
Soil Dynamics and Earthquake Engineering 143 (2021) 106591

Available online 23 January 2021
0267-7261/© 2021 Elsevier Ltd. All rights reserved.

Optimisation of receiver’s location in bender element experiments using 
computational wave filtration 
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a CERIS, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal 
b Institute for Sustainability and Innovation in Structural Engineering (ISISE), School of Engineering, University of Minho, Guimarães, Portugal   
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A B S T R A C T   

Bender elements are shear wave transducers, used for the computation of small strain shear moduli of geo-
materials. However, the distortion of the output signal caused by residual compression waves may lead to 
important errors in the shear modulus estimates. We present a novel procedure for the optimisation of the 
location of the receiver bender element, to avoid regions where the distortion of the output signal is strong, 
without compromising the strength of the shear wave signal. The procedure is based on a computational tech-
nique naturally able to distinguish between the compression and shear waves present in the seismic response of 
geomaterials. This property enables the construction of compression and shear amplitude maps, that can be used 
to decide the best location for the receiver prior to running the experiment. The experimental validation of the 
procedure confirms that it leads to output signals which are easier to interpret than those obtained with the 
transmitter and receiver in the conventional, tip-to-tip configuration.   

1. Introduction 

Bender elements are piezoelectric transducers for the experimental 
identification of the small strain shear moduli of geomaterials. A typical 
experimental setup involves two bender elements inserted at opposite 
ends of the sample of geomaterial (Fig. 1). The controlled lateral vi-
bration of one of the bender elements (transmitter) triggers the propa-
gation of a shear wave through the sample, whose arrival is read by the 
other bender element (receiver) and converted into an electric signal, 
output to the user. The propagation time of the shear wave must be 
obtained from the input and output signals. This enables the computa-
tion of the velocity of the shear wave which, in turn, is used to derive the 
shear modulus. 

Bender elements are a cheaper and more flexible alternative to the 
resonant column apparatus for shear modulus measurements. A ready- 
to-use bender element equipment costs far less than a resonant col-
umn, can be installed in both oedometers [1] and triaxial devices [2,3], 
and yields consistent measurements [4–6]. 

On the other hand, the interpretation of the output signal is hindered 
by the presence of residual compression waves, a by-product of the 
lateral vibration of the transmitter (Fig. 1), which may cause the output 
signal to be considerably different from the input signal [7,8]. Four 

classes of interpretation techniques have been reported to date: (i) direct 
observation of the arrival time on the output signal [9]; (ii) 
cross-correlation of the input and output signals [10,11]; (iii) frequency 
domain methods [12]; and, (iv) model-based methods [7,13]. Direct 
observation and cross-correlation methods work with input signals 
compactly supported in time, typically harmonic pulses at resonant 
frequencies [14]. Both approaches are grounded in the assumption that 
the similarity between input and output signals endorses their direct 
comparison. However, the peak in the output signal that corresponds to 
the arrival of the shear wave may not be neither the first, nor the highest 
local maximum [7], so its accurate identification is typically quite 
arduous. Frequency domain approaches are used with continuous input 
signals. A plot with the number of wavelengths as a function of the 
excitation frequency is used to find the travel time [15]. The method 
assumes that the transformation between input and output signals is 
only governed by the geomechanical properties of the material, which is 
generally not the case due to the distortion and reflection of the trav-
elling waves, caused by the other constituents of the testing apparatus 
[12]. A model-updating method for the automatic calculation of the 
shear modulus was recently suggested in Ref. [16]. A numerical model is 
created to simulate the bender element experiment, having the shear 
modulus as a calibration parameter. The shear modulus that maximises 
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the correlation between the output signals obtained in the lab and using 
the numerical model is output to the user, along with the value of that 
correlation, to serve as a confidence indicator. 

A recent review on the performance of the bender elements for the 
measurement of the small strain shear modulus can be found in 
Ref. [17]. 

With the exception of the model-updating technique, all interpreta-
tion methods are strongly affected by the distortion of the output signal 
caused by residual compression waves [18], an effect referred to as 
pollution in the reminder of this paper. There are two sources of 
compression wave pollution. The most significant source is the vibration 
of the transmitter, which triggers not only the vertical propagation of the 
shear wave, but also the lateral propagation of compression waves (see 
Fig. 1). A secondary source of residual compression waves is the mode 
conversion phenomenon, implying that any type of waves reaching the 
lateral envelope of the sample may cause both compression and shear 
reflections (except for cases of critical reflection). These compression 
waves do travel a longer distance as they propagate laterally, but are 
faster than shear waves and may reach the receiver first, compromising 
the quality of the output signal. 

While the presence of residual compression waves may be impossible 
to avoid, it seems reasonable to conjecture that the pollution they cause 
does not necessarily affect all regions of the sample equally. Indeed, on 
the sample’s surface opposite to the transmitter there may be regions 
more affected by the compression wave pollution and others less so. If 
this is the case, then simply placing the receiver bender element in a less 
polluted region may help ensuring an output signal of higher quality. By 
higher quality it is meant a signal with less compression wave pollution, 
but still strong enough to endorse the clear reading of the shear wave. 

