
1

Multivariate Statistical Process Control Based
on Principal Component Analysis:
Implementation of Framework in R
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Abstract The interest in multivariate statistical process control (MSPC)
has increased as the industrial processes have become more complex.
This paper presents an industrial process involving a plastic part in which,
due to the number of correlated variables, the inversion of the covariance
matrix becomes impossible, and the classical MSPC cannot be used to
identify physical aspects that explain the causes of variation or to increase
the knowledge about the process behaviour.
In order to solve this problem, a Multivariate Statistical Process Control
based on Principal Component Analysis (MSPC-PCA) approach was
used and an R code was developed to implement it according some
commercial software used for this purpose, namely the ProMV (c) 2016
from ProSensus, Inc. (www.prosensus.ca).
Based on used dataset, it was possible to illustrated the principles of
MSPC-PCA.
This work intends to illustrated the implementation of MSPC-PCA in R
step by step, to help the user community of R to be able to perform it.

Keywords: Multivariate Statistical Process Control (MSPC), Principal
Component Analysis (PCA), Control Charts, Contribution plots, R lan-
guage.

1 Introduction

Modern production processes have become more complex and now require a joint
analysis of a large number of variables with considerable correlations between
them [13].

With univariate statistical process control (SPC), it is possible to recognize
the existence of assignable causes of variation and distinguish unstable processes
from stable processes where only common causes of variation are present. The
main SPC charts are Shewhart, CUSUM and EWMA charts. They are easy
to use and enable to discriminate between unstable and stable processes. This
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way, it is possible to detect many types of faults and reduce the production of
non-conform products [14].

Although SPC Shewhart charts were designed to control a single characteristic,
if more than one characteristic is relevant to the process and these characteristics
are independent, the use of those charts is still the right choice. However, a
separate analysis of correlated variables may lead to erroneous conclusions.

Figure 1 describes a process with two quality variables (y1,y2) that follow
a bivariate normal distribution and have a ρ (y1, y2) correlation. The ellipse
represents a contour for the in-control process; the dots represent observations
and are also plotted as individual Shewhart charts on y1 and y2 vs. time. The
analysis of each individual chart shows that the process appears to be in statistical
control. However, the true situation is revealed in the multivariate y1 vs. y2,
where one observation is spotted outside the joint confidence region given by the
ellipse [10].

Figure 1: The misleading nature of univariate charts (adapted from [10]).

When applying a multivariate statistical approach for monitoring the status
of a process, a set of difficulties can be found. Some of them are listed in [11], as
follows:

1. Dimensionality: large amounts of data, including hundreds or even thousands
of variables (e.g. chemical industry);

2. Collinearity among the variables;
3. Noise associated with the measurement of process variables;
4. Missing data: the largest data sets contain missing data (sometimes up to

20%).

Thus, it is necessary to find methods to help overcome these difficulties.
In complex processes with a large number of variables (tens, hundreds or even

thousands), another problem, associated with collinearity, should be considered:
the inversion of the variance/covariance matrix to compute the distance of
Hotelling’s T 2 becomes difficult or even impossible (singular matrix). In such
cases, the traditional multivariate approach must be extended and the principal
component analysis (PCA) used in order to obtain new uncorrelated variables.
This process is achieved through a spatial rotation, followed by a projection of
the original data onto orthonormal subspaces [7].
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The R language provides a flexible computational framework for statistical
data analysis. R has several packages and functions to perform the PCA, and a
recent one to perform the multivariate statistical quality control (MSQC) [18],
but the sequence to perform MSPC-PCA is missing and hard to follow.

This study describes an R code that covers all the main steps of the MSPC-
PCA in an industrial context. All computation implemented in R follow the
procedures used by ProSensus Commercial Software, which deals with multivariate
data analysis for a large number of variables.

The main packages used in this study were prcomp, psych, FactoMineR or
pcaMethods.

2 Multivariate Statistical Process Control Based on PCA

The use of PCA aims to reduce the dimensionality of a dataset with a large
number of correlated variables by projecting them onto a subspace with reduced
dimensionality [8]. These new variables, the principal components (PCs), are
orthogonal and can be obtained through a linear combination of the original
variables [3].

