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Abstract: Bacterial vaginosis (BV) is associated with a highly structured polymicrobial biofilm on 

the vaginal epithelium where Gardnerella species presumably play a pivotal role. Gardnerella 

vaginalis, Atopobium vaginae, and Prevotella bivia are vaginal pathogens detected during the early 

stages of incident BV. Herein, we aimed to analyze the impact of A. vaginae and P. bivia on a pre-

established G. vaginalis biofilm using a novel in vitro triple-species biofilm model. Total biofilm bi-

omass was determined by the crystal violet method. We also discriminated the bacterial populations 

in the biofilm and in its planktonic fraction by using PNA FISH. We further analyzed the influence 

of A. vaginae and P. bivia on the expression of key virulence genes of G. vaginalis by quantitative 

PCR. In our tested conditions, A. vaginae and P. bivia were able to incorporate into pre-established 

G. vaginalis biofilms but did not induce an increase in total biofilm biomass, when compared with 

48-h G. vaginalis biofilms. However, they were able to significantly influence the expression of 

HMPREF0424_0821, a gene suggested to be associated with biofilm maintenance in G. vaginalis. This 

study suggests that microbial relationships between co-infecting bacteria can deeply affect the G. 

vaginalis biofilm, a crucial marker of BV. 

Keywords: bacterial vaginosis; Gardnerella spp.; Atopobium vaginae; Prevotella bivia; polymicrobial 

biofilms; virulence 

 

1. Introduction 

Bacterial vaginosis (BV) is the most-common vaginal infection affecting fertile, 

premenopausal, and pregnant women [1]. It is associated with important adverse out-

comes related to pregnancy [2] and infertility [3]. Additionally, it is associated with an 

increased risk of acquisition of HIV and other sexually transmitted infections (STIs) [4–8]. 

Microbiologically, BV is a complex polymicrobial infection where beneficial vaginal bac-

teria, mainly hydrogen peroxide and lactic acid-producing Lactobacillus species, which are 

usually dominant in vaginal microbiota of healthy women, are replaced by high concen-

trations of facultative and strict anaerobic bacteria [1,9]. The most prominent of these are 

Gardnerella spp., facultative anaerobes usually found embedded in a polymicrobial BV 

biofilm [10–12]. However, Gardnerella spp. are also commonly found in asymptomatic or 

BV-negative women [13]. This has aroused interest in whether genetic differences among 

G. vaginalis isolates might differentiate pathogenic from commensal organisms [14]. G. 

vaginalis was the only recognized species in its genus for over four decades, but very re-

cently the Gardnerella taxonomic description was amended based on comparisons of 

whole-genome sequencing and matrix-assisted laser desorption/ionization time-of-flight 
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(MALDI-TOF) mass spectrometry analysis, resulting in four species (G. vaginalis, G. leo-

poldii, G. swidsinskii, and G. piotii) and nine ‘genome species’ [15]. It is likely that each 

named Gardnerella species and ‘genome species’ are specifically associated with either BV 

or healthy vaginal microbiota due to differences in their virulence potential, as suggested 

by several studies [16–21]. Following this renewed taxonomy of the genus Gardnerella, in 

this article, the term Gardnerella spp. will be used to address previous publications, since 

we cannot rule out the fact that other Gardnerella species were involved. 

While BV etiology is still a matter of debate [1], a common hypothesis suggests that 

virulent strains of Gardnerella spp. initiate the formation of the biofilm on vaginal epithe-

lial cells and become a scaffolding to which other BV-associated anaerobes thereafter can 

attach [9]. Atopobium vaginae is one of the species that is often found associated with Gard-

nerella spp. biofilms [22]. Evidence suggests that the therapeutic failures and recurrences 

of BV might be associated with the presence of high loads of A. vaginae, since this species 

presents specific resistance against standard antibiotics [23–25]. Additionally, A. vaginae 

has been positively associated with vaginal discharge in women with BV, an elevated vag-

inal pH, and the presence of clue cells [26]. It was also described that high vaginal loads 

of A. vaginae in combination with Gardnerella spp. are related to late miscarriage and pre-

maturity [23]. 

Recently it has been pointed out that Prevotella bivia might have an important role in 

the early stage of BV development [9,27]. Using daily vaginal swabs, Muzny and col-

leagues found that P. bivia was the first BV-associated species to increase in relative abun-

dance above baseline prior to incident BV, followed shortly thereafter by an increase in 

the relative abundance of Gardnerella spp., suggesting that synergism between P. bivia and 

Gardnerella spp. might be an important event prior to BV [28]. In fact, an earlier in vitro 

study demonstrated that Gardnerella spp. and P. bivia can act synergistically [29]. The au-

thors showed that Gardnerella spp. produce amino acids through their metabolism, which 

can be used by P. bivia as its nutrient source which results in the production of ammonia, 

which in turn is used by Gardnerella spp. More recently, Gilbert and colleagues established 

an in vivo BV model in which they coinfected mice with Gardnerella spp. and P. bivia, re-

vealing that Gardnerella facilitates ascension of P. bivia into the uterine horns [30]. The vir-

ulence potential of P. bivia is also derived from studies that associated its colonization with 

preterm birth, endometritis, and other uterine pathologies [31–33].  