This paper presents a novel approach for the optimisation of the 
receiver’s location such as to avoid, to the largest extent possible, the 
pollution of the output signal with compression waves. Since the optimal 
location is problem dependent, a numerical technique for the quantifi-
cation of the pollution content for a given testing setup is provided. The 
technique is based on the wave filtration capability of the hybrid-Trefftz 
finite elements [19]. As opposed to conventional (conforming) finite 
elements, hybrid-Trefftz elements feature approximation bases built 
with functions that satisfy exactly the differential equation governing 
the problem (the functions are combined to satisfy approximately the 
boundary conditions). Consequently, these functions are rich in physical 
information regarding the modelled phenomenon, endorsing the use of 
super-sized, highly convergent finite elements with relatively small 

approximation bases. Moreover, the approximation functions are natu-
rally grouped according to the type of wave they model, namely 
compression and shear waves in single-phase continua [20], two 
compression waves and a shear wave in saturated porous geomaterials 
[21], or three compression waves and a shear wave in unsaturated 
geomaterials [19]. This property opens the possibility to analyse the 
content of compression and shear waves throughout the sample of 
geomaterial, by constructing the solution using only the approximation 
functions associated to the desired type of wave and filtering out the 
others. Such analysis can be performed prior to the bender element test 
(using some tentative values of the shear modulus) to optimise the 
location of the receiver. 

Hybrid-Trefftz finite elements have proved to be very well suited for 
modelling the highly transient wave propagation problems that typify 
bender element experiments. Their validation was reported in Ref. [7], 
followed by their application to the automatic shear modulus calcula-
tion reported in Ref. [16]. The hybrid-Trefftz elements are implemented 
in FreeHyTE, an open-source and user-friendly computational platform 
employing Trefftz methods [22,23]. This option enhances the repro-
ducibility of this research, since FreeHyTE is freely available online 
[24]. 

A short introduction to the hybrid-Trefftz formulation for elastody-
namic problems is given next, followed by the presentation of the 
computational filtration technique for the optimisation of the receiver’s 
location and its validation using experimental data. 

2. Numerical solution of the bender element problem 

A brief description of the hybrid-Trefftz finite element models for 
transient wave propagation problems is given in this section. To pre-
serve generality, the equations are cast in a form which is adequate to 
single-phase, saturated and unsaturated geomaterials. 

2.1. Governing equations 

The equation that governs the dynamic response of the geomaterial 
presented in Fig. 1 has the form, 

𝒟 ⋅ [k 𝒟 u(x, t)] = d ⋅ u̇(x, t) +m⋅ü(x, t) (1)  

where u(x, t) is the displacement field at point x and time t, k, d and m are 
the material stiffness, damping and mass matrices, u̇(x, t) and ü(x, t) are 
the first and second time derivatives of the displacement field, and dif-
ferential operators 𝒟 and 𝒟⋅ are the compatibility and equilibrium 
operators. 

Displacement field u(x, t) collects the displacement components in 
each constitutive phase of the geomaterial, namely the solid phase, for 
single-phase continua, the solid and fluid phases (saturated geo-
materials), or solid, wetting and non-wetting fluid phases (unsaturated 
geomaterials). The definitions of the material stiffness, damping and 
mass matrices also vary according to the type of geomaterial. For multi- 
phase geomaterials, they are given in Ref. [25] (saturated) and [19] 
(unsaturated). 

The following simplifying hypotheses are considered valid:  

(i) the material is (piecewise) homogeneous;  
(ii) the material has an elastic mechanical behaviour;  

(iii) the displacements and strains are considered small;  
(iv) the initial displacement, velocity and acceleration fields are 

considered null;  
(v) the problem is analysed in two dimensions (plane strain), in the 

oscillation plane of the bender element. 

Hypotheses (i) to (iv) do not seem to be particularly problematic for 
the simulation of the bender element experiment, as inhomogeneous 
insertions can be modelled and the vibrations induced by the bender 

Fig. 1. Typical bender element setup.  
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element have very small amplitudes. Hypothesis (v) is generally incor-
rect, since the wave propagation induced by a bender element is 
inherently three-dimensional. However, the motion does take place 
predominantly in the vibration plane of the bender element, and past 
experience shows that the results obtained under the plane strain hy-
pothesis recover sufficiently well the signal obtained in the lab [7,16]. 
Moreover, dealing with a plane model requires far less computational 
effort than using a three-dimensional model. 

Domain equation (1) is complemented by the following boundary 
conditions: 

u(x, t)= uΓ(x, t),  on  Γu (2)  

t(x, t) =n [k 𝒟 u(x, t)]= tΓ(x, t),  on  Γσ (3)  

u(x, t) + c t(x, t) = 0,  on  Γr (4)  

where vector t collects the boundary tractions and (for multi-phase 
media) the pore fluid pressures, uΓ is the displacement field prescribed 
on the Dirichlet boundary Γu, tΓ are the tractions prescribed on the 
Neumann boundary Γσ , and n collects the components of the outward 
normal to the Neumann boundary. Neither the displacement nor the 
traction field is prescribed on elastic (Robin) boundary Γr. Instead, a 
linear relation between them is known, where c is the boundary flexi-
bility matrix. Elastic boundary conditions can be used to simulate the 
presence of a flexible membrane surrounding the sample of geomaterial, 
or may serve as absorbing (non-reflective) boundary conditions [23]. 

