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LAGRANGE MULTIPLIERS FOR EVOLUTION PROBLEMS

WITH CONSTRAINTS ON THE DERIVATIVES

© A. AZEVEDO, J. F. RODRIGUES, L. SANTOS

We prove the existence of generalized Lagrange multipliers for a class of
evolution problems for linear di�erential operators of di�erent types sub-
ject to constraints on the derivatives. Those Lagrange multipliers and the
respective solutions are stable for the vanishing of the coercive parameter
and are naturally associated with evolution variational inequalities with
time-dependent convex sets of gradient type. We apply these results to the
sandpile problem, to superconductivity problems, to �ows of thick �uids,
to problems with the biharmonic operator, and to �rst order vector �elds
of subelliptic type.

�1. Introduction

Variational inequalities with constant gradient constraints appeared in 1967
to solve the equilibrium elastic-plastic torsion with arbitrary cross section (see
references in the recent survey [14]). It was later shown that the Lagrange
multiplier associated with the yield criteria of von Mises is uniquely determined
by a bounded positive function under general assumptions (see [7] and its
references).

The �rst evolution model with a gradient constraint was proposed in 1986
to model a poured pile shape (see [11]) and was treated a decade later as a
variational inequality and as an �in�nitely fast/slow� di�usion limit, after the
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�ows of thick �uids, problems with the biharmonic operator, �rst order vector �elds of
subelliptic type.

The research of A. Azevedo and L. Santos was partially supported by the Research
Centre of Mathematics of the University of Minho with the Portuguese Funds from the
�Funda�c�ao para a Ci�encia e a Tecnologia,� through the Project UID/MAT/00013/2013, and
the one by J. F. Rodrigues was done partially in the framework of the Project PTDC/MAT-
PUR/28686/2017.

1



2 A. AZEVEDO, J. F. RODRIGUES, L. SANTOS

earlier mathematics study [16], which was extended to the case of parabolic
variational inequalities with nonconstant gradient constraint and also to evo-
lution quasivariational inequalities (see [14] for references).

For instance, in [17], for a smooth and strictly positive threshold g = g(x, t),
with x ∈ Ω, a smooth bounded domain of Rd, and t ∈ [0, T ], the unique solution
u = u(x, t) in the convex set

Kg(t) = {v ∈ H1
0 (Ω): |∇v| 6 g(t) a.e. in Ω} (1.1)

to the variational inequality was studied for α > 0 and a suitable given func-
tion f :∫

Ω

∂tu(t) (v − u(t)) + α

∫
Ω

∇u(t) · ∇(v − u(t)) >
∫
Ω

f(t) (v − u(t)). (1.2)

Here the inequality is assumed to be ful�lled for v ∈ Kg(t) and a.e. t ∈ (0, T ),
and u is subject to the condition u(0) = h ∈ Kg(0). In particular, under the

special assumptions ∂tg
2 > 0 and∆g2 6 0 (including the case of g = const > 0)

and with f ∈ L∞(0, T ) spatially homogeneous, it was shown in [17] that the
Lagrange multiplier problem, i.e., to �nd a pair (µ, u) solving the equation∫

Ω

∂tu(t)w +

∫
Ω

µ∇u(t) · ∇w =

∫
Ω

f(t)w (1.3)

for a.e. t ∈ (0, T ) and for all w ∈ H1
0 (Ω) under the conditions

|∇u| 6 g, µ > α, (µ− α)(|∇u| − g) = 0 (1.4)

a.e. (x, t) ∈ Ω × (0, T ), with u(0) = h ∈ Kg(0) and u = 0 on ∂Ω × (0, T ), is

uniquely solvable with µ ∈ L∞(Ω× (0, T )) and u ∈ L∞(0, T ;Kg(t)∩H2
loc

(Ω))∩
H1(0, T ;L2(Ω)), and, in fact, it is equivalent to solve in (1.1), the variational
inequality (1.2) with the same initial condition.

Considering the �ux Φ = µ∇u, we can write (1.3) as a di�usion equation in
Ω× (0, T )

∂tu−∇ · Φ = f (1.5)

and the constraints (1.4) can be written in the form

µ ∈ κα(|∇u|2 − g2)

where κα is the maximal monotone graph de�ned by κα(s) = α if s < 0
and κα(0) = [α,+∞). In this form, this problem can be treated within the
nonlinear semigroup theory, at least if g is time independent (see [2]), which
however does not give much information on µ.

Recently, with g ≡ 1 and α = 0, but with f being possibly a measure,
equation (1.5) was interpreted as an evolution Monge�Kantorovich problem
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in [8]; its solution is the couple (Φ, u), where Φ is the transportation �ux and u
its potential. This was motivated by a generalization of the sandpile problem.

