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RESumo

O AVC é uma das maiores causas de paralisia. Esta patologia, cada vez mais com maior incidéncia nos
jovens, tem provocado um aumento consideravel de pessoas com problemas de mobilidade. Com uma
terapia focada a cada caso clinico, a recuperacao total ou parcial pode ser conseguida. As ortoteses
ativas tém vindo a ser desenvolvidas com o propdsito de promover uma recuperacao eficaz, baseada em
treinos repetitivos e numa participacao ativa dos utilizadores. Varias abordagens de controlo tém vindo a
ser desenvolvidas para controlar estes dispositivos, mas nenhuma delas promove uma estratégia
orientada as necessidades do utilizador. Na tentativa de solucionar este problema, uma nova abordagem,
designada por Human-in-the-loop esta a emergir. Baseada no custo energético, esta estratégia permite
adaptar parametros da assisténcia, promovendo uma terapia focada e direcionada a cada utilizador. No
entanto, para estimar o custo energético, recorre-se ao uso de sensores que nao sao adequados para

contexto clinico. Assim, torna-se necessario estudar novas formas de estimar o custo energético.

Nesta dissertacdo sao apresentados os primeiros passos para introduzir o controlo Human-in-the-loop
numa ortétese ativa. Para isso, duas estratégias foram apresentadas: uma estratégia que permite adaptar
a trajetdria angular da ortétese, em tempo real, e outra que promove a adaptacao da complacéncia do
sistema ao longo do ciclo da marcha. Ambas foram validadas com sujeitos saudaveis. Relativamente a
primeira abordagem, a ortotese foi capaz de modificar a sua assisténcia em microssegundos, e o0s
utilizadores foram capazes de a seguir com um erro mediano inferior a 10%. No que diz respeito a
segunda abordagem, os resultados mostram que a ortotese promoveu uma alteracdo eficaz da

complacéncia de interacao, promovendo uma participacao ativa do utilizador durante a sua assisténcia.

O impacto energético do uso do sistema robdtico &, também, apresentado. Promovendo um aumento do
custo energético em mais de 30%, a necessidade da estratégia Human-in-the-loop foi realcada. Na
tentativa de encontrar uma técnica para estimar o custo energético, recorreu-se ao uso de machine
learning. Os resultados, obtidos com uma MLP e uma LSTM, provam que é possivel estimar o custo

energético com um erro médio proximo dos 11%.

Trabalho futuro passa pela implementacdo do modelo em tempo real e a recolha de mais dados com as
abordagens de controlo apresentadas, de forma a construir um modelo mais robusto.
PALAVRAS-CHAVE

Controlo de trajetoria adaptativa, Controlo de impedancia assisted-as-needed, Controlo Human-in-the-

loop, Ortoteses ativas, Reabilitacdo de AVC



ABSTRACT

Stroke is the main cause of paralysis. This pathology has provoked a considerable increase of persons
with motor impairments. With a therapy focused on each clinical case, the total or partial recovery can
be achieved. Powered orthoses have been developed to promote an effective recover, based on repetitive
gait training and user’s active participation. Many control approaches have been developed to control
these devices, but none of them promotes an user-oriented strategy focused to the user’s needs. In an
attempt of solving this issue, a new approach named Human-in-the-loop is emerging. This strategy allows
the adaptation of some assistive parameters based on the user’s energetic cost, promoting a therapy
tailored to each end-user needs. However, to estimate the energy expenditure, the use of non-ergonomic
sensors, not suitable for clinical context, is required. Thus, it is necessary to find new ways of estimating

energy expenditure using wearable and comfortable sensors.

In this dissertation, the first steps to introduce the Human-in-the-loop strategy into a powered orthosis are
presented. For this purpose, two strategies were developed: a strategy that allows the angular trajectory
adaptation in realtime and other that promotes a stiffness adaptation all over the gait cycle. Both
strategies were validated with healthy subjects. In the first strategy, the orthosis was able to modify its
assistance in a fraction of microseconds, and the end-users were able to follow her with a median error
below 10%. Regarding the second strategy, the results show that the orthosis allowed an effective change

in the systems’ interaction stiffness, promoting an active participation of each user during its assistance.

The energetic impact of using the robotic assistive device is also presented. As it promotes an energy
expenditure augmentation in more than 30% in comparison to walk without the device, the necessity of
implementing the Human-in-the-loop strategy was highlighted. In an attempt of finding an ergonomic
technique to estimate the energetic cost, the use of machine learning algorithms was tested. The results,
obtained with a MLP and a LSTM, prove that it is possible to estimate the energy expenditure with a mean

error close to 11%.

Future work consists in the implementation of the model in real-time and the collection of more data with

the aforementioned control approaches, in a way of constructing a more robust model.

KEYWORDS

Adaptive Trajectory Control, Assisted-as-needed impedance control, Human-in-the-loop control, Powered

Orthoses, Stroke Rehabilitation
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1.  INTRODUCTION

This dissertation presents the work developed since February of 2019 in the scope of the fifth year of the
degree in Biomedical Engineering, aiming to obtain the master’s degree in the field of Medical Electronics.
The work was performed in the Biomedical Robotic Devices Laboratory (BiRD Lab) of the Centre for
Microelectromechanical Systems (CMEMS), at the University of Minho, Portugal, in agreement with the

Smart Wearable Orthotic System (SmartOs) project.

This dissertation was the culminate of a project started in the second semester, since an Erasmus
Internship was made between September of 2018 and February of 2019 at Marsi-Bionics enterprise, in
Madrid, Spain. The work developed in Marsi-Bionics was related with the one presented in this dissertation
since, during the internship, knowledge in human locomotion was achieved. There, the modulation of the
human body as a three-link inverted pendulum was performed, studying the human gait and more
precisely, the standing position. Also, the main advances in exoskeletons and assistive orthoses was
followed closely, allowing for deepening the knowledge in the field of human locomotion and rehabilitation

with orthotic devices.

In this first chapter, the motivation and problem statement of this dissertation will be presented, as well

as the dissertation goals, contributions and outline.

1.1 Motivation and Problem Statement

According to WHO, almost one billion persons suffer from a disability. This represents nearly 15% of the
world’s population and the number tends to increase since the average life expectancy is rising and the
population is aging, making disability a recurring term in daily life [1]. Considering disability due to mobility
impairments, the population affected drops to 1% of the world’s population. Around 60 million persons
are affected by mobility injuries, either caused by the simple process of aging (36 million citizens) or by
health disorders (24 million citizens). Many health conditions, as Post-Polio Syndrome, Cerebral Palsy,
Neurofibromatosis, Traumatic Brain injury, Spinal Cord injury, Multiple Sclerosis, Stroke, and others, are

becoming to be one of the leading causes of motor disabilities through the younger population [2].

Stroke, a worldwide and ageless cerebrovascular disorder, is the world’s third cause of death [3]. It affects
more than 15 million persons per year of which 6 million do not survive. Stroke is the main cause of

death in Portugal (leader among the European countries), affecting more than two hundred Portuguese



citizens per one hundred thousand habitants. This disease, classified as haemorrhagic or ischemic,
depending if it is caused by, respectively, a disruption of a brain vessel or an embolic occlusion [4], cause
several disorders on brain tissues, such as sensory or memory deficits, motor aphasia, facial paralysis
and, among others, lower and/or upper limbs hemiparesis [4], [5]. Stroke survivors also commonly
present impaired motor coordination, muscular morbidity, high articulation stiffness and the walking
pattern highly corrupted [5], particularly on the ankle articulation [6]. As such, these persons need a

complete and rigorous plan of rehabilitation.

With the astonishing incidence of cardiovascular and neurodegenerative disorders on the world’s
population and in specific in Portugal’s population, the biomedical search has been focusing on the use
of robotic assistive devices, such as powered orthoses, aiming for the time-effective recovery of subjects
with motor impairments. Many control approaches, as electromyography-based control, trajectory
tracking control and impedance control, have been proposed to promote a therapy sustained in the user’s
participation, effort and in a repetitive gait training [7]. Most of the current powered orthoses
accomplished with success these three principals. However, most of them do not use these assistive
strategies to promote an user-oriented therapy, where the assistance could be timely modified and tailored

to each end-user needs.

In an attempt to solve this problem, the investigators are now focusing in another fundamental question:
the energetic cost that these orthotic devices can represent when used by impaired persons. A new
strategy termed Human-in-the-loop control is being investigated, by means of using the energy expenditure
as a way of adapting the assistance to each user [6]. However, estimating the energy expenditure is
challenging task. Energy expenditure is frequently evaluated through indirect calorimetry, which is a
reliable technique but not suitable for daily live and clinical usage. It is dependent on a team of experts,
is an expensive technique, and it also presents a very noisy signal. Thus, new ways of estimating energy
expenditure using wearable and ergonomic sensors are being studied, addressing machine learning-
based models. With a reliable model for estimating the energy expenditure, it is possible to successfully
apply the Human-in-the-loop control; thus, leading to a more effective and efficient recovery, where the

assistance can be modified for each end-user.

1.2 Dissertation Goals

The main goal of this dissertation addresses the first advances of a new control strategy, named Human-

in-the-loop control, for a Smart Orthotic system - SmartOs. This strategy makes use of a physiological



signal, namely the energy expenditure, to adapt the assistance for each user, allowing an user-oriented

assistance and rehabilitation based on the effort that the subject is spending.

Towards a Human-in-the-loop control strategy, the modulation, implementation, and/or validation of
control approaches, such as (i) the Adaptive User-Oriented Trajectory Tracking control, where the angular
trajectory can be real-time modified, and (ii) the Adaptive User-Oriented Impedance control, where the
virtual stiffness of the joint can be real-time modified, in a smart, standalone orthotic system was
performed. The integration of these control strategies into robotic assistive devices allows personalized
and specific assistance for each end-user, leading to a more effective and less energy-consuming

rehabilitation.

For the first control strategy, new modular trajectories applied to the users’ needs are created as a
reference for a low-level controller. The main goal is that these different trajectories can be used to
automatically adjust the assistance in real-time concerning the effort that the end-user is performing, i.e.,
user's energy expenditure. As a modular approach, the strategy was developed to be used by the
physiotherapists in order to change and adapt the trajectory in realtime during the rehabilitation therapy,

maintaining the integrity and the continuity of the movement.

For the second control strategy, the main goal is to adapt the interaction between human-orthosis to
achieve a compliant assistance and assist-as-needed approach. This dissertation aims to extend the
implemented adaptive impedance control for the ankle joint. A linear model was used to estimate the
quaskstiffness values per gait phases from the user-orthosis interaction torques and ankle angles. Once
the quaststiffness values are found, these values will be used to produce an assisted-as-needed

interaction torque, used as a reference trajectory for a low-level controller.

At last, it is studied the effect of using the orthotic device into the subjects’ effort by evaluating the oxygen
consumption and carbon dioxide production, to quantify the energy that the end-user is spending. In an
attempt of eliminate the use of indirect calorimetry to evaluate the energy consumption, different
measurements obtained with wearable and ergonomic devices, such as standard physiologic
measurements, as heart rate (HR), electromyography (EMG), among others, and kinetic measurements,
as angular velocity and segments’ acceleration, were studied together with artificial intelligence to predict
the energy expenditure of subjects while walking with the orthotic device. This study aims to propose a
reliable energy consumption estimation, such that indirect calorimetry with non-portable and non-

ergonomic sensor systems is no longer required.

To achieve these ultimate goals, it is necessary to pursue the following objectives.



Objective 1: To investigate the stafe-ofthe-art of powered exoskeletons and orthotic systems for gait
rehabilitation and assistance; analyse how these powered devices are controlled, focusing in trajectory
tracking control and impedance control strategies; study how the energy expenditure is being used to
investigate the effects of robotic gait assistance; and how artificial intelligence could be used to predict

the energy expenditure of users while walking.

Objective 2: To implement and validate the adaptive user-oriented trajectory tracking control as a high-
level controller, fostering a time-effective and simple strategy to create different trajectories tailored to the
user needs. These trajectories will be used as the real-time references for a proportional-integrative-
derivative (PID) low-level controller responsible for the SmartOs system control. This control approach is
validated in a laboratory context, performing experiences with healthy users. This strategy was evaluated
in terms of the trajectory integrity and continuity of the movement, and considering its latency, time-

response and magnitude errors.

Objective 3: To study the human-orthosis interaction torque when the system is working closely to a
passive device, analysing the strength each user is applying to perform the healthy trajectory; apply a
linear model to the interaction torque vs angle curve to estimate the guasistiffness of the ankle joint
considering the phases of the gait cycle; adapt and validate with healthy subjects the adaptive impedance

control strategy for the ankle orthosis, using the values of quasrstiffness estimated with the linear model.

Objective 4: To study the applicability of Human-in-the-loop control for the SmartOs, analysing the energy
expenditure that the orthosis produces in a trajectory tracking control approach, and applying machine
learning tools to predict the energy expenditure of users while walking at different speeds using easy-to-
obtain measurements, as EMG, HR, angular velocity, segments’ acceleration, among others. For this
study, the correlations between the ground truth and the predictors are assessed in order to select the

best features.

1.3 Research Questions

For the work developed, four research questions (RQ) were formulated and answered during the present

dissertation, as follows.

RQ 1: Can the energy expenditure be used to study the gait efficiency enabled by powered assistive

devices, and to exploit the Human-in-the-loop controf? This RQ is answered in Chapter 2.

RQ 2: /s it possible to adapt the existing control strategies as a way to introduce the Human-in-the-loop

control in the SmartOs? This RQ is answered in Chapter 4 and 5.



RQ 3: /s there differences in the user’s energy expenditure when assisted by the SmartOs at slow walking

speeds? This RQ is answered in Chapter 6.

RQ 4: Are the machine learning-based models able to evaluate the energy expenditure in the SmartOs,

minimizing the use of non-ergonomic systems? This RQ is answered in Chapter 6.

1.4 Scientific Contributions

The work developed for this dissertation aims the applicability of Human-in-the-loop control for a smart
orthotic system through user-oriented and assist-as-needed control strategies. In the scope of this

dissertation, four-main scientific contributions can be pointed:

(i) A literature review on the use of energy expenditure in powered orthosis for lower limb gait
assistance and rehabilitation (chapter 2);

(i)  An adaptive trajectory tracking control strategy for further use in Human-in-the-loop control that
creates different trajectories tailored to the user's needs in realtime. So far, it is the first orthotic
system with an adaptive trajectory control based on the joint angle that allows a position trajectory
adaptation in real-time, intended to aid persons with motor impairments to have a better rehabilitation
therapy, focused on his/her degree of disability (chapter 4);

(i)  An adaptive impedance control strategy for the ankle orthosis and further use in Human-in-the-
loop control, allowing the stiffness modulation of the human-orthosis interaction in real-time, using the
user-friendly mobile application, encouraging the users to interact with the system, providing a
rehabilitation sustained in training, effort and interaction (chapter 5);

(iv)  An empirical study of the use of easy-to-obtain measurements, as HR, EMG, angular velocity
and angular acceleration, to predict the energy expenditure of users while walking with the orthotic
system; and two machine learning tools for estimating the energy expenditure of users while walking

at slow speeds with the orthotic device in assistance mode (chapter 6).

With the work developed during this academic year, three scientific publications, one as first author and

two as co-author, were published on a conference and one paper is submitted in a journal:

()  Jodo M. Lopes, Luis Moreira, Cristiana Pinheiro, Daniel Sanz-Merodio, Joana Figueiredo,
Cristina P. Santos, and Elena Garcia, "Three-Link Inverted Pendulum for Human Balance Analysis: A
Preliminary Study," 2019 IEEE 6th Portuguese Meeting on Bioengineering (ENBENG), Lisbon,
Portugal, 2019, pp. 1-4. doi: 10.1109/ENBENG.2019.8692531



(i)  Cristiana Pinheiro, Jodo M. Lopes, Luis Moreira, Daniel Sanz-Merodio, Joana Figueiredo,
Cristina P. Santos, and Elena Garcia, "Kinematic and kinetic study of sit-to-stand and stand-to-sit
movements towards a human-like skeletal model," 2019 IEEE 6th Portuguese Meeting on

Bioengineering (ENBENG), Lisbon, Portugal, 2019, pp. 1-4. doi: 10.1109/ENBENG.2019.8692569

(i)  Luis Moreira, Cristiana Pinheiro, Jodo M. Lopes, Daniel Sanz-Merodio, Joana Figueiredo,
Cristina P. Santos, and Elena Garcia, "Study of Gait Cycle Using a Five-Link Inverted Pendulum Model:
First Developments," 2019 IEEE 6th Portuguese Meeting on Bioengineering (ENBENG), Lisbon,
Portugal, 2019, pp. 1-4. doi: 10.1109/ENBENG.2019.8692451

(iv) Jodo M. Lopes, Joana Figueiredo, Elena Garcia, and Cristina P. Santos, “Energy expenditure
use on gait rehabilitation and assistance driven by powered assistive devices: A Review,” Topics Stroke

Rehabilitation (submitted).

1.5 Dissertation Outline

This dissertation is organized as follows:

Chapter 2 presents the state-ofthe-art of this dissertation, including the current state of lower limb
assistive devices, such as exoskeletons and orthoses responsible for assisting humans in their daily living
tasks. As one of the main goals of this dissertation is to develop a control strategy capable of adapt the
trajectory and the joint impedance according to the user’s needs, an overview of control strategies will be
exploited, focusing mainly on trajectory tracking control and joint impedance control. Also, although the
control strategy will not be totally closed, a literature review of Human-in-the-loop control and energy use
on powered assistive devices is presented, aiming to study how the investigators are introducing humans
into the loop system and which are the main changes to the assistive strategies to decrease the energy

expenditure of users.

Chapter 3 introduces an overview of the system used in the scope of this dissertation - the Smart
Wearable Orthotic System. Here, it will be presented a general description of the system, presenting both
orthoses for ankle and knee assistance, describing the embedded sensors and the system mechanism,

as well as the wearable sensors used to perform gait analysis and monitorization.

Chapter 4 describes the Adaptive User-Oriented Trajectory Tracking Control, detailing the strategy
developed to create adaptive, personalized and user-oriented trajectories, maintaining always the integrity
and continuity of the movement. This chapter is divided into two main sections, one for the powered ankle

orthosis device and another for the powered knee orthosis, where both methods and validation are stated.



Chapter 5 presents the Adaptive User-Oriented Impedance Control strategy. This chapter defines the
concept of quaststiffness, obtained through a modulation of a linear model to the human-orthosis
interaction torque vs angle curve. The implementation and validation using the ankle orthosis are

exploited.

Chapter 6 introduces the first steps towards the Human-in-the-loop control strategy. This chapter presents
an empirical study of the impact of using the orthotic system in healthy users in terms of energy,
performing a comparison of walking with and without the assistive device; also, it addresses techniques
of machine learning to predict the energy expenditure using easy-to-obtain measurements from each user

while walking with the orthotic device.

At last, in Chapter 7, the conclusions of this dissertation and the future perspectives are pointed out.



2.  STATE-OF-THE-ART

2.1 Introduction

In the last decades, the high incidence of neurodegenerative and cardiovascular disorders through the
world population had led to an augmentation of disabilities concerning mobility malfunctions. The use of
assistive devices for gait rehabilitation and assistance have been studied for the last 20 years and the
main results are positive. With one or two degrees of freedom, these powered devices help to restore the
gait pattern, decreasing the lower-limbs asymmetry, and giving support. When the rehabilitation is
performed with a powered device, new strategies as user-oriented therapies, adapted to the users’ needs,

can be developed, enhancing the users’ recovery [7].

In the following sub-chapters, the current stafe-of-the-art of lower limb assistive devices is presented, as

well as a review of the use of energy expenditure in robotic gait assistance.

2.2 Lower Limb Assistive Devices

In the world of robotic assistive devices, two main terms are recursively used: exoskeleton and orthosis.
According to [8], an exoskeleton comprehends a single or multi-joint segment capable of augmenting the
force of healthy users, while the term orthosis is referred to a single or multi-joint that assists the user’s
limb with a certain injury. In medical terms, there is no consensus between authors to describe the terms
exoskeleton and orthosis. In some studies, these two terms appear to have the same meaning and, in
others, the exoskeleton term is referred as a multi-segment device, e.g. in [7], while an orthosis is a
single-segment device, aiming to recover a part of the limb one at a time. Nevertheless, both devices
have the same purpose when applied to medicine: aid persons with motor impairments to restore their

daily-live activities.

