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LAGRANGE MULTIPLIERS FOR EVOLUTION PROBLEMS
WITH CONSTRAINTS ON THE DERIVATIVES

© A. AZEVEDO, J. F. RODRIGUES, L. SANTOS

We prove the existence of generalized Lagrange multipliers for a class of
evolution problems for linear differential operators of different types sub-
ject to constraints on the derivatives. Those Lagrange multipliers and the
respective solutions are stable for the vanishing of the coercive parameter
and are naturally associated with evolution variational inequalities with
time-dependent convex sets of gradient type. We apply these results to the
sandpile problem, to superconductivity problems, to flows of thick fluids,
to problems with the biharmonic operator, and to first order vector fields
of subelliptic type.

§1. Introduction

Variational inequalities with constant gradient constraints appeared in 1967
to solve the equilibrium elastic-plastic torsion with arbitrary cross section (see
references in the recent survey [14]). It was later shown that the Lagrange
multiplier associated with the yield criteria of von Mises is uniquely determined
by a bounded positive function under general assumptions (see [7] and its
references).

The first evolution model with a gradient constraint was proposed in 1986
to model a poured pile shape (see [11]) and was treated a decade later as a
variational inequality and as an “infinitely fast/slow” diffusion limit, after the
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earlier mathematics study [16], which was extended to the case of parabolic
variational inequalities with nonconstant gradient constraint and also to evo-
lution quasivariational inequalities (see [14] for references).

For instance, in [17], for a smooth and strictly positive threshold g = g(z,1),
with z € Q, a smooth bounded domain of R?, and ¢ € [0, T, the unique solution
u = u(x,t) in the convex set

Ky ={v € HY(Q): |[Vu| < g(t) ae. in Q} (1.1)

to the variational inequality was studied for o > 0 and a suitable given func-
tion f:

/8tu(t) (v — u(t)) + a/Vu(t) V(v —u(t)) > /f(t) w—u®). (1.2)
Q Q Q

Here the inequality is assumed to be fulfilled for v € K, and a.e. t € (0,T),
and w is subject to the condition u(0) = h € K, ). In particular, under the
special assumptions d;g% > 0 and Ag? < 0 (including the case of g = const > 0)
and with f € L°(0,T) spatially homogeneous, it was shown in [17] that the
Lagrange multiplier problem, i.e., to find a pair (u,u) solving the equation

/&gu w+/uVu Vw—/f (1.3)

for a.e. t € (0,7) and for all w € H}(Q) under the conditions
Vul<g, pza, (p—0a)(|Vul-g)=0 (1.4)

a.e. (z,t) € Qx (0,T), with u(0) = h € Ky) and u = 0 on 9Q x (0,7), is
uniquely solvable with p € L>(Q2 x (0,7)) and u € L>(0,T; Ky, )ﬁHIOC(Q)) N
H(0,T; L?(2)), and, in fact, it is equivalent to solve in (1.1), the variational
inequality (1.2) with the same initial condition.
Considering the flux ® = pVu, we can write (1.3) as a diffusion equation in
Q% (0,7)
du—V-d=f (1.5)
and the constraints (1.4) can be written in the form
p € ra(|Vul* - g%)

where Kk, is the maximal monotone graph defined by ka(s) = a if s < 0
and £4(0) = [a, +00). In this form, this problem can be treated within the
nonlinear semigroup theory, at least if ¢ is time independent (see [2]), which
however does not give much information on p.

Recently, with ¢ = 1 and a = 0, but with f being possibly a measure,
equation (1.5) was interpreted as an evolution Monge—Kantorovich problem
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in [8]; its solution is the couple (®,u), where ® is the transportation flux and u

its potential. This was motivated by a generalization of the sandpile problem.
Formally, from (1.4) we can write p = a + A with A = 0 in the region

{(z,y) : |Vu(z,t)| < g(z,t)} and where, from (1.3), the solution u satisfies

Ou—alAu=f in {|Vu| <g}.

However, in general, we cannot expect that A > 0 is a function and, in fact, it
is only a measure. Following the approach of [1] for the stationary nonconstant
gradient constraint, we consider here a more general class of linear differential
operators L, including the examples of the constraint |Lu| < g for possibly
vector valued functions w:

Lu=Vu (gradient),

Lu = Au (Laplacian),

Lu=V xu (curl),

Lu=Du=1(Vu+ VuT) (symmetrized Jacobian),

Lu = (Xiu,...,Xu) = Xu (subelliptic gradient for vector fields Xj).