Knowledge of the microbial interactions in the vaginal ecosystem during BV is still 

scarce since functional microbial studies in polymicrobial biofilms are very limited [34]. 

We have recently shown that when growing dual-species BV biofilms, distinct microbial 

interactions can occur, including antagonistic [35] or synergistic biofilm accumulation 

[35,36], as well as molecular interactions that have an impact on Gardnerella gene expres-

sion [37]. Thus, in this study, we aimed to develop and characterize, for the first time, an 

in vitro model containing G. vaginalis, A. vaginae, and P. bivia, and to investigate the ability 

of these three species to form a multi-species biofilm, with particular attention to their 

ability to induce alterations in key genes of interest.  

2. Results 

2.1. Quantification of the Biomass of Mono-, Dual-, and Triple-Species BV-Associated Biofilms  

In the BV-associated vaginal ecosystem, resident microorganisms interact with each 

other in both synergistic and antagonistic manners, which might affect their ability to form 

biofilms in this polymicrobial community [35]. Initially, we compared the in vitro biofilm 

formation ability of each tested species for 24 h and 48 h using optimized [38] in vitro 

conditions (Figure 1A). In both timepoints tested, G. vaginalis formed a biofilm with the 

highest total biomass, while P. bivia formed a biofilm with the lowest total biomass. Fol-

lowing the hypothesis that Gardnerella is the early colonizer in BV [9], we then assessed 

how A. vaginae and P. bivia could incorporate into a 24-h pre-formed G. vaginalis biofilm. 



Pathogens 2021, 10, 247 3 of 16 
 

 

Under the tested conditions, all the consortia reached the same level of total biofilm bio-

mass (Figure 1B). Curiously, when compared to the mono-species G. vaginalis 48-h biofilm, 

none of the consortia provided an added advantage in terms of an increase in total bio-

mass. While it was tempting to compare the 48-h consortia with A. vaginae or P. bivia 48-h 

mono-species biofilms, it is important to highlight that both species were only allowed to 

grow for 24 h, after the initial 24-h G. vaginalis biofilm was performed, as described in the 

methods section.  

 

Figure 1. Total biomass of mono- and multi-species bacterial vaginosis (BV)-associated biofilms was determined by stain-

ing with crystal violet (CV). (A) Total biofilm biomass of 24-h and 48-h mono-species biofilms for the three microorganisms 

of interest. (B) Total biofilm biomass of dual- and triple-species BV-associated biofilms at 48 h. Dual- and triple-species 

biofilms were initiated by inoculating a bacterial suspension of G. vaginalis into 24-well tissue culture plates in New York 

City III (NYC III) medium and by incubating the plates for 24 h, at 37 °C under anaerobic conditions. After 24 h, planktonic 

cells were removed, and each bacterial species, Atopobium vaginae or Prevotella bivia (for dual-species biofilms) and A. 

vaginae and P. bivia (for triple-species biofilms), were inoculated in the pre-formed G. vaginalis biofilms and incubated for 

another 24 h. Each data point represents the mean ± s.d. of three independent assays, with four technical replicates assessed 

each time. * Values were significantly different between 24-h and 48-h mono-species biofilms (paired t-test, p < 0.05). Ab-

breviations: A. vaginae (Av), G. vaginalis (Gv), and P. bivia (Pb). 

2.2. In Vitro PNA Gard162 and PNA AtoITM1 Probes Specificity and Efficiency 

Although the PNA Gard162 [39] and PNA AtoITM1 [40] probes’ specificity had been 

previously tested for several BV-associated bacteria, we also analyzed these probes’ spec-

ificity for the bacterial strains used in this study. Based on our results (Table 1), PNA 

Gard162 and PNA AtoITM1 probes hybridized with G. vaginalis and A. vaginae, respec-

tively, whereas no hybridization was observed for the other species tested, showing a 

specificity of 100% as previously reported. Additional details of the specificity of the 

Gard162 and AtoITM1 probes are shown in Supplementary Figures S1 and S2.  

Table 1. Bacterial species used in peptide nucleic acid fluorescence in situ hybridization (PNA 

FISH) assays and their specificity with PNA probes a. 

