0.1,

conducting three separate sampling procedures over the realization of S:

� Preferential Sampling: conditional on the values of S, we obtain n =

70 sampling times T following an inhomogeneous Poisson process with

intensity function defined in (2.3) and β = 2, which corresponds to the

situation when the sampling times are concentrated, predominantly, near

the maximum of the observed values;

� irregular sampling: we obtain n = 70 sampling times T from (2.3) and

with β = 0, illustrating the situation without Preferential Sampling;

� Preferential Sampling: conditional on the values of S, we obtain n =

70 sampling times T following an inhomogeneous Poisson process with

intensity function defined in (2.3) and β = −2, which corresponds to the

situation when the sampling times are concentrated, predominantly, near

the minima of the observed values.



8 A. Monteiro, R. Menezes, M. E. Silva

The parameters µ, σ, φ, τ and β are the target of estimation. We compare

the parameter estimates, obtained from a total of 500 independent samples, for

three alternative methods:

� LAP, implemented through C++, via package TMB;

� LAP, implemented via package INLA;

� Kalman filter approach, implemented via package cts.

INLA relies on Laplace approximation methods to numerically approximate

posterior distributions. This method performs Gaussian approximations of

the parameters by inferring their mode. Although posterior distributions do

not necessarily have to be Gaussian, INLA relies on the fact that for most

real problems and data sets, the conditional posterior of the latent field looks

“almost” Gaussian, [14]. This is clearly assisted by the, non-negligible, impact

of the Gaussian priors on the posteriors.

In our study, the prior distributions will be the default non informative and

for the SPDE model, for σ and φ, we consider the Penalized Complexity prior,

PC-prior, as derived in [7].

4.1. Results of parameter estimation

The results of the mean and standard errors of each parameter, obtained

from a total of 500 independent samples are summarized in Table 1. In this

numerical study we consider as initial values (θ0) the “true” values. In Section

4.2 a study will be conducted to evaluate the sensitivity to initial values in the

estimation of the parameters.

In Figures 3, 4 and 5 (see the appendix) we have the corresponding boxplots

for the preferential (β = 2), non-preferential (β = 0) and preferential (β = −2)

simulated data sets, respectively, with true parameter values marked as red line.

(PS corresponds to LAP method proposed in Section 3).

By analysing Table 1 and Figures 3, 4 and 5, we conclude that under

Preferential Sampling, LAP, via TMB offers more accurate estimates than LAP

via INLA, except in the case of σ. Comparing with the traditional Kalman

filter, LAP showed considerable success mainly for µ, σ and φ. The parameter

β seems to be underestimated using LAP and R-INLA in the case of β = 2 and

overestimated for β = −2.

4.2. Sensitivity Analysis

To investigate the sensitivity of the estimation procedures to initial values, we

estimate the parameters considering initial values θ0: (i) the“true”values (ii) the

parameters estimated by traditional Kalman filter approach. An estimate for the

initial value of β, given a sample data set Y , can be obtained as follows. Suppose

that Y = {(ti, yi) : i = 1, . . . , n}, where yi denotes the measured value and ti is
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PS Data β = 2
True LAP INLA CTS

µ̂ 0 0.167 (0.483) 0.600 (0.423) 1.929 (0.480)
σ̂ 1.581 1.471 (0.355) 1.550 (0.333) 0.906 (0.157)

φ̂ 5 5.873 (2.531) 7.486 (3.097) 2.339 (1.462)
τ̂ 0.1 0.166 (0.099) 0.151 (0.352) 0.176 (0.090)

β̂ 2 ; 0 1.359 (0.258) 1.076 (0.204)

Not PS Data β = 0
True LAP INLA CTS

µ̂ 0 -0.010 (0.386) -0.013 (0.381) 0.003 (0.362)
σ̂ 1.581 1.496 (0.201) 1.580 (0.194) 1.529 (0.207)

φ̂ 5 5.061 (1.605) 5.536 (1.533) 5.065 (1.672)
τ̂ 0.1 0.211 (0.144) 0.045 (0.110) 0.233 (0.135)

β̂ 0 -0.005 (0.098) -0.004 (0.077)

PS Data β = −2
True LAP INLA CTS

µ̂ 0 -0.174 (0.384) -1.768 (1.880) -1.919 (0.480)
σ̂ 1.581 1.426(0.279) 1.699(0.455) 0.913 (0.153)

φ̂ 5 5.223 (1.695) 6.443(1.748) 2.317(1.228)
τ̂ 0.1 0.155(0.101) 0.080 (0.113) 0.170(0.094)

β̂ -2 -1.344 (0.241) -0.530(0.786)
Table 1: Maximum likelihood estimates, under LAP (implemented via TMB
package), LAP (implemented via INLA package) and by Kalman filter approach
(implemented via cts package), mean (standard errors) obtained from a total of
500 independent samples.

the corresponding time of the observation. A preliminary β0 can be obtained

through a simple algorithm such as: first, use a kernel-type intensity estimator

of the locations to derive λ̂(t); and, then, choose β0 such that log λ̂(t) ' const+
β0Y (t).

