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Abstract  11 

Background: Automatic recognition of human movement is an effective strategy to assess abnormal gait 12 

patterns. Machine learning approaches are mainly applied due to their ability to work with multidimensional 13 

nonlinear features.  14 

Purpose: This review aims to compare several machine learning algorithms employed for gait pattern 15 

recognition in motor disorders using discriminant features extracted from gait dynamics. Additionally, this work 16 

highlights procedures that improve gait recognition performance. 17 

Methods: We conducted an electronic literature search on Web of Science, IEEE, and Scopus, using “human 18 

recognition”, “gait patterns’’, and “feature selection methods” as relevant keywords. 19 

Results: Literature analysis showed that kernel principal component analysis and genetic algorithms are 20 

efficient at reducing dimensional features due to their ability to process nonlinear data and converge to global 21 

optimum. Comparative analysis of machine learning performance showed that support vector machines (SVMs) 22 

exhibited higher relative accuracy and proper generalization for new instances.  23 

Conclusions: Automatic recognition by combining dimensional data reduction, cross-validation and 24 

normalization techniques with SVMs may offer an objective and rapid tool for investigating the subject’s 25 

clinical status. Future directions comprise the real-time application of these tools to drive powered assistive 26 

devices in free-living conditions. 27 

Keywords Lower Limb Motor Disorders; Human Gait Pattern Recognition; Machine Learning 28 

Approaches; Dimensional Data Reduction 29 
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1 Introduction 1 

Walking is one of the most common human physical activities that can be performed in a variety of 2 

conditions and environments [1]. Analysis of human gait patterns can provide significant information related to 3 

the physical and neurological functions, and it may contribute to the diagnosis of human motor disorders in 4 

pathological conditions [2,3]. For these purposes, the human gait patterns need to be recognized, i.e., categorized 5 

according to the situation or clinical status of the analysed locomotor function.  6 

Several studies have argued that automatic recognition of human gait patterns allows us to (i) conduct a 7 

quantitative and non-invasive diagnosis of locomotion by comparing the studied locomotor function to a 8 

healthy-standard gait [1,4,5], (ii) indicate a subject-specific task for personalized gait training by automatically 9 

adjusting assistance in accordance with the users’ recognized motor function [6], (iii) plan future treatment 10 

according to the user’s needs, i.e., according to the user’s gait impairment previously recognized through 11 

automatic recognition methods [1,4,5], and (iv) quantify and describe the progress of gait treatment by 12 

comparing the user’s gait patterns at baseline and follow-up moments [1,4,5]. Additionally, these automatic 13 

systems for clinical gait analysis constitute an objective technique for massive manipulation of gait data, and 14 

they are more quick and cost-effective than the conventional procedures usually used by clinicians [1,7,8].  15 

Various gait disorders have been investigated in the context of pattern recognition to improve initial 16 

diagnosis techniques. The injuries that often lead to gait disorders are stroke, spinal cord injury (SCI), 17 

Parkinson’s disease (PD), cerebral palsy (CP), multiple sclerosis (ME), hip and knee osteoarthritis (OA), and 18 

age-related gait impairment. However, the current strategies that have been proposed for the automatic 19 

recognition of gait disorders still do not incorporate historical clinical information about the patient in diagnosis 20 

analysis [9]. In an attempt to improve the locomotor pattern of neurological injury patients, gait training 21 

procedures’ have been developed, such as treadmills with or without body weight support, functional electrical 22 

stimulation, robotic assistive devices, and the use of virtual scenes that simulate walking in different 23 

environments [6,10,11].   24 

To conduct a more comprehensive and reliable recognition of human motor pattern, diverse types of gait 25 

dynamics, such as spatiotemporal, kinematic, kinetic and physiological indicators (e.g., electromyographical 26 

activity and pulse rate), may be considered since they distinctly describe locomotor function [4,12,13]. Most 27 

commonly, the monitoring of these parameters involves expensive but highly accurate systems, such as infrared 28 
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cameras, optoelectronic systems and force plates [14,15]. As non-ambulatory devices, these sensory systems 1 

only operate in controlled environments, [16] and therefore, they have a difficult time analyzing consecutive 2 

gait cycles for long-term applications, especially in a free-walking scenario [17,18]. Consequently, current 3 

research has focused on the design and application of recognition tools that only use gait dynamics recorded by 4 

wearable sensory systems, such as force-contact sensors (e.g., footswitches and foot pressure insoles), 5 

accelerometers, gyroscopes, and inertial measurement units (IMUs) [19]. Recent technological advances make 6 

these sensors smaller, lighter in weight, easier to don and doff, and cheaper than external sensors. They also 7 

have good user compliance and a comparable performance to the external ones [17,20,21]. Furthermore, these 8 

measuring devices permit the extension of the recognition process to free-living conditions and foster a more 9 

time- and cost-effective categorization of human gait patterns than external devices. Ambulatory recognition 10 

with wearable sensors in free-walking environments can also introduce benefits by offering functional robotic-11 

oriented therapies[22–24]. Research groups tend to choose between external and wearable sensory systems at 12 

an early stage, so this choice needs to be carefully considered as a function of the research interest of the study.  13 

Considering the potential of automatic recognition and given its contribution to the gait rehabilitation field, 14 

we have reviewed recent studies that employed machine learning algorithms in an offline setting to 15 

automatically recognize the clinical status of human locomotion. Our reasons for focusing our search on 16 

machine learning approaches are three-fold: (i) their generalized ability to the model the complex nonlinear 17 

relationships inherent to gait data; (ii) their aptitude to work with multidimensional data; and (iii) their ability 18 

to easily incorporate newly data in an attempt to improve prediction performance [7,25,26]. We reviewed studies 19 

that exclusively employed gait dynamics recorded from either external (e.g., force plates and motion analysis 20 

systems) or wearable (e.g., IMUs and instrumented shoes) sensory systems. We did not include studies that used 21 

features encoded as images. In fact, we only analysed studies that extracted features from biomechanical signals 22 

that describe the gait. We applied this selection criteria since we propose to disclose a walking recognition 23 

procedure that only depends on gait information that may be acquired from wearable sensors to take advantage 24 

of this sensory technology. In fact, there are wearable sensory solutions that can monitor the same biomechanical 25 

parameters those that are conventionally monitored by optoelectronic systems and force platforms. In contrast, 26 

studies that included image-specific features were not investigated given the limitation of the recognition 27 

process in the motion analysis laboratory.     28 
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This review also provides a comparative analysis of various machine learning methods applied to locomotor 1 

patterns classification according to their advantages and drawbacks exhibited in gait analysis. Moreover, we 2 

highlight and review pre-processing procedures that are commonly applied before the classification process to 3 

improve the performance of gait recognition. In the scope of this review, pre-processing procedures cover 4 

methods for dimensional gait data reduction (feature selection methods), methods for cross-validation (CV) and 5 

feature normalization. Based on the reviewed information, we identify a standard procedure for human walking 6 

recognition using gait dynamics, and address the main search questions raised in this study: (i) What are the 7 

most appropriate classification methods to recognize gait patterns using gait dynamics?; and, (ii) What are pre-8 

processing methods that improve the gait pattern recognition? To the best of the authors’ knowledge, there are 9 

no previous works on the state-of-the-art that address this comparative analysis; this analysis highlight strategies 10 

that are capable of performing intelligent, accurate, rapid and cost-effective clinical gait analysis.  11 

