
Component-based Programming forHigher-Order Attribute GrammarsJoão SaraivaDepartment of Computer S
ien
e,University of Minho, Braga, Portugaljas�di.uminho.ptAbstra
t. This paper presents te
hniques for a
omponent-based styleof programming in the
ontext of higher-oder attribute grammars (HAG).Attribute grammar
omponents are �plugged in� into larger attributegrammar systems through higher-order attribute grammars. Higher-orderattributes are used as (intermediate) �gluing� data stru
tures.This paper also presents two attribute grammar
omponents that
an bere-used a
ross di�erent language-based tool spe
i�
ations: a visualizerand animator of programs and a graphi
al user interfa
e AG
ompo-nent. Both
omponents are reused in the de�nition of a simple languagepro
essor. The te
hniques presented in this paper are implemented inLr
: a purely fun
tional, higher-order attribute grammar-based systemthat generates language-based tools.1 Introdu
tionRe
ent developments in programming languages are
hanging the way we
on-stru
t programs. Programs are now a
olle
tion of generi
, reusable, o�-the-shelfprogram
omponents that are �plugged in� to form larger and powerful pro-grams. In su
h an ar
hite
ture, intermediate gluing data stru
tures are used to
onvey information between di�erent program
omponents: a
omponent
on-stru
ts (produ
es) an intermediate data stru
ture whi
h is used (
onsumed) byother
omponent.In the
ontext of the design and implementation of language-based tools,attribute grammars provide powerful properties to improve the produ
tivity oftheir users, namely, the stati
 s
heduling of
omputations. Indeed, an attributegrammar writer is neither
on
erned with breaking up her/his algorithm intodi�erent traversal fun
tions, nor is she/he
on
erned in
onveying informationbetween traversal fun
tions (i.e., how to pass intermediate values
omputed inone traversal fun
tion and used in following ones). A se
ond important propertyis that
ir
ularities are stati
ally dete
ted. Thus, the existen
e of
y
les, and,as a result, the non-termination of the algorithms, is dete
ted stati
ally. That isto say that for (ordered) attribute grammars the termination of the programsfor all possible inputs is stati
ally guaranteed. A third
hara
teristi
 is thatattribute grammars are de
larative. Furthermore, they are exe
utable: e�
ientde
larative (and non-de
larative) implementations (
alled attribute evaluators)

are automati
ally derived by using well-known AG te
hniques. Finally, in
re-mental implementations of the spe
i�ed tools
an be automati
ally generatedfrom an attribute grammar.Despite these advantages, attribute grammars are not of general use asa language-based tool spe
i�
ation formalism. In our opinion, this is due totwo main reasons: �rstly, there is no e�
ient,
lear and elegant support for a
omponent-based style of programming within the attribute grammar formalism.Although an e�
ient form of modularity
an be a
hieved in AGs when ea
h se-manti
 domain is en
apsulated in a single AG
omponent [GG84,LJPR93,KW94℄[CDPR98,SS99b,dMBS00℄, the fa
t is that there is no e�
ient support within theAG formalism for an easy reuse of su
h
omponents. That is, how
an a grammarwriter �plug in� an AG
omponent into her/his spe
i�
ation? How are those AG
omponents glued together? How is information passed between di�erent AG
omponents? How
an the separate analysis and
ompilation of
omponents bea
hieved? Obviously we wish to provide answers to these questions within theattribute grammar formalism itself. Se
ondly, there is a la
k of good generi
,reusable attribute grammar
omponents that
an be easily �plugged in� into thespe
i�
ations of language-based tools. Components that are themselves writtenin the AG formalism.The purpose of this paper is two-fold: �rstly, to propose a
omponent-basedstyle of programming in the (higher-order) attribute grammar formalism. Thismeans that attribute grammar
omponents are e�
iently and easily �plugged-into� an AG spe
i�
ation via higher-order attributes. In this approa
h, one AG
omponent de�nes a higher-order attribute whi
h is de
orated a

ording to theattribute equations de�ned by another AG
omponent.Se
ondly, to introdu
e two generi
, reusable and o�-the-shelf AG
omponents.These
omponents are themselves de�ned in the HAG formalism and providemodern and powerful properties to visualize, animate and intera
t with language-based tools.This paper is organized as follows: Se
tion 2 presents higher-order attributegrammars, its notation and provides a simple example that will be used through-out the paper. Se
tion 3 introdu
es HAG
omponent-based programming andpresents two generi
 AG
omponents: a visualization and animation
omponent(Se
tion 3.1) and graphi
al user interfa
e
omponent (Se
tion 3.2). Se
tion 4dis
usses related work and Se
tion 5
ontains the
on
lusions.2 Higher-Order Attribute GrammarsThe te
hniques presented in this paper are based on the higher-order attributegrammar formalism [VSK89℄. Higher-Order Attribute Grammars are an im-portant extension to the attribute grammar formalism. Conventional attributegrammars are augmented with higher-order attributes, the so-
alled attributableattributes. Higher-order attributes are attributes whose value is a tree. We mayasso
iate, on
e again, attributes with su
h a tree. Attributes of these so-
alled