The problem defined by equations (1)–(4) is solved in two steps. In 
the first step, the original equations in time and space are reduced to a 
series of problems in space (time discretization). In the second step, each 
of these time-discretized problems is solved using the hybrid-Trefftz 
finite element method. The solution procedure is described in the 
following sections. 

2.2. Time discretization 

The time discretization of equations (1)–(4) is performed using a 
weighted residual approach described in detail in Ref. [26]. The time 
variation of the unknown (displacement, velocity, acceleration and 
traction) fields is approximated as, 

u(x, t)=
∑N

n=1
Wn(t)un(x) (5)  

v(x, t)=
∑N

n=1
Wn(t)vn(x) (6)  

a(x, t)=
∑N

n=1
Wn(t)an(x) (7)  

t(x, t)=
∑N

n=1
Wn(t)tn(x) (8)  

where Wn(t) is the generic term of the time basis and N is its dimension. 
No restrictions besides completeness and linear independence are 
enacted on the time basis. In FreeHyTE, a Daubechies wavelet basis is 
used, to enhance the convergence and robustness of the results and to 
enable the use of a single time step in all analyses. 

The same basis is used to enforce all domain equations, including the 
velocity and acceleration definitions, which are not implicitly observed 
because of the independent approximation of the respective weights, 
∫ Δt

0
W∗(v − u̇) dt = 0 (9)  

∫ Δt

0
W∗(a − v̇) dt = 0 (10)  

∫ Δt

0
W∗[𝒟⋅(k 𝒟 u) − d⋅u̇ − m⋅ü ] dt = 0 (11)  

where Δt is the time step and W∗ denotes the conjugate transposed of 
basis W. 

The procedure detailed in Ref. [26] is applied to equations (9)–(11) 
to reduce them to a series of spectral equations in space, of type, 

𝒟⋅[k𝒟un(x) ] + ω2
n ρnun(x) = 0 (12)  

where ωn is an algorithmic frequency, depending on the time basis and 
complex, in general, 

ρn =m −
ı̂

ωn
d (13)  

and ̂ı is the imaginary unit. 
The similar enforcement of the boundary conditions (2) to (4) yields, 

un(x)=uΓn (x),  on  Γu (14)  

tn(x)=n [k 𝒟 un(x)] = tΓn (x),  on  Γσ (15)  

un(x) + c tn(x) = 0,  on  Γr (16)  

where uΓn and tΓn are the projections of the prescribed boundary con-
ditions onto the functional space defined by basis W. It is noted that 
none of the fields present in the spectral problems defined by equations 
(12)–(16) has particular physical meanings. 

The solutions of the spectral problems are obtained using the hybrid- 
Trefftz finite element method, as shown in the next section. The index n 
designating the current spectral problem is dropped from this point on, 
to keep notations simple. 

2.3. Hybrid-Trefftz finite elements 

Let the domain presented in Fig. 1 be discretized into finite elements 
and let Ve denote the domain of a finite element and Γe

i the internal 
boundaries between adjacent finite elements (Fig. 2). Besides internal 
boundaries, exterior finite elements may also have Dirichlet (Γe

u), Neu-
mann (Γe

σ) or Robin (Γe
r) boundaries. 

The displacement model of the hybrid-Trefftz finite element formu-
lation is based on the independent approximations of the displacement 

Fig. 2. Finite elements and internal boundaries.  
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field in the domain of the element and of the traction field on its essential 
boundary, Γe

e = Γe
u ∪ Γe

r ∪ Γe
i , reading, respectively, 

u=Up,  in  Ve (17)  

t=Zq,  on  Γe
e (18)  

where U and Z are the displacement and traction approximation bases 
and p and q are their unknown weights. 

The essential feature of the hybrid-Trefftz finite elements is that the 
approximation basis in the domain of the element is constructed using 
trial functions that satisfy exactly the differential equation governing the 
problem. This means that basis U is constrained to satisfy exactly 
equation (12), 

𝒟⋅(k 𝒟U) + ω2 ρ U = 0 (19) 

The expressions of the terms in equation (19) depend on the type of 
material (single-phase, saturated or unsaturated). In all cases, however, 
the equation is solved by applying the Helmholtz decomposition 

principle. The displacement functions U are defined as the irrotational 
and solenoidal components of some potential functions φP and φS, 

U = [∇ φP ∇̃ φS ] (20)  

where subscripts P and S designate the type of wave (compression and 
shear, respectively), ∇ is the gradient operator and ∇̃ is the curl 
operator. 