The schematic diagram depicted in Fig. 1 highlights the standard procedure for the recognition of human 12 

gait patterns using gait dynamics, which involves the following stages: extraction of gait features from gait 13 

dynamics; normalization of features; methods to select the most relevant features; classification stage; and, 14 

evaluation of the recognition process. This diagram was elaborated in accordance with the surveyed contents, 15 

and it consequently states the topics discussed in this review. Section 2 outlines the search strategy conducted 16 

in this literature survey and the extracted data. Section 3 describes the mathematical principles and the 17 

application of multivariate statistical approaches (used as feature selection methods) in gait recognition. Section 18 

4 highlights and compares the most relevant studies that employed machine learning approaches for offline 19 

walking recognition using gait dynamics. Section 5 systematizes strategies to improve the performance of gait 20 

pattern recognition namely, feature normalization and cross-validation methods. Conclusions and future 21 

directions are noted in Section 6.   22 
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 1 

Fig. 1 Schematic diagram of a standard procedure implemented for gait recognition using gait dynamics. The acronyms used in this 2 
diagram correspond to the following: linear principal component analysis (PCA); kernel based-PCA (kPCA); genetic algorithm (GA); 3 
cross-validation scheme (CV); Leave-One-Out (LOO); distribution optimally balanced stratified CV (DOB–SCV); clustering analysis 4 
(CA); support vector machine (SVM); Naïve Bayes (NB); logistic regression (LR); K-nearest neighbors (KNN); decision tree (DT); 5 
discriminant analysis (DA); artificial neural networks (ANN); multilayer perceptron (MLP); probabilistic neural network (PNN); time 6 
delay neural network (TDNN); negative likelihood ratio (NLR); and area under the curve (AUC). 7 

2 Methods 8 

2.1 Search Strategy   9 

We conducted a comprehensive electronic literature search in Web of Science, IEEE, and Scopus on studies 10 

from 2000 onward. In this electronic search, we applied the following keywords: [“human recognition” OR 11 

“human classification”] AND [“gait patterns” OR “locomotion”] AND [“impaired gait” OR “pathologic gait”] 12 

AND [“offline”] AND [“feature selection methods”]. In addition, wildcard symbols, such as hyphens or inverted 13 
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commas, were used to consider all possible variations of root words. The search was limited to titles and 1 

abstracts. 2 

  The papers identified in the initial search were included if they: (i) implemented machine learning 3 

approaches to distinguish between pathologic and physiologic locomotion (e.g., healthy/pathological gait and 4 

young/elderly subjects) or to recognize pathologic scenarios, such as fall risk and fatigue; (ii) only considered 5 

an offline recognition process; (iii) did not involve image-specific features acquired from ambulatory and/or 6 

non-ambulatory sensors; (iv) accomplished classification using normalized or non-normalized features 7 

extracted from biomechanical data on gait, such as spatiotemporal parameters, kinematics, kinetics and 8 

physiological indexes; (v) applied feature selection methods only as a pre-processing technique for the 9 

classification stage, (vi) were an original work; and, (vii) were written in English. Works that explored CV 10 

methods and other strategies to improve machine learning performance were also included. In addition, we did 11 

not impose constraints regarding sample size (number of subjects, number of trials, or number of strides) or the 12 

dimension of the features dataset.  13 

2.2 Data Extraction 14 

One researcher (JF) selected the studies and extracted their relevant data. Four researchers analysed and 15 

checked the extracted information (CS, JF, JM, and JP). Two different tables were used to extract the data 16 

related to the application of feature selection methods (Table 1) and machine learning approaches (Table 2) in 17 

the recognition process of gait patterns. For Table 1, we extracted the following information regarding the 18 

application of feature selection methods: the study’s identification; multivariate statistical approach; goal of 19 

dimensional reduction; dataset size and description of involved features; and main results obtained with and 20 

without (when available) the feature selection step. The data extracted in Table 2 included the study’s 21 

identification, goal, number, gender and age of the participants, gait dynamics (description and dataset size, 22 

when available), involved feature selection, cross-validation and normalization methods (when available), 23 

applied machine learning algorithms, and main results. Additionally, we extracted data concerning the 24 

methodologies implemented in the included studies to improve recognition performance (Section 5).  25 

All the information extracted from the selected studies served as the benchmark to broaden and discuss the 26 

concepts of the issues in question. A descriptive and comparative analysis was performed since the identified 27 

data were insufficient for a meta-analysis. 28 
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3 Feature Selection Methods 1 

Recent advances in sensory technologies for data acquisition (e.g., smaller, lighter in weight, and cheaper 2 

sensors) have contributed to an enormous increase in the number of empirical signals, which implies a priori 3 

selection of sufficient empirical quantities for the recognition of patterns [27]. Data reduction techniques based 4 

on parameters’ selection from gait waveforms (e.g., peak values and magnitudes at specific gait cycle events) 5 

are popular due to their simplicity [28]. However, this methodology is often subjective and selects parameters 6 

that can highly be correlated [28]. Thus, methodologies for a proper feature selection have been proposed to 7 

improve classification performance (e.g., increase accuracy) [7,29,30] by selecting the features that represent 8 

the maximal separation between classes [31,32] and providing faster and more cost-effective models [31,33]. 9 

These methodologies can be organized into three categories: filter methods (open-loop methods); wrapper 10 

methods (closed-loop methods); and, embedded methods (closed-loop methods) [31].   11 

Filter methods work on the dataset without considering the classification algorithm. Subsequently, data 12 

analysis involves a heuristic criterion that only depends on inner data properties (e.g., distribution of values and 13 

correlation between features) [31,34]. These methods are computationally simple and prompt [31].  14 

On the other hand, the wrapper methods use a heuristic criterion to evaluate the different subsets in 15 

accordance with the specific performance of a classifier. Therefore, to select the features, the wrapper methods 16 

consider the dataset and the classifier properties, tailoring this approach to a specific classification algorithm 17 

[31,34]. These methods are less prone to a local minimum, although they exhibit the risk of over-fitting and are 18 

computationally intensive [31]. 19 

Embedded methods have the advantage that they include interaction with the classification model; however, 20 

at the same time, they are far less computationally expensive than wrapper methods [31]. 21 

As illustrated in Fig. 1, the feature selection methods commonly used in walking recognition are PCA and 22 

their derived kPCA (both filter methods), GA (wrapper method), and hill-climbing (embedded method) [34,35]. 23 