Multivariate control charts based on the PCA approach provide powerful
tools for detecting out of control situations or diagnosing assignable causes of
variation. This function was illustrated by monitoring the properties of a low-
density polyethylene produced in a multi-zone tubular reactor, as presented
in [10].

2.1 Principal Components, Scores and Loadings

To perform PCA, considering a data set given by a matrix X, where n and p
are, respectively, the number of observations (rows) and the process variables
(columns). As a process can have different variables expressed in different units,
before applying PCA, the variables are usually standardized by scaling them to
zero mean and unit variance. The packages prcomp, pcaMethods (available in
Bioconductor) and FactoMineR performs this kind of analysis.

2.2 Representation of the Observations in the Reduced Dimension
PCA Model - Geometric Interpretation

The equation T = P
′
X is interpreted as a rotation of the axis system composed

of the original variables X into a new axis system composed of the PCs.
As mentioned earlier, most of the variability in the original data is captured

in the first m PCs. Thus, the previous equation for the full PCA model can be
written for a new reduced dimension model [14]:

Tm = P
′

mX ⇒X = TmP
′

m + E =

m∑
i=1

tip
′

i + E (1)
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where E is the residual matrix given by the difference between the original
variables and their reconstruction using the reduced dimension PCA model.

The geometric interpretation of the previous equations is the projection of
the original variables onto a subspace of dimension m < p after the previously
described rotation.

The concept is illustrated in Fig. 2, where a three-dimensional data set is
represented, as are its projection (scores) in a plane with two-dimensions (PC1
and PC2) [11].

Figure 2: PCA as a data projection method (source: [11]).

Four types of observation can be found with this projection of data:

1. ”regular observations”: in accordance with the PCA model defined;
2. ”good leverage points”: close to the PCA subspace but far from the center;
3. ”orthogonal outliers”: with a long orthogonal distance to the PCA subspace,

but close to regular observations, when looking at their projection onto the
PCA subspace;

4. ”bad leverage points”: with a long orthogonal distance and far from the
regular observations [4].

2.3 Number of Principal Components

The number m of principal components retained to build the PCA model can
be defined by using some of the following methods: the amount of variability
explained by the PCA model (R2), the Kaiser method, the scree plot, the broken
stick or the cross-validation (Q2) [8]. When used individually, none of these
methods is definitive. Some commercial software packages specialized in MSPC,
such as ProMV from ProSensus, use a joint analysis of R2 and Q2.

The percentage of variability (R2) explained by the model is directly related
to the number of principal components considered for the PCA model and can be
computed by 100× (

∑m
i λi/

∑p
i λi) %, where λi corresponds to the eigenvalue

for PCi [8].
The cross-validation (Q2) describes the predictive ability of the proposed

model and is based on the evaluation of prediction errors of the observations
not used to build the model [21]. For the training data, the prediction error
decreases as more components are added. However, for the testing data, i.e.,
observations that were not used to build the model, this error increases when
too many components are used. This effect happens because the model is being
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over-fitted with noise. The number of components to be considered is the one
with the smallest prediction error (Fig. 3).

Figure 3: Number of components in the model: joint analysis of R2 and Q2

(adapted from [2])

2.4 Multivariate Control Charts Based on PCA for Detecting
Assignable Causes

Take in to account that T 2 statistic is the weighted distance of an observation
to the center of the PCA subspace, the weighting factor is the variation in the
direction of the observation so T 2

m can be computed as follows [10]:

T 2
m =

m∑
i=1

t2i
s2ti

=

m∑
i=1

t2i
λi

(2)

The upper control limit for T 2, with 100(1− α)% confidence, is given by the
F -distribution with m and n−m degrees of freedom [10]:

UCL
(
T 2
m

)
=
m
(
n2 − 1

)
n (n−m)

Fα,m,n−m (3)

It can also be approximated by the chi-square distribution [15]:

UCL
(
T 2
m

)
= χ2

m,α (4)

The square prediction error (SPE) or Q statistics is related to the variability
in the PCA model and can be defined as the quadratic orthogonal distance [10]:

SPE =

p∑
j=1

(xnew,j − x̂new,j)
2

(5)