Formally, from (1.4) we can write µ = α + λ with λ = 0 in the region
{(x, y) : |∇u(x, t)| < g(x, t)} and where, from (1.3), the solution u satis�es

∂tu− α∆u = f in {|∇u| < g}.
However, in general, we cannot expect that λ > 0 is a function and, in fact, it

is only a measure. Following the approach of [1] for the stationary nonconstant
gradient constraint, we consider here a more general class of linear di�erential
operators L, including the examples of the constraint |Lu| 6 g for possibly
vector valued functions u:

Lu = ∇u (gradient),

Lu = ∆u (Laplacian),

Lu = ∇× u (curl),

Lu = Du = 1
2

(
∇u+∇uT

)
(symmetrized Jacobian),

Lu = (X1u, . . . ,Xℓu) = Xu (subelliptic gradient for vector �elds Xj).

In general, the formulation (1.3) must be extended in a duality sense of L∞

and (L∞)′, the space of �nitely additive, bounded and absolutely continuous
measures λ, such that 〈λ, χω〉 = λ(ω), for all ω ⊆ Ω × (0, T ), where χω is the
characteristic function of the measurable set ω; see [18, p. 118]. In �2 we give
the precise formulation of the main results, which are exempli�ed with the
above �ve examples, with applications in �3 and the proofs in �4.

�2. Assumptions and main results

Let Ω be a bounded open subset of Rd (d > 2) with Lipschitz boundary.
For T > 0 and t ∈ (0, T ] we denote Qt = Ω× (0, t). We consider vector-valued
functions u = (u1, . . . , um) in the variables (x, t) ∈ QT and, for a multi-index
ν = (ν1, . . . , νd), with ν1, . . . , νd ∈ N0 and |ν| = ν1 + · · · + νd, we denote by

∂νui =
∂|ν|ui

∂x
ν1
1 ···∂xνd

d

the partial derivatives of ui, for i = 1, . . . ,m.

Let L : W → L2(Ω)ℓ be the linear di�erential operator of order s given by

(Lu)j =
∑
|ν|6s

m∑
k=1

λjν,k∂
νuk, 1 6 j 6 `,

where s, l,m ∈ N, ν ∈ Nd
0, λ

j
ν,k ∈ L∞(Ω), and

W =
{
v ∈ L2(Ω)m : Lv ∈ L2(Ω)ℓ

}
is a Hilbert space endowed with the graph norm.
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As examples we have: the gradient; the Laplacian; the curl; the symmetrized
Jacobian; and the subelliptic gradient.

Let (V ,H,V ′) be a Gelfand triple with Hilbert spacesH ⊆ L2(Ω)ℓ and V a
closed subspace of W such that ‖v‖V := ‖Lv‖L2(Ω)ℓ is a norm in V equivalent
to the norm induced from W .

We denote

V = L2
(
0, T ;V

)
and V∞ = L∞(

0, T ;V∞
)
,

endowed with the natural norms, where

V∞ =
{
v ∈ V : Lv ∈ L∞(Ω)ℓ

}
.

For instance, if L = ∇ we have W = H1(Ω) and we can take V = H1
0 (Ω),

but more examples can be considered as in �3 below.
Let

f ∈ L2(QT )
m, g ∈W 1,∞(0, T ;L∞(Ω)

)
, g > g∗ > 0, (2.1)

and, for all t ∈ [0, T ], we de�ne the convex set

Kg(t) =
{
v ∈ V : |Lv(x)| 6 g(x, t) a.e. in Ω

}
⊆ V∞, (2.2)

where | · | is the Euclidean norm in Rℓ. We also assume that

h ∈ Kg(0). (2.3)

Given v ∈ V , we say that

v ∈ Kg if v(t) ∈ Kg(t) for a.e. t ∈ [0, T ].

For α > 0 we consider the variational inequality: to �nd

uα ∈ V∞ ∩H1(0, T ;L2(Ω)m)

satisfying
uα(t) ∈ Kg(t), u

α(0) = h∫
Ω

∂tu
α(t)·(v−uα(t))+α

∫
Ω

Luα(t)·L(v−uα(t))>
∫
Ω

f(t)·(v−uα(t))

∀v ∈ Kg(t), for a.e. t ∈ [0, T ].

(2.4)

We de�ne the Lagrange multiplier problem associated with this variational
inequality: to �nd (λα,uα) ∈ L∞(QT )

′ ×
(
V∞ ∩H1

(
0, T ;L2(Ω)m)

)
such that∫

QT

∂tu
α ·v+〈λα, Luα ·Lv〉+α

∫
QT

Luα ·Lv=
∫
QT

f ·v, v∈V∞, (2.5a)

uα(0) = h in Ω, (2.5b)

uα ∈ Kg, λα > 0 in L∞(QT )
′, λα(|Luα| − g) = 0 in L∞(QT )

′. (2.5c)
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Here we denote by 〈 · , · 〉 the duality pairing between L∞(QT )
′ and L∞(QT )

and we observe that λϕ ∈ L∞(QT )
′ for λ ∈ L∞(QT )

′ and ϕ ∈ L∞(QT ), by
setting

〈λϕ, ψ〉 = 〈λ, ϕψ〉, ∀λ ∈ L∞(QT )
′, ∀ϕ,ψ ∈ L∞(QT ).

