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Abstract. The structure of a planar detonation wave is analyzed for an Eulerian
mixture of ideal gases undergoing the symmetric reversible explosive reaction A; +
A, = As+A,. The chemical rate law is derived from the reactive Boltzmann equation,
showing a detailed chemical kinetics in terms of a second-order reaction rate. The
hydrodynamic bidimensional stability of the detonation wave is also investigated using
a normal mode approach, when small time-space transverse disturbances affect the
shock wave location. A suitable numerical technique is here proposed in order to solve
the stability problem and numerical results are provided illustrating the detonation
wave structure and its instability spectrum.
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1. Introduction

The steady detonation for chemically reacting gases has been investigated in the
framework of the macroscopic equations deduced in the hydrodynamic limit of kinetic
models. This approach has been considered in several works. See, for example, papers
[1, 2, 3]. Furthermore, the linear stability of the steady detonation, when unidimensional
disturbances perturb the steady wave, has been analised in the kinetic frame in papers
[4, 5, 6]. On the other hand, the detonation stability in the presence of bidimensional
perturbations has been considered in the kinetic frame for the first time in paper [7].
In that paper, the stability equations have been constructed adopting a normal mode
approach and the necessary closure condition has been derived as a radiation condition
at the end of the reaction zone, according to the classical approach, see for example

paper [8].
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The stability analysis presented in paper [7] provides a consistent mathematical
modelling with a rather detailed chemical kinetics, so that the analysis is highly sensitive
to the effects of the chemical reaction. Such result is mainly due to the fact that the
dispersion relation includes the contribution of several chemical kinetic parameters, since
the chemical reaction rate is built in the hydrodynamic limit of a molecular dynamics
within kinetic theory of reacting gases. At the same time, the model is suitable to
develop the computational treatment of the detonation stability.

Therefore, starting from the mathematical modeling of paper [7], for what concerns
the detonation dynamics and its stability properties, a pertinent solution technique is
proposed here in order to solve numerically the stability problem and to characterize
the instability spectrum. The technique extends the one proposed in paper [6], where
unidimensional perturbations were considered, to the case of bidimensional transverse
disturbances. The numerical strategy combines the shooting method by Lee and Stewart
(see paper [8]) with the Erpenbeck’s idea of counting the zeros of a complex function (see
paper [9]). However, the fact that bidimensional perturbations are taken into account
renders the stability problem much more complete but, at the same time, rather difficult
to be treated from both theoretical and computational sides. Therefore, additional
efforts are required to set up the numerical technique and to provide satisfactory results
at the end of characterizing the instability spectrum of the solution in an appropriate
parametric space.

In the present paper, a numerical application is treated for a chosen set of input
data, such as specific heat ratio, overdrive degree, reaction heat and activation energy,
for which at least one instability mode does exist, as shown by the contour plot of the
residual function. In particular, the influence of the disturbance wave number in the
instability spectrum is studied, representing the disturbance growth rate and disturbance
frequency of the instability mode for different values of the wave number.

The results presented in this paper can be viewed as the first computational
treatment of the stability problem with bidimensional perturbations formulated in paper
[7]. At the same time, the numerical application developed in this paper validates the
extension of the numerical technique to the more complex problem of bidimensional
stability.

The content of this paper is organized as follows. After this introduction, the
principal aspects of the modeling are summarized in Section 2. The mathematical
description of the steady detonation wave is revisited in Section 3 with reference to paper
[7]. The problem of the hydrodynamic bidimensional stability of the steady detonation
wave is formulated in Section 4, with emphasis on its closure radiation condition and
on the resolubility strategy. In particular, the numerical technique adopted to solve the
stability problem is presented in Subsection 4.2. At last, a numerical application in an
appropriate parametric space is treated in Section 5. The procedure presented in the
previous sections is applied in view of producing some representative results for what
concerns the steady detonation wave and its related stability problem.
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2. Model equations

The model equations are those for an Eulerian reacting mixture undergoing the reversible
chemical reaction A; + A7 = Ay + A,. Such equations express the balance laws for the
mass density p, flow velocity u = (uy,us) and pressure p of the mixture, and for the
progress variable of the chemical reaction defined as the mass concentration z of the
products. They are given by

dp 0 0
o an )T g ) =0 Y
dpuy 0 0 _

£t o (pus +p) + (o) = 0, 2)
dpuy 0

En + T%(puluﬁ s = —(puguz +p) =0, (3)
0 9 (9
% + T(ﬂeul + puy) + (P€u2 + puz) =0, (4)
0z 0z 0z
E—f_ulail»l uQa—xz =T, (5)

where e = £ +u?/2 is the total specific energy of the mixture, ¢ = £(p, p, 2) is the specific
internal energy of the mixture, and r = r(p, p, z) is the reaction rate.
The closure of the system (1-5) is assured by the thermal and caloric equations of state,
k p
p=p—T and £=—"+ —ZAg¢, (6)
m p(y—1)
where 7' is the mixture temperature and 7 the specific heat ratio, and by the reaction