Substitution of these potentials in equation (19) reduces it to a series 
of uncoupled Helmholtz equations of type, 

∇2φj + β2
j φj = 0 (21)  

where ∇2 is the Laplace operator, j = {P,S}, and βj is a complex wave 
number. The solutions of the Helmholtz equation in two dimensions and 
using a polar referential (r, θ) are given by, 

φj(r, θ) = Jm
(
βjr
)
exp(̂ımθ) (22)  

where Jm(βjr) is the Bessel function of the first kind and integer order m. 
Regardless of the type of material, a single wave number (βS) is ob-

tained for the shear wave. Conversely, the number of compression wave 
numbers (βP) that satisfy equation (19) is equal to the number of phases 
of the material. Therefore, the layout of the Trefftz basis features more 
than one block of compression waves for multi-phase media. For 
biphasic (saturated) materials, it is, 

U =

⎡

⎣∇φP1
∇φP2⏟̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅⏟

P  waves

∇̃φS⏟̅⏞⏞̅⏟
S  wave

⎤

⎦ (23) 

Table 1 
Physical properties of Toyoura sand.  

Property Value 

Specific gravity 2.65 
Initial void ratio 0.688 
Maximum void ratio 0.928 
Minimum void ratio 0.677 
Effective grain size, D10(mm) 0.12 
Mean grain size, D50(mm) 0.18 
Coefficient of uniformity 1.43  

Fig. 3. Experimental setup.  

Fig. 4. Finite element mesh and applied excitation.  
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while for triphasic (unsaturated) materials, it reads, 

U =

⎡

⎣∇φP1
∇φP2

∇φP3⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
P  waves

∇̃φS⏟̅⏞⏞̅⏟
S  wave

⎤

⎦ (24) 

Further details on the exact expressions of the displacement bases 
can be found in Refs. [19–21], for single-phase, saturated and unsatu-
rated materials, respectively. 

Expressions (20), (23) and (24) show that the domain bases feature a 
clear distinction between the approximation functions corresponding to 
each type of wave. This property is exploited for the computational wave 
filtration, as shown in the next section. 

Unlike domain basis, no particular constraints are enforced on the 
boundary basis Z, which is constructed in FreeHyTE using Chebyshev 
polynomials. All bases are hierarchical (so the addition of new functions 
does not call for the redefinition of the existing functions) and not 
connected in any way to the nodes of the elements (as typical to con-
ventional finite elements). 

After the definition of the approximation bases, equations (12), (14) 
and (16) are enforced weakly, using bases U and Z for weighting. The 
process, presented in detail in Refs. [19–21], leads to the following 
definition for the finite element solving system: 
[

D − B
− B∗ − C

](
p
q

)

=

(
tΓ
− uΓ

)

(25)  

where, 

D=

∫

U∗ n (k𝒟U) dΓe (26)  

B=

∫

U∗ Z dΓe
e (27)  

C=

∫

Z∗ c Z dΓe
r (28)  

tΓ =

∫

U∗ tΓ dΓe
σ (29)  

uΓ =

∫

Z∗ uΓ dΓe
u (30) 

In the above expressions, Γe designates the total boundary of the 
element, block C is null on all boundaries except Γe

r , and vector uΓ is null 
on all boundaries except Γe

u. 
The solution of system (25) enables the construction of the gener-

alised displacement field u for each spectral problem, using approxi-
mation (17). After all spectral problems are solved, the solution in time 
is recovered using approximation (5). 

3. Optimisation of the receiver’s location 

The numerical model presented above is used to quantify the 

Fig. 5. Time-histories of horizontal displacements at the tip of the receiver. The blue dots mark the end of the sampling window. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the Web version of this article.) 
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intensity of the compression wave pollution near the top of the sample 
and to identify (problem-dependent) ‘optimal’ locations for the receiver 
bender element. A general procedure to do so is given next. 

3.1. Compression and shear traces 

The natural capability of the hybrid-Trefftz finite elements to discern 
between the types of waves entering the response of the sample is 
exploited to assess how the sample is affected by the propagation of the 
compression waves. The solution vector p obtained from system (25) 
collects the weights associated to the displacement functions in bases 
(20), (23) or (24), and is thus structured according to the type of wave 
the respective function corresponds to. Without recalculating the finite 
element solution, the undesired types of waves are filtered out in the 
post-processing by artificially setting their weights to zero. 

In order to acquire a global perspective over how some subdomain Ṽ 
of the sample V is affected by the compression (shear) waves, the 
compression (shear) trace at a point of the sample is defined as the 
maximum absolute value of the horizontal displacement at that point, 
caused by the compression (shear) waves from the start of the experi-
ment until some moment ta where the arrival of the shear wave to the 
receiver is considered to be certain (the sampling window, t ∈ [0, ta]), 

TrP(x)= max
0≤t≤ta

‖uxP (x, t)‖ (31)  

TrS(x)= max
0≤t≤ta

||uxS (x, t)|| (32)  

where uxP and uxS are the horizontal displacements computed by setting 
to zero the weights corresponding to the shear and compression func-
tions, respectively, and x ∈ Ṽ. The displacement field used to compute 
the compression and shear traces should be taken in the direction where 
the receiver is vibrating. For simplicity, it is assumed that this is the 
horizontal direction (as is the case in Fig. 1). 

Traces (31) and (32) offer considerable insight into the compression 
wave pollution and shear wave strength, enabling the identification of 
the “optimal” location for the receiver, according to the procedure 
detailed in the next section. 