We describe these multivariate statistical approaches in Section 3.1 and disclose their application in recent works 24 

in Section 3.2.  25 

3.1 Multivariate Statistical Approaches and Optimization Techniques  26 

Different multivariate statistical approaches that facilitate the interpretation of data based on variance 27 

estimation, have been applied in gait data to discriminate relevant information. The aim of the PCA is to find 28 
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the optimal linear transformation that best represents the data in the least square sense [3], and thus, it does not 1 

require the choice of any classifier. It yields a set of orthogonal bases in a new coordinate system and captures 2 

the directions of maximum variance in the training data [3,36–38]. The dimensional reduction is performed by 3 

keeping the first principal components (PCs), i.e., the values that retain the most variance of the data [3,29].  4 

kPCA is a dimensional reduction technique of nonlinear data that maps the input data into a higher-5 

dimensional feature space through a kernel function (e.g., linear, polynomial and radial basis function (RBF) 6 

kernels) [36,39]. Then, PCA method is applied in the feature space to extract the PCs of gait features [36,39]. 7 

Recognition studies have demonstrated that polynomial kernel achieves the best performance than linear or RBF 8 

kernels [36,40]. In addition, according to Liang and Lee [40], the data projections for even-degree polynomial 9 

kernels, particularly 2-degree polynomials, tend to make the clusters linearly separable.  10 

GA is a time-efficient optimization technique that searches the entire data space to find the best solution 11 

inspired in the natural selection process in genetics [35,41,42]. First, it randomly creates the populations (data 12 

to be processed). Then, in each iteration, GA only keeps the potential candidates that better optimize the cost 13 

function defined according to selected classifier (wrapper method) for the next iteration [42,43]. These 14 

populations can be processed by three genetic operators: selection, crossover, and mutation [44]. In this sense, 15 

the data space is iteratively modified, and GA quickly converges to the global optimum solution [35,42,44]. GA 16 

is also able of dealing with multivariable data space and nonlinear input-output interactions [35,42,43,45].  17 

Regarding the hill-climbing algorithm, it is a sequential feature selection algorithm that iteratively searches 18 

the features that positively contribute to classification accuracy [46,47]. Hill-climbing uses each feature for an 19 

initial classification, and based on the performance of this classification, the features are ranked from highest to 20 

lowest [47,48].  21 

3.2 Search Results and Discussion  22 

The feature selection methods noted in Section 3.1 have been used in the dimensional reduction of gait 23 

parameters, and they constitute a relevant pre-processing method for gait pattern classification. Table 1 24 

synthesises the purpose, features dataset and recognition results of the seven collected studies that applied 25 

feature selection methodologies in offline gait pattern recognition. These studies are the outcome of the search 26 

strategy carried out in this literature review, which considered studies published since the year 2000 that 27 
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exclusively involved feature selection methods as pre-processing in machine learning approaches for 1 

dimensional reduction of gait dynamics.  2 

In the seven included studies, four works applied PCA [28,36,38,49], one study investigated kPCA [36], two 3 

works implemented hill-climbing strategies [48,50], and the reaming study employed the GA method [44]. 4 

Nevertheless, all investigated works integrated distinct features datasets in terms of biomechanical parameters, 5 

and sample size. This heterogeneity in the datasets demonstrates that the reviewed multivariate statistical 6 

approaches can be applied to discriminate physiological, spatiotemporal, kinematic and kinetic parameters 7 

independently of the number of input features. Moreover, such divergence compromises the comparison of the 8 

impact obtained by dimensional reduction in offline recognition. Indeed, only one study [36] compared the 9 

effects obtained in the classification process by two different feature selection methods namely, PCA and kPCA.  10 

In general, Table 1 shows that the use of feature selection methods improves the accuracy of gait pattern 11 

recognition compared to inclusion of the entire dataset. For instance, in one study [49], the accuracy grows from 12 

58% to 95.8% due to proper identification of the relevant features for the classification by applying PCA. 13 

Furthermore, Wu et al. [36] also showed that identification of the most relevant features by kPCA (17 features 14 

against an original dataset of 36 features) augmented the classification accuracy from 85% (no dimensional 15 

reduction) to 91% [36]. This behaviour results from the ability of dimensional reduction to create a compact set 16 

of uncorrelated features that still characterize the original data without redundancy [47]. Nevertheless, two 17 

studies [38,50] reported similar classification performance concerning the accuracy metric, when the entire 18 

dataset and a well-reduced features dataset were involved. In these cases, dimensional reduction does not 19 

augment recognition performance but it minimizes the complexity of the feature dataset and consequently 20 

reduces the computational cost of the recognition process. This finding can particularly be observed in Lai et 21 

al. [50], where the proposed hill-climbing method selected 32 features from an original dataset formed by 512 22 

features, making the recognition more cost-effective. 23 

Table 1  Studies that employed feature selection methods as a pre-processing strategy in offline walking recognition 24 

Study Method Implementation goal   
Features 

Results 
Dataset size Description 

Eskofier 

et al. 

[49] 

PCA 

Select the spatial and 

temporal information 

more relevant in the 

classification of distinct 

84 features 

per subject 

(48 in total) 

from 10 gait 

cycles 

84 spatial and temporal 

parameters of the segment 

motion normalized to 101-

time steps 

Maximum accuracy (95.8%) 

was reached when using 36 to 

39 PCs. The worst distinction 

between elderly and young 
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gait patterns (elderly and 

young healthy subjects)  

 gait patterns had an accuracy 

of 58% using only 10 PCs 

Badesa 

et al. 

[38] 

PCA 

Study the possibility of 

reducing the number of 

features in the evaluation 

of distinct machine 

learning approaches 

(SVM, NB, LR, DA, 

KNN) in the estimation of 

physiological states in a 

robot-assisted training  

 5 features 

per subject (7 

in total) and 

per gait cycle, 

along 5 min 

of walking 

Pulse rate, respiration rate, 

skin conductance level, skin 

conductance response and 

skin temperature 

The best classification (91.3% 

of accuracy) was achieved 

using the 3 PCs (using feature 

extraction) and 5 PCs (no 

feature extraction) in the SVM 

classifier, meanwhile the 

worst classification (49.52% 

of accuracy) was performed by 

NB with 1st PC 

Deluzio 

et al. 

[28] 

PCA 

Select the biomechanical 

features that best 

characterize the 

differences between knee 

OA and control groups 

8 features per 

subject (113 

in total) from 

5 walking 

trials 

Magnitude of flexion angle, 

range of motion, phase shift 

of flexion angle, magnitude 

of flexion moment during 

stance, amplitude of flexion 

moment, phase shift of 

flexion moment, magnitude 

of adduction moment during 

stance, magnitude of 

adduction moment in first 

half of stance of the knee  

PCA reported that the 

differences in the gait patterns 

of patients with knee OA and 

healthy subjects are 

characterized by 4 PCs from 8 

features. The distinction of the 

both gait patterns with 4 PCs 

resulted in an accuracy of 92% 

Wu et al. 