TZQTL\/?GPGXP (—;}) {(I—Z)Z—ZQGXP (Efk_Ter)}v (7)

where a is the molecular diameter, ¢, and ¢, are the forward and backward activation

rate law

energies, and Ae = ¢; — €5 is the binding energy difference. Such reaction rate has been
obtained in the kinetic theory framework for chemically reactive mixtures (see book [10]),
using an approximate solution of the microscopic system of Boltzmann equations (BE)
describing the reactive mixture in terms of a collisional molecular dynamics. Adopting
reactive differential cross sections of hard spheres with activation energy, and assuming a
chemical flow regime close to the thermodynamical equilibrium, an approximate solution
of the BE has been obtained as Maxwellian velocity distribution functions which does
not assure the chemical equilibrium condition, that is

m \%/2 mC,?
fo = o <27rkT> b <_ kT )  a=13 (®)

where n,, is the particle number density and C,, the modulus of the peculiar velocity of

each constituent. The chemical equilibrium condition is

o (). L
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where
Q=¢—€ =—2mAc (10)

is the reaction heat.

3. Detonation wave structure

The structure of the detonation wave characterized here is consistent with the classical
ZND model, proposed by Zeldovich, von Neumann and Doering, for a one-dimensional
detonation wave. The configuration of the ZND wave consists of a planar, non-reactive
shock wave propagating with constant velocity in the positive z-direction, followed by a
finite reaction zone where the chemical reaction takes place, see [11|. The reaction zone
connects the von Neumann state N just behind the shock wave, where the chemical
reaction is triggered, to the final state S, where the reaction reaches the chemical
equilibrium. The ZND configuration is steady in the shock-attached frame, so that
the steady variable ¢ is introduced in the form

§=st—ux, (11)
with £ <0 ahead of the shock and £ >0 behind the shock.

The governing equations are the reactive Euler equations (1-5) in one-dimensional form,

dp 0

2 T %(pu) =0, (12)
%[?L+£:(pu2+p) =0, (13)
aap: + (i(peu + pu) =0, (14)
5t (15)

where u represents the flow velocity of the mixture in the z-direction.

The ZND structure of the steady detonation wave solution is specified when the von
Neumann state N, the equilibrium final state S and the continuous reacting flow in the
reaction zone are determined for each value of the detonation velocity s. The N and S
states are determined resorting to a Rankine-Hugoniot analysis, so that the existence
of a minimum acceptable value of the wave speed s can be proved. Such minimum
defines the Chapman-Jouguet velocity, s;, and the corresponding equilibrium final state
is the CJ state. Since the present detonation model considers a reversible reaction, the
Hugoniot diagram must be completed with the so called equilibrium Hugoniot curve,
locus of all equilibrium final states (see, for instantce, Refs. [11] and [12]).

In paper [7], the equations of such curve have been explicitly derived, and a solution
procedure has been proposed in order to determine the steady detonation wave structure
for the present model. Accordingly, the wave structure is characterized as follows.
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Final states
For each value of s, the equilibrium final states in the v-p plane, with v = 1/p being the
specific volume of the mixture, are characterized by

v v 1+ \/(52—7)2—2(7+1)(7—1)2Aes2

v, Y+1 s° i (v +1)s? (16)
p_ 145 (=1’ 20+ D~ DzAes” a7
Po v+1 (v+1)
where z is obtained by the chemical equilibrium condition
1+s* v 1482 Ae
+s 6(2)> < — —B() | = ——F =~ (18)
<v+1 7+1 s m(l z)
z
with
BQPZVQQ—w2—2W+4M7—U2sz 19)
(y+1)s? '

Above the upper sign identifies a state compatible with a strong detonation wave,
whereas the lower sign identifies a state compatible with a weak detonation wave. In
this paper, the analysis is addressed to strong detonation solutions.