Theorem 2.1. Assume that (2.1)�(2.3) are ful�lled and α > 0. Then problem

(2.5) has a solution

(λα,uα) ∈ L∞(QT )
′ ×

(
V∞ ∩H1

(
0, T ;L2(Ω)m)

)
.

Theorem 2.2. Under the assumptions (2.1)�(2.3), at least for a subsequence

of {(λα,uα)}α>0 of solutions of problem (2.5) obtained in Theorem 2.1, we
have

λα −⇀
α→0

λ0 in L∞(QT )
′,

uα −⇀
α→0

u0 in H1
(
0, T ;L2(Ω)m)

)
and in V∞ weak-∗

and (λ0,u0) solves problem (2.5) for α = 0.

Theorem 2.3. Under the assumptions of the previous theorems, for α > 0 the

function uα is a unique solution of the variational inequality (2.4).

�3. Lagrange multipliers for linear di�erential operators

Here we give various examples for the Lagrange multiplier problem (2.5),
choosing appropriately the linear operator L and a variety of convex sets of
type (2.2) in various functional settings.

3.1. A problem with the gradient constraint. Setting Lv = ∇v, H =
L2(Ω), W = H1(Ω), and V = H1

0 (Ω), as an immediate consequence of Theo-
rems 2.1, 2.2, and 2.3 we can state the following result, which is applicable to
the sandpile problem in the case of α = 0 (see [11]).

Corollary 3.1. Assume that f ∈ L2(QT ), g ∈ W 1,∞(
0, T ;L∞(Ω)

)
with g >

g∗ > 0 and h ∈ Kg(0). Then the following Lagrange multiplier problem (with
α > 0):∫
QT

∂tu
αv+〈λα,∇uα · ∇v〉+α

∫
Ω

∇uα · ∇v=
∫
QT

fv, ∀v ∈ L∞(
0, T ;W 1,∞

0 (Ω)
)

uα = 0 on ∂Ω× (0, T ), uα(0) = h in Ω

|∇uα| 6 g in QT , λα > 0 and λα(|∇uα| − g) = 0 in L∞(QT )
′

has a solution (λα, uα) ∈ L∞(QT )
′ ×

(
L∞(

0, T ;W 1,∞
0 (Ω)

)
∩H1

(
0, T ;L2(Ω)

))
with uα solving uniquely the corresponding variational inequality (2.4).
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3.2. A problem with the Laplacian constraint. Here we choose L to be
the Laplace operator, H = L2(Ω), and W = {v ∈ L2(Ω) : ∆v ∈ L2(Ω)}. The
usual norm in the subspace V = H2

0 (Ω) is equivalent to the norm

‖v‖V = ‖∆u‖L2(Ω)

because ∆ is an isomorphism between V and L2(Ω). So, from Theorems 2.1,
2.2 and 2.3, we deduce the following statement.

Corollary 3.2. Assume that f ∈ L2(QT ), g ∈ W 1,∞(
0, T ;L∞(Ω)

)
with

g > g∗ > 0, and h ∈ Kg(0). Then the following Lagrange multiplier problem

(with α > 0):∫
QT

∂tu
α v+〈λα,∆uα∆v〉+ α

∫
QT

∆uα∆v =

∫
QT

fv, ∀v∈L∞(
0, T ;H2

0 (Ω)
)
∩V∞,

uα = ∂uα

∂n = 0 on ∂Ω× (0, T ), uα(0) = h in Ω,

|∆uα| 6 g in QT , λα > 0, and λα(|∆uα| − g) = 0 in L∞(QT )
′

has a solution

(λα, uα) ∈ L∞(QT )
′ ×

(
L∞(

0, T ;H2
0 (Ω)

)
∩H1

(
0, T ;L2(Ω)

)
∩ V∞

)
,

with uα solving uniquely the corresponding variational inequality (2.4).

Similarly, if we choose instead V = H2(Ω) ∩ H1
0 (Ω) and assume that ∂Ω

is of class C 1,1, since then ∆ is also an isomorphism between V and L2(Ω),
we can also solve the biharmonic Lagrange multiplier problem with Laplacian
constraint and various boundary conditions.

3.3. Two problems with the curl constraint. Let d = 3 and set

V =
{
v ∈ L2(Ω)3 : ∇× v ∈ L2(Ω)3, ∇ · v = 0, v · n|∂Ω = 0

}
or

V =
{
v ∈ L2(Ω)3 : ∇× v ∈ L2(Ω)3, ∇ · v = 0, v × n|∂Ω = 0

}
.