Assuming that residuals follow a multivariate normal distribution, the upper
control limit for the SPE chart can be computed using the following equation [6]:

UCL (SPEα) = θ1

[
zα
√

2θ2h20
θ1

+
θ2h0 (h0 − 1)

θ21
+ 1

]1/h0

(6)

where, h0 = 1− 2θ1θ3
3θ22

, θi =
∑p
j=m+1 λ

i
j with i = 1, 2, 3 and zα is the value of

the standard normal distribution with level of significance α.
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According to [17], an approximation of SPE, based on a weighted chi-square
distribution, can be used, as follow:

UCL (SPEα) =
ν

2b
χ2

2b2

ν ,α
(7)

where b is the sample mean and ν is the variance.

2.5 Diagnosing Assignable Causes

After detecting a faulty observation, the PCA model should be able to identify
which variables contribute most to this situation.

Contribution plots were firstly introduced by [12] and decompose the fault
detection statistics into a sum of terms associated with each original variable.
Consequently, the variables associated with the fault should present larger contri-
butions. This way, using contribution plots, it is possible to focus the attention
on a small subset of variables, thus making engineer and operator diagnostic
activities easier [9].

As there is no unique way to decompose these statistics, various authors
have proposed different formulas to calculate the contributions [9]. Westerhuis et
al. [20] discussed the contribution plots for both the T 2 and SPE statistics in
the multivariate statistical process control of batch processes. In particular, the
contributions of process variables to the T 2 are generalized to any type of latent
variable model with or without orthogonality constraints. Alcala and Qin [1]
assigned these contributions to three general methods: complete-decomposition,
partial-decomposition and reconstruction-based contributions.

The contribution to T 2 of a variable xj , for m PCs, is given by:

contT
2

j = xj

√√√√ m∑
i=1

(
ti
sti

)2

p2
i (8)

The contribution to SPE of a variable xj , for m retained PCs, is given by:

contSPEj = e2j × sign(ej) (9)

where ej = xj − x̂j = xj −
∑m
i=1 tipi

2.6 Steps for Applying MSPC-PCA

To apply the MSPC-PCA it is necessary to follow the following steps:

(1) Collection of a sample representative of the normal operating conditions
(NOC);

(2) Application of PCA: use of prcomp function in R, the standardization is
included;
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(3) Definition of the number of principal components to be retained: the
FactoMineR package could be used to produce the same results of prcomp

and we can chose directly the number of components as parameter in the
function. Another to perform PCA is pcaMethods that uses some measures
for internal cross validation techniques;

(4) Interpretation of the model obtained: analysis of scores and loadings plots.
To draw these graphs we use the package ellipse and plot;

(5) Identify the physical meaning of each of the principal components, if existing;
(6) Plot control charts for T 2 and SPE defining the limits according the equa-

tions;
(7) Interpretation of contributions plot and elimination of strong outliers.

3 Results

This section will present the scripts of R code for the R user community to
be able to perform MSPC-PCA by following all the necessary steps described
in section 2.6. For each step an example of a dataset of a plastic part will be
presented. The goal of this study was to identify which geometrical dimensions
of this plastic parts had the highest variability.

All calculation methods used were implemented in R programming language.
The most important packages and sections of the R codes were included for
reference.

The plastic parts used in this study were selected from the same production
batch on three different days (20 parts per day). The mold had two cavities
and 86 geometrical dimensions, such as flatness, length, width and thickness,
which were measured with a coordinate measuring machine. This dataset will be
designated, in the R code, by dataset.

3.1 Model Summary

PCA is aimed to produce a small set of independent principal components, from
a large set of correlated original variables. Usually, a smaller number of PCs
explains the most relevant parts of variability in the data set. The method used
to decide the number of PCs to retain was the joint observation of two indicators:
R2, which is a quantification of the explained percentage of variation obtained
directly with the eigenvalues; and Q2, which measures the predictive ability of
the model and is obtained through cross-validation.

The R2 can be computed by using the function prcomp included in the stats

package of R, as follows:
acp<-prcomp(dataset,scale=T)

The FactoMineR package also provides a list of results for multivariate analysis
methods, such as PCA, correspondence analysis or clustering [5].