higher-order trees, may be higher-order attributes again. Higher-order attributegrammars have four main
hara
teristi
s:� First, when a
omputation
an not be easily expressed in terms of the indu
-tive stru
ture of the underlying tree, a better suited stru
ture
an be
om-puted before. Consider, for example, a language where the abstra
t grammardoes not mat
h the
on
rete one. Consider also that the semanti
 rules ofsu
h a language are easily expressed over the abstra
t grammar rather thanover the
on
rete one. The mapping between both grammars
an be spe
-i�ed within the higher-order attribute grammar formalism: the attributeequations of the
on
rete grammar de�ne a higher-order attribute represent-ing the abstra
t grammar. As a result, the de
oration of a
on
rete syntaxtree
onstru
ts a higher-order tree: the abstra
t syntax tree. The attributeequations of the abstra
t grammar de�ne the semanti
s of the language.� Se
ond, semanti
 fun
tions are redundant. In higher-order attribute gram-mars every
omputation
an be modelled through attribution rules. Morespe
i�
ally, indu
tive semanti
 fun
tions
an be repla
ed by higher-orderattributes. For example, a typi
al appli
ation of higher-order attributes isto model the (re
ursive) lookup fun
tion in an environment. Consequently,there is no need to have a di�erent notation (or language) to de�ne se-manti
 fun
tions in AGs. Moreover, be
ause we express indu
tive fun
tionsby attributes and attribute equations, the termination of su
h fun
tions isstati
ally
he
ked by standard AG te
hniques (e.g., the
ir
ularity test).� The third
hara
teristi
 is that part of the abstra
t tree
an be used dire
tlyas a value within a semanti
 equation. That is, grammar symbols
an bemoved from the synta
ti
 domain to the semanti
 domain.� Finally, as we will des
ribe in this paper, attribute grammar
omponents
anbe �glued� via higher-order attributes.These
hara
teristi
s make higher-order attribute grammars parti
ularly suit-able to model language-based tools [TC90,Pen94,KS98,Sar99℄.2.1 The Blo
k LanguageConsider a very simple language that deals with the s
ope rules of a blo
k stru
-tured language: a de�nition of an identi�er x is visible in the smallest en
losingblo
k, with the ex
eption of lo
al blo
ks that also
ontain a de�nition of x. Inthe latter
ase, the de�nition of x in the lo
al s
ope hides the de�nition in theglobal one.We shall analyse these s
ope rules via our favorite (toy) language: the blo
klanguage1. One senten
e in blo
k
onsists of a blo
k, and a blo
k is a (possiblyempty) list of statements. A statement is one of the following three things: ade
laration of an identi�er (su
h as de
l a), the use of an identi�er (su
h asuse a), or a nested blo
k. Statements are separated by the pun
tuation symbol1 The blo
k language, that we introdu
ed in [SSK97,Sar99℄, has be
ome a popularexample to study the stati
 s
heduling of �
ir
ular� de�nitions [dMPJvW99,Law01℄

�;� and blo
ks are surrounded by square bra
kets. A
on
rete senten
e in thislanguage looks as follows:senten
e = [use x ; use y ; de
l x ;[de
l y ; use y ; use w ℄ ;de
l y ; de
l x℄This language does not require that de
larations of identi�ers o

ur beforetheir �rst use. Note that this is the
ase in the �rst two applied o

urren
esof x and y: they refer to their (latter) de�nitions on the outermost blo
k. Notealso that the lo
al blo
k de�nes a se
ond identi�er y. Consequently, the se
ondapplied o

urren
e of y (in the lo
al blo
k) refers to the inner de�nition and notto the outer de�nition. In a blo
k, however, an identi�er may be de
lared on
e,at the most. So, the se
ond de�nition of identi�er x in the outermost blo
k isinvalid. Furthermore, the blo
k language requires that only de�ned identi�ersmay be used. As a result, the applied o

urren
e of w in the lo
al blo
k is invalid,sin
e w has no binding o

urren
e at all.We aim to develop a program that analyses blo
k programs and
omputesa list
ontaining the identi�ers whi
h do not obey to the rules of the language. Inorder to make the problem more interesting, and also to make it easier to dete
twhi
h identi�ers are being in
orre
tly used in a blo
k program, we require thatthe list of invalid identi�ers follows the sequential stru
ture of the input program.Thus, the semanti
 meaning of pro
essing the example senten
e is [w,x℄.The blo
k language does not for
e a de
lare-before-use dis
ipline. Conse-quently, a
onventional implementation of the required analysis naturally leadsto a program that traverses ea
h blo
k twi
e: on
e for pro
essing the de
lara-tions of identi�ers and
onstru
ting an environment and a se
ond time to pro
essthe uses of identi�ers (using the
omputed environment) in order to
he
k forthe use of non-de
lared identi�ers. The uniqueness of identi�ers is
he
ked inthe �rst traversal: for ea
h newly en
ountered identi�er de
laration it is
he
kedwhether that identi�er has already been de
lared at the same lexi
al level. In this
ase, the identi�er has to be added to a list reporting the dete
ted errors. Thestraightforward algorithm to implement the blo
k pro
essor looks as follows:1st Traversal 2nd Traversal- Colle
t the list of lo
al de�nitions - Use the list of de�nitions as the globalenvironment- Dete
t dupli
ate de�nitions - Dete
t use of non de�ned names(using the
olle
ted de�nitions) - Combine �both� errorsAs a
onsequen
e, semanti
 errors resulting from dupli
ated de�nitions are
omputed during the �rst traversal, and errors resulting from missing de
lara-tions, in the se
ond one. Thus, a �gluing� data stru
ture has to pass expli
itlythe dete
ted errors from the �rst to the se
ond traversal, in order to
omputethe �nal list of errors in the desired order.

