Component-based Programming for
Higher-Order Attribute Grammars

Joao Saraiva

Department of Computer Science,
University of Minho, Braga, Portugal
jas@di.uminho.pt

Abstract. This paper presents techniques for a component-based style
of programming in the context of higher-oder attribute grammars (HAG).
Attribute grammar components are “plugged in” into larger attribute
grammar systems through higher-order attribute grammars. Higher-order
attributes are used as (intermediate) “gluing” data structures.

This paper also presents two attribute grammar components that can be
re-used across different language-based tool specifications: a visualizer
and animator of programs and a graphical user interface AG compo-
nent. Both components are reused in the definition of a simple language
processor. The techniques presented in this paper are implemented in
LRc: a purely functional, higher-order attribute grammar-based system
that generates language-based tools.

1 Introduction

Recent developments in programming languages are changing the way we con-
struct programs. Programs are now a collection of generic, reusable, off-the-shelf
program components that are “plugged in” to form larger and powerful pro-
grams. In such an architecture, intermediate gluing data structures are used to
convey information between different program components: a component con-
structs (produces) an intermediate data structure which is used (consumed) by
other component.

In the context of the design and implementation of language-based tools,
attribute grammars provide powerful properties to improve the productivity of
their users, namely, the static scheduling of computations. Indeed, an attribute
grammar writer is neither concerned with breaking up her/his algorithm into
different traversal functions, nor is she/he concerned in conveying information
between traversal functions (i.e., how to pass intermediate values computed in
one traversal function and used in following ones). A second important property
is that circularities are statically detected. Thus, the existence of cycles, and,
as a result, the non-termination of the algorithms, is detected statically. That is
to say that for (ordered) attribute grammars the termination of the programs
for all possible inputs is statically guaranteed. A third characteristic is that
attribute grammars are declarative. Furthermore, they are executable: efficient
declarative (and non-declarative) implementations (called attribute evaluators)

are automatically derived by using well-known AG techniques. Finally, incre-
mental implementations of the specified tools can be automatically generated
from an attribute grammar.

Despite these advantages, attribute grammars are not of general use as
a language-based tool specification formalism. In our opinion, this is due to
two main reasons: firstly, there is no efficient, clear and elegant support for a
component-based style of programming within the attribute grammar formalism.
Although an efficient form of modularity can be achieved in AGs when each se-
mantic domain is encapsulated in a single AG component [GG84,LJPR93,KW94|
[CDPRI8,5S99b,dMBS00], the fact is that there is no efficient support within the
AG formalism for an easy reuse of such components. That is, how can a grammar
writer “plug in” an AG component into her/his specification? How are those AG
components glued together? How is information passed between different AG
components? How can the separate analysis and compilation of components be
achieved? Obviously we wish to provide answers to these questions within the
attribute grammar formalism itself. Secondly, there is a lack of good generic,
reusable attribute grammar components that can be easily “plugged in” into the
specifications of language-based tools. Components that are themselves written
in the AG formalism.

The purpose of this paper is two-fold: firstly, to propose a component-based
style of programming in the (higher-order) attribute grammar formalism. This
means that attribute grammar components are efficiently and easily “plugged-
into” an AG specification via higher-order attributes. In this approach, one AG
component defines a higher-order attribute which is decorated according to the
attribute equations defined by another AG component.

Secondly, to introduce two generic, reusable and off-the-shelf AG components.
These components are themselves defined in the HAG formalism and provide
modern and powerful properties to visualize, animate and interact with language-
based tools.

This paper is organized as follows: Section 2 presents higher-order attribute
grammars, its notation and provides a simple example that will be used through-
out the paper. Section 3 introduces HAG component-based programming and
presents two generic AG components: a visualization and animation component
(Section 3.1) and graphical user interface component (Section 3.2). Section 4
discusses related work and Section 5 contains the conclusions.

