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ABSTRACT
A challenging problem in a linear regression model is to select a par-
simonious model which is robust to the presence of contamination
in the data. In this paper, we present a sparse linear approach which
detects outliers by using a highly robust regression method. The
model with optimal predictive ability as measured by the median
absolute deviation of the prediction errors on JackKnife subsets is
used to detect outliers. The performance of the proposed method is
evaluated on a simulation study with a different type of outliers and
high leverage points and also on a real data set.
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1. Introduction

Regression models are used in many different areas such as health, biology, environ-
ment, management, and finance-related fields. Motivated by various applications, there
has been a dramatic growth in the automated means of collecting data, yielding data
sets with huge number of observations and a large number of potentially relevant pre-
dictor variables. Usually, some predictor variables are correlated in large data sets, but
entering all of them in a statistical model will not essentially improve the model’s pre-
dictive ability. Also, interpreting models with reasonable and tractable amount of pre-
dictor variables is easier than for models with a large number of predictors. Therefore,
a challenging problem is to sift the best predictor variables from all the candidate pre-
dictor variables.
A small proportion of outliers in the data may largely influence likelihood-type model

selection methods such as AIC (Akaike 1970), Mallows’ Cp (Mallows 1973), and BIC
(Schwarz 1978). Under slight data contamination, the variance inflation factor (VIF) cri-
terion (Lin, Foster, and Ungar 2011) may lead to a completely different and improperly
selected model (Dupuis and Victoria-Feser 2013). Hence, when there are contamina-
tions in data, we need a robust variable selection method that is resistant to outliers in
order to select variables consistently.
Recently, robust variable selection methods have received more attention in the litera-

ture. There are various robust variable selection approaches that are based on robustify-
ing classical selection criteria, namely robust AIC (Ronchetti 1985), robust Cp
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(Ronchetti and Staudte 1994), robust final prediction error (Maronna, Martin, and
Yohai 2006), and robust selection criteria based on stratified bootstrap (M€uller and
Welsh 2005). Another robust approach that is an added variable t-test in the context of
regression based on the forward search procedure for variable selection has been pro-
posed by Atkinson and Riani (2002). McCann and Welsch (2007) proposed to add a
dummy variable identity matrix to the design matrix for performing robust variable
selection using elemental set sampling. Also, for generalized linear models, a natural
class of robust testing procedures based on robust deviances which are natural general-
izations of quasi-likelihood functions has been proposed (Cantoni and Ronchetti 2001).
Salibian-Barrera and Van Aelst (2008) used the fast and robust bootstrap to achieve a
faster model selection method based on bootstrap, which makes it feasible to consider
larger numbers of predictors. Yao and Wang (2013) imposed L1 penalty in robust
Minimum Average Variance Estimation (MAVE) (�C�ı�zek and H€ardle 2006) to achieve a
robust variable selection method. They investigated their method only in the presence
of outliers in the data.
Most of the robust model selection methods need to fit a large number of submodels

robustly. When the number of predictors is large, then it is computationally more effi-
cient to use variable selection methods that sequence the predictors according to their
importance, such as forward selection and backward elimination (Weisberg 2005).
The Least Angle Regression (LARS) algorithm proposed by Efron, Hastie, Johnstone,

and Tibshirani (2004) is a modified version of the forward stagewise procedure. It is a
powerful and computationally efficient procedure to sequence the predictor variables for
least squares regression. LARS is based on the pairwise correlation between the predic-
tors and the response variable, and therefore it is not robust to the presence of a small
amount of contamination in data. Arslan (2012) proposed a weighted version of LAD-
LASSO method, which is made resistant to outliers by down weighting leverage points,
to find the robust regression estimators and select the appropriate predictors. A robust
variable selection procedure via a class of penalized robust regression estimators based
on exponential squared loss has been proposed by Wang, Jiang, Huang, and Zhang
(2013). Fan, Fan, and Barut (2014) introduced the penalized quantile regression with
weighted L1–penalty, which is called the weighted robust Lasso (WR–Lasso), for robust
regularization and also proposed an adaptive robust Lasso (AR-Lasso) through a two-
step procedure. Gijbels and Vrinssen (2015) presented three robust versions of the non-
negative garrote for linear regression models which are based on the S, M, and Least
Trimmed Squares (LTS)-estimators. The proposed robust methods are robust to vertical
outliers and leverage points.
Variance Inflation Factor (VIF) regression proposed by Lin et al. (2011) also inherits

