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1 Introduction

Let Cm×n be the set of all m × n complex matrices and let Cm×n
r be the set of all m × n

complex matrices of rank r. For each complex matrix A ∈ Cm×n, A∗, Rs(A), R(A) and
N (A) denote the conjugate transpose, row space, range (column space) and null space of
A, respectively. The index of A ∈ Cn×n, denoted by ind(A), is the smallest non-negative
integer k for which rank(Ak) =rank(Ak+1). The Moore-Penrose inverse (also known as the
pseudoinverse) of A ∈ Cm×n, Drazin inverse of A ∈ Cn×n are denoted as usual by A†, AD

respectively.
The Drazin inverse was extended to a rectangular matrix by Cline and Greville [1]. Let

A ∈ Cm×n, W ∈ Cn×m and k =max{ind(AW ), ind(WA)}. The W -weighted Drazin inverse
of A, denoted by AD,W , is the unique solution to

(AW )k = (AW )k+1XW, X = XWAWX and AWX = XWA.
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Many authors have been focusing on the weighted Drazin inverse and have achieved much in
the aspect of representations (see for example, [2–4]).

Baksalary and Trenkler [5] introduced the notion of core inverse for a square matrix of
index one. Then, Manjunatha Prasad and Mohana [6] proposed the core-EP inverse for a
square matrix of arbitrary index, as an extension of the core inverse. Later, Gao and Chen
[7] gave a characterization for the core-EP inverse in terms of three equations. The core-EP
inverse of A ∈ Cn×n, denoted by A †○, is the unique solution to

XAk+1 = Ak, AX2 = X and (AX)∗ = AX, (.)

where k =ind(A). The core-EP inverse is an outer inverse (resp. {2}-inverse), i.e., A †○AA †○ =
A †○. The core-EP inverse has the following properties:

(1) R(A †○) = R(Ak), N (A †○) = N ((Ak)∗),
(2) R(A †○)⊕N (A †○) = Cn×n,
(3) AA †○ is an orthogonal projector onto R(Ak) and A †○A is an oblique projector on to
R(Ak) along N ((Ak)†A).

The core inverse and core-EP inverse have applications in partial order theory (see for example,
[8–10]).

Recently, an extension of the core-EP inverse from a square matrix to a rectangular matrix
was made by Ferreyra et al. [11]. Let A ∈ Cm×n, W ∈ Cn×m and k =max{ind(AW ),
ind(WA)}. The W -weighted core-EP inverse of A, denoted by A †○,W , is the unique solution
to the system

WAWX = (WA)k[(WA)k]† and R(X) ⊆ R((AW )k). (.)

Meanwhile, the authors proved that the W -weighted core-EP inverse of A can be written as
a product of matrix powers involving two Moore-Penrose inverses:

A †○,W = [W (AW )l+1[(AW )l]†]† (l ≥ k). (.)

Then, Mosić [12] studied the weighted core-EP inverse of an operator between two Hilbert
spaces as a generalization of the weighted core-EP inverse of a rectangular matrix.

In this paper, our main goal is to further study the weighted core-EP inverse for a rect-
angular matrix and compile its new, computable representations. The paper is carried out
as follows. In Section 2, first of all, the weighted core-EP inverse is characterized in terms of
three equations. This could be very useful in testing the accuracy of a given numerical method
(to compute the weighted core-EP inverse) via residual norms. Then, we derive the canonical
form for the W -weighted core-EP inverse of A by using the singular value decompositions of
A and W . Later, representations of the weighted core-EP inverse are obtained via full-rank
decomposition, general algebraic structure (GAS) and QR decomposition in conjunction with
the fact that the weighted core-EP inverse is a particular outer inverse. These representations
are expressed eventually through various matrix powers as well as matrix product involving
the core-EP inverse, Moore-Penrose inverse and usual matrix inverse. In Section 3, some
properties of the weighted core-EP inverse are exhibited naturally as outcomes of given rep-
resentations. As mentioned earlier, the weighted core-EP inverse is a particular outer inverse.
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It is known that the inverse along an element [13] and (B,C)-inverse [14] are outer inverses
as well. Thus, in Section 4, we wish to reveal the relations among the weighted core-EP
inverse, weighted Drazin inverse, the inverse along an element, and (B,C)-inverse. In Section
5, the computational complexities of proposed representations involving pseudoinverse are
estimated. In the last Section 6, corresponding numerical examples are implemented by using
Matlab R2017b.

