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A B S T R A C T   

Tissue engineered organoids are simple biomodels that can emulate the structural and functional complexity of 
specific organs. Here, we review developments in three-dimensional (3D) artificial cell constructs to model 
gastrointestinal dynamics towards cancer diagnosis. We describe bottom-up approaches to fabricate close-packed 
cell aggregates, from the use of biochemical and physical cues to guide the self-assembly of organoids, to the use 
of engineering approaches, including 3D printing/additive manufacturing and external field-driven protocols. 
Finally, we outline the main challenges and possible risks regarding the potential translation of gastrointestinal 
organoids from laboratory settings to patient-specific models in clinical applications.   

1. Introduction 

The diagnosis and treatment of gastrointestinal (GI) cancer remains a 
challenge for clinicians and researchers, as most cases are asymptomatic 
until they reach advanced stages due to a lack of sensitivity and speci
ficity to detect premalignant lesions. The heterogeneous and stochastic 
distribution of gastric tumors highlights the unmet need to develop early 
cancer detection models that are patient-specific to provide better care. 
The development of GI cancer models that mimic native tissue could 
enable clinicians to accelerate discovery and testing of novel screening 
and disease treatments. Key advances have enabled GI models to capture 
important features of normal physiology and disease [1]. These ad
vances include significant progress in culture methods for primary cells, 
improved understanding about the importance of biochemical cues, 
chemical gradients and physical forces in GI physiology. Simulta
neously, development of engineering methods to capture these gradients 
and physical forces has led to increasingly sophisticated in vitro models 

as organ-on-a-chip devices that can simulate the functionality, me
chanical factors and physiological response or an organ within a single 
microfluidic interface. When designing early cancer models, choosing 
the right platform becomes important. In vitro 2D monolayer cell cul
tures provides a simple and easy-to-use approach, while lacking of the 
shape and functionality of the corresponding tissue; thus, they are not 
considered a translatable model [2]. In contrast, animal models provide 
the complexity of GI fluid dynamics and interactions with the biome. 
The use of animal models, however, requires complex and expensive 
research protocols that reduce their potential throughput, as well as 
their natural deviation from human physiology. Recent developments in 
tissue engineering aim to bridge the gap between in vitro and in vivo 
models, and provide unique advantages by using direct self-assembly or 
bottom-up assembly approaches to create three-dimensional (3D) arti
ficial cell constructs that mimic the structure and function of specific 
organs [3]. 

Organoids present important advantages that make them attractive 
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models. These advantages include the fact that they are simple to work 
with, mimic the 3D structure of native human tissue closely, reduce 
experimental complexity, and are compatible with common bioanalysis 
methodologies, such as imaging. Thus, in general, organoids provide 
robust models of disease. An organoid is a multicellular unit derived 
from cells that form 3D structures to simulate a native organ/tissue 
development, functions and structure [4]. Many fabrication methods 
aim to create close-packed cell aggregates that undergo a fusion process 
to generate specific organoids. The development of engineered GI 
organoids presents unique fabrication challenges and requirements, as 
the GI tract ranges from esophagus to anus, and includes the various 
organs of the digestive system (Fig. 1) (see Fig. 2). 

This review focuses on emerging trends in the biofabrication of GI 
organoids and their use as patient-specific cancer models. Recent re
views have covered different aspects of GI organoids while focusing 
mainly on biological aspects such as the source or differentiation of the 
organoid [5–7]. Herein, we aim to provide a multidisciplinary 
perspective to discuss the challenges and opportunities of various 
fabrication approaches, ranging from the application of biochemical and 
physical cues to guide the self-assembly of organoids, to advanced en
gineering protocols (additive manufacturing and external field-driven 
scaffoldless assembly) to enhance the throughput and design capabil
ities towards generating constructs that better mimic native tissues. 
Moreover, after providing a summary of different fabrication ap
proaches, we outline main challenges and potential risks regarding the 
translation of gastrointestinal organoids from laboratory settings to the 
use of patient-specific models in the clinic. 