In this work, cross-validation was obtained with the pcaMethods package. It
provides a set of different PCA implementations, together with tools for cross-
validation and visualization of the results [19]. The code used to perform the
cross-validation was:
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pc.Meth.sca.cv<-pca(scale(dataset), nPcs=5, method = ’svd’,cv=’q2’)
plot(pc.Meth.sca.cv)
cv.tab<-as.data.frame(cvstat(pc.Meth.sca.cv))

Both indicators, R2 and Q2, suggested that five PCs were enough to explain
the relevant part of the variability associated to the production process of the
plastic part (Fig. 4 and Table 1). The total variation explained by the model
with five components was approximately 92%

Figure 4: Graphical result.

Comp. Cumulative R2 Cumulative Q2

PC1 0.7605 0.7418
PC2 0.8255 0.7755
PC3 0.8686 0.8043
PC4 0.8977 0.8253
PC5 0.9204 0.8387

Table 1: Tabular result.

3.2 Score Plots

Score plots are useful graphical analysis tools. Timeline score plots for a single
PC are used to analyze time-related variation. Scatter plots of the combination
of two PC scores are used to analyze the presence of clusters and how is each
observation aligned with each one of the PCs. Observations that lie outside of
the control limits may represent outliers. Score plots in this paper showed the
control limits for 95% (dashed ellipse) and 99.7% (continuous ellipse).

Score plots can be obtained with the function ellipse, which creates the
outline of a confidence region for two score variables [16]. Part of the R code
used to obtain the score plots for PC1 and PC2 is the following:

a.acp<-acp$x[,1:2]
centros.acp<-colMeans(a.acp)
lcov.acp=solve(cov(a.acp))
lcov.acp
plot(ellipse(type = "chi",cov(acp$x[,c(1,2)]), level=0.95),
type="l", xlab= "T[1]", ylab="T[2]",col=’red’, lty=2,xlim=c(-28,28),ylim=c(-12,12)
points(centros.acp [1], centros.acp [2], pch=1)
abline(h=0,lty=2)
abline(v=0,lty=2)
points(ellipse(type = ’chi’,cov(acp$x[,c(1,2)]), level=.997), col=’red’,type="l")
tipo.obs<-substr(abbreviate(amostra[,1]), start = 5,stop = 5)
tipo.obs
cores<- ifelse(tipo.obs==’1’ ,"5", "2")
points(-acp$x[,c(1,2)], cex= 0.75, pch=10, col=cores)
text(x = -acp$x[18,1], y = -acp$x[18,2],labels = 18,cex = .8, pos = 2)
text(x = -acp$x[37,1], y = -acp$x[37,2],labels = 37,cex = .8, pos = 2)

By analyzing the score plots (Fig. 5), the physical meaning associated with
the PCs retained can be identified. PC1 distinguishes two clusters corresponding
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to each one of two cavities in the mold; PC2, which explains approximately
6.5% of the variation, is highly influenced by observations 18 and 37, which are
outliers. If these two observations are removed and the new model is built, then
PC2 becomes influenced by parts warpage, which is present in both cavities and
explains approximately 5%.

The percentages of the total variance explained by PC3, PC4 and PC5, 4.1%,
2.5% and 2.4%, reflect different machine adjustments or different machine/raw
material conditions in the different production days. However, each one is so
small that their effects were not further analyzed.

(a) Score plot with outliers. (b) Score plot without outliers.

Figure 5: Score plot for PC1/PC2.

The code used to perform the time line score (Fig. 6), for example, for PC1
was:

n<-nrow(amostra)
n
plot(1:n,-acp$x[,1],ylim = c(-12,12), main = "Time series plots for PC1",xlab = ’OBS’,ylab = ’T[1]’)
lines(1:nrow(variaveis),-acp$x[,1],type="b",col=’black’,pch=19)
abline(h=-5.854,lty=1,col=’red’)
abline(h=-3.781,lty=2,col=’red’)
abline(h=5.854,lty=1,col=’red’)
abline(h=3.781,lty=2,col=’red’)
text(58,5.854, labels=’0.997’,pos = 3,cex=0.8,col=’red’)
text(58,3.781, labels=’0.95’,pos = 3,cex=0.8,col=’red’)
text(58,-5.854, labels=’0.997’,pos = 3,cex=0.8,col=’red’)
text(58,-3.781, labels=’0.95’,pos = 3,cex=0.8,col=’red’)