2 Representations of the weighted core-EP inverse

In this section, we compile some new expressions of the weighted core-EP inverse for a rectan-
gular complex matrix. First, the weighted core-EP inverse is characterized in terms of three
equations.This plays a key role in examining the accuracy of a numerical method.

Lemma 2.1. [7, Theorem 2.3] Let A ∈ Cn×n and let l be a non-negative integer such that
l ≥ k = ind(A). Then A †○ = ADAl(Al)†. In this case, AA †○ = Al(Al)†.

Theorem 2.2. Let A ∈ Cm×n,W ∈ Cn×m and k = max{ind(AW ), ind(WA)}. Then there
exists a unique X ∈ Cm×n such that

XW (AW )k+1 = (AW )k, AWXWX = X and (WAWX)∗ = WAWX. (.)

The unique X which satisfies the above equations is X = A[(WA) †○]2.

Proof. First of all, we can check that X = A[(WA) †○]2 satisfies the equations in (2.1). In
fact, in view of Lemma 2.1,

A[(WA) †○]2W (AW )k+1 = A(WA) †○[(WA) †○(WA)k+1]W = A(WA) †○(WA)kW

= A(WA)D(WA)k[(WA)k]†(WA)kW

= A(WA)D(WA)kW, which implies that

A[(WA) †○]2W (AW )k+1 = (AW )D(AW )k+1 = (AW )k, since A(WA)D = (AW )DA;

AWA[(WA) †○]2WA[(WA) †○]2 = A(WA) †○WA[(WA) †○]2 = A[(WA) †○]2;

(WAWA[(WA) †○]2)∗ =WA(WA) †○.

Next, we would give a proof of the uniqueness of X. If

XW (AW )k+1 = (AW )k, AWXWX = X and (WAWX)∗ = WAWX

and
YW (AW )k+1 = (AW )k, AWYWY = Y and (WAWY )∗ = WAWY,
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then

X = AWXWX = (AW )2(XW )2X = (AW )k(XW )kX

= YW (AW )k+1(XW )kX = Y (WA)k+1(WX)k+1 = Y (WA)k+2(WX)k+2

= Y [(WA)k+2(WY )k+2(WA)k+2](WX)k+2

= Y [(WA)k+2(WY )k+2]∗[(WA)k+2(WX)k+2]∗

= Y [(WY )k+2]∗[(WA)k+2(WX)k+2(WA)k+2]∗ = Y [(WY )k+2]∗[(WA)k+2]∗

= Y (WAWY )∗ = YWAWY = Y (WA)k+1(WY )k+1 = YW (AW )k+1(YW )kY

= (AW )k(YW )kY = AWYWY = Y.

This completes the proof.

Theorem 2.3. Let A, X ∈ Cm×n, W ∈ Cn×m and k = max{ind(AW ), ind(WA)}. Then the
following are equivalent:
(1) A †○,W = X;
(2) XW (AW )k+1 = (AW )k, AWXWX = X and (WAWX)∗ = WAWX.

Proof. It suffices to show that X = A[(WA) †○]2 satisfies condition (1.2). Indeed,

WAWA[(WA) †○]2 = WA(WA) †○ = WA(WA)D(WA)k[(WA)k]† = (WA)k[(WA)k]†,

A[(WA) †○]2 = AWA[(WA) †○]3 = A(WA)k[(WA) †○]k+2 = (AW )kA[(WA) †○]k+2, i.e.,

R(A[(WA) †○]2) ⊆ R((AW )k).

This completes the proof.

We now give the canonical form for the W -weighted core-EP inverse of A by using the
singular value decompositions of A and W . Let A ∈ Cm×n

r , W ∈ Cn×m
s be of the following

singular value decompositions:

A = U

(
Σ1 0
0 0

)
V ∗ and W = S

(
Σ2 0
0 0

)
T ∗, (.)

where U, V, S, T are unitary matrices, Σ1 =diag(σ1, · · · , σr), σ1 ≥ · · · ≥ σr > 0, entries σi
are known as the singular values of A, and Σ2 =diag(τ1, · · · , τs), τ1 ≥ · · · ≥ τs > 0, entries τi
are singular values of W .