The exoskeletons have been widely used in the military industry, improving soldiers’ strength and
transferring the load-carrying weight to the ground [2], [8]. The first exoskeleton remounts the year of
1965, when General Electrics, in the United States of America, started to build the first approach to an
exoskeleton [9]. The exoskeleton was built and design to assist the soldiers, enhancing their physical
capabilities [10]. By the other side, the first orthosis intended to provide locomotion to non-ambulatory
persons was developed in Serbia, by Mihailo Pupin Institute, in 1969. This orthosis was endowed with

artificial pneumatic “muscles”, capable of produce a pattern of walking close to the healthy one [11].



These two assistive devices, each one with its purpose, were the first step into the huge development of

humanoid technology during the last decades.

The powered assistive devices can be divided into two categories: the multi-segment devices, that assist
more than one joint at the same time, and the single-segment devices, which assist assistance a specific

joint.

2.2.1 Multi-segment devices

The multi-segment devices are a category of powered assistive devices. As it provides assistance to the
total lower limbs or to parts of it, these powered devices are usually subdivided into three groups: the hip-
knee-ankle-foot devices (HKAF), that gives assistance to the full lower-limbs, the hip-knee (HK) devices,
that give assistance to the hip and knee joint at the same time, or knee-ankle-foot (KAF) devices, that give

assistance to the knee and ankle joints [7/].

When applied to the military and industry, the powered devices commonly developed are the HKAF
devices. These are used to increase the strength of its users, helping them carrying heavy loads or to
walk in uneven surfaces, such as the BLEEX, HULC, Sarcos Exoskeleton or HAL. Following [8] and
described also in [10], these devices are called exoskelefons. Figure 2.1 displays some examples of

powered devices built to improve the users’ physical capabilities.

Figure 2.1: Examples of exoskeletons build to improve the users' physical capabilities: (A) BLEEX [12], (B) HULC [13] and (C)
HAL [14].



When applied to medicine, the devices are used to help restoring the gait pattern of persons with
hemiparesis due to neurological injuries, cardiovascular disorders or muscular weakness, such as the
LokoMat and LOPES devices, or to assist handicap persons, with paraplegia or quadriplegia, as the ATLAS
and ReWalk devices. As these systems are used to rehabilitate patients, they are orthoses. Figure 2.2

displays some examples of powered devices built to assist or recover persons with motor impairments.

Figure 2.2: Examples of orthoses built to recover an hemiparetic limb or restablishing the gait to non-ambulatory persons: (A)
LokoMat [15], (B) ATLAS [16] and (C) ReWalk [17].

Table 2.1 contains some of the many multi-segmented lower limb devices for both military, industry and
medicine applications reported by [7]. For each device, the application and a general description is

presented.

Table 2.1: Multi-segment devices reported by [7] (continue)

Study Names Tipe Description

Intended to give assistance to the full lower-body while
[12] BLEEX HKAF

carrying loads, having 7-DOF for each leg.

Provides motion for children suffering from
[16] ATLAS HKAF quadriplegia. Intended to assist the hip, knee and ankle

joint considering healthy patterns.
All body, HKAF  Intended to either assist persons with gait disorders or

[14] HAL
or singleleg  to augment the strength of its user.

10



(continuation)

Stuady Names Type Description
HK and Intended to assist persons with chronic spinal cord
[17] ReWalk unpowered injury. The subjects need to use crutches for more

ankle-foot stability.

Intended to assist persons with spinal cord injury. It is

[18] Vanderbilt HK

compatible with an AFO to ensure the gait.

HK and Intended to either assist, in a passive mode, or to
[19] I[HMC unpowered augment to users’ performance.
ankle-foot

An evolution from IHMC. It has 2-DOF, one for each
[20] MINA HK joint that assists. Intended to provide gait to paraplegic

and paraparesis persons.

It is designed to assist the locomotion of disabled and
[21] WWH HKA

elderly persons.

It is designed to assist the locomotion of disabled,
[22] WPAL HKA

elderly persons and after an amputation process.

2.2.2 Single-segment devices

The single-segment devices are often developed to be applied in the rehabilitation field. Indeed, many
single-joint devices have been proposed to aid persons with motor impairments. Most of them are
considered passive since does not exist an actuator. However, in the past decades, the single-joint
powered devices had gain strength, and new studies have been performed. If powered, these systems
allow an effective and periodic joint motion, allowing the assistance and, in some cases, the recovery of
the hemiparetic joint. These devices are often divided into three types, considering the joint intended to

aid: powered hip-orthoses (PHO), powered knee-orthoses (PKO) and powered ankle-foot-orthoses (PAFO)
[7].

The literature analysis report that these devices can have electric, pneumatic or cable-based actuators. If
the device is electric, usually the orthoses are wearable with a DC motor controlled by smaller central
control units (CCU). If pneumatic, the orthoses usually are tethered, meaning that they are attached to
an external source of power that controls the system, insufflating air into the “artificial muscles”. At last,

if the orthoses are cable-based mechanisms, forces are applied and transmitted to the system all over
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the cables. Figure 2.3 displays some of the main orthoses for hip, knee and ankle assistance presented

in the recent literature.

Figure 2.3: Single joints Lower-limbs devices: (A) Pneumatic hip orthosis [23], (B) Pneumatic AFO orthosis [24], (C) MIT PKO
orthosis [25], (D) Pneumatic AFO [26], (E) Pneumatic AFO [27], (F) Cable-based ankle-foot exoskeleton [28], and (G) Cable-
based hip orthosis [29].

Most of the orthotic devices presented in the literature are PAFOs since the ankle joint is one of the most
affected articulations of persons with motor impairments. Most of them are pneumatically actuated, as
the ankle-foot orthoses presented in Figure 2.3 = B, 2.3 = D and 2.3 - E, developed, respectively, by
[24], [26], and [27]. These devices are provided with compressed air systems that transform the
pneumatic energy into kinetic energy. As it is needed an external source of power to inflate the air into
the artificial muscles, these orthotic devices are considered tethered. Another orthosis for ankle
assistance was developed by [28] (Figure 2.3 - F), with a cable-based mechanism that provides 1-DOF
to the device. Composed of a brushless DC motor, the system allows the dorsiflexion and plantarflexion
movements applying the proper force to the cables. By opposition to the previous devices, this orthotic
system is totally wearable since it is controlled by a hardware interface that the subjects carry on their

waist.

Similar approaches as those presented above are also applied to PHO orthoses. In fact, an orthotic device
for hip assistance (Figure 2.3 — A) was developed by [23]. This orthotic device consists of a prefabricated

hip brace that was modified to include a pneumatic actuator that insufflates a certain quantity of air to



provide the correct pattern of motion. Another orthosis for hip assistance, or exosuit as described by [29]
(Figure 2.3 — G), was recently developed, made of a soft fabric. This orthotic device endows inner cables
responsible to create a tension between two strategic points. Pulling the inner cable, the orthosis forces

the subject to perform hip extension. Both orthoses ([23] and [29]) are tethered.

At last, an orthosis for knee assistance was developed by [25] (Figure 2.3 = C). It is an orthotic device
placed on the back of the legs with an electric actuator. The motor moves a bar paralell to the leg
continuously, promoting the correct gait pattern. Table 2.2 presents the devices displayed on Figure 2.3

and a few more examples of lower limb single-joint devices for gait assistance.

Table 2.2: Single-joint devices for lower-limb assistance (continue)

Stuay Assisted joint Actuator Description

Intended to aid persons with motor
[23] Hip Pneumatic impairments. It is provided a gait assistance

based on a predefined gait pattern. 1-DOF.

Intended to give assitance to the hip joint
[29] Hip Cable-based considering the energy the subject is spending.

1-DOF.

Intended to aid healthy elderly persons to
[30] Hip Electric maintain their daily-live activities, promoting a

gait training. 1-DOF.

Intended to aid healthy persons to run. 1-DOF,
[25] Knee Electric
allowing knee flexion and extension.

Series Elastic Intended to enhance the user’s strength and
[31] Knee Actuator / speed. Allows the user to climb stairs and to
Eletric perform squads while carrying a load. 1-DOF.

Intended to aid persons with disordered gait to

[32] Knee Electric regain normal walking and for elderly people to
maintain their daily-live activities. 1-DOF.

Intended to give assitance to the ankle joint

[24] Ankle Pneumatic considering the energy the subject is spending.

1-DOF.
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(continuation)

Stuady Assisted foint Actuator Description

Intended to give assistance to impaired subjects.

[26] Ankle Pneumatic It consists of a 1-DOF orthosis.

Intended to restore gait symmetry to users with
[27] Ankle Pneumatic motor impairments. 1-DOF, allowing dorsiflexion
and plantarflexion.

Intended to aid persons to walk while carrying a
Cable-based /
[28] Ankle load. It exhibits 1-DOF, allowing dorsiflexion and
Electric
plantarflexion.

Note: Abbreviations’ meaning can be found here.

2.3 Control strategies of powered assistive devices

Findings in the literature of robotic devices for gait assistance shows that many control approaches have
been proposed to control the powered devices for lower-limbs assistance. According to [7], [33], and
[10], the powered assistive devices are controlled by: (i) a predefined gait trajectory control, where a
position tracking control is systematically performed based on the periodicity of the gait; (ii) an impedance
control, where the joint impedance is modelled considering the gait phase; (i) a control based on a
predefined action considering the gait pattern; (iv) an EMG-based control, where the muscular information
is used, usually, to create a joint torque replica to be applied on the systems’ motor; and (v) kinematic
model-based control, where a joint torque pattern is created according to dynamic equations with
kinematic and kinetic information. In some cases, the assistance is given with a hybrid control, where
more than one control strategy is applied to the system. In these cases, the information about the gait
cycle phase can be used to switch between control approaches. Considering the goals of this dissertation,

the first two assistive strategies will be discussed with more detail in the following sub-topics.

A recent control approach, named Human-in-the-loop control, caught the attention of the investigators
and it is emerging in the present decade. It uses a physiological signal indicator of energy, mainly oxygen
consumption and carbon dioxide production for realtime optimization of one or more assistance
parameters, such as the torque actuation onset timing or the torque peak magnitude. Thus, the

assistance is personalized and specific for each patient, contributing to, possibly, a more efficient recovery
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while minimizing the energetic cost of walking [34]. Topic 2.4 presents a literature research of the use of

energy in powered assistive devices, introducing this new field of interest.

2.3.1 Trajectory Tracking Control

The trajectory tracking control strategy was firstly applied to the industrial robots, where the position of
the end-effector is calculated applying a trajectory generator based on known points that the system must
reach. The angle information, for example, is frequently used to describe the trajectory of a manipulator.
In order to create a smooth and non-random trajectory, it is necessary to give a more detailed pattern,
giving a set of intermediate points, described in [35] as via points. Then, the trajectory can be created

using the inverse kinematics, where these via points are converted into joint angles [35].

As a result of the periodicity and repetitive gait pattern for the ankle, knee and hip joints, the applicability
of this technique was also studied for gait assistance purposes. According to [7], the trajectory control
can be performed either with a joint position, where the reference is the joint angle, or using the joint
torque. The kinematic and kinetic information, obtained with gold-standard motion systems, as the VICON
or Qualysis systems, or wearable sensors as goniometers, accelerometers, gyroscopes, or IMUs [10],
can be used to estimate the reference trajectories. Frequently, the joint angle pattern is estimated with

cubic interpolation, adapting the trajectory into the system specifications [7], [32].

Usually, this strategy is more intended to aid persons that lost the walking capability, as paraplegic and
quadriplegic persons [7]. This is the case of ATLAS [16], HAL [14], ReWalk [17], Vanderbilt [18] and
IHMC [19] orthoses presented earlier. In a pure trajectory tracking control mode, these orthoses impose
a gait pattern to their users, providing a cyclic training session. Other example is the investigation carried
out by Lai ef a/. [32] that culminated into a single-joint powered orthosis for knee assistance in which the
control is performed with a PID controller using the knee angle trajectory as the reference signal. In this
study, the knee kinematics are calculated considering the hip’s angular velocity, which is linearly
correlated with the knee angle at the swing phase, through a polynomial equation [32]. For the stance
phase, the knee orthosis is locked at 13° since the trajectory variation for this phase is quite small when
compared to the swing phase. Dao ef a/. [36] created a pneumatic robotic orthosis for gait rehabilitation
in which the control is performed with the angle trajectory of knee and hip, using for that a proportional-
integrative (PI) controller. In this way, the air pressure of the artificial muscles that compose the orthotic
system is controlled, and the specific amount of air needed to perform the imposed trajectory can be

delivered [36].
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Considering the aforementioned studies, this control strategy is well suited for the first rehabilitation

sessions of persons with a highly corrupted gait pattern and weak muscular activity.

2.3.2 Joint Impedance Control

The joint impedance control is a frequently used assistive strategy where the joint impedance is
modulated with the main goal of decrease the subjects’ effort [37]. According to Huo ef a/. [37], reducing
the subjects’ effort is still a very demanding challenge. The fact of using a wearable orthosis with friction,
produces inertia to the movement, that adds mass to the limb, conditions the effort that the subject is
performing. These constraints, as inertia, as mass, produce gravitational components, and the stiffness

are considered the lower limb impedances [37].

In general, the studies presented in the literature turn their focuses into adapting the joint stiffness. In
this way, the joint compliance can be adjusted, transforming the orthosis into a truly assistive device [38].
The use of these systems in impaired subjects can improve their recovery, providing repetitive training
sessions and a user-oriented assistance. In the current decade, assist-as-needed (AAN) control strategies
have been developed in an attempted of providing interactive assistances, encouraging the subjects’

participation and interaction [36], [37].

LOPES (LOwer-extremity Powered ExoSkeleton) is one impedance-controlled orthosis that modulates the
compliance of the joint as a way to allow an assisted-as-needed strategy control that provides more
freedom to the movement, promotes user's participation and allows an assistance modulation
considering the user’s needs [39]. The orthosis uses a series elastic actuator and allows two modes of
assistance: the patient-in-charge, where the stiffness is null and the user commands the system, and a
robot-in-charge, in which the stiffness is set to high, imposing a trajectory to the end-user [40]. Another
device that modulates the joint stiffness is the Lokomat orthosis [15]. This orthotic device allows an user-
oriented assistive strategy in a way that it is possible to adapt the assistance, passing from a more stiff
behaviour, where the system is purely trajectory tracking control, to a more compliant one. The error in
angular position produced by the subject considering a reference trajectory is multiplied by a virtual
stiffness value (4), designated as linear elastic coefficient, and its first derivative, the angular velocity, is
multiplied by a coefficient B, named linear viscous coefficient. Therefore, a reference torque can be

created and sent to a proportional-derivative (PD) controller with negative feedback [15].

Additionally, Hussain ef al. [41] applied the same principals of Lokomat and LOPES orthoses to adjust
the joint stiffness, allowing the subject to deviate from the reference gait trajectory. The effort, measured

through a human-orthosis interaction torque, was used to adjust the impedance of the robotic orthosis,
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giving more freedom to the subject. As it is user-dependent, the strategy is also considered an assisted-
as-needed approach. A similar approach was implemented by Rajasekeran et al. [42], where a virtual
stiffness was evaluated considering the positions errors and the human-orthosis interaction torque. As
the virtual stiffness is systematically changed all over the gait cycle and the assistance is given considering
the position error, the strategy is considered assisted-as-needed. At last, another work, presented in [43],
followed the same principal as the previous works, presenting an adaptive impedance control law for a
knee orthosis that modulates the virtual stiffness in real-time and promotes a robotic gait assisted-as-

need assistance based in the subject’s motion intention.

2.4 Energy use on powered assistive devices: towards Human-in-the-loop Control

Impaired gait function affects the persons’ walking economy, promoting an augmentation of energy
expenditure [44], [45]. Considering the muscular activation on post-stroke individuals, that is
compromised, it is important that these assistive devices not only contribute to the gait recovery, but also

to decrease the energy dispended while walking.

Energy expenditure is one of the main outcomes of studies involving exoskeletons built and designed to
assist patients with motor impairments, mainly ankle-foot orthosis (AFOs) or exosuits [46], [47]. Most of
these studies were conducted with passive orthoses and the results point to a reduction in the energy
expenditure and a gait pattern improvement [47]. With the introduction of powered devices, either with
pneumatic, cable-based mechanical power transmitters or electric actuators, as presented earlier, new
studies have been performed and the energy expenditure is starting to be used for further purposes, as

to promote a more efficient gait for its users, allowing user-oriented assistances.

Table 2.3 shows a representative sample of studies that used the energy expenditure to evaluate the

energetic cost of assisted walking with powered devices.

According to Table 2.3, Seo ef a/. [48] and Martini ef a/. [30] reported both powered orthosis for hip
assistance that allowed a reduction in the energy cost of walking. A higher reduction on the metabolic
cost was obtained in [30], ranging between 20% and 27%, comparing to [48], that reported an energy
reduction of 13%. For both studies, the decreasing on energy consumption was statistically significant,
meaning that the assistive devices may have clinical potential to reduce the patients’ energetic walking

cost.

Awad et al. [6], Mooney et al. [28] and Malcom et al. [27] reported that the use of powered devices for

ankle assistance decreased the energy expenditure of its end-users. These studies reported a decreasing
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on the metabolic energy consumption while walking with the orthotic device, ranging between 6% and
15% of power saving, when compared to unpowered condition ([6], [28] and [27]), and the absence of
robotic assistance ([28]). Despite of that, this decreasing was only statistically significant on studies [6],
[28] and in the second condition of [27]. Moreover, in [6], the subjects were post-stroke patients. Although
the energy consumption was almost 32% higher than the normal walking, the exosuit allowed a metabolic
cost reduction of 0.0721 mL 02/m/kg considering the reported value for hemiparetic gait, which is,
according to [49], approximately 0.270 mL 02/m/kg. According to these findings, the robotic gait

assistance can reduce the energetic cost of human walking when it is used in the assistive mode.

In the current decade, the energy expenditure is not only used to assess the effectiveness of powered
assistive devices upon gait assistance. The energy expenditure is being used as a means to change the
assistance. For instance, torque parameters, mainly on ankle-foot orthoses and exosuits, are tuned to
promote a more personalized and specific assistance to each user. This optimization can be either (i)
offline and (i) online. If offline, a set of control parameters are tested, and the energy expenditure is
assessed to verify which are more effective. In online optimization, torque parameters are changed in
real-time according to the measured energy expenditure. The online optimization is considered the

Human-in-the-loop control approach.

Table 2.4 presents four studies in which at least one parameter was optimized offline to ensure a correct
pattern of walking and a reduction on energy expenditure, and Table 2.5 presents 3 studies where an

online optimization of one or more parameters were investigated.

For both offline and online parameter optimization, the actuation onset is the main variable tuned to
adjust the assistance aiming the minimal energy effort from the user. According to Table 2.4, Malcom et
al. [50] and Galle et a/. [51] reported studies of ankle-foot orthoses in which they tuned offline the
actuation onset for an array of values pointed as candidates. Both found similar values of optimal
actuation onset (43% and 42% of the gait cycle, respectively) with savings on energy consumption of,
respectively, 17% and 21%, considering unpowered conditions, and 6% and 12%, respectively, without the
assistive device. Moreover, in [51], an average power level of 0.4 W/kg was found to be helpful in reducing
the energetic cost of walking with the assistive device. Ding et a/. [52] studied the actuation onset timing
and the maximum peak timing of torque of an exosuit for hip extension assistance. The authors found
that, although all powered conditions produced a more efficient gait relatively to the unpowered condition

(more than 5% efficient), the differences between powered conditions were not significant.
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Koller et al. [24], listed in Table 2.5, performed an optimization of the actuation onset in a powered,
pneumatic exoskeleton for bilateral assistance, minimizing the energy expenditure of end-users through
a Human-in-the-loop control strategy. Under optimal assistance conditions, after 50 minutes of search,
the authors reported a decrease in the metabolic effort of almost 20%. However, this reduction was not
about unpowered conditions or walking without the exoskeleton but considering the energy expenditure

observed while the parameters were changed in real-time.

Another parameter that is being tuned in both offline and online optimization is the torque peak
magnitude. Quinlivan et a/. [53] found the optimization of the torque peak magnitude fostered by an ankle
exosuit reduced the energy expenditure when compared to unpowered conditions. They found that under
maximum conditions, i.e., torque magnitude of 0.707 Nm/kg, the energy expenditure could be reduced
in more than 20%, being this result statistically significant. Additionally, Zhang et a/. [34] reported a study
in which the torque peak magnitude was adjusted to each user. The authors also studied the best time
to reach the maximum peak, and the rise and fall time of torque pattern. In this study, the optimization
was accomplished in realtime and conducted with a tethered orthosis for ankle assistance. When
compared to [24], the optimization involved more parameters, finding the optimal values, in average,
after 64 minutes. Here, the authors performed a comparison with unpowered conditions and with a static
pattern of torque hand-tuned. For both situations, the energy cost of walking was significantly reduced by

more than 5%.