2.2 The Attribute Grammar for the Blo
k LanguageIn this se
tion we shall des
ribe the program blo
k in the traditional attributegrammar paradigm. To de�ne the stru
ture of the blo
k language, we start byintrodu
ing one
ontext-free grammar de�ning the abstra
t stru
ture of Blo
k.Then, we extend this grammar with attributes and the attribution rules.We asso
iate an inherited attribute d
li of type Env to the non-terminalsymbols Its and It that de�ne a blo
k. The inherited environment is threadedthrough the blo
k in order to a

umulate the lo
al de�nitions and in this waysynthesizes the total environment of the blo
k. To distinguish between the sameidenti�er de
lared at di�erent levels, we use an attribute lev that distributesthe blo
k's level. We asso
iate a synthesized attribute d
lo to the non-terminalsymbols Its and It, whi
h de�nes the newly
omputed environment. The totalenvironment of a blo
k is passed downwards to its body in the attribute env inorder to dete
t applied o

urren
es of unde�ned identi�ers. Every blo
k inheritsthe environment of its outer blo
k. The ex
eption is the outermost blo
k: itinherits an empty environment. To synthesize the list of errors we asso
iate theattribute errs to Its and It.The stati
 semanti
s of the blo
k language are de�ned in the attributegrammar presented in Fragment 1. We use a standard AG notation: produ
tionsare labelled for future referen
es. Within the attribution rules of a produ
tion,di�erent o

urren
es of the same symbol are denoted by distin
t subs
ripts.Inherited (synthesized) attributes are pre�xed with the down (up) arrow # (").Pseudo terminal symbols are synta
ti
ally referen
ed in the AG, i.e., they areused dire
tly as values in the attribution rules. The attribution rules are writtenas Haskell-like expressions. Copy rules are in
luded in the AG spe
i�
ation(although there are well-known te
hniques to omit
opy rules, in this paper, weprefer to expli
itly de�ne them). The semanti
 fun
tions mBIn (standing for�must be in�) and mNBIn (�must not be in�) de�ne usual lookup operations2.Its < # lev : Int; # d
li : Env; # env : Env; " d
lo : Env; " errs : Err >Its = NilItsIts:d
lo = Its:d
liIts:errs = [℄j ConsIts It ItsIt:d
li = Its1:d
liIts2:env = Its1:envIt:env = Its1:envIts2:d
li = It:d
loIts1:d
lo = Its2:d
loIt:lev = Its1:levIts2:lev = Its1:levIts1:errs = It:errs ++ Its2:errs
It < # lev : Int; # d
li : Env; # env : Env; " d
lo : Env; " errs : Err >It = Use StringIt:d
lo = It:d
liIt:errs = mBIn (String; It:env)j De
l StringIt:d
lo = (Pair String It:lev) : It:d
liIt:errs = mNBIn (Pair String It:lev; It:d
li)j Blo
k ItsIt:d
lo = It:d
liIts:d
li = It:envIts:lev = It:lev + 1Its:env = Its:d
loIt:errs = Its:errsFragment 1: The blo
k attribute grammar.2 These indu
tive fun
tions
an be de�ned via higher-order attributes. Indeed, in theblo
k HAG presented in [Sar99℄, we have su
h an example.

It is
ommon pra
ti
e in attribute grammars to use additional non-terminalsand produ
tions to de�ne new data types and
onstru
tor types, respe
tively.The type Env and the
onstru
tor fun
tion Pair are examples of that:Tuple = Pair String IntEnv = ConsEnv Tuple Envj NilEnvErr = ConsErr String Errj NilErrNote that, the type Env is isomorphi
 with non-terminal Env: the term
on-stru
tor fun
tions ConsEnv and NilEnv
orrespond to the Haskell built-in list
onstru
tor fun
tions : and [℄, respe
tively. Roughly speaking, non-terminalsde�ne tree type
onstru
tors and produ
tions de�ne value type
onstru
tors. Wewill use both notations to de�ne and to
onstru
t value types.To make the AG more readable, we introdu
e a root non-terminal so that we
an easily write the attribution rules spe
ifying that the initial environment ofthe outermost blo
k is empty (i.e., the root is
ontext-free) and that its lexi
allevel is 0.P < " errs : Err >P = Root ItsIts:d
li = [℄Its:lev = 0Its:env = Its:d
loP:errs = Its:errsThe above fragment in
ludes a typi
al equation where a inherited attribute(env) depends on a synthesized attribute (d
lo) of the same non-terminal (Its).Although su
h dependen
ies are natural in attribute grammars they may lead to
omplex and
ounterintuitive solutions in other paradigms (fun
tional, impera-tive, et
), be
ause they indu
e additional traversal fun
tions whi
h have to beexpli
itly �glued� together to
onvey information between them.The AG fragments presented so far formally spe
ify the stati
 semanti
s ofthe blo
k language. A higher-order extension to this AG will be presented innext se
tion, where we introdu
e our
omponent-base programming te
hniques.3 Gluing Grammar Components via Higher-OrderAttribute GrammarsIn fun
tional programming, it is
ommon pra
ti
e to use intermediate data stru
-tures to
onvey information between fun
tions. One fun
tion
onstru
ts the in-termediate data stru
ture whi
h is destru
ted by another one. The intermediatedata stru
ture is the
omponent �glue�. We will mimi
 this approa
h in the