3.2. General optimisation procedure 

A general optimisation procedure for the location of the receiver 
bender element consists of the following steps. 

Step 1. Choose a range of plausible values for the small strain shear 
modulus, G0. 

The uncertainty regarding the shear modulus is the most significant 
threat to the success of this procedure. However, past experience and a 
basic knowledge on the type of geomaterial should be sufficient to 
choose a variation interval for the shear modulus, G0 ∈ [Gmin

0 ,Gmax
0 ]. In 

the limit, a conventional bender element test, with the transmitter and 
receiver in a tip-to-tip configuration can be performed and the shear 
modulus range can be assessed based on its results. In practice, however, 

Fig. 6. Compression and shear traces and normalised displacement amplitudes.  
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this is rarely needed, as the optimal location of the receiver is fairly 
robust to uncertainty, as shown in the next section. 

Step 2. Build hybrid-Trefftz finite element models for a number of 
shear moduli in the range chosen in Step 1 and obtain their solutions. 

The full solution, including all types of waves should be obtained at 
this stage. The solution should be checked for convergence and 
compliance with the enforced boundary conditions. Note that the stress 
continuity is not enforced on the interior boundaries of the mesh, so a 
continuous stress field is a good convergence indicator. 

Step 3. Using the solutions obtained in Step 2, plot the time-history of 
the horizontal displacement in the point corresponding to the tip of 
the receiver in its conventional (tip-to-tip) configuration and select 
the sampling window. 

Since we are mainly interested in the arrival time of the shear wave, 
the response of the medium after the wave arrives is not particularly 
relevant. This means that the sampling window only needs to span the 
time until the arrival of the shear wave. It is recommended that it starts 
at the onset of the experiment and ends after the first large oscillation in 
the output signal. The first large oscillation is easy to identify in the 
output signal and occurs during or after the arrival of the shear wave. 

Step 4. For each finite element model analysed in Step 2, construct 
the compression and shear traces using the sampling window 
adopted in Step 3. 

The compression and shear traces are constructed using definitions 
(31) and (32), respectively, and plotted in the region where the receiver 
bender element will be inserted. Since the traces are meant to reflect the 
behaviour of the medium before the insertion of the receiver, the latter is 
not explicitly included in the model. This renders the compression and 
shear traces independent of the final position chosen for the receiver, 
and simplify the numerical model by avoiding the need of complex 
coupling conditions at the interface between piezoelectric and porous 
materials. 

It is recalled that the computation of the traces does not require the 
recomputation of the finite element solution. Instead, wave filtration 
only requires setting to zero the weights of the approximation functions 
that need to be filtered out from bases (20), (23) or (24). 

Step 5. Analyse the maps of the compression and shear traces ob-
tained in Step 4 and choose an adequate location for the receiver. 

The ‘optimal’ location for the receiver should ensure that the 
compression wave pollution is limited, and the intensity of the shear 
wave is still strong enough to enable its clear identification. 

This procedure is illustrated for a practical situation in the next 
section. 

4. Application and validation 

The procedure for the optimisation of the receiver’s location pre-
sented in the previous sections is used here for a practical situation. 

A particularly striking evidence of the uncertainty involved in the 
interpretation of bender element experiments was provided by an in-
ternational parallel test on the measurement of small strain shear moduli 
conducted between 2003 and 2006 by the International Society of Soil 
Mechanics and Geotechnical Engineering. Similar samples of a poorly- 
graded Toyoura sand were shipped to 23 laboratories (from 11 coun-
tries), which were asked to measure the small strain shear moduli of the 
samples under different confining pressures. Then, the results coming 
from the laboratories were centralised, analysed and published [27]. 
The interpretation uncertainty was larger at low confining pressures, 
where the average shear modulus was less than two times its standard 
deviation. This is the case analysed in this section. 

4.1. Experimental setup 

The experimental setup is fully described in Ref. [7]. The sample of 
dry Toyoura sand with the geomechanical properties listed in Table 1 is 
prepared using the dry tamping method and poured in a cylindrical 
acrylic mould with a height of 200 mm and diameter of 100 mm. The 
rigid lateral walls of the mould provide confinement for the sample. No 
additional confinement pressure is applied. 

Two bender elements (Fig. 3(a)) were inserted at the opposite ends of 
the sample, the transmitter in the centre of the bottom plate (Fig. 3(b)) 
and the receiver in a customisable position at the top of the sample 
(Fig. 3(c)). The shear wave is triggered by the lateral vibration of the 
transmitter. A sinusoidal pulse with a 2.0 kHz frequency is applied to the 
sample. 