2. Cell sources for GI organoid generation 

There are two global parameters to consider when fabricating a 3D 
structure that recapitulates or aims to mimic the GI tissues generated 

through physiological development: First, the choice of cell(s) for the 
formation of the organoid; second, the cues that are to be provided for 
the selected cells to proliferate, differentiate, and organize into tissue- 
like architectures [8]. 

The available cell choice in organoid fabrication is relatively limited 
but can still vary, depending on the assembly mechanism. Adult 
differentiated cells can be used for direct assembly of organoid struc
tures (e.g., by bioprinting) [9]. However, for cases where a more 
developmental route is envisioned, the cell source relies heavily on the 
need for proliferation and differentiation responses to derive multiple 
cellular subtypes with distinct functionality. For that, the choice usually 
involves stem cells [10,11]. 

Pluripotent stem cells can differentiate into any adult cell type and 
are extremely sought after for multiple purposes [12–14]. The naturally 
occurring pluripotent stem cells are Embryonic Stem Cells (ESCs), which 
exist only in the embryo, present significant ethical constraints and are 
very hard to translate into the clinical setting [15]. As an alternative, 
induced Pluripotent Stem Cells (iPSCs) have similar differentiation ca
pacity and can be derived from adult and patient-specific cells [16,17]. 
GI organoids have also been extensively obtained with the use of iPSCs 
[18]. 

In adult organisms, stem cells naturally reside within specific tissues 
and can proliferate to generate different subtypes of cells and structures 
(multipotent). In the intestine, these are commonly called Intestinal 
Stem Cells (ISCs). ISCs are frequently identified by the Lgr5 (Leucine- 
rich repeat-containing G protein-coupled receptor 5) marker. This re
ceptor is fundamental for embryonic development and is also expressed 
by various adult stem cells, highlighting the role of Lgr5 as a bona fide 
marker of stemness. Despite having varied biological functions, Lgr5 is 
often upregulated in cancers from various tissues [19]. In the normal 
intestine, Lgr5 is most notably expressed by the crypt cells that are 
capable of gradually differentiating and replace the tissue’s lining over 

Fig. 1. The GUT Network: Schematic organization 
of the Gastrointestinal System and its main compo
nents connected in an anatomically relevant manner. 
The main tissues approached so far with organoids 
(stomach and intestine) are amplified to represent the 
details of the distinct epithelial structures, as well as 
common features such as the presence of crypts, 
where stem/progenitor cells are present. In all cases, 
the top-bottom axis represents the differentiation 
route cells from the crypt take until becoming mature 
epithelial cells, as represented in the differentiation 
axis schematics. The region of accelerating stem cell 
proliferation and differentiation is where recurring 
cell divisions occur to regenerate top layer’s tissue 
loss, hence prone to the emergence of mutations that 
may lead into pre-neoplastic changes. As such, it is 
here identified as “tumor initiation region”. It is in 
this region that LGR5+ cells reside, which are adult 
stem cells that are capable of proliferating and 
differentiating along the epithelial axis, with higher 
potential for initiating tumors.   
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time. Indeed, these cells can single-handedly create crypt-villus archi
tectures, even in the absence of a mesenchymal niche [20]. Similarly, 
Lgr5+ cells are also present in other GI tissues, such as those of the 
stomach. However, certain gastric stem cells were shown to be Lgr5-, 
depending on their anatomic location [21–23]. This evidence demon
strates that there might be more complex molecular signatures of GI cell 
stemness other than the most widely studied Lgr5, and that different 
types of cells and molecular signatures might play an important role in 
the development of cancers. Overall, the diverse pool of gastrointestinal 
stem cells enables different approaches where specific subtypes might be 
selected to better recapitulate certain tissues of the GI tract, either 
healthy or cancerous. 

Naturally, when stem cells are used, their differentiation must be 
properly directed towards the desired phenotypes avoiding unwanted 
behavior such as, tumor formation by uncontrolled pluripotent stem cell 
proliferation/differentiation [24]. Therefore, once the cellular entity is 
chosen, the next question must focus on the required stimuli for GI 
development. On one hand, biochemical cues are extremely important 
and different protocols have been studied and optimized to integrate the 
most essential soluble components for stem cell differentiation towards 
GI-like organoid formation. On the other hand, physical cues have 
gained increased importance as equivalent regulators of tissue devel
opment, with force and shape being primal parameters for cell differ
entiation, orientation and functional development [25,26]. 