CJ state

The CJ state is obtained when the wave speed s reaches the minimum value s; for
which the corresponding Rayleigh line is tangent to the equilibrium Hugoniot curve.
Therefore, 5(z) = 0 and s; and ze%‘] are determined by solving conditions

(2 =9 =2(y+ 1)(y—1)zAes* =0 (20)
and
1+ 52 14 s? A
+ s Y —|—25 _ K (21)
y+1)\yv+1 s m(1—2>
z
The CJ state is then characterized by
1+ s 1+ s
r__r +28 and L _FT% (22)
Vo v+1 s Do v+1

Overdrive degree

For the admissible values of the detonation wave speed, s > s;, the overdrive degree f is
defined by f = (s/s;)?. Thus, f = 1 corresponds to the Chapman-Jouguet detonation
whereas f > 1 to the overdriven detonation.
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Von-Neumann state

The von-Neumann state N is the non trivial solution of the Rankine-Hugoniot conditions
of the model referred to the upper state of the reaction zone where the chemical reaction
is not yet initiated. Such post-shock state is characterized by

4 2s* v—1 v y—1 2 v
= — = I — Oy =—= — s
L | Myl Pyt
. (23)
wy = : =UNS,
])Uv()
where w = s — u is the steady waveframe velocity, and by the condition
2N =2, = 0. (24)

Continuos reacting flow

The continuous flow within the reaction zone is determined by solving (for £ > 0) the
following dimensionless system which is deduced by referring the governing equations
(12-15) to the steady variable (11) and by considering p, T', w and z as variables,

dpp (v—1)Ae
df—Tw AT T, (25)

dT" TN (v —1)Ae

de (w_w> w? —~T " (26)
d - 1A

£=—Zaﬁfh (27)
d

dz == (28)

In the above equations, p, T', w, Ae, & and r are given, respectively, in units of p,, Ty,

-1
v/ PoVo; Polos Toy/Polo and 7,7, where

1 m
_ / 29
=y nea? \| wkT, (29)

is a reference time of order of mean free time. The dimensionless form of the reaction
rate r reads

(Pt w

with €, given in units of k7;. The initial conditions at £ = 0 for the system of equations
(25-28) are provided by the post-shock conditions (23).

Graphic representation of the solution
The structure of the detonation solution can be represented in the Hugoniot diagram
including Rayleigh lines, partial Hugoniot curves, and also the equilibrium Hugoniot
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curve defined in parametric form by the equations (16) and (17), where z is the parameter
obeying the equilibrium condition (18).

As an illustrative example of the detonation wave structure, Figure 1 shows the
Hugoniot diagram constructed using the present model, for the following choice of the
material properties

v = 3 Ae=1.0, € =2.0.
6
N
fixed composition Hugoniot curves
5 N\ - equilibrium Hugoniot curve
4 .
8
X 3
W
21 z=1
1 .
0 T T T
0.3 0.6 09 1.0 1.2

Figure 1: Hugoniot diagram for the steady detonation solution. Segment N;CJ
represents the Chapman-Jouguet solution (s = s;) and segment NS represents an
overdriven solution (s > s;).

For this choice, the CJ velocity s; and the corresponding equilibrium concentration z;
are
s; = 225181, z; = 0.64269.

The CJ Rayleigh line is drawn in Figure 1 with another line for s =9.00724. The
figure contains the equilibrium Hugoniot curve, gathering all final states for different
values of the wave velocity s > s;. Such curve contains the final states proper of
the strong solution and, for completeness, also those states in the weak branch. The
Hugoniot curve for z = 0 represents all von Neuman states in the strong branch and
other post-shock states in the weak branch.

For completeness, Figure 1 also contains the reference Hugoniot curve for z =1
obtained as a particular hyperbola of the family of the Hugoniot curves of fixed product
concentration z. The points on this curve do not belong to the wave solution, because
the reversibility of the chemical reaction is not compatible with a state for which all
reactants of the forward reaction are transformed into products, namely z=1.
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Further aspects of the detonation wave structure will be investigated in Section 5,
where some numerical simulations are performed regarding both the steady detonation
solution and its bidimensional hydrodynamical stability.

4. Hydrodynamic stability

The hydrodynamic linear stability of the steady wave structure is studied in presence of
bidimensional disturbances. A small rear boundary perturbation is instantaneously
assigned and a distortion on the shock wave location, ¥(y,t), is induced by small
transverse disturbances. Assuming that the instability of the detonation solution results
uniquely from the interaction between the perturbed shock and the reaction zone, the
stability problem consists in studying the evolution of the state variables disturbances
in the reaction zone.

In what follows, the stability problem is formulated assuming a normal mode
representation of the disturbances, and a numerically technique is proposed to solve
the problem.