Figure 6: Time series score plot for PC1.
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3.3 Loading Plots

Loading plots display the projection of the unit vector with the direction of each
original variable in the new PCA axis system. When represented in a scatter
plot, the variables that are strongly correlated with a PC create a small angle
with this PC direction. The variables that are closer to the center of the plot are
not relevant for explaining the variation associated with this PCs pair.

Part of the R code used to compute the loadings plot for PC1 and PC2 is:

load<-sweep(pca3$var$coord,2,sqrt(pca3$eig[1:ncol(pca3$var$coord),1]))[,1:ncol(pca3$var$coord)]
plot(load.stand[,c(1,2)], xlim=c(-.2,.2),ylim=c(-.40,.40),xlab=’PC1’,ylab = ’PC2’)
abline(h=0,lty=2)
abline(v=0,lty=2)
text(load.stand[,1],load.stand[,2],labels =colnames(dataset),cex=0.8, lwd=2,col="blue")

The loadings plot PC1−PC2, in Fig. 7, show the variables that are positively
or negatively correlated with PC1, which is already known to represent the
different cavities. The variables with high loadings in the PC2 are describing
warpage, as already mentioned.

Figure 7: Loadings plot PC1− PC2.

3.4 Hotelling’s T 2 control charts and contributions plot

T 2 indicates the distance from an observation to the center of the PCA subspace;
it is a summary statistics calculated as the sum of squares of the scores of each
observation in each one of the retained principal components. In the case of
plotting only two-dimensions, all points on in the ellipse have the same T 2 value
and correspond to an upper limit (95% or 99.7%) estimated from the model.

The R code used for T 2 is the shown below and follows the eq.2.

num.com <- 5
a.acp <- acp$x[,1:num.com]
centros.acp <- colMeans(a.acp)
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lcov.acp = solve(cov(a.acp))
dm.acp <- rep(0,length(a.acp[,1]))
for(i in 1:length(a.acp[,1])){
dm.acp[i]=round(t(a.acp[i,]-centros.acp)%*%lcov.acp%*%(a.acp[i,]-centros.acp),3)
}

The upper limits (95% and 99.7%), according to eq. 3, are computed by using
the following code:

k<-num.com
n<-nrow(dataset)
cc.sw.UCL.997<-(k*(n+1)*(n-1))/(n*(n-k)) * qf(.997,k, n-k)
cc.sw.UCL.95<-(k*(n+1)*(n-1))/(n*(n-k)) * qf(0.95,k, n-k)

Using the dataset of a plastic part, the control charts for T 2 shown in Fig. 8
suggest that assignable causes of variation were associated with observations 18
and 37. Thus, a method that allows identifying the original variables associated
with these assignable causes of variation is required. This method is the calculation
of contributions.

Figure 8: Hotelling’s T 2 control chart.

Contribution plots are used to identify which variables contribute more to T 2

values. The observations 18 is further analyzed concerning their contributions
to T 2. Since the effect observed in the observation 18 is the same as in the
observation 37, the contribution plots for the observation 37 were not presented
in this study. Part of the code used to perform the contribution plot to T 2 is
(based on eq. 8):

data <- matrix(NA, nrow=num.com, ncol=ncol(dataset))
for (i in 1:num.com){
num=round(t(a.acp[1,i]-centros.acp[i])%*%lcov.acp[i,i]%*%(a.acp[1,i]-centros.acp[i]),3)
data[i,]<-num%*%load[,i]^2
}
contr<-sqrt(colSums(data))*scale(dataset)[1,]
barplot(contrP,axes = T, ylim=c(-8,7),cex.axis = .9)



12

Considering the previous analyses related to loadings and scores, and the high
contributions of the variables Dimension 1.12, Dimension 1.6, Dimension 8.2 and
Dimension 7.3 and Dimension 8.1, as shown in Fig. 9, it can be concluded that
this part has a problem of planeness (Dimensions 1.6 and 1.12) associated with a
reduced thickness (Dimensions 8.1 and 8.2).