At last, Ding et al. [54] tuned the force applied to the exosuit for hip assistance considering a research
area of force magnitudes previously defined. The algorithm was faster comparing to the presented in [24]
and [34], finding the best parameters in, more or less, 22 minutes. The authors accomplished a reduction
of 17% considering walking without the device. For the three studies that investigated online parameter
optimization, the control parameters were optimized for each person, allowing a proper and personalized

assistance to each user.

2.5 Energy Expenditure Estimation by machine learning methods

According to Tables 2.3, 2.4 and 2.5, the energy expenditure is evaluated using, manly, respiratory
measurements, by measuring the oxygen consumption (\702) and the carbon dioxide production (VCOZ)
through indirect calorimetry. These energetic indicators were measured by a gas analyser. The K4bz
device (COSMED, Rome, ltaly) and Oxycon Mobile device (JAEGER, London, UK) are the most used

devices to evaluate the energy expenditure.
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Indirect calorimetry is considered a gold standard [55] and an effective method but not very ergonomic
to use due to its size and type of sensors, that give noisy and dynamically delayed data. Also, these
devices are often expensive and need trained specialists to use it [56]. To overcome this problem, new
types of wearable and comfortable sensors are being studied to evaluate the subjects’ physiological effort.
Heart rate (HR) could be a solution since it was found that, in physical activity conditions, this signal is
linearly related to the oxygen consumption [57]. As an alternative strategy, new approaches involving
machine learning algorithms are being studied to obtain generalized models that can predict the energy
expenditure using easy-to-obtain inputs, such as the angular velocity, the angular acceleration, the
electromyography (EMG), the breath rate (BR) and HR, among others. Table 2.6 resumes four recent
studies that exploited machine learning algorithms to predict the energy dynamics using wearable

Sensors.

A recent study, presented by K. Ingraham ef a/. [58], presents a linear regression model to predict the
energy expenditure while the subjects perform different tasks. As predictors, the authors used many
inputs, such as HR, EMG, electrodermal activity, oxygen saturation, skin temperature, among others.
They found that some of these inputs, namely acceleration, EMG and HR, present a high correlation with
the ground truth signal [58]. The results show the feasibility of this approach since the predictive
performance was considered reasonable, with squared errors rounding 1.0 W/kg. However, this error
should be compared with the total range of energy for a specific task to see the error magnitude and if it

is significant or not.

A similar approach was implemented by T. Beltrame ef a/. [59] using the oxygen uptake as the predicted
variable. In this study, the HR, the minute ventilation (MV), the BR, the hip acceleration and the walking
cadence were extracted as features for a random forest regression model. The results reveal that the
predicted signal is highly correlated with the ground truth signal (> 0.69), presenting an error that
propagates in direction to the equality line, i.e., to null bias. Furthermore, the regression model was able

to identify different walking tasks and resting demand.

Additionally, T. Beltrame et al. [56] explored the feasibility of a neural network, a multilayer perceptron
(MLP) with one hidden layer of 11 neurons, for this purpose. For this study, different features were used
to assess the oxygen and energy dynamics. In [56], the sex, the body mass, the time of exercise, the time
of recovery, the grade, speed and HR were used as predictors. It was found that this neural network is
suitable to predict the oxygen and energy dynamics with easy-to-obtain inputs, revealing a correlation of

almost 1 between the ground truth and the predictor.
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A different approach was implemented by Zhu et a/. [60], that used deep learning, a convolutional neural
network (CNN), to predict the energy expenditure. This CNN, very used in imaging processing [60],
consists of a two layers of features extractors and a regression MLP with one hidden layer. The authors
found a root mean squared error (RMSE) of 1.12 kcal/min. This result was compared to two stafe-of-the-
art models of energy expenditure prediction: an activity-specific ANN and a normal regression MLP. In
fact, in [60], the authors stated that the use of an artificial neural network for regression with a prior
activity recognition is a way to increase the performance of the prediction. Indeed, the authors found that,
in comparison with a normal MLP, the activity-specific ANN had better performance, with a RMSE of 1.59
kcal/min. Nevertheless, the error of using a CNN was 30% lower, obtaining better results. When the
authors used the model found by the MLP neural network, the RMSE increased 35%, obtaining a RMSE
of 1.73 kcal/min.

2.6 General Conclusions

The exoskeletons and orthoses have been developed since the last decades focusing on two main-folds:
to augment the humans’ strength and to aid persons with motor impairments due to aging or neurological

disorders, such as stroke or cerebral palsy.

According to the literature, these devices can be single or multiple segment systems, allowing,
respectively, a localized assistance focusing on each joint or on the total lower limb. They can be
controlled following five assistive modes, well designed and investigated in the literature, such as the
trajectory tracking control, the impedance control, the EMG-based control or the model-based control.
The trajectory tracking control and the impedance control were describe with more detail in this chapter.
Most of these robotic devices allow an assistance based on repetitive gait patterns, when controlled with
trajectory tracking control, and based on the user’s participation and effort, when controlled with the
impedance control. Nevertheless, these orthotic devices are not prepared to use these strategies to
promote an user-oriented assistance. Therefore, these strategies should be tailored to fit to each end-user

clinical case.

In this sense, a Human-in-the-loop control strategy was also introduced. This strategy uses the user’s
energy expenditure to control the assistance delivered by the assistive device. Towards a Human-in-the-
loop control strategy, the current sfafe-of-the-art of energy use on assistive devices was presented.
According to the literature, current research directions aim to reduce the energy expenditure of users

while walking with assistive devices. This energy expenditure is calculated manly with indirect calorimetry
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that uses non-wearable sensors as gas analysers. In an attempt to solve this problem, new approaches
using neural networks and regression models are being studied to allow an effective and non-biased
prediction of energy expenditure. The biggest challenge is to find an optimal model that fits well the energy
dynamics, allowing the disuse of high cost and non-wearable sensors giving place to small, comfortable,

ergonomic and wearable sensors.
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3.  SMARTOS — SMART WEARABLE ORTHOTIC SYSTEM

3.1 Introduction

The main goal of this dissertation addresses the implementation of a new control strategy named Human-
inthe-loop in a Smart Wearable Orthotic System - SmartOs. For that, one control strategy that modulates
the reference trajectory in realtime and another that modulates the orthosis compliance, will be
presented. Furthermore, an empirical study of the impact of using SmartOs in healthy subjects in terms
of energy, as well as two machine learning techniques for estimating the energetic effort of users while
walking with the orthotic device, will be presented. Therefore, it is necessary to present the SmartOs and

explain its current state.

In this chapter, an overview to the SmartOs project will be performed, presenting the two orthotic devices
that compose the project, as well as its technical aspects and further explanations that are required to

proceed to the following chapters.

3.2 SmartOs Description

SmartOs is a wearable, modular, bioinspired, smart and standalone lower-limb orthotic assistive system
capable of interacting closely to its users, allowing personalized assistance. Towards an orthotic device
intended to aid post-stroke survivors, it allows (i) a task-oriented and periodic gait training, (ii) an abnormal
gait pattern correction, decreasing the asymmetry between the healthy and the hemiparetic limbs, (iii) a
functional motor rehabilitation and (iv) a realtime gait analysis by tracking kinetic, kinematic and
muscular information. Being smart and bioinspired, it encourages the user to actively participate in the

gait training, allowing a more effective motor recovery.

The system is divided into two orthotic devices, the PKO and the PAFO, powered by a DC motor and
controlled by a hierarchical control architecture separated into high-, mid- and low-level stages. The
system is fed by a DC battery, making it completely wearable and suitable for clinical usage. Furthermore,
it is controlled by an intuitive Mobile Graphical Application, which allows all the system and therapy
settings. Also, the therapy data can be displayed and analysed making use of the Desktop Graphical

Application. Figure 3.1 presents the conceptual design of SmartOs.

SmartOs is an orthotic gravity compensated system that can be either a multi-segment device or a single-
segment device. Consisting of two orthotic devices, the PKO and the PAFO, it allows an effective recovery

for persons with motor impairments, as stroke survivors, at the knee and ankle joint.
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Figure 3.1: SmartOs conceptual design. Adapted from [61].

Following the proposal of Tucker ef a/. [10], the SmartOs is hierarchically controlled, diving the control
strategy into high-, mid- and low-level, that work at different rates. The high-level, implemented into a
Raspberry Pi 3 (SmartOs CCU), works at 100 Hz. It works closely with the mid-level control, that is
implemented STM32F4-Discovery at 1000 Hz. On the high- and mid-level, the system provides four types
of control: (i) User-Orthosis Interaction Based Control, a strategy based on the interaction torque between
the user and the orthotic device, (i) Trajectory Tracking Control, allowing a repetitive gait training with
patterns of walking generated through the healthy trajectory, (iii) Adaptive Impedance Control, which
adapts the stiffness of the joint considering the user’s needs assuming more or less control of the therapy
and (iv) Electromyography-Based Control, allowing a control strategy based on the muscular information

during the gait.

The low-level, also known as Low Level Orthotic System (LLOS), is also implemented in a STM32F4-
Discovery and it works at 1000 Hz. On the low-level stage, the control law is applied, receiving the
reference trajectory from the above stages and controlling the DC motor with a PID controller, and the
gravity compensation effect is performed. These four assistive strategies are implemented in the two

orthotic devices, except the adaptive impedance control that is not closed for the ankle orthosis.

SmartOs endows a Wearable Motion Lab (WML) that includes three main wearable sensor systems: (i)
the EMG, (ii) the InertialLAB and (iii) the GaitShoe. The EMG consists of four PCBs allowing the
measurement of muscular activity directly from four muscles at the same time. It is possible to be

extended up to eigth PCBs to measure four more muscles.
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InertialLAB is formed by wearable IMUs to monitor the biomechanical motion of the lower limbs and the
GaitShoe includes FSRs to measure force-ground contacts to perform the gait segmentation. Using the
signals from the Wearable Motion Lab, a gait analysis can be performed through the Gait Analysis Tools.
With this feature, the SmartOs is capable of recognizing the user's motion intentation, his/her disability
level, as well as the gait speed estimation and gait event detection. Figure 3.2 displays the wearable
actuation system and the wearable motion lab, including the two orthotic devices that compose the

SmartOs.

@ ochattery @ LLoSinterface @ PKO&PAFO @ PAFO ©Q vecensors

QO smartosccu @ Power Supply @ PKO @ viLinterface @ InertiallAB

Figure 3.2: SmartOs system overview. Adapted from [61].

The information gathered through the Gait Analysis tool is transmitted to the hierarchical control, which
process this information and adapts the system control. As the brain of the system, the Hierarchical
Control Architecture sends the physiological and biomechanial signals into a Desktop Application, giving
visual feedback to the user and to the physioterapist. Also, with a brand-new wearable vibrotactile
biofeedback system being developed, the SmartOs will be also capable of interacting even more with its
users, encouraging his/her participation in the therapy, improving the user's gait recovery. At last, the
system provides a user-friendly Mobile Graphical Application used to (i) introduce the demographic data,

as the age and height; (ii) to perform the assistance settings, for example the orthotic device to be used,
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the type of desired control, the gait speed, the gravity compensation effect, amoung others; and (iii) the
monitorization settings, i.e., if the user or therapist want to activate the InertialLAB, the EMG or the
GaitShoes/FSRs. Figure 3.3 displays the mobile application and its features, as well as the desktop

application intended to monitor the assistance in real-time.
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Figure 3.3: Examples of layouts from the mobile (top) and desktop applications (bottom). Adapted from [61].

Considering the technical aspects, the SmartOs consists of two orthotic devices developed for a localized
assistance, the powered ankle-foot orthosis and the powered knee orthosis. Both devices are originally
part of the H2-exoskeleton from Technaid S.L., Spain. Its velocity can range between 0.5 to 1.6 km/h by

a brushlees DC motor coupled to a gearbox, capable of providing an average torque of 35 Nm and peak
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torques of 180 Nm. Both PAFO and PKO have three embedded sensors for gait analysis purposes: (i) a
precision potentiometer, used to estimate the device angle position; (ii) four strain gauges performing a
full Wheatstone bridge used to estimate the human-orthosis interaction torque; and (iii) one hall effect
sensor, used to estimate the motor’s angular speed, current and torque. The PAFO device is composed

by two additional FSRs, at the heel and toe, to measure the ground reaction force.

Table 3.1 presents the main techinal aspects of both orthotic devices, including the gait speed, the

allowed angle, the DC nominal current, voltage and the nominal torque.

Table 3.1: Main technical aspects of the SmartOs system [62]

Values
Parameters Units Orthotic Device
Minimum Average Maximum Resolution
Gait Speed km/h PAFO 0.5 — 1.6 0.1
PAFO -20 — 20 0.5
Angle °

PKO 3 — 98 0.5

Nominal
v PAFO and PKO — 24 - -

Voltage

Nominal
A PAFO and PKO — 4.33 — —

Current

Nominal
Nm PAFO and PKO 0 35 180 —

Torque

3.3 General conclusions

In the current chapter, the SmartOs system was presented. It was performed an overview of the two
orthoses that compose the system, as well as its main components and sensor systems. As the work
developed in this dissertation addresses the implementation of a strategy that modulates the trajectory
of the system and the joint compliance in realtime, some of the components presented in this chapter
will be used and modified. The high-level control architecture and the front-end mobile application will be

used and updated to fulfil the goals outlined in Chapter 1.

The following chapters present the work developed in this dissertation, as well as the theoretical concepts

necessary for its elaboration and the results achieved.
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4. ADAPTIVE USER-ORIENTED TRAJECTORY TRACKING CONTROL

4.1 Introduction

As reviewed in Chapter 2, one of the main control approaches implemented on orthotic devices intended
for gait rehabilitation and assistance is the trajectory tracking control using, for that, a standard gait
pattern obtained with empirical studies of the biomechanics of the human body [63]. The main goal of
this control strategy is to mimic the gait pattern of a healthy subject, allowing a repetitive training for
persons with motor impairments, incapable of performing a smooth trajectory as the humans’ one.
However, most of the current orthoses do not use this control strategy to promote a wser-oriented
assistance. In hemiparetic patients, especially persons who suffered a neurological disorder as stroke is,
the gait is extremely affected and, as natural, the clinic board for each one is different, existing patients
with different scales of disability. Considering this, it is important to have a strategy oriented to the user’s

needs, capable of providing an assistance fitted to their incapacity.

Towards a Human-in-the-loop control, an adapted strategy to the traditional trajectory tracking control is
presented in this dissertation, named Adaptive User-Oriented Trajectory Control. For each joint composing
the SmartOs, a solution to design, build and implement different trajectories tailored to the user’s needs
was developed. The following subchapters will be divided into the two orthotic systems that compose the
SmartOs project, and, for each, it will be presented the strategy that was implemented for creating, in

real-time, new and different trajectories, as well as the validation protocol and the respective results.

4.2 User-Oriented Trajectory Adaptation

According to J. Perry [64], the ankle joint presents a repetitive rotation in the sagittal plane which is
frequently called dorsiflexion and plantarflexion that represent, respectively, the upward and downward
movement of the foot in relation to the floor. Along the gait cycle, the ankle motion is equally divided into
these two rotations, summing four sub-phases during stance and swing. In the stance phase, while the
foot is leaning on the floor, the walking pattern presents three of the four sub-phases: a first plantarflexion
arc, in which the angle normally strikes the floor with a small angle and performs a downward motion
towards negative angles, crossing the neutral angle, i.e., zero degrees, a first time until it reaches again
the neutral angle. Afterwards, the ankle regains positive values of angle, reaching its maximum, producing
the second arc and the first sub-phase of dorsiflexion. After reaching the maximum value, the angle starts

to decrease, crossing the neutral angle for the third time. In this time, the foot is almost leaving the floor,
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passing from stance to swing. In this third arc and second sub-phase of plantarflexion, the ankle angle
reaches again another extreme and starts to increase, crossing the neutral angle for the fourth time.
Finally, the last sub-phase of dorsiflexion starts until another heel strike is performed [64]. Therefore, the
ankle joint angle is characterized typically by four passages into the neutral angle, dividing the ankle

motion into the dorsiflexion and plantarflexion phases.

Considering the knee joint, the gait cycle is divided into flexion or extension movements if, respectively,
the knee is bending, obtaining a positive angle, or is in full extension, obtaining an angle rounding zero
degrees. During the stance phase, the knee angle is almost invariant, with a variation of nearly 5 degrees
that, considering the total angle variation, it corresponds to less than 10% of the ROM. However, the same
is not valid for the swing phase, in which the joint displays an important role in the gait pattern [64]. In
this important phase, where the limb is projected to the front, allowing the execution of a new stride, the

joint performs an angle variation of almost 50°, i.e., about 90% of the gait variation.

Figure 4.1 displays the ankle and knee trajectories created by cubic interpolation of healthy subjects that
are used as the reference for the SmartOs project and follows the pattern described previously and

presented by J. Perry [64].

= Ankle Reference Trajectory = Knee Reference Trajectory
= = Neutral Angle

Ankle Angle (%)
Knee Angle (%)
8

0 10 20 30 40 50 60 70 B0 90 100 0 10 20 30 40 50 60 T0 80 90 100
Gait cycle (%) Gait cycle (%)

Figure 4.1: Ankle trajectory selected as the reference for a PID controller of the SmartOs project.

The reference is sent to a PID controller with negative feedback that continuously calculates the error e(?)
between the reference points and the measured variable which is, in this case, the ankle angular position.
Subsequently, the error is transformed into a controller’s response, considering the proportional,
integrative and derivative coefficients, and sent to an actuator which interprets it and performs a

correction to the measured variable. Figure 4.2 displays the block diagram of the control strategy.
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Figure 4.2: Block diagram of the position tracking control implemented in the SmartOs.

A PID controller executes a mathematical equation that conjugates three coefficients: the proportional
(Ky), the integrative (K) and the derivative (K) gains, according to equation (4.1). The weight of these

coefficients will influence the response u() that is sent to the system’s actuator.

de(1)
u(t) = Kpe(t) T K; ; e(mdt+ Ke—— Equation (4.1)
The gains should be correctly tuned to provide stability to the system and avoid oscillations that could
affect and compromise the actuator’s response. Therefore, the coefficients should be properly calculated

in order to be suited for the application. In the SmartOs system, the controller’'s coefficients (listed in

Table 4.1) were tuned using the Ziegler-Nichols method.

Table 4.1: Controller's proportional, integrative and derivative gains found for the SmartOs project

Controller’s Coefficients Adopted values
K 90
K 15
I 15

As the high-, mid- and low-level controls work at different rates, as stated in the previous chapter, and
considering the speed that is configurated, the trajectory length is resized. Using an empirical equation
previously found to adjust the time of each sample considering the orthosis’s speed — Equation (4.2) -
the number of points that compose the final trajectory is calculated and the resized trajectory is sent to

the PID controller, each sample at a time.

t [ms] = -34.62 x Gait Speed + 107.31 Equation (4.2)
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4.2.1 Ankle Trajectory Adaptation

The fact of creating different trajectories tailored to the user’s needs is an important step to provide a
more effective and user-oriented rehabilitation to persons with motor impairments. As mentioned in the
beginning of section 4.2, the ankle joint angle is divided into four moments of dorsiflexion and

plantarflexion movements, depending on the foot is moving upwards and downwards, respectively.

The strategy developed to create user-oriented trajectories is based on realtime adaptations of the
reference trajectory for the four sub-phases of the gait cycle. As the changes are accomplished in real-
time, the algorithm should be capable of providing a correct pattern, maintaining always the integrity and
continuity of the ankle angle position. Also, the algorithm should be quick and effective in order to
promote, in realtime, a smooth transition, imperceptible to the users. Considering the four sub-phases
of ankle angle position, the adaptations can be performed regarding the neutral angle, as shown in Figure

43.
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Figure 4.3: Sub-phases of ankle joint angle suited to perform a user-oriented trajectory adaptation: (1) and (3) plantarflexion
movements, (2) and (4) dorsiflexion movements.

The joint angle presented in Figure 4.3 consists of a cubic interpolation with /=49 samples of a healthy
trajectory, sent each one at the time as a reference to the PID controller. To find the indexes corresponding
to the transitions between sub-phases, the points in which the neutral value is achieved must be found.
The neutral angle was chosen to be the base of the trajectory adaptation since the approximation of the
trajectory to zero will produce the effect of adaptability all over the Aernel. After finding these indexes, a

kernel of size Nwas calculated considering the percentual factors to be applied to each sub-phase.
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The percentual factors, controlled with the mobile application by the physiotherapist, are an integer
between a minimum of 60% and a maximum value of 100%, with a resolution of 1%, that corresponds to
a change in the healthy trajectory. Applying this kerne/to the array of samples, a new reference trajectory
is created. The minimum trajectory was found empirically analysing data from post-stroke subjects and
considered the minimum trajectory that the user must perform. Nevertheless, this value is passive to be
changed considering the degree of disability. As an additional feature, the algorithm must promote a
trajectory adaption of the reference as whole, allowing to the physiotherapists to adjust the entire

trajectory.