higher-order attribute grammar setting: an AG
omponent de�nes (or, at at-tribute evaluation time,
onstru
ts) a higher-order attribute (i.e., a tree-likedata stru
ture), whi
h is used (or de
orated) by the other AG
omponent.This gluing of AG
omponents is de�ned in the HAG formalism itself asfollows:
onsider, for example, that an AG
omponent, say AGreuse, expressessome algorithmA over a grammar rooted X, and suppose that we wish to expressthe same algorithm when de�ning a new grammar, say AGnew . Under the higher-order formalism this is done as follows: �rstly, we de�ne an attributable attribute,say a with type X, in the produ
tions, say P, of AGnew where we need to expressalgorithm A. Se
ondly, we extend AGnew with attributes, whose types are thetypes (i.e., non-terminals) de�ned in AGreuse, and attribute equations, wherethe semanti
 fun
tions are the
onstru
tors (i.e.produ
tions) of AGreuse. Thatis, we de�ne attributes that are tree-value attributes. After that, we instantiatethe higher-order attribute a with the tree-value attribute of type X
onstru
tedin the
ontext of produ
tion P. Then, we instantiate the inherited attributes ofasso
iated type/non-terminal (i.e., X). Finally, and by de�nition of HAGs, thegenerated synthesized attribute o

urren
es of a are de�ned by the attributeequations of AGreuse. They are ready to be used in the attribute grammarspe
i�
ation, like any other �rst-order attribute.Noti
e that by expressing the gluing of AG
omponents within the AG for-malism itself, we are able to use all the standard attribute grammar te
hniques,e.g., the e�
ient s
heduling of
omputations and the stati
 dete
tion of
ir
ular-ities. For example, the inherited/synthesized attributes of the AG
omponents
an be �
onne
ted� in any order. The HAG writer does not have to be
on
ernedwith the existen
e of
y
li
 dependen
ies among AG
omponents: the AG
ir
u-larity test will dete
t them for him. Furthermore, we
an use attribute grammarte
hniques to derive e�
ient implementations for the resulting HAG. For ex-ample, we
an use our deforestation te
hniques to eliminate the possibly largeintermediate trees that glue the di�erent
omponents [SS99a℄.Most of the powerful attribute grammar te
hniques are based on a globalstati
 analysis of attribute dependen
ies. Thus, they require that the di�erentAG modules/
omponents are �fused� into an equivalent monolithi
 HAG, be-fore they are analised. In [SS99b℄ we have presented te
hniques to a
hieve theseparate analysis and
ompilation of AG modules than naturally extend to our
omponent-based approa
h.3.1 An Attribute Grammar Component for Visualization andAnimation of Language-based ToolsIn order to be more pre
ise about our approa
h, let us
onsider the blo
k lan-guage example again. Be
ause this simple toy example has a non-trivial s
hedul-ing of
omputations, we would like to �plug into� the AG spe
i�
ation an AG
omponent that allows us to visualize and animate the blo
k pro
essor.Thus, we introdu
e a generi

omponent for the visualization and animationof AGs. We wish to use this AG as a generi
 visual and animation AG
omponent.We start by de�ning an abstra
t grammar that is su�
iently generi
 to de�ne

all possible abstra
t tree stru
tures we may want to visualize and animate. Thegrammar is as follows:TreeViz = CTreeViz TreeId [TreeStmt℄TreeStmt = CStmtNode NodeStmtj CStmtEdge EdgeStmtj CStmtAttr AttrStmtNodeStmt = CNodeStmt NodeId [Attr℄EdgeStmt = CEdgeStmt NodeId [EdgeRHS℄ AttrsEdgeRHS = CRHSExpNode EdgeOp NodeIdAttr = CAttr AttrId AttrValThe non-terminals TreeId, NodeId, EdgeOp, AttrId, AttrVal de�ne sequen
esof
hara
ters (strings). In order to make it easier to use this
omponent, wede�ne a set of fun
tions/ma
ros that, using the produ
tions of this AG
om-ponent, de�ne usual o