the spirit of a variation of forward stagewise regression. VIF regression selects those
predictor variables among other available predictor variables that can reduce a statistic-
ally sufficient part of the variance in the predictive model. VIF regression approximates
the partial correlation of each candidate variable with response variable by correcting
the marginal correlations. Khan, Van Aelst, and Zamar (2007) proposed Robust LARS
(RLARS) which replaces the means, variances, and correlations of the variables inside
LARS with their robust versions which are medians, Median Absolute Deviations
(MAD), and robust pairwise correlation estimates, respectively.
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Dupuis and Victoria-Feser (2013) proposed a Robust version of VIF (RobVIF) regres-
sion, which robustly sequences the predictor variables. They used a robust weighted
slope parameter to calculate the robust VIF selection criterion.
In this paper, we propose an algorithm that combines RLARS with LTS regression

(Rousseeuw (1984)), which is a highly robust regression method (Rousseeuw and Van
Driessen (2006)), and perform it on JackKnife (JK) subsets (Efron (1982)) to detect out-
liers. The merit of using JK subsets is to find the regression model with optimal predict-
ive ability as measured by the MAD of the prediction errors obtained by cross-
validation. This optimal regression model is devoted to do outlier detection in data.
Then, the detected outliers are removed and standard LARS is performed on the
cleaned data to obtain a robust sequenced predictor variable in order of importance.
The paper is organized as follows: Sec. 2 provides a brief description of two robust

variable selection methods, RLARS and RobVIF, as the two counterparts of our pro-
posed method. In Sec. 3, our strategy for outlier detection and robust variable selection
is explained, as well as our proposed algorithm, JackKnife Robust Least Angle
Regression (JKRLARS). In Sec. 4, we conduct different simulation studies to evaluate
and compare the performance of JKRLARS with LARS, RLARS, and RobVIF. In Sec. 5,
we conduct a real data comparison. Finally, in Sec. 6, the conclusions are presented.

2. Robust variable selection methods

Consider p predictor variables X ¼ ½1 x1:::xp� and a response variable y ¼ ðy1; :::; ynÞT :
The classical linear regression model supposes

y ¼ Xbþ e;

with vector of slope parameters b ¼ ½b0; b1; :::; bp�T : The errors e ¼ ½e1; e2; :::; en�T are
assumed to have EðeÞ ¼ 0 and varðeÞ ¼ r2I; where I is the identity matrix.
The aim of this paper is to select the most important predictor variables to enter the

regression model when the data contains contaminations. Thus, in this section we
briefly explain two robust variable selection methods as the two counterparts to our
proposed method.

2.1. Robust LARS

Robust LARS (Khan et al. 2007) replaces the mean, variances, and correlations of the
data with robust counterparts. As robust measures for mean and variance Khan et al.
proposed to use the computationally fast median and MAD, respectively.
By generalizing the univariate winsorization (Huber and Ronchetti 2009), they

introduced bivariate winsorization, which is a fast robust pairwise correlation estima-
tor. After robustly standardizing the data, bivariate winsorization is obtained on the
basis of an initial robust bivariate correlation matrix R0 and a corresponding toler-

ance ellipse. For instance, consider the Mahalonobis distance DðxÞ; with x ¼
ðx1; x2ÞT 2 R

2 based on initial bivariate correlation matrix R0 and set the tuning con-
stant equal to the 95% quantile of the v22 distribution, which is c¼ 5.99. By using the

bivariate transformation u ¼ minð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c=DðxÞp

; 1Þx with x ¼ ðx1; x2ÞT ; the outliers are

COMMUNICATIONS IN STATISTICS - SIMULATION AND COMPUTATIONVR 3



shrunken to the boundary of the 95% tolerance ellipse, and therefore the resulting
correlation estimate will be less affected by the outliers. Thus, a more robust correl-
ation estimate is given.
An essential part of the bivariate winsorization procedure is choosing a proper initial

correlation matrix R0. Khan et al. proposed the adjusted winsorization as initial estima-
tor (see details in Khan et al. 2007).

