
A mind-mapping front-end for text writing

Sérgio F. Lopes
Centro Algoritmi

University of Minho
Guimarães, Portugal

sergio.lopes@algoritmi.uminho.pt

Renata Castro
School of Engineering
University of Minho
Guimarães, Portugal

pg32903@alunos.uminho.pt

Sílvia Araújo
Institute of Arts and Humanities

University of Minho
Braga, Portugal

saraujo@ilch.uminho.pt

Abstract — Writing is a challenging task especially for graduate
students, who are often required to produce scientific writing.
Mind maps help to organize ideas and are an essential tool in the
planning phase of writing. Software tools have been developed to
support mind-mapping, but in our research we have not found
tools offering specific support for writing activities. In this paper
we introduce planTEXT, a mind-mapping tool for text writing
and describe its front-end architecture. This tool has been
assessed by students, and the results are presented.

Keywords – scientific writing, mind maps; web apps, SVG,
AngularJS.

I. INTRODUCTION
Writing is a challenging task especially for graduate

students, who are often required to produce scientific writing. It
involves the transfer of acquired knowledge into text form.
Both teachers and students acknowledge that students have
many difficulties, such as the repetition of ideas, poorly
structured paragraphs and lack of or erratic flow/progress.

The writing process involves diverse cognitive processes
and strategies that can be grouped in different activities.
Reference [1] identifies three top-level activities: planning, the
development of text and revision. Difficulties have been
detected in all of these activities, but planning is critical. If it is
not properly done, the other activities will become more
difficult, compromising the resulting text.

Mind maps [2] are a method for organizing ideas, where
one draws text boxes around a central topic, creating sub-topics
in a tree-like hierarchy. They are particularly useful in the
planning phase, helping students to structure ideas. The
effectiveness of mind maps has been demonstrated in different
learning contexts [3] [4].

Several software tools have been developed to support the
construction of mind maps, ranging from desktop and mobile
applications to web applications. A few examples of the latter
are: iMindMap, Popplet, MindMeister and MindMup.
However, these tools are generic and do not provide specific
support for the writing process. In our research, we have not
found mind-mapping tools capable of supporting writing
activities other than planning.

In this paper, we introduce planTEXT, a tool that offers
integrated support for the planning, writing and revision
activities of the writing process, and describe the tool front-
end. It provides a map perspective that is synchronized with the
plain text view. It is a modern HTLM5 web application, which
has been assessed through a survey completed by students. The
contributions of this paper are:

 an architecture that can be used as reference to develop
other text writing tools based on mind maps;

 a front-end with functionalities that support writing
activities from an integrated perspective.

This paper has six more sections. Section II deals with the
main activities of the writing process and with the students’
difficulties. In section III, related work is reviewed. Sections
IV and V, respectively, describe the tool design and front-end
development. The survey and its results are presented in
section VI and the conclusions are discussed in section VII.

II. WRITING PROCESS THEORY
Writing is a complex activity that involves many cognitive

processes and strategies [5]. According to [1], the cognitive
skills involved in writing can be grouped in three components:
planning, textualization, and revision. The authors call them
processes, but we call them activities of the overall writing
process.

The planning activity involves the development and
refinement of goals (the top-level ideas). Thus, it is necessary
to group lower-level ideas and form concepts that enable
writers to structure the text coherently. Poorly structured texts
are often the result of non-existent or incipient planning.

The textualization activity consists in creating linguistic
sequences, organized in sentences, and paragraphs that follow
the plan to achieve the intended goals. In a school setting, the
difficulties are evident, with students not being able to follow
progression and continuity principles, to avoid repetitions or to
maintain logical coherence.

The revision activity consists in reading the text to evaluate
it and make corrections/improvements, at micro and/or macro
structural levels. Usually, students only consider spelling and
punctuation errors, leaving aside the abovementioned aspects,
which are also important.

Although planning is the natural start of the writing
process, all activities are cyclic and overlap throughout it. For
example, when a writer stops, revises, and then re-writes,
she/he then adjusts the planning and/or plans what will follow.