In general, the formulation (1.3) must be extended in a duality sense of L
and (L*)’, the space of finitely additive, bounded and absolutely continuous
measures A, such that (\, xw) = Mw), for all w C Q x (0,7), where Y, is the
characteristic function of the measurable set w; see [18, p. 118]. In §2 we give

the precise formulation of the main results, which are exemplified with the
above five examples, with applications in §3 and the proofs in §4.

§2. Assumptions and main results

Let © be a bounded open subset of R? (d > 2) with Lipschitz boundary.
For T'> 0 and ¢ € (0,T] we denote Q; = Q2 x (0,t). We consider vector-valued

functions w = (uq,...,uy) in the variables (z,t) € Qr and, for a multi-index
v=(vi,...,vq), with v1,...,vy € Ny and |v| = v1 + -+ + v4, we denote by
0’u; = % the partlal derivatives of u;, for i =1,...,m.

Let L : W — L?(Q)¢ be the linear differential operator of order s given by

LujfZZ)\ R0 u, 1<) <Y,

lv|<s k=1

where s,1,m € N, v € Nd N Lk € L°(Q), and
W = {'v e L2(Q)™ : Lv ¢ L2(Q)Z}

is a Hilbert space endowed with the graph norm.
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As examples we have: the gradient; the Laplacian; the curl; the symmetrized
Jacobian; and the subelliptic gradient.

Let (V, H, V') be a Gelfand triple with Hilbert spaces H C L*(Q)* and V a
closed subspace of W' such that [|v||v := || Lv||2(q)e is a norm in V' equivalent
to the norm induced from W.

We denote

¥ =L%*0,T;V) and 7% =L®(0,T;Vx),
endowed with the natural norms, where
Vi = {v eV lve LOO(Q)’Z}.

For instance, if L = V we have W = H(Q) and we can take V = H}(Q),
but more examples can be considered as in §3 below.

e feL? Q)™ geWh™0,T;L>(Q)), g=g.>0, (2.1)
and, for all t € [0,T], we define the convex set
Ky = {v € V : |[Lo(z)| < g(x,t) a.e. in Q} C ¥4, (2.2)
where | - | is the Euclidean norm in R®. We also assume that
h € Ky 0)- (2.3)

Given v € ¥, we say that
vekK, ifv(t) e Kyy forae tel0,T]
For a > 0 we consider the variational inequality: to find
u® € Yo NHY0,T; L2 (Q)™)

satisfying
u®(t) € Kypy, u*(0) =h
/ i () (o—"0) w () +af Lut () Lio-u(0) > [£0)-(0-u(0) (3.
Q Q

Q
Vo e Ky, forae tel0,T].
We define the Lagrange multiplier problem associated with this variational
inequality: to find (A%, u®) € L®(Qr)" x (Yoo N H (0, T; L*(2)™)) such that
/&gu v+ (A% Lu® Lv>+a/Lu Lv= /f v, V€V, (2.5a)

Qr Qr
ua(()) =h in ), (2.5b)

u® €K, A0 in L(Qr), AY(|Lu®|—g) =0 in Lo(Qr). (2.5¢)
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Here we denote by (-, - ) the duality pairing between L (Qr)" and L*(Qr)
and we observe that \p € L>®(Qr) for A € L>®(Qr) and ¢ € L>®(Qr), by
setting

<)\<P’¢> = <)\> ‘P¢>> VA€ LOO(QT>/7 VQDa ¢ € Loo(QT)

Theorem 2.1. Assume that (2.1)-(2.3) are fulfilled and oo > 0. Then problem
(2.5) has a solution

(A% u®) € L®(Qr) % (Yoo NH'(0,T; L*()™)).

Theorem 2.2. Under the assumptions (2.1)-(2.3), at least for a subsequence
of {(A*,u®)}as0 of solutions of problem (2.5) obtained in Theorem 2.1, we
have

)\“40)\0 in  L>®(Qr),

a—

u* —u’ in HY(0,T;L*(Q)™) and in Voo weak-x

a—0

and (A, u®) solves problem (2.5) for a = 0.