2.2. Robust VIF regression

Dupuis and Victoria-Feser (2013) proposed the robust VIF (RobVIF) regression, which
is a robust version of VIF regression proposed by Lin et al. (2011). They used a robust
weighted slope parameter to calculate the robust VIF selection criterion.
Let XS be the design matrix that contains the selected variables at stage S, and ~XS ¼

½XS zj� with zj the new candidate predictor to be evaluated for inclusion. Consider the
following models

y ¼ XSbS þ zjbj þ estep; estep �N 0; r2stepI
� �

; (1)

rS ¼ zjcj þ estage; estage �N 0; r2stageI
� �

; (2)

where rS are the residuals of the fit of y on XS;bS and bj are slope parameters, cj is the
slope parameter of the fit of zj on the residuals rS; and estep and estage are the vector of

errors. Lin et al. (2011) showed that when least squares are used to estimate, ĉ ¼ qb̂j

where q ¼ zTj ðI�XSðXT
SXSÞ�1XT

S Þzj:
Dupuis and Victoria-Feser (2013) calculated the robust weighted slope estimators b̂

w
j

using Tukey’s redescending biweight weights (Huber and Ronchetti 2009), and then
they computed an approximate robust test statistic in order to compare it with an
adapted quantile to decide whether or not to add zj to the current set of predictors. Let

Xw
S ¼ diagð ffiffiffiffiffiffi

w0
iS

p ÞXS be the weighted design matrix with v columns (v – 1 predictors),

yw ¼ diagð ffiffiffiffiffiffi
w0
iS

p Þy be the weighted response variable at stage S, and zwj ¼ diagð ffiffiffiffiffiffi
wij

p Þzj
be the new candidate predictor to be considered to enter the current set at stage Sþ 1
(see details in Dupuis and Victoria-Feser (2013) for calculation of weights wi and wij).

Then b̂
w
j ; the robust weighted estimator of bj, given in (1) is obtained. Let

qw ¼ zwj
Tzwj

� ��1
zwj

Tzwj �zwj
THw

S z
w
j

� �
;

then

b̂
w
j ¼ qwð Þ�1ĉwj

with ĉwj ¼ ðzwj Tzwj Þ�1zwj
TrwS the weighted estimator of the fit of zwj on the weighted resid-

uals rwS (model 2). Since computing q using all the data is computationally expensive,
Dupuis and Victoria-Feser (2013) used a subsampling approach followed by Lin et al.
(2011) to estimate qw on a randomly chosen subsample of size g. Then the approximate
robust test statistic Tw based on ĉwj by comparing the expected value of the estimated
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variance of b̂
w
j and ĉwj is given by

Tw ¼ qwð Þ�1=2 ĉwjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2=n 1=n

P
i z

w2

ij

� ��1
e�1
c

r ; (3)

with r̂2 a robust mean squared error for the model with rwS as response and zwj as pre-

dictor variable where zwij denotes the element of zwj (that is, model 2). Then Tw is com-

pared with an adapted quantile as part of the decision rule to decide whether or not to
add the new predictor variable (To calculate ec and for more details, see Dupuis and
Victoria-Feser 2013).

3. Proposed method

In this section we explain our strategy of outlier detection and of robust variable selec-
tion method. We seek a method to detect outliers in the data set and at the same time
specify a robust sequence of the predictor variables in order of their importance.
Therefore, we propose an approach that can perform outlier detection and robust vari-
able selection simultaneously. To generate JK subsets, first the data is randomly parti-
tioned into l non-overlapping equal size subsets. Then, each subset is retained once and
RLARS is applied to the remaining subsets to find l sequence predictor variables in their
order of importance. The most appropriate predictor variables relevant to these l
RLARS sequences are used to fit a robust regression model. We use the LTS regression,
which is a highly robust and computationally efficient robust regression method
(Rousseeuw and Van Driessen 2006).1 Denote the vector of squared residuals by
r2ðbÞ ¼ ðr21; :::; r2nÞT with r2i ¼ ðyi�xibÞ2; i ¼ 1; :::; n: Then the LTS estimator is defined
as