[36] 

PCA 

and 

kPCA 

Evaluate if the kPCA’s 

use extracts more 

significant gait features 

than PCA, in the 

classification of young-

elderly gait patterns  

36 features 

per subject 

(48 in total) 

from 3 

walking trials 

of 10 m 

 Stride length, stride 

duration, gait velocity, single 

support duration, stance 

duration, swing duration, gait 

cadence, and hip, knee and 

ankle angles and angular 

range of motion during the 

stance phases, swing phases 

and three intervals (heel 

contact to toe contact, toe 

contact to heel rise, and heel 

rise to toe-off  

The combination of kPCA and 

SVM achieved best 

performance (accuracy of 

91%) than the combination of 

PCA with SVM (accuracy of 

87%), have been selected 17 

and 14 PCs from the 36 gait 

features, respectively. No 

implementation of PCA and 

kPCA resulted in an SVM’s 

performance of 85% 

Chan et 

al. [48] 

Hill-

climbing 

Assess if the use of hill-

climbing method leads to 

a smaller subset of 

features to distinguish the 

locomotion of younger 

and older adults by means 

of MLP, SVM, NB, DT 

classifiers 

14 features 

per subject 

(25 in total) 

from 93 

instances 

recorded 

along 4 trials 

Cadence, symmetry and step 

regularity in the vertical and 

anterior- posterior directions, 

root mean square, integral of 

power spectral density and 

stride regularity in the 

vertical, medio-lateral, and 

anterior- posterior directions 

The application of hill-

climbing allowed increasing 

the accuracy from 82.9% to 

84.9% due to dimensional 

reduction of 14 to 10 gait 

features  

Lai et al. 

[50] 

Hill-

climbing 

Reduce the 

computational cost of the 

classification with SVM 

and extract the most 

significant features in the 

distinction between 

tripping patterns from 

healthy patterns of adults 

512 values 

per subject 

(23 in total) 

from 60 gait 

cycles 

performed 

along 10 min  

Minimum toe clearance 

values  An accuracy of 100% was 

achieved when 512, 256, 128 

64 and 32 features were 

combined. The worst accuracy 

of classification was 52.17% 

when are only used 8 features  

Su et al. 

[44] 
GA 

Verify if the combination 

of GA with ANN 

(GANN) is more accurate 

than the back-

propagation algorithm in 

classification of the gait 

patterns of patients with 

ankle arthrodesis and 

healthy subjects  

9 features per 

subject (20 in 

total) from 99 

pairs of 

footstrikes 

Ground-reaction force 

parameters normalized to 

percentage of gait cycle and 

percentage of body weight 

GANN model classified with 

accuracy up 98.7%, due to 

selection of the 5 most relevant 

features from 9 features, while 

the back-propagation 

algorithm (without feature 

selection method) presented 

recognition rates of 89.7%  

1 
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According to the reviewed literature [28,29,38,49], we verified that PCA is a widely used technique for 1 

dimensional reduction of gait dynamics. However, Wu et al. [36] verified that kPCA is able to extract the PCs 2 

that contain more relevant information on nonlinear human movement since it works better than PCA in the 3 

presence of random noise in gait data [36]. An inconvenience of both PCA and kPCA is choosing how many 4 

components (i.e., gait parameters) will be retained in the analysis. As we can see in Table 1, particularly in 5 

studies [28,38,49], the selection of correct number of PCs is fundamental to achieving the best possible 6 

recognition. Nevertheless, PCA and kPCA are both filter methods, and consequently, they present less 7 

complexity compared to other multivariate statistical approaches.   8 

Comparing the hill-climbing and GA procedures, the included studies highlight that the GA method always 9 

converges to a global minimum, whereas hill-climbing can converge to a local optimum [35,42,44]. 10 

Consequently, to ensure that dimensional reduction increases recognition performance, it is more effective to 11 

implement GA rather than hill-climbing. Additionally, GA quantitatively and qualitatively identifies the most 12 

relevant gait parameters, without requiring any tuning from the user to indicate the number of features to be 13 

extracted. However, GA depends on parameter selection (population size, crossover and mutation probability), 14 

and exhibits a higher computational cost than hill-climbing [41].  15 

A particular observation can be formulated by analysing Table 1 and the work proposed in the literature 16 

concerning the usual combination of PCA, a long-term studied feature extractor, with the classification model 17 

created by SVM [28,36,38,49]. In fact, this combination is very popular within the recognition problems and is 18 

independent of the application.   19 

In summary, spite the commonly applied of PCA, based on the reviewed information, we verified that kPCA 20 

and GA are appropriate methods for dimensional reduction of gait features for classification due to their ability 21 

to process nonlinear data (such as biomechanical gait data) and to converge to a global optimum. Additionally, 22 

as GA is a wrapper method, it stands out from kPCA, since it additionally considers the classifier performance 23 

during feature selection and feature dependencies. However, selection between GA (a wrapper method) and 24 

kPCA (a filter method) should consider both the computational cost and need to integrate the classifier during 25 

dimensional reduction (e.g., to avoid subjectivity in specifying of the number of features to be removed), as 26 

both methodologies provide reliable results.  27 

 28 
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4 Walking Recognition   1 

A current clinical challenge is to discriminate a healthy gait pattern from a pathological one and to evaluate 2 

the progress of gait disorders during locomotion. For this reason, walking classification methods based on 3 

statistical analysis, mathematical transforms, and machine learning approaches have been applied [4]. The 4 

statistical analysis approaches have fallen short in meeting the persistent challenges of quantitative and objective 5 

analysis, and often, they assume a normal distribution for input data [44,51]. Additionally, mathematical 6 

transforms are limited to applications of univariate signals and guideline selection based on wavelets [51].  7 

In contrast, studies [4,50,52] have revealed that machine learning algorithms present a larger ability to both 8 

capture patterns and model complex nonlinear relationships in gait data. In addition, these algorithms work 9 

appropriately with multidimensional data and easily incorporate newly available data to improve prediction 10 

performance [52,53]. The ability to address nonlinear and multidimensional data, such as human gait data, and 11 

the capability to properly process newly available data make machine learning approaches suitable methods for 12 

human gait pattern recognition. In this sense, this review focuses on machine learning approaches for walking 13 

recognition, presenting recent works demonstrating their application in binary and multiclass classifications of 14 

gait patterns. The basic principles of machine learning approaches commonly applied in gait classification are 15 

described below.  16 

Artificial Neural Networks (ANNs) are a mathematical model inspired by the structure and functional aspects 17 

of biological neural systems [42,53]. A standard method of ANNs is a multilayer feedforward neural network 18 

that consists of an interconnected set of neurons, where connections between the units only move forward from 19 

the input layer to the output layer through hidden layers [7,51,53]. The inputs are mapped to nodes through an 20 

input layer, and the outputs are controlled by a transfer function within each node, and it is necessary to adjust 21 

the weights of links between nodes to reduce the error function [7,51,53]. 22 

Support Vector Machine (SVM) is a supervised leaning classifier that employs kernel methods (e.g., linear, 23 

polynomial, and Gaussian RBF) to map nonlinear data (e.g., human gait data, mainly pathological data) to a 24 

higher dimensional feature space. Classification is performed in this feature space by finding an optimal 25 

separating hyperplane between the analysed classes [26,46,53]. For this optimization problem, parameter C 26 