4.1. Mathematical formulation of the stability problem

The analysis is based on the bidimensional reactive Euler equations (1-5), re-written in

the form
ov ov ou;
- e — 1
L PR P (31)
Ou, Ou, op ,
— ; = =1,2 2
at + Uj 835@ + Ua[['i 07 J » £y (3 )
op Op 2 0u;
ot " “om P an PO (33)
0z 0z
hdad el 4
o0 Ui = (34)
and then transformed to the perturbed shock-attached frame
E=st—x+Y(y,t). (35)

A restricted class of asymptotic solutions to the transformed system, which deviate by
a small amount from the known steady detonation solution, is seeked. Accordingly,
a linear approach is appropriate to analyze this problem and equations (31-34) are
linearized through a normal mode expansion around the known solution,

a(&y,t) = @' (&) +q' (™™™ W(y, 1) = ¢ e, (36)
where a € C, k € R, ¢/ € R, and

v v [ o* ] o]
S — U, w w* w’
q=| w |=|uw|, ¢=|01], ¢=|u (37)
p p P 4
oz |z B 2
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represent the state vector, the known steady-state vector and the complex perturbation
amplitude vector, respectively. Moreover, Re(«a) is the disturbance growth rate,
Im(«) the disturbance frequency, k the disturbance wave number, and v’ the spatial
perturbation amplitude of the shock location.

The linearized equations for the perturbation amplitudes q’ results then in the following
homogeneous linear system constituting the stability equations of the model,

dq' : )
where
[ w* —v* 0 0 0 ] [ adé’g
0 w* 0 v* 0 o d;’é*
A=|0 0 w* 0 0 |, C=| ik |, (39)
0 yp* 0 w* 0 a%
0 0 0 0  w] | ats |
[ a4 W —ikvt 0 0 ]
a a+ % 0 0 0
B= 0 0 ! ikv* 0 . (40)
(l—z;y*)Ae (7”: B %) dé,&* Zl{?’}/p* Oé—.—’}/% + (1—1:,;)Ae T: (l—vq;)Ae ,rz*
L = d;g 0 _Tp* a—r J

Above, « is given in units of 7', k in units of (s79)~' and ¢ in units of sy, where 7
is the reference time defined by expression (29). The linearization of the reaction rate
leads to the form

r=r"+r(v—-v)+rp-p)+ri(z—2), (41)

where 77, v and 77 denote the partial derivatives of 7.

The stability equations (38) constitute a set of ten first-order linear differential
equations for the real and imaginary parts of the complex perturbations, with spatially
varying coefficients depending on the steady solution g*(§).

Linearization of the bidimensional Rankine-Hugoniot relations at the shock, ¢ = 0, leads
to the following boundary conditions to be joined to the stability equations (38),

4
v =— 53(77—1—1)0“% (42)

2 sS4y
= / 43
v vy+1 s? oy, (43)
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L2 s2—x
= ik g o, (44)
4s
I ) 45
b v+1 4 (45)
2 =0. (46)

The stability equations and their boundary conditions, besides the unknown state
variables perturbations, involve the shock spatial perturbation amplitude ', as well
as the key parameter o which determines the stability character of the steady wave.
The amplitude ¢’ will be normalized with respect to a reference amplitude as detailed
in Section 5. Therefore a closure condition is needed in order to determine the dynamics
of a;, and a perturbation acoustic analysis is developed at the end of the reaction zone,
where the state variables reach their equilibrium values and remain constant.

The closure condition is obtained following the procedure proposed in [13] and then
adopted in several papers, see, for example, [8, 14, 15].

More specifically, first one assumes that the spatial amplitudes g’ are represented
as a Fourier mode in terms of the wave number k, that is ¢’ = ge?*¢, and the differential
system of stability equations (38) reduces to an algebraic system of homogeneous linear
equations whose solutions describe different modes of propagation, namely vorticity
and entropic waves, backward and forward acoustic waves and a mode associated to
the chemical reaction. This implies that the spatial perturbation amplitudes q’ can be
expressed as a superposition of acoustic waves propagating at the characteristic speeds
associated to such modes

Then, the crucial point in this derivation is a consequence of a further condition
proper of the stability analysis [14], usually referred to as radiation condition in the
acoustic nomenclature. It is assumed that the instability depends only on the interaction
between the perturbed shock and the reaction zone so that q' does not depend on the
the forward family of acoustic waves.

Mathematically, the procedure leads to the explicit derivation of the closure
condition for «, which represents the dispersion relation of the normal modes (36) and
has been deduced in [7] in the form

(b—r) ozz—k;Qw*Q—b[OH—(w*/c*)\/oz2+k2(c*2—w*2) a /
Vti—w +ku,

v* (O_/ . b)2 o ]{52’(1)*2 o (w*2/c*2)b2 w

l

ot rl(a— b)z—k:Qw*Q—(w*/c*)Zbrj]\/a2 + ]{;2(6*2_,[0*2) .
Zw*c* (a—b)Q—k2w*2—(w*2/c*2)b2 (

(w*/c) (b —1D)[a(a = b) — K*w™]7
(a— b7 — Buw? — (w2 ]p

r* ala —b) — KPw? — b(w*/c*)\/a2 + k2(c*2 —w*?)