b̂LTS ¼ argmin
b

Xh
i¼1

r2 bð ÞÞi:n;
�

(4)

where ðr2ðbÞÞ1:n � ::: � ðr2ðbÞÞn:n are the order statistics of the squared residuals and
h � n: For h ¼ ½ðnþ pþ 1Þ=2� (here, ½a� denotes the integer part of a) the LTS break-
down point equals 50%, whereas for greater h its break down point is ðn�hÞ=n: The
usual choice h� 0:75n yields the LTS breakdown point of 25% (Hubert, Rousseeuw,
and Van Aelst 2008). Hence, LTS regression seeks to find the subset of h observations
whose least squares fit gives the smallest sum of squared residuals. Based on the LTS
regression model, predicted values of the observations are calculated by cross-validation.
The MAD values of the prediction errors for each LTS regression model are calculated.
Then, the optimal LTS regression model that yields minimum MAD value is selected.
To identify outliers, the standardized prediction errors of this optimal model are com-
puted. The detected outliers are left out, and LARS is applied to the cleaned data to
find an improved sequence of predictor variables. The two goals of identifying outliers

1FAST-LTS algorithm (Rousseeuw and Van Driessen (2006)) was used inside the implementation of the
proposed method.
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in data and robustly sequencing predictor variables simultaneously reflect the specifica-
tions of our approach. (For code information, please refer to the authors.)

3.1. Description of the JackKnife Robust Lars (JKRLARS) algorithm

Consider a data set ðyi; xiÞ; i ¼ 1; :::; n: Let J ¼ f1; :::; pg and I ¼ f1; :::; ng be the set of
indices for the candidate predictors and observations respectively, and q � p the length
of the most important predictor variables returned by RLARS. Then the JKRLARS algo-
rithm proceeds as follows:
Step 1. The observations ðyi; xiÞ; i ¼ 1; :::; n are partitioned into l randomized non-

overlapping equally-sized JK subsets If � I ¼ f1; :::; ng; with f ¼ 1; :::; l: Clearly, If con-
tains the indices of the observations in f-th subset, with jIf j � n

l :

Step 2. With the f-th subset left out, RLARS is applied to the set ðyi; xiÞ; i 62 If ; of l –
1 subsets to find a sequence of predictor variables ðxjðf ÞÞj2Jf with Jf � J ¼ f1; :::; pg such
that jJf j � p; where p is the number of predictor variables. Clearly, Jf contains the indi-
ces of the jJf j ¼ q most important predictor variables returned by RLARS.
Step 3. The predictors xðf Þj ; j 2 Jf ; are used as predictor variables for LTS regression.

We thus consider the regression model

yi ¼ x fð Þ
i b fð Þ þ ei (5)

where xðf Þi denotes the i-th observation of the predictors xðf Þj ; j 2 Jf for the ith observa-
tion and bðf Þ is estimated by using LTS.
Step 4. To evaluate the prediction performance of each LTS regression fit, we per-

form l-fold cross-validation. In order to detect outliers, we compute the predicted values
ŷi; which are defined as

ŷi ¼ x fð Þ
i b̂

fð Þ
; i 2 If ; (6)

where b̂
ðf Þ

denotes the LTS estimates of the regression coefficients with the f-th subset left
out as obtained in the previous step. Thus, predicted values for all the observations are
obtained. For each LTS regression the prediction errors PEi ¼ yi�ŷi; and the correspond-
ing MAD value of the prediction errors as a measure of the model’s predictive ability are
calculated. The minimum MAD value over all LTS models is obtained to find the LTS
model with optimal predictive ability. Then, the corresponding standardized prediction
errors of this optimal model are used to detect outliers. The standardized prediction errors

are defined by PEi
r̂ ; i ¼ 1; :::; n where r̂ ¼ ch;n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
h