III. RELATED WORK
There are mind-mapping tools for the major computing

platforms and many for the web. Most of the analyzed web
tools feature a common set of basic functionalities, such as:
virtually unlimited number of nodes and levels, zooming,
exporting in several formats (PDF, JPEG, SVG, etc.), different

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on April 16,2021 at 23:27:24 UTC from IEEE Xplore. Restrictions apply.

node content (e.g., text, images) and appearance options,
branch customization, undo and redo, move part/all of the map.

iMindMap is the tool designed by Tony Buzan (inventor of
mind maps). It has a very rich set of features (different modes,
integration with other applications, etc.) and its web version is
based on Adobe Flash. It was used, for example, in teaching
and accounting [7] and gesture-based authoring [8].

Popplet is another tool with an Adobe Flash web version.
Its most distinctive feature is allowing users to share the map
with other people and work on it simultaneously. Thus, it is
especially suited for teamwork and has been used for
collaborative learning [9].

MindMeister web version is HTML5 and it allows the map
to be shared on the cloud, where all maps are stored. It features
a history of changes and imports files from other tools. This
application has been used for user-modelling and information
retrieval [10].

Coggle is another HTML5 application that allows maps to
be shared on the cloud and has a change history. Maps cannot
be simultaneously edited, but it features a group chat [11]. It
was used for in-class and home collaborative activities.

MindMup is an HTML5 application that supports offline
operation and online map sharing and publishing, but its
interface is less intuitive than those of other tools. It was used
to monitor the students’ learning of syllabus topics [12].

There are several web-based mind-mapping tools and their
usage has been explored in a variety of fields. However, we
have not found any targeting the field of writing.

IV. PLANTEXT DESIGN
All tools that we have found are general-purpose and

therefore they do not provide specific features for text writing.
For example, there are no ordering or sequence relationships
between ideas at the same hierarchical level. Our aim is to
build a tool that offers those kinds of features and helps with
the textualization and revision activities.

A. Requirements Analysis
The project involves people from the fields of linguistics,

playing mainly the role of users, and software engineering,
acting predominantly as developers. From the workshops of
this multidisciplinary team, a set of requirements was defined.
Tables I and II summarize the most important ones.

Functional requirements 1-4 and 11 are self-explanatory.
Requirement 5 offers an easier way to start writing a text, by
automatically creating a set of sections, which could be, for
example, the well-known IMRaD (Introduction, Methods,
Results and Discussion) structure for scientific writing.
Requirement 6 stems from two goals: to develop a proof-of-
concept tool that can be used for measuring the success of the
approach, and to target medium-sized texts for which a two-
level structure is adequate. Requirements 6-8 are essential to
provide an integrated environment for the writing process (see
section II). Specifically, the mind map and text editing areas
support the planning and textualization activities, respectively.
The automatic update of the text according to structural
changes in the map provides support for the iterations between
the two activities. A few examples of structural changes are: to
reorder sections/topics, to move a topic from one section to
another, and to promote/demote a topic/section. For this to be
possible, the tool must remember the order/sequence of the text
elements at the same hierarchical level. The idea behind
requirement 10 is that most texts have an introduction and a
conclusion, and therefore it is not necessary to include them in
the map view. In addition, the tool can automatically list the
sections’ titles inside the introduction, helping the writer to
describe the text structure. It does the same for the conclusion,
helping the writer to write a summary of the main ideas in the
text.

Non-functional requirement 1 means that the web
application must use either standard HTML or a framework
that transparently uses browser-specific features. Plugin
technologies are not an option, since they are planned to be
discontinued and their availability in browsers already faces
significant restrictions. Due to requirement 2, the application
cannot work based on requests of entire pages. Rather, it must
use asynchronous communication with the server to update
parts of the interface. Technically, it must be a Single-Page
Application (SPA). Requirement 3 is very important for two
reasons. Firstly, because internet connection is not always
available, and the tool core functionalities do not need to
depend on it. Therefore, the tool must be an offline web
application that writers can use regardless of internet
availability. Secondly, because whenever there is a connection
breakdown, the work produced since the last save must not be
lost. A consequence of this requirement is that the web

TABLE I. FUNCTIONAL REQUIREMENTS

R# Description

1
Public area with general information about the tool and on how to
use it.

2 Registration using an e-mail address.

3 Private area for account update and text writing and management. a

4 Users have access and can manage only their own texts.

5 Set of mind map templates for text writing.

6 Texts with a two-level structure: sections and topics.

7 Mind-map editing area to create the text structure.

8 Text editing area to type the contents.

9 One-way synchronization from the map view to the text.

10 Automatically insert introduction and conclusion sections in the
text view, which do not appear in the map.

11 Export of the map and text in well-known file formats.

a. All the following requirements.