Strains Gard162 Probe Specificity  AtoITM1 Probe Specificity 

G. vaginalis strain ATCC 14018T  ++++ − 

A. vaginae strain ATCC BAA-55T − ++++ 

P. bivia strain ATCC 29303T − − 
a PNA probes’ (Gard162 and AtoITM1) specificity was tested for each species, with the following 

hybridization PNA FISH qualitative evaluation: (−) absence of hybridization; (++) moderate hy-

bridization; (+++) good hybridization; (++++); and optimal hybridization. 
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As no P. bivia PNA FISH probe currently exists, the estimation of P. bivia counts could 

only be assessed indirectly by 4′-6-diamidino-2-phenylindole (DAPI) counterstaining, as-

suming that all cells with unlabeled PNA probes were P. bivia; however, this needs to be 

experimentally determined [41]. As such, we compared the data obtained from PNA FISH 

and DAPI counts for both G. vaginalis and A. vaginae pure-culture biofilms and the plank-

tonic fractions of the biofilm. Not surprisingly, each probe failed to detect 100% of the 

respective total cells. By performing serial dilutions of each sample, calibration curves 

were obtained for G. vaginalis biofilm (Figure 2A) or planktonic cells (Figure 2B) and for 

A. vaginae biofilm (Figure 2C) or planktonic cells (Figure 2D). 

 

Figure 2. Correlation between PNA FISH counts and DAPI counts for mono-species biofilms and for their planktonic 

fraction at different bacterial concentrations. (A) G. vaginalis biofilm cells that were identified indirectly by DAPI coincided 

with the populations quantified by PNA FISH using PNA Gard162 probe. (B) G. vaginalis planktonic cells that were iden-

tified indirectly by DAPI coincided with the populations quantified by PNA FISH using PNA Gard162 probe. (C) A. vagi-

nae biofilm cells that were identified indirectly by DAPI coincided with the populations quantified by PNA FISH using 

PNA AtoITM1 probe. (D) A. vaginae planktonic cells that were identified indirectly by DAPI coincided with the popula-

tions quantified by PNA FISH using PNA AtoITM1 probe. Each data point represents the mean ± s.d. from three inde-

pendent assays. For each assay, 20 fields were randomly acquired in each sample and the number of bacteria per image 

was counted using ImageJ Software. 

Taking into consideration this data, it was possible to calculate the efficiency of each 

probe and to develop an equation that would correct PNA counts, to prevent overestima-

tion of DAPI counts as P. bivia counts, as listed in Table 2. 
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Table 2. Equations used to quantify the bacterial population in biofilms cells and their planktonic fraction. 

Condition Equation PNA Probe Efficiency (%) 

G. vaginalis biofilm  
G. vaginalis counts = (log (PNA Gard162 probe bacterial 

counts/area) + 0.1892)/1.022 
92.08 

A. vaginae biofilm 
A. vaginae biofilm cells counts = (log (PNA AtoITM1 probe 

bacterial counts/area) + 0.0405)/0.9878 
91.59 

Planktonic fraction of G. vaginalis biofilm 
G. vaginalis planktonic cells counts = (log (PNA Gard162 

probe bacterial counts/area) + 0.0265)/1.003 
98.67 

Planktonic fraction of A. vaginae biofilm 
A. vaginae planktonic cells counts = (log (PNA AtoITM1 probe 

bacterial counts/area) + 0.0937)/1.012  
98.12 

2.3. Quantification and Distribution of Bacterial Populations in Dual- and Triple-Species BV-

Associated Biofilms by PNA FISH 

Taking advantage of the robustness of the PNA FISH/DAPI approach for the differ-

entiation between G. vaginalis, A. vaginae, and P. bivia, we discriminated the bacterial pop-

ulations into dual- and triple-species BV-associated biofilms and their planktonic frac-

tions. Similar to what was described before [42], we showed that A. vaginae and P. bivia 

were able to incorporate in the dual-species biofilms, accounting for up to ∼23% and ∼38% 

of the total number of cells, respectively (Figure 3). Curiously, in the triple-species bio-

films, the relative load of A. vaginae was reduced to ~8.3%, maintaining G. vaginalis as the 

main species. The lower ability of A. vaginae to integrate the triple-species biofilms is evi-

dence that somewhat specific interactions are established when these three bacterial spe-

cies act as a consortium, which in our tested conditions promoted the enhanced integra-

tion of P. bivia, in depreciation of A. vaginae. When looking at the bacterial populations 

found on the planktonic fraction of the biofilm, it is noteworthy that significant differences 

were found both for P. bivia and the triple-species consortia; in contrast the relative com-

position of both biofilms and planktonic fractions were similar for A. vaginae. 

 

Figure 3. Bacterial populations in dual- and triple-species BV-associated biofilms and in their re-

spective planktonic fraction. Biofilms were disrupted and resuspended before quantification was 

performed, as described in methods section. Percentage of cells detected by PNA FISH for 48-h bio-

films and in their planktonic fraction. Each data point represents the mean ± s.d. of three independ-

ent assays. For each assay, 20 fields were randomly acquired in each sample and the number of 

bacteria per image was counted using ImageJ Software. Values were significantly different between 

the percentage of each bacterial species that integrates the dual- or triple- species biofilm or plank-

tonic fraction, namely, * Gv BIOF vs. Gv PLANK, γ Av BIOF vs. Av PLANK, τ Pb BIOF vs. Pb PLANK 

(two-way ANOVA test, p < 0.05). Abbreviations: A. vaginae (Av), G. vaginalis (Gv), and P. bivia (Pb); 

biofilm BIOF; planktonic (PLANK). 
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We also analyzed bacterial distribution in the intact structure of the dual and triple-

species biofilms by confocal laser scanning microscopy (CLSM). As shown in Figure 4, in 

both dual- and triple-species biofilms, A. vaginae and P. bivia were found well-distributed 

across the G. vaginalis biofilm, in small clusters of cells. Details in the orthogonal views of 

mono-, dual-, and triple- species biofilms are shown in Supplementary Figure 3. 