+ 1= (yv=1)A
L 2(7 ) € (a_b)Q_k2w*2_(w*2/C*2>b2

2 =0,
C*
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~1 *
Whereb:T:—FLAe T—i
gl p

The dispersion relation (47) shows a relevant influence of the chemical kinetics, thanks
to the presence of the partial derivatives of the reaction rate. These contributions are
due to the detailed form of the chemical reaction rate which is built in the hydrodynamic
limit of the considered kinetic model.

On the other hand, one can observe that in several well known papers in the classical
detonation literature see, for example, papers [16, 14] and related bibliography, where
a first-order reaction rate of Arrhenius form is usually adopted, the radiation condition
has a reduced form with respect to condition (47). In fact, such form is recovered as a
particular case of condition (47), when the derivatives 7 and r* vanish at the end of
the reaction zone.

In conclusion, the stability problem is here formulated in terms of the complex
perturbation amplitudes q' and complex growth rate «, by means of the stability
equations (38) for & €]0, £eq[, with boundary conditions (42)-(46) at £ = 0, and closure
condition specified by the dispersion relation (47) at £ = £.,. Conversely, the disturbance
wave number k remains as a real parameter.

This problem presents a practical difficulty for the following reasons: the integration
of the differential equations (38) with boundary conditions (42)-(46) needs the knowledge
of «; on the other hand, o must be specified by the dispersion relation (47) which, in
turn, involves the unknown amplitudes q’ specified at £ = &,. Thus, the integration of
the stability equations requires the knowledge of a but, at the same time, the condition
that determines « requires the solution of the stability equations. To overcome such
difficulty, a suitable solution technique should be used. A further difficulty is the fact
that the coefficients of the stability equations are not constant. Therefore, a numerical
approach seems to be the most convenient strategy to determine the stability solution
and to investigate the influence of the model parameters on the instability spectrum.

4.2. Solution technique

The numerical technique adopted in this paper follows the procedure proposed in Ref. [6],
for one-dimensional linear stability and different chemical rate. The technique combines
the iterative shooting method first proposed by Lee and Stewart in paper [8], hereinafter
referred to as the LS procedure, with the Cauchy’s argument principle used by Erpenbeck
in paper [9], and is addressed to determine the instability modes which correspond to a
positive growth rate Re («). Since these modes occur in conjugate pairs, a region R in
the upper-right quarter of the complex plane is considered in order to search appropriate
values of the perturbation parameter a.

The shooting technique starts with a trial value for a and the stability equations
are solved for that a. Then one tests if the solution to the stability equations and
corresponding trial « verify the dispersion relation. If this is the case, then a and q’
constitute a solution to the stability problem. Since, in general, this is not the case, one
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has to consider a new trial value for o and iterate the procedure until the dispersion
relation is verified.

A straightforward application of the LS procedure in the eigenvalue domain of the
complex plan requires a discretization of that domain using a very thin grid. This
procedure requires a large number of trial values, see [17].

A guide for the search of appropriate trial values for a, with lower computational
effort, is provided by the residual function H(«), defined by the expression on the left
hand side of Eq. (47), whose zeros are the solutions to the dispersion relation.

The numerical technique consists then of the following steps.

(i) Consider a tentative region R in the upper-right complex plane, and select a
great number of points a;, j = 1,2,...,n, in its contour. For each a;, j = 1,2,...,n,
fix another point b; such that Re (b;) = Re (a;) + 107 and Im (b;) = Im (a;).

(7i) Integrate numerically the stability equations (38) with their boundary
conditions (42)-(46), assuming all points a; and b; as trial values for the perturbation
parameter «, and thus obtain a tentative solution ¢’ for each a; and each b,.

(i7i) Evaluate the residual function H for each trial point and corresponding
tentative solution. Afterwards, verify if H(a;)=0 or H(b;) =0 for some j =1,2,...,n.
If this is the case, then a solution to the stability problem is found. If not, proceed to
the next step.

(iv) Use the argument principle to determine the number Z of zeros of H inside the
region R. Since H has no poles in R, such number is given by

/
o [ 22O (18)
2mi Je (L))
where (: [k, ¢] — C is a path smooth by parts, describing the contour of R in the positive
direction. The derivative s '(((t)) is estimated by the ratio

H(bj) — H(ay)

bj—aj

If Z =0, the stability problem does not admit any solution in the region R, and
the procedure must be iterated starting from a different region.