2 Higher-Order Attribute Grammars

The techniques presented in this paper are based on the higher-order attribute
grammar formalism [VSK89]. Higher-Order Attribute Grammars are an im-
portant extension to the attribute grammar formalism. Conventional attribute
grammars are augmented with higher-order attributes, the so-called attributable
attributes. Higher-order attributes are attributes whose value is a tree. We may
associate, once again, attributes with such a tree. Attributes of these so-called

higher-order trees, may be higher-order attributes again. Higher-order attribute
grammars have four main characteristics:

— First, when a computation can not be easily expressed in terms of the induc-
tive structure of the underlying tree, a better suited structure can be com-
puted before. Consider, for example, a language where the abstract grammar
does not match the concrete one. Consider also that the semantic rules of
such a language are easily expressed over the abstract grammar rather than
over the concrete one. The mapping between both grammars can be spec-
ified within the higher-order attribute grammar formalism: the attribute
equations of the concrete grammar define a higher-order attribute represent-
ing the abstract grammar. As a result, the decoration of a concrete syntax
tree constructs a higher-order tree: the abstract syntax tree. The attribute
equations of the abstract grammar define the semantics of the language.

— Second, semantic functions are redundant. In higher-order attribute gram-
mars every computation can be modelled through attribution rules. More
specifically, inductive semantic functions can be replaced by higher-order
attributes. For example, a typical application of higher-order attributes is
to model the (recursive) lookup function in an environment. Consequently,
there is no need to have a different notation (or language) to define se-
mantic functions in AGs. Moreover, because we express inductive functions
by attributes and attribute equations, the termination of such functions is
statically checked by standard AG techniques (e.g., the circularity test).

— The third characteristic is that part of the abstract tree can be used directly
as a value within a semantic equation. That is, grammar symbols can be
moved from the syntactic domain to the semantic domain.

— Finally, as we will describe in this paper, attribute grammar components can
be “glued” via higher-order attributes.

These characteristics make higher-order attribute grammars particularly suit-
able to model language-based tools [TC90,Pen94,KS98,Sar99].

2.1 The Block Language

Consider a very simple language that deals with the scope rules of a block struc-
tured language: a definition of an identifier x is visible in the smallest enclosing
block, with the exception of local blocks that also contain a definition of x. In
the latter case, the definition of x in the local scope hides the definition in the
global one.

We shall analyse these scope rules via our favorite (toy) language: the BLOCK
language®. One sentence in BLOCK consists of a block, and a block is a (possibly
empty) list of statements. A statement is one of the following three things: a
declaration of an identifier (such as decl a), the use of an identifier (such as
use a), or a nested block. Statements are separated by the punctuation symbol

! The BLOCK language, that we introduced in [SSK97,5ar99|, has become a popular
example to study the static scheduling of “circular” definitions [dMPJvW99,Law01]

@
s

and blocks are surrounded by square brackets. A concrete sentence in this
language looks as follows:

sentence = [use x ; use y ; decl x ;
[decly ; usey ; use w] ;
decl y ; decl x
]

This language does not require that declarations of identifiers occur before
their first use. Note that this is the case in the first two applied occurrences
of x and y: they refer to their (latter) definitions on the outermost block. Note
also that the local block defines a second identifier y. Consequently, the second
applied occurrence of y (in the local block) refers to the inner definition and not
to the outer definition. In a block, however, an identifier may be declared once,
at the most. So, the second definition of identifier x in the outermost block is
invalid. Furthermore, the BLOCK language requires that only defined identifiers
may be used. As a result, the applied occurrence of w in the local block is invalid,
since w has no binding occurrence at all.

We aim to develop a program that analyses BLOCK programs and computes
a list containing the identifiers which do not obey to the rules of the language. In
order to make the problem more interesting, and also to make it easier to detect
which identifiers are being incorrectly used in a BLOCK program, we require that
the list of invalid identifiers follows the sequential structure of the input program.
Thus, the semantic meaning of processing the example sentence is [w,x].

The BLOCK language does not force a declare-before-use discipline. Conse-
quently, a conventional implementation of the required analysis naturally leads
to a program that traverses each block twice: once for processing the declara-
tions of identifiers and constructing an environment and a second time to process
the uses of identifiers (using the computed environment) in order to check for
the use of non-declared identifiers. The uniqueness of identifiers is checked in
the first traversal: for each newly encountered identifier declaration it is checked
whether that identifier has already been declared at the same lexical level. In this
case, the identifier has to be added to a list reporting the detected errors. The
straightforward algorithm to implement the BLOCK processor looks as follows:

1st Traversal 2nd Traversal
- Collect the list of local definitions - Use the list of definitions as the global
environment
- Detect duplicate definitions - Detect use of non defined names
(using the collected definitions) - Combine “both” errors

As a consequence, semantic errors resulting from duplicated definitions are
computed during the first traversal, and errors resulting from missing declara-
tions, in the second one. Thus, a “gluing” data structure has to pass explicitly
the detected errors from the first to the second traversal, in order to compute
the final list of errors in the desired order.