Here L = ∇× is the curl operator,

H =
{
v ∈ L2(Ω)3 : ∇× v ∈ L2(Ω)3, ∇ · v = 0

}
,

W =
{
v ∈ L2(Ω)3 : ∇× v ∈ L2(Ω)3

}
and the two possible choices of V are related to the boundary conditions.
In both cases, V is closed in H1(Ω)3. Next, the seminorm ‖∇× · ‖L2(Ω)3 is

equivalent to the norm induced in V by the usual norm in H1(Ω)3 (for details
see [4]). Therefore, as a consequence of Theorems 2.1, 2.2, and 2.3 we have the
following statement.
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Corollary 3.3. If f ∈ L2(QT )
3, g ∈ W 1,∞(

0, T ;L∞(Ω)
)
with g > g∗ > 0,

and h ∈ Kg(0), then the following Lagrange multiplier problem (with α > 0):∫
QT

∂tu
α ·v+〈λα,∇×uα ·∇×v〉+α

∫
QT

∇×uα ·∇×v=

∫
QT

f ·v, v∈V∞,

∇·uα=0 in QT , uα ·n=0 or uα×n=0 on ∂Ω×(0, T ), uα(0)=h in Ω,

|∇×uα|6g in QT , λα>0 and λα(|∇×uα|−g)=0 in L∞(QT )
′

has a solution (λα,uα) ∈ L∞(QT )
′×

(
V∞∩H1

(
0, T ;L2(Ω)3

))
, with uα solving

uniquely the corresponding variational inequality (2.4).

This curl constraint is related to type-II superconductivity models, where the
region {|∇ × uα| = g} corresponds to the critical state of the superconductor
(see [12] and [9]).

3.4. Stokes �ow for thick �uids. Let d = 2, 3 and L = D, where

Du = 1
2(∇u+∇uT )

and so W =
{
v ∈ L2(Ω)d : Dv ∈ L2(Ω)d

2}
.

Put V = J H1(Ω)d
, where J =

{
v ∈ C∞

0 (Ω)d : ∇ · v = 0
}
. By using Korn's

inequality, it is well known that ‖Du‖L2(Ω)d is a norm in V equivalent to the

norm of H1(Ω)d.
Hence, as a consequence of Theorems 2.1, 2.2, and 2.3, we obtain the exis-

tence of a generalized Lagrange multiplier for the Stokes �ow of a thick �uid
with viscosity α > 0 considered in [13].

Corollary 3.4. If f ∈ L2(QT )
d, g ∈ W 1,∞(

0, T ;L∞(Ω)
)
with g > g∗ > 0,

and h ∈ Kg(0), then the following Lagrange multiplier problem (with α > 0):∫
QT

∂tu
α · v + 〈λα, Duα ·Dv〉+ α

∫
QT

Duα ·Dv =

∫
QT

f · v, v ∈ V∞,

∇ · uα = 0 in QT , uα = 0 on ∂Ω× (0, T ), uα(0) = h in Ω,

|Duα| 6 g in QT , λα > 0, and λα(|Duα| − g) = 0 in L∞(QT )
′

has a solution (λα,uα) ∈ L∞(QT )
′×

(
V∞∩H1

(
0, T ;L2(Ω)d

2))
, with uα solving

uniquely the corresponding variational inequality (2.4).

3.5. Constraint on �rst order vector �elds. Suppose that Ω is connected
with a C∞ boundary and L = (X1, . . . , Xℓ) = X is a family of Lipschitz vector
�elds on Rd that connect the space. We shall assume that the structure of L
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supports the Sobolev�Poincar�e embedding V ↪→ L2(Ω), when V is the closure
of D(Ω) in

W =
{
v ∈ L2(Ω) : Xjv ∈ L2(Ω), j = 1, . . . , `},

with the graph norm.
As an example, we have an H�ormander operator

Xj =

d∑
i=1

γij∂xi , j = 1, . . . , `,

with γij ∈ C∞(Ω) such that the Lie algebra generated by these ` vector �elds
has dimension d (see [5, 6]). For other classes of vector �elds, namely, those
associated with degenerate subelliptic operators, see for instance [3, 6].

As a consequence of Theorems 2.1, 2.2, and 2.3, we have the following.

Corollary 3.5. Under the above assumptions, if

f ∈ L2(QT ), g ∈W 1,∞(
0, T ;L∞(Ω)

)
with g > g∗ > 0, and h ∈ Kg(0), then the Lagrange multiplier problem (with
α > 0) ∫

QT

∂tu
αv + 〈λα,Xuα ·Xv〉+ α

∫
QT

Xuα ·Xv =

∫
QT

fv,

v ∈ V∞, uα(0) = h in Ω,

|Xuα| 6 g in QT , λα > 0 and λα(|Xuα| − g) = 0 in L∞(QT )
′

has a solution (λα, uα) ∈ L∞(QT )
′ ×

(
V∞ ∩H1

(
0, T ;L2(Ω)

))
, with uα solving

uniquely the corresponding variational inequality (2.4). �

�4. Existence of Lagrange multipliers

For 0 < ε < 1, we consider the continuous function

kε(s) =


0 if s 6 0;

e
s
ε − 1 if 0 < s 6 1

ε ;

e
1
ε2 − 1 if s > 1

ε .