As explained in Chapter 3, the SmartOs control is divided into three hierarchical levels (high-, mid- and
low-level), as introduced by Tucker ef a/. [10]. The algorithm to perform the trajectory adaptations was
inserted into the high-level control, as it is the control level responsible to generate the gait pattern
trajectories. Furthermore, the mobile application was modified in order to allow a realtime changing of
the trajectory. Figure 4.4 shows the block diagram of the high-level trajectory adaptation approach for the

ankle orthosis.
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Figure 4.4: Block diagram of the ankle trajectory adaptation algorithm.
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As a result of the trajectory adaptations, Figure 4.5 shows the simulation of different trajectories that can
be created considering the user's needs. The dark blue is the reference trajectory of healthy users used
in the current position tracking control, and the black is the adapted trajectory proposed in this

dissertation.
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Figure 4.5: User-oriented trajectories simulation following the developed strategy, in which the percentual factors were: (1)
90%, 100%, 60% and 60% of healthy reference for, respectively, the four sub-phases; (2) 100%, 60%, 90% and 80% of healthy
reference for, respectively, the four sub-phases; (3) 60% of healthy reference for the entire trajectory; and (4) 80% of healthy
reference for the entire trajectory.

As the main goal of this control strategy is to promote an user-oriented gait training, it is intended that
the physiotherapists change continuously the trajectory that the users are performing at the same time

that the patients are improving in the rehabilitation. Considering the proposed strategy, and with a

resolution of 1%, the number of different trajectories arises to almost 92 thousand.

In the sub-sections 4.4 and 4.5, the algorithm’s implementation is explained with more detail, as well as

the changes that were performed to the front-end mobile application.
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4.2.2 Knee Trajectory Adaptation

For the knee trajectory adaptation, the same principle of thought was adopted. However, as described in
this chapter and in [64], the knee trajectory is not properly divided into four phases, as the ankle trajectory
is. By opposition, the knee is characterized by a single phase of flexion. As such, the strategy was designed
considering the stance and swing phases, constructing an adaptive Aerne/ considering the percentual
factors that are attributed by a request of the physiotherapist. Figure 4.6 shows the division of the knee

trajectory into the two possible phases of change, i.e., the stance and swing phases.
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Figure 4.6: Phases in which the knee trajectory will be adapted: (1) stance and (2) swing phases.

In this case, the trajectory cannot be changed considering a fixed angle value (i.e., a basis value), as it
was planned for the ankle joint, because it would produce an abrupt change in the transition of the stance
phase to the swing phase, i.e., around 60% of the gait cycle. Therefore, an adaptive Aerme/ considering
the percentual factors received for the two phases must be constructed, allowing a smooth transition
between them. However, this point alone is not sufficient to adjust the trajectory properly. As such, the
inflection points of the stance and swing curve were found as auxiliary points to promote a correct
trajectory adaptation. Following this strategy, the percentual factors will be directly applied between the
auxiliary points in which the knee extremities are included. The remaining points that compose the kerne/
will be adapted considering the percentual factors for each phase. Figure 4.7 displays the knee reference

trajectory with the auxiliary points used to adapt the trajectory.
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Figure 4.7: Knee reference trajectory auxiliary points used to adjust the trajectory. The green dots correspond to the knee
extremes, in which the percentual factors will be directly applied. The red dots consist of the auxiliary points to construct the
adapting kernel.

In Figure 4.7 is displayed the knee trajectory divided into two lines: the black curves correspond to the
kernel zone in which the percentual factors received from the mobile application will be directly applied
to the trajectory; and the blue curves correspond to the 4erne/zone in which the percentual factors must

be adapted.

To find the auxiliary points it was developed an algorithm considering the monotony of the knee trajectory.
The first step was to calculate the zeros of the first derivative in order to find the angle extremes.
Considering this step, the green dots and the red dot around 45% of the gait cycle, represented in Figure
4.7, were found. Then, the zeros of the second derivative were computed. Thus, the points in which the
knee angle changes its concavity were discovered. This step was only applied to the swing phase. As
such, the red dots rounding 65% and 90% of the gait cycle were found. Finally, the initial and final points
were also considered as auxiliary points since they represent the stride initialization and finalization,
respectively. Once the auxiliary points are found and if it is presented a request to change the trajectory,

the adaptive kerne/can be constructed.

Considering an array A of N =49 samples, A € R, and Fs and Fsv the percentual factors of stance and

swing phases, respectively:
1. Between the first and second red dots, the percentual factor Fsris directly applied;

2. Between the second and third red dots, the kernel/is adapted considering the difference between

Fswand Fs and the length of the array section;
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3. Between the third and fourth red dots, the percentual factor Fs is directly applied;

4, Between the fourth and fifth red dots, the Aernel/is adapted considering the difference between

Fsand Fs and the length of the array section.

Figure 4.8 illustrates the block diagram of the developed strategy for the knee angle adaptation.
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Figure 4.8: Block diagram of the developed strategy for the knee trajectory adaptation.

As for the ankle trajectory, a minimum value for the percentual factors was also considered. Analysing
the gait pattern of stroke survivors, some patients walk with the knee full extended or with a minor angle,
and in some cases, with an extremely high angle in the swing to compensate the ankle impairment.
Moreover, a low value of reference would produce very low values in the stance phase, as the knee was
completely locked. As such, a minimum value of 75% of the healthy reference trajectory was adopted.
Nevertheless, this value is passive to be changed considering the degree of disability. The maximumvalue

allowed was 100% of the healthy trajectory, as stated for the ankle orthosis.
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With the proposed strategy, 300 different modes of assistance are allowed, considering a minimum

resolution of 1%.

Figure 4.9 displays four different trajectories tailored to the user’s needs constructed with the developed
strategy. As can be seen, by the simulations, the trajectory’s integrity and continuity is ensured while

constructing new references personalized and adjusted to the user’s degree of disability.
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Figure 4.9: User-oriented trajectories simulation following the developed strategy, in which the percentual factors were: (1)
95% of healthy reference for stance and 75% for swing; (2) 75% for stance and 95% for swing; (3) 90% of healthy reference for
the entire trajectory; and (4) 75% of healthy reference for the entire trajectory.

4.3 Algorithm Implementation

As stated in the previous sub-sections, the developed strategy to adapt the reference trajectory tailored
to the user’s needs, was directly implemented into the high-level of the hierarchical control architecture

of the SmartOs system.

Figure 4.10 displays the class diagram that explicit the relationship between the classes responsible for

creating the reference trajectories.
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<<TrajectoryGenerator>>

frequencyReference: uint32 t
Orth ONOFF: bool
Trajectories: float

ready: bool

stiffnessUpdate: bool
factor: vector<float>

type alteration: string

SHe e e e e e e

TrajectoryGenerator(uint32 t): void
set_OrthONOFF (bool): bool
SetFactor(uint8 t, int8 t): void
GetReady (void) : bool
SetStiffnessUpdate (bool): void

v
A

P

start TrajectoryGeneration(): bool
stop TrajectoryGeneration(): bool
setDefaultValue (uint8 t): void
reset(): bool

timeout NewReference () : bool

get NewReference (uint8 t, float, uint
prepare NewReference(): bool
existSafe(): bool
A

+ o+ ko kot o+ o+

<<PassiveMode Trajectory>> <<Healthy Trajectory>>

+ speed: float
+ updateTick: uint32 t

+ PassiveMode Trajectory (bool)

+ start TrajectoryGeneration(): bool + Healthy_ Trajectory(bool, foal)

+ stop_TrajectoryGeneration(): bool + changeSpeed (float): bool

+ setDefaultValue (uinté t): void + setDefaultValue (uint8 t): void

+ reset (): bool , , + reset(): bool -

* getﬁNewRéference{u1nt37t, float, uintd t) + get NewReference (uint8 t, float, uint8 t)

* prepars NewReference () : bool + pre}dre NewReference()? bool N
+ existSafe(): bool

<<User Trajectory>>

- speed: float

- updateTick: uint32 t

- Zero, Points: vector<int>

- KneeKernel, AnkleKernel: float[49]
- default_val: float

User_Trajectory(bool, float)
changeSpeed (float) : bool
crossingValue (float, int, int): bool
KneeStanceSwing () : bool
AnklelLocalExtremes () : bool
KneeKernelConstruction () : bool
AnkleKernelConstruction () : bool
ChangeTrajectory (float, float): bool

+ o+ o+

setDefaultValue (uint8 t): void

reset(): bool

get_NewReference (uint8 t, float, uint8 t)
prepare NewReference(): bool
existSafe () : bool

+ o+ ok o+ o+

Figure 4.10: Class diagram that displays the classes responsible to generate the reference trajectories.

In the high-level of the SmartOs control system, a superclass named 7rajectoryGenerator is responsible
for creating the reference trajectories and controlling the assistive strategies for the two orthoses. Two
subclasses, the Passive_ModeTrajectory and Healthy Trajectory receive by inheritance some of the
methods of the superclass, allowing the implementation of each strategy. In order to implement the
Adaptive User-Oriented Trajectory Control into the SmartOs system, the same line of thought was

followed. Thus, a new subclass, or “child”, called User_Trajectory was created. In this class, the Aerne/
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is constructed every time a new command is received. If the ankle orthosis is chosen, the public methods
crossingValue, AnklelocalExtremes are invoked to, respectively, find the points in which the alterations
will be applied and to find the local extremes in each trajectory’s sub-phase. By analogy, if the knee
orthosis is chosen, the method AneeStanceSwing is invoked to find the points in which the trajectory’s
adaptation is based-on. Considering the defaul/t_val, which is the initial default value of the reference, the
first trajectory is defined. This initial value, which should be configurated in the mobile application, is
defined in the SmartOs using the virtual method sefDefaultValue. Subsequently, the system waits for new
commands from the user. If a trajectory change is requested, the vector facfor of the superclass will be
fulfilled. The algorithm analyses if the change is to be applied to the entire trajectory (if it is received just
one value), or per-phases (if more than one value is received) and changes the #ype_alteration variable
to “ALL PHASES” or “PHASES", respectively. Regardless of being chosen the adaptation to the entire
trajectory or between phases, the methods AneeAernelConstruction or AnkleKernelConstruction are

invoked, creating the Aernels and applying the changes.

An important fact is that these changes must only be applied to the next stride. This aspect aims to
minimize sudden changes in gait pattern, ensuring the integrity and continuity of the gait. Consequently,
a control system was implemented. The virtual method prepare_NewReference is responsible to increase
the trajectory index, sending point to point the next position to the mid- and low-level controls. Whenever
the index is reset, the size of the vector facfor is analysed. If the length is different from zero, it means
that a trajectory adaptation was requested. It is just in this moment that a trajectory adaptation can be
performed. This means that, although a request command is sent, the algorithm will not produce any
changes until the index is reset. Finally, due to mechanical constraints, another control system was
applied to prevent blockage of the system when an angle outside the allowed ROM is calculated. This
feature is more important into the knee orthosis since an alteration in the stance phase can produce

lower values of angle, near zero degrees, which is a value that the system cannot support.

As described in Chapter 3, the SmartOs system includes a user-friendly mobile application to set up the
orthosis, the assistive strategy, the speed, the gravity compensation effect, among other configurations
that the system allows. In order to promote an online trajectory adaptation, the mobile application was
updated to introduce the new control strategy. Figure 4.11 displays the adaptations performed to the

mobile application in the configuration menu.
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Figure 4.11: Configuration menu adaptations in the SmartOs mobile application.

Once the orthosis and speed are configurated, the physiotherapist must choose the assistive strategy for
the rehabilitation session. To choose the Adaptive User-Oriented Trajectory control, first, the user must
click the on the therapy option and choose the Therapy Position. Afterwards, a new layout will appear
(layout 2) showing four types of assistive strategies which all use the trajectory as the control variable.
The user must click in the option User Trajectory and a new configuration box will appear. This box,

shown in layout 3, is used to choose the initial trajectory considering the healthy reference. As the ankle
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orthosis is selected, the value 60% appear per default. However, the user can click on this box and a new
layout, named User Trajectory Default Value, with a progress bar appears. This progress bar ranges
between 60% and 100%, allowing the physiotherapist to choose the adequate value for his/her patients
considering their disability and degree of locomotion. If the knee orthosis is chosen, the default value will

be 75%, as described in the previous sub-sections of the current chapter.

Once the adequate value is chosen, in layout 5, the user must click in the OK button to proceed to the
next menu. Internally, this information is passed to the main activity, where all variables are configurated.
After the session configurations are performed, the therapy can start. For realtime adaptation of the
trajectory, the physiotherapist should click in the button Keal 7ime Settings and a select the Reference
option. Depending on the configurated orthosis, a new layout with two options, as shown in Figure 4.12,

will appear.

Reference Trajectory Options

All Trajectory All Trajectory

Different Phases ) Different Phases ‘l _)E

Trajectory Reference 1st Plantarflexion Phase

Change current Speed Values.

Speed — e

1st Dorsiflexion Phase

—l)
Reference
Change current reference gain. 2nd Plantarflexion Phase

e

2nd Dorsiflexion Phase
_.

DEFAULT CANCEL 0K DEFAULT CANCEL

Figure 4.12: Application layout for changing the PID reference: (1) the configuration menu to select the change in speed or
reference; (i) the reference settings considering all trajectory; (iv) the reference settings considering gait phases.

The toggle button to configure the entire trajectory is selected per default. However, the physiotherapist
can change it, clicking either in that button or clicking in the button to adapt the trajectory per phases.
Depending on the choice, one or more progress bars are shown in order to configure the assistance as

required. If the ankle orthosis is selected, four progress bars can be configurated, one for each phase of
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the gait cycle, ranging between 60% and 100% of the healthy trajectory. If the knee orthosis is selected
instead, two progress bars can be configurated, one for the stance phase and another for the swing
phase. In this case, the progress bars range between 75% and 100%. After the trajectory adaptations are
concluded, the physiotherapist must click in the OK button, sending the configurations to the main
computer that controls the system. Another feature in this layout is a new button, called Default
introduced to instantly request the system to configurate the default trajectory that was chosen in the

beginning of the therapy.

4.4 Validation Protocol

In order to validate the control strategy, a set of experiments was carried out. The main goal was to assess
the joint angle produced by the orthosis and the real joint angle that the subject is producing. Also, the
algorithm latency and the PID response to the trajectory adaptations were evaluated to investigate the

time-effectiveness of the proposed strategy.

The following sub-sections will describe the validation protocol followed to perform the experiments with

healthy users and the results that were achieved.

A. Subjects

Seven healthy subjects (body mass: 70.9 + 7.00 kg, height: 179 + 4.37 cm and age of 25.4 + 1.13
years) were recruited to perform the experiments. The subjects accepted voluntarily to perform the
empirical evaluation, with the main goal of assessing the gait integrity and continuity when the trajectory
adaptations are performed. All subjects signed a consent form to be part of the study. Subjects’ rights
were preserved and, as such, personal information provided was remained confidential. Data was

collected at the University of Minho.

B. Protocol and Data Acquisition

Kinematic and kinetic data, as joint angle, joint acceleration and segment acceleration, joint and segment
angular velocity, were recorded using the ankle and knee orthoses, once at a time, in sync with Xsens
system (Xsens Techonologies B.V., Enschede, The Netherlands). Data was recorded at 100 Hz, for both

orthoses and Xsens.

First the subjects were instructed to remain in stand position to put the inertial units in the correct places.

As the data of interest is only of the lower limb, the Xsens’ lower limb model was used. For that, seven
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inertial units were used: one for the pelvis, one for each thigh and shank and one for each foot. Once the
sensors are correctly positioned, the system was calibrated, following the steps stated by the
manufacturer. Then, the orthosis was placed in the respective joint and the connections of the entire

system were inspected. Figure 4.13 displays the experimental set up for the control strategy validation.

@ DC battery O SmartOs CCU o LLOS hardware O Power Supply O Ankle Orthosis

@ KneeOrthosis () Xsens Inertial Units

Figure 4.13: Experimental setup for the control validation for both ankle and knee orthoses.

Subsequently, the subjects were instructed to perform a familiarization trial, walking with the orthotic
system with 100% of the healthy trajectory control. Then, a 4-minute or 5-minute trial, for the knee and
ankle orthosis, respectively, was performed. The experimental trial was continuous since one of the goals

was to assess the trajectory adaptation and the PID response in real-time conditions.

For the ankle orthosis, five conditions were assessed: (i) 100% of healthy trajectory, (ii) 60% of healthy
trajectory, (iii) 80% of healthy trajectory, (iv) 90%, 100%, 60% and 60% for each phase described in the
sub-section 4.2.1 and (v) 100%, 60%, 90% and 80% for each phase described in the same sub-section.

Each condition had a duration of 1-minute and the subjects did not have knowledge of them.

For the knee orthosis, four conditions were evaluated: (i) 100% of healthy trajectory, (ii) 90% of healthy
trajectory, (iii) 100% and 75% of healthy trajectory for stance and swing phases, respectively, as described
in the sub-section 4.2.2 and (iv) 100%, 95% of healthy trajectory for stance and swing phases, respectively.

Once more, each condition had a duration of 1-minute.
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For each orthosis, three trials of 1-minute condition were performed for 1.0 and 1.6 km/h, which are the

main velocities of the system.

During the experiments, the subjects were instructed to comment the assistance, evaluating the comfort
during the trajectory adaptation, i.e., if it is comfortable and suited to their normal walk and if they feel

that they are contradicting the orthosis movement or not.

C. Data Processing and Analysis

Data from the orthosis sensors, i.e., reference trajectory, real trajectory and PID output, and from the
Xsens system, i.e., the joint and segments angles, accelerations, angular velocities and angular
accelerations, were filtered using a fourth order zero-lag low-pass Butterworth filter with a cut-off frequency
of 5 Hz, as proposed by Winter [65]. A gait cycle normalization was performed for each 1-minute

condition, for both assisted and non-assisted limb in order to evaluate the level of walking symmetry.

The mean error, evaluated with the root-mean squared technique (RMSE), presented in Equation (4.3),
was calculated stride to stride, condition to condition and trial to trial. The error was calculated following
the root-mean squared technique since this method is more sensitive to outliers, giving relatively high

weight to large errors when compared to the mean error.

Equation (4.3)

The error was, then, normalized considering the ROM in order to not create erroneous interpretations of

low errors, and evaluated for each condition that was tested.

With the Xsens data, features that are representative of the gait were extracted and evaluated with a
hypothesis test, following a #sfudent distribution. For the current analysis, a level of significance of 5%

was chosen, meaning that the hypothesis test was performed with a level of confidence of 95%.

According to Patterson et a/. [66], the level of symmetry can be evaluated considering five spatiotemporal
parameters (SP): (i) the step length, (i) the swing time, (iii) the stance time, (iv) the double support time
and (v) the ratio between swing and stance time. In the following dissertation, the second, third and fourth
parameter reported by [66] were evaluated and another one was introduced: the total ROM. For each
spatiotemporal parameter, normalized by stride for each subject and condition, the symmetry ratio was

evaluated, considering Equation (4.4), and tested for each condition, assuming the null hypothesis (H)
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that there are no statistically significant differences for each spatiotemporal parameter considering the

assisted and non-assisted fimb.

SP assisted

Equation (4.4
SP non-assisted : ( )

Symmetry ratio=

4.5 Results and discussion

The main goal of this control approach was to create a position tracking control strategy that was fitted
to the user’s needs, creating different trajectories tailored to the end-user’s degree of impairment. The
current position control strategies are used in rehabilitation to promote a repetitive gait training, imposing
to the user a predefined gait trajectory. Indeed, this strategy gains importance due to the degree of
impairment of many neurological affected persons. However, to be a truly rehabilitating therapy, this
strategy should be adapted to promote a user-oriented therapy, where the physiotherapist can adjust

properly the trajectory considering the motion impairment.

The trajectory adaptation is performed in real-time using a user-friendly mobile application, being
mandatory that the algorithm latency is as low as possible, promoting a smooth adaptation and fitted to
the system’s timing. Latency was calculated using a timer in the high-level of the SmartOs system, where
it was evaluated the elapsed time after a request to adapt the trajectory was sent. It was found that, for
both orthoses, the algorithm is fairly fast, being imperceptible, in temporal terms, for the users when the
orthoses perform the trajectory adaptation. Table 4.2 show the results of the algorithm latency considering

the type of trajectory adaptation for each orthosis.