 

Figure 4. An example data set on the organization of the dual- and triple-species BV-associated 

biofilms by confocal laser scanning microscopy (CLSM). Gv and Av cells were differentiated by 

hybridization with PNA Gard162 (red/purple color when coupled with DAPI) and AtoITM1 probes 

(green/blue-green color when coupled with DAPI), respectively, while Pb was differentiated by 

DAPI (blue color). Abbreviations: A. vaginae (Av), G. vaginalis (Gv), and P. bivia (Pb). 

2.4. Impact of A. vaginae and P. bivia on G. vaginalis Virulence 

Considering the central role often attributed to Gardnerella in BV etiology [1,43], shifts 

in the G. vaginalis transcriptome during the establishment of polymicrobial BV-associated 

biofilms could be a key for unveiling interspecies interactions that enhance the virulence 

of G. vaginalis. Thus, we focused on deciphering the impact of A. vaginae and/or P. bivia on 

G. vaginalis virulence. As such, we analyzed the expression of genes related to cytotoxicity, 

biofilm maintenance, antimicrobial resistance, and evasion of the immune system in cells 

from mono-, dual-, and triple-species biofilms. Regarding cytotoxicity, G. vaginalis pro-

duces the toxin vaginolysin (vly), which might induce lysis in vaginal cells membranes 

[44,45]. However, as shown in Figure 5A, according to our in vitro conditions, no signifi-

cant differences were found in the expression of this gene by G. vaginalis between the dif-

ferent biofilm models. We also addressed sialidase (sld) expression, since sialidase appears 

to contribute to G. vaginalis cytotoxicity by the destruction of the protective mucus layer 

on the vaginal epithelium [46]. Although we detected a slight decrease in sld transcription, 

it was not statistically significant in dual- and triple-species biofilms, as compared with 

mono-species G. vaginalis biofilms (Figure 5B). 

Regarding the glycosyltransferases, it has been proposed that they are involved in 

the transfer of a sugar moiety to a substrate and are thus essential in the biosynthesis of 

glycoconjugates like exopolysaccharides and glycoproteins, which are important for bio-
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film maintenance to maximize the full virulence of G. vaginalis [47,48]. Of note, the expres-

sion of the HMPREF0424_0821 transcript, which encodes glycosyltransferases type II, was 

up-regulated in all the tested conditions, being approximately 2.8-fold higher in triple-

species than in mono-species biofilms (p < 0.05; Figure 5C). We also analyzed the expres-

sion of transcripts encoding antimicrobial-specific resistance proteins belonging to efflux 

pump families (HMPREF0424_1122 and HMPREF0424_0156). Despite detecting slight 

changes in the transcription of these genes, these were not statistically significant (Figure 

5D,E). Nevertheless, a tendency was observed in the presence of P. bivia, with a downreg-

ulation of the tested G. vaginalis genes, similar to what we have previously found [37]. 

Finally, we analyzed the expression of HMPREF0424_1196 transcript, which encodes a 

Rib-protein that belongs to the α-like protein (Alf)-family of highly repetitive surface an-

tigens [49], which elicit protective immunity through their inter-strain size variability [48]. 

Here the most striking difference was in the triple-species biofilm, as compared to the G. 

vaginalis mono-species biofilm (p < 0.05; Figure 5F).  

 

Figure 5. Quantification of the transcription of known virulence genes in G. vaginalis cultured under mono-, dual-, and 

triple-species biofilms. (A) Quantification of vaginolysin (vly) transcription. (B) Quantification of sialidase (sld) transcrip-

tion. (C) Quantification of HMPREF0424_0821 transcript, which encodes type II glycosyl-transferase. (D) Quantification 

of HMPREF0424_1122 transcript, which encodes a multidrug ABC transporter. (E) Quantification of HMPREF0424_0156 

transcript, which encodes bacitracin transport, ATP-binding protein BcrA. (F) Quantification of HMPREF0424_1196 tran-

script, which encodes a Rib-protein. For qPCR experiments, the bars represent the mean, and the error bars the standard 

error of the mean (mean ± s.e.m.) of at least three independent assays. * Values are significantly different between the 

triple-species consortium and the G. vaginalis mono-species biofilm under the same conditions (non-parametric Mann–

Whitney U test, p < 0.05). Abbreviations: A. vaginae (Av), G. vaginalis (Gv), and P. bivia (Pb). 