By applying a general result for evolution quasilinear operators of monotone
type (see, for instance, [15, Theorem 8.9, p. 224 or Theorem 8.30, p. 243]), we
have the following result.
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Proposition 4.1. Under the assumptions (2.1)�(2.3), the problem

〈∂tuεα(t),v〉V ′×V +

∫
Ω

(
kε(|Luεα(t)|2 − g2(t)) + α

)
Luεα(t) · Lv

=

∫
Ω

f(t) · v ∀v ∈ V , ∀t ∈ (0, T ],

uεα(0) = h

(4.1)

has a unique solution uεα ∈ V such that ∂tu
εα ∈ V ′ = L2(0, T ;V ′) and so

uεα ∈ C ([0, T ];L2(Ω)m).

From now on, we denote kε(|Luεα|2 − g2) by k̂εα.

Lemma 4.1. Under the assumptions (2.1)�(2.3), there exists C > 0, indepen-
dent of ε and α, such that :

‖uεα‖L∞(0,T,L2(Ω)m) 6 C, (4.2)

‖Luεα‖L2(0,T,L2(Ω)l) 6
C

α
, (4.3)

‖k̂εα|Luεα|2‖L1(QT ) 6 C, (4.4)

‖k̂εα‖L1(QT ) 6 C, (4.5)

‖k̂εαLuεα‖(L∞(QT )ℓ)
′ 6 C, (4.6)

‖∂tuεα‖L2(QT )m 6 C. (4.7)

Proof. Using uεα as a test function in (4.1), we have

1
2

∫
Ω

|uεα(t)|2+
∫
Qt

(
k̂εα + α

)
|Luεα|2 6 1

2

∫
Qt

|f |2+ 1
2

∫
Qt

|uεα|2+ 1
2

∫
Ω

|h|2 (4.8)

from where we obtain∫
Ω

|uεα(t)|2 6 ‖f‖2L2(QT )m + ‖h‖2L2(Ω)m +

∫
Qt

|uεα|2

which shows, by Gr�onwall's inequality, that∫
Ω

|uεα(t)|2 6
(
‖f‖L2(QT )m + ‖u0‖2L2(Ω)

)
eT ,

proving (4.2).
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To prove (4.3) and (4.4), we go back to (4.8) getting

α

∫
Qt

|Luεα|2 6 1

2

(
‖f‖2L2(QT )m + ‖‖h‖2L2(Ω)

)
(TeT + 1),

∫
Qt

k̂εα|Luεα|2 6 1

2

(
‖f‖2L2(QT )m + ‖‖h‖2L2(Ω)

)
(TeT + 1)

and, observing that k̂εα|Luεα|2 > k̂εαg
2 > k̂εαg

2
∗, we obtain (4.5).

Note that if ζ ∈ (L∞(QT ))
ℓ, then∣∣∣∣ ∫

Qt

k̂εαLu
εα · ζ

∣∣∣∣ 6 (∫
Qt

k̂
1
2
εα |Luεα| k̂

1
2
εα

)
‖ζ‖(L∞(QT ))ℓ

6 ‖k̂εα|Luεα|2‖
1
2

L1(QT )
‖k̂εα‖

1
2

L1(QT )
‖ζ‖(L∞(QT ))ℓ

and (4.6) follows from (4.4) and (4.5).
Using the Galerkin approximation, we can take ∂tu

εα formally as a test
function in (4.1) to obtain∫

Qt

|∂tuεα|2 + 1
2

∫
Qt

(k̂εα + α)∂t|Luεα|2 6 1
2

∫
Qt

|f |2 + 1
2

∫
Qt

|∂tuεα|2,

and hence∫
Qt

|∂tuεα|2 +
∫
Qt

k̂εα ∂t|Luεα|2 + α

∫
Ω

|Luεα(t)|2 6
∫
Qt

|f |2 + α

∫
Ω

|Lh|2.

Consequently ∫
Qt

|∂tuεα|2 +
∫
Qt

k̂εα ∂t
(
|Luεα|2 − g2

)
+ α

∫
Ω

|Luεα(t)|2

6
∫
Qt

|f |2 + α

∫
Ω

|Lh|2 − 2

∫
Qt

k̂εα g ∂tg,

∫
Qt

k̂εα ∂t
(
|Luεα|2 − g2

)
=

∫
Qt

∂t
[
φε

(
|Luεα|2 − g2

)]
=

∫
Ω

φε
(
|Luεα(t)|2 − g2(t)

)
> 0,
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where we set φε(s) =

s∫
0

kε(τ) dτ and, since φε(|Lh|2 − g2) = 0, we have (4.7)

from

‖∂tuεα‖2L2(QT )m

6 ‖f‖2L2(QT )m + α‖Lh‖2L2(Ω)l + 2 ‖k̂εα‖L1(QT )‖g‖L∞(QT )‖∂tg‖L∞(QT ). �

As a consequence of this lemma, we see that there exists a subsequence of
{uεα}ε converging to a function uα ∈ V ∩H1

(
0, T ;L2(Ω)m

)
such that

uεα −⇀
ε→0

uα in L∞(
0, T, L2(Ω)m

)
weak-∗, (4.9)

Luεα −⇀
ε→0

Luα in L2(QT )
ℓ,

k̂εα −⇀
ε→0

λα in (L∞(QT ))
′ ,

k̂εαLu
εα −⇀

ε→0
Λα in

(
L∞(QT )

ℓ
)′
,

∂tu
εα −⇀

ε→0
∂tu

α in L2(QT )
m.