Theorem 2.4. Let A ∈ Cm×n
r , W ∈ Cn×m

s be of the singular value decompositions as in
(2.2). Then

A †○,W = U

[
Σ1H1[(Σ2R1Σ1H1)

†○]2 0
0 0

]
S∗, (.)

where T ∗U =

[
R1 R2

R3 R4

]
, R1 ∈ Cs×r, V ∗S =

[
H1 H2

H3 H4

]
, H1 ∈ Cr×s.
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Proof. Observe that WA = S

[
Σ2 0
0 0

]
T ∗U

[
Σ1 0
0 0

]
V ∗ = S

[
Σ2R1Σ1 0

0 0

]
V ∗. Now suppose

that ind(WA) = k and X = S

[
X1 X2

X3 X4

]
S∗ (X1 ∈ Cs×s) is the core-EP inverse of WA, then

X would satisfy condition (1.1). Thus, by computation,

(Σ2R1Σ1H1X1)
∗ = Σ2R1Σ1H1X1, Σ2R1Σ1H1X2 = 0,

Σ2R1Σ1H1X
2
1 = X1, X3 = X4 = 0,

X1Σ2R1Σ1(H1Σ2R1Σ1)
k = Σ2R1Σ1(H1Σ2R1Σ1)

k−1, which implies that

X1(Σ2R1Σ1H1)
k+1 = (Σ2R1Σ1H1)

k.

These equalities above show that X1 = (Σ2R1Σ1H1)
†○. As the core-EP inverse is an outer

inverse, i.e., XWAX = X, then X2 = X1Σ2R1Σ1H1X2 = 0. Hence,

(WA) †○ = S

[
(Σ2R1Σ1H1)

†○ 0
0 0

]
S∗.

In light of Theorems 2.2 and 2.3, A †○,W = A[(WA) †○]2 = U

[
Σ1H1[(Σ2R1Σ1H1)

†○]2 0
0 0

]
S∗.

This completes the proof.

Additional representations of the weighted core-EP inverse can be obtained through the
full-rank decomposition. First, let us recall a concerned notion. In 1974, Ben-Israel and
Greville [15] introduced the notion of generalized inverse with prescribed range and null space.
Let A ∈ Cm×n

r , T be a subspace of Cn of dimension s ≤ r and let S be a subspace of Cm of
dimension m − s. If A has a {2}-inverse X such that R(X) = T and N (X) = S, then X is

unique and denoted by A
(2)
T,S . Further, Sheng and Chen [16] gave a full-rank representation

of the generalized inverse A
(2)
T,S , which is based on an arbitrary full-rank decomposition of G,

where G is a matrix such that R(G) = T and N (G) = S.

Lemma 2.5. [16, Theorem 3.1] Let A ∈ Cm×n
r , T be a subspace of Cn of dimension s ≤ r

and let S be a subspace of Cm of dimension m− s. Suppose that G ∈ Cn×m satisfies R(G) =
T, N (G) = S. Let G be of an arbitrary full-rank decomposition, namely G = UV . If A has

a {2}-inverse A
(2)
T,S, then

(1) V AU is invertible;

(2) A
(2)
T,S = U(V AU)−1V.

The following result shows that the weighted core-EP inverse is a generalized inverse with
prescribed range and null space.
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Theorem 2.6. Let A ∈ Cm×n, W ∈ Cn×m with ind(WA) = k. The W-weighted core-EP
inverse of A is a {2}-inverse of WAW with the range R(A(WA)k[(WA)k]†) and the null
space N (A(WA)k[(WA)k]†) i.e.,

A †○,W = (WAW )
(2)
R(G),N (G), (.)

where G = A(WA)k[(WA)k]†.

Proof. First, we check that A[(WA) †○]2 is a {2}-inverse of WAW . Indeed,

A[(WA) †○]2WAWA[(WA) †○]2 = A[(WA) †○]2WA(WA) †○ = A[(WA) †○]2.

Then, we show that R(A(WA)k[(WA)k]†) = R(A[(WA) †○]2) and N (A(WA)k[(WA)k]†) =
N (A[(WA) †○]2). Indeed,

A(WA)k[(WA)k]† = A[(WA) †○]2(WA)k+2[(WA)k]†,

i.e., R(A(WA)k[(WA)k]†) ⊆ R(A[(WA) †○]2);

A[(WA) †○]2 = A(WA)k[(WA) †○]k+2 = A(WA)k[(WA)k]†(WA)k[(WA) †○]k+2,

i.e., R(A[(WA) †○]2) ⊆ R(A(WA)k[(WA)k]†).

If X ∈ N (A(WA)k[(WA)k]†), i.e., A(WA)k[(WA)k]†X = 0, then

A[(WA) †○]2X = A(WA) †○(WA)D(WA)k[(WA)k]†X

= A(WA) †○[(WA)D]2WA(WA)k[(WA)k]†X = 0,

namely, N (A(WA)k[(WA)k]†) ⊆ N (A[(WA) †○]2);
if X ∈ N (A[(WA) †○]2), i.e., A[(WA) †○]2X = 0, then

A(WA)k[(WA)k]†X = AWA(WA) †○X = AWAWA[(WA) †○]2X = 0,

namely, N (A[(WA) †○]2) ⊆ N (A(WA)k[(WA)k]†).
This completes the proof.