TABLE II. NON-FUNCTIONAL REQUIREMENTS

R# Description

1 To maximize browser compatibility.

2 Minimize hangs and any interruptions on the availability of the
user interface.

3 Operate with and without internet connection.

4 Provide a clean and user-friendly user interface.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on April 16,2021 at 23:27:24 UTC from IEEE Xplore. Restrictions apply.

application must store data locally, in the browser.
Requirement 4 is common and self-explanatory.

B. System Architecture
Fig. 1 presents the system architecture, which comprises a

server and a client side. The server side is based on nodeJS
(https://nodejs.org) and is composed of a database and a REST
web service interfacing the database. The client side follows
the traditional 3-tier architecture (data, logic and user
interface). The data layer is a Javascript data persistence library
for both local and remote storage. This means that the data
layer is the consumer of the REST web service. The client data
layer and the server side constitute the application back-end
(this is outside the scope of this paper and will be addressed
elsewhere). All the front-end sees is the API of the data layer.

The user interface (UI) is key to the success of software
tools, and nowadays web applications feature interactivity,
responsiveness and aesthetics levels that explain the
widespread adoption of UI or web application frameworks.
These frameworks facilitate development, especially if the
application is large. Although our application is not large, it is
expected to integrate further functionalities in the future (e.g.,
dictionaries and spellers). Therefore, we decided to base our
tool on a front-end web application framework. Google’s
AngularJS (https://angularjs.org) was our choice, mainly
because we had previous experience with it.

Being an application framework, AngularJS covers both
layers of the front-end and therefore defines the structural
elements of the application. In planTEXT, the logic layer has
the form of AngularJS services, while the UI layer is composed
of views, controllers and states. Since native AngularJS routing
facilities (ngRoute) are limited (to a single view per page), we
opted for a more flexible solution, specifically, the widely-used
module of ui-router library (http://ui-router.github.io). Ui-
router offers multiple views in a single page based on a
hierarchy of nested states (and views).

C. Front-end
The front-end design is shown in Fig. 2. It comprises the

perspectives that are offered (the rectangles), and the
possibilities of navigation between them (the lines with
direction arrows). (The term “perspective” is used to
distinguish the external view from software artifact views.) The

perspectives identify the main application features/contents.
Fig. 2 separates public perspectives (on the left side) from the
ones that require authentication. The publicly accessible
perspectives are:

 Home – introduces the application with an identifying
logo and a menu to access other perspectives;

 About – introduces the project team and the project
itself (how it started, goals, novelty…);

 Demo – describes the functionalities provided by the
tool and how they can be used;

 Register – enables the user to create an account for
accessing the core functionalities;

 Login – identifies the user and gives access to her/his
private area of text writing.

In the public area, the user can change between any two
perspectives with a single click, as depicted by the star
relationships between them in Fig. 2. In the Login perspective,
if the user input matches an account’s credentials, the
application gives access to the authenticated area, which is
composed of four perspectives:

 My Texts – lists the user’s texts ordered by different
criteria and supports text management;

 My Account – allows the user to manage her/his
personal data;

 Map – supports the development of the text (section
and topics) structure, i.e., creating the mind map;

 Text – displays the text in plain form and supports
editing the content of each topic.

The My Texts perspective is the entry to the private area
and is the only access to My Account. All authenticated
perspectives allow the user to log out and return to the public
area. When a text is selected in My Texts, the application
changes to Map perspective. Both Map and Text perspectives
allow the user to switch between each other and to return to My
Texts.

V. FRONT-END DEVELOPMENT

A. Interface design

Web
Service DB

serverserver

browserbrowser

HTTPData
storage

services

An
gu

la
rJ

S

ui
-r

ou
te

rviews
states

controllers

us
er

-in
te

rf
ac

e
lo

gi
c

da
ta

fr
on

t-
en

d
ba

ck
-e

nd

Figure 1. Example of a figure caption.