If Z >0, the stability problem admits at least one solution in the region R, and a
contour plot of || can be drawn in order to approximate the location of the instability
solutions. After that, a refinement of R is needed around each zero and the procedure
must be iterated, starting from the corresponding refinement, until the solution satisfies
the required precision.

5. Numerical results

Some representative results for the structure of the steady detonation solution and its
instability spectrum are presented in Subsections 5.1 and 5.2, with reference to the data
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specified below. Then, some computational considerations are presented and discussed
in Subsection 5.3.

The reference parameters in this analysis are the specific heat ratio =, overdrive
degree f, forward activation energy ey, reaction heat Q and wave number k. In view of
equation (10), the binding energy difference Ae can be considered in place of Q. The
numerical computations presented in this paper do not cover the variation of all these
parameters, but only some of them.

In particular, the structure of the steady detonation solution is obtained for two
values of the overdrive degree f whereas the stability spectrum is characterized varying
the wave number k and the forward activation energy e;.

For the numerical application, the selected input data are the dimensionless pre-

shock state of the reactive flow,

Py Yy Y o, =0, (49)

Do Vo v/ PoVo

and the material properties

5
= -, Ae=1.0, (50)

which are held fixed. The Chapman-Jouguet velocity s;, the corresponding equilibrium
concentration z; and the state variables at the CJ state are

s, =2.25181, z = 0.64269, v, /v, =0.748259, p,/p, = 2.27649. (51)

5.1. Structure of the steady detonation solution

The numerical simulations refer to two different values of the shock wave velocity, namely
s =s; and s = 3.18454 > s5,, that is f = 1 (Chapman-Jouguet detonation) and f = /2
(overdriven detonation). In this analysis, the forward activation energy is held fixed
at e, = 2. The detonation wave structure for the considered reacting gas mixture is
represented in Fig. 1 in terms of the Hugoniot diagram and in Fig. 2 in terms of state
variables profiles. These profiles show the behavior in the reaction zone of the pressure,
temperature, waveframe velocity and progress variable, in dependence of the distance &
from the shock front. All profiles show that the equilibrium values for p, T', w and z are
reached for the same value of &, as expected. More precisely, the equilibrium values are
obtained for £ = 14.90 when f = 1 and for £ = 3.05 when f =+/2. The fact that the
width of the reaction zone becomes smaller for increasing values of the overdrive degree
is also recognized in the Hugoniot diagram of Fig. 1 through the decreasing length of
the solution segment for greater values of s.

Also observe that the pressure profiles in the upper-left pictures of in Fig. 2 exhibits
a rarefaction in the reaction zone, reproducing the typical ZND behaviour.

5.2. Instability spectrum

The instability spectrum of the steady detonation solution is investigated solving the
stability problem formulated in Subsection 4.1.
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Figure 2: Structure of the steady detonation wave for ¢; = 2. Profiles of pressure,
temperature, wave frame velocity, progress variable, for f =1 (dashed lines) and f=+/2
(solid lines).

The analysis is performed for the steady solution obtained when f = /2 and the
instability spectrum is investigated in the region R =10,0.5] x [0, 1] of the upper-right
quadrant of the complex plane.

In particular, for the material properties (50), overdrive degree f = /2 and wave
number £ = 0.18, there exist two instability modes in the region R, which are given by
a = 0.307 + 0.247 and o = 0.354 + 0.128:. The contour plot of the residual function
| 7€ ()| represented in Figure 3 in a subregion of R shows the domain of attraction
of such instability modes. The mode with lowest frequency, i.e. the one with smaller
imaginary part, represents the fundamental mode, which has a particular interest in the
stability analysis [8, 15, 17]. Observe that, in presence of bidimensional perturbations,
the behaviour of this mode in dependence of the wave number of the disturbances applied
to the steady detonation front plays a relevant role in the stability analysis.