Table 4.2: Trajectory adaptation algorithm latency for ankle and knee orthoses

Type of orthosis Type of trajectory adaptation Latency
Entire trajectory =~ 7.00 ys
Ankle
Per phases = 207 s
Entire trajectory =~ 7.00 ys
Knee
Per phases = 17.0 us
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As the algorithm latency is small in comparison to the sampling time of high- and low-level control
systems, which are, respectively, 10 ms and 1 ms, the realtime trajectory adaptation promotes the

continuity of the walking pattern, which was required for this control approach.

The following discussion will be divided into two parts, A and B, considering both ankle and knee orthoses.
Here it will be discussed the trajectory adaptation in realtime considering the conditions that were

evaluated.

45.1 Ankle Orthosis

In a general way, the controller was able to perform the adaptations in real-time without interfering with
the continuity and integrity of the walking pattern, as it can be seen in Figure 4.14. This requirement was
accomplished since the trajectory adaptations were performed in each stride initialization, without

promoting changes instantaneously.
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Figure 4.14: Trajectory adaptations evaluated as described in sub-section 4.4.1 - B for one subject. C1, C2, C3, C4 and C5
represent the five conditions that were tested.
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Considering Figure 4.14, that shows the trajectories transitions during one experimental trial, it can be
seen that, indeed, the trajectory adaption, marked by a dashed line, does not interfere with the correct
functioning of the system, although the subjects were able to identify the adaptations since the imposed
trajectory was different between conditions. Also, it can be seen that the orthosis behaviour, that
translates into the subject’s behaviour, changes stride to stride, producing an error. Thus, a gait cycle
normalization between each condition is important, to analyse the subject’s behaviour regarding a mean
stride. Figure 4.15 display the stride normalization considering the trials and subjects universe for each
1-minute condition, for 1.0 km/h and 1.6 km/h. The first condition, described as (i) in sub-section 4.4.1
- B, was used as a “control condition”, in which the users walked with the orthosis at 100% of the healthy

trajectory proposed by Winter [65].
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(continuation)
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Figure 4.15: Stride normalization regarding the trial’s and subject’s universe for the ankle joint and walking at 1.0 km/h (in
the left) and 1.6 km/h (in the right) for the tested conditions.
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Findings of Figure 4.15 show, in a general way, that the users followed the orthosis pattern for all
conditions and speeds. This observation was more evident during the first phase of dorsiflexion for the
first and fourth condition, particularly in the trajectory’s extreme, where the absolute error was close to
zero. By the other side, the error between reference and user’s trajectory was more evident in the second
phase of plantarflexion, statement valid for all conditions and for the two speeds. Moreover, in the first
phase of dorsiflexion, for the second, third and fifth condition, the mean error was also higher, especially
for 1.6 km/h. This result shows that, as healthy users, there is interaction between subjects and orthosis.
If the analysis is made considering also the orthosis’ speed, it can be observed that for a higher velocity,
the error is slightly larger regarding the reference trajectory. Regarding all subjects, there is a smaller
variation between the subjects’ behaviour (or orthosis real angle) for most of the phases, except the first
phase of dorsiflexion, in which seems to exist a slightly larger variation among subjects since the standard
deviation is higher. Also, the last phase of dorsiflexion, when the subject is preparing itself for a new gait

cycle, the subject’s trajectory is more curvilinear and closer to the reference trajectory.

Figure 4.16 displays box plots of RMSE and normalized RMSE regarding the five conditions for 1.0 km/h
and 1.6 km/h.
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Figure 4.16: RMSE for the five conditions evaluated for the ankle orthosis. In the left, it is presented the absolute RMSE and,
in the right, the normalized RMSE by ROM. C1, C2, C3, C4 and C5 represent each one of the five conditions.
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By analysing Figure 4.16, it can be observed that the RMSE decreases when the trajectory adaptations
praise lower ROM, i.e., from second condition forward. This error is less than 2 degrees for both speeds
which, in absolute terms, is not considered a high error. Normalizing the RMSE regarding the ROM for
each condition, the value starts to increase in the second trajectory condition as the total ROM is lower,
when compared to the healthy trajectory proposed by Winter [65]. This finding shows that RMSE when
compared to the subject’'s ROM, can be significant. However, the median normalized squared error does
not overcome 12% of the ROM for all conditions, even when the total ROM is slightly smaller, as in

condition 2, where the ROM is 40% lower than the healthy trajectory (= 14.4° compared to = 24°).

Another conclusion is that the RMSE increases as the speed increases. The subjects followed more the
orthosis pattern when they walk at slow speeds. Nevertheless, the “human healthy” factor is being
considered in the error calculations. Although the orthosis is imposing a trajectory, the healthy subjects
are free to interact with the system. When healthy users use the system, their interaction can be,

sometimes, higher than the orthosis contribution.

Three subjects reported that when the orthosis assists with a lower ROM, they felt more freedom to walk,
as the orthosis was giving lower assistance. The apperception of a lower assistance results from
differences in the PID response between conditions, producing a lower response when the reference ROM
is lower. Consequently, in the actuator, the PID response is translated into a slightly lower torque. Overall,
the results show that the subjects followed the orthosis pattern, without contradicting too much the

system, producing a smaller error.

As a secondary outcome, the level of gait symmetry was evaluated for the five conditions tested in this
control strategy. This evaluation aims to observe if the healthy subjects were able of changing the non-
assisted leg gait pattern, contributing to a symmetrical gait. For that, the data recorded with the Xsens
system was used for both right and left legs. Table 4.3 presents the results for the five conditions
evaluated for the control strategy validation. Assuming the gait as truly symmetric, the ratios presented

in Table 4.3 should be equal to 1, according to Equation (4.4).

By analysing Table 4.3, there were no statistically significant differences in the stance time between the
right and left leg (pvalue > 0.121), obtaining a ratio close to 1. However, the same was not valid for the
swing phase. It is observable that the swing time of the assisted leg is higher than the non-assisted leg,
either for 1.0 km/h and 1.6 km/h, and the differences are statistically different (pvalue < 0.0214),
excepting in condition 3 of 1.0 km/h which the pvalue was higher than the level of significance (pvalue

= 0.0899). When the users walked with the orthotic system, it was observable an asymmetry between
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time of swing, since the users were not truly synchronized with the system, performing an earlier toe-off.

This observation agrees with the results found for the time ratios.

Table 4.3: Hypothesis test for a set of spatiotemporal parameters evaluated for each condition and speed of 1.0 km/h and
1.6 km/h. The mean ratios calculated through Equation (4.4) and the standard deviation are presented

ROM Stance time Swing time ST/SW Ratio
Velocity Conditions
Mean (STD) Mean (STD) Mean (STD) Mean (STD)
C 0.770 (0.132) 1.01 (0.0566) 1.19 (0.101) 0.856 (0.103)
C: 0.532 (0.0781)  0.974 (0.0688) 1.14 (0.0772)  0.858 (0.0948)
1.0 km/h Cs 0.612 (0.0902) 0.969 (0.0925) 1.10 (0.137) 0.888 (0.134)
Cs 0.701 (0.162)  0.992 (0.0640) 1.12 (0.101) 0.898 (0.131)
Cs 0.659 (0.188)  0.989 (0.0563) 1.14 (0.121) 0.878 (0.129)
C. 0.815 (0.154)  0.965 (0.0579) 1.19 (0.120) 0.824 (0.124)
C: 0.544 (0.0822) 0.956 (0.0645) 1.16 (0.0654) 0.829 (0.100)
1.6 km/h Cs 0.697 (0.0829) 0.963 (0.0553) 1.16 (0.105) 0.836 (0.117)
Cs 0.685 (0.0652)  0.972 (0.0503) 1.14 (0.0745)  0.855 (0.0958)
Cs 0.627 (0.0766)  0.974 (0.0707) 1.14 (0.0809)  0.859 (0.0194)

Regarding the ST/SW ratio, although this value is high and close to 0.9, the differences were, once more,
considered statistically different (pvalue < 0.0464). However, in condition 3 and 4, for 1.0 km/h, the
values found were closer to 0.9, allowing accepting the null hypothesis with a pvalue of 0.0727 and
0.0855, respectively. Regarding the ROM, the differences were also statistically different (pvalue <
0.00790), for both 1.0 and 1.6 km/h, excepting in condition 1 of 1.6 km/h (pvalue = 0.0953). Therefore,

an asymmetry in ROM was verified.

In conclusion, the ratios evaluated regarding the stance and swing phases were conclusive. Although the
differences in swing ratio were considered statistically different, the values for the three features are
comparable to those found in [66] for a healthy gait. Regarding the ROM, the assisted leg presented an
inferior angle in comparison with the unassisted leg. Also, considering this feature, the gait was closer to
symmetrical when the strategy was used with 100% of the healthy trajectory. This result was found since
the strategy was validated with healthy subjects. It is noteworthy that this strategy is intended to be used

in hemiparetic gait.
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4.5.2 Knee Orthosis

The same analysis was performed for the knee orthosis. In a general way, the same conclusions were
obtained for this orthosis, i.e., the algorithm was able to produce the trajectory adaptations in real-time
without interfering with the walking pattern. Once more, this was achievable since the trajectory
adaptations were only performed, if a request command was sent, in the following stride, not producing
an unexpected change in the joint pattern. This observation is visible in Figure 4,17, that displays the

knee trajectory of one subject and one trial.
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Figure 4.17: Trajectory adaptations evaluated as described in sub-section 4.4.1 - B for one subject. C1, C2, C3 and C4
represent the configurations that were tested.

Considering Figure 4.17, the orthosis was able to promote the trajectory’s adaptations as it was required,
allowing the effectiveness of the current control strategy. However, as it can be observed, there were
some strides of the second condition in which the orthosis was not able to produce the correct pattern
for the stance phase. This observation was expected since a security procedure was applied internally to
prevent the mechanical blockage of the system: for real angles below 5°, the PID response was set to

zero and, consequently, the motor’s torque was null. After the reference trajectory reached a certain
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threshold, the PID returned to normal, giving commands to the actuator considering the error between
the reference trajectory and the subject’s real angle. The subjects reported that they felt the transitions
between the assistance as it was expected since the ROM variation is higher. However, in the third
condition, five of the seven subjects reported that the orthosis held the articulation movement. This
condition produced a trajectory that is considered a small trajectory for healthy subjects walking at low
speeds. As such, this observation will not be valid when dealing with neurologically non-intact subjects

since the trajectory is adapted regarding their degree of impairment.

In order to evaluate the subjects’ behaviour, a mean stride was calculated for each condition and speed,
considering the heel strike event for the reference trajectory. Figure 4.18 displays the stride normalization
per condition and velocity regarding the subjects’ universe. The mean trajectory and the standard
deviation are presented with a blue line, the healthy trajectory proposed by Winter as black, the users’

reference trajectory as orange and the error as red.
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(continuation)
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Figure 4.18: Stride normalization regarding the trial’s and subject’s universe for the ankle joint and walking at 1.0 km/h (in
the left) and 1.6 km/h (in the right) for the second, third and fourth condition.

Analysing Figure 4.18, it can be observed that, in a general way, the subjects followed the orthosis
reference pattern. This observation was more evident in the first and third condition, in which both mean
error and variation between subjects was smaller. Regarding the third condition, despite of not being
considered a normal walking pattern for healthy subjects, the error was smaller for both stance and swing
phases. The error was more perceptible when trajectory was adapted for the second condition, i.e., 90%
of the healthy trajectory. This is true since the PID response was set to zero under certain values of angle,

as explained above, producing the effect as the knee orthosis was blocked in the stance phase.
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The mean error was calculated following Equation (4.3). It was found an error per condition with median
values below 9% of the total ROM. Figures 4.19 displays the box plots of RMSE for the four conditions

evaluated in this control strategy and considering the subjects’ universe.
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Figure 4.19: RMSE for the four conditions evaluated for the knee orthosis. In the left, it is presented the absolute RMSE and,
in the right, the normalized RMSE by ROM.

From Figure 4.19, it was observed that the RMSE is higher in comparison with the ankle orthosis, with
median values that range between 2° and 4.5°. Nevertheless, considering the normalized ROM, the error
is not considered high since it represents no more than 16% of the total ROM. As expected, considering
the normalized stride, the error was lower in the third condition, with a median normalized RMSE below
6% of the ROM. In this condition, the subjects reported that SmartOs assistance did not allow a natural
walking pattern and they felt they were contradicting more the system. Nevertheless, the orthosis was
able to impose the trajectory, as it was supposed. This is an important feature, not for healthy subjects,
but for hemiparetic patients whose degree of impairment is such that the walking pattern is highly
corrupted. As the orthosis is imposing a trajectory adapted and tailored to the end-user’s needs, it will

allow an effective gait training for the first rehabilitation sessions.
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Additionally, the gait symmetry was evaluated using the Xsens data. The stance time, swing time, ROM
and ratio between stance and swing times were the features evaluated for both assisted and non-assisted
legs, as for the ankle orthosis. Table 4.4 present the ratios between the assisted and non-assisted legs

for each feature evaluated with Equation (4.4).

Table 4.4: Hypothesis test for a set of spatiotemporal parameters evaluated for each condition and speed of 1.0 km/h and

1.6 km/h

Velocity Conditions ROM Stance time Swing time ST/SW Ratio
Mean (STD) Mean (STD) Mean (STD) Mean (STD)
C. 0.910 (0.120) 1.07 (0.0552) 1.02 (0.0649) 1.05 (0.116)
1.0 km/h C 0.849 (0.105) 1.07 (0.0587) 0.969 (0.0996) 1.12 (0.165)
Cs 0.767 (0.112) 1.08 (0.0425)  0.927 (0.0479) 1.17 (0.0858)
C. 0.911 (0.0989) 1.08 (0.0607) 0.973 (0.107) 1.12 (0.172)
C 0.806 (0.108) 1.01 (0.0838) 1.01 (0.0475)  0.998 (0.0990)
C. 0.789 (0.107) 1.04 (0.0225) 1.02 (0.0410) 1.03 (0.0599)
Hokm/h Cs 0.688 (0.109) 1.05 (0.0346) 0.963 (0.0730) 1.09 (0.0865)
C. 0.781 (0.105) 1.04 (0.0434) 1.01 (0.0436) 1.03 (0.0850)

Results of Table 4.4 show that the knee orthosis allows a more symmetric gait in comparison to the ankle
orthosis. This difference is more evident analysing the ratios between stance and swing timings for all
conditions evaluated. It is observable that this feature is closer to 1, having just one condition in which
the registered differences are considered statistically significant (pvalue < 0.0276) that is condition 3, in
which the subjects walked with the knee orthosis programmed to perform 75% of healthy trajectory for
the swing phase. As the ROM in swing is lower, the swing phase is also lower, explaining the lower value
obtained for the swing’s ratios in this condition. Regarding this feature, the gait can be considered
symmetric for all conditions (pvalue > 0.227) except while walking at 1.0 km/h in condition 3, in which

was found statistically significant differences with a pvalue of 0.00680.

Regarding the stance timing, although the differences between the right and left leg were considered
significant (pvalue < 0.0176), the ratios’ mean value was closer to 1. Nevertheless, for the first and
fourth condition, a perfect symmetry was obtained, with differences not considered significant (pvalue >

0.0575).
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At last, the ROM was the trajectory feature that presented the highest difference between the two legs. It
is observable that the ROM of the right leg is significantly lower in comparison with the left leg (pvalue <
0.00890). However, this observation was not valid for the first and fourth condition when walking at 1.0

km/h (pvalue > 0.0542). Therefore, the gait in terms of ROM is considered asymmetric.

4.6 General conclusions

This chapter presents an adaptive trajectory tracking control strategy for future application in the Human-
inthe-loop strategy. Here, it was presented an user-oriented assistive strategy that allows the real-time
adaptation of a position reference trajectory to be tailored to the users’ needs. Results show that the
trajectory adaptation is performed with insignificant latency (in a few microseconds), while ensuring the
continuity and integrity of the gait pattern, as it was demanded. As a second outcome, it was evaluated if
the healthy users could adapt the walking pattern of the unassisted leg to see if they could produce a
more symmetrical gait. The symmetry ratios found were not so different from the healthy gait, except for
the ROM feature and the swing time, that showed, in a general way, a significant difference between the
assisted and unassisted leg. It is noteworthy that this study was performed with neurological intact
individuals, that have a normal gait pattern. In a future perspective, this strategy will be validated in a
clinical context where the gait pattern can be adjusted to each patient regarding their needs and degree

of impairment.

The following chapter presents another user-oriented strategy in which the assistance is based on the
users’ effort and active participation on the therapy. The strategy allows the modulation of the joint’s
compliance in realtime, allowing the passage of a guasipassive assistance to a fully trajectory control
assistance. The user-oriented trajectories created in this chapter can be used in the following assistive
strategy. In this way, the assistance is fully user-centered, allowing a real-time stiffness modification and

a trajectory adaptation regarding the user’s necessities.
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5.  ADAPTIVE USER-ORIENTED IMPEDANCE CONTROL

5.1 Introduction

Impedance control is another control strategy frequently addressed in gait assistance and rehabilitation.
This control strategy is considered an alternative to the EMG control law since it promotes an user-oriented
assistance based on the subject’s intention and effort [40]. It is an assisted-as-needed (AAN) strategy,
allowing an assistance adjustment based on the level of disability of each impaired person, promoting a
gait rehabilitation sustained in effort and interaction. It differs from the position tracking control strategy
since it makes use of the subject’s intention to produce an adequate assistance. With an adaptive
impedance control law, it is possible to adjust the stiffness, producing a stiffer assistance for high levels

of impedance, and a more compliant one when low levels of impedance are applied [40].

In this chapter, an adaptive impedance control strategy, already implemented in the knee orthosis [43],
is presented and validated with neurologically intact subjects for the ankle orthosis that compose the
SmartOs system. The strategy follows the same principal as presented for the knee orthosis. For each
subject, an empirical study was carried out, calculating the quasistiffness of the joint with a similar
approach investigated by Dollar ef a/. [67]. These values were inserted into the impedance control law,

and the human-orthosis interaction was adapted along with gait cycle.

5.2 Adaptive Impedance Control

The adaptive impedance control strategy already implemented in the SmartOs system for the knee
orthosis is considered an assisted-as-needed and guasthybrid strategy, divided into the three hierarchical
control levels, presented and discussed in Chapter 3. It is an AAN control strategy since its main goal is
to provide an assistance based in the subject’s intention, and guasthybrid because it allows the passage
between a passive mode, characterized by a mechanical and compliant movement, to a full-assistive

strategy, characterized by a high-impedance and stiff movement.

The control is performed considering the subject’s effort, measured through a strain gauge placed next
to the orthosis joint. The subject applies a force in the orthosis to perform the intended movement and,
consequently, promotes a deformation in the sensor. This deformation is, then, converted to torque,

considered the interaction torque, which is proportional to the user’s interaction with the orthotic system.

As a truly AAN control strategy, the reference torque needed to provide the assistance is evaluated

regarding the error between the reference and the measured trajectory, respectively G and Oss. This
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approach is similar to that found in [42] and equal to that presented in [43]. To compute the AAN
reference torque, this error is multiplied by the stiffness value (4), evaluated during the various phases of

the gait cycle. Figure 5.1 shows the block diagram of the adaptive impedance strategy.
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Figure 5.1: Block diagram of the adaptive impedance control strategy implement in the SmartOs system.

After the AAN reference torque being calculated, this reference is sent to a PID controller. Table 5.1

presents the proportional, integrative and derivate coefficients that are used in the PID controller.

Table 5.1: Controller's coefficients used impedance control law

Controller’s Coefficients Adopted values
K 120
K 15
I 15

This assistive strategy is also configurated with the mobile application. In order to allow an interconnection
of this assistive strategy with the one presented in Chapter 4, the mobile application was updated. In this
way, the session therapy can be sustained in participation, effort and also with a reference trajectory that
can be realtime tailored to the users’ needs. A new box was introduced in the fifth layout of Figure 5.2
with the name User Trajectory, that allows the subject or the physiotherapist to change the reference
trajectory of the control law in order to fit the current necessities. The default trajectory is 60% of the

healthy trajectory but clicking in this box, a progress bar will appear, and the user can change the default
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trajectory according to his/her needs. The process is similar to that explained in the previous chapter.

Figure 5.2 presents the modifications introduced in the mobile application.
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Figure 5.2: SmartOs mobile application modifications for the adaptive impedance control.