4.2. Numerical setup 

The numerical model is constructed using the hybrid-Trefftz finite 
element platform FreeHyTE [22]. The domain with H = 200mm and 
B = 100mm is meshed using 198 hybrid-Trefftz finite elements, as 
shown in Fig. 4. The mesh refinement is increased in the vicinity of the 
transmitter, to enhance the capacity of the model to recover the large 
field gradients present in that region. The dimensions of the finite ele-
ments near the transmitter range between 2 mm and 7 mm, with the 
former dimension conditioned by the width of the transmitter. Further 
away from the transmitter, however, the size of the elements increase 
rapidly. The leading dimension of the finite elements outside the refined 
zone is roughly 20 mm. This size is quite considerable if compared to the 
restriction typically enforced on conventional (conforming) finite ele-
ments, where at least six (but preferably 10) finite elements per wave-
length are recommended. Indeed, for the excitation frequencies tested in 
this paper, the wavelengths of the shear waves range between 18 mm 
and 75 mm, and the wavelengths of the secondary compression waves 
are roughly one order of magnitude less. Hybrid-Trefftz finite elements 
are much less wavelength-sensitive than their conventional counterparts 

Fig. 7. Output signals recorded at two receiver locations.  

I.D. Moldovan and A.G. Correia                                                                                                                                                                                                             



Soil Dynamics and Earthquake Engineering 143 (2021) 106591

8

due to their frequency-dependent approximation bases that contain 
considerable physical insight on the problem that is being solved [19]. 

The dry Toyoura sand is modelled as a porous medium saturated 
with air, under plane strain conditions. Its behaviour is governed by the 
Biot’s theory of porous media [28]. The formulation is based on the u− w 
variant of the Biot’s theory, where the displacements in the solid phase 
and the fluid seepage are the primary variables. This variant, imple-
mented by default in FreeHyTE, is more general than the alternative u−
p formulation (where pore pressure is the primary fluid variable instead 
of seepage), as it does not neglect the seepage acceleration. It is noted 
that modelling porous media as single-phase continua may lead to gross 
errors if the relative displacement between solid and fluid phases is 
significant, as it often happens in permeable geomaterials [29,30]. 

The exterior boundaries of the mesh are of Dirichlet type, except for 
the top boundary, which is defined as Neumann. All Dirichlet bound-
aries are considered frictionless, so the tangential displacements are 
unconstrained. The boundary-normal displacements are fully restricted 
on all Dirichlet boundaries, except the three boundaries where the 
sample is in contact with the transmitter. On these boundaries, a 
cantilever-type horizontal displacement is enforced, as shown in the 
detail in Fig. 4, in order to model the triggering motion of the bender 
element. The total insertion length of the bender element is 7 mm. The 
time variation ux(t) of the lateral motion of the transmitter corresponds 
to a 2.0 kHz sine pulse with a 1μm amplitude, as shown in Fig. 4. On the 
top boundary of the mesh, the stresses and pore pressure are assumed 
null at all times. The total time of the analysis is set to 5msec. 

4.3. Shear and compression traces 

The general optimisation procedure presented above is applied to 
improve the location of the receiver bender element. 

Step 1 of the optimisation procedure involves the selection of an 
interval of plausible values for the small strain shear modulus. Based on 
previous experience with this type of material, and taking into account 
that no additional confining pressure is applied besides that provided by 
the lateral walls of the container, the shear modulus is expected to be 
inferior to 20 MPa. 

In Step 2, four finite element models are built for shear moduli in the 
interval G0 ∈ [5, 20]MPa, namely using G0 = 5MPa, G0 = 10MPa, G0 =

15MPa and G0 = 20MPa. The receiver bender element is not included in 
the models, but the time-histories of the horizontal displacements are 
recorded at its tip, in point A(50,193)mm. The time-histories for each 
tested shear modulus, normalised to the respective maximum absolute 
value, are plotted in Fig. 5. 

The plots are used to estimate the sampling window needed to pro-
duce the compression and shear traces in Step 4. As advised in the 
description of the procedure, the sampling window starts at t = 0msec 
and ends after the first large oscillation in the output signal. The end-
points are marked with blue dots in the plots. 

Colour plots of the compression (31) and shear (32) traces in the 
upper half of the sample (100mm≤ y≤ 200mm) for the four shear 
moduli are presented in Fig. 6. For comparison, the colour plot of the 
horizontal displacement amplitude, 

Fig. 8. Compression and shear traces and normalised displacement amplitudes.  
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umax(x)= max
0≤t≤ta

||ux(x, t)|| (33)  

obtained by considering all types of waves, is also presented for each 
case. All displacements are normalised to the displacement amplitude of 
the tip of the transmitter. 

The plots clearly show that shear waves (second row in Fig. 6) are 
more important to the response of the sample than compression waves 
(top row in the same figure). The amplitudes of the compression and 
shear traces measured at the top surface of the sample do not change 
much for the different shear moduli. The maximum compression traces 
at the top of the sample are comprised between 13% and 16% of the 
displacement amplitude at the tip of the transmitter. The maximum 
shear traces at the top of the sample are comprised between 33% and 
35% of the displacement amplitude of the tip of the transmitter. The 
ratio between the amplitudes of the compression and shear waves at the 
top of the sample is a pollution indicator. It varies between 0.38 for 
G0 = 20MPa and 0.48 for G0 = 5MPa, meaning that the compression 
wave pollution is also quite stable for all cases. 