Ph
i¼1ðr2ðbÞÞi:n

q
; and ch;n makes r̂ consist-

ent and unbiased at Gaussian error distribution (Pison, Van Aelst, and Willems (2002)). It
should be mentioned that the LTS scale estimate r̂ is itself highly robust, and therefore can
be used to identify outliers by PEi

r̂ : As in Hubert et al. (2008) we define the set of the indi-
ces of outlying observations as

IOut ¼ i 2 I :

���� PEi

r̂

���� > ffiffiffiffiffiffiffiffiffiffiffiffiffi
v21;0:975

q( )
: (7)

Step 5. The detected outliers ðyi; xiÞ; i 2 IOut; are removed (or given weight zero) and
LARS is applied on the cleaned data ðyi; xiÞ; i 2 IcOut; with IcOut the complement of IOut.
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The predictors xj; j 2 Jfinal with Jfinal � J from the candidate predictors are obtained as
the robust version of LARS sequenced predictor variables.

4. Simulation study

Here we conduct a simulation study to investigate and compare the performance of
JKRLARS with its counterparts. We perform all the methods in R Core Team (2014).
We use package lars (Hastie and Efron 2013) to perform LARS, and we perform
RLARS (Khan et al. 2007) and RobVIF (Dupuis and Victoria-Feser 2013) using the
codes available on their authors’ website. We consider h� 0:75n to have a breakdown
point of 25% for LTS inside JKRLARS (Hubert et al. 2008). We use l¼ 5 subsets and
l¼ 10 for the JKRLARS algorithm. For RobVIF, we consider the same subsample size of
200 with the same initial values for wealth and pay-out equal to 0.5 and 0.05 similar to
Dupuis and Victoria-Feser (2013), respectively.
We consider a simulation setting similar to Khan et al. (2007) and Shahriari, Faria,

Gonçalves, and Van Aelst (2014), which is based on the design of Frank and Friedman
(1993). The linear model is created as

y ¼ l1 þ :::þ lk þ re; (8)

with k¼ 6 latent independent standard normal variables l1; l2; :::; lk and an independent
standard normal variable e. The value of r is chosen such that the signal to noise ratio
is equal to 3. Let e1; :::; ep be independent standard normal variables, then the set of p
predictors is created as

xj ¼ lj þ sej; j ¼ 1; :::; k
xkþ1 ¼ l1 þ dekþ1

xkþ2 ¼ l1 þ dekþ2

xkþ3 ¼ l2 þ dekþ3

xkþ4 ¼ l2 þ dekþ4

:
:
:

x3k�1 ¼ lk þ de3k�1

x3k ¼ lk þ de3k
and xj ¼ ej; j ¼ 3kþ 1; :::; p

where d¼ 5 and s ¼ 0:4 so that target predictor variables x1; :::; xk are formed by low
noise perturbations of the latent variables. Variables xkþ1; :::; x3k are noise predictor var-
iables that are correlated with the latent variables, and variables x3kþ1; :::; xp are inde-
pendent noise predictor variables.
We consider five different sampling distributions:

a. e�ð1�aÞNð0; 1Þ þ aNð0; 1Þ=Uð0; 1Þ; symmetric, Slash contamination;
b. e�Cauchyð0; 1Þ; heavy-tailed Cauchy contamination;
c. e�ð1�aÞNð0; 1Þ þ aNð20; 1Þ; asymmetric, shifted Normal contamination;
d. same as (a), with high leverage X values, X�Nð50; 1Þ;
e. same as (b), with high leverage X values, X�Nð50; 1Þ;

COMMUNICATIONS IN STATISTICS - SIMULATION AND COMPUTATIONVR 7



where a denotes the fraction of contamination in the data.
With different fraction of contamination, a ¼ 5%; 10%; and 20%; from the above five

simulation scenarios with p¼ 50 predictors, we generate 200 independent data sets of
size n¼ 150, and each time we perform all the aforementioned methods on the same
data set.