For selecting the impedance control-based strategy, the physiotherapist must choose the option Therapy
Impedance (layout 2). Once this step is accomplished, the physiotherapist must choose the correct

reference gait pattern that is most suited for his/her patient. A new option was introduced in this layout,
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the User Trajectory (layout 4). If this option is chosen, a command will be sent to the orthosis to apply
the assistive strategy that is sustained in effort, participation, and where the reference trajectory is
adapted to each user. Afterwards, the same protocol of Chapter 4 is valid: the physiotherapist must
choose a default value, with a minimum of 60% of healthy trajectory presented by Winter [65]. Finally,
the physiotherapist must select how it will change the stiffness values. In this case, as the stiffness values
will be changed considering the reference trajectory, the physiotherapist must click in Trajectory.
Afterwards, it will appear a layout with progress bars, allowing the setting of the initial values of quast
stiffness. These values can be modified according to five gait phases, as shown in Figure 5.3, between
heel strike (HS) and flat foot (FF), FF and heel off (HO), HO and toe off (TO), TO and mid-swing (MSw)
and, finally, between MSw and HS. After this configuration is set, the physiotherapist can send the

configurations to the SmartOs CCU.

Additionally, it is possible to adapt the virtual stiffness values and the reference trajectory in real-time,
clicking in Stiffness and in Reference buttons, respectively. If an adaptation in the reference trajectory is
required, the layout 2 or 3 of Figure 4.12 of Chapter 4, will appear. If an adaptation in the stiffness is

required, the progress bars in layout 1 of Figure 5.3 will appear.

Therapy Options

Speed

Change current Speed Values.

Stiffness

Change current Stiffness Values.

Reference
Change current reference gain.

CANCEL 0K

Figure 5.3: Layout with possible gait phases to adapt the virtual stiffness (left) and layout for real time modifications, both
stiffness and reference (right).
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The stiffness of a joint is considered the first derivate of torque in relation to the angle position [67]. The
ankle joint pattern is characterized by four typical passages into the neutral angle, i.e., zero degrees,
which leads to infinite values of stiffness during these passages. Dollar et a/. [67] presented a simple
approach for estimating the ankle joint stiffness for the different gait phases instead of following the
definition of calculating the derivative sample to sample. The stiffness was estimated in [67] with a linear
regression model that approximates the slope of the torque vsangle curve for different gait phases during
the stance phase, calculating the guasistiffness. In this approach, the guaskstiffness was evaluated just
in the stance since the articulation torque is null during the swing. The author praised the simplicity over

the complexity and found a linear model that presented a reasonable coefficient of determination.

A similar approach was followed in the present dissertation but considering the curve human-orthosis
interaction torque vsangle position. The human-orthosis interaction torque was considered an indicator
of the subject’s effort, as in [40] and explained above, being, as well, an indicator of the subject’s motion
intention. To evaluate the interaction torque during the gait cycle, the orthosis was used in a passive
mode, i.e., where the reference interaction torque, T in Figure 5.1, is considered zero and there is no
motion if the user does not interact with the assistive device. The quaststiffness was estimated by
determining the best linear model that fits the curve human-orthosis interaction torque vsangle trajectory,

following the least-square method.

According to the least-square method, the best approximation to a certain curve is the one that produces
the minimal deviations, sample to sample, regarding a set of data. If we consider the diviations in relation
to the ground truth ()) as an error e, the algorithm creates the curve in which the sum of square & is

minimum [68], shown in Equation (5.1).

el = [, -] Equation (5.1)

i=1

In Equation (5.1), /: R—R is the fitting curve which, in this case, considering a linear model, is a function

of two variables and with a degree nof 1, as shown in Equation (5.2).

f(x)=mx+b Equation (5.2)

In order to find the best curve that minimizes the square error, the partial derivatives of Equation (5.1) in

relation to /77and 6 must be zero. If we consider £ as Equation (5.1) and solving the partial derivatives,
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we found the two equations needed to solve the system of linear equations, Equation (5.3) and (5.4), to

calculate the best values of mand b, considering the giving data set.

E <
- = 2 Z(_xl.) '[yi-(mxﬁb)] Equation (5.3)
i=1
OE N
5 2 z [-y;-(mx;+b)] Equation (5.4)
i=1

Expanding Equation (5.3) and (5.4), the best values of 77and b can be found, solving the system of linear

equations.

nZxy S X,

m = _Zyifng'fxiyi
nxx; - (Z'Xi)z

b= nxx; - (vai)z

The stiffness was considered to be the slope of each linear curve for each phase of the human-orthosis
interaction torque versus angle curve. As such, the coefficient /7 was assumed to be the best linear
approximation. It was calculated for six phases of the gait cycle: (i) from HS to FF, (ii) from FF to MSt, (jii)
from MSt to HO, (iv) from HO to TO, (v) from TO to MSw and (vi) from MSw to a new HS. The gait phases
were segmented offline through measure of the angular velocity, in rad/s, recorded with an IMU placed
on the foot. The angular velocity was, then, an input of the finite state machine algorithm, presented in

[69], to segment the trajectory into the respective phases.

The linear model was evaluated for each phase considering the coefficient of determination (R?),
calculated considering the ground truth value, i.e., the interaction torque, and the predicted values given

by the linear model.

5.3 Quasi-stiffness estimation

5.3.1 Experimental protocol

To estimate the guasistiffness, an experimental study was performed with neurologically intact subjects
walking with the orthotic system at quasfpassive mode. All subjects signed a consent form to be part of
the study. Subjects’ rights were preserved and, as such, personal information provided was remained

confidential. Data was collected at the University of Minho.
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A.  Subjects

Three healthy subjects (body mass: 60.0 + 13.1 kg, height: 163 + 12.0 cm and age of 25.0 + 2.00
years), without clinical history or evidence of motor disorders that could affect their ability to walk
normally, accepted to participate, voluntarily, in an empirical study to evaluate the interaction human-
orthosis and to estimate the quaststiffness during the gait cycle. All anthropometric data needed to

perform the empirical study were measured.

B. Data Acquisition

Kinematic and kinetic data, namely the foot angular velocity (from wearable IMUs), the ankle angle (from
an embedded potentiometer) and the interaction torque (from an embedded strain gauge), were acquired
with an orthotic system for ankle assistance in the passive mode, at a sampling frequency of 100 Hz.
Data were acquired for three gait speeds, 1.0 km/h, 1.3 km/h and 1.6 km/h. Figure 5.4 displays the
experimental setup used to evaluate the human-orthosis interaction torque and estimate the guast

stiffness for each phase.

C. Data Processing and Analysis

For each gait speed, the kinematic (angle and gyroscope) and kinetic data (human-orthosis interaction
torque) were filtered using a zero-phase fourth-order low pass Butterworth filter with a cut-off frequency
of 5 Hz [65]. Data was time divided into gait cycles considering the angular velocity recorded by an IMU
placed on the foot [69]. The values of guasistiffness were normalized considering the user’'s body mass.
Additionally, due to systems constraints, these values were normalized to a scale between 0 and 1, in

which the maximum value of quaststiffness found for each trial was considered 1 Nm/ °kg.

) Orthotic System ® W

Figure 5.4: Experimental setup for quasi-stiffness estimation.
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5.3.2 Results and Discussion

In order to evaluate where the subjects need more help to perform the correct gait pattern, the guas/-
stiffness of the joint was estimated with a linear model for each gait phase, choosing the slope of the best

fitting curve.

In a general way, considering the three gait speeds, the linear model presented reasonable results in
predicting the human-orthosis interaction torque for a specific angle. If the analysis is made considering
the two main gait phases, i.e., stance and swing, the mean coefficient of determination (R?) is,
respectively, near 50% and 70%. This result shows that, indeed, the linear model is more suitable to the
swing phase, as the model can explain almost 70% of the ground truth data. It was found increased values
of quasistiffness for HO — TO phase and, for most of the tested configurations, it is the phase where
the value of guaststiffness was higher. Furthermore, the guaséstiffness present higher values for single
support phase in comparison with the double support phase. In the single support phase, that begins
when the heel leaves the ground [64], i.e., in HO, the subject stands all his/her weight into just one leg,

the one that is initializing the stride.

As it was reviewed in the stafe-ofthe-art the fact of using the orthotic device in a passive mode, it
introduces an increased effort in the subject. As a guasipassive device, the orthosis is almost purely
mechanical, presenting inertia to the movement. Also, its mass, although not considerable, affects the
gait pattern and, perhaps, augments the energy that the users is spending. Therefore, it is reasonable
that in a single support phase, the subject requires more effort and applies more strength to overcome
the inertia that the system offers. Therefore, the main goal of this assistive strategy is to encourage the
subject to apply strength and effort, applying to their participation, at the same time the orthosis helps
the patient in the most difficult gait phases, as reported to be the HO — TO phase.

Figure 5.5 display an example of the linear model prediction in comparison with the ground truth for one
representative subject. In this figure, it is possible to observe the curve human-orthosis interaction torque,
measured with the strain gauge, vs ankle angle (above) and the result given by the linear model (below)

for 1.0, 1.3 and 1.6 km/h.

By analysing Figure 5.5, it can be seen that the linear approximation can be considered a reasonable
approach since the curve maintains a similar shape. However, the coefficient of determination was not
high enough in the stance phase to consider the linear model a very good approximation of the ground
truth. Nevertheless, in this phase, the subjects support their weight in both legs so, in theory, it should

be easier for them to overcome the friction that the system is promoting.
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(continuation)

V,= 1.6 km/h
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Figure 5.5: Linear approximation of the curve human-orthosis interaction torque vs angle (below) for 1.3 and 1.6 km/h against
the real curve (above).

According to the proposed strategy, the values were normalized between 0 and 1 Nm/°kg. Table 5.2
display the results for each velocity, namely the normalized guaststifiness values considering the gait
phases, the normalized quaséstifiness divided into stance and swing phases, the normalized quask
stiffness divided into single and double support phases and the respective coefficient of determination for

stance and swing phases.

Analysing Table 5.2, it is observable that, for all velocities, the quaststiffness values were bigger for the
phases in which the subject was in single support. This result is more evident in the slowest velocity, 1.0
km/h, in which the maximum value was found in the MSw — HS. Nevertheless, the subphase HO —
TO present a high value as well, which indicates that these gait phases are the most critical for subjects.
Therefore, the orthosis should be stiffer, assuming mostly the control and helping the user to perform the

correct trajectory.
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(continuation)

Normalized mean
Normalized mean Coefficient of
Normalized quasf-stiffness
quask-stiffness Determination
Velocity Gait Phase quask-stifiness per double and
per stance and per stance and
[Nmy/ kgl single support
swing [Nmy/*kg] swing
Nmy/ kgl
HS — FF 0.519 + 0.352
FF — MSt 0.842 + 0.126 0.469 + 0.288
0.566 + 0.281 0.467 + 0.235
MSt — HO 0.194 + 0.0525
1.6 km/h HO — TO 0.708 + 0.412
TO — MSw 0.489 + 0.0552 0.604 +0.184
0.469 + 0.0277 0.675 +0.194
MSw — HS 0.450 + 0.128

Note: Abbreviations’ meaning can be found here.

This result is in accordance with the users’ perception since they reported more difficulty in performing
the TO event with the orthosis in passive mode. For 1.6 km/h, the higher value of quasi-stiffness was
found while the user is in double support. This result was not expected since, in this phase, the users
have their foot flat on the floor and the weight is well distributed in both legs. Therefore, it should be
easier for them to overcome the inertia and friction that the system causes. As a consequent of this result,
the guaskstifiness during the stance phase was higher, when compared to the swing phase. Nevertheless,
a high value in the HO — TO subphase was also found, which underlines the necessity of a stiffer

movement in this sub-phase.

Regarding the remaining phases of swing, it was found that the quasi-stiffness decreases as higher the
velocity is. This result can be related with the fact that with a higher velocity, the segments acceleration
is also higher, helping the subject to overcome the mechanical friction the orthosis is offering. During
swing, the biological torque of the ankle joint is practically zero. The swing movement is, therefore, a
result of the knee joint movement that propels the limb forward [64]. In this sense, as a result of this
higher acceleration and the fact of 1.3 and 1.6 km/h being a more comfortable speed, the guaststiffness

was lower.

5.4 Adaptive Impedance Control Strategy Validation

To validate the impedance control strategy for the ankle orthosis, a set of experimental sessions were
carried out with healthy subjects that had a prior habituation of walking with the orthotic device into the

passive and positions assistive modes. In fact, the three modes of control have a variable in common:
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the interaction torque. In the position mode, the orthotic device imposes a trajectory into the subject. This
way, the interaction torque that the subject is performing can be used to evaluate if the user is following
or contradicting the system. In the passive mode, the interaction torque is measured as a metric to
evaluate the subject’s effort as the orthosis is not giving any assistance. Therefore, the subject assumes
the total control of the system. Finally, in the impedance control, the interaction torque is used as the
variable of control, allowing an assistance based on the user’s effort and participation. In this strategy,
the orthosis increases the assistance as the user interacts. As such, it is important that the subject have
knowledge in the first two control approaches in order to have a perception how this new strategy is

requiring interaction with the system.

5.4.1 Validation Protocol
A. Subjects

Seven non-neurological subjects (body mass: 70.4 + 11.9 kg, height: 170 + 10.1 cm and age of 24.4 +
1.40 years) with a prior habituation of walking with the orthotic device in the passive and position modes,
accepted to participate voluntarily into the experiments with the purpose of validating the adaptive
impedance control in the ankle orthosis. All anthropometric data required to proceed with the control
validation were measured and collected prior to the beginning of the session. All subjects signed a consent
form to be part of the study. Subjects’ rights were preserved and, as such, personal information provided

was remained confidential. Data was collected at the University of Minho.

B. Data Acquisition

Kinematic and kinetic data from the orthosis’ embedded potentiometer and strain gauge were acquired
at a sampling frequency of 100 Hz. The setup used was similar to the one described in Figure 4.3

(Chapter 4), excepting the use of the Xsens system that, for this validation, was not considered required.

For the experiments, the subjects were instructed to walk in a continuous trial for 4 minutes. The trial
was divided into two segments of 1-minute and one segment of 2-minutes. In the first minute of trial, the
subjects walked with the virtual stiffness set at the maximum value of 1 Nm/°kg. In the following two
minutes, the virtual stiffness was changed to the values found with the linear model. Finally, in the last
minute, the subjects were instructed to stand the foot and to minimize their interaction with the system.

The reference trajectory was set to 100% of the healthy one.
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C. Data Processing and Analysis

Data were filtered with a zero-lag fourth order Butterworth filter with a cut off frequency of 5 Hz. As this
strategy is dependent on the subjects’ effort, the strides were segmented in time, considering the heel

strike event, subject to subject and trial by trial.

5.4.2 Results and Discussion

In a general way, the impedance control law provided a reasonable walking assistance. The subjects
reported that, with the impedance control law, the orthosis movement was smoother and fluid, even if
the virtual stiffness values were modified. They felt that their participation was crucial for the movement
since they noticed that when their participation was practically null, the orthosis did not foster a proper
assistance. Also, in this control, the PID’s delay was minimal in comparison with the trajectory tracking
control. In fact, the delay decreased from a mean of 250 ms, presented in the previous chapter, to a
minimum of 19.0 ms (+ 4.40 ms) for 1.0 km/h and 23.0 ms (+ 2.60 ms) for 1.6 km/h. This value
presents some fluctuations, between subjects and speed, that is entirely due to the different interaction

that each user produces.

Figure 5.6 displays a part of the continuous trials for each velocity, allowing the visualization of the virtual

stiffness modification all over the gait cycle, according to the information listed in Table 5.2.

In fact, the quaststiffness was studied for six different sub-phases of the gait cycle, as the algorithm
presented in [69] allows. Nevertheless, it was decided to use five values of quaststiffness that are
coincident with the extreme points of the curve’s sub-phases presented in Chapter 4, represented by 1 -

from HS to FF, 2 — from FF to HO, 3 - from HO to TO, 4 — from TO to MSw and 5 - from MSw to HS.

As the quasistiffness values were modified in real time, the subjects were able to identify the changes in
the orthosis behaviour. Some of the subjects felt the system was stiffer after the modifications in the
quaskstifiness values, in a way that they felt they had to perform more strength to maintain the same
walking pattern. Other participants reported that they felt the system more compliant in a way that they
easily performed the ankle motion. In fact, decreasing the values of guasistiffness can produce two
effects in the orthotic system that, at a first view, can be seen as oppositions: (1) the system is more
passive so it gives less assistance and, consequently, it easily allows the user command to perform
his/her preferred walking pattern, increasing the user’s freedom of motion; (2) the system is more passive
so it gives less assistance and, consequently, can be considered stiffer in a way that, as the motors do

not give assistance, the orthosis is almost purely mechanical. If so, the user can feel the orthosis offering

75



more inertia to the movement. Indeed, both options were reported by the users when they walked with
the orthotic device. Nevertheless, with the values of quaststiffness closer to 1 Nm/°kg or adjusted
according to the linear model, they felt more comfortable with this assistive strategy in comparison with
the trajectory tracking control since they were able to command the orthosis and not the opposite. This
is valid since the subjects were healthy individuals. For future analysis, the effect of this assistive strategy

in the patient’s rehabilitation should be studied.

V, = 1.0 km/h

20 T T T T T T T T T T —1.2
Reference Trajectory

——Real Trajectory
- - ~Quasi-stiffness

Angle (°)
Normalized Quasi-Stiffness (Nm/°kg)

20 | | 1 1 1 | 1 ! | 1 |
1.06 1.08 11 1.12 1.14 1.16 1.18 1.2 1.22 1.24 1.26

Time (min)

V, =16 km/h

20 T T T T T
Reference Trajectory

——Real Trajectory
- - -Quasi-stiffness

Normalized Quasi-Stiffness (Nm/°kg)

-10.2
15
720\ 1 | I | I | Llg
0.98 1 1.02 1.04 1.06 1.08 11 1.12 1.14
Time (min)
@ HsFF @ F-oHO ©® HOTO O TO->MSw O MSw—HS

Figure 5.6: Quasi-stiffness variation all over the gait cycle for 1.0 km/h (above) and 1.6 km/h (below).
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For visualization and analysis purposes, Figure 5.7 displays the mean trial for one representative subject

walking with the orthotic system at both 1.0 and 1.6 km/h.
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Figure 5.7: Real trajectory with the orthotic system close to a position control and after modifications in the values of quasi-
stiffness for 1.0 km/h (above) and 1.6 km/h (below).
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The trajectory performed by the healthy subject is closer to the reference one, especially during the main
sub-phases of dorsiflexion and plantarflexion. With exception for the layout 4 of Figure 5.7, the user was
able to overcome the reference angle during the TO event (= 60% of the gait cycle). As the user is not
totally synchronized with the orthotic device, and more evident in 1.6 km/h, the error between the
reference and real angle was not totally zero. As such, the orthosis assists more during those phases. It
was verified the existence of a minimum delay when compared with the trajectory tracking control. It was
verified a delay below 23 ms, that represents a decreasing of 90.8% in comparison to the trajectory
tracking control presented in the previous chapter. This reasonable result is entirely due to the subjects’
interaction with the system. Nevertheless, the users reported the necessity of existing a biofeedback

system to help them to be even more synchronized with the system.

An interesting point is that although the TO was found to be the critical event while walking with the
orthotic device, for most of the subjects, this event was accomplished with success, maintaining the
reference angle or, in some cases, overcoming the reference angle. This observation indicates that,

indeed, the user performed a higher interaction with the system.

5.5 General conclusions

This chapter presented an assistive strategy for the SmartOs based on the subjects’ effort and active
participation. The assistive strategy was adapted to the ankle orthosis, and the mobile application was
changed to promote an interconnection of this assistive strategy and the previous one exploited in Chapter
4. Also, it was presented an empirical study of guaskstiffness variation over the gait cycle for three gait
speeds using a linear model for the guaststiffness estimation. It was found that the users perform more
interaction in the TO event, that was found to be the critical event. From the experimental validation, it
was found that this assistive strategy is effective, allowing the users to perform a correct gait pattern at

the same time they interact with the system.

Both this strategy and the one previously validated in Chapter 4, allow the SmartOs to provide user-
oriented assistance and have the potential for future use in the Human-in-the-loop strategy. The next step

is to evaluate the energetical impact of using the SmartOs in its end-users.
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6. TOWARDS HUMAN-IN-THE-LOOP CONTROL

6.1 Introduction

As introduced in Chapter 3, the SmartOs system was developed aiming an effective assistance for persons
with motor impairments, having always in thought the end-user’'s needs. Assistive strategies, involving
trajectory tracking control, joint impedance modulation, EMG-based control, among others, have been
proposed to control powered devices. However, none of them have introduced the energy as a metric to

adapt the assistance.