From Theorem 2.6, it is known that the weighted core-EP inverse is a particular outer
inverse. Then by applying Lemma 2.5, we derive new representations of the weighted core-EP
inverse involving the usual matrix inverse.

Corollary 2.7. Let A ∈ Cm×n, W ∈ Cn×m with ind(WA) = k. If A(WA)k[(WA)k]† = UV
is a full-rank decomposition of A(WA)k[(WA)k]†. Then the W -weighted core-EP inverse of
A possesses the following representation:

A †○,W = U(VWAWU)−1V. (.)
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Recall that the general algebraic structures (GAS) of A and W are defined as follows (see
[3]):

A = P

[
A11 0
0 A22

]
Q−1, W = Q

[
W11 0

0 W22

]
P−1, (.)

where P, Q, A11, W11 are non-singular matrices and A22, W22, A22W22, W22A22 are nilpotent
matrices.

Corollary 2.8. Let A ∈ Cm×n, W ∈ Cn×m with ind(WA) = k and let P =
[
P1 P2

]
, Q =[

L1 L2

]
, where P1, P2, L1, L2 are appropriate blocks arising from (2.6). Then the W -

weighted core-EP inverse of A possesses the following representation:

A †○,W = P1(L
∗
1WAWP1)

−1L∗1. (.)

Proof. Suppose that Q−1 =

[
Q1

Q2

]
. From the GAS representations (2.6), it follows that

(WA)k = Q

[
(W11A11)

k 0
0 0

]
Q−1 = L1(W11A11)

kQ1,

[(WA)k]† = Q∗1(Q1Q
∗
1)
−1[(W11A11)

k]−1(L∗1L1)
−1L∗1,

A(WA)k = P1A11(W11A11)
kQ1 and

A(WA)k[(WA)k]† = P1A11(L
∗
1L1)

−1L∗1.

Therefore, it is possible to use the full-rank decomposition A(WA)k[(WA)k]† = UV , where

U = P1A11 and V = (L∗1L1)
−1L∗1.

Then by Corollary 2.7, we obtain A †○,W = P1A11[(L
∗
1L1)

−1L∗1WAWP1A11]
−1(L∗1L1)

−1L∗1 =
P1(L

∗
1WAWP1)

−1L∗1. This completes the proof.

The following representation of the weighted core-EP inverse is based on the QR decom-
position defined as in [2, 17, 18].

Corollary 2.9. Let A ∈ Cm×n, W ∈ Cn×m with ind(WA) = k, rank(WAW ) = r,
rank[A(WA)k[(WA)k]†] = s, s ≤ r. Suppose that the QR decomposition of A(WA)k[(WA)k]†

is of the form
A(WA)k[(WA)k]†P = QR,

where P is an n× n permutation matrix, Q ∈ Cm×m, Q∗Q = Im and R ∈ Cm×n
s is an upper

trapezoidal matrix. Assume that P is chosen so that Q and R can be partitioned as

Q =
[
Q1 Q2

]
, R =

[
R11 R12

0 0

]
=

[
R1

0

]
,
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where Q1 consists of the first s columns of Q and R11 ∈ Cs×s is non-singular. If WAW has

a {2}-inverse (WAW )
(2)
R(G),N (G) = A †○,W , where G = A(WA)k[(WA)k]†, then

(1) R1P
∗WAWQ1 is an invertible matrix;

(2) A †○,W = Q1(R1P
∗WAWQ1)

−1R1P
∗;

(3) A †○,W = (WAW )
(2)
R(Q1),N (R1P ∗);

(4) A †○,W = Q1(Q
∗
1A(WA)k[(WA)k]†WAWQ1)

−1Q∗1A(WA)k[(WA)k]†.

Various generalized inverses of complex matrices can be finally expressed in terms of the
matrix product as well as matrix powers involving only Moore-Penrose inverse, so can the
weighted core-EP inverse. It is crucial since in that case the operation could be implemented
easily by Matlab. The main disadvantage of the representation (1.3) arises from the necessity
to calculate Moore-Penrose inverses of two different matrices. The following result derives a
representation of A †○,W , which involves only one Moore-Penrose inverse.

