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Introduction

Paenibacillus larvae is a spore-forming Gram-positive bacterium that causes American Foulbrood disease (AFB), the most destructive bacterial infectious diseases of
honeybee brood[1]. Bacteriophages (phages) are bacterial viruses that parasitize bacteria and play a key role in the evolution of most bacterial communities in all
ecosystems|[2]. Temperate phages — prophages — follow a lysogenic lifecycle and are able to integrate into the host genome, making rearrangements, disrupting gene function
or adding new features to the bacteria[3]. Other studies describe prophage-host relationships as advantageous to improve the host toxicity, as described for E. coli with the
Shiga toxin[3]. In B. subtilis the presence of prophages made host unable to sporulate[4], and in A. baumannii, prophage converted strains susceptible to antibiotics into
resistant[5]. So far, no study has evaluated the impact of prophages in P. larvae ecology.

Goal of the study The main goal was to understand the impact of prophages on P. larvae virulence and fitness.
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Figure 1. Prevalence of prophages in P. larvae genomes after PHASTER (A) and manual
curing (B). (C) Average of total, defective and intact prophages per host genome. (D) Table 1. (A) Taxonomic classification of prophages based on structural proteins present (highlighted in gray). (B) att

Prevalence in percentage of total, intact, defective prophages, > 8 defective prophages sites nucleotide sequences and representation of prophages integration zones (genes before and after the att sites
and > 5 intact prophages in hosts. and interrupted genes).

ResFinder — no antimicrobial resistance genes. RGl — some loose hits (30) in 15 prophages.

e BLASTp: 40% proteins are hypothetical. Transposase is the gene most often nISRLE B IeRIeITe L7 (P BTSSR, ETEEEe 1l AU B S X

identified. e TetR family transcriptional regulator, metallo-B-lactamase (MBL) and B-Lactamase inhibitory proteins (BLIP).
 Few transporters like ABC transporter, MFS transporter, SMR transporter and aromatic acid exporter.
 Two enzymes related to iron uptake, the Fe-S cluster assembly proteins SufB and NifU.
* 60% of att sites are in intergenic regions and 40% are interrupting genes. e Several toxin-antitoxin fragments as HicAB toxin-antitoxin system, mazE and SocA antitoxins.

 Some virulence factors like enhancin protein, leukotoxin LukF-PV precursor, and bacteriocin closticin.

* DNA internalization ComEC/Rec2 protein to uptake exogeneous DNA.

« PHASTER did not identify attachment sites in 10 of the intact prophages.

e 25.7% of detected prophages were intact.

 On average, each P. larvae genome holds 3.9 intact prophages and 11.4 defective prophages (15.3 prophages in total).

* Intact prophages have several att sites to integrate host genome and some are repeated (in 9 of these att sites (Table 1. B) we found 22 prophages).
* The disrupted genes may interfere with host function.

 The high number of transposases can be responsible for prophage and host genomes rearrangements.

* Genesinvolved in host virulence and fitness were found in the prophages.
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