4.1. Performance measures

We evaluate the performance of JKRLARS concerning outlier detection by the True
Positive Rate (TPR) and the Positive Predictive Value (PPV). A true positive is an
observation that is contaminated in the data and is also detected as an outlier. PPV
shows among those observations that are detected as outliers by the method which ones
are really contaminated in the data. Thus, the sensitivity and the precision of the
method concerning outlier detection can be measured by TPR and PPV, respectively.
Denote the set of the indices of the regular observations in the data by IR � I ¼

f1; :::; ng and the set of the indices of the contaminated observations in the data by IcR:
In mathematical terms, the TPR and PPV can then be defined as

TPR ¼ j i : i 2 IOut�i 2 IcRf gj
jIcRj

; (9)

PPV ¼ j i : i 2 IOut�i 2 IcRf gj
jIOutj ; (10)

with IOut given in (7). Higher TPR and higher PPV are desired which show that
JKRLARS performs well concerning outlier detection.
In order to compare the JKRLARS performance with its counterparts, we determine

for each sequence the number of target variables tm included in the first m sequenced
predictor variables entering the model as a function of varying m. With k number of
target variables, good performance is achieved when the method can find the k target
variables in the first tk sequenced predictor variables, with tk equal or close to k.

4.2. Results of the simulation study

In this section we present and discuss the simulation results for the five presented simu-
lation scenarios. We perform LARS, RLARS, RobVIF, and JKRLARS on each of the 200
independent data sets.

Table 1. The True Positive Rate (TPR) and the Positive Predictive Value (PPV) with 5%, 10%, and
20% contamination, averaged over 200 simulation runs are reported for JKRLARS.
Case a b c d e

5% contamination
TPR 0.33 0.28 1 0.99 0.99
PPV 0.5 0.5 0.91 0.89 0.88
10% contamination
TPR 0.26 0.20 1 0.96 0.97
PPV 0.52 0.50 0.91 0.88 0.87
20% contamination
TPR 0.24 0.18 1 0.93 0.92
PPV 0.74 0.65 0.99 0.86 0.85

8 S. SHAHRIARI ET AL.



First, we start by examining how JKRLARS performs to detect the outliers in the data
sets. The results for TPR and PPV averaged over the 200 data sets for the 5 types of
contamination considered with 5%, 10%, and 20% fraction of contamination and the
number of l¼ 10 subsets for the JKRLARS algorithm are shown in Table 1. Similar
results were obtained based on l¼ 5 subsets for the JKRLARS algorithm. As it can be
seen in this table, TPR and PPV of the outlier detection procedure is almost perfect in

Figure 1. Average number of target variables tm versus m for LARS, RLARS, RobVIF, and JKRLARS for
scenarios (a)–(e) with 5% fraction of contamination. The lines shown in all plots follow the legend of
figure (a).

COMMUNICATIONS IN STATISTICS - SIMULATION AND COMPUTATIONVR 9



Figure 2. Average number of target variables tm versus m for LARS, RLARS, RobVIF, and JKRLARS for
scenarios (a)–(e) with 10% fraction of contamination. The lines shown in all plots follow the legend of
figure (a).
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Figure 3. Average number of target variables tm versus m for LARS, RLARS, RobVIF, and JKRLARS for
scenarios (a)–(e) with 20% fraction of contamination. The lines shown in all plots follow the legend of
figure (a).

COMMUNICATIONS IN STATISTICS - SIMULATION AND COMPUTATIONVR 11



scenarios (c), (d), and (e). High leverage points and clear vertical outliers can thus be
detected with high recall and precision.
Although TPR and PPV for scenarios (a) and (b) seem much worse than the other

scenarios, but we should bear in mind that in these scenarios the observations are con-
taminated by producing errors from the long-tailed Slash and Cauchy distributions,
respectively. Not all of the errors produced from these distributions will lie in the tails
of the distributions and thus not all of them will be actual outliers. Considering the cut-

off value
ffiffiffiffiffiffiffiffiffiffiffiffiffi
v21;0:975

q
for identifying outliers, it can easily be checked that only 35.2% of

the produced Slash errors and 26.7% of the produced Cauchy errors are expected to
produce outlying observations. Comparing TPR with these fractions, we see that the
outlier detection procedure still performs reasonably well in these difficult scenarios.
Therefore, JKRLARS does a good job of outlier detection considering both TPR and
PPV (or recall and precision) in all scenarios.
The performances of LARS, RLARS, RobVIF and JKRLARS in terms of sequencing