3. Discussion 

The dynamic and complex nature of the vaginal microbiota and the likely role of 

multiple bacterial species in the pathogenesis of BV have posed major challenges for de-

veloping realistic polymicrobial in vitro biofilm models [50,51]. To date, the majority of in 

vitro studies only address mono- or dual-species biofilms, and are focused on Gardnerella 

species [37,52]. Herein, we describe, for the first time, an in vitro biofilm composed of G. 
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vaginalis, A. vaginae, and P. bivia, three highly relevant BV-associated species [28,30]. In a 

polymicrobial community, bacterial species interact extensively with each other and these 

interactions might also determine the structure and composition of multi-species biofilms 

[53]. It is, thus, reasonable to assume that in triple-species BV-associated biofilms the mi-

crobial interactions become more complex than in dual- or mono-species biofilms [54].  

Our experimental model follows the hypothesis that Gardnerella is the early colonizer 

in BV [9], to which we later allowed co-incubation with A. vaginae and P. bivia. In vitro 

experimental data supporting the role of some Gardnerella species to be the early coloniz-

ers is derived from the fact that some Gardnerella isolates have a significantly higher ability 

to adhere to epithelial cells than many other BV-associated species [52,55,56] and are 

also able to displace vaginal lactobacilli [57], a pivotal step in the development of a char-

acteristic multi-species biofilm. It is also important to bear in mind that the recent reclas-

sification of G. vaginalis [15] in multiple Gardnerella species might have important impli-

cations in BV etiology, as a particular species might have a different role in BV develop-

ment, although this still needs to be further explored [19,21,58]. Herein, we selected a type 

strain of G. vaginalis since its complete genome is available, and thus, it is well genotypi-

cally characterized, being used in several studies associated with BV [15,58]. Regarding 

other BV-associated species, we selected A. vaginae and P. bivia to be included in this study, 

due to data suggesting they may be more than bystanders [9,32]. Indeed, in a prospective 

vaginal microbiome study Muzny and colleagues showed that the mean relative abun-

dance of P. bivia, Gardnerella spp., and A. vaginae became significantly higher in cases four 

days before (P. bivia), three days before (Gardnerella spp.), and on the day of (A. vaginae) 

incident BV onset [28]. Based on this study, the authors suggested that together with vir-

ulent G. vaginalis, P. bivia, and A. vaginae may have potential key roles in the induction 

and development of incident BV [9]. Nevertheless, knowledge about the microbial rela-

tionships between these three bacterial species remains scarce. In order to shed new light 

on this aspect, we analyzed the effect of A. vaginae and P. bivia on biofilm formation and 

its impact on G. vaginalis pathogenicity.  

Similar to what is described in oral infections, in which the interactions between mi-

crobial communities have tremendous importance for the development of oral disease 

[59], we hypothesize that G. vaginalis, A. vaginae, and P. bivia establish a network of inter-

actions that affect the development of the BV-associated biofilm, a key hallmark of BV. 

Curiously, under the tested conditions, inoculation or co-inoculation of the different spe-

cies on the pre-formed G. vaginalis biofilm did not significantly enhance the amount of 

total biofilm biomass. However, despite widespread utilization of the CV staining method 

for biofilm quantification used in this study, an inherent limitation of this method is that 

total biomass comparison between species is not possible, since different species produce 

distinct biofilm matrices and have different cell sizes [60,61]. Thus, interpretation of these 

data should be made with reservation. Nevertheless, as shown in our CLSM and PNA-

FISH quantitative data, dual- and triple-species biofilms contained significant numbers of 

each species, with G. vaginalis as the most prominent species, similar to in vivo studies 

[11,22]. Interestingly, our PNA FISH data suggest that different microbial relationships 

are established in dual- and triple-species biofilms. This is inferred by the distinct bacterial 

composition observed in multi-species biofilms, in particular the triple-species biofilm 

where the relative composition of G. vaginalis and P. bivia increased while A. vaginae de-

creased. This is even more relevant since P. bivia formed a weak mono-species biofilm and 

grew slower than A. vaginae and G. vaginalis in New York City III (NYC III) medium, as 

shown previously [38]. It is important to mention that several factors influenced the bac-

terial integration in biofilm, including the growth rates of the bacterial species [62] and 

the ability to adhere to a surface [63,64] and to each other [65,66]. Interestingly, despite 

the slower growth rate, P. bivia was better fit to grow in the biofilm than A. vaginae in our 

tested conditions. This suggests that G. vaginalis modifies the local environment, making 

it more favorable for the growth of P. bivia, which might be a result of an ammonia flow 
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mechanism as proposed by Pybus and colleagues [29].This further demonstrates that dif-

ferent bacterial species influence the growth of other species, and likely have an impact in 

BV etiology. It is also interesting to observe that the planktonic fraction of the dual- and 

triple-species biofilm did not always coincide with the biofilm consortia, suggesting that 

the specific microenvironment of the biofilms provide different competitive advantages, 

as shown elsewhere [67,68].  