Recently, researchers are directing their investigations to a new field of control, the Human-in-the-loop
control, where a physiological signal, as the energy expenditure, is being used to adjust the assistance
for each user, promoting an assistance that is efficient in energy consumption. However, this new control
strategy requires the energy expenditure estimation, which has been based on non-wearable and non-
ergonomic devices as gas analysers that, for clinical use, are not suitable. Therefore, new ways of
estimating the energy that the user is spending are being studied, applying machine learning-based

regression models to solve this issue.

In this chapter, the application of the human-in-the-loop control approach is studied. For this purpose, an
empirical study with the trajectory tracking control was carried out for three gait speeds (slow, median
and fast), with two main purposes: (i) verify if exists significant differences in the subjects’ energetic effort
for the three velocities and (i) if (i) is true, then evaluate if the use of a powered device augments the
energy consumption compared to walk without the system. Additionally, machine learning-based
regression models were implemented to estimate the energy consumption using wearable sensors, as

EMG and IMUs.

6.2 Theoretical concepts

As reported in Chapter 2, some literature works assessed the energy expenditure of subjects while walking
with the powered device. In most of these studies, the energy consumption was compared between the
powered assistance vs the powered-off assistance. This comparison is valid, and it shows that, indeed,
the use of these powered assistive devices reduced the energy expenditure. However, the study of how
these systems increase or decrease the subjects’ effort when compared to the normal walking is not often
an outcome of studies. As an example, from the twelve studies presented in the stafe-ofthe-art, just in

[28], [48], [50], [51], the energy expenditure of the end-user was evaluated and compared with the
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normal gait, i.e., walking without the device. Indeed, most of the experiments were performed with healthy
subjects and it is known that healthy subjects adapt their walking pattern to minimize the energy
consumption [72], [73]. Therefore, it is important to continuously assess energy expenditure, allowing

the adjustment of the device's assistance to promote a reduction in the metabolic cost.

6.2.1 Indirect Calorimetry

Generally, these studies are performed with a standard device for quantifying the exchanges of oxygen
and carbon dioxide with a technique called indirect calorimetry [70]. Indirect calorimetry is considered
the standard technique for energy expenditure calculation. According to [70], it reflects the metabolism
of tissues, allowing the evaluation of the respiratory exchange ratio. The first modelling of the energy
expenditure was stated by Lusk, in 1924. All over the century, many authors have proposed changes to
the first equation, being Brockway’s [71] the most accepted and used in the literature in the current
decade. As shown in Equation (6.1), the energy expenditure, in J/s, is evaluated concerning the flow of
oxygen and carbon dioxide production, but also concerning the nitrogen that result of the combustion of

carbohydrates, lipids and proteins [70].

-AH = x, VO, + x,VCO, + x3N Fquation (6.1)

According to [72], the nitrogen parcel can be discarded since it just represent 4% of the total real energy
expenditure and its exclusion produces an error equivalent to 1% of the total amount of energy. Therefore,

Equation (6.1) can be rewritten as follows, according to Brockway's [71] coefficients.

EE [W] =~ 16.58 VO, + 4.51 VCO, Fquation (6.2)

The calculated energy can be divided into three main components, important to sustain vital activities
and daily live activities. The energy used to sustain the vital functioning is called basal energy expenditure
(BEE). This component represents more than 60% of the total amount of energy, as presented in [72].
Another component, that represents almost 30% of the total energy, is responsible for the energy used in
physical activities, usually termed AEE (activity energy expenditure). The remaining 10% is called diet-

induced thermogenesis, being the energy used during the postprandial metabolism [72].

When evaluating the energy expenditure of a specific physical activity, it is good practice subtracting the
BEE to the total amount of energy, as most of the studies in the literature perform. In this way, it is

possible to evaluate the amount of energy that is being spent for that specific activity without considering
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the energy required for vital functioning. For this, the steady state, in which the exchange of oxygen and

carbon dioxide vary less than 10% in a consecutive 3-minutes [73].

Although indirect calorimetry is a standard technique and reflects well the energy expenditure of users,
its use in clinical context is not the most ergonomic. Different approaches for estimating the energy
expenditure relying on machine learning algorithms have been validated against indirect calorimetry.
Regression models, perceptron neural networks or convolutional neural networks (CNN), have been used
to estimate the energy expenditure. In this dissertation, two different machine learning algorithms, one
feedforward neural network, and a long short-term memory (LSTM) neural network, were exploited to

estimate the steady-state energy expenditure of users walking with the orthotic device.

6.2.2 Machine Learning-based models

Neural networks have been created with the purpose of modelling complex problems, as the humans’
brain do, allowing a statistical generalization. The neural networks were mostly developed for supervised
machine learning, approximating a function /x/to a set of input features, x, in order to obtain J; the target

value or class [74].

A feedforward neural network is a type of artificial neural network. It can be a single perceptron, having
just an input layer and an output layer, or a multilayer perceptron, as presented in Figure 6.1, having one
or more hidden layers. These architectures are considered feedforward since the information is passed

unidirectionally through the input layer to the output layer, without having feedback of information.

1st 2nd
Input Hidden Hidden Output
Layer Layer Layer Layer

Figure 6.1: Feedforward neural network representation for regression with two hidden layers of H neurons.
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It can be used for either classification or regression problems, differing in the output layer. Usually, if the
neural network is used for regression, the output layer presents just one node, as presented in Figure
6.1. If it is used for classification problems, the output layer presents as much nodes as the number of
categories [75]. Each layer of the network is composed by neurons, or nodes, which are computational
units that have one or more input connections, a transfer function and an output connection. For example,
in Figure 6.1, the numbered circles of the first hidden layer are considered nodes. A node can be seen
as a neuron of the human brain, but with mathematical representation. Each input of the node is
multiplied by a weight w, as presented in Figure 6.2, and then it is evaluated the composite sum. Before
entering into the node, it is added the bias b, allowing the better adjustment of the input features to the
output [74]. The goal of neural networks is to optimize these weights w, allowing a proper fitting of the
input data into the target, until the loss of the network, usually the mean squared error (MSE) function

for regression problems [74], is the minimum possible.

Input
Activation
WK, function
WX, wix +b
X, ) Output

W3y

Figure 6.2: Computational unit or neuron of a network architecture.

The activation function is an important feature of the neural networks. Without the activation functions,
neural networks would be similar to linear regression models. In Figure 6.2, it is represented the most
used activations functions in neural networks: the sigmoid functions, in red, that rescales the output
between O and 1; the rectified linear unit (ReLu), represented in orange, that computes the maximum
between the weighted sum and O; the linear activation function, also represented in orange with a dashed
line, that does not perform any rescale of the input; and the hyperbolic tangent, represented in blue, that
squashes the output between -1 and 1 [74]. This behaviour of nodes is repeated all over the layers that

compose the neural network, allowing the network to learn complex problems.
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The LSTM network, or long short-term memory, is a type of recurrent network. A recurrent network (RNN)
differs from a feedforward neural network since the flow of information is not unidirectional, and it exists
feedback of information. The prediction relies on the current inputs and also in information about previous
inputs, known as hidden states, endowing the network with memory [76]. In each node, the current input
is concatenated with the output of the previous hidden state, helping the network to predict the present

output [77]. Figure 6.3 displays a graphical resume of the recurrent neural network’s behaviour.

0t—2 01.1 Ot

1o [
)

X Xa X

hy3 ha

hy

NN

Figure 6.3: Recurrent neural network behaviour: X is the input, O is the output and h is the hidden state (network's memory).

The problem in simple recurrent networks is that they are not suited for long-term dependencies. When
the gap between an important information to predict the output and the current input is too big, the RNN
are not suitable [77]. LSTMs were developed in an attempt to solve this problem. Each cell of this neural
network consists of three gates, a forget gate, an input gate and an output gate. Also, it is composed off
a cell state that allows the information to flow within the LSTM cell and between LSTM cells. Figure 6.4

displays a diagram of a LSTM cell.

The first gate is the forget gate. With this gate, the neural network is able to decide which information is
important or not to be passed all over the cell. The input data, X;, is concatenated with the previous hidden
state and passed into a sigmoid activation function. As this transfer function, represented in Figure 6.4
as red, squashes the output between 0 and 1, the non-relevant information, with an output close to 0, is
forgotten. By the other side, the relevant information, with an output close to 1, get through the cell. The
second gate is the input gate. The resultant of the current input and the previous hidden state, then enters
into the input gate, where it passes, again, in a sigmoid transfer function, that determines what values of
the cell state should be updated, and it passes through a hyperbolic tangent function, represented in blue
in Figure 6.4, that calculates the values pointed as candidates to be updated in the cell state. The last
gate, the output gate, is responsible for calculating the next hidden state to be propagated all over the

time steps. Once more, the current input and the previous hidden state are concatenated and passed
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into a sigmoid transfer function that, together with the updated cell state, origins the LSTM cell's output
[77]. With these features, the LSTM neural networks are often used in the prediction of sequential data,

as speech recognition, and time-series data [74].

Forget
gate

Figure 6.4: LSTM cell configuration.

Both MLP and LSTM neural networks, and neural networks in general, present some parameters that,
when adjusted properly, allows an effective training of the model. The main parameters of a neural
network are the number of units that is used, the number of epochs, the learning rate and the batch size

[75].

The number of units, presented earlier, affects the complexity of the model and its capacity of
generalization. Generally, if the number of units is set to a very high number, the model tends to overfit,

i.e., it learns very well the training set and predicts poorly the test set [75].

The number of epochs also affects the capability of the model. An epoch is considered a total pass into
the training dataset. If this parameter is big, this represents that the neural network is being allowed to
see and learn the training set many times, leading to overfitting. By the other side, if this parameter is

very low, the model will not learn enough, leading to underfitting [75].

Regarding the learning rate, this parameter influences the gradient magnitude in the training process. If
this value is very high, the model will not converge to the optimal minimum. If this value is too low, the

model will take too long to converge, or it could be stuck in a local minimum [75].

Regarding the batch size, dividing the training data into groups of equal size will allow the network to learn
more information, augmenting its capacity, and it will reduce the computational burden. However, this

value should be carefully tuned since very low batch size could lead to a poor generalization [75].
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In general, neural networks are a very powerful tool for data modelling, but its parameters should be
carefully chosen in order to allow a model generalization that either predicts well the training data and

the test data.

6.3 Experimental Protocol

An experimental study was performed with healthy subjects walking with the ankle orthotic system with
the trajectory tracking control strategy, for two main purposes: first, to evaluate the energy consumption
that the SmartOs’ use can introduce in the normal walking; and second, to explore machine learning-

based regressor models to estimate the energy expenditure for a set of wearable sensors.

A. Subjects

Eight healthy subjects (four females and four males, body mass: 68.3 + 10.1 kg, height: 171 £ 7.65 cm
and age of 24.3 + 1.75 years), without clinical history or evidence of motor disorder that could affect their
ability to walk normally, accepted to participate, voluntarily, in the empirical study. All subjects signed a
consent form to be part of the study. Subjects’ rights were preserved and, as such, personal information
provided was remained confidential. Data was collected at the LABIOMEP - Porto Biomechanics

Laboratory.

B. Data Acquisition

In order to evaluate the energy expenditure, the COSMED K4b2 (Rome, Italy) was used to calculate the
flow of oxygen and carbon dioxide during the experiments. It was ensured that the mask was well fitted
to the subject to prevent miscalculations of the gas exchanges. This sensor was synchronized with a Polar
H10 (Polar Electro Oy, Kempele, Finland), that was used to monitor the heart rate. Data were collected

breath-by-breath.

For machine learning purposes, the subject was instrumented with the Xsens system (Xsens
Techonologies B.V., Enschede, The Netherlands) to measure the segments acceleration and angular
velocity of the feet, shanks, thighs, and waist. Also, an IMU was placed on the chest, specifically in the
sternum, allowing the acceleration and angular velocity evaluation of the torso. The IMUs were placed in

each segment in the medialis side, as illustrated in Figure 6.5. Data was collected at 100 Hz.

Moreover, muscular activity was measured at 1000 Hz using four EMG surface electrodes (Delsys Trigno
Avanti, Massachussets, USA), placed on the tibialis anterior (TA), gastrocnemius lateralis (GL), bicep

femoris (BF) and vastus lateralis (VL) muscles.
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Figure 6.5 illustrates the sensors on body placement.

A
v RESPIROMETER

EMG

Figure 6.5: Sensors placement for the experiments.

The subjects performed six trials for three gait speeds (0.8 km/h, 1.2 km/h and 1.6 km/h). Each trial
consisted of 12 minutes: 3 minutes of standing, to measure the basal energy expenditure; 6 minutes of
walking on an AMTI (Advanced Mechanical Technology, Inc., Watertown, Massachusetts, USA); and 3
minutes in standing position for recovering. Between each trial, the subjects rested for a period of 10-
minutes. This procedure was repeated twice, one time without the orthotic device and another time with

the orthotic system in assistive mode, as shown in Figure 6.6.

C. Data Processing and Analysis

Kinetic data (segments’ acceleration and angular velocity), measured with the Xsens system, were filtered
with a first order, zero-lag Butterworth filter with a cut-off frequency of 0.1 Hz to preserve only the low

frequencies responsible for the movement transitions.

The muscular activity, measured with the Delsys system, was filtered with a band-pass filter of first order
between 20 Hz and 500 Hz to preserve the fundamental frequencies. A low-pass Butterworth filter of
0.05 Hz was applied to the EMG signals to calculate the surrounding signal and a normalization for each

muscle was performed considering the maximum voluntary contraction (MVC), making MVC as 1V.
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The respiratory data, measured with the COSMED K4bz?, was used to calculate the energy expenditure
following Equation (6.2). A 95% confidence interval was calculated to eliminate possible outliers. This
way, each sample that overcome the confidence interval, was set to the maximum/minimum extremes.
The basal energy expenditure was calculated as the mean value of the first 3 minutes of standing. The
same was applied for the walking condition and for the recover condition. In the walking condition, the

steady state was assumed to be reached at the last 3 minutes of data. Therefore, calculating the mean

value of the steady-state for each condition, a step-like signal of energy expenditure was created.

Figure 6.6: Setup for the experimental study to evaluate the energy consumption with and without an orthotic device and for
machine learning purposes.

6.4 Energy Expenditure on SmartOs

A comparative study was performed between the energy expenditure monitored during assisted and non-
assisted walking at different gait speeds, to evaluate the energy expenditure of subjects while walking with
the orthotic device. The mean energy expenditure was evaluated considering all subjects and compared,

using for that the t-student test, assuming the level of significance of 5% (o = 5%).

In a general way, the orthotic system promoted an augmentation of energy expenditure. Although the five
studies of literature reported that their devices allowed a decrease in the energy expenditure, this result
was expected since the device is imposing a trajectory to healthy subjects that, perhaps, is not the most

suitable for each one. The orthotic device can be seen as a perturbation into the subjects’ normal walking.
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Therefore, this statement proves the need to introduce the Human-in-thedoop strategy. The mean energy

expenditure considering all subjects can be observed in Figure 6.7.
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Figure 6.7: Comparison of the mean energy expenditure [W/kg] between walking with and without the orthotic system, considering the
subjects’ universe.

Figure 6.7 shows that the energy expenditure of users increases as the speed increases. For 0.8 km/h,
the users revealed a mean energy expenditure of 1.05 W/kg walking normally, taking the effect of basal
energy expenditure, that increased 43.8% with the orthotic system (££~= 1.51 W/kg). For 1.2 km/h, an
increment of 45.1% was verified when the subjects walked with the orthotic system. The energy
expenditure increased from a mean of 1.33 W/kg to 1.93 W/kg. For 1.6 km/h, the energy expenditure
increased from 1.64 W/kg to 2.21 W/kg, which corresponds to an augmentation of 34.8%.

The orthotic system resulted in an increased energy expenditure, but this increment was not the same
for the three velocities. It is noteworthy that this increment was slower as the speed increases to a more
comfortable speed (1.6 km/h). This observation is valid since the orthosis’ speeds are considered slow
for humans to walk. Generally, the humans walk at self-comfortable speed, often called the preferred
walking speed, which is normally between 4 km/h to 5 km/h. As such, as the speed is close to a normal

velocity, the energy expenditure while walking with and without the orthosis is also closer.

Another conclusion can be retrieved. There are differences between the energy expenditure all over the
velocities while the users walk with the orthotic system. The ANOVA was performed to verify if these

differences are significant. Considering the three groups of samples that were tested, i.e., the energy
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expenditure for the three gait speeds, a Fvalue of 9.09 was found. As the critical Fzi005 is 3.47, the

differences can be considered significant (pvalue = 0.00140).

6.5 Estimating Energy Expenditure

In order to estimate the energy expenditure, a prior study was conducted to check the correlations
between the predictors (kinetic and EMG data) and the variable to be predicted (energy expenditure),
using the Pearson correlation coefficient. Analysing the correlations between features and ground truth

signal, the best predictors can be evaluated to potentiate a better estimation.

6.5.1 Predictor selection

With the Pearson’s correlation coefficient, the linearity between the predictors and the variable to be

predicted is analysed [78], following Equation (6.3).

i/ (X% -X) (v,-3)

PCC=
Z [0, 5’

Equation (6.3)

The Pearson correlation coefficients found between the processed EMG signals and the ground truth
signal were positive and above 0.700, as shown in Figure 6.8 — 1. This result demonstrates that the EMG
translates well the variation of the energy expenditure. Also, it is observable that the two muscles of the
shank, i.e., the TA and GL muscles, present the higher correlations, with mean values near to 0.800. If
the composite sum of EMG is calculated for both legs, i.e., the resulting sum of TA, GL, BF and VL, the
correlation is also higher, rounding a positive correlation of 0.800. In fact, performing the EMG composite
sum, as presented in the [58], allowed the reduction of some noise due to different activations’ power,

and allowed an overview of the muscle activation for both legs.

The same conclusion was obtained for the acceleration and angular velocity of the sagittal plane.
Correlations above 0.700 were found for segments’ acceleration (Figure 6.8 — 2) and angular velocity
(Figure 6.8 — 3). Once more, both predictors, after processed, fit well the energy expenditure variation
for each subject. Also, it was observed that, as near the floor the segments become, the correlation
between predictors and energy expenditure gets higher. This can be explained because, and especially
during standing position, the signal gets cleaner as the segments become closer to the ground because

they are not so affected by the subjects’ balance.
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Figure 6.8: Pearson correlation coefficient between EMG (1), acceleration (2) and angular velocity (3) and energy expenditure.

Regarding the heart rate signal (Figure 6.9), a positive high correlation was found for 1.2 km/h and 1.6
km/h. For the lowest speed, 0.8 km/h, the correlation was not strong. This low value was found because
some of the subjects reported a negative correlation, contradicting others with a positive one. Also,
between those with a positive correlation, some subjects presented a week result. In fact, 0.8 km/h is a

very slow speed that, perhaps, do not require a high cardiac effort.

Pearson Correlation Coefficient

5
0.8km/h 1.2km/h 1.6km/h

Figure 6.9: Pearson correlation between heart rate and energy expenditure.
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Figure 6.10 presents the EMG composite sum, the acceleration and angular velocity variation for the right
leg, as well as the heart rate and the energy expenditure, for one subject walking with the orthotic device
at0.8, 1.2 and 1.6 km/h. All predictors experienced the same pattern variation as the energy expenditure,
explaining the high correlations. The acceleration does not present the gravity effect and, thus, is zero

during the standing position. By opposite, the EMG signals presents an initial value different from zero

since the muscles are activated during the standing position.
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Figure 6.10: EMG (1), acceleration (2), angular velocity (3) and heart rate (4) signals for lower limbs.
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The final predictors for estimating the energy expenditure from the neural networks were chosen
considering the correlation results. Therefore, fifteen predictors were selected for estimating the energy
expenditure. The acceleration and angular velocity of the both lower limbs segments (12), the composite
sum of muscles activation for both legs (2), and the heart rate were chosen as the biomechanical features.
The signals were interpolated in order to have the same size for the models input. Adding to these, the

anthropometric data, as the gender, body mass, height and age, were also used as an input, as well as



the walking speed. The anthropometric data was used since the energy expenditure is user-dependent,
as stated in [56]. The speed was used in order to have a general network that can distinguish the energy

expenditure for different speeds. As such, a total of twenty features were selected.

6.5.2 Machine Learning Algorithms

For both MLP and LSTM neural networks, the dataset was divided into train and test subjects. The
subjects were permuted, having all subjects in the test dataset at least one time. Therefore, four datasets

were created, choosing randomly 6 subjects for training and 2 subjects for test.