Lemma 4.2. Under the assumptions (2.1)�(2.3), we have uα ∈ Kg.

Proof. Consider

Aε =
{
(x, t) ∈ QT : 0 6 |Luεα(x, t)|2 − g2(x, t) <

√
ε
}
,

Bε =
{
(x, t) ∈ QT :

√
ε 6 |Luεα(x, t)|2 − g2(x, t)

}
.

Then

|Bε| =
∫
Bε

1 6
∫
Bε

k̂εα
kε(

√
ε)

6 1

e
1√
ε − 1

∫
QT

k̂εα 6 C

e
1√
ε − 1

and ∫
QT

(
|Luεα| − g)+ =

∫
Aε

(
|Luεα| − g) +

∫
Bε

(
|Luεα| − g)

6
∫
Aε

1

g∗

(
|Luεα|2 − g2) +

∫
Bε

(
|Luεα| − g)

6 |QT |
g∗

√
ε+ |Bε|

1
2 ‖Luεα| − g‖

1
2

L2(QT )
−→
ε→0

0.
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Since ξ 7→
(
|ξ| − g

)+
is a convex function, by the lower semicontinuity we

have ∫
QT

(
|Luα| − g)+ 6 lim

ε→0

∫
QT

(
|Luεα| − g)+ = 0

and we may conclude that |Luα| 6 g a.e. in QT . �

Proof of Theorem 2.1. We will denote by ⟨⟨ · , · ⟩⟩ the duality pairing between(
L∞(QT )

ℓ
)′
and L∞(QT )

ℓ and by 〈 · , · 〉 the duality pairing between L∞(QT )
′

and L∞(QT ).
First we prove that

⟨⟨Λα, Luα⟩⟩ = 〈λα, |Luα|2〉. (4.10)

From∫
QT

∂tu
εα · v+

∫
QT

k̂εα Lu
εα · Lv+α

∫
QT

Luεα · Lv=
∫
QT

fv, ∀v ∈V ⊃V∞, (4.11)

using uεα − uα as a test function, we obtain∫
QT

∂tu
εα · uεα −

∫
QT

∂tu
εα · uα +

∫
QT

k̂εα|Luεα|2 −
∫
QT

k̂εαLu
εα · Luα

+ α

∫
QT

|Luεα|2 − α

∫
QT

Luεα · Luα =

∫
QT

f · (uεα − uα).

(4.12)

But, since (4.9) implies uα(0) = h,we have∫
QT

∂tu
α · uα = 1

2

∫
Ω

|uα(T )|2 − 1
2

∫
Ω

|h|2

6 lim
ε→0

1
2

∫
Ω

|uεα(T )|2 − 1
2

∫
Ω

|h|2 = lim
ε→0

∫
QT

∂tu
εα · uεα,

∫
QT

|Luα|2 6 lim
ε→0

∫
QT

|Luεα|2

and therefore

lim
ε→0

∫
QT

k̂εα|Luεα|2 6 ⟨⟨Λα, Luα⟩⟩.
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Then we also have

0 6 lim
ε→0

∫
QT

k̂εα|L(uεα − uα)|2

= lim
ε→0

( ∫
QT

k̂εα|Luεα|2 − 2

∫
QT

k̂εαLu
εα · Luα +

∫
QT

k̂εα|Luα|2
)

6 −⟨⟨Λα, Luα⟩⟩+ 〈λα, |Luα|2〉.

(4.13)

Since, by the de�nition of k̂εα,

k̂εα|Luεα|2 > k̂εαg
2, (4.14)

also

〈λα, |Luα|2〉 6 〈λα, g2〉 = lim
ε→0

∫
QT

k̂εαg
2 6 lim

ε→0

∫
QT

k̂εα|Luεα|2 6 ⟨⟨Λα, Luα⟩⟩,

proving (4.10).
We can rewrite (4.12) as follows:∫

QT

∂t(u
εα − uα) · (uεα − uα) +

∫
QT

k̂εα|L(uεα − uα)|2 + α

∫
QT

|L(uεα − uα)|2

=

∫
QT

f · (uεα − uα)−
∫
QT

∂tu
α · (uεα − uα)

−
∫
QT

k̂εαLu
α · L(uεα − uα)− α

∫
QT

Luα · L(uεα − uα),

obtaining

0 6 α lim
ε→0

∫
QT

|L(uεα − uα)|2 6 −⟨⟨Λα, Luα⟩⟩+ 〈λα, |Luα|2〉 = 0,

which yields the strong convergence of Luεα to Luα in L2(QT )
ℓ. Consequently,

we also have

lim
ε→0

∫
QT

k̂εα|L(uεα − uα)|2 = 0. (4.15)
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So, for any v ∈ V∞ we also have∣∣∣∣ ∫
QT

k̂εαL(u
εα − uα) · Lv

∣∣∣∣
6

( ∫
QT

k̂εα|L(uεα − uα)|2
) 1

2

‖k̂εα‖L1(QT )‖Lv‖L∞(QT )ℓ −→
ε→0

0.