It is noteworthy that synergistic effects were, however, observed when we analyzed 

changes in G. vaginalis gene expression. The expression of the HMPREF0424_0821 tran-

script, which encodes a glycosyltransferase, was significantly up-regulated in the multi-

species consortia. Glycosyltransferases have been described as key enzymes required for 

biofilm maintenance [48], and may also have a putative role for cell surface glycoconju-

gates which has been proposed to shape vaginal microbiota–host interactions [69]. This 

enhancement was only significant in the triple-species biofilm model, highlighting, there-

fore, the importance of the interplay between multiple bacterial species in the develop-

ment of BV. Studies to assess the role of glycosyltransferase on biofilm formation and vir-

ulence have been conducted for other species, namely for Streptococcus mutans, a bacte-

rium responsible for the initiation of tooth decay [70]. It was shown that glycosyltransfer-

ase mediated biofilm matrix dynamics and virulence. Interestingly, the deletion of the 

glycosyltransferase gene resulted in no change in overall biofilm biomass, however, the 

mutant strain originated an altered biofilm architecture. Concurrently, the mutant was 

less virulent in an in vivo rat model of dental caries [70]. Corroborating the relevance of 

glycosyltransferase in biofilms, we have recently shown that this gene was up-regulated 

in Gardnerella spp. in 15 different dual-species consortia [37]. Together, these data empha-

size the importance of other BV-associated species in G. vaginalis virulence, and conse-

quently, in host infection. 

While we have previously shown that P. bivia could enhance G. vaginalis vly expres-

sion two-fold, when a dual-species biofilm was grown in supplemented brain-heart infu-

sion (sBHI) medium [37], in NYC III medium vly expression was not changed. Regarding 

the role of sld, some early studies pointed out that this gene is strongly linked with the 

development of a biofilm [71,72], however, in our tested conditions, no relevant changes 

were verified when G. vaginalis was cultivated in mono- or multi-species biofilms, corrob-

orating our previous findings [37]. Such evidence supports a recent study that postulated 

that sld does not likely have a role in establishing or maintaining the biofilm [73]. It should 

be pointed out that in this study we chose to use NYC III medium, since sBHI was not 

appropriate to induce mono-species biofilms from either P. bivia or A. vaginae [38]. Since 

bacterial gene expression is strongly influenced by media conditions [74,75], we cannot 

exclude that the optimal growth conditions provided by NYC III could also somehow be 

affecting gene expression by G. vaginalis. Indeed, by comparing the data from this study 

with our previous findings [37], we observed that using NYC III, the base level of G. 

vaginalis vly expression was approximately 10-fold higher than in comparison with sBHI, 

which could explain the differences observed in both studies. On account of the fact that 

synergistic effects often occur when one bacterium is providing some advantage to an-

other [76,77], by using an optimal biofilm-inducing media such as NYC III, it might be 

possible that some synergistic effects were masked. Evidence to support this hypothesis 

can be observed by the fact that several strains of A. vaginae easily die out when grown in 

sBHI medium, but maintain viability when co-cultured with G. vaginalis [78]. However, 

in NYC III, A. vaginae is able to survive alone. Furthermore, for the other tested genes, 

with exception of sld, we also noted a higher base level (2- to 5-fold) of expression in NYC 

III as compared with sBHI. Despite these differences, a similar effect on G. vaginalis tran-

scriptomic profile was observed for the remaining tested genes, as compared with our 

previous dual-species biofilm study [37]. However, further studies are required to eluci-

date the influence of the growth media in gene expression by G. vaginalis. In triple-species 

biofilms, we observed a downregulation of these genes when compared to G. vaginalis 

mono-species biofilms, however, this requires future study to understand the molecular 
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mechanisms involved in antimicrobial resistance and evasion of the immune system. 

Taken together, our data suggest that microbial relationships between co-infecting bacte-

ria can influence the development of a polymicrobial biofilm, a marker of BV. However, 

more research is needed to provide a better mechanistic insight into the complex interplay 

between G. vaginalis, A. vaginae, and P. bivia, and their eukaryotic hosts. While the choice 

of a very rich medium was used to guarantee that all the tested bacteria were able to grow 

in vitro in a biofilm phenotype, trying to determine these microbial interactions in condi-

tions more similar to the vaginal environment might provide novel insights, as we previ-

ously demonstrated that growing Gardnerella spp. in a medium simulating genital tract 

secretions and complemented with components of the host immune system had a signifi-

cant impact on the growth and biofilm formation [79]. Understanding the molecular basis 

and biological effect of these microbial interactions and microbial–host interactions may 

provide novel information necessary to define more effective and goal-oriented treatment 

in BV and improve women’s reproductive health. 

4. Materials and Methods  

4.1. Bacterial Strains and Culture Conditions 

G. vaginalis strain ATCC 14018T, A. vaginae strain ATCC BAA-55T, and P. bivia strain 

ATCC 29303T were used in this study. Each inoculum was grown in New York City III 

broth (NYC III) ((1.5% (w/v) Bacto ™ proteose peptone no. 3 (BD, Franklin Lakes, NJ, 

USA), 0.5% (w/v) glucose (Thermo Fisher Scientific, Lenexa, KS, USA), 0.24% (w/v) HEPES 

(VWR, Sparks, NV, USA), 0.5% (w/v) NaCl (VWR), and 0.38% (w/v) yeast extract (Li-

ofilchem, Roseto degli Abruzz, Italy)) supplemented with 10% (v/v) inactivated horse se-

rum (Biowest, Nuaillé, France) [38] for 24 h at 37 °C under anaerobic conditions (Anaero-

Gen Atmosphere Generation system, Oxoid, Hampshire, United Kingdom), as we previ-

ously showed this to be the optimal condition to grow mono-species biofilms of the se-

lected bacterial species [38]. 