Theorem 2.10. Let A ∈ Cm×n, W ∈ Cn×m and let l be a non-negative integer such that
l ≥ k = max{ind(AW ), ind(WA)}. Then A †○,W can be written as follows:

A †○,W = (AW )l[W (AW )l+1]†; (.)

A †○,W = A(WA)l[(WA)l+2]†. (.)

Proof. From Theorems 2.2 and 2.3, it follows that A †○,W = A[(WA) †○]2. As

(WA) †○ = (WA)D(WA)l[(WA)l]† = (WA)D(WA)l+2[(WA)l+2]†

by Lemma 2.1, we derive that

A †○,W = A[(WA) †○]2

= A[(WA)D(WA)l+2[(WA)l+2]†]2

= A[(WA)D]2(WA)l+2[(WA)l+2]† = A(WA)l[(WA)l+2]†.

One can verify (2.9) by checking three equations in Theorem 2.3. Here we omit the details.

An expression of the core-EP inverse can be derived as a particular case W = I of Theo-
rem 2.10.

Corollary 2.11. Let A ∈ Cn×n and let l be a positive integer such that l ≥ k = ind(A).
Then A †○ = Al(Al+1)†.

3 Properties of the weighted core-EP inverse

In this section, we study the properties of the weighted core-EP inverse.
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Proposition 3.1. Let A ∈ Cm×n, W ∈ Cn×m with k = max{ind(AW ), ind(WA)}. Then
we have the following facts:
(1) R(A †○,W ) = R((AW )k);
(2) N (A †○,W ) = N ([(WA)k]∗).

Proof. (1) In view of Theorems 2.2 and 2.3, A †○,W = A[(WA) †○]2 = A(WA)k[(WA) †○]k+2 =
(AW )kA[(WA) †○]k+2, i.e., R(A †○,W ) ⊆ R((AW )k), together with

(AW )k = A[(WA) †○]2(WA)k+2W (AW )D = A †○,W (WA)k+1W,

i.e., R((AW )k) ⊆ R(A †○,W ). Thus, R(A †○,W ) = R((AW )k).
(2) Suppose Y ∈ N (A †○,W ), i.e., A[(WA) †○]2Y = 0, then [(WA)k]∗(WA)2[(WA) †○]2Y =
0. Thus, [(WA)k]∗Y = 0, i.e., N (A †○,W ) ⊆ N ([(WA)k]∗). Conversely, suppose Z ∈
N ([(WA)k]∗), i.e., [(WA)k]∗Z = 0, then A[(WA) †○]2[(WA) †○]k∗[(WA)k]∗Z = 0. There-
fore, A †○,WZ = A[(WA) †○]2Z = 0, i.e., N ([(WA)k]∗) ⊆ N (A †○,W ). Hence N ([(WA)k]∗) =
N (A †○,W ).

Proposition 3.2. Let A ∈ Cm×n, W ∈ Cn×m with ind(WA) = k. Then we have the
following facts:
(1) R(A †○,WW )⊕N (A †○,WW ) = Cm;
(2) R(WA †○,W )⊕N (WA †○,W ) = Cn.

Proof. (1) Observe that A †○,WW = A[(WA) †○]2W . For any X ∈ Cm, X = A(WA) †○WX +
[I −A(WA) †○W ]X, where

A(WA) †○WX = A(WA) †○WA(WA) †○WX = A(WA) †○(WA)k[(WA) †○]kWX

= A[(WA) †○]2(WA)k+1[(WA) †○]kWX = A †○,W (WA)k+1[(WA) †○]kWX

∈ R(A †○,WW ),

A †○,WW [I −A(WA) †○W ]X = A[(WA) †○]2W [I −A(WA) †○W ]X

= A[(WA) †○]2WX −A[(WA) †○]2WA(WA) †○WX

= A[(WA) †○]2WX −A[(WA) †○]2WX = 0, which

implies that [I −A(WA) †○W ]X ∈ N (A †○,WW ).
Therefore, R(A †○,WW ) +N (A †○,WW ) = Cm. Further, suppose

Y ∈ R(A[(WA) †○]2W ) ∩N (A[(WA) †○]2W ),

that is to say, Y = A[(WA) †○]2WZ for some Z ∈ Cm and A[(WA) †○]2WY = 0. Thus,
A[(WA) †○]2WA[(WA) †○]2WZ = 0, i.e., A[(WA) †○]3WZ = 0. Pre-multiply this equal-
ity by WAW , then (WA) †○WZ = 0, which deduces that Y = 0. Hence R(A †○,WW ) ⊕
N (A †○,WW ) = Cm.
(2) Note that WA †○,W = (WA) †○. From R((WA) †○) = R(WA(WA) †○) and N ((WA) †○) =
N (WA(WA) †○) as well as [WA(WA) †○]2 = WA(WA) †○ = [WA(WA) †○]∗, it follows clearly
that R(WA †○,W )⊕N (WA †○,W ) = Cn.
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Proposition 3.3. Let A ∈ Cm×n, W ∈ Cn×m with ind(WA) = k. Then we have the
following facts:
(1) WAWA †○,W is an orthogonal projector onto R((WA)k);
(2) WA †○,WWA is an oblique projector onto R((WA)k) along N ([(WA)k]†WA).