3. Biochemical cues 

The protocols that must be employed to differentiate stem cells might 
vary considerably depending on the potency of the initial cell source. 
While adult ISCs are already close to the GI phenotypes, iPSCs are able to 
differentiate into almost any type of adult cell regardless of origin or 
location and, as such, must go through more extensive and selective 
differentiation. Derivation of iPSCs is achieved through the trans
formative insertion of particular genes, the so-called Yamanaka factors. 
These factors are comprised of four genes: Oct4, Sox2, Klf4 and cMyc. By 
inducing their expression in adult cells, such as skin fibroblasts, these 
cells can revert to a pluripotent state (i.e. become iPSCs), as widely 

established elsewhere [16,17]. As such, this section focuses on how 
iPSCs can be used for GI organoid derivation. Initially, iPSCs must be 
directed towards endodermal tissue lineages in order to differentiate 
towards gut-like spheroids, eventually maturing into organoids [27]. 
The first steps rely heavily on developmental signals such as 
Wingless-related integration site (WNT) and Fibroblast Growth Factor 
(FGF), which can bring these stem cells closer to gut lineages, from 
where organoid differentiation can start [27–29]. This differentiation is 
also guided by specific biochemical factors, among which are Hepato
cyte Growth Factors (HGFs) and Epidermal Growth Factors (EGFs) [27, 
30]. Of note, several molecular signaling pathways, including those 
related to WNT, are also intimately related with cancer and play a sig
nificant role in the genesis of cancer stem cells [31,32]. 

Naturally, these signals attempt to mimic the natural cell-cell signals 
during development and also converge with the process of ISC organoid 
formation [7], where EGF is also commonly employed [33]. Addition
ally, certain small molecules such as Noggin and R-Spondin are widely 
implicated in organoid creation. R-Spondin is the ligand of the previ
ously discussed Lgr5 receptor, and is capable of stimulating stem cells 
for proliferation and organoid development, while Noggin antagonizes 
Bone Morphogenic Protein (BMP)-induced differentiation, facilitating 
the maintenance of stemness [33–35]. 

Although the fabrication of different types of intestinal and gastric 
organoids relies on variations in the biochemical factors and the timing 
of their addition as well as duration of exposure, these are mostly shared 
throughout the GI tract. WNT, FGF, EGF, retinoic acid and noggin are 
also involved in obtaining iPSC-derived structures [36], even though 
variations in the protocol timing might be needed [27,36]. Generally, 
organoid differentiation protocols can last well over 21 days into months 
[27]. As such, approaches that might accelerate this process, discussed 
later in this review, namely externally controlled assembly, can signif
icantly impact organoid research by shortening their extensive differ
entiation times, increasing throughput. 

The signaling pathways involved in these developmental processes 
are naturally complex and still under discovery. Among these pathways 
is signaling mediated by retinoic acid, which was recently reported to 
improve barrier function in epithelial monolayers [37] and has 

Fig. 2. Emerging 3D biofabrication approaches a) Biochemical cues to induce differentiation. Reprinted with permission of ref. 19 b) use of physical scaffolds to 
generate crypt structure. Reprinted with permission of ref. 54 c) Continuous flow based microdroplet filled with cells. Reprinted with permission of ref.56 d) Extrusion 
based deposition of cell-loaded bioink. Reprinted with permission of ref. 58 e) Stereolitograpy based cell-loaded tissue construct. Reprinted with permission of ref. 62 