4.2. Biofilm Formation and Biomass Quantification by the Crystal Violet Method 

Dual- and triple-species biofilms were initiated by inoculating a 107 colony-forming 

units (CFU)/mL bacterial suspension of G. vaginalis into 24-well tissue culture plates (Or-

ange Scientific, Braine L’Alleud, Belgium) and by incubating the plates for 24 h, at 37 °C, 

and under anaerobic conditions. After 24 h, planktonic cells were removed, and 107 

CFU/mL of each bacterial species, A. vaginae or P. bivia (for dual-species biofilms) and A. 

vaginae, P. bivia (for triple-species biofilms), were inoculated in the pre-formed G. vaginalis 

biofilms and incubated for another 24 h. Of note, we first adjusted the bacterial concentra-

tion of the bacterial suspension to 9 × 107 CFU/mL due to the limit of detection of the 

microplate reader and then we diluted to 1 × 107 CFU/mL, confirming this concentration 

by CFUs. At 620 nm, 9 × 107 CFU/mL of G. vaginalis corresponds to an optical density (OD) 

= 0.15; for A. vaginae an OD = 0.11, and for P. bivia an OD = 0.16. Mono-species biofilms of 

G. vaginalis were grown as a control for 48 h, in which fresh medium was added to the 

respective wells after the first 24 h of biofilm formation. In addition, we also performed 

24-h mono-species biofilm growth for A. vaginae and P. bivia to examine their individual 

ability to grow in the tested conditions. To quantify the biomass of mono-, dual-, and tri-

ple-species biofilms, we used the crystal violet (CV) method [80]. In brief, after the fixation 

step with 100% (v/v) methanol (Thermo Fisher Scientific) for 20 min, biofilms were stained 

with CV solution at 1% (v/v) (Merck, Darmstadt, Germany) for 20 min. Each well was 

washed twice with phosphate-buffered saline, and bound CV was released with 33% (v/v) 

acetic acid (Thermo Fisher Scientific). To estimate total biofilm biomass, the OD of the 

resulting solution was measured at 595 nm. Biofilm assays were repeated three times on 

separate days, with four technical replicates assessed each time. 
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4.3. In Vitro PNA Gard162 and AtoITM1 Probes Specificity and Efficiency 

Although the specificity of PNA Gard162 [39], and AtoITM1 [40] probes have been 

previously tested, we also evaluated the probe specificity for the bacterial species used in 

this study. Thus, we performed an experiment in order to detect any possible cross-hy-

bridization. The evaluation of PNA FISH hybridization was based on a qualitative score, 

as previously described [39]: (−) absence of hybridization, (++) moderate hybridization, 

(+++) good hybridization, and (++++) optimal hybridization.  

We then carried out an experiment to analyze the efficiency of both PNA probes. As 

such, we performed several dilutions from pure bacterial suspensions obtained from 

mono-species biofilms and their planktonic fractions. To determine the efficiency of each 

probe, the same sample was hybridized with a species-specific probe and then stained 

with 4′-6-diamidino-2-phenylindole (DAPI, 2.5 μg/mL) to account for nonhybridizing bac-

teria; defined as double staining. After the double staining, the bacteria were enumerated 

at two different wavelengths at the same position within the sample. Based on both data, 

we performed a correlation between the PNA counts and the DAPI counts that allowed 

us to obtain the equations shown in Figure 2. All experiments were performed in tripli-

cate. 

4.4. Quantification of Bacterial Populations in Dual- and Triple-Species Biofilms and their 

Planktonic Fraction by PNA FISH 

The bacterial population within the 48-h multi-species biofilms and in their plank-

tonic fraction was discriminated using the peptide nucleic acid fluorescence in situ hy-

bridization (PNA FISH) method, as previously described [37]. Briefly, after fixing the bio-

film suspension, a PNA probes specific for G. vaginalis (Gard162) and for A. vaginae 

(AtoITM1) were added to each well of epoxy-coated microscope glass slides (Thermo 

Fisher Scientific). An additional staining step was done at the end of the hybridization 

procedure, covering each glass slide with DAPI (2.5 μg/mL). Microscopic visualization 

was performed using filters capable of detecting the PNA Gard162 probe (BP 530-550, FT 

570, LP 591 sensitive to the Alexa Fluor 594 molecule attached to the Gard162 probe), the 

PNA AtoITM1 probe (BP 470-490, FT500, LP 516 sensitive to the Alexa Fluor 488 molecule 

attached to the AtoITM1 probe), and DAPI (BP 365–370, FT 400, LP 42). Twenty fields 

were randomly acquired in each sample. The number of bacteria was counted using Im-

ageJ Software [59]. To reduce any possible overestimation due to the use of DAPI as the 

probe efficiency was not 100%, we then applied the equations from Table 2 to obtain more 

accurate relative values. These assays were repeated three times on separate days. 