the predictor variables for each simulation scenario can be compared using Figures 1–3
for different fractions of contamination.
For each sequence of predictor variables we determine the number tm of target

variables included in the first m sequenced variables entering the model with m
ranging from 1 to 25. Figures 1–3 show the average of tm (over the 200 data sets) for
all the methods and simulation scenarios with 5%, 10%, and 20% contamination,
respectively.
All the methods perform similarly well when there is no contamination in the data,

and they can select all the k¼ 6 target variables at the top of the sequence. In scenarios
(a), (b) and (c), JKRLARS shows the same excellent performance as RLARS and
RobVIF in sequencing the k¼ 6 target variables at the top of the sequence (Figures 1–3
(a–c)) for all 5, 10, and 20% contamination. In the high leverage scenarios (d) and (e),
RobVIF fails to select the target variables properly for all 5%, 10, and 20 contamination
(Figures 1–3 (d and e)). In the Slash and Cauchy scenarios with high leverage with 5%
and 20% contamination, RobVIF can select none of the target variables (Figures 1 and
3 (d)). In the Slash with high leverage values with 10% contamination, RobVIF again
cannot select any of the target variables (Figure 2 (d)), and in the Cauchy with high
leverage scenario it can select only one of the target variables (Figure 2 (e)). Figures 1–3
(d) and (e) show that in the high leverage scenarios RLARS has much more problems
to pick up the target variables in the beginning, while JKRLARS succeeds much better
to pick up most of the important variables in the beginning of the sequence. In particu-
lar, in models with (less than) 10 predictors JKRLARS captures 5 of the 6 important
predictor variables, while RLARS needs models with up to 15 predictors to include at
least 5 of the 6 important predictor variables.

5. Application to real data

Here we evaluate and compare the performance of LARS, RLARS, RobVIF and
JKRLARS on the 1990US Census data. In order to investigate the selected variables
obtained by each method, we measure their Median Absolute Prediction Error (MAPE)
for the optimal number of selected variables as measured by 10 test subsets, i.e., the

12 S. SHAHRIARI ET AL.



Figure 4. Learning curves for LARS, RLARS, RobVIF, and JKRLARS on Census data. Each learning curve
suggests the optimal number of predictors for each method.
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data is partitioned into 10 roughly equal-sized subsets and the MAPE of the methods is
calculated on each test subset. We repeat this process 10 times and each time we use
the same test subsets for all the methods. The optimal number of variables for each
method is obtained by considering its learning curve. For this purpose, we plot the
model size versus the MAPE as measured by 10 test subsets. The optimal model size
can be chosen as the point where the learning curve does not show a considerable
slope anymore.
The original Census data contains n ¼ 22,784 observations and 139 variables and can

be downloaded at http://www.cs.toronto.edu/�delve/data/census-house/desc.html. More
details on how the data were obtained can be found in Dupuis and Victoria-Feser
(2011). After removing the collinear predictors, and those that are all zeros or almost
zeros, the data contains n ¼ 13,970 observations with 50 predictors and the response
variable, which is the average price asked for the housing unit. With these data, we do
not seek a “true” model, but our purpose is to see which model can best explain the
average asking price in a sector with few predictor variables as measured by MAPE over
10 test subsets.
As mentioned in Sec. 4, to have a breakdown point of 25% for LTS inside JKRLARS

we consider h� 0:75n: The number of l¼ 10 subsets is considered for JKRLARS. For
RobVIF, we consider the same subsample size of 200 with the same initial value for

Table 2. Mean MAPE (standard deviation) over 10 test subsets using optimal number of selected
variables for LARS, RLARS, RobVIF, and JKRLARS on Census data.
Method LARS RLARS RobVIF JKRLARS

MAPE 0.291 0.325 0.350 0.321
(0.012) (0.015) (0.017) (0.014)