Theorem 2.3. Under the assumptions of the previous theorems, for a > 0 the
function u® is a unique solution of the variational inequality (2.4).

§3. Lagrange multipliers for linear differential operators

Here we give various examples for the Lagrange multiplier problem (2.5),
choosing appropriately the linear operator L and a variety of convex sets of
type (2.2) in various functional settings.

3.1. A problem with the gradient constraint. Setting Lv = Vv, H =
L*(Q), W = HY(Q), and V = H(Q), as an immediate consequence of Theo-
rems 2.1, 2.2, and 2.3 we can state the following result, which is applicable to
the sandpile problem in the case of & = 0 (see [11]).

Corollary 3.1. Assume that f € L?>(Qr), g € Wh>® ((),T; LOO(Q)) with g >
g« > 0 and h € Kyy. Then the following Lagrange multiplier problem (with
a>0):

/(%u v+ (A% Vu® - Vo) —|—a/Vu Vv—/fv Vv € L=(0,T; WlOO(Q))

Qr
“=0 ondQx(0,7), u*0)=h inQ

IVu*| < g in Qr, X =0 and \*(|Vu®| —g) =0 in L>®(Qr)
has a solution (A\*,u®) € L>®(Qr)" X (L°° (O,T; Woloo(Q)) NH! (O,T; LQ(Q)))

with u® solving uniquely the corresponding variational inequality (2.4).
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3.2. A problem with the Laplacian constraint. Here we choose L to be
the Laplace operator, H = L%(Q), and W = {v € L?(Q) : Av € L*(Q)}. The
usual norm in the subspace V = H2({2) is equivalent to the norm

[vllv = [[Aul|g2(q)

because A is an isomorphism between V and L?(Q). So, from Theorems 2.1,
2.2 and 2.3, we deduce the following statement.

Corollary 3.2. Assume that f € L*(Qr), g € Wh™(0,T;L>(Q)) with
g2 9«>0, and h € Kyqy. Then the following Lagrange multiplier problem
(with o > 0):
/atua v+ (AY Au® Av)+ o | Au®Av :/fv, Yve L™ (O,T; HOQ(Q))O”//OO,
Qr Qr Qr
ut = 65% =00n0Qx(0,7), u*0)=hinQ,
|Au®| < gin Qr, A*>0, and M\*(|Au®|—g) =0 in L=(Qr)
has a solution
(A% u®) € L®(Qr) x (L=(0,T; H3 () N H'(0,T; L*(Q)) N &),
with u® solving uniquely the corresponding variational inequality (2.4).

Similarly, if we choose instead V = H?(2) N H(Q) and assume that 00
is of class €'%!, since then A is also an isomorphism between V and L%(),
we can also solve the biharmonic Lagrange multiplier problem with Laplacian
constraint and various boundary conditions.

3.3. Two problems with the curl constraint. Let d = 3 and set
V={vel’(9)’:Vxvel’Q)® V-v=0,v-n, =0}
or
V={vel’)’: Vxvel*Q)?® V-v=0,vxn,, =0}
Here L = V x is the curl operator,
H={veL*(Q)?®:VxveL*Q)?® V-v=0},
W ={vel*Q)?®:VxveL*Q)?*}
and the two possible choices of V' are related to the boundary conditions.
In both cases, V is closed in H'(2)3. Next, the seminorm ||V x |23 is
equivalent to the norm induced in V' by the usual norm in H'(Q)? (for details

see [4]). Therefore, as a consequence of Theorems 2.1, 2.2, and 2.3 we have the
following statement.
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Corollary 3.3. If f € L*(Qr)?, g € Wl’OO(O,T; LOO(Q)) with g > g« > 0,
and h € Ky ), then the following Lagrange multiplier problem (with o > 0):

/atua-v+<)\a,Vxu“-va>+a/qua-Vxv:/f-v, v E YV,

Qr Qr Qr
V-u®=0in Qr, u*n=0oru®*xn=0 ond2x(0,7), u*0)=h in Q,
IV xu®|<gin Qr, A*=0 and \*(|Vxu®|—g)=0 in L>®(Qr)’

has a solution (A%, u®) € L™(Qr)" x (Yoo NH(0,T; L*(2)?)), with u® solving
uniquely the corresponding variational inequality (2.4).

This curl constraint is related to type-II superconductivity models, where the

region {|V x u®| = g} corresponds to the critical state of the superconductor
(see [12] and [9]).