About

Home

Login

Register

Demo

Map

Text

My
Account

My Texts
Success

Failure

Logout

Figure 2. Application perspectives and navigation.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on April 16,2021 at 23:27:24 UTC from IEEE Xplore. Restrictions apply.

The interface design comprises the graphical sketches of
the different application perspectives (see previous subsection)
and the structure of SPA views. These two aspects are
described in Fig. 3, which shows the views layout, a small (for
the sake of space) sketch of each view, and the hierarchical
relationships between them.

The main page defines all that is common to all views of
the application and a central content area. This area is filled by
one of four different views: Public, MyTexts, Editing, and
MyAccount. MyTexts and MyAccount views have perspective-
specific content (i.e., they are leafs in the view hierarchy),
while Public and Editing views have contents shared by a set of
perspectives (i.e., they are structural views).

Both MyTexts and MyAccount views support the
perspective with the same name (see Fig. 2). The Public view
supports what is common to all public perspectives, namely,
the navigation menu between them, and it defines a content
area to be filled by one of its five perspective-specific sub-
views. When the user navigates between any of the public
perspectives (on the left side of Fig. 2), it is only this part of the
interface (content area) that is updated. The same applies to
Editing view, the Map and Text perspectives and the respective
likewise-named sub-views. The application interface is thus
structured in three layers.

B. Back-end integration
The data layer was developed in ECMAScript 6 (ES6)

Javascript and consists of a set of classes, as shown in Fig. 4.
The classes represent the different objects of the data layer
(Users, Text, Section and Topics) forming a hierarchy of
composition relationships. More specifically, they have the
following roles:

 DB – represents the local and remote storage databases
and supports user-related functions, namely, account
management and login;

 User – represents a user and offers methods for
managing the respective texts;

 Text – represents a text and supports the management
of its sections;

 Section – represents a section and allows to manage its
topics;

 Topic – represents a topic, simply storing its data.

To maximize browser compatibility and to be able to use
data layer classes directly in AngularJS (version 1.4), we
translated ES6 code to ES5 (in a process also known as
transpiling). To carry out the translation, we used webpack
(https://webpack.js.org), a bundler of JS modules with
dependencies between them, which features a set of extensions
(loaders), including an ES6-to-ES5 source-to-source compiler.
The ES6 classes were then converted to ES5 objects.

C. Structure
The logical structure of the front-end is composed of views,

controllers, states and services. The front-end implements the
Model-View-ViewModel [13] pattern, instrumenting the views
(with Angular’s ngModel directive) to perform two-way data-
binding with controllers.

With the exception of the top-level empty view in
index.html, all views have a corresponding state.
Consequently, Fig. 3 describes both the views and the states
hierarchy. The application control flow can be described by
Fig. 2, since its nodes correspond to leaf-states (see Fig. 3), and
its arrows represent the transitions between states.

Fig. 4 shows the controllers and services, with the former in
the UI layer and the latter in the logic layer. Each controller has
the same name as its view/state. There are no controllers for
Home, Demo and About views and states, because they
implement non-interactive perspectives, with static content
only. Controllers rely on services, as shown by the down
arrows between them. The figure also shows the usage of data
layer classes by services.

D. Behaviour
Controllers provide the functions supporting the respective

view/state. The Register controller provides the functions for
verifying username uniqueness and password safety, uploading
and resizing the user photo, and adding a new user to the DB.
The Login controller is the simplest one, containing only the
authentication function.

My Account

Home

index.html

My Texts

Logo Logo

 Logo

Demo About

Logo

Login

Logo

Map View

 Logo

Text ViewRegister

Logo

Public Editing

Figure 3. Interface design: graphical sketches and hierarchy of the different views.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on April 16,2021 at 23:27:24 UTC from IEEE Xplore. Restrictions apply.

The MyAccount controller provides functions to update the
user profile. MyTexts includes functions to calculate the
number of pages necessary to display all texts, list texts ordered
by different criteria, add and remove texts, change text title and
select a text (for editing).