Figure 9: Contribution Plot to Hotelling’s T 2 for the observation 18.

3.5 SPE control charts and contributions plot

Observations with high SPE show that some of the variables varied in a different
direction from what was expected, considering the correlation structure of the
original variables. In other words, T 2 measures the distance to the center of
the model (many variables are far from their average values without breaking
the correlation structure) and the SPE measures the distance to the model
(correlation structure strongly broken).

Part of the R code used to compute SPE is shown below and follows the eq.
5:

num.com.spe<-as.numeric(5)
a<-pca3$ind$coord[,1:num.com.spe]
load<-sweep(pca3$var$coord,2,sqrt(pca3$eig[1:ncol(pca3$var$coord),1]),FUN="/")[,1:num.com.spe]
Ye<-a %*% t(load)
Qt<-rowSums((scale(dataset)-Ye)^2)

According to ref13, the R code that should be used to perform the upper
limits (95% and 99.7%) for SPE is the following (based on eq. 6):

QCL99.7<-(var(Qt)/(2*mean(Qt)))*qchisq(p = .997,df = (2*mean(Qt)^2)/var(Qt))
QCL95<-(var(Qt)/(2*mean(Qt)))*qchisq(p = 0.95,df = (2*mean(Qt)^2)/var(Qt))

The control charts for SPE is illustrated in Fig. and suggest that assignable
causes of variation were associated with observation 28.

To compute the contributions to SPE and the respective chart, the following
code can be used (based on eq. 9):
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Figure 10: SPE control chart.

a<-pca3$ind$coord
load<-sweep(pca3$var$coord,2,sqrt(pca3$eig[1:ncol(pca3$var$coord),1]),FUN="/")
Ye<-a %*% t(load)
erros<-scale(variaveis)-Ye
CONT<- matrix(NA, nrow= nrow(dataset), ncol=ncol(dataset))
for(i in 1:nrow(erros)){
CONT[i,]<-sign(erros[i,])*erros[i,]*t(erros[i,])}
barplot(CONT[28,],axes = T,names.arg=colnames(dataset),ylim=c(-4,6),cex.axis = .9)

Figure 11: Contributions Plot to SPE for the observation 28.

In Fig. 11, the variable Dimension 1.8, with a high contribution to SPE,
does not show the usual variability associated with different cavities. In this
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observation, Dimension 1.8 has an increased value without being followed by
other variables that should have a high correlation with it.

3.6 Raw Data: The original values of data set

Once the variables that contribute most to T 2 and SPE are detected, the original
variables are analyzed to check which could contribute to a product malfunction.

Regarding the variables with high contributions in the observation 18, raw
data of the original variables show that they have values lower than what would be
expected, as presented in Fig. 11 for the variable Dimension 8.1. It was previously
referred that the observation 37 had the same effect as the observation 18; this
conclusion is confirmed by the raw data of the variable Dimension 8.1, presented
in Fig.12.

Figure 12: Original values for variable Dimension 8.1.

4 Conclusions

In this paper, an overview of the main MSPC-PCA concepts is presented. The
application of these methods allows finding a reduced number of new variables
that are linear combinations of the original variables. With this reduced number
of PCs, a model that explains the most relevant part of the variability can be
created and used to control the process.

The main procedures used to implement this MSPC-PCA analysis are the
following: computing eigenvectors and eigenvalues; choosing the number of com-
ponents of the model; calculating score and loading plots; calculating T 2 and
SPE control charts. Thus, assignable causes of variation can be detected and
the original variables involved can be identified through the calculation of contri-
butions.
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These results show that the MSPC-PCA can detect outliers, identify phys-
ical aspects that explain causes of variability and analyze the stability of the
production process (injection molding). PCA also enables operators and process
engineers to increase their knowledge about the way the process behaves and to
identify the underlying factors which govern the variability of the process.

The use of the R programming language in an industrial example demonstrates
the great potential of MSPC-PCA techniques in multivariate data analysis and
multivariate statistical control of processes.
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