4.5. Confocal Laser Scanning Microscopy Analysis of Biofilm Bacterial Distribution  

To analyze the bacterial distribution of dual- and triple-species biofilms, the biofilm 

structure was evaluated by confocal laser scanning microscopy (CLSM) using the PNA 

Gard162 and AtoITM1 probes coupled to DAPI staining, as described above. For this ex-

periment, biofilms were formed on an 8-well chamber slide (Thermo Fisher Scientific™ 

Nunc™ Lab-Tek™, Bohemia, NY, USA) at 37 °C under anaerobic conditions for 48 h with 

the replacement of NYC III medium at 24 h of growth and the addition of the respective 

BV-associated bacteria. The CLSM images were acquired in an Olympus™ FluoView 

FV1000 (Olympus, Tokyo, Japan) confocal scanning laser microscope, using a 40× objec-

tive. Microscopic visualization was performed using lasers capable of detecting the PNA 

Gard162 probe (Laser 559, excitation wavelength 559 nm, emission wavelength 618 nm, 

BA 575-675, sensitive to the Alexa Fluor 594 molecule attached to the Gard162 probe), the 

PNA AtoITM1 probe (Laser 488, excitation wavelength 488 nm, emission wavelength 520 

nm, BA 505-540, sensitive to the Alexa Fluor 488 molecule attached to the AtoITM1 probe), 

and DAPI (Laser 405, excitation wavelength 405 nm, emission wavelength 461 nm, BA 

430-470). Images were acquired with 640 × 640 resolutions of each surface analyzed. All 

assays were repeated three independent times with two technical replicates. 
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4.6. G. vaginalis Gene Expression Quantification in Mono-, Dual-, and Triple-Species Biofilms 

Gene expression of six potential Gardnerella virulence genes, specifically vaginolysin 

(vly), sialidase (sld), glycosyltransferase, type II (HMPREF0424_0821), multidrug ABC 

transporter (HMPREF0424_1122), bacitracin transport, ATP-binding protein BcrA 

(HMPREF0424_0156), and a transcript that encodes a Rib-protein (HMPREF0424_1196) 

was determined in 48-h mono-, dual-, and triple-species biofilms. Total RNA was ex-

tracted using an E.Z.N.A.®  Bacterial RNA Kit (Omega Bio-tek, Norcross, GA, USA) with 

minor changes, as previously optimized [81]. Next, genomic DNA was degraded with one 

step of DNase treatment (Fermentas, Vilnius, Lithuania) following the manufacturer’s in-

structions. RNA concentration, purity, and integrity were determined, as previously de-

scribed [82]. The same amount of total RNA (300 ng/μL) was reverse transcribed using the 

RevertAid™ First Strand cDNA synthesis kit (Fermentas), as previously optimized [83], 

and gene-specific reverse transcription primers as a priming strategy. Quantitative PCR 

(qPCR) was prepared by mixing 5 µL of iQ SYBR green supermix (Bio-Rad, Hercules, CA, 

USA), 2 µL of 1:100 diluted cDNA, 0.5 µL of 5 µM forward and reverse primers (Table 

S1), and water up to 10 µL. The run was performed in a CFX96TM thermal cycler (Bio-Rad) 

with the following cycling parameters: 3 min at 95 °C, followed by 45 cycles of 10 s at 95 

°C, 10 s at 60 °C, and 15 s at 72 °C. Reaction efficiency was determined by the dilution 

method [84]. It is of note that at 60 °C, all sets of primers used (Table S1) had similar effi-

ciencies. In addition, the analysis of the melting curves confirmed the presence of a single 

peak, providing evidence for the specificity of the tested primers. Normalized gene ex-

pression was determined by using the delta Ct method (EΔCt), a variation of the Livak 

method, where ΔCt = Ct (reference gene) − Ct (target gene) and E stands for the reaction 

efficiency experimentally determined. A non-reverse transcriptase control was included 

in each reaction. All assays were repeated at least three independent times with three 

technical replicates. 

4.7. Statistical Analysis 

The data were analyzed using the statistical package GraphPad Prism version 6 (La 

Jolla, CA, USA) by paired t-test, two-way ANOVA (Sidak's multiple comparison test) and 

Mann–Whitney U test for the data that did not follow a normal distribution according to 

the Kolmogorov–Smirnov test. Values with p < 0.05 were considered statistically signifi-

cant.  

Supplementary Materials: The following are available online at www.mdpi.com/2076-

0817/10/2/247/s1, Figure S1: An example of fluorescence microscopy pictures representing the spec-

ificity of Gard162 probe, Figure S2: An example of fluorescence microscopy pictures representing 

the specificity of AtoITM1 probe, Figure S3: An example of orthogonal views of BV-associated bio-

films by confocal laser scanning microscopy (CLSM). Table S1: Primers used in qPCR experiments. 
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