Proof. (1) Since A †○,W = A[(WA) †○]2 by applying Theorems 2.2 and 2.3, then

WAWA †○,W = WA(WA) †○ = (WA)k[(WA)k]†.

Therefore, WAWA †○,W is a orthogonal projector onto R((WA)k).
(2) Observe that WA †○,WWA = (WA) †○WA. Since (WA) †○ is an outer inverse of (WA),
then [(WA) †○WA]2 = (WA) †○WA, together with

R((WA) †○WA) = R((WA)k) and N ((WA) †○WA) = N ([(WA)k]†WA),

which implies that WA †○,WWA is a projector onto R((WA)k) along N ([(WA)k]†WA).

4 Relations among the weighted core-EP inverse and other
generalized inverses

In this section, we wish to reveal the relations among the weighted core-EP inverse, weighted
Drazin inverse, the inverse along an element, and (B,C)-inverse.

The first result states that the W -weighted core-EP inverse of A (i.e., A †○,W ) and the
W -weighted Drazin inverse of A (i.e., AD,W ) can be mutually expressed by post-multiplying
an oblique ( orthogonal ) projector.

Theorem 4.1. Let A ∈ Cm×n, W ∈ Cn×m with ind(WA) = k. Then
(1) A †○,W = AD,WP(WA)k ;

(2) AD,W = A †○,WPR((WA)k),N ((WA)k).

Proof. (1) It is known that A †○,W = A[(WA) †○]2, (WA) †○ = (WA)D(WA)k[(WA)k]† and
AD,W = A[(WA)D]2. Thus, A †○,W = A[(WA)D]2(WA)k[(WA)k]† = AD,W (WA)k[(WA)k]† =
AD,WP(WA)k .

(2) Observe that AD,W = A[(WA)D]2 = A[(WA)D(WA)k[(WA)k]†]2(WA)k[(WA)D]k =
A[(WA) †○]2WA(WA)D = A †○,WWA(WA)D = A †○,WPR((WA)k),N ((WA)k).

In what follows, we investigate the relations between the weighted core-EP inverse and
the inverse along an element, (B,C)-inverse respectively. Let us recall two known notions.

Definition 4.2. [13] Let A ∈ Cn×m and D,X ∈ Cm×n. Then X is the inverse of A along D
if

XAD = D = DAX and Rs(X) ⊆ Rs(D), R(X) ⊆ R(D).
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Definition 4.3. [14] Let A ∈ Cn×m, B ∈ Cm×m, C ∈ Cn×n, X ∈ Cm×n. Then X is the
(B,C)-inverse of A if

X ∈ BCm×mX ∩XCn×nC and XAB = B, CAX = C.

Theorem 4.4. Let A ∈ Cm×n, W ∈ Cn×m with ind(WA) = k. Then the W -weighted
core-EP inverse of A ( i.e., A †○,W ) is the inverse of WAW along A(WA)k[(WA)k]∗.

Proof. From Lemma 2.1 and Theorem 2.3, it is possible to verify that

A †○,WWAWA(WA)k[(WA)k]∗ = A[(WA) †○]2(WA)k+2[(WA)k]∗

= A(WA) †○(WA)k+1[(WA)k]∗

= A(WA)k[(WA)k]∗,

A(WA)k[(WA)k]∗WAWA †○,W = A(WA)k[(WA)k]∗WA(WA) †○

= A(WA)k[(WA)k]∗[WA(WA) †○]∗

= A(WA)k[WA(WA) †○(WA)k]∗

= A(WA)k[(WA)k]∗,

A †○,W = A[(WA) †○]2 = A(WA)k[(WA)k]†(WA)k[(WA) †○]k+2

= A(WA)k[(WA)k]∗[(WA)k]†∗[(WA) †○]k+2, i.e.,

R(A †○,W ) ⊆ R(A(WA)k[(WA)k]∗),
as well as,

A †○,W = A[(WA) †○]2 = A[(WA)D]2(WA)k[(WA)k]†

= A[(WA)D]2[(WA)k]†∗[(WA)k]∗

= A[(WA)D]2([(WA)k]†(WA)k[(WA)k]†)∗[(WA)k]∗

= A[(WA)D]2[(WA)k]†∗[(WA)k]†(WA)k[(WA)k]∗.