urring node formats in our trees. Next, we present fourfun
tions that de�ne the shape of a node as a re
ord (attrShapeRe
ord), as a
ir
le (attrShapeCir
le), as the value of a node label (attrLabel), and, �nally, asa node that
ontains a value and an arrow to a
hild node. These fun
tions arepresented next.attrShapeRe
ord = CAttr "shape" "re
ord"attrShapeCir
le = CAttr "shape" "
ir
le"attrLabel label = CAttr "label" labelnodeRe
ord1 val father
hild =[CStmtNode (CNodeStmt father) [attrShapeRe
ord , attrLabel (val ++ "|<
>")℄,CStmtEdge (CEdgeStmt "
") [CRHSExpNode "->"
hild℄ ℄The label is a string that de�nes the format of the node re
ord. The non-terminal EdgeOp is a string de�ning the dire
tion of the arrow.The above grammar de�nes the abstra
t stru
ture of abstra
t trees only. Tohave a
on
rete graphi
al representation of the trees, however, we need to mapsu
h abstra
t tree representation into a
on
rete one. Rather than de�ning a
on-
rete interfa
e from s
rat
h and implementing a tree/graph visualization system(and reinventing the wheel!), we
an synthesize a
on
rete interfa
e for existinghigh quality graph visualization systems, e.g., the GraphViz system [GN99℄. Weomit here the attributes and attribution rules that we have asso
iated to thevisualization grammar sin
e they are neither relevant to reuse this
omponentnor to understand our te
hniques.To reuse this
omponent, however, we need to know the inherited and syn-thesized attributes of its root non-terminal, i.e., the interfa
e of the AG
ompo-nent. This grammar
omponent is
ontext-free (it does not have any inheritedattributes) and synthesizes two attributes graphviz and xml, both of type string.These two attributes synthesize a textual representation of trees in the GraphVizinput language. The �rst attribute displays trees in the usual graphi
 tree rep-resentation, while the se
ond one uses a Xml tree-like representation (where theprodu
tion names are the element tags).

TreeViz < " graphviz : String; " xml : String >We are now in position to �glue� this
omponent to the blo
k AG. Let usstart by de�ning the attribute and the equations that spe
ify the
onstru
tionof the GraphViz representation.Its < " viztree : [TreeStmt℄ >Its = NilItsIts:viztree = nodeEmptyCir
le treeRef(Its)j ConsIts It ItsIts1:viztree = (nodeRe
ord2 "" treeRef(Its1) treeRef(It) treeRef(Its2))++ It:viztree ++ Its2:viztreeIt < " viztree : [TreeStmt℄ >It = Use StringIt:viztree = nodeRe
ord0 ("Use" ++ String) treeRef(It)j De
l StringIt:viztree = nodeRe
ord0 ("De
l" ++ String) treeRef(It)j Blo
k ItsIt:viztree = (nodeRe
ord1 "Blo
k" treeRef(It) treeRef(Its)) ++ Its:viztreeFragment 2: Constru
ting the Visual Tree.Where the fun
tion treeRef returns a unique identi�er of its tree-value argu-ment (the tree pointer).Next, we de
lare a higher-order attribute, i.e., attributable attribute (ata)named visualTree, in the
ontext of the single produ
tion applied to the rootnon-terminal of the blo
k AG. The type of the higher-order attribute is TreeVizwhi
h is the type of the root non-terminal of the reused
omponent. After that,we have to instantiate the higher-order attribute with the attribute synthesizedin the above fragment. Finally, and be
ause TreeViz has no inherited attributes,we just have to a

ess the synthesized attribute of the higher-order attribute, asusual. The HAG fragment looks has follows:P < " String : visualT ree >P = Root Itsata visualT ree : TreeViz -- De
larationvisualT ree = CTreeViz "Blo
kTree" Its:viztree -- InstantiationP:visualTree = visualT ree:graphviz -- Use of its syn. attrsThis fragment de�nes a higher-order extension to the blo
k attribute gram-mar presented in the previous se
tion. To pro
ess su
h higher-order attributegrammar, we use the Lr
 system: an in
remental, purely fun
tional higher-order attribute grammar based system [KS98℄. Thus, we
an use Lr
 to pro
essthe blo
k HAG and to produ
e the desire blo
k pro
essor.Figure 1 shows two di�erent snapshots (displayed by GraphViz) of the treethat is obtained as the result of running the blo
k pro
essor with the inputexample senten
e. As we
an see the tree is
ollapsed into a minimal Dire
t