(trade-off between maximum width of margin and minimum classification error) is computed [26,46,54]. 27 

Although there are no analytical studies on optimal kernel function, Gaussian RBF is widely suggested as the 28 
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most convenient option for inter-individual gait classification [55] due to its smoothing behaviour in treating 1 

the datasets of interest. The multiclass classification is usually conducted by “one-against-one” and “one-2 

against-all” approaches [56]. 3 

Naïve Bayes (NB) assumes that all features are independent of each other according to Bayes’ theorem 4 

[38,48]. First, the NB classifier creates a probabilistic model that estimates the probability that an input sample 5 

belongs to a certain class. For biomechanical gait data, the probabilistic model is commonly implemented by 6 

means of a normal distribution [38,48]. Then, a decision rule is applied to attribute the data to the most likely 7 

class [38,48]. 8 

Logistic Regression (LR) is a discriminative model for classification that applies maximum likelihood 9 

estimation after transforming the output into a logic variable [30,57]. In this way, LR estimates the probability 10 

of input features belonging or not belonging to a certain class [30,57].  11 

Discriminant Analysis (DA) aims to find a linear (linear discriminant analysis – LDA) or quadratic (quadratic 12 

discriminant analysis - QDA) combination of input features by separating input data into two or more classes, 13 

according to a least square sense [38,57,58]. Each input feature has its own assigned weight, which indicates 14 

the importance of this feature in discriminating between classes [38]. 15 

Clustering Analysis (CA) classifies a data set into homogeneous groups or “clusters”. There are hierarchical 16 

and non-hierarchical clustering methods that strive to minimize the variability within clusters and maximize the 17 

variability between clusters [59]. In the scope of gait recognition, fuzzy logic clustering is commonly used since 18 

it offers an insight into nonlinear relationships among gait variables [60]. It also allows that each input data 19 

simultaneously has partial memberships in multiple clusters, and thus a sharp boundary does not exist between 20 

clusters [4,60]. Furthermore, K-Nearest Neighbours (KNN) is a non-hierarchical clustering method that defines 21 

that the properties of input data based on likely similarity to their neighbours [7,38]. The neighbourhood is 22 

defined to include k points, and a distance metric (e.g., Euclidean distance) is used to identify the nearest 23 

neighbours of a query point [38]. Thus, k (where k ≥ 1) nearest training samples are used to classify the new 24 

sample with the most common class of k samples. 25 

4.1 Assessment of Recognition Performance  26 

To evaluate the performance of machine learning approaches in gait pattern recognition, three dimensions, 27 

namely, accuracy, sensitivity and specificity are commonly used, as shown in Fig. 1. These metrics are obtained 28 
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based on a confusion matrix [53]. Accuracy, as expressed in equation (1), is the most common and simplest 1 

measure to evaluate a classifier, and is defined as the degree of correct predictions of a model by using true 2 

positive (TP), false positive (FP), true negative (TN) and false negative (FN) values [33,35]. 3 

Accuracy (%) =
TN + TP

TP + TN + FP + FN
× 100% (1)  

Sensitivity, as presented in equation (2), measures the proportion of actual positives that are correctly 4 

identified as such. 5 

Sensitivity (%) =
TP

TP + FN
× 100% (2)  

Specificity, as showed in equation (3), measures the proportion of negatives that are correctly identified [35]. 6 

It is possible to determine the negative likelihood ratio (NLR), a ratio between false and true negatives, through 7 

a confusion matrix [30]. 8 

Specificity(%) =  
TN

TN + FP
× 100% (3)  

Another criterion recommended to assess the classification performance, independently of the a priori 9 

distribution of classes, is AUC [46,48,61]. It presents higher convergence than accuracy and represents the 10 

average sensitivity across all possible specificities [30]. AUC is determined through integration by the trapezoid 11 

method base on the Receiver Operating Characteristic, a graphic that visualizes the trade-off between the TP 12 

rate and FP rate [46,50,53,62].  13 

4.2 Search Results and Discussion 14 

Table 2 lists the most relevant studies since 2000 that employed gait dynamics in machine learning 15 

approaches (instead of image-specific features) to discriminate pathological/healthy and young/elderly gait 16 

patterns and deficits in the postural balance offline. For each reviewed work, we provide a summary of the study 17 

goal, study volunteers, gait dynamics used as features for classification, implemented methods for feature 18 

selection, cross-validation and feature normalization, applied machine learning algorithms, and findings of gait 19 

pattern recognition. Instances of gait dynamics are ground reaction force (GRF), an indicator of kinetic 20 

interaction with the ground, and the minimum foot clearance (MFC), an event that occurs during the mid-swing 21 

phase of the gait cycle.   22 
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Table 2 Studies that applied machine learning approaches for offline gait pattern recognition  

Study Study’s goal Participants Gait dynamics 
Feature 

selection  

Cross-

Validation 

Normalization 
Classifiers Results 

Alaqtash et 

al. [7] 

Automatic 

classification of 

pathological gait 

patterns (CP and ME) 

from healthy walking 

12 healthy subjects (age 

27.1±5.9 years), 4 CP 

(age 29.5±17.5 years) 

and 4 patients ME (age 

50.3±11.5 years) 

19 features based on 

amplitude and temporal 

parameters of GRFs  

M-shaped 

value and 

test 

ANOVA  

LOO Stride-time 

normalization  

KNN and ANN KNN was more accurate than 

ANN (accuracy of 85% against 

80%) in the classification of 3 

gait patterns through GRFs data 

Mohamma

d [45]  

Automatic diagnosis 

of neuro-degenerative 

diseases (PD, 

Huntington’s disease 

and ME) 

15 subjects with PD 

(age 66.8 ±2.8 years), 

20 patients with 

Huntington’s disease 

(age 46.65±2.81 years), 

13 participants with 

ME (age 55.61±3.56 

years) and 16 healthy 

subjects (age 

39.31±4.62 years) 

Temporal parameters: 

stride, cadence, double 

support, swing and stance 

interval (28 samples per 

subject) 

GA NA NA SVM SVM distinguished the 3 neuro-

degenerative diseases of healthy 

gait patterns with accuracy of 

90.65% 

Laroche et 

al. [62] 

Distinguish the gait 

patterns of an OA 

patient from a control 

subject 

20 healthy subjects (age 

63.82±6.55 years) and 

20 knee OA patients 

(age 62.23±6.24 years) 

12 features extracted from 

3D kinematics (1 sample 

per each subject’s stride in 

a total of 10 gait cycles) 

NA 5-fold CV Body weight- 

normalization 

SVM SVM distinguished the gait 

patterns of OA and healthy 

participants with an accuracy of 

88% 

Pogorelc et 

al. [5] 

Implement an early 

automatic recognition 

tool of distinct 

abnormal gait 

patterns 

5 healthy and 9 

pathological elderly 

subjects (over 65 years): 

(hemiplegia, PD, pain in 

the back, pain in the leg) 

13 features (angles, 

spatiotemporal parameters) 

from shoulders, elbows, 

hips, knees and ankles (141 

samples in total) 

NA 10-fold CV NA Five-class 

classification 

with SVM, DT, 

KNN, NB and 

ANN 

Accuracy of 97.9%, 90.1%, 

100%, 97.2%, 100% for SVM, 

DT, KNN, NB, and ANN, 

respectively 

Kaczmarcz

yk et al. 