The Editing controller contains functions common to both
Map and Text perspectives, namely, for logging out and
downloading files with the map and the text. The Text
controller is simple, since it supports only the editing of content
in HTML <textarea> elements. In contrast, Map is the most
complex controller, since it supports the creation of mind
maps. It includes functions to add, delete, and move sections
and topics. The paths between map nodes (i.e., section and
topics) are automatically built. Move actions involve rebuilding
all necessary paths between nodes. Furthermore, some of these
drag-and-drop actions change the hierarchical and ordering
relationships between two or more sections and topics.
Examples are: swapping two sections/topics; promoting a topic
to section; and, demoting a section to topic, if the former has
no child nodes (topics).

The Map controller implements the map in SVG, which is
the natural HTML choice to support diagram drawing. In
addition, instead of using a 2D framework, we used HTML5
SVG native API directly, because it proved adequate for the
task. To implement text editing directly in the diagrams, we
used the foreignObject SVG element to include a <textarea>
element inside the map nodes.

The services contain data and behaviors used by several
states, namely:

 AuthService – supports adding a new user, managing
user sessions, as well as obtaining and updating the
profile of the currently logged user;

 Inage – supports the upload and resizing of the user
photo;

 TextService – retrieves the list of texts (title and dates
only) by different orders, manages texts and their titles,
and manages data about the text being edited;

 PathService – manages the list of paths between all
map nodes (sections and topics), computes new paths
and rebuilds existing ones;

 NodeService – manages both section and topic nodes
on the map, and retrieves the topics content.

Most controller dependencies on services are
straightforward, so to be concise we will only refer to the

noteworthy ones. Most controllers use AuthService to detect if
a user is logged in or not. The Editing controller uses both
PathService and NodeService because it not only needs node
and path data to export the map diagram, but it also needs
access to topic contents to export the text as a Word document.
NodeService is especially important because it allows the
sharing of data between Map and Text controllers,
synchronizing the two views of the text.

E. Offline mode
Storing data locally is not enough to support offline usage

of the web application; the source files must also be available.
With the Offline Web applications API, this is achieved by
creating a cache manifest file listing all source files (in its
cache section) and adding to the application <html> element a
manifest attribute pointing to the manifest file.

Although all files are available offline, the application does
not allow new users to register, nor does it allow current users
to start a new text. This is because the central storage service is
not available and unique identifiers cannot be assigned.

Finally, by defining an application cache the application
also runs faster and saves network bandwidth by avoiding
requesting to the server resources that have not changed.

VI. RESULTS
The resulting application can be found at

http://plantext.dei.uminho.pt. Fig.5 shows what it looks like
and its main features: at the top, a screenshot of the mind map
underlying the present paper (before the topic of writing
process theory was promoted to a section); and, at the bottom,
part of the text view (without the footer), already with the first
topic of the 3rd section. The order of sections and topics in the
text view is the same as the respective nodes in the map view,
where it is made explicit through section and topic numbering.

A survey was conducted with 32 students from the master’s
degree in Multilingual Translation and Communication of the
University of Minho. Most subjects had experience in using
mind-mapping tools. Some of the questions were:

Login

Register MyAccount MyTexts

AuthService

Draw
Text

UI layer

TextService PathService NodeService
Logic layer

Data layer
DB User Text Section Topic

Editing

Figure 4. Controllers, services and back-end relationships.

Figure 5. Screenshots of planTEXT: map view (top) and text view (bottom).

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on April 16,2021 at 23:27:24 UTC from IEEE Xplore. Restrictions apply.

a) Application look-and-feel, through five questions
concerning colors, fonts, layouts, images and language;

b) The purpose of each perspective is clear;

c) Navigation is easy to understand and use;

d) Writing features, through seven questions concerning
the various features for building maps and the two
views;

e) Download options are useful and well placed;

f) Would recommend the tool to friend.

Questions a-e were answered on a Likert scale, from 1 to 5,
including a no-opinion option. Question f was answered with
yes/no. The results are shown in Table III. The most important
questions are b-d, because they are the most relevant for a text-
writing tool. All of those have a very good assessment. The
score of question f demonstrates that users were highly
satisfied with the application.