3.4. Stokes flow for thick fluids. Let d = 2,3 and L = D, where
Du = 3(Vu+ Vul)
and so W = {v e L*(Q)?: Dv € LQ(Q)dQ}.

Put V = jHl(Q)d, where J = {v € (Vv = 0}. By using Korn’s
inequality, it is well known that [|Dul[12(qye is a norm in V' equivalent to the
norm of H'(Q)%.

Hence, as a consequence of Theorems 2.1, 2.2, and 2.3, we obtain the exis-
tence of a generalized Lagrange multiplier for the Stokes flow of a thick fluid
with viscosity a > 0 considered in [13].

Corollary 3.4. If f € L*(Qr)?, g € WH(0,T;L>(Q)) with g > g« > 0,
and h € K, ), then the following Lagrange multiplier problem (with o > 0):

/Gtu + (A4, Du® Dv—l—a/Du D'U—/fv v € Voo,
Qr

V-u*=0 inQr, u*=0 onBQx(, T), u*0)="h inQ,

[Du®|<g in Qr, X* 20, and X\*(|Du®|—g) =0 in L™(Qr)

has a solution (\*,u®) € L>®(Qr)' x (YoNH' (0, T; L2(Q)d2)), with u® solving
uniquely the corresponding variational inequality (2.4).

3.5. Constraint on first order vector fields. Suppose that 2 is connected
with a €°° boundary and L = (X7,...,Xy) = X is a family of Lipschitz vector
fields on R? that connect the space. We shall assume that the structure of L
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supports the Sobolev—Poincaré embedding V < L?(Q2), when V is the closure
of 2(Q) in

W={vel*Q): XuveLl*Q), j=1,...,0},

with the graph norm.
As an example, we have an Hormander operator

d
X]:Z’Y’L‘ja@’“ j:17"'7€7
i=1

with 7;; € €°°(€) such that the Lie algebra generated by these ¢ vector fields
has dimension d (see [5, 6]). For other classes of vector fields, namely, those
associated with degenerate subelliptic operators, see for instance [3, 6].

As a consequence of Theorems 2.1, 2.2, and 2.3, we have the following.

Corollary 3.5. Under the above assumptions, if

feL*Qr), geW'(0,T;L%(2))
with g > g« > 0, and h € Ky, then the Lagrange multiplier problem (with
a>0)

/8tu°‘v+<)\a,Xuo‘~Xv)+a/Xua-XU: /f%
Qr Qr Qr

v E Voo, u*(0)=nhinQ,
I Xu®|<ginQr, A*>0 and X*(|Xu®—g)=0inL>®Qr)

has a solution (A%, u®) € L=(Qr)" x (Yoo N H(0,T;L3(12))), with u® solving
uniquely the corresponding variational inequality (2.4). 0

§4. Existence of Lagrange multipliers
For 0 < € < 1, we consider the continuous function
0 if s <0;
ke(s) = es —1 if0<s<l
ea% -1 ifs> %
By applying a general result for evolution quasilinear operators of monotone

type (see, for instance, [15, Theorem 8.9, p. 224 or Theorem 8.30, p. 243|), we
have the following result.
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Proposition 4.1. Under the assumptions (2.1)~(2.3), the problem
@0 0)vry + [ (BT OF = 20) + ) Lu™ (1) Lo
Q
(4.1)

—/f(t)-'v VoeV, vie(0,T),

u*(0) =h

has a unique solution u® € ¥ such that duf® € V' = L?(0,T; V') and so

ut® € €([0,T); L2()™).

From now on, we denote k.(|Lu®|?> — %) by keq.

Lemma 4.1. Under the assumptions (2.1)—(2.3), there exists C' > 0, indepen-

dent of € and «, such that:

1| oo (0,7, 22 ()m) < C

N
|Q

I Lu™ || L2 0,7, 2 ()1

lkeal Lu* Pl L1 ()

keallLt(@p)
eraLuE ||(

L>(Qr)t)’
|Oru HL?(QT)m

NN NN
QO a0 Qs

Proof. Using u®® as a test function in (4.1), we have

/W B+ [ (R ) 2w < /|f2+2/|um|2+2/|h|

Qt

from where we obtain

/ O < F 122 0,m + I-1Z20pm + / e ?
Q Qt

which shows, by Gronwall’s inequality, that

T
/ (0P < (I ll2iqmym + lolBae ) <"

proving (4.2).