In spite of the higher intensity of the shear trace, compression waves 
still cause a significant effect on the amplitude of the displacement field 
(third row in Fig. 6). This can be seen comparing the TrS and umax plots. 
The presence of the compression waves upsets the regular patterns of the 

shear traces and significantly more irregular fields are obtained for umax. 
It is recalled that umax ∕= TrP + TrS because of the absolute values in 
definitions (31) to (33). 

Conversely, compression traces are fairly regular. For low values of 
the shear modulus, they present three neat higher intensity zones near 
the top of the sample, one in the centre of the sample and the other two 
symmetric in respect to the vertical axis of the recipient. For the highest 
shear modulus, the high intensity zones move closer to the centre of the 
sample and become slightly more diffuse. The ratios between the 
compression traces at one quarter of the diameter and in the centre are 
0.5, 0.63, 0.56 and 0.83 for the four shear moduli. The loci of the high 
intensity compression traces correspond to areas where the cross- 
propagating compression waves are reflected (from the lateral enve-
lope of the sample) or combine with one another, increasing their in-
tensity in the process. 

Shear traces exhibit a similar pattern. For the lowest shear modulus, 
the maximum shear intensity is not even recorded in the centre of the 
sample, but at roughly a quarter of the diameter. For the 10 MPa shear 
modulus, the shear trace is distributed diffusely over a large zone of the 
top surface of the sample, becoming more concentrated towards the 
centre as the shear modulus increases. The ratios between the shear 
traces at one quarter of the diameter and in the centre are 1.42, 0.80, 

Fig. 9. Output signals recorded at two receiver locations for three excitation frequencies.  
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0.62 and 0.63 for the four shear moduli. 

4.4. Optimisation of receiver’s location and experimental validation 

The positioning of the receiver bender element at the top of the 
sample is considerably flexible. This was demonstrated by the in-plane 
directivity measurements reported in Ref. [14], which proved that the 
strength of the received signal is not compromised by the collocation of 
the receiver with an offset in respect to the standard, tip-to-tip config-
uration. On the contrary, the highest peak amplitude of the output signal 
was recorded in a slightly unaligned configuration. The results presented 
above are in line with these findings. The shear wave presents a fairly 
homogeneous intensity at the top of the sample, from the centre until 
close to the lateral walls, especially for the lower shear moduli. 

The location of the receiver should be chosen such as to mitigate the 
effect of the polluting compression waves, while not compromising the 
intensity of the shear waves. Therefore, a good position for the receiver 
seems to be in the zone situated between the central and lateral higher 
intensity compression traces. While the locations of the higher intensity 
zones depend on the assumed shear modulus, it seems that positioning 
the receiver at one quarter of the diameter may be a good practical 
option for all cases. 

The testing setup described above is used to run bender element 
experiments with receivers located in the centre of the sample (for 
reference) and at one quarter of the diameter. The comparison between 
the output signals recorded in the centre and at one quarter of the 
sample’s diameter are presented in Fig. 7. 

The first arrival is identified using the automatic procedure pre-
sented in Ref. [16] at 2.5msec, which corresponds to a shear modulus 
G0 = 9.77MPa, which stands within the range assumed in Step 1. 

This presentation focuses on the impact of the receiver’s location on 
the ease of (visual) interpretation of the resulting output signal. In terms 
of the amplitude of the output signal, shifting the receiver out of the 
centre does not seem to cause significant losses. The main difference 
between the signals concerns, however, the sharpness of the amplitude 
corresponding to the first arrival, around 2.5msec. While the arrival 
signal recorded in the centre presents an M-shaped pattern spread along 
the time axis, the arrival recorded at one quarter of the diameter is 
characterised by a clear, sharp peak instead. This feature enables the 
clear identification of the arrival time, simplifying the visual interpre-
tation of the output signal. 

While the conclusions regarding the optimal location of the receiver 
element are obviously problem-dependent, the underlying causes of the 
formation of a compression band in the central axis of the sample should 
remain valid if the lateral walls of the recipient reflect the incoming 
compression waves back into the sample. Therefore, the installation of a 
receiver bender element away from the centre of the sample should 
definitely be considered, either as a stand-alone measuring device or in 
conjunction with another, central receiver. 

4.5. Extension to other excitation frequencies 

While the main purpose of this paper is to describe and validate the 
procedure for the optimisation of the location of the receiver bender 
element, it is probably of interest to assess to which extent the optimal 
location of the receiver is affected by the frequency of the pulse exci-
tation induced by the transmitter. It is widely accepted that the excita-
tion frequency should be chosen close to the resonant frequency of the 
coupled bender-soil system [31]. However, this resonant frequency is 
not easy to evaluate precisely because the stiffness of the geomaterial is 
not known in advance, so it is a common practice to run the experiments 
using various excitation frequencies. In the example presented here, the 
resonant frequency is expected to be around 2 kHz, but it seems 
reasonable to experiment with pulses between 1 kHz and 4 kHz. 

To assess how the optimal location of the receiver is affected by the 
variations of the excitation frequency, numerical models are constructed 

using the ‘exact’ shear modulus, G0 = 9.77MPa and pulse frequencies of 
1 kHz, 2 kHz, 3 kHz and 4 kHz. The models are ran once again to obtain 
the compression, shear and maximum displacement traces for each 
frequency, which are presented in Fig. 8. The values of the traces are 
normalised to the displacement amplitude of the tip of the transmitter. 