Thus, since∫
QT

k̂εαLu
εα ·Lv =

∫
QT

k̂εαL(u
εα−uα) ·Lv+

∫
QT

k̂εαLu
α ·Lv −→

ε→0
〈λα, Luα ·Lv〉,

letting ε tend to zero in (4.11) with v ∈ V∞, we obtain (2.5a).
Given ζ ∈ L∞(QT ), let ζ

+ = max{ζ, 0} and ζ− = max{−ζ, 0}. Observing
that in∫

QT

k̂εα|Luεα|2ζ± =

∫
QT

k̂εα|L(uεα − uα)|2ζ±

+ 2

∫
QT

k̂εαLu
εα · Luαζ± −

∫
QT

k̂εα|Luα|2ζ±,
(4.16)

the �rst term of the second member vanishes as ε → 0, by (4.15), and using
(4.10) we have

lim
ε→0

∫
QT

k̂εα|Luεα|2ζ± = 〈λα, |Luα|2ζ±〉. (4.17)

Using this observation, inequality (4.14) and Lemma 4.2, we �nd

〈λαg2, ζ±〉 = lim
ε→0

∫
QT

k̂εαg
2ζ± 6 lim

ε→0

∫
QT

k̂εα|Luεα|2ζ±

6 〈λα|Luα|2, ζ±〉 6 〈λαg2, ζ±〉

which proves that λα(|Luα|2 − g2) = 0 in L∞(QT )
′ and, consequently, also

λα(|Luα| − g) = 0 in L∞(QT )
′, because |Luα|+ g > g∗ > 0.

Since λα > 0 is immediate and since uα(t) ∈ Kg(t) for almost all t ∈ [0, T ],
we have uα ∈ V∞. Recalling (4.11), it remains to show that, for α > 0,

⟨⟨Λα, Lv⟩⟩ = 〈λα, Luα · Lv〉, v ∈ V∞. (4.18)
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But

⟨⟨Λα, Lv⟩⟩= lim
ε→0

∫
QT

k̂εαLu
εα · Lv

= lim
ε→0

∫
QT

k̂εαL(u
εα−uα) · Lv+lim

ε→0

∫
QT

k̂εαLu
α ·Lv=〈λα, Luα · Lv〉,

because

lim
ε→0

∣∣∣∣ ∫
QT

k̂εαL(u
εα − uα) · Lv

∣∣∣∣ (4.19)

6 lim
ε→0

( ∫
QT

k̂εα|L(uεα − uα)|2
) 1

2

‖k̂εα‖
1
2

L1(QT )
‖Lv‖L∞(QT )ℓ = 0. �

Remark 4.1. Note that (4.18), in general, does not imply that the �ux Λα is
given by

Λα = λαLuα.

It is an interesting open question to characterize when this property occurs
beyond the only known example L = ∇ for special cases of g and f as in [17]
and already referred to in the Introduction.

Proof of Theorem 2.2. From Lemma 4.2 and estimates (4.5), (4.6), and
(4.7), we also have independently of α > 0:

‖Luα‖L∞(QT )ℓ 6 ‖g‖L∞(QT ),

‖λα‖L∞(QT )′ 6 lim
ε→0

‖k̂εα‖L∞(QT )′ 6 C,

‖Λα‖(L∞(QT )ℓ)′ 6 lim
ε→0

‖k̂εαLuεα‖L∞(QT )′ 6 C,

‖∂tuα‖L2(QT )m 6 lim
ε→0

‖∂tuεα‖L2(QT )m 6 C,

and therefore uα is also uniformly bounded in W =
{
v ∈ V : ∂tv ∈ V ′} and

so in C
(
[0, T ];L2(Ω)

)m
. Consequently, there exist u0 ∈ V∞, λ0 ∈ L∞(QT )

′

and Λ0 ∈
(
L∞(QT )

ℓ
)′
such that, for a subsequence, we have

Luα −⇀
α→0

Lu0 in L∞(QT )
ℓ weak-∗,

λα −⇀
α→0

λ0 in (L∞(QT ))
′ ,

Λα −⇀
α→0

Λ0 in
(
L∞(QT )

ℓ
)′
,
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∂tu
α −⇀

α→0
∂tu

0 in L2(QT )
m,

uα(t) −⇀
α→0

u0(t) in L2(QT )
m for all t ∈ [0, T ].