(4.8)
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To prove (4.3) and (4. 4) we go back to (4.8) getting

/ 120 < (1B iquyn + 1 1RE2(q) ) (T +1),

1
a2 2 2 T
/ heal Lu? < 5 (I B2(gpym + I1R1320) ) (Te" +1)
Qt

and, observing that E5a|Lu5°‘|2 > Feag® > Emgf, we obtain (4.5).
Note that if ¢ € (L>®(Q7))", then

'/ksaLus‘”‘C‘ S </k€mLum|%> 1Sl (zoe (e
Qt Q

~ 1 ~ 1
< Real w1122 g [Feal 21 o 1€ e oy

and (4.6) follows from (4.4) and (4.5).
Using the Galerkin approximation, we can take J;u®* formally as a test
function in (4.1) to obtain

/ Oy + 1 / (ot )| LwP < § 1724} [ 0P,
Q¢ Q¢
and hence

/\atuwy?+/%mat|Lum2+a/\Luw /]f\2+a/|Lh|2

Q¢ Q¢ Q Q

/]@um\g—i—//k\m o (ILws®? - ¢?) —i—oz/]Lum(t) 2

Consequently

Q¢ Qt
/\f|2+a/|Lh|2—2/ Feo 9019,
O
//k'\ea O (|[Lu**f — ¢*) = /Ot [¢e (|Lu*|* = ¢°)]
Q¢ Qt

- / o (ILu(1)* — g*(1)) > 0,
Q
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where we set ¢(s) = /kg(T) dr and, since ¢(|Lh|> — g?) = 0, we have (4.7)
0

from

9022 gy

< A2 (@pym + Al LRlIZ 2y + 2 1heall 1@ loll e @ 109 L (@) O

As a consequence of this lemma, we see that there exists a subsequence of

{u}. converging to a function u® € ¥ N H'(0,T; L*(Q)™) such that

u® —u® in L™ (O,T, LQ(Q)m) weak-*,

e—0

N a 2 L
Lu = Lu® in L*(Qr),
kea = A in (L2(Qr)),
~ /
FoaLus® — A® in (LOO(QT)Z) ,

e—0
hu — dyu® in L2(QT)m
e—0

Lemma 4.2. Under the assumptions (2.1)~(2.3), we have u® € K.

Proof. Consider
Ao = {(2,t) € Qr: 0 < |Lu(@,t) — g*(a, ) < V),
B. = {(z,t) € Qr : Ve < |Lu(z,1)|* — ¢*(z,1) }.
Then

|BE‘:/1</ ksa < 11 /Esag 10
S ke(VE) ~ ovm — 1 evi—1
and

[zt =g = [ (zwe =)+ [ (2]~ g)
Qr B.

Ac
1
< / L - g2+ / (IZu| - g)
Ac

[
Be

<@l e 1B L — gliE,  — 0.
Jx L2(QT) 0

(4.9)
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Since € — (|¢] — g)Jr is a convex function, by the lower semicontinuity we
have

/ (ILu®] — )* <lim [ (|Lu™]|—g)* =0

e—0

QT QT

and we may conclude that |Lu®| < g a.e. in Q7. O

Proof of Theorem 2.1. We will denote by (-, ) the duality pairing between
(LOO(QT)Z)/ and L>®(Qr)" and by (-, -) the duality pairing between L>(Qr)’
and L>®(Qr).

First we prove that

(A, Lu®) = (\°, |Lu®[?). (4.10)
From
/&g 'v+/k£a Lu®®. L'v—I—oz/Lum Lv= /f'v Yo €V DY, (4.11)
Qr

using u** — u® as a test function, we obtain

/Gtum cufY — /Otum ~ut + /%€OZ|I/UJ5°‘|2 — /%EQLUSO‘ - Lu®
Qr

Qr Qr
—|—oz/|Lum|2 /Lum Lu® /f u®).