f) Magnetic levitation-based assembly. Reprinted with permission of ref. 74 g) Acoustic node spheroid formation. Reprinted with permission of ref. 77 h) Optical 
tweezer-based cell assembly. Reprinted with permission of ref. 89 i) Electrically driven assembly of cell aggregates. Reprinted with permission of ref. 94. 
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significant impact on cell-fate transitions of the intestinal epithelia and 
in vivo regeneration [38]. The complexity behind intestinal organoid 
derivation leaves considerable room for further optimization, even 
though the main biochemical tools and protocols are already at our 
disposal. We must also consider physical signals, namely their spatial 
variation and their role in further governing GI organoid formation. A 
recent study demonstrated the formation of a physiologically-relevant 
model for intestinal epithelium using colonic crypts isolated from 
human biopsies taken during routine colonoscopies [39]. The crypts 
were cultured in arrays of microfabricated collagen scaffolds with in
vaginations created by polydimethylsiloxane (PDMS) stamps designed 
to support a biologically informed shaped epithelial monolayer. Gradi
ents of cytokines, metabolites and growth factors were applied to these 
cultures to induce differentiation or to maintain the features of stem 
cells across relevant sections of the shaped monolayer. It was shown that 
the combination of the engineered invaginations to support a shaped 
monolayer along with chemical and molecular gradients resulted in an 
in vitro model for human colon crypts from patient-derived samples that 
recapitulated physiologically relevant tissue polarity, cell migration, 
architectural features, among other metrics. In fact, the role of purely 
physical parameters such as force and shape also play a defining role in 
organoid assembly, as discussed in subsequent sections. 

4. Physical cues 

For this discussion, we will divide organoid formation into two pri
mary approaches. The first is self-assembly, i.e., the process that gives 
cells full autonomy to generate spheroid and organoid structures, most 
commonly accomplished with Matrigel either in 3D hydrogels or liquid 
hanging-drops [36,40]. The second is a topography-driven assembly, 
which is achieved by combining cells with pre-fabricated architectures 
that enforce a certain degree of cellular organization, potentially push
ing the process to a more advanced start [41]. 

In self-assembly protocols, the goal is to provide the cells with an 
environment that fosters proliferation, differentiation, and organization. 
Such an environment has been described as biolabile [26], representing 
the ease with which cells can manipulate their surroundings to 
approximate natural development. Of note, biological tissue develop
ment occurs from a soft to stiff mechanical environment [26], and the 
formation of GI organoids is no exception [42,43]. As previously 
referred, Matrigel has been widely used as a soft, biologically derived 3D 
hydrogel for organoid generation over many decades [44]. Matrigel has 
also been used for hanging-drop intestinal organoid fabrication, a 
well-known method where cells aggregate by gravity within a sus
pended drop of medium, potentially supplemented with Matrigel to 
promote cell aggregation [40]. However, the difficulty in defining 
Matrigel composition and well-described batch-to-batch variation have 
continuously driven the community towards more reliable alternatives 
[45]. Overall, different hydrogels have been studied to obtain soft 3D 
environments for organoid development, most within the 200–1000 Pa 
stiffness range [33,34,46,47], using materials from both synthetic [33, 
34] and natural origins [48]. 

In fact, in the search for these “designer matrices” [33,34], scientists 
have been looking not only to 3D stiffness but also to the relevance of 
cell-adhesive sites. Commonly present in Matrigel and also in decellu
larized ECM-derived hydrogels [49], the ability of cells to adhere to the 
material is not a straightforward parameter in organoid formation. Even 
though most approaches integrate cell adhesive moieties within 
hydrogels [47], it has been demonstrated that non-adhesive environ
ments, such as soft alginate hydrogels, could promote intestinal orga
noid maturation and functionality to an extent that is similar to that of 
Matrigel (adhesive) [48]. This suggests that cell-centered organoid for
mation is mostly dependent on adequate mechanical support and envi
ronmental softness, and adhesiveness might not be as critical as initially 
thought. 

Naturally, most of these studies attempt to reconstruct the healthy GI 

environment, but the focus might be on recapitulating diseased tissues, 
namely GI cancers. Tumor tissue is often stiffer and more fibrotic than 
healthy tissue [26]. As such, when translating organoid formation to the 
study of cancer as well as to disease modeling, certain changes must be 
considered. First, the cells should be from cancerous origins, and 
represent similar genetic/phenotypic alterations [50]. Second, the cues 
which are provided to these cells might need to be rethought. For 
example, increasing matrix modulus to match increased tumor stiffness, 
as well as introducing hypoxia to the environment, have both been 
shown to positively favor GI cancer organoid formation [51], contrary to 
what happens in healthy scenarios. 