VII. CONCLUSION
The planTEXT mind-mapping tool for writing is introduced

and its front-end is described. The technological choices and
defined architecture proved to be quite feasible. The front-end
was evaluated through a survey and the results are very
encouraging. The thorough discussion of the tool features and
interface by the multidisciplinary development team is thought
to have been decisive for the results obtained in the survey.

We argue that the approach is successful and should be
further improved. The tool will continue to be used by students
for academic assignments, and in future work we expect to
confirm that it will help them to significantly improve their
writing skills. More functionalities will be added based on user

feedback, but we already envisage the synchronization of the
map from changes in the text view, offering more advanced
support for revision activities.

ACKNOWLEDGMENTS
This work has been supported by COMPETE: POCI-01-

0145-FEDER-007043 and FCT – Fundação para a Ciência e
Tecnologia within the Project Scope: UID/CEC/00319/2013.

REFERENCES
[1] L. Flower, and J. R. Hayes, “A Cognitive Process Theory of Writing,”

College Composition and Comm., vol. 32, no. 4, pp. 365–387, 1981.
[2] T. Buzan, The Ultimate Book of Mind Maps. HarperCollins Publishers,

2005.
[3] G. Boyson, The Use of Mind Mapping in Teaching and Learning. The

Learning Institute, 2009.
[4] A. Buran, and A. Filyukov, “Mind Mapping Technique in Language

Learning,” Procedia - Social and Behavioral Sciences, vol. 206, pp.
215-218, 2015.

[5] R. T. Kellogg, “Training writing skills: A cognitive developmental
perspective,” Journal of Writing Research, vol. 1, 2008.

[6] L. F. Barbeiro, and L. Á. Pereira, O Ensino da Escrita: A Dimensão
Textual. Lisboa: Ministério da Educação Direção-Geral De Inovação e
de Desenvolvimento Curricular Lisboa, 2007.

[7] W. N. Wan Jusoh, and S. Ahmad, "iMindMap as an innovative tool in
teaching and learning accounting: an exploratory study," Interactive
Technology and Smart Education, vol. 18, no. 13, pp 71-82, Apr, 2016.

[8] M. Miyasugi, H. Akaike, Y. Nakayama and H. Kakuda,
"Implementation and evaluation of multi-user mind map authoring
system using virtual reality and hand gestures," in Proc. 2017 IEEE 6th
Global Conference on Consumer Electronics, Nagoya, 2017, pp. 1-5.

[9] S. N. Sailin, and N. A. Mahmor, “Promoting meaningful learning
through Create-Share-Collaborate,” in Proc. of the ICECRS, vol. 1, no.
1, Jan 2017.

[10] J. Beel, S. Langer, M. Genzmehr, and B. Gipp, “Utilizing mind-maps for
information retrieval and user modelling,” in International Conference
on User Modeling, Adaptation, and Personalization, Springer, Cham, Jul
2014, pp.301-313..

[11] I. Papushina, O. Maksimenkova, and A. Kolomiets, "Digital Educational
Mind Maps: A Computer Supported Collaborative Learning Practice on
Marketing Master Program", Interactive Collaborative Learning,
Springer International Publishing, pp. 17-30, 2017.

[12] J. Pereira, “Leveraging chatbots to improve self-guided learning through
conversational quizzes,” in Proc. of the Fourth International Conference
on Technological Ecosystems for Enhancing Multiculturality,
Salamanca, Spain, ACM, 2016, pp. 911-918.

[13] J. Smith, "WPF Apps with the Model-View-ViewModel Design
Pattern," MSDN Magazine, vol. 24, no. 02, Feb 2009. Accessed on:
March, 18th, 2018. [Online]. Available: https://msdn.microsoft.com/en-
us/magazine/dd419663.aspxJ

TABLE III. SURVEY RESULTS

Likert scale 1 2 3 4 5 Avg.

Qu.gr. a (5x) 4 14 42 95 4.5

Question b 3 10 19 4.5

Question c 1 3 9 19 4.4

Qu.gr. d (7x) 1 5 12 63 140 4.5

Question e 1 1 2 28 4.8

Question f No: 2, Yes: 30 (93.7%)

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on April 16,2021 at 23:27:24 UTC from IEEE Xplore. Restrictions apply.