Fig. 1. The DAG representing the blo
k example senten
e at the beginning of theevaluation (left) and after
ompleting the �rst traversal to the outermost blo
k (right).A
y
li
 Graphs (DAG). This happens be
ause we are using the in
rementalmodel of attribute evaluation of Lr
3.Besides
omputing the graphi
al representation of the tree, the pro
essorgenerated by Lr
 also produ
es a sequen
e of node transitions. This is exa
tlythe sequen
e of visits the evaluator performs to de
orate the tree under
onsid-eration. Su
h sequen
e
an be loaded in and animated in GraphViz, either insingle step or in
ontinuous mode, forwards and ba
kwards. Furthermore,
olorsare used to mark the visited nodes.The snapshot on the left shows the beginning of the evaluation: the root nodeis visited for the �rst time (the shadowed node). The snapshot on the right showsthe end of the �rst traversal to the outermost blo
k. Note that the nodes of thenested blo
k were not visited (they are not shadowed). Indeed, the AG s
hedulerindu
ed (as we expe
ted) that only after
olle
ting the
omplete environmentof the outer blo
k (performed on its �rst traversal),
an the evaluator visit theinner ones. The inner blo
ks are traversed twi
e in the se
ond traversal of theouter blo
k.3 Lr
 a
hieves in
remental evaluation through fun
tion memoization. Trees are ar-guments of the evaluators' fun
tions. Thus, to make fun
tion memoization possible,they have to be e�
iently
ompared for equality. Minimal DAG's allow for e�
ientequality tests between all terms be
ause a pointer
omparison su�
es.

3.2 An Attribute Grammar Component for Advan
ed Intera
tiveInterfa
esAs it was previously stated, types
an be de�ned within the attribute grammarformalism. So, we may use this approa
h to introdu
e a type that de�nes anabstra
t representation of the interfa
e of language-based tools. In other words,we use an abstra
t grammar to de�ne an abstra
t interfa
e. The produ
tionsof su
h a grammar represent �standard� graphi
al user interfa
e obje
ts, likemenus, buttons, et
. Next, we present the so-
alled abstra
t interfa
e grammar.Visuals = CVisuals [Toplevel℄Toplevel = Toplevel Frame String StringFrame = Label Stringj ListBox Entrylistj PullDownMenu String MenuListj PushButton Stringj Unparse Ptrj HList [Frame℄j VList [Frame℄The non-terminal Visual de�nes the type of the abstra
t interfa
e of thetool: it is a list of Toplevel obje
ts, that may be displayed in di�erent windows.A Toplevel
onstru
t displays a frame in a window. It has three arguments: theframe, a name (for future referen
es) and the window title. The produ
tionsapplied to non-terminal Frame de�ne
on
rete visual obje
ts. For example, pro-du
tion PushButton represents a push-button, produ
tion ListBox represents alist box, et
.The produ
tion Unparse represents a visual obje
t that provides stru
turedtext editing [RT89℄. It displays a pretty-printed version of its (tree) argumentand allows the user to intera
t with it. Su
h beauti�ed textual representation ofthe abstra
t syntax tree is produ
ed a

ording to the unparse rules spe
i�ed inthe grammar. It also allows the user to point to the textual representation to editit (via the keyboard), or to transform it using user de�ned transformations. Theprodu
tions VList and HList de�ne
ombinators: they verti
ally and horizontally(respe
tively)
ombine visual obje
ts into more
ompli
ated ones. These non-terminals and produ
tions
an be dire
tly used in the attribute grammar tode�ne the interfa
e of the environments. Thus, the interfa
e is spe
i�ed throughattribution, i.e., within the AG formalism.To de�ne a
on
rete interfa
e, we need, as we have said above, to de�ne themapping from the abstra
t interfa
e representation into a
on
rete one. Insteadof de�ning a
on
rete interfa
e from s
rat
h, we synthesize a
on
rete inter-fa
e for a existing GUI toolkit, e.g., the T
l/Tk GUI toolkit [Ous94℄. Indeed,the GUI AG
omponent synthesizes T
l/Tk
ode de�ning the interfa
e in theattribute named tk.Next, we present an attribute grammar fragment that glues the blo
k HAGwith this GUI AG
omponent. It de�nes an intera
tive interfa
e
onsisting ofthree visual obje
ts that are verti
ally
ombined, namely: a push-button, theunparsing of the input under
onsideration and the unparsing of the list oferrors. The root symbol P synthesizes the T
l/Tk
on
rete
ode in the attributeo

urren
e
on
reteInterfa
e.

Fig. 2. The blo
k environment's interfa
e generated from the HAG.P < "
on
reteInterfa
e : Tk >P = Root Itsata absInterfa
e : VisualsabsInterfa
e = let f button = PushButton "Add Statement"editor = Unparse &Perrors = Unparse &P:errs
omb = VList [button , editor , errors ℄g in [Toplevel
omb "edit" "Blo
k Editor" ℄P:
on
reteInterfa
e = absInterfa
e:tkFragment 3: The blo
k graphi
al user interfa
e.Figure 2 shows the
on
rete interfa
e of the blo
k pro
essor.The PushButton
onstru
tor simply displays a push-button. To assign ana
tion to the displayed button we have to de�ne su
h an a
tion. On
e againwe use the same te
hnique, i.e., we de�ne an abstra
t grammar to des
ribethe abstra
t events handled by intera
tive interfa
es. Basi
ally, we asso
iate anabstra
t event-handler to ea
h visual obje
t.Event = ButtonPress Stringj ListBoxSele
t Entrylistj MenuSele
t Stringj TextKeyPress CharThe
onstru
tor ButtonPress is the event-handler asso
iated with PushButton.Next, we show a possible a
tion asso
iated with this event-handler.Its = NilItsbind on ButtonPress "Add Statement": Its ! ConsIts (De
l "a") NilIts;The bind expression is used to spe
ify how user intera
tions are handled bythe language-based environment. In this
ase, it simply de�nes that every timethe push-button "Add Statement" is pressed, the rooted subtree Its is trans-formed into ConsIts De
l("a") NilIts. Note that this event-handler
onstru
tor isde�ned in the
ontext of a NilIts produ
tion. Thus, a new de
laration is addedat the end of the program being edited.