2.2 The Attribute Grammar for the Block Language

In this section we shall describe the program block in the traditional attribute
grammar paradigm. To define the structure of the BLOCK language, we start by
introducing one context-free grammar defining the abstract structure of Block.
Then, we extend this grammar with attributes and the attribution rules.

We associate an inherited attribute deli of type Env to the non-terminal
symbols Its and It that define a block. The inherited environment is threaded
through the block in order to accumulate the local definitions and in this way
synthesizes the total environment of the block. To distinguish between the same
identifier declared at different levels, we use an attribute lev that distributes
the block’s level. We associate a synthesized attribute declo to the non-terminal
symbols Its and It, which defines the newly computed environment. The total
environment of a block is passed downwards to its body in the attribute env in
order to detect applied occurrences of undefined identifiers. Every block inherits
the environment of its outer block. The exception is the outermost block: it
inherits an empty environment. To synthesize the list of errors we associate the
attribute errs to Its and It.

The static semantics of the BLOCK language are defined in the attribute
grammar presented in Fragment 1. We use a standard AG notation: productions
are labelled for future references. Within the attribution rules of a production,
different occurrences of the same symbol are denoted by distinct subscripts.
Inherited (synthesized) attributes are prefixed with the down (up) arrow | (7).
Pseudo terminal symbols are syntactically referenced in the AG, i.e., they are
used directly as values in the attribution rules. The attribution rules are written
as HASKELL-like expressions. Copy rules are included in the AG specification
(although there are well-known techniques to omit copy rules, in this paper, we
prefer to explicitly define them). The semantic functions mBIn (standing for
“must be in”) and mNBIn (“must not be in”) define usual lookup operations?.

Its < | lev : Int,| dcli : Env,| env: Env It <] lev: Int,] dcli: Env,| env : Env

,Tdclo : Env,Terrs: Err > ,Tdclo: Env, T errs: Err >
Its = Nillts It = Use String
Its.dclo = Its.dcli It.dclo = It.dcls
Its.errs = [1 It.errs = mBlIn (String, It.env)
| Conslts It Its | Decl String
It.deli = Itsi.dcli It.dclo = (Pair String It.lev) : It.dcli
Itss.env = Itsi.env It.errs = mNBIn (Pair String It.lev, It.dcli)
It.env = Itsi.env | Block Its
Itso.delys = It.dclo It.dclo = It.dcli
Itsy.dclo = Itsa.dclo Its.dcli = It.env
It.lev = Its;.lev Its.lev = It.lev+ 1
Itso.lev = Itsy.lev Its.env = Its.dclo
Itsi.errs = It.errs ++ Itsa.errs It.errs = Its.errs

Fragment 1: The BLOCK attribute grammar.

2 These inductive functions can be defined via higher-order attributes. Indeed, in the
BLOCK HAG presented in [Sar99], we have such an example.

It is common practice in attribute grammars to use additional non-terminals
and productions to define new data types and constructor types, respectively.
The type Env and the constructor function Pair are examples of that:

Tuple = Pair String Int

Env = ConsEnv Tuple Env
| NilEnv

Err = ConsErr String Err
| NilErr

Note that, the type Enwv is isomorphic with non-terminal Env: the term con-
structor functions ConsEnv and NilEnv correspond to the HASKELL built-in list
constructor functions : and [], respectively. Roughly speaking, non-terminals
define tree type constructors and productions define value type constructors. We
will use both notations to define and to construct value types.

To make the AG more readable, we introduce a root non-terminal so that we
can easily write the attribution rules specifying that the initial environment of
the outermost block is empty (i.e., the root is context-free) and that its lexical
level is 0.

P<terrs: Err >

P = Root Its
Its.dcli= [1
Its.lev =0
Its.env = Its.dclo
P.errs = Its.errs

The above fragment includes a typical equation where a inherited attribute
(env) depends on a synthesized attribute (dclo) of the same non-terminal (Its).
Although such dependencies are natural in attribute grammars they may lead to
complex and counterintuitive solutions in other paradigms (functional, impera-
tive, etc), because they induce additional traversal functions which have to be
explicitly “glued” together to convey information between them.

The AG fragments presented so far formally specify the static semantics of
the BLOCK language. A higher-order extension to this AG will be presented in
next section, where we introduce our component-base programming techniques.