Preferential Data set Not Preferential Data set
True True θ0 θ0 from CTS True θ0 θ0 from CTS

µ̂ 0 0.247 (0.417) 0.247 (0.417) -0.030 (0.388) -0.030 (0.388)
σ̂ 1.581 1.412 (0.255) 1.413 (0.255) 1.500 (0.207) 1.500 (0.207)

φ̂ 5 5.244 (1.699) 5.242 (1.700) 5.167 (1.739) 5.167 (1.739)
τ̂ 0.1 0.164 (0.104) 0.163 (0.106) 0.204 (0.138) 0.203 (0.138)

β̂ 1.5;0 1.175 (0.159) 1.175 (0.159) 0.002 (0.100) 0.002 (0.100)

Table 2: MLE’s under LAP, mean (standard errors) obtained from a total of
250 independent samples, considering as initial values (θ0) the “true” values and
other considering the parameters estimated by traditional Kalman filter.
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The results of the mean and standard errors of each parameter, obtained

from a total of 250 independent samples are summarized in Table 2.

The proposed method seems to be quite robust to initial values of θ in both

scenarios, under preferential and not preferential sample data.

5. Application to real data

We now consider the problem of monitoring the level of one biomedical

marker, platelet (PLT), after a cancer patient undergoes a bone marrow

transplant. The data, composed by 54 measurements over 91 days of log(PLT)

shown in Figure 1, is studied by [15] as missing data problem. These data are

made available in package astsa [16] with the name of “blood”.

Figure 1: Measurements of biomedical marker platelet, in the logarithm scale,
log(PLT).

The biomedical marker PLT was also studied by [13]. We now intend to relate

the results of the two approaches (Monte Carlo and Laplace), both targeting

preferential sampling issues. The estimated parameters, using LAP method

together with estimated standard errors and using Monte Carlo method [13],

are summarized in Table 3.

Parameter LAP Monte Carlo
µ̂ 4.99 (0.290) 4.97
log(ω̂) 2.55 (0.20) -
σ̂ 0.33 0.52

log(φ̂) 3.56 (0.71) -

φ̂ 35.12 54.85
log(τ̂) - 2.086 (0.13) -
τ̂ 0.12 0.14

β̂ -0.94 (0.32) -1.51
Table 3: Maximum likelihood estimates under LAP and Monte Carlo method.

Comparing the above parameter estimates, we conclude that the estimated

value for β, using LAP method also has negative sign but a bit lower
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than Monte Carlo method. Anyway, the corresponding confidence interval

for β̂ is (−1.57;−0.30), confirming that β estimated from Monte Carlo and

LAP approaches are in accordance. The estimates for the mean parameter,

considering the two approaches, present equivalent results.

Predictions of the biomarker within the period of the observations are

obtained plugging the estimated parameters in equations (2.4) and (2.5) and we

obtain the predictions of the biomarker within the period of observations. Figure

2, top panel, shows the 95% prediction intervals for (log of) the biomarker,

obtained from MCMLE’s in (3.3), while the middle panel represents the 95%

prediction intervals obtained from the MLE’s from the Kalman filter approach

and bottom panel represents the 95% prediction intervals obtained from the

MLE’s from LAP approach suggested in Section 3. In this situation the

predictions obtained from LAP present lower variance than the predictions

obtained from Monte Carlo approach, revealing greater precision.

Figure 2: Prediction 95% confidence intervals using predictions acquired from
MCMLE’s in (3.3) (top), MLE’s from the Kalman filter approach (middle) and
LAP approach described in Section 3 (bottom).

6. Concluding Remarks and Future Work

We present in this work an alternative, based on a Laplace approximation,

to the Monte Carlo Simulation proposed by [13]. This alternative, increases

the stability of our parameter estimates and presents quite satisfactory results

for estimation. We emphasize that the results for estimated parameters, in
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both approaches, are quite satisfactory when compared with the traditional one

that uses Kalman filter to deal with irregularly spaced time series. However,

LAP method, is much more computationally efficient and runs faster, while

Monte Carlo maximum likelihood estimates takes approximately 20 minutes to

estimate parameters in a single simulation, LAP method takes approximately

21 seconds. Although INLA is slightly faster (16 seconds), LAP presents more

accurate results and provides user high levels of flexibility, due to the direct

specification of the joint likelihood.

In this work we assumed that the variable of interest is sampled in time

according to a sampling design that depends on the values of the underlying

process, ignoring the past of the observation processes. However, this kind

of assumption of a memoryless process for the observations process having an

evolution without aftereffects might be unrealistic for some real contexts, where

the dependence on the past is crucial. We intend, for future investigation, to

consider that the sampling design may depend on entire past history of the

process, meaning all the times of the observations as well as the values of these

observations.
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Appendix

Figure 3: Boxplots for models parameters estimated over 500 preferentially
sample simulated data sets, β = 2, with true parameter values marked as red
line.
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Figure 4: Boxplots for models parameters estimated over 500 non-preferentially
sample simulated data sets, β = 0, with true parameter values marked as red
line.
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Figure 5: Boxplots for models parameters estimated over 500 preferentially
sample simulated data sets, β = −2, with true parameter values marked as red
line.
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