[59] 

Gait pattern 

classification of post-

stroke patients in 3 

different foot 

positions: forefoot, 

flatfoot and heel 

74 post-stroke patients 

(age 55.6±9.4 years) 

11 kinematic variables of 

knee joint, sagittal and 

frontal hip joint (1 per 

subject along 10 m) 

 

NA NA Stride-time 

normalization 

ANN (51 input 

units, one 

hidden layer of 

27 units and 

one three-level 

output unit) 

ANN correctly classified the 

post-stroke patterns (accuracy 

of 100%) when the heel is the 

first contact 

Begg et al. 

[46] 

Classification of gait 

patterns of young and 

elderly subjects 

30 young healthy (age 

28.6 ±6.4 years) and 28 

elderly participants (age 

69.2 ±5.1 years) 

Minimum, maximum, 

median, 1st and 3rd quartile 

values of MFC (1 sample of 

each swing phase per 

subject that walked 20 min)  

Hill-

climbing 

3-fold CV z-score ANN (three-

layer) and SVM 

(linear, 

polynomial and 

RBF kernels) 

The best distinction of both gait 

patterns was achieved with SVM 

using linear kernel (accuracy of 

83.3%), while the ANN showed 

the worst accuracy (75%) 
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Begg et al. 

[26] 

Classification of gait 

patterns of young and 

elderly subjects 

12 young healthy (age 

28.1±5.6 years) and 12 

elderly subjects (age 

68.8±4.6 years) 

24 spatiotemporal, 

kinematic and kinetic 

parameters (1 sample per 

stride, per subject recorded 

along 3 trials of 15 m) 

Hill-

climbing 

(forward 

selection 

algorithm) 

6-fold CV z-score SVM (linear, 

polynomial and 

RBF kernels) 

SVM with linear, polynomial 

and RBF kernel achieved the 

same accuracy (91.7%) 

Chan et al. 

[48] 

Gait patterns 

classification of 

younger and older 

individuals  

13 healthy younger (age 

27.7 ±7.3 years) and 12 

healthy older adults 

(age 70.0 ±3.7 years) 

14 features: root mean 

square, integral of power 

spectral density, cadence, 

stride and step in the 

vertical, medio-lateral and 

anterior- posterior 

directions (93 samples: 1 

per stride and per subject 

recorded from 4 gait trials) 

Pearson 

Correlation-

based 

method 

10-fold CV NA MLP, KSart, 

SVM with 

polynomial 

kernel, NB and 

DT 

MLP achieved the best accuracy 

(80.6%) to discriminate young 

and elderly gait patterns 

Eskofier et 

al. [49] 

Gait patterns 

classification of 

younger and elderly 

subjects 

24 young healthy (age 

25.3 ±2.4 years) and 24 

elderly subjects (age 

59.9 ±4.5 years) 

84 spatial and temporal 

parameters (1 per subject 

along 10 gait cycles) 

PCA LOO Stride-time 

normalization 

SVM with a 

linear kernel 

SVM distinguished the two 

patterns with an accuracy of 

95.8% 

Khandoker 

et al. [47] 

Automatic 

recognition of gait 

patterns related to 

balance impairments 

13 healthy adults (age 

67.5±2.1 years) and 10 

subjects with history of 

falls (age 68.2±3.1 

years) 

MFC data from the first 512 

continuous gait cycles of 

each subject 

Hill-

climbing 

LOO NA SVM with 

linear, 

polynomial and 

RBF kernels 

Polynomial kernel performed 

better (accuracy of 100%) than 

linear (accuracy of 86.95%) and 

RBF (accuracy of 86.95%) 

kernels 

Lai et al. 

[54] 

Propose a gait 

recognition system to 

detect fall patterns 

13 healthy subjects (age 

71.0±2.1 years) and 10 

individuals that had 

suffered tripping fall 

(age 72.2±2.1 years) 

Autoregressive coefficients 

of 512 MFC values from 60 

gait cycles performed along 

10 min 

Autoregress

ive model 

LOO NA SVM with 

linear, 

polynomial and 

RBF kernel 

functions 

The best was achieved with 

linear and RBF kernel (accuracy 

of 95.6%), using only 32 MFC 

samples 

Mao et al. 

[63] 

Classification of 3 

walking patterns: 

walk stably, 

intermediary risks of 

tumble, and high risk 

of tumble 

36 subjects Maximum, mean and 

standard deviation values of 

4 local motions (motion of 

head, center of gravity, 

motion of pelvis, motion of 

toe) from the first 6 steps 

NA NA Body height 

normalization 

Multiclass 

classification 

with SVM 

The three classes were 

recognized with accuracy of 

84.5% 

Zhang et al. 

[33] 

Recognition of gait 

patterns during lower 

extremity muscular 

fatigue and no-fatigue 

17 healthy subjects (age 

29±11 years) 

Step width, step length, 

stride duration, heel contact 

velocity, and stance time (1 

sample per subject, per 

stride along 5 trials)  

Kernel 

function 

selection 

method 

5-fold CV Stride-time 

normalization 

SVM with 

linear, 

polynomial and 

RBF kernels 

SVM with linear and RBF 

kernels recognized the fatigued 

and no-fatigued gait with an 

accuracy of 96% 
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Considering the inclusion criteria proposed for this review, we included thirteen studies in this analysis. Five 1 

studies (38.46% of studies) focused on the automatic diagnosis of pathologic gait patterns by including a control 2 

group formed by healthy subjects with similar demographic features (age and gender) [5,7,45,59,62] Four works 3 

(30.76% of studies) recognized the gait patterns of younger and older individuals [26,46,48,49]. Additionally, 4 

another study [47] carried out an automatic recognition of gait patterns related to balance impairments, whereas 5 

one study [33] investigated the differences between lower extremity muscular fatigue and non-fatigue. The 6 

remaining two studies [54,63] proposed a system to detect tripping fall patterns.  7 

By analysing Table 2, we verified that all included studies investigated the performance of SVM for 8 

classification purposes, and seven of these studies (53.85%) only implemented this machine learning approach. 9 

Five of these studies (38.46%) compare the effects introduced by different SVM kernels [26,33,46,49,54]. 10 

Additional machine learning algorithms were explored and compared to SVM namely, ANN (38.46% of 11 

studies) [5,7,46,48,59], KNN (15.39% of studies) [5,7], NB (15.39% of studies) [5,48], and DT (15.39% of 12 

studies) [5,48].   13 

The majority of the reviewed studies (9 studies, 69.23%) applied feature selection methods [7,26,33,45–14 