Other features of visualization and animation, and of the advan
ed graphi
aluser interfa
e AG
omponents are:� The use of abstra
t grammars (i.e., intermediate representation languages)makes these
omponents highly modular: new
on
rete visualizations/anima-tions/interfa
es
an be �plugged into� the AG system, just by de�ning the
orresponding mapping fun
tion.� This approa
h has another important property: under an in
remental at-tribute evaluation s
heme, the visualization/animation/interfa
e is in
re-mentally
omputed, like any other attribute value [Sar99,SSK00℄.� Be
ause the Lr
 system uses an in
remental
omputational model, we
ananimate in
remental attribute evaluators. Indeed, in the animations pro-du
ed by Lr
, it is possible to visualize the reuse of a memoized fun
tion
all: the animation simply
hanges the
olor of a node, without visiting itsdes
endents.4 Related WorkThe work presented in this paper is
losely related to attribute
oupled gram-mars [GG84,LJPR93,CDPR98℄,
omposable attribute grammars [FMY92℄ andKastens and Waite work on modularity and reusability of attribute grammars[KW94℄.Attribute
oupled grammars
onsist of a set of AG
omponents ea
h of whi
h(
on
eptually) returns a tree-valued result that is the input for the next
om-ponent. Grammars are
oupled by de�ning attribute equations that build therequired tree-valued attributes, very mu
h like the values of higher-order at-tributes are de�ned in our approa
h (e.g., Fragment 2). In attribute
oupledgrammars, however, the �ow of data is stri
tly linear and unidire
tional. In ourapproa
h the data
an �ow freely throughout the
omponents, provided that noattribute depends dire
tly nor indire
tly on itself. Under our te
hniques su
h
y
li
 dependen
ies are stati
ally dete
ted.In [GG84℄ des
riptional
omposition is de�ned to eliminate the
reation ofthe intermediate trees. That is, from the
oupling attribute grammar (modules) agrammar is
onstru
ted that de�nes the same equations, but that eliminates the
onstru
tion of the intermediate trees. The des
riptional
omposition, however,
an result in a non-absolute
ir
ular AG. Furthermore, des
riptional
ompositiondoes not allow the separate analysis and
ompilation of grammar
omponents.Composable attribute grammars [FMY92℄ use a parti
ular grammar modulefor gluing AG
omponents. Grammar modules
on be analised and
ompiledseparately. However, the gluing of the
omponents is expressed with a spe
ialnotation outside the AG formalism.Kastens and Waite [KW94℄ aim at a di�erent form of modularity. They showthat a
ombination of notational
on
epts
an be used to
reate reusable attri-bution modules. They also de�ne a set of modules to express
ommon operationon programming languages. However, su
h modules are not de�ned within the

AG formalism, thus, making the maintenan
e, updating and understanding ofsu
h
omponents mu
h harder.5 Con
lusionsThis paper presented te
hniques to write attribute grammars under a
omponent-based style of programming. Su
h te
hniques rely entirely on the higher-orderattribute grammar formalism: attribute grammar
omponents are glued into alarger AG system through higher-order attributes. Standard attribute grammarte
hniques are used to dete
t
ir
ularities (e.g., AG
ir
ularity test), to e�
ientlys
hedule the
omputations (e.g., AG s
heduling algorithms), and, to eliminateredundant intermediate data stru
tures indu
ed by higher-order attributes (e.g.,AG deforestation te
hniques).We also have presented two generi
, reusable and o�-the-shelf AG
ompo-nents that
an easily be �plugged into� any higher-order attribute grammar spe
-i�
ation. Su
h
omponents provide powerful properties to visualize, animate andintera
t with language-based tools. Thanks to the fa
t that these
omponentsare themselves de�ned in the HAG formalism, we inherit all of its ni
e proper-ties and be
ause of that the maintenan
e, updating and understanding of su
h
omponents is simpler.These
omponents are implemented in the Lr
 system. However, they
anbe reused in any attribute grammar system, provided it pro
esses higher-orderattribute grammars.Referen
es[CDPR98℄ Loi
 Correnson, Etienne Duris, Didier Parigot, and Gilles Roussel.Generi
 Programming by Program Composition. In Pro
eedings of theWorkshop on Generi
 Programming, pages 1�13, June 1998.[dMBS00℄ Oege de Moor, Kevin Ba
khouse, and Doaitse Swierstra. First-Class At-tribute Grammars. In D. Parigot and M. Mernik, editors, Third Workshopon Attribute Grammars and their Appli
ations, WAGA'99, pages 1�20,Ponte de Lima, Portugal, July 2000. INRIA Ro
quen
ourt.[dMPJvW99℄ Oege de Moor, Simon Peyton-Jones, and Eri
 van Wyk. Aspe
t-OrientedCompilers. In Pro
eedings of the First International Symposium on Gen-erative and Component-Based Software Engineering (GCSE '99), LNCS,September 1999.[FMY92℄ Rodney Farrow, Thomas J. Marlowe, and Daniel M. Yellin. ComposableAttribute Grammars: Support for Modularity in Translator Design andImplementation. In 19th ACM Symp. on Prin
iples of ProgrammingLanguages, pages 223�234, Albuquerque, NM, January 1992. ACM press.[GG84℄ Harald Ganzinger and Robert Giegeri
h. Attribute Coupled Gram-mars. In ACM SIGPLAN '84 Symposium on Compiler Constru
tion,volume 19, pages 157�170, Montréal, June 1984.[GN99℄ Emden R. Gransner and Stephen C. North. An open graph visualizationsystem and its appli
ations to software engineering. Software Pra
ti
eand Experien
e, 00(S1):1�29, 1999.