Since [(WA)k]†(WA)k = [(WA)k+1]†(WA)k+1(see the dual form of Lemma 2.1), then

A †○,W = A[(WA)D]2[(WA)k]†∗[(WA)k+1]†(WA)k+1[(WA)k]∗

= A[(WA)D]2[(WA)k]†∗[(WA)k+1]†WA(WA)k[(WA)k]∗,

i.e., Rs(A
†○,W ) ⊆ Rs(A(WA)k[(WA)k]∗).

Hence A †○,W is the inverse of WAW along A(WA)k[(WA)k]∗, in view of Definition 4.2.

Theorem 4.5. Let A ∈ Cm×n, W ∈ Cn×m with k = max{ind(AW ), ind(WA)}. Then the
W -weighted core-EP inverse of A ( i.e., A †○,W ) is the ((AW )k, [(WA)k]∗)-inverse of WAW .
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Proof. Clearly, we can verify that

A †○,W = A[(WA) †○]2 = A(WA)k[(WA) †○]k+2 = (AW )kA[(WA) †○]k+2

= (AW )kA[(WA) †○]k+1WA †○,W ∈ (AW )kCm×mA †○,W ,

A †○,W = A[(WA) †○]2 = A[(WA) †○]2WA(WA) †○

= A[(WA) †○]2(WA)k[WA)k]† = A[(WA) †○]2[WA)k]†∗[(WA)k]∗

= A †○,W [WA)k]†∗[(WA)k]∗ ∈ A †○,WCn×n[(WA)k]∗, as well as,

A †○,WWAW (AW )k = A[(WA) †○]2(WA)k+1W = A(WA) †○(WA)kW

= A(WA)D(WA)kW = (AW )D(AW )k+1 = (AW )k,

[(WA)k]∗WAWA †○,W = [(WA)k]∗WA(WA) †○ = [(WA)k]∗[WA(WA) †○]∗

= [WA(WA) †○(WA)k]∗ = [(WA)k]∗.

The above equalities show that A †○,W is the ((AW )k, [(WA)k]∗)-inverse of WAW , in light of
Definition 4.3.

5 Computational complexities of representations

Following from [2, 17], the computational complexity of the pseudoinverse of a singular m×
n (resp. n×n) matrix is denoted by pinv(m,n) (resp. pinv(n)); the complexity of multiplying
an m × n matrix by an n × k matrix is denoted by M(m,n, k), abbreviated to m · n · k; the
notation M(n) is used instead of M(n, n, n) and is abbreviated to n3. Let A ∈ Cm×n, W ∈
Cn×m with k =max{ind(WA),ind(AW )} and let l be a non-negative integer such that l ≥
k. In general, an o(log l) algorithm for matrix exponentiation Al (see [19]) would give an
algorithm for computing (AW )l in O(m3 log l) time, so that O((AW )l) = O(m3 log l) (see
[2]). Similarly, O((WA)l) = O(n3 log l).

Table 1: Computational complexity of (2.8)
Expression Additional complexity

AW m · n ·m
Λ1 = (AW )l m3 log l
Λ2 = (AW )l+1 = Λ1(AW ) m3

Λ3 = W (AW )l+1 = WΛ2 n ·m ·m
Λ4 = Λ†3 pinv(n,m)
X = (AW )l[W (AW )l+1]† = Λ1Λ4 m ·m · n

The computational complexity of (2.8) can be estimated from the analysis of Table 1:

O(2.8) = 3m2n+m3 +m3 log l + pinv(n,m).
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Table 2: Computational complexity of (2.9)
Expression Additional complexity

WA n ·m · n
(WA)2 n3

Λ1 = (WA)l n3 log(l − 1)
Λ2 = (WA)l+2 = Λ1(WA)2 n3

Λ3 = Λ†2 pinv(n)
X = A(WA)l[(WA)l+2]† = AΛ1Λ3 2 m · n · n

Likewise, the estimation for the computational complexity of (2.9) comes from Table 2:

O(2.9) = 3mn2 + 2n3 + n3 log(l − 1) + pinv(n).