49,54], particularly hill-climbing [26,46,47], PCA [49], and GA [45], among other statistical approaches. 15 

Additionally, ten studies (76.92%) improved the generalized ability of machine learning approaches by 16 

integrating CV methods namely, integrating a conventional CV scheme with different k-folds (3-fold [46], 5-17 

fold [33,62], 6-fold [26], and 10-fold [48]), and the LOO method [7,47,49,54]. Normalization techniques were 18 

also performed in eight of the thirteen studies (61.54%) through the z-score method [26,46] and normalizations 19 

as a function of stride duration [7,33,49,59] and participant body weight [62,63].  20 

Diverse pattern recognition methods can be investigated in the scope of human gait, as described in Table 2. 21 

From the included studies, we listed some benefits and limitations of the most commonly applied machine 22 

learning approaches for gait analysis.  23 

ANN is considered an algorithm with learning capability, adaptability, and ability to address nonlinear data. 24 

Nevertheless, this classifier and its feedforward algorithms (MLP, PNN, and TDNN), depend on a large number 25 

of parameters for a correct generalization, can get trapped in a local minimum, and can conduct an over-fitting 26 

of the training data, harming the generalization of recognition [26,46,50,51].  27 
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On the other hand, SVM converges to a global optimum and avoids over-fitting in the training process 1 

[31,36]. SVM also has the ability to minimize both structural and empirical risks leading to better generalization 2 

of a new classification even, with a limited training data set, and producing stable and reproducible results 3 

[26,46,47].  4 

A drawback of both SVM and ANN classifiers lies in their dependence on delicate and computationally 5 

expensive hyperparameter tuning of learning parameters (e.g., weights and biases and network size for NN and 6 

regularization parameter for SVM) [4,7,64].  7 

CA is very sensitive to variables that are highly correlated, making it necessary to determine and remove 8 

these variables [65]. This approach also requires that the number of a priori rules and the number of clusters are 9 

set a priori by the user, implying a subjective judgment [60,64]. However, CA based on fuzzy logic exhibits the 10 

benefits of offering insight into nonlinear relationships among gait variables, providing a quantitative 11 

comparison, less complexity and fast processing time [4].  12 

Although NB and LR are two probabilistic models, LR does not assume linearity in the relationship between 13 

input and output variables and does not assume homoscedasticity; therefore, it does not simplify the 14 

computational cost [57]. 15 

An advantage of DT and KNN is that the problem of context recognition is divided into smaller sub-16 

problems, which are approached one by one intuitively [66]. Nevertheless, KNN requires the definition of a 17 

distance metric, whereas a split criterion must be set in DT.  18 

Due to the deviant behavior of these machine learning approaches, benchmarking can be performed to select 19 

the optimal machine learning method for a specific application. For instance, Harper [57] compared DA, DT, 20 

ANN and LR methods with distinct datasets and showed that there is not necessarily a single best classification 21 

tool; but instead, the best performance of the algorithm will depend on the analyzed features [57]. Other authors 22 

have concluded that combining the output of different classifiers can improve classification performance [7]. 23 

Additional studies have highlighted that classifier performance depends on many factors, such as the type of 24 

input features, dataset size, relevance of involved features, and number of subjects [26,38,50]. 25 

Comparative analysis of the findings obtained with machine learning approaches, as outlined in Table 2, led 26 

us to observe that in general, SVM is the most accurate classifier for treating gait data, mainly when a Gaussian 27 

RBF kernel is involved. The former observation is supported by the following studies: Begg et al. [46], who 28 
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concluded that SVM with linear and RBF kernels performs better than ANN (accuracy of 83.3% versus 75%); 1 

and, Badesa et al. [38], who noted that SVM with RBF kernel is more appropriate than LR, LDA, QDA, NB or 2 

KNN methods. Additionally, Zheng et al. [52] investigated the performance of three classifiers (SVM, Random 3 

Forest, and KStar) in gait pattern recognition of three neurodegenerative diseases and control subjects. Their 4 

results showed that SVM is the most appropriate method to recognize these four classes (control group and three 5 

pathologic groups) [52]. Moreover, other studies mentioned that SVM creates a more efficient algorithm than 6 

LDA [36,62] and ANNs [26]. Lastly, Novak et al. [67] reported that SVM is the most used classification method 7 

with a median accuracy rate of 78.76%, whereas the less used classification methods are fuzzy logic and NB 8 

with median accuracy rates of 76.05% and 74.70%, respectively [67].  9 

These findings noted that SVM is an accurate classifier in a range of either binary or multiclass recognition 10 

tasks concerning healthy and pathological gait and situations of balance instability. The high recognition rates 11 

result from SVM’s ability to define more complex decision boundaries by applying optimization problems 12 

instead of probabilistic ones. Due to this property, SVM classifiers are robust to data bias and data variance, 13 

which are commonly observed in human gait data given their inter-subject and inter-step variability, mainly 14 

when pathologic gait patterns are considered. Simultaneously, SVM can properly work with the inherent 15 

nonlinear character of human gait data and can manage high-dimensional and multidisciplinary data (e.g., 16 

spatiotemporal, kinetic, and kinematic parameters) recorded from distinct sensory technologies (either external 17 

or wearable sensors). Thus, SVM presents a strong ability to model versatile, complex and nonlinear datasets, 18 

such as ones associated with pathological conditions. However, it is worth mentioning that this comparative 19 

analysis does not take into consideration the computational cost of the analyzed machine learning approaches. 20 

In general, LR has the fastest computational-times, although compared to DT and DA the time difference is 21 

likely insignificant in practice. ANN requires significantly more time to train and validate models [57]. Lastly, 22 

regarding complexity and the demonstration of reliable performance, SVM is an appropriate tool for offline 23 

walking recognition.  24 

5 Approaches to Improving Walking Recognition 25 

In this section, we describe feasible approaches to improving human walking recognition namely, feature 26 

normalization and cross-validation methodologies (see scheme in Fig. 1).  27 
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CV methods are commonly involved in machine learning approaches as a model assessment technique to 1 

evaluate their inter-subject generalization for classifying new instances, mainly when datasets are limited 2 

[26,35,36,61] and when they involve pathological information (which exhibits widely variability), as 3 

highlighted in Table 2. Moreover, CV methods have the potential to minimize over-fitting of machine learning 4 

approaches since the training set is further partitioned into two disjoint subsets: the training subset used to train 5 

the learning model; and, the validation subset used to validate the model. In turn, the validation dataset can be 6 

used to determine the performance of various candidate models; and thereby select the most general and accurate 7 

model [68].  8 

The conventional CV method begins with partitioning a sample into two complementary subsets, the training 9 

set and the test set, based on k-fold. Thus, the original sample is randomly partitioned into k roughly equal size 10 

sub-samples, a single sub-sample is used as the validation data for testing the classifier, and the remaining k-1 11 

sub-samples are used as training data. Consequently, the CV process is repeated k times until every gait trial of 12 

the dataset is included in the testing dataset. Lastly, the average of the k results is calculated to obtain a single 13 

performance estimation [4,7,35,61,69]. The advantage of this method is that it matters less how the data gets 14 

divided. In the literature, there is no a stipulated number for k-fold, although many studies have implemented a 15 