[KS98℄ Matthijs Kuiper and João Saraiva. Lr
 - A Generator for In
rementalLanguage-Oriented Tools. In Kay Koskimies, editor, 7th InternationalConferen
e on Compiler Constru
tion, CC/ETAPS'98, volume 1383 ofLNCS, pages 298�301. Springer-Verlag, April 1998.[KW94℄ Uwe Kastens and William Waite. Modularity and reusability in attributegrammar. A
ta Informati
a, 31:601�627, June 1994.[Law01℄ Julia L. Lawall. Implementing Cir
ularity Using Partial Evaluation.In Pro
eedings of the Se
ond Symposium on Programs as Data Obje
tsPADO II, volume 2053 of LNCS, May 2001.[LJPR93℄ Carole Le Belle
, Martin Jourdan, Didier Parigot, and Gilles Roussel.Spe
i�
ation and Implementation of Grammar Coupling Using AttributeGrammars. In Mauri
e Bruynooghe and Jaan Penjam, editors, Program-ming Language Implementation and Logi
 Programming (PLILP '93),volume 714 of LNCS, pages 123�136, Tallinn, August 1993. Springer-Verlag.[Ous94℄ J.K. Ousterhout. T
l and the Tk toolkit. Addison Wesley, 1994.[Pen94℄ Maarten Pennings. Generating In
remental Evalua-tors. PhD thesis, Department of Computer S
ien
e,Utre
ht University, The Netherlands, November 1994.ftp://ftp.
s.uu.nl/pub/RUU/CS/phdtheses/Pennings/.[RT89℄ T. Reps and T. Teitelbaum. The Synthesizer Generator. Springer, 1989.[Sar99℄ João Saraiva. Purely Fun
tional Implementation of At-tribute Grammars. PhD thesis, Department of Computer S
i-en
e, Utre
ht University, The Netherlands, De
ember 1999.ftp://ftp.
s.uu.nl/pub/RUU/CS/phdtheses/Saraiva/.[SS99a℄ João Saraiva and Doaitse Swierstra. Data Stru
ture Free Compilation. InStefan Jähni
hen, editor, 8th International Conferen
e on Compiler Con-stru
tion, CC/ETAPS'99, volume 1575 of LNCS, pages 1�16. Springer-Verlag, Mar
h 1999.[SS99b℄ João Saraiva and Doaitse Swierstra. Generi
 Attribute Grammars. InD. Parigot and M. Mernik, editors, Se
ond Workshop on Attribute Gram-mars and their Appli
ations, WAGA'99, pages 185�204, Amsterdam, TheNetherlands, Mar
h 1999. INRIA Ro
quen
ourt.[SSK97℄ João Saraiva, Doaitse Swierstra, and Matthijs Kuiper. Stri
ti�
a-tion of Computations on Trees. Te
hni
al report UU-CS-1997-30,Department of Computer S
ien
e, Utre
ht University, August 1997.ftp://ftp.
s.ruu.nl/pub/RUU/CS/te
hreps/CS-1997/1997-30.ps.gz.[SSK00℄ João Saraiva, Doaitse Swierstra, and Matthijs Kuiper. Fun
tional In
re-mental Attribute Evaluation. In David Watt, editor, 9th InternationalConferen
e on Compiler Constru
tion, CC/ETAPS2000, volume 1781 ofLNCS, pages 279�294. Springer-Verlag, Mar
h 2000.[TC90℄ Tim Teitelbaum and Ri
hard Chapman. Higher-order attribute gram-mars and editing environments. In ACM SIGPLAN'90 Conferen
e onPrin
iples of Programming Languages, volume 25, pages 197�208. ACM,June 1990.[VSK89℄ Harald Vogt, Doaitse Swierstra, and Matthijs Kuiper. Higher order at-tribute grammars. In ACM SIGPLAN '89 Conferen
e on ProgrammingLanguage Design and Implementation, volume 24, pages 131�145. ACM,July 1989.