3 Gluing Grammar Components via Higher-Order
Attribute Grammars

In functional programming, it is common practice to use intermediate data struc-
tures to convey information between functions. One function constructs the in-
termediate data structure which is destructed by another one. The intermediate
data structure is the component “glue”. We will mimic this approach in the

higher-order attribute grammar setting: an AG component defines (or, at at-
tribute evaluation time, constructs) a higher-order attribute (i.e., a tree-like
data structure), which is used (or decorated) by the other AG component.

This gluing of AG components is defined in the HAG formalism itself as
follows: consider, for example, that an AG component, say AG,¢cyse, €Xpresses
some algorithm A over a grammar rooted X, and suppose that we wish to express
the same algorithm when defining a new grammar, say AG ¢, Under the higher-
order formalism this is done as follows: firstly, we define an attributable attribute,
say a with type X, in the productions, say P, of AG ¢, where we need to express
algorithm A. Secondly, we extend AG ., with attributes, whose types are the
types (i.e., non-terminals) defined in AG,.cyse, and attribute equations, where
the semantic functions are the constructors (i.e.productions) of AG,.eyse- That
is, we define attributes that are tree-value attributes. After that, we instantiate
the higher-order attribute a with the tree-value attribute of type X constructed
in the context of production P. Then, we instantiate the inherited attributes of
associated type/non-terminal (i.e., X). Finally, and by definition of HAGs, the
generated synthesized attribute occurrences of a are defined by the attribute
equations of AG,¢yse- They are ready to be used in the attribute grammar
specification, like any other first-order attribute.

Notice that by expressing the gluing of AG components within the AG for-
malism itself, we are able to use all the standard attribute grammar techniques,
e.g., the efficient scheduling of computations and the static detection of circular-
ities. For example, the inherited /synthesized attributes of the AG components
can be “connected” in any order. The HAG writer does not have to be concerned
with the existence of cyclic dependencies among AG components: the AG circu-
larity test will detect them for him. Furthermore, we can use attribute grammar
techniques to derive efficient implementations for the resulting HAG. For ex-
ample, we can use our deforestation techniques to eliminate the possibly large
intermediate trees that glue the different components [SS99al.

Most of the powerful attribute grammar techniques are based on a global
static analysis of attribute dependencies. Thus, they require that the different
AG modules/components are “fused” into an equivalent monolithic HAG, be-
fore they are analised. In [SS99b] we have presented techniques to achieve the
separate analysis and compilation of AG modules than naturally extend to our
component-based approach.

3.1 An Attribute Grammar Component for Visualization and
Animation of Language-based Tools

In order to be more precise about our approach, let us consider the BLOCK lan-
guage example again. Because this simple toy example has a non-trivial schedul-
ing of computations, we would like to “plug into” the AG specification an AG
component that allows us to visualize and animate the BLOCK processor.

Thus, we introduce a generic component for the visualization and animation
of AGs. We wish to use this AG as a generic visual and animation AG component.
We start by defining an abstract grammar that is sufficiently generic to define

all possible abstract tree structures we may want to visualize and animate. The
grammar is as follows:

TreeViz = CTreeViz Treeld [TreeStmi]

TreeStmt = CStmtNode NodeStmit
| CStmtEdge EdgeStmt
| CStmtAttr AttrStmt
NodeStmt = CNodeStmt ~ Nodeld [Attr]
EdgeStmt = CEdgeStmt ~ Nodeld [EdgeRHS| Attrs
EdgeRHS = CRHSExpNode EdgeOp Nodeld
Attr = CAttr Attrld AttrVal

The non-terminals Treeld, Nodeld, EdgeOp, Attrld, AttrVal define sequences
of characters (strings). In order to make it easier to use this component, we
define a set of functions/macros that, using the productions of this AG com-
ponent, define usual occurring node formats in our trees. Next, we present four
functions that define the shape of a node as a record (attrShapeRecord), as a
circle (attrShapeCircle), as the value of a node label (attrLabel), and, finally, as
a node that contains a value and an arrow to a child node. These functions are
presented next.

attrShapeRecord = CAttr "shape" "record"
attrShapeCircle = CAttr "shape" "circle"
attrLabel label = CAttr "label" label

nodeRecordl val father child =
[CStmtNode (CNodeStmt father) [attrShapeRecord , attrLabel (val ++ "[<c>")]
,CStmtEdge (CEdgeStmt "c") [CRHSExpNode "->" child] |

The label is a string that defines the format of the node record. The non-
terminal EdgeOp is a string defining the direction of the arrow.