10-fold [5,48,70] or 5-fold CV scheme [33,62]. 16 

However, recent studies preferred LOO  [7,47,49,54], a robust CV procedure, since it does not randomly 17 

partition the data. Instead, data in each fold belong to a particular participant [7,38,50,53,66], i.e., LOO partitions 18 

data using the k-fold approach where k is equal to the total number of observations in the data. In addition, 19 

López et al. [61] considered that CV is not appropriate in situations of unbalanced and covariate data since it 20 

may introduce a different data distribution between the training and test partitions by equally partitioning the 21 

number of samples of each class on each partition [61]. According to López et al. [61], the distribution optimally 22 

balanced stratified cross-validation (DOB-SCV) is a proper methodology that avoids both unbalanced and 23 

covariate data issues [61]. DOB-SCV picks a random unassigned example and then finds its k-1 nearest 24 

unassigned neighbors of the same class. Posteriorly, k closest neighbors are placed in different folds (with k 25 

being the number of total partitions) to maintain the data distribution between the training and validation 26 

partitions [61]. The process is repeated until there are no more instances [61]. Fig. 2 illustrates a graphical 27 

representation of these different CV methods to elucidate the principles of each method.  28 
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 1 

Fig. 2 Graphical representation of CV methods: a) conventional k-fold CV method, where the original training dataset was partitioned 2 

in k partitions; b) LOO CV method, which uses each sample (identified by 1, 2, 3, … n) as a validation fold; c) DOB-SCV method, 3 

where for instance, sample 3 (randomly selected) and its neighbors 2 and 4 where assigned to different folds.   4 

 5 
Another approach commonly used to make the classifiers more robust and improve their accuracy is the prior 6 

standardization of features [26,36,71], as outlined in Table 2. For this purpose, the z-score is often implemented 7 

on the original feature as set by equation (4), where 𝑥 is the feature, 𝜇 is the mean and 𝜎 is the standard deviation 8 

[26,36,46]. Thus, each feature has a mean of zero and a variance of one [3,33].  9 

x − μ

σ
 (4)  

Time normalization is also a common standardization method that expresses each feature as a function of 10 

the stride (gait cycle) in percentages rather than in time [4,7,33,49,59]. A similar strategy has also been applied 11 

to kinematic features through participants body weight instead of the stride duration [62,63]. 12 

In addition, there are specific methodologies for each machine learning approach. To avoid ANN over-13 

fitting, techniques other than CV methods, such as regularization, pruning or Bayesian model comparison, can 14 

be used to indicate the tipping point when further training no longer results in a better performance [53]. 15 

Additionally, Begg et al. [46] proposed a scaled conjugate gradient algorithm to adjust the weights of the ANNs 16 

since it allows training of the relationship between gait features and the respective gait class [46]. Su et al. [44] 17 

demonstrated that the combination of a GA algorithm with ANN is more accurate than the implementation of 18 
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ANN based on a back-projection algorithm. The performance of SVM is extremely dependent on tuning of the 1 

regularization parameter (parameters C and σ), and therefore, a grid-search is often implemented to find the best 2 

values of C and σ, minimizing the misclassification error [46,47]. Hsu et al. [72] recommend that the grid-search 3 

is combined with a CV method to ensure that the values are most appropriate for the input dataset [72].  4 

The described approaches represent some strategies able to improve the classifier performance during gait 5 

pattern recognition, aside from the implementation of feature selection methods. Indeed, we verify that the 6 

implementation of these approaches, or other ones with the same purpose, contributes significantly to the 7 

reliability of the developed recognition tool.   8 

6 Conclusions 9 

This literature review covers the state-of-the-art on machine learning approaches, and their respective pre-10 

processing methodologies, for human pattern gait recognition using gait dynamics. The reviewed methods may 11 

vary based on supervised and unsupervised learning; linearity and nonlinearity models; the possibility of leading 12 

to over-fitting or not; division of classification in training and test phases or not; and on the necessity of defining 13 

split criteria or not.    14 

Human gait pattern recognition is a powerful automatic tool that may provide an objective analysis of 15 

abnormal gait patterns, by manipulating nonlinear and massive multidimensional datasets. Recent studies have 16 

evidenced that wearable sensory systems provide these datasets given their potential for long-term and free-17 

setting applications, and a time- and cost-effectiveness.  18 

From this literature analysis, we verify that proper and reliable gait pattern recognition should involve several 19 

phases. The first phase is feature extraction to characterize the gait pattern (e.g., healthy/pathological, or 20 

old/young). Second, methods of feature normalization may be applied to achieve a more robust classification. 21 

Then, feature selection methods are implemented to select the most significant features to distinguish the classes 22 

based on dependence of classifier performance on the number and type of features. kPCA and GA are promising 23 

methods for dimensional reduction of gait parameters due to their ability to work with nonlinear data and 24 

converge on a global optimum. The next stage before the classification algorithm is to form the training and 25 

testing datasets through CV procedures, mainly LOO. CV methods also prevent over-fitting and generalize the 26 

classifier performance. The implementation of these three methodologies provides the answer to the second 27 

search question raised in this review since these are reliable tools that improve the performance of walking 28 
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recognition. Out of the three existing classification methods, machine learning approaches are the most 1 

successful ones when applied in gait pattern recognition due to their ability to work well with multidimensional 2 

nonlinear features. Nevertheless, SVM stood out as an accurate tool that converges to a global minimum, does 3 

not lead to over-fitting, and minimizes both structural and empirical risk, leading to better generalization for 4 

new data classification. The main limitation of SVM is its dependence on a proper choice of input parameters, 5 

which can be solved by combining a grid-search with the CV method. In response to the first search question 6 

proposed in this review, we have concluded that SVM has the potential to become a powerful tool for human 7 

walking recognition in clinical applications.   8 

In summary, an automatic recognition of gait disorders through machine learning algorithms is likely to offer 9 

an objective and prompt assessment of the subject’s clinical status and hence, provides a potentially realistic 10 

diagnosis. However, the classification of data is not necessarily equivalent to diagnosis, as there should be 11 

sufficient clinical evidence supporting such an argument in specific cases/conditions. This fact agrees with a 12 

major drawback of the described techniques which is that they do not consider the subject’s clinical history.  13 

Future directions involve the successful application of machine learning approaches in real-time monitoring 14 

of human gait during daily living activities. This scenario will provide a more reliable, prompt, and cost-15 

effective diagnosis of locomotion. Moreover, real-time recognition and assessment of gait patterns can drive 16 

powered assistive devices and promptly plan task-oriented therapy in pathological conditions.   17 
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