While soft 3D gel environments are clearly important for self- 
assembly based organoid generation, using prefabricated GI-like sur
faces as scaffolds for organoid formation might function in distinct 
mechanical stiffness ranges (e.g., soft, or rigid). To achieve well-defined 
crypt-villus architectures and cell-lineage compartmentalization, pre- 
shaped collagen scaffolds with stiffness around 9 kPa (9–10 times 
higher than 3D hydrogels) were employed [52,53] and PEG-based 
structures with similar architecture on the 40–90 kPa range also led to 
proper intestinal-like cell phenotypes and functionality [41]. Indeed, it 
was previously reported that matrix stiffness could have an important 
impact on ISC differentiation [33]. When deriving an organoid from 
single-cell approaches, a soft mechanical microenvironment (sub-KPa) 
appears to be fundamental for proliferation and maturation. However, 
when accelerating the process towards pre-engineered GI-like surfaces, 
stiffer environments might be considered as cells adhere to a 2D surface 
instead of expanding within a 3D restrictive environment. Researchers 
recently demonstrated that pre-shaped microfluidic chips within 
sub-kPa stiffness could also form highly complex mini-intestines on-a-
chip [54]. In this work, the integration of crypt-villus architectures 
within a microfluidic chip added a new layer of complexity by creating 
an open-flow environment that mimics the natural GI cavities, unlike 
classical organoids that present closed cavities that hinder lifespan, 
experimental setups and homeostasis [54]. Together, these results 
demonstrate that classical organoid assembly methods might lack the 
required complexity to fully recapitulate living tissue dynamics, which 
allow proper modelling of healthy or diseased organs. As such, we next 
explore how distinct state-of-the-art techniques for 3D biofabrication 
might be employed to advance organoid assembly to higher levels of 
shape complexity, as a way to better model physiological events, and 
efficiency, as a way to accelerate organoid differentiation. 

5. 3D printing/additive manufacturing 

Biochemical and physical differentiation methods are employed in 
combination with microfabrication methodologies to design and fabri
cate increasingly complex geometries and designs, enabling rapid pro
totyping and the ability to explore multiple designs and variables. 
Although some of the fabrication methods that will be described in the 
following sections do not directly report the fabrication of gastrointes
tinal organoids, they serve as an introduction point towards future 
gastric organoid designs that employ programmable bioassembly based 
on the combination of diverse fabrication methodologies. 

The fabrication of organoids using microfluidic devices has been 
widely reported. Continuous flow-based microfluidics relies on trapping 
liquid flow between another immiscible flow, allowing to encapsulate 
different components or cells into microdroplets [55]. The proliferation 
of stable cell assemblies relies on the chemical and physical environment 
and types of cells. The microdroplets can serve to encapsulate a few 
living cells within tunable physical and chemical parameters that enable 
the formation of organoids [56]. The main advantages of these methods 
are their inexpensive and high throughput mini reactors that use small 
liquid volumes where a single droplet can contain nutrients, support 
materials and biochemical signals introduced by multiple inlets of 
continuous flows [57]. 

3D printing of tissue commonly relies on extrusion or photo 
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crosslinking mediated bioprinting based on bioinks that serve as extra
cellular matrices for living cells to form simplified organ models [58]. 
The automated and continuous deposition of the mixture over a sub
strate is driven by extruding the material in the shape of a continuous 
filament. The deposition position is dictated by a predetermined pattern 
using computer-aided design (CAD). The bioinks employed in bio
printing consist of hydrogels that can be designed to promote cell dif
ferentiation. The bioinks can serve as a support for cells as well as 
sacrificial (removed from final design) and/or functional layers that 
contribute to the final 3D shape of the assembled organoid. As bioinks 
are optimized for commercial distribution, their reliability has 
increased, enabling homogeneous cell concentration in each print. 
Nevertheless, most of these inks can be expensive and proprietary, 
limiting further optimization to adapt to other uses and applications. 
Combining multiple printing nozzles has resulted in the promising 
capability to create vascularized tissue assemblies by the sequential 
printing of cells and vascular networks. We note that the resolution of 
this type of 3D-printer relies on the diameter of the printing nozzle and 
deposition pressure; thus, not all bioprinters that are commercially 
available are capable of direct printing of organoids. 