The above grammar defines the abstract structure of abstract trees only. To
have a concrete graphical representation of the trees, however, we need to map
such abstract tree representation into a concrete one. Rather than defining a con-
crete interface from scratch and implementing a tree/graph visualization system
(and reinventing the wheel!), we can synthesize a concrete interface for existing
high quality graph visualization systems, e.g., the GraphViz system [GN99]. We
omit here the attributes and attribution rules that we have associated to the
visualization grammar since they are neither relevant to reuse this component
nor to understand our techniques.

To reuse this component, however, we need to know the inherited and syn-
thesized attributes of its root non-terminal, i.e., the interface of the AG compo-
nent. This grammar component is context-free (it does not have any inherited
attributes) and synthesizes two attributes graphviz and zml, both of type string.
These two attributes synthesize a textual representation of trees in the GraphViz
input language. The first attribute displays trees in the usual graphic tree rep-
resentation, while the second one uses a Xml tree-like representation (where the
production names are the element tags).

TreeViz < 1 graphviz : String, T xml : String >

We are now in position to “glue” this component to the BLOCK AG. Let us
start by defining the attribute and the equations that specify the construction
of the GraphViz representation.

Its < 1 viztree : [TreeStmt] >
Its = Nillts
Its.viztree = nodeEmptyCircle treeRef (Its)
| Conslts It Its
Its,.viztree = (nodeRecord?2 ”” treeRef(Its) treeRef(It) treeRef(Itsz))
++ It.viztree ++ Itss.viztree
It <1t viztree : [TreeStmt] >
It = Use String
It.viztree = nodeRecord0) ("Use” ++ String) treeRef(It)
| Decl String
It.viztree = nodeRecord) (" Decl” ++ String) treeRef(It)
| Block Its
It.viztree = (nodeRecordl ” Block” treeRef(It) treeRef(Its)) ++ Its.viztree
Fragment 2: Constructing the Visual Tree.

Where the function treeRef returns a unique identifier of its tree-value argu-
ment (the tree pointer).

Next, we declare a higher-order attribute, i.e., attributable attribute (ata)
named visualTree, in the context of the single production applied to the root
non-terminal of the BLOCK AG. The type of the higher-order attribute is Tree Viz
which is the type of the root non-terminal of the reused component. After that,
we have to instantiate the higher-order attribute with the attribute synthesized
in the above fragment. Finally, and because TreeViz has no inherited attributes,
we just have to access the synthesized attribute of the higher-order attribute, as
usual. The HAG fragment looks has follows:

P <1 String : visualTree >

P = Root Its
ata visualTree : TreeViz -- Declaration
visualTree = CTreeViz " BlockTree” Its.viztree -- Instantiation
P.visualTree = visualTree.graphviz -- Use of its syn. attrs

This fragment defines a higher-order extension to the BLOCK attribute gram-
mar presented in the previous section. To process such higher-order attribute
grammar, we use the LRC system: an incremental, purely functional higher-
order attribute grammar based system [KS98]. Thus, we can use LRC to process
the BLOCK HAG and to produce the desire BLOCK processor.

Figure 1 shows two different snapshots (displayed by GraphViz) of the tree
that is obtained as the result of running the BLOCK processor with the input
example sentence. As we can see the tree is collapsed into a minimal Direct

B X

Fig. 1. The DAG representing the BLOCK example sentence at the beginning of the
evaluation (left) and after completing the first traversal to the outermost block (right).

Acyclic Graphs (DAG). This happens because we are using the incremental
model of attribute evaluation of LrRc?.

Besides computing the graphical representation of the tree, the processor
generated by LRC also produces a sequence of node transitions. This is exactly
the sequence of visits the evaluator performs to decorate the tree under consid-
eration. Such sequence can be loaded in and animated in GraphViz, either in
single step or in continuous mode, forwards and backwards. Furthermore, colors
are used to mark the visited nodes.

The snapshot on the left shows the beginning of the evaluation: the root node
is visited for the first time (the shadowed node). The snapshot on the right shows
the end of the first traversal to the outermost block. Note that the nodes of the
nested block were not visited (they are not shadowed). Indeed, the AG scheduler
induced (as we expected) that only after collecting the complete environment
of the outer block (performed on its first traversal), can the evaluator visit the
inner ones. The inner blocks are traversed twice in the second traversal of the
outer block.