But, since (4.9) implies u®(0) = h,we have

/@uo‘-ua:;/]ua(T 2—1/\h|2
Qr Q

< lim § [ [u™ /\h\Q =lim [ O™ - u®?,

e—0 5—>0

(4.12)

/ ‘Lua‘2 < m |Lusa‘2
e—0
Qr
and therefore
Tm [ keo|Lu®)? < (A%, Lu®).

e—0

QT
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Then we also have

0<Iim [ kealL(u® — u®)|?
e—0

Qr

= lir%(/k\sdljuaa2_2/7{:\8aLusa,Luo¢+ /E5a|Luo‘]2) (4.13)
e~

Qr Qr Qr
—(AY, Lu®) + (\Y, | Lu®?).
Since, by the definition of Em,
kool Lu®[? > Feag?, (4.14)
also
O Lu ) < (%) = i [ Fuag? < T [ FeolLu P < (0%, L),
Qr Qr

proving (4.10).
We can rewrite (4.12) as follows:

/at - -<ufa—ua>+/ﬁmw<uf \2+a/|L )2
/f /atu u®)

Qr Qr
obtaining
<aTm / L™ —u®)* < —(A®, Lu®) + (A% |Lu®[?) = 0
e—0

which yields the strong convergence of Lu® to Lu® in L?(Qr)¢. Consequently,
we also have

lim [ kel L(u® — u®)? = 0. (4.15)

e—0

Qr
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So, for any v € Y5 we also have

‘ /EML(UEO‘ —u®) - Lv
Qr

1
~ 2~
< (/km\L(usa—ua)2> ||kEOzHL1(QT)||LvHL°°(QT)£ H—SO
Qr

Thus, since

/EgaLum'L'v = /EEQL(uEa—ua)-Lv—F/EmLua-Lv HO (A%, Lu® - Lv),
e—
Qr Qr Qr

letting € tend to zero in (4.11) with v € ¥, we obtain (2.5a).
Given ¢ € L™®(Qr), let (T = max{(,0} and (- = max{—¢, 0}. Observing
that in
/Esa|Luea’2C:t _ //]%€Q|L(uaa . uoc)|2C:|:
Qr Qr
+2/EsaLum-Luagi - /Emwuaﬁgi,
Qr Qr

(4.16)

the first term of the second member vanishes as ¢ — 0, by (4.15), and using
(4.10) we have

hn%/EmwumPci = (A%, |Lu®P¢F). (4.17)
e—

Qr
Using this observation, inequality (4.14) and Lemma 4.2, we find

(gt () = T [ Feag?c® <l [ FeolLu et
e—0 e—0
Qr Qr
< (AL, ¢F) < (AP ¢F)
which proves that A\*(|Lu®|?> — ¢?) = 0 in L>°(Qr)’ and, consequently, also
A(|Lu®| — ¢g) = 0 in L™(Qr)’, because |Lu®| 4+ g > g« > 0.

Since A* > 0 is immediate and since u®(t) € K for almost all ¢ € [0, T7,
we have u® € ¥5. Recalling (4.11), it remains to show that, for oo > 0,

(A%, L) = (XY, Lu® - Lv), v € V. (4.18)
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But
«a T N ea
(A ,Lv)g%/keaLu Lv
Qr
=lim [keaL(u—u®) - L’U—i—liH(l) ke Lu®-Lv=(\*, Lu® - Lv),
E—

e—0
Qr Qr
because
lim /EEQL(uW—u“)-Lv (4.19)
e—0
Qr
3 )
. ™ o a2 T P _
<tim ([ Feal2w = ) ) Waals g I E0l i@ =0 O
Qr

Remark 4.1. Note that (4.18), in general, does not imply that the flux A® is
given by

A% = X*Lu®.
It is an interesting open question to characterize when this property occurs
beyond the only known example L = V for special cases of g and f as in [17]
and already referred to in the Introduction.

Proof of Theorem 2.2. From Lemma 4.2 and estimates (4.5), (4.6), and
(4.7), we also have independently of a > 0:

||Lua||L°°(QT)E < ”g”Loo(QT)’
A 2o (@ry < lim [[keal| Lo (@ry < C,
e—0

1A (oo (@ryry < Im [[kea Lu™ [ Loy < €,
e—0

||atua||L2(QT)7n < hinf(l) HatUSQ/HLQ(QT)nL < C,
E—

and therefore u® is also uniformly bounded in # = {v € ¥ : dv € ¥’} and
so in ([0, T]; L*(€2))™. Consequently, there exist u® € 75, A’ € L®(Qr)’
and A € (LOO(QT)Z)/ such that, for a subsequence, we have

Lu® ﬁLuO in L®(Qr)" weak-*,
oa—r
AY— A" in (L%(Qr)),
/
AY — A0 ip (LOO(QTV) ,

a—0
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&guo‘ _— 8tu0 n LQ(QT)m,
a—0
u®(t) —u’(t) in LXQr)"

a—0

Letting o — 0 in (2.5a), we obtain

for all t € [0,T7].