Most of the comments made for the displacement traces in Fig. 6 
remain valid for the three higher frequencies. The compression traces in 
Fig. 8(b)–8(d) present three neat higher intensity bands, one in the 
centre of the sample and the other two symmetric in respect to the 
vertical axis of the recipient. The compression bands away from the 
centre get closer to the side walls of the recipient as the excitation fre-
quency increases. For the low frequency configuration (Fig. 8(a)), the 
lateral compression bands are too close to the centre to distinguish them 
from the axial band. Their blending causes the axial band to be wider 
than for higher frequency cases. Shear traces also exhibit three higher 
intensity bands for the three higher frequencies (Figures 8(f) to8(h)), 
leaning towards the central axis. Conversely, for the lowest frequency, 
the bands are conjoined in the centre of the sample. 

Based on the plots in Fig. 8, it seems that the location of the receiver 
at one quarter of the diameter, deemed adequate for the 2 kHz frequency 
(see the previous section), is also an adequate choice for the higher 
frequencies (3 kHz and 4 kHz). Indeed, such location would avoid the 
higher compression bands in Fig. 8(b)–8(d) while remaining in the high 
shear zones in Fig. 8(f)–8(h). The placement of the receiver outside the 
centre of the sample is more problematic for the lower frequency case, as 
the bulk of the compression and shear traces occupy the same locus in 
the sample and it does not seem to be possible to find a zone where the 
former is dim while the latter is strong. 

These conclusions are validated empirically by repeating the lab 
experiments presented in the previous section, with frequencies ranging 
from 1 to 4 kHz. Again, two receivers are used, one in the centre of the 
sample (for reference) and the other at one quarter of the diameter. The 
comparison between the respective output signals are presented in Fig. 9 
(a)–9(c). The signal obtained for the 2 kHz frequency case is presented in 
Fig. 7. 

The experiments confirm the forecast of the numerical models. For 
the higher frequencies, the amplitude of the shear wave arrival, recor-
ded around 2.5msec, is much clearer when the receiver is shifted away 
from the centre of the sample, although the signal strength is slightly 
higher in the centre. The M-shaped patterns recorded by the receiver 
located in the centre at the time of the shear wave arrival are particularly 
misleading from a signal interpretation perspective. They are, however, 
absent from the signal recorded at one quarter of the diameter, where 
the arrivals are characterised by clear, sharp peaks that support their 
unequivocal visual interpretation. Conversely, no significant improve-
ment is identified in the readings of the receiver shifted away from the 
centre in the lowest frequency configuration, as both amplitude and 
sharpness of the first arrival signals are similar. No M-shaped patterns 
are present in any of the configurations. 

5. Conclusions 

A new method for the optimisation of the receiver’s location in 
bender element experiments is presented in this paper. The research is 
motivated by experimental evidence that the tip-to-tip transmitter- 
receiver configuration, by far the most common in laboratory tests using 
bender elements, does not always endorse the clearest signal corre-
sponding to the arrival of the shear wave. The single most important 
reason for this issue is the pollution of the output signal with residual 
compression waves reflected from the lateral boundaries of the sample. 
The intensity of the compression and shear waves is not uniform 
throughout the sample, so it may be possible to identify locations where 
the compression waves are dim, while the shear waves are strong. Such 
locations would be ideal for the installation of the receiver bender 
element to endorse a clear interpretation of the output signal, but their 
identification cannot be made based on experimental observation alone. 
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Conversely, the hybrid-Trefftz finite elements provide the means for 
the clear-cut numerical filtration of the compression (or shear) waves 
from the response of the sample, since the separation of compression and 
shear approximation functions is inherent to the way the Trefftz basis is 
constructed. This property enables the construction of compression and 
shear traces, which are plots of the maximum intensity of the respective 
waves throughout the sample during the time interval of interest. The 
analysis of the traces enables the optimisation of the location of the 
bender element receiver. 

Applied to a benchmark bender element test, the procedure reveals 
that the optimal location of the receiver does not correspond to the 
centre of the sample. Shifting the receiver bender element away from the 
tip-to-tip configuration secures a clearer peak in the output signal cor-
responding to the arrival of the shear wave, while its intensity is not 
significantly inferior to that obtained in the centre of the sample. This is 
true for excitation frequencies similar to or higher than the resonant 
frequency of the coupled bender-soil system. However, shifting the 
receiver away from the centre of the sample does not significantly 
improve the quality of the output signal for excitation frequencies much 
lower than the resonant frequency, because the high intensity zones of 
the compression and shear traces tend to coincide. 

The optimal location of the receiver is problem-dependent. It is 
strongly affected by the mechanical parameters of the geomaterial and 
the conditions under which the experiment takes place. However, the 
procedure described in this paper can be applied to any experimental 
configuration to better understand the wave propagation patterns and 
increase the reliability of the experiment. The applicability of the pro-
cedure is enhanced by the free online availability of the Trefftz 
computational platform FreeHyTE, where the results presented in this 
paper are obtained. 
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