3 Lre achieves incremental evaluation through function memoization. Trees are ar-
guments of the evaluators’ functions. Thus, to make function memoization possible,
they have to be efficiently compared for equality. Minimal DAG’s allow for efficient
equality tests between all terms because a pointer comparison suffices.

3.2 An Attribute Grammar Component for Advanced Interactive
Interfaces

As it was previously stated, types can be defined within the attribute grammar
formalism. So, we may use this approach to introduce a type that defines an
abstract representation of the interface of language-based tools. In other words,
we use an abstract grammar to define an abstract interface. The productions
of such a grammar represent “standard” graphical user interface objects, like
menus, buttons, etc. Next, we present the so-called abstract interface grammar.

Visuals = CVisuals [Toplevel] Frame = Label String
| ListBox Entrylist
PullDownMenu String MenuList

Toplevel = Toplevel Frame String String PushButton String

Unparse Ptr
HList [Frame]
VList [Frame]

The non-terminal Visual defines the type of the abstract interface of the
tool: it is a list of Toplevel objects, that may be displayed in different windows.
A Toplevel construct displays a frame in a window. It has three arguments: the
frame, a name (for future references) and the window title. The productions
applied to non-terminal Frame define concrete visual objects. For example, pro-
duction PushButton represents a push-button, production ListBox represents a
list boz, etc.

The production Unparse represents a visual object that provides structured
text editing [RT89]. It displays a pretty-printed version of its (tree) argument
and allows the user to interact with it. Such beautified textual representation of
the abstract syntax tree is produced according to the unparse rules specified in
the grammar. It also allows the user to point to the textual representation to edit
it (via the keyboard), or to transform it using user defined transformations. The
productions VList and HList define combinators: they vertically and horizontally
(respectively) combine visual objects into more complicated ones. These non-
terminals and productions can be directly used in the attribute grammar to
define the interface of the environments. Thus, the interface is specified through
attribution, 4.e., within the AG formalism.

To define a concrete interface, we need, as we have said above, to define the
mapping from the abstract interface representation into a concrete one. Instead
of defining a concrete interface from scratch, we synthesize a concrete inter-
face for a existing GUI toolkit, e.g., the TcL/TK GUI toolkit [Ous94]. Indeed,
the GUI AG component synthesizes TCL/TK code defining the interface in the
attribute named tk.

Next, we present an attribute grammar fragment that glues the BLOCK HAG
with this GUI AG component. It defines an interactive interface consisting of
three visual objects that are vertically combined, namely: a push-button, the
unparsing of the input under consideration and the unparsing of the list of
errors. The root symbol P synthesizes the TcL/TK concrete code in the attribute
occurrence concretelnterface.

Block Editor =]

-

[uselx : usey : dedx ;
[decly : usey ; usew]
; decly ; dedx

]

dl

W b4

RAR

|

Fig. 2. The BLOCK environment’s interface generated from the HAG.

P <1 concretelnterface : Tk >

P = Root Its
ata absInterface : Visuals
absInterface = let { button = PushButton "Add Statement”

editor = Unparse &P
errors = Unparse &P.errs
comb = VList [button , editor , errors]
} in [Toplevel comb "edit" "Block Editor"]
P.concreteInterface = absInterface.tk
Fragment 8: The BLOCK graphical user interface.

Figure 2 shows the concrete interface of the BLOCK processor.

The PushButton constructor simply displays a push-button. To assign an
action to the displayed button we have to define such an action. Once again
we use the same technique, i.e., we define an abstract grammar to describe
the abstract events handled by interactive interfaces. Basically, we associate an
abstract event-handler to each visual object.

Event = ButtonPress String
| ListBoxSelect Entrylist
| MenuSelect String
| TextKeyPress Char

The constructor ButtonPress is the event-handler associated with PushButton.
Next, we show a possible action associated with this event-handler.

Its = Nillts

bind on ButtonPress "Add Statement"
Its — Conslts (Decl ”a”) Nillts;

The bind expression is used to specify how user interactions are handled by
the language-based environment. In this case, it simply defines that every time
the push-button "Add Statement" is pressed, the rooted subtree Its is trans-
formed into Conslts Decl("a") Nillts. Note that this event-handler constructor is
defined in the context of a Nillts production. Thus, a new declaration is added
at the end of the program being edited.