# Variables 17 8 9 6

Figure 5. Selected variables by LARS, RLARS, RobVIF, and JKRLARS on Census data.
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wealth and pay-out equal to 0.5 and 0.05 similar to Dupuis and Victoria-Feser (2013),
respectively.
As it can be seen from the learning curves in Figure 4, the optimal number of

selected variables for LARS, RLARS, RobVIF, and JKRLARS is 17, 8, 9, and 6, respect-
ively. Table 2 shows the mean MAPE (with standard deviation) values obtained using
the optimal number of selected variables over 10 test subsets with 10 times replication
for each method. As we can see in this table, JKRLARS outperfoms all the other consid-
ered methods by selecting the lowest number of variables, while its MAPE is slightly
more than MAPE for LARS and almost equal to MAPE for RLARS, while RobVIF
underperforms in comparison with other considered methods in both MAPE and the
number of selected predictors. The decrease in selecting the number of variables by
JKRLARS was 65%, 25%, and 33% relative to LARS, RLARS, and ROBVIF, respectively.
Figure 5 shows the selected variables by the considered methods on Census data.
Descriptions of the selected variables by the methods in Figure 5 can be found in Table
3 and descriptions of other variables are available in Dupuis and Victoria-Feser (2011).

6. Conclusion

Since outlier detection and variable selection in the presence of contaminations such as
outliers and/or leverage points in the data are inseparable problems, we need a robust
method capable of outlier detection and variable selection simultaneously. We proposed
an outlier detection and robust variable selection method by combining RLARS with
LTS regression as a highly robust regression method on JK subsets. The merit of using

Table 3. Descriptions of the selected predictors by LARS, RLARS, RobVIF, and JKRLARS in Figure 5.
Name Description

P5.2 %-tage female
P6.1 %-tage white
P6.3 %-tage American Indian, Eskimo or Aleut (Indian)
P6.4 %-tage Asian or Pacific Islander (Asian)
P11.1 %-tage (0:11] years old
P11.2 %-tage [12:24] years old
P11.3 %-tage [25:64] years old
P14.1 %-tage males never married
P14.2 %-tage males married, not separated
P14.3 %-tage males separated
P14.5 %-tage males divorced
P14.6 %-tage females never married
P14.9 %-tage females widowed
P16.1 %-tage of HH-lds with 1 person
P18.2 %-tage of HH-lds with 1þ persons under 18 which are family HH-lds
P26.1 %-tage of HH-lds with 1þ non-relatives
H5.1 %-tage of vacant HU for rent
H5.2 %-tage of vacant HU for sale only
H5.4 %-tage of vacant HU for seasonal, recreational or occasional use
H7.1 %-tage of vacant HU with usual home elsewhere
H9.4 %-tage of ownOcc HU with Asian HH-lder
H9.8 %-tage of rentOcc HU with Indian HH-lder
H9.9 %-tage of rentOcc HU with Asian HH-lder
H13.1 %-tage of HU with 1-4 rooms
H14 Average number of rooms in a HU
H15.1 Average number of rooms in a ownOcc HU
H15.2 Average number of rooms in a rentOcc HU
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JK subsets is to find the regression model with optimal predictive ability as measured
by the MAD of the prediction errors obtained by cross-validation. This optimal regres-
sion model is devoted to the job of outlier detection. After removing the detected out-
liers, standard LARS is performed on the cleaned data to obtain a robust sequenced
predictor variable in order of their importance.
The results of performing the proposed method on contaminated simulation data sets

showed that it does a good job of outlier detection. Concerning robust variable selec-
tion, it does a good job of sequencing the predictor variables robustly for the different
data configurations containing outliers and leverage points. Thus, a robust version of
LARS sequenced predictor variables is yielded by JKRLARS. JKRLARS not only per-
forms as well as its counterparts, RLARS and RobVIF, in robustly sequencing the pre-
dictor variables in simulation scenarios containing outliers, but it outperforms RLARS
in situations with high leverage points, while RobVIF fails to robustly sequence the pre-
dictor variables in these situations.
Finally, through a real data set, we confirm that JKRLARS outperforms the other con-

sidered methods.
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