Multiphoton laser lithography [59] and stereolithography [60] 
based biofabrication use rely on optical energy sources to photocrosslink 
a bioink or resin (commonly based on acrylate hydrogels) containing 
living cells over a substrate. This method offers high-resolution fabri
cation with micron size limit and could be considered a digital fabri
cation approach, as the layer-by-layer deposition of voxel-based patterns 
can be differentiated, minimizing material requirements when 
compared to extrusion methods. Two-photon lithography can generate 
micron-size structures that present topographical cues which are able to 
regulate cell differentiation depending on shape and material selection 
[61]. Stereolithography methods are commonly faster than laser-based 
bioprinting due to their large working area provided by digital light 
micromirror array projectors that direct the photo-crosslinking regions 
[62]. A layer-by-layer adhesion of different segments constructs the 
bioassembly, thus the fabrication time depends on the number of 
Z-layers. Stereolithography methods require planning and optimization 
as the UV light used in some of these approaches can damage cell DNA 
and the photocuring agents can produce toxic side effects. These toxic
ities have been overcome, in part, by fine-tuning different conditions, 
including concentration, pH, temperature and reaction time. 

With such a diverse toolkit, bioassembly has permitted the devel
opment of customized organoid fabrication with complex geometries 
[63]. Micron-sized positioning and the placement of organoids has been 
reported. However, the size of organoid constructs depends on a variety 
of non-trivial parameters, such as nozzle diameter for extrusion methods 
and Z resolution for layer-by-layer methods. Moreover, there are certain 
limitations for using bioprinters, as these methods might entail long 
fabrication times, as these types of additive manufacturing methods 
require building the structure one layer at a time. Bioprinting methods 
can also induce stress to live cells due to exposure to heat, shear stress 
and chemicals used to stabilize the bioinks. The cell density of the 
organoid assembly can be reduced by diluting the cells into the support 
bioinks to enable the optimal viscosity and mechanical proprieties to 
print. 

6. External field driven assembly 

External field-driven assembly offers a promising scaffoldless fabri
cation approach to drive and direct the rapid assembly of tissue engi
neering, offering complimentary design opportunities [64–66]. External 
fields generate physical forces that push cells intro predetermined 
shapes, which can be stabilized using crosslinking hydrogels. In general, 
preconcentration of cells into confined spatiotemporal regions provides 
a higher packing density and dynamic reconfiguration of the cell as
sembly in real time compared to passive fabrication approaches. The 
main external fields used in microfabrication include magnetic, 

acoustic, optical, electrical and combinations of these fields [67,68]. 
Magnetic assembly can manipulate and assemble cells into organoids 

and tissues. The main methods rely on applying oscillating magnetic 
fields to push the assembly into predetermined designs. Individual cells 
must be labeled with magnetic materials in order to be manipulated by 
an external magnetic field, commonly generated by a Helmholtz coil. 
(an electromagnet device capable of generating localized magnetic 
fields) [69,70] These fields are ideal when high spatiotemporal control is 
desired, although the need for trained technicians and specialized 
equipment could limit the widespread use of this approach. Magnetic 
levitation utilizes a different approach by introducing individual cells 
within a magnetic gradient, which repel the cells from magnetic fields 
[71–73]. In order to achieve this, cells are submerged in a paramagnetic 
medium placed in between a permanent magnet. Depending on their 
magnetic susceptibility and other properties (e.g., density, size, 
compressibility), cells will levitate into different 3D-planes and form 
engineered tissues [74]. Magnetic levitation currently offers limited 
types of geometrical shape assemblies. The ease of use of magnetic 
levitation for organoid assembly could be utilized in a wide range of 
locations, as demonstrated by the use of this technique in the space 
station [75,76]. Acoustic assembly is another candidate to drive the 
assembly of cells, as it has been widely used in biomedical applications 
due to its safety and tissue penetration. The assembly of organoids 
driven by acoustic forces relies on the formation of pressure nodes that 
drive cell migration towards pre-established patterns [77]. The main 
parameters that govern organoid formation rely on the container shape, 
voltage, and frequency, although different acoustic transducers produce 
different types of assemblies. For instance, standing waves can generate 
large-scale 3D patterns that simulate complex tissue assemblies such as 
brain-like cortex [78], cardiac tissue [79] or ring-shape assemblies [80]. 