Other features of visualization and animation, and of the advanced graphical
user interface AG components are:

— The use of abstract grammars (i.e., intermediate representation languages)
makes these components highly modular: new concrete visualizations/anima-
tions/interfaces can be “plugged into” the AG system, just by defining the
corresponding mapping function.

— This approach has another important property: under an incremental at-
tribute evaluation scheme, the visualization/animation/interface is incre-
mentally computed, like any other attribute value [Sar99,SSK00|.

— Because the LRC system uses an incremental computational model, we can
animate incremental attribute evaluators. Indeed, in the animations pro-
duced by LRc, it is possible to visualize the reuse of a memoized function
call: the animation simply changes the color of a node, without visiting its
descendents.

4 Related Work

The work presented in this paper is closely related to attribute coupled gram-
mars [GG84,LJIPR93,CDPRIS|, composable attribute grammars [FMY92] and
Kastens and Waite work on modularity and reusability of attribute grammars
[KW94].

Attribute coupled grammars consist of a set of AG components each of which
(conceptually) returns a tree-valued result that is the input for the next com-
ponent. Grammars are coupled by defining attribute equations that build the
required tree-valued attributes, very much like the values of higher-order at-
tributes are defined in our approach (e.g., Fragment 2). In attribute coupled
grammars, however, the flow of data is strictly linear and unidirectional. In our
approach the data can flow freely throughout the components, provided that no
attribute depends directly nor indirectly on itself. Under our techniques such
cyclic dependencies are statically detected.

In [GG84] descriptional composition is defined to eliminate the creation of
the intermediate trees. That is, from the coupling attribute grammar (modules) a
grammar is constructed that defines the same equations, but that eliminates the
construction of the intermediate trees. The descriptional composition, however,
can result in a non-absolute circular AG. Furthermore, descriptional composition
does not allow the separate analysis and compilation of grammar components.

Composable attribute grammars [FMY92] use a particular grammar module
for gluing AG components. Grammar modules con be analised and compiled
separately. However, the gluing of the components is expressed with a special
notation outside the AG formalism.

Kastens and Waite [KW94] aim at a different form of modularity. They show
that a combination of notational concepts can be used to create reusable attri-
bution modules. They also define a set of modules to express common operation
on programming languages. However, such modules are not defined within the

AG formalism, thus, making the maintenance, updating and understanding of
such components much harder.

5 Conclusions

This paper presented techniques to write attribute grammars under a component-
based style of programming. Such techniques rely entirely on the higher-order
attribute grammar formalism: attribute grammar components are glued into a
larger AG system through higher-order attributes. Standard attribute grammar
techniques are used to detect circularities (e.g., AG circularity test), to efficiently
schedule the computations (e.g., AG scheduling algorithms), and, to eliminate
redundant intermediate data structures induced by higher-order attributes (e.g.,
AG deforestation techniques).

We also have presented two generic, reusable and off-the-shelf AG compo-
nents that can easily be “plugged into” any higher-order attribute grammar spec-
ification. Such components provide powerful properties to visualize, animate and
interact with language-based tools. Thanks to the fact that these components
are themselves defined in the HAG formalism, we inherit all of its nice proper-
ties and because of that the maintenance, updating and understanding of such
components is simpler.

These components are implemented in the LRC system. However, they can
be reused in any attribute grammar system, provided it processes higher-order
attribute grammars.

References

[CDPR98] Loic Correnson, Etienne Duris, Didier Parigot, and Gilles Roussel.
Generic Programming by Program Composition. In Proceedings of the
Workshop on Generic Programming, pages 1-13, June 1998.

[dMBS00] Oege de Moor, Kevin Backhouse, and Doaitse Swierstra. First-Class At-
tribute Grammars. In D. Parigot and M. Mernik, editors, Third Workshop
on Attribute Grammars and their Applications, WAGA’99, pages 1-20,
Ponte de Lima, Portugal, July 2000. INRIA Rocquencourt.

[AMPJvW99] Oege de Moor, Simon Peyton-Jones, and Eric van Wyk. Aspect-Oriented
Compilers. In Proceedings of the First International Symposium on Gen-
erative and Component-Based Software Engineering (GCSE ’99), LNCS,
September 1999.