Influence of the wave number on the fundamental mode

The first aspect to be investigated is how the fundamental mode is affected when the
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Figure 3: Contour plot of the residual function |7 ()| in a subregion of R, for f = /2,
€; = 2, k = 0.18, showing the location of the instability modes and their domain of
attraction.

activation energy is maintained fixed at ¢; = 2 and the wave number is varying in
the interval [0,2]. The migration of the fundamental mode is followed in the complex
region R, and the diagrams of Figure 4 show the disturbance growth rate Re () and
disturbance frequency Im («) versus the wave number k. The pictures reveal that for
increasing values of k, the fundamental mode becomes less unstable, since its growth
rate (left frame) tends to zero. One may also notice that the frequency of the instability
mode (right frame) is zero for k = 0, grows to 0.12 for k£ = 0.18 and rapidly decreases
for larger values of k.
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Figure 4: Migration of the disturbance (left) growth rate Re («) and (right) frequency
Im (a) for the fundamental mode versus the wave number k, with f = /2, e;=2.
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forward activation energy
wave number ep=1 € =2 er =10
k=0 a=0.672 a=1.29
k=0.1 a = 0.325 + 0.024: a=1.1440.014:
k=02 a =0.047+0.018: a=0.117+0.0112
kE=0.3 a = 0.031 + 0.00052 a = 0.038 + 0.001z a = 0.088¢
k=04 a = 0.0261 4+ 0.00037 | = 0.0284 4 0.00047 | o = 0.034 + 0.0013:
kE=0.5 a =0.024 +0.0002: | a=0.025+0.0003: | a = 0.021 4 0.0004%
k=1 a = 0.021 + 0.0001z a = 0.0240.0001z | a=0.012 4 0.0001%
k=15 a = 0.02 4+ 0.0001z a = 0.019+0.0001z | o =0.009 4 0.0001%
k=2 a=0.019+0.0001z | a=0.01840.0001z

Table 1: Exact values of the disturbance growth rate Re () and disturbance frequency
Im («) of the fundamental mode, for f = v/2, €; = 2 and different values of the forward
activation energy, when the wave number varies in the range [0, 2].

Influence of the forward activation energy on the fundamental mode

Another aspect to be investigated is how the fundamental mode varies for different values
of the forward activation energy, namely for €; = 1, ¢; = 2 and €; = 10, when the wave
number k varies in the interval [0, 2]. This analysis reflects the influence of the chemical
reaction on the fundamental mode, since higher values of the activation energy delay
the onset of the chemical reaction. See equation (30) and the contribution of € to the
pre-exponential factor of the reaction rate. The results shown in Table 1 indicate that
the behaviour of the fundamental mode is rather similar for e; = 1 and €; = 2, as the
values of the wave number are varying. In particular, for £ > 0.5, the fundamental mode
for ¢, = 1 and the one for €; = 2 are almost coincident. Furthermore, the fundamental
mode is real, corresponding to a non-oscillatory mode, for both €y = 1 and €5 = 2 when
k = 0. Conversely, it is purely imaginary for €; = 10 when k& = 0.3, For each value of
the wave number k£ < 0.5, the fundamental mode has larger real part for the larger value
of the forward activation energy ey. This implies that an increasing of the activation
energy, when the wave number is fixed at £ < 0.5, intensifies the instability character
of the fundamental mode. For ¢; = 10 and &£ < 0.3, the fundamental mode becomes
stable, since its real part becomes negative. On the other hand, the fundamental mode
no longer exists when & > 1.5. These features are in agreement with other results
presented in literature, see [15], for example.

5.3. Computational considerations

In this subsection, some aspects on the computational efforts required to determine
the instability spectrum are discussed. In particular, some comparisons between the
numerical technique proposed in Subsection 4.2 and the LS procedure advanced by Lee
and Stewart in [8] are here analysed.
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The numerical study of the linear stability problem is computationaly demanding,
essentially because, for each set of chosen parameters, it requires a large number of
trial values. In fact, equations (38) with their boundary conditions (42-46) have to
be integrated a huge number of times until the dispersion relation (47) is satisfied or,
equivalently, until the zeros of the residual function H(a) are found. In addition, for
each set of chosen parameters, a root finding routine has to be implemented in an
appropriate refinement of R in order to approximate the location of the corresponding
instability modes. A further complexity is that the stability problem is very sensitive
to small changes in the parameter space, so that in order to study the influence of one
selected parameter on the instability spectrum, the procedure must be iterated for very
small variations of that parameter.

e With reference to the contour plot of Figure 3 and the corresponding set of
parameters, 220 trial values were needed to determine the number of instability
modes presented in the region R. Then, four sequential refinements of the region
R were considered and more 480 trial values were added to determine a small
subregion of R containing the two modes. To guarantee a precision of order of
1072, other 500 trial values were required in the resolutive procedure. This means
that the computational procedure needed a total of 1200 trial values to obtain the
contour plot represented in Figure 3.

e In order to obtain the migration of the fundamental mode represented in Figure
4, when the wave number k varies in the interval [0, 2] with increments of order of
1072, the stability problem should be numerically solved for 200 different sets of
parameters, each one requiring 1200 trial values for a.