Surface acoustic waves can generate smaller organoids in a scalable 
manner. This method relies on the generation of traveling waves parallel 
to the substrate that create smaller “acoustic traps” or tweezers that can 
arrange small numbers of cells into organoids [81]. Acoustic levitation 
has also been employed for the scaffoldless assembly of cell constructs 
based on the projection of focus ultrasound patterns that generate 3D 
pressure nodes that trap cells into predesigned shapes overcoming 
gravity [82]. Although the generation of ultrasound holograms has 
typically relied on arrays of acoustic transducers, more recently, 3D 
printed masks have been used to create acoustic holograms using a 
single transducer [83,84]. Acoustic levitation systems can create more 
complex structures than other acoustic systems due to the ability to 
project and reprogram the shape. However, acoustic levitation systems 
are best-suited to generate millimeter size constructs [85,86]. 

Optical tweezers can manipulate and assemble living cells into 
organoid constructs [87]. These methods rely on focused or 
counter-propagating laser beams that trap and confine cells in optical 
traps [88,89]. Optical forces can be tuned by modulating intensity, 
medium and working area. Optical forces operate in a biocompatible 
range, enabling them to manipulate cells with a high degree of precision 
without damaging cell integrity, being even capable of subcellular 
manipulation [90]. Holographic optical tweezers have been used to 
fabricate sequential cell assemblies by positioning living cells in 
different positions [89,91]. Optical assembly methods rely on trans
lucent media, limiting the application of this approach for in vivo as
semblies. Electrically driven assembly of cellular constructs commonly 
relies on the use of dielectrophoretic force to manipulate and isolate 
cells towards electrodes [92,93]. The working mechanism relies on the 
polarization of cells subjected to an electric gradient, and the subsequent 
accumulation of polarized cells at the surface of microelectrodes [94, 
95]. The limit of this approach relies on the formation of 3D assemblies 
[96,97], potential damage to cell membrane under high electric field 
and medium constraints, as the presence of diverse analytes could 
directly affect the dielectrophoretic assembly mechanism. 

Employing external fields to generate scaffoldless cellular assemblies 
has great potential for scaling the fabrication of gastrointestinal cancer 
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models with a high degree of flexibility in the design and preconcen
tration of cells in confined geometries. Most methods require chemical 
or optical cross-linking to make permanent tissue constructs. The par
allel use of multiple external fields could overcome the limitations of 
each method and permit the manipulation and assembly of distinct 
cellular building blocks. As a potential research area, external fields 
could enable an on-site assembly of engineered tissue inside a living 
body. In this direction, the use of external fields could increase the 
reproducibility and throughput of organoids as the external fields can be 
continuously applied using a predetermined parameter to promote the 
formation of a GI model. 

7. Outlook 

In summary, GI cancer organoids can be designed and fabricated by 
various approaches. It is essential to consider the type of cells required to 
form the organoid (adult, differentiated cells, or stem cells), and the 
biochemical and physical environmental cues that will guide the pro
liferation and differentiation of such cells into gastrointestinal tissue- 
like architectures. The merging of biology and engineering has led to 
hybrid biofabrication protocols enabling the development of increas
ingly intricate designs that mimic the complexity of native tissue. For 
instance, microfluidic platforms offer large throughput and lower cost. 
They are better suited for the fabrication of mostly spherical constructs. 
Additive manufacturing consists of different methods based on layer-by- 
layer deposition; the most common methods rely on extrusion or pho
tomasking. While these methods offer a high degree of design oppor
tunities, they have less cellular density due to the need for a scaffold, 
required by the inherent transfer of materials for 3D printing methods. 
External field-driven assembly enables the rapid formation of organoids, 
although the diverse assembly protocols that depend on the cellular 
proprieties as well as the microenvironment and offer less design flexi
bility than 3D printers. 