[FMY92] Rodney Farrow, Thomas J. Marlowe, and Daniel M. Yellin. Composable
Attribute Grammars: Support for Modularity in Translator Design and
Implementation. In 19th ACM Symp. on Principles of Programming
Languages, pages 223-234, Albuquerque, NM, January 1992. ACM press.

[GG84] Harald Ganzinger and Robert Giegerich. Attribute Coupled Gram-
mars. In ACM SIGPLAN 8} Symposium on Compiler Construction,
volume 19, pages 157-170, Montréal, June 1984.

[GN99] Emden R. Gransner and Stephen C. North. An open graph visualization
system and its applications to software engineering. Software Practice
and Ezperience, 00(S1):1-29, 1999.

[KS98]

[KWo4]

[Law01]

[LIPRO3]

[Ous94]
[Pen94]

[RT89)
[Sar99]

[SS99a]

[SS99b)

[SSK97]

[SSK00]

[TC90|

[VSKB89]

Matthijs Kuiper and Jodo Saraiva. Lrc - A Generator for Incremental
Language-Oriented Tools. In Kay Koskimies, editor, 7th International
Conference on Compiler Construction, CC/ETAPS’98, volume 1383 of
LNCS, pages 298-301. Springer-Verlag, April 1998.

Uwe Kastens and William Waite. Modularity and reusability in attribute
grammar. Acta Informatica, 31:601-627, June 1994.

Julia L. Lawall. Implementing Circularity Using Partial Evaluation.
In Proceedings of the Second Symposium on Programs as Data Objects
PADO II, volume 2053 of LNCS, May 2001.

Carole Le Bellec, Martin Jourdan, Didier Parigot, and Gilles Roussel.
Specification and Implementation of Grammar Coupling Using Attribute
Grammars. In Maurice Bruynooghe and Jaan Penjam, editors, Program-
ming Language Implementation and Logic Programming (PLILP ’93),
volume 714 of LNCS, pages 123-136, Tallinn, August 1993. Springer-
Verlag.

J.K. Ousterhout. Tcl and the Tk toolkit. Addison Wesley, 1994.
Maarten Pennings. Generating Incremental — Evalua-
tors. PhD thesis, Department of Computer Science,
Utrecht University, The Netherlands, November 1994.
ftp://ftp.cs.uu.nl/pub/RUU/CS/phdtheses/Pennings/.

T. Reps and T. Teitelbaum. The Synthesizer Generator. Springer, 1989.
Joao Saraiva. Purely Functional Implementation of At-
tribute Grammars. PhD thesis, Department of Computer Sci-
ence, Utrecht University, The Netherlands, December 1999.
ftp://ftp.cs.uu.nl/pub/RUU/CS/phdtheses/Saraiva/.

Joao Saraiva and Doaitse Swierstra. Data Structure Free Compilation. In
Stefan Jahnichen, editor, 8th International Conference on Compiler Con-
struction, CC/ETAPS’99, volume 1575 of LNCS, pages 1-16. Springer-
Verlag, March 1999.

Joao Saraiva and Doaitse Swierstra. Generic Attribute Grammars. In
D. Parigot and M. Mernik, editors, Second Workshop on Attribute Gram-
mars and their Applications, WAGA’99, pages 185-204, Amsterdam, The
Netherlands, March 1999. INRIA Rocquencourt.

Joao Saraiva, Doaitse Swierstra, and Matthijs Kuiper. Strictifica-
tion of Computations on Trees. Technical report UU-CS-1997-30,
Department of Computer Science, Utrecht University, August 1997.
ftp://ftp.cs.ruu.nl/pub/RUU/CS/techreps/CS-1997/1997-30.ps.gz.
Joao Saraiva, Doaitse Swierstra, and Matthijs Kuiper. Functional Incre-
mental Attribute Evaluation. In David Watt, editor, 9th International
Conference on Compiler Construction, CC/ETAPS2000, volume 1781 of
LNCS, pages 279-294. Springer-Verlag, March 2000.

Tim Teitelbaum and Richard Chapman. Higher-order attribute gram-
mars and editing environments. In ACM SIGPLAN’90 Conference on
Principles of Programming Languages, volume 25, pages 197-208. ACM,
June 1990.

Harald Vogt, Doaitse Swierstra, and Matthijs Kuiper. Higher order at-
tribute grammars. In ACM SIGPLAN ’89 Conference on Programming
Language Design and Implementation, volume 24, pages 131-145. ACM,
July 1989.