For the MLP, a configuration with one hidden layer was performed. The machine learning package from
MATLAB allows the self-management of training and validation data. As such, the training data was split
into two separated folds: one corresponding to 80% of all training data was used for the training process;
the other that contained the remaining 20% of data was used to validate the model during the training
process, allowing an early stop if the model is overfitting. Table 6.1 resumes the training configurations

used with the MLP neural network.

Table 6.1: Experimental set for MLP neural network

Configurations No. Epochs No. Neurons Batch size o Validation fraining
samples algorithm
1 10 000 10 10 000 50 GD
2 2000 10 10 000 30 GD
3 2000 10 10 000 30 Adam
4 2000 10 5000 30 GD
5 2000 10 5000 30 Adam
6 2000 100 10 000 30 GD
7 2000 100 10 000 30 Adam

Note: GD - Gradient descent; Adam - stochastic gradient descent with adaptive learning rate

For the LSTM network, a different validation was performed. The MATLAB package for LSTM allows the
user to give data to be used for validation during the training process. Thus, a 6-fold cross-validation
technique was used. The training dataset was divided into 6-folds, where 5 of them were used for training

the model, and the other was used to validate it during the training process at every epoch, as shown in
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Figure 6.11. This approach attempts to avoid the overfitting, allowing the construction of a more

generalized model.

|
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Figure 6.11: K-Fold cross-validation for the LSTM neural network.

Table 6.2 resumes the different configurations that were tested for the LSTM neural network. As LSTMs
are highly computational and the training dataset, in terms of sample, overcomes 11 million points, the

batch size remained in 10 000 points, as observed for the MLP.

Table 6.2: Experimental set for LSTM neural network

Validation Training
Configurations  No. Epochs No. Neurons Baltch size
Checks algorithm

1 subject per
1 100 10 10 000 SGD
epoch

1 subject per
2 100 100 10 000 SGD
epoch

1 subject per
3 100 10 10 000 Adam
epoch

1 subject per
4 100 100 10 000 Adam
epoch

Note: SGD - Stochastic gradient descent; Adam - stochastic gradient descent with adaptive learning rate
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For both neural networks, the loss was computed with the mean squared error, as shown in Equation

(6.4). Therefore, the weights of the neural networks were optimized in order to minimize the loss.

1 - 2 .
MSE = ]T/Z(y" -9) Equation (6.4)
i=1
To evaluate the model’s performance, the RMSE, introduced in the previous chapters and evaluated
through Equation (4.3), the Pearson’s correlation coefficient calculated through Equation (6.3), and the
Spearman’s correlation coefficient, calculated using the following Equation (6.5), were assessed. Also,
the normalized RMSE based on the total variation of energy observed for each subject and trial was

performed, allowing the error quantification in terms of percentage.

6y d’

SCC=1-—=5
NN - 1)

Equation (6.5)

The results were also compared with a linear regressor model, based on the least squares method, that

was presented in [58].
6.5.3 Results and Discussion

Towards a Human-in-the-loop strategy into the SmartOs orthosis, two machine learning architectures were
exploited to estimate the energy expenditure of users while walking with the SmartOs-ankle orthosis in
the assistance mode. In a general way, the machine learning algorithms were able to estimate the energy
expenditure of users while they walked with the orthotic device. It was found a RMSE below 0.400 W/kg
for all the tested algorithms, which is less than those reported in the literature. Furthermore, the LSTM
neural network was the machine learning algorithm that presented the best results, with an error close
to 0.200 W/kg for the best model, which represents 11% of the total range of energy observed in the test

dataset.

Table 6.3 presents the MLP neural network performance metrics for the best model found for each

dataset, considering the configurations described in Table 6.1.

By analysing Table 6.3, the dataset 4, with the third configuration described in Table 6.1, presented the
best test results. The best configuration consisted in a shallow MLP with 10 neurons in which the learning

rate was adapted during the training process. The feedforward neural network presented a mean error of
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0.342 (£ 0.141) W/kg for the test subjects and correlations above 0.800, which highlights the capacity

of this model to predict energy expenditure using biomechanical data.

Table 6.3: Performance metrics for the test subjects of the MLP neural network for the four datasets

Best Performance metrics
Daftaset .
Configuration RMSE NRMSE PCC ScC
0.512 29.3 0.977 0.774
1 2
(0.0851) (8.63) (0.00810) (0.0478)
0.376 21.5 0.993 0.865
2 2
(0.193) (13.9) (0.00470) (0.0512)
0.564 26.6 0.983 0.876
3 3
(0.179) (4.51) (0.00410) (0.0594)
0.342 20.9 0.988 0.891
4 3
(0.141) (11.8) (0.00720) (0.0220)

Although the RMSE is a low value, this value was found to be almost 21% of the total amount of energy
for the test subjects. This result means that, although the absolute error is low, this error can be significant
regarding the total range of energy observed. Further studies should perform an extensive search of the
best parameters that potentiate a decrease in this metric, improving the model’s ability of estimating the

energy expenditure.

Regarding the correlations, the Pearson and Spearman correlation coefficients were high and positive,
which shows that the neural network was able to distinguish if the subjects were walking with the orthotic
device or if they were in standing position. Figure 6.12 present the results of the test subjects used to

evaluate the best model’s performance for the three gait speeds.

Analysing Figure 6.12, the neural network was able to catch the important information in the selected
predictors that potentiate a good estimation of energy expenditure with a minimum RMSE. Furthermore,
the neural network was able to distinguish the three walking speeds, producing an estimation that
increases as the speed increases, as stated for the ground truth signal. However, it was not able to
differentiate the small differences between the initial standing position and the final recover, as displayed

in Figure 6.12, since the energy expenditure estimation remained the same for both stages.
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Figure 6.12: Energy expenditure estimation for the test subjects of the best feedforward neural network model.



The LSTM neural network was another machine learning approach exploited in this chapter. This neural
network allowed a RMSE decreasing in comparison with the MLP, potentiating a better estimation of the
energy expenditure. The best model was found for the same dataset as the MLP, with one LSTM layer
with 10 units. Table 6.4 presents test performance metrics obtained for the best configuration found for

each dataset used.

Table 6.4: Performance metrics for the LSTM configuration regarding the four datasets

Best Performance metrics
Daftaset .
Configuration RMSE NRMSE PCC ScC
0.249 13.0 0.982 0.849
1 1
(0.139) (3.99) (0.00800) (0.0650)
0.246 13.4 0.993 0.871
2 3
(0.0716) (5.16) (0.00480) (0.0364)
0.551 27.5 0.987 0.871
3 3
(0.137) (8.42) (0.0111) (0.0651)
0.193 11.0 0.991 0.858
4 3
(0.0579) (1.92) (0.00750) (0.0281)

Analysing Table 6.4, the LSTM presented best performance metrics for both datasets in comparison with
the MLP neural network. The correlation coefficients found presented high values and were positive,
highlighting that the machine learning-based model was able to correctly estimate the energy expenditure
for the test subjects. Furthermore, the normalized RMSE decreased to 11%, which represents a drop of
almost 47% in comparison to the best model found for the MLP. Figure 6.13 displays the same two

subjects of test that were presented for the MLP configuration.

Analysing Figure 6.13, it is observable that the LSTM model promoted a better estimation of the energy
expenditure, especially in subject 2 for 0.8 km/h, where the drift observed in the MLP neural network is
no longer observed. Moreover, in subject 1 and while walking at 1.6 km/h, the LSTM model showed an
improvement in comparison with the MLP neural network, since it did not overestimate so much the
energy expenditure. However, for this same subject and trial, the LSTM neural network was not able to

correctly estimate the basal energy expenditure.

98



0.8 km/h

V=

1.2 km/h

V,=

1.6 km/h

V,-

Subject 1 Subject 2

6 T T T 6 T T :
——Predicted Energy Expenditure —Predicted Energy Expenditure
—Ground Truth —Ground Truth
—Absolute Error —Absolute Error

5 1 5 1

£

Energy Expenditure (W/kg)
w

|
|

£

w
P

[N}

Energy Expenditure (W/kg)

S 0 I e,

0
2 4 6 8 10 12 2 4 6 8 10 12
Time (min) Time (min)

6 T T ‘ . . 6 ‘ ‘ I
—Predicted Energy Expenditure — prediiod Enorgy Expendire
——Ground Truth
—Absolute Error —Ground Truth

5 ] —Absolute Error

£

Energy Expenditure (W/kg)
w

|

£

E
E

Energy Expenditure (W/kg)
w

I —— /-/\/--_.4\_17
ey PO, , o
0 ! S - L
2 10 12

4 6 8 10 12

) ; 2 4 6 8
Time (min)

Time (min)

6 T T T 6 T T :
—Predicted Energy Expenditure —Predicted Energy Expenditure
——Ground Truth ——Ground Truth
—Absolute Error —Absolute Error

5 1 5 1

£

Energy Expenditure (W/kg)
w

|
[

Energy Expenditure (W/kg)
w

£

|

(N bl s

| 1 L J
— e ——
I R AU ‘ ‘ T
4

2 4 6 8 10 12 2 6 8 10 12
Time (min) Time (min)

Figure 6.13: Energy expenditure estimation for the test subjects of the best LSTM model.
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The linear regression model evaluated in [58] was also assessed in this dissertation for comparative
terms. The linear regression model was also able to predict the steady-state energy expenditure with a
mean RMSE of 0.332 (+0.173) W/kg. However, the best fit was not found for the same dataset
combination as the MLP or the LSTM neural networks. Table 6.5 presents the results of the linear

regression model for the best test set.

Table 6.5: Performance metrics for the four datasets of the linear regression model

Performance metrics
Dataset
RMSE NRMSE PCC Scc
0.565 314 0.980 0.850
1 (0.171) (9.79) (0.0109) (0.0705)
0.332 18.0 0.988 0.885
i (0.173) (10.7) (0.00450) (0.0148)
0.777 33.9 0.987 0.874
’ (0.539) (19.1) (0.00570) (0.0644)
1.65 98.3 0.984 0.897
* (0.0756) (18.4) (0.00790) (0.0115)

Analysing Table 6.5, for the same dataset where both MLP and LSTM presented the best results, the
linear regression model was not able to estimate correctly the energy expenditure of the test subjects.
Indeed, a RMSE of 1.65 W/kg was observable for this dataset. This was observable because, perhaps,
the model did not have the capacity of catching the important information in the predictors that lead to a
correct estimation in the energy expenditure. In fact, for this dataset, the predictors for all subjects may
present a similar pattern but, as the energy expenditure is user-dependent, it led to an overestimation of
the ground truth signal. However, both Pearson and Spearman correlation coefficients presented a high
value, which indicates that, although the linear regression model for this dataset was not able to estimate
the energy expenditure value, it was able to identify correctly when the subjects were walking or were in
standing position. Nevertheless, it was found a dataset, trained with different subjects, in which the linear
regression model presented a RMSE of 0.332 W/ kg for the test subjects. This result represented a mean

normalized RMSE of 18%, which is a reasonable result considering this approach. Figure 6.14 shows the
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energy expenditure estimation for the test subjects of the best dataset found using the linear regression

model reported in [58].
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Figure 6.14: Energy expenditure estimation of the test subjects for the best linear regression model.
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Analysing Figure 6.14, for dataset 2, the linear regression model estimated the energy expenditure with
a reasonable accuracy, especially for subject 2, in both standing or walking. Regarding subject 1, the
linear regression model estimated better the energy expenditure while the subject was walking, since the

absolute error produced was smaller.

6.6 General conclusions

In this chapter, the first steps towards a Human-in-the-loop control approach were presented. First, the
impact of using an orthosis in healthy subjects was assessed. For that, the energy expenditure was
evaluated, collecting the pulmonary dynamics using a gas analyser. With this empirical study, it was
proved the necessity of introducing Human-in-the-loop in the SmartOs since all subjects experienced an
augmentation of energy expenditure while they were assisted with the ankle orthosis. However, for
introducing this control approach in the SmartOs, and in order to be suited for impaired persons, new
approaches of estimating the energy expenditure without relying in the gas analyser were evaluated. The
use of machine learning techniques, as a feedforward neural network and a LSTM neural network, were
studied to evaluate their potential use in estimating the energy expenditure. The results highlight the use
of these approaches for Human-in-the-loop strategy, and especially the LSTM neural network, since a

reasonable estimation was obtained with a mean normalized RMSE of 11% for the best dataset.
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7. CONCLUSIONS

In this dissertation, the first steps towards the introduction of Human-in-the-loop strategy into a Smart
Wearable Orthotic System - SmartOs - were addressed. As a first goal, the implementation and/or
validation of two different user-oriented control strategies for future use in the clinical context, that
promote a therapy sustained in both repetitive gait training and active participation, was performed. As a
second goal, an empirical study to check the energetic impact of using the orthotic device into healthy
subjects was conducted. In an attempt to avoid the use of non-ergonomic and clinical non-suitable sensors
for estimating the energy expenditure, two different machine learning-based regressor algorithms were

implemented and tested for further use in Human-in-the-loop control.

First, a literature analysis was conducted to assess the current state of powered orthoses. It was
concluded that, during these last years, many orthoses have been developed to aid persons with motor
impairments. Different control strategies, such as trajectory tracking control, EMG-based control,
impedance control, among others, have been proposed to control these powered devices. However, the
powered orthoses still do not endow strategies able to promote an user-oriented assistance, tailored to
the end-user needs. To tackle this problem, the investigators have focused their attention on the use of
energy expenditure as way to promote a more personalized and effective assistance for persons with
impaired gait. A new strategy - Human-in-the-loop — is getting its first steps towards a personalized
assistance, making use of energy expenditure to adapt certain assistance parameters, as the torque peak
magnitude. Currently, the energy expenditure measurements required the use of indirect calorimetry,
which is the most reliable technique in these days. However, this technique makes use of gas analysers,
which are not the most ergonomic and suitable sensors for clinical context. It requires a specialized team

for working with these sensors, besides being a noisy and expensive technique.

SmartOs is a modular, bioinspired, time-effective orthotic system intended for human locomotion
assistance and rehabilitation. It is composed of two orthotic devices, the PKO and PAFO, and different
sensory modules that allow an effective gait monitorization. Moreover, the orthotic devices are controlled
using a user-friendly mobile application, where the main configurations, as the assistive strategy, and the
monitorization modules, can be activated. This dissertation uses the potentialities of SmartOs system,

mainly for the implementation of two user-oriented control strategies.

For the first control strategy, the Adaptive User-Oriented Trajectory Tracking Control, an algorithm to
create user-oriented assistances for both PKO and PAFO orthotic devices was developed. This strategy

allows the angular trajectory modification in real-time in sub-phases of the gait cycle, using the user-
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friendly mobile application. This strategy was tested in two lower-limb orthotic devices, the PKO and PAFO,
and the results prove its necessity in the clinical context. The orthoses were able to modify its assistance
with a low latency (in a fraction of microseconds), and the users were able to follow its assistance. As a
second outcome, the gait symmetry was evaluated while the users walk with the orthotic device. It was
found that, in terms of range of motion and swing time, the orthosis does not promote a symmetrical
gait. For other symmetry evaluation metrics, such as the stance time, and the ratio between stance and
swing times, the orthosis showed to provide a guastsymmetrical gait. However, this result was more

visible in the PKO.

For the second strategy, named Adaptive User-Oriented Impedance control, the validation of an algorithm
to change the joint’s stiffness all over the gait cycle was performed. The strategy was already applied to
the PKO and, thus, the same strategy was followed for the PAFO device. An empirical study evaluating
where the subjects feel more necessity of assistance was conducted with the orthotic device in a passive
mode. It was found that the toe off event is the most critical phase of the gait cycle and where the subjects
need more help. A linear model that approximates the human-orthosis interaction torque vsangle curve
per gait phases was constructed, and the slope of the best fit was used as the joint's stiffness. The
validation with healthy subjects showed that the orthosis was able to adapt the joint’s compliance in real-

time, promoting an assistance based on the user’s effort and active participation.

Lastly, the impact of using the SmartOs-ankle orthosis into healthy subjects was assessed. For that, a
comparative study was performed with the subjects walking with and without the orthotic device,
evaluating the pulmonary dynamics. Oxygen consumption and carbon dioxide production was measured
through indirect calorimetry to calculate the energy expenditure of users. As the orthosis promoted an
augmentation of energy expenditure, the need for introducing the Human-inthe-loop strategy was
highlighted. As this strategy relies on non-ergonomic sensors, as stated in the State-of-the-art, an attempt
of estimating the energy expenditure through wearable sensors was performed using two machine
learning algorithms. The results, obtained with a MLP and a LSTM, prove that these techniques are
suitable for energy expenditure estimation. These machine learning-based regression models were

confronted with a linear regression model and it was found that the LSTM is the best approach.

In general, the main goals of this dissertation were accomplished with success. Both PKO and PAFO now
have two user-oriented assistive strategies that allow them to deliver an assistance tailored to the end-

user needs. With that, and with the machine learning model for estimating the energy expenditure, the
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first steps towards the Human-in-the-loop strategy were successfully accomplished. Thus, the research

questions formulated in Chapter 1 can be answered.

RQ 1: Can the energy expenditure be used to study the gait efficiency enabled by powered assistive

devices, and to exploit the Human-in-the-loop control?

This RQ was answered in Chapter 2. After a revision in the literature, it was found that the energy
expenditure is being monitored to evaluate the impact of using an orthotic device into the subject’s
assistance. Moreover, this measure has been explored in Human-in-the-loop control, where the orthotic-
based assistance is changed in realtime, producing an effective but also efficient assistance. As most of
the current orthoses are controlled with torque trajectory control, the main parameters being changed

are the torque peak magnitude, the torque peak timing and the actuation onset.

RQ 2: /s it possible to adapt the existing control strategies as a way to introduce the Human-in-the-loop

control in the SmartOs?

This RQ was answered in Chapter 4 and 5. The SmartOs consists of two orthotic devices, the PKO and
the PAFO, for a time-effective rehabilitation of persons with motor impairments. For introducing the
Human-in-the-loop control in the SmartOs, two control approaches were introduced and validated with
healthy subjects. The first strategy, the Adaptive User-Oriented Trajectory Control, presented in Chapter
4, enables creating different position trajectories tailored to the user’'s needs, in realtime, for both PKO
and PAFO devices. The second control strategy, already validated in the PKO device, was extended to the
PAFO device. Moreover, the interconnection between the two assistive strategies was ensured, allowing
the delivering of an assistance based on effort and active participation with a reference trajectory tailored
to each end-user needs. Thus, it is possible to adapt the existing control strategies as a way to introduce

the Human-in-the-loop control in the SmartOs.

RQ 3: Are there differences in the user’s energy expenditure when assisted by the SmartOs at slow walking

speeds?

This RQ was answered in Chapter 6. The SmartOs was designed for persons with motor impairments,
who usually walk at slow speed. Thus, SmartOs only allows slow walking speeds that are not comfortable
for healthy subjects. An empirical study was conducted with the orthotic device for the three main gait
speeds — 0.8 km/h, 1.2 km/h and 1.6 km/h. This study shows that the orthosis promoted an
augmentation of energy expenditure for all speeds in comparison to walk without the device. Regarding
the energy expenditure for the three speeds, there are differences between them, and the differences are

considered statistically significant (pvalue = 0.00140).
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RQ 4: Are the machine learning-based models able to evaluate the energy expenditure in the SmartOs,

minimizing the use of non-ergonomic systems?

This RQ was answered in Chapter 6. The machine learning algorithms consisted of an effective solution
for estimating the energy expenditure with an error that can be overcome with more available data for
training the model. In this dissertation, two machine learning-based regression models were tested, one
MLP with one hidden layer of 10 neurons, and one LSTM neural network with 10 units, and it showed a
reasonable performance in estimating the energy expenditure of users while walking the orthotic device.
Therefore, the use of non-suitable techniques as indirect calorimetry can be replaced by machine learning-

based empirical models fed by motion data from wearable sensors.

7.1  Future work

As future work, a more extensive validation of the presented assistive strategies should be carefully
performed, including the evaluation with patients with motor impairments. Moreover, in an attempt of
creating a more robust model, more data for the Human-in-the-loop purpose should be collected using
the presented control strategies, creating different orthosis-based assistances regarding the position
trajectory and the interaction stiffness. Also, an extensive search of different configurations for the neural
networks should be performed, ensuring the creation of the best model that predicts well the energy
expenditure. Once this is performed, the prediction model should be implemented in real-time in parallel
with the proposed assistive strategies in order to have an orthotic device that: (1) allows an effective
estimation of energy expenditure and (2) adapts the assistance, in realtime, regarding the energetic

demand of each user.
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