Letting α→ 0 in (2.5a), we obtain∫
QT

∂tu
0 · v + ⟨⟨Λ0, Lv⟩⟩ =

∫
QT

f · v, v ∈ V∞. (4.20)

We easily conclude that u0(0) = h and λ0 > 0. Furthemore, if ω is any
measurable subset of QT , then∫

ω

|Lu0| 6 lim
α→0

∫
ω

|Luα| 6
∫
ω

g,

and we conclude that |Lu0| 6 g a.e. in QT .
Observe that by (2.5) and (4.20) we obtain

lim
α→0

〈λα,|Luα|2〉

= lim
α→0

( ∫
QT

f · uα − 1
2

∫
Ω

(
|uα(T )|2 − |h|2

)
− α

∫
QT

|Luα|2
)

6
∫
QT

f · u0 − 1
2

∫
Ω

(
|u0(T )|2 − |h|2

)
=

∫
QT

f · u0 −
∫
QT

∂tu
0 · u0 = ⟨⟨Λ0, Lu0⟩⟩.

(4.21)

Therefore

0 = lim
α→0

〈λα, |Luα|2 − g2〉 6 ⟨⟨Λ0, Lu0⟩⟩− 〈λ0, g2〉 6 ⟨⟨Λ0, Lu0⟩⟩− 〈λ0, |Lu0|2〉.

On the other hand, using (4.18), we have

0 6 lim
α→0

〈λα, |L(uα − u0)|2〉

= lim
α→0

〈λα, |Luα|2〉 − lim
α→0

2〈λα, Luα · Lu0〉+ lim
α→0

〈λα, |Lu0|2〉

6 −⟨⟨Λ0, Lu0⟩⟩+ 〈λ0, |Lu0|2〉.

(4.22)

and then

〈λ0, |Lu0|2〉 = 〈λ0, g2〉 = ⟨⟨Λ0, Lu0⟩⟩ = lim
α→0

〈λα, |Luα|2〉. (4.23)
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Letting α→ 0 in (2.5a), for α > 0, written in the form∫
QT

∂tu
α ·v+ 〈λα, L(uα−u0) ·Lv〉+ 〈λα, Lu0 ·Lv〉+α

∫
QT

Luα ·Lv =

∫
QT

f ·v,

we obtain ∫
QT

∂tu
0 · v + 〈λ0, Lu0 · Lv〉 =

∫
QT

f · v, v ∈ V∞,

and therefore (λ0,u0) will solve (2.5a) for α = 0, provided we can show that

lim
α→0

〈λα, L(uα − u0) · Lv〉 = 0, v ∈ V∞. (4.24)

We start by observing that, for �xed α > 0,

lim
ε→0

∫
QT

k̂εαL(u
εα−u0) ·Lv = ⟨⟨Λα, Lv⟩⟩−〈λα, Lu0 ·Lv〉 = 〈λα, L(uα−u0) ·Lv〉

and

lim
ε→0

∣∣∣∣∫
QT

k̂εαL(u
εα−u0)·Lv

∣∣∣∣6 lim
ε→0

(∫
QT

k̂εα|L(uεα−u0)|2
) 1

2‖k̂εα‖
1
2

L1(QT )
‖Lv‖L∞(QT )ℓ.

Then, using (4.17) and (4.22), we have

lim
α→0

lim
ε→0

∫
QT

k̂εα|L(uεα − u0)|2

= lim
α→0

lim
ε→0

( ∫
QT

k̂εα|Luεα|2 − 2

∫
QT

k̂εαLu
εα · Lu0 +

∫
QT

k̂εα|Lu0|2
)

= lim
α→0

(
〈λα, |Luα|2〉 − 2⟨⟨Λα, Lu0⟩⟩+ 〈λα, |Lu0|2〉

)
= 0.

Finally, since λ0 > 0 and u0 ∈ Kg, we have 〈λ0,
(
|Lu0| − g

)
ζ±〉 6 0, for any

ζ ∈ L∞(QT ). From the inequality k̂εα
(
|Luεα|2−g2

)
ζ± > 0 arguing as in (4.17),

we obtain 〈λ0,
(
|Lu0|2 − g2

)
ζ±〉 > 0 and, afterwards, 〈λ0,

(
|Lu0| − g

)
ζ±〉 > 0.

Therefore (λ0,u0) also solves (2.5b) and (2.5c) for α = 0. �

Proof of Theorem 2.3. First we observe that, given v ∈ V∞ such that
v ∈ Kg, using v − uα as test function in (2.5), for α > 0, we get∫
QT

∂tu
α ·(v−uα)+〈λα, Luα ·L(v−uα)〉+α

∫
QT

Luα ·L(v−uα) =

∫
QT

f ·(v−uα).
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But using (2.5c), we obtain

〈λα, Luα · L(v − uα)〉 6 〈λα, |Luα||Lv| − |Luα|2〉
6 〈λα(g − |Luα|), |Luα|〉 = 0

(4.25)

and we obtain the variational inequality∫
QT

∂tu
α · (v−uα)+α

∫
QT

Luα ·L(v−uα) >
∫
QT

f · (v−uα), v ∈ Kg. (4.26)

But it is well known (see, for instance, Remark 2.12 of [10]), by using ap-
propriate test functions, that (4.26) is equivalent to (2.4).

The proof of the uniqueness of solution of the variational inequality (2.4) is
standard. �
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