/&guo-v—i—(AO,Lv)—/f-v, v € Voo
Qr

measurable subset of Qr, then

/|Lu0\ hm ]Lua| < /g,

and we conclude that |Lu’| < g a.e. in Q.

w

Observe that by (2.5) and (4.20) we obtain

i (A | Lu )
a—0

i ([ rowr - [ (uep
Qr Q

< [t [ (u@p - np)
Qr Q

:/f-uo—/ﬁtuo-uoz(AO,
Qr Qr

%.9%) < A% Lul) — (N, | Lu’?).

Therefore
0 = Lim (A%, |Lu®|* — g?) < (A%, Lu®) — (A
a—0
On the other hand, using (4.18), we have
< Tim ()¢ a _ ,.0V|2
0 < lim (A% [L(u® —u7)[%)
= Tim (A, |Lu®|?) — lim 2(\*, Lu
a—0 a—0
—(A%, Lu) + (A, [Lu®]?).

and then

Lu®).

. Lu®) + lim (A, |Lu®|?)
a—0

(A% [Lu®?) = (A%, %) = (A?, Lu") = lim (A%, |Lu®[?).

_ ’h’Q) —« / ’LuO‘P)
Qr

(4.20)

We easily conclude that u°(0) = h and A’ > 0. Furthemore, if w is any

(4.21)

(4.22)

(4.23)
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Letting o — 0 in (2.5a), for a > 0, written in the form

[ ot v 3 Lt ) Loy + (0 L Loy a [ Lut-Lo= [ £-o,
Qr Qr Qr

we obtain

/8t . )\OLu - Lv) /f'v v € Vo,

and therefore ()\0, u®) will solve (2.5a) for a = 0, provided we can show that

lim (A, L(u® — u®) - Lv) =0, v € Y. (4.24)
a—0
We start by observing that, for fixed oo > 0,

lirr(l] EgaL(ugo‘ —u?)-Lv = (A%, Lv) — (\Y, Lu® - Lv) = (X%, L(u® — u®) - Lv)
e—

Qr

P 3~ 1
iy [Feal @) s g L0l
Qr
Then, using (4.17) and (4.22), we have

hm‘ /k‘mL )-Lv

. N ea _ ,.0V|2
2y 8 [ Feal Ll =)
Qr
- hinolig(l)(/EgayLumP —Q/EmLufa-Lu“ + /Em\LuOP)
« 3
Qr Qr Qr

= lim (A%, |Lu®[*) — 2(A%, Lu®) + (\*, |Lu’|?)) =
a—0

Finally, since A’ > 0 and u® € K, we have (\°, (|Lu0| — g) ¢*) <0, for any
¢ € L>®(Qr). From the inequality Fea (JLu**]?—g¢*)¢* > 0 arguing as in (4.17),
we obtain (A%, (|[Lu®[* — ¢?)¢*) > 0 and, afterwards, (\°, (|Zu®| — g)¢F) >0
Therefore (A%, u) also solves (2.5b) and (2.5¢) for a = 0. O

Proof of Theorem 2.3. First we observe that, given v € 75 such that
v € Ky, using v — u® as test function in (2.5), for o > 0, we get

/8tu°‘-(v—u°‘)—|—<)\a,LuO‘-L(v—uo‘)> /Lu L(v—u® /f v—u®

Qr
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But using (2.5¢), we obtain
(A%, Lu® - L(v — u®)) < (A% [Lu®||Lo| - [Lu®?)
(A*(g = [Lu®]), |[Lu®]) =

and we obtain the variational inequality

/@ua-('v—u) /Lu L(v—u /f v—u®), vekK, (4.26)
Qr

Qr

But it is well known (see, for instance, Remark 2.12 of [10]), by using ap-
propriate test functions, that (4.26) is equivalent to (2.4).

The proof of the uniqueness of solution of the variational inequality (2.4) is
standard. O

S 4.25
< (4.25)
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