e The results shown in Table 1 have been obtained solving the stability problem for
27 different sets of parameters, with increments of k of order of 1072,

In view of a comparison between the numerical technique proposed here and the LS
procedure, at least 5000 trial values in place of 1200 are needed for the latter method
when applied to the same region R with a precision of the same order. In fact, without
any previous knowledge on the location of the modes, the LS procedure uses a grid of
trial values to draw a contour plot in the whole region, corresponding to the carpet search
[8]. The computations for each trial value require about tree seconds using the resources
employed in this paper, namely a computer with a 2.4 GHz intel Core I5 processor, with
8GB RAM memory and 64 bits system operator. Therefore, the LS procedure requires
a greater computational time, which can be estimated in 3 hours more to obtain the
contour plot of Figure 3. Although the computational time depends on the specific
values of the considered parameters, one could expect that the LS procedure requires
600 hours more for Figure 4 and 81 hours more for Table 1.

Observe that the difference between the computational times would be even more
significant when two instability modes exist in R at a distance smaller than 1072, In
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this case, the precision of order 10~2 would not be enough to distinguish the two modes
and more trial values would be needed.

A further aspect to be underlined is that the numerical technique proposed in this
paper starts by counting the number of modes in region R. This is not the case if the
LS procedure is straightforward applied in R, since in this procedure the modes are not
counted. Therefore, it is not possible to decide a priori if a thinner grid will be needed
to distinguish two modes.

6. Conclusions

In this work some efforts are done to inspect the complex problem of the instability
spectrum of the steady detonation wave for an Eulerian binary gas mixture with a
reversible chemical reaction and bidimensional transverse perturbations. The modeling
arises from a detailed kinetic description of the chemical mechanism, and the treatment
is to be considered in the hydrodynamical limit and in flow conditions close to
equilibrium. At this scope, the main arguments discussed by some of the authors in
two quite recent papers (see Refs. [6] and [7]) are revisited for reader convenience and
widened in view of the numerical application proposed in this paper. The methodology
presented in Section 4 is applied for the actual calculation of the instability spectrum.
In particular, a renewed use of the equilibrium properties investigated in paper [7] is
here employed to characterize the steady solution for an overdriven one dimensional
detonation wave. Moreover, a new numerical technique is here proposed to explore the
instability spectrum through a two dimensional linear stability analysis, on the basis of
the ideas presented in Ref. [6] for the one-dimensional linear stability. The results of
Section 5 seem to provide an accurate and detailed consistent picture of the detonation
wave and its instability, specifically due to the kinetic features of the chemical device.
Nevertheless, it is convenient to underline that the results obtained through a linear
stability analysis cannot be directly compared with physical experiments where the non
linear effects play a dominant role. Thus, on the basis of this first attempt to the
analysis of the instability spectrum, some future issues could be addressed to enlarge
and improve the modeling here proposed, in view of better understanding the detonation
instability and the physical mechanism behind it.

A particularly interesting extension of the present study could be the one of
considering a different reaction scheme, where direct and reverse chemical reactions have
a different order. Such scheme would induce a significant dependence of the reaction
kinetics on the local thermodynamic state in the reaction zone. The starting point
would be a different chemical mechanism such that the number of reactants differs from
that of products, for instance a dissociation-recombination process. The corresponding
kinetic model would lead to a reaction rate formally similar to the one in equation (7)
but with different order non-linearities in the reactant’s and product’s concentrations.

Another possible extension could be that of going beyond the Euler level up to the
Navier-Stokes regime [18, 19] and construct a more detailed modelling able to capture
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significant properties of detonation and its bidimensional stability. More in particular,
the Navier-Stokes equations can be used to investigate and understood the effects of
boundary layers on the detonation structure, cellular detonation patterns and their
formation when a large number of two-dimensional unstable modes appear, pathological
detonation and its stability [20, 21, 22, 23, 24]. On the other hand, the macroscopic
equations derived in the hydrodynamic limit of a kinetic model contain explicit and
detailed expressions of the reaction rate and transport coefficients which are deduced
using the approximate solution to the reactive Boltzmann equation, see, for instance, the
book [10] and related bibliography. Therefore, the hydrodynamic equations obtained in
this way show the capability to provide a good description, at least from the theoretical
and numerical point of view, of detonation processes in which the coupling between
chemical kinetics and the flow evolution represents a difficult task [25, 26].

At last, another issue could be the extension of the present stability analysis to
three dimensional linear perturbations, using the normal mode approach employed
in the present paper. Three dimensional perturbations are relevant, for example,
in the stability of spinning detonation, since the spinning regime can describe, also
experimentally, a cellular detonation, as documented in paper [16].
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