Obviously from O(2.8) and O(2.9), it is more appropriate to use representations involving
AW while m < n, and use representations involving WA while m ≥ n. In the following, we
consider the case: (0 <)m < n.

Table 3: Computational complexity of (1.3)
Expression Additional complexity

AW m · n ·m
Λ1 = (AW )l m3 log l
Λ2 = (AW )l+1 = Λ1(AW ) m3

Λ3 = Λ†1 pinv(m)
Λ4 = WΛ2Λ3 2 n ·m ·m
X = [W (AW )l+1[(AW )l]†]† = Λ†4 pinv(n,m)

The computational complexity of (1.3) is estimated from the analysis of Table 3:

O(1.3) = 3m2n+m3 +m3 log l + pinv(m) + +pinv(n,m).

In view of [2] and [20], the complexity pinv(m) ≥ M(m) = m3 > 0. From pinv(m) > 0, it
follows that O(1.3) > O(2.8). Hence from this perspective, representation (2.8) is better than
representation (1.3).

6 Numerical examples

Our aim in this section is to test the time efficiency as well as the accuracy of given represen-
tations involving only pseudoinverse, namely, Equalities (1.3) and (2.8). For which, randomly
generated singular matrices of different sizes are employed. Time efficiency is evaluated by
the CPU time and the accuracy is measured by the residual norms. All the numerical tasks
have been performed by using Matlab R2017b.
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Table 4: Comparison of representations (1.3) and (2.8). Entries of A, W are uniformly
distributed random numbers from 0 to 1

Equation Size m,n l ≥ k CPU Time r1 r2 r3
(1.3) 0.0300 8.7292e+10 1.6417e-25 3.4789e-16

100, 200 l = k = 4
(2.8) 0.0200 4.7142e+10 8.9982e-26 3.7588e-16

(1.3) 0.0300 5.7009e+10 1.0516e-25 2.1932e-16
100, 200 l = k + 5

(2.8) 0.0200 1.7365e+10 3.2428e-26 6.6545e-16

(1.3) 0.0400 4.4537e+10 8.1622e-26 2.1898e-16
100, 200 l = k + 15

(2.8) 0.0300 2.5859e+10 4.6722e-26 2.3790e-16

(1.3) 0.0300 6.1824e+10 1.1411e-25 2.1261e-16
100, 200 l = k + 25

(2.8) 0.0300 1.8199e+10 3.5081e-26 2.6287e-16

(1.3) 0.2600 1.2955e+12 1.4910e-29 4.6126e-16
500, 1000 l = k = 3

(2.8) 0.2400 5.5178e+11 1.9805e-30 5.0956e-16

(1.3) 0.2600 1.2955e+12 1.4910e-29 4.6126e-16
500, 1000 l = k + 5

(2.8) 0.2400 5.5178e+11 1.9805e-30 5.0956e-16

(1.3) 0.3200 1.2142e+12 1.3975e-29 4.8350e-16
500, 1000 l = k + 15

(2.8) 0.2400 5.5196e+11 3.4573e-30 5.7581e-16

(1.3) 0.4700 7.9785e+11 9.1222e-30 8.3847e-16
500, 1000 l = k + 25

(2.8) 0.2700 5.5190e+11 1.1077e-30 5.8500e-16
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Let A ∈ Cm×n and W ∈ Cn×m with ind(AW ) = k. We assume that m < n. Approxima-
tion derived from a numerical method for computing A †○,W will be denoted by X, and the
residual norms in all numerical experiments are denoted by

r1 = ||XW (AW )k+1−(AW )k||2, r2 = ||AWXWX−X||2 and r3 = ||(WAWX)∗−WAWX||2.

From Table 4, the following overall conclusions can be emphasized:
(1) The representation (2.8) gives a better result in the aspect of the computational speed.
(2) Representation (2.8) is better in accuracy with respect to the residual norms r1 and

r2.
(3) Contrary to the previous conclusion, the representation (1.3) is a better expression in

accuracy with respect to norm r3.
(4) Both (1.3) and (2.8) produce bad results with respect to the norm r1. This reason is

the numerical instability caused by various matrix powers.

7 Conclusion

This paper introduces several computational representations for the W -weighted core-EP
inverse by using three different matrix decompositions:
• singular-value decomposition;
• full-rank decomposition;
• QR decomposition.

Based on these representations, some properties of the weighted core-EP inverse are derived.
Complexity of introduced representations are estimated and numerical examples are presented.
In addition, the weighted core-EP inverse is considered as a particular (B,C)-inverse, and a

particular generalized inverse A
(2)
T,S .
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