The successful translation of gastrointestinal cancer organoids for 
patient-specific cancer models requires the fabrication and assembly of 
millions of spheroids as biofabricated building blocks without compro
mising their differentiation capacity. Therefore, standardization is of 
key importance to ensure reproducibility and translation of these 
models. The combinatorial use of the diverse self-assembly and directed 
approaches for organoid differentiation could induce a programable 
organization that better mimics native tissues. 

Engineered tissues could be a poor predictor for human models if the 
characteristic biochemical and mechanical parameters of different tis
sues are not adequately considered. Despite the recent progress in 
developing organoids as early gastrointestinal cancer models, key 
challenges include: (i) increasing the reproducibility of organoid fabri
cation methods and characterization protocols. As organoid fabrication 
is a developing field with a fast pace of growth, there is a lack of proper 
standardization from lab-to-lab. This is particularly challenging when 
trying to mimic native tumor heterogeneity. However, the development 
of more complex and tunable organoid models could integrate both 
healthy and cancer cells into a complete simulation model.(ii) The 
integration of 3D arrays of organoids with vascular inputs that mimics 
functional aspects of the GI tract (digestion, absorption of nutrients and 
excretion of digestion waste products). (iii) Mimicking he effect an 
organ physical behavior such as interstitial pressure flow conditions, 
dynamic tissue growth and mimicking gut motility (peristalsis) (iv) 
Finally, special attention should be placed on studying the microbiota’s 
effect in organoid models. 

Organoids could be the building blocks of organ-on-a-chip devices, 
taking advantage of the lower cost and potentially reducing the burden 
on animal models. Organ-on-chip models could introduce physical 
forces generated by fluid shear and geometrical confinement to mimic 
the tumor physiological microenvironment, while also simplifying bio
analysis by integrating different optical [98] or electrochemical sensors 
[99] into the device. Arrays of organoid circuits that combine cellular 

structures from different gastrointestinal tract sections allow for analysis 
of the synergistic toxicity and metabolite response of organoids to novel 
therapeutic models. The ability to generate lab on a chip organoid 
platform could enable early cancer models, potentially overcoming the 
lack of heterogeneity in mono cell cancer culture designs by integrating 
massively parallel models that incorporate both healthy and cancer 
cells. Moreover, once the gastric organoids are developed, they could be 
transplanted with the assistance of microrobotic technology to enable 
regenerative tissue engineering. To this purpose, organoids are ideal, 
since they could be delivered directly into target areas, thus increasing 
their ability to proliferate and survive. Perhaps more importantly, direct 
organoid delivery could assist in reducing cost, risk and discomfort 
associated with major surgery for organ transplantation [100]. 

With continuing advances in science, technology, and engineering, 
today’s healthcare problems are open to innovative solutions than ever 
before. There are many competing technologies focused on enhancing 
throughput, improving translational relevance and developing plat
forms for potential commercialization of gastric models [101]. 
Commercialization poses significant hurdles to medical technology 
innovators/entrepreneurs and requires skillful management of patents, 
regulatory approval, market dynamics, business models, competition, 
financing, and technical feasibility among other potential challenges. 
Thus, emphasis should be placed on identifying market and clinical 
needs, embracing the engineering aspects, and focusing on value gen
eration. The field could benefit from developing robust intellectual 
propriety portfolios and engaging private enterprises. As the use of 
gastrointestinal organoids matures into a fully reproducible and viable 
tool in addition to other existing alternatives, the advances in field and 
successful translational examples could fuel the next round of innova
tion, enabling the standardized organoid growth and assembly meth
odologies as ubiquitous tools or protocols. When integrated with novel 
analysis and downstream omic characterization tools for either using 
their cellular, extracellular or secretome such as extracellular vesicles, 
they present a promising vision into the future of prevision medicine 
[102]. In conclusion, we envision that organoids as patient-specific 
models has great potential to revolutionize tissue engineering and 
drug testing, enabling personalized and precision medicine approaches, 
improved understanding and therapy design for patients suffering from 
gastrointestinal cancers. 
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