
Software engineering for ‘quantum advantage’

Luis S. Barbosa
lsb@di.uminho.pt

INL - International Iberian Nanotechnology Laboratory

UNU-EGOV - United Nations University

Universidade do Minho

Braga, Portugal

ABSTRACT

Software is a critical factor in the reliability of computer systems.

While the development of hardware is assisted by mature science

and engineering disciplines, software science is still in its infancy.

This situation is likely to worsen in the future with quantum com-

puter systems. Actually, if quantum computing is quickly coming

of age, with potential groundbreaking impacts on many different

fields, such benefits come at a price: quantum programming is hard

and finding new quantum algorithms is far from straightforward.

Thus, the need for suitable formal techniques in quantum software

development is even bigger than in classical computation. A lack

of reliable approaches to quantum computer programming will put

at risk the expected quantum advantage of the new hardware. This

position paper argues for the need for a proper quantum software

engineering discipline benefiting from precise foundations and

calculi, capable of supporting algorithm development and analysis.

KEYWORDS

quantum computing, formal methods, software engineering

ACM Reference Format:

Luis S. Barbosa. 2020. Software engineering for ‘quantum advantage’. In

IEEE/ACM 42nd International Conference on Software Engineering Workshops

(ICSEW’20), May 23–29, 2020, Seoul, Republic of Korea. ACM, New York, NY,

USA, 3 pages. https://doi.org/10.1145/3387940.3392184

1 THE CLAIM

Arguably quantum computing is coming of age. With the race for

quantum rising between major IT players, and the announcement

of new prototype, proof-of-concept machines up to 50 qubits, it

seems we are in the verge of a real shift. For the first time, the

viability of quantum computing may be demonstrated in a num-

ber of real problems extremely difficult to handle, if possible at all,

classically, and its utility discussed across industries. In a sense,

Feynman’s dream of letting Nature, suitably engineered, compute

for us through its own natural quantum behaviour, seems to be

closer, even if the project of a universal quantum computer has

still a long way to go. In the somehow emphatic language of the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7963-2/20/05. . . $15.00
https://doi.org/10.1145/3387940.3392184

media, a ‘second quantum revolution’ is quickly approaching. It

is characterised by the ability to harness the most weird quantum

phenomena, namely superposition and entanglement, as computa-

tional resources, with practical advantage. In this move the role of

software, and its engineering, cannot be underestimated.

Software is indeed a critical factor in the reliability of computer

systems, a situation which is likely to worsen as quantum systems

will be more difficult to program and test. Lack of trustworthy ap-

proaches to software development may put at risk the expected

’quantum advantage? of the new hardware, to use a term popu-

larised by industry. This entails the need for reworking and extending

the whole of classical software engineering into the quantum domain

so that programmers can manipulate quantum programs with the

same ease and confidence that they manipulate today’s classical pro-

grams, as suggested as a research ‘grand challenges’ in the initial

years of the millennium [14].

Software engineering is an all-encompassing domain, ranging

from requirements and architectures, to design, development, ver-

ification and deployment. Even narrowing its scope to focus ex-

clusively on the design of algorithms, such re-working is pressing.

The set of primitive techniques in quantum algorithmics increased

over the past decade, exploring quantum effects in a number of

unsuspected ways. But still quantum programming is hard, finding

new and effective quantum algorithms is far from straightforward,

some useful metaphors may still lack.

Moreover, most current quantum algorithms assume an ideal

quantum computer with many qubits that can hold information

indefinitely. We are not yet there. In the short term, the challenge is

to find real-world problems and applications that can benefit from

the small, ‘noisy’ quantum computers that will soon be available.

Irrespective of one’s own assessment of what the future might

bring for this area, we believe it is time to discuss an agenda for

a solid, rigorous software engineering discipline for quantum sys-

tems. Similarly to what happened in classical computation, such

a discipline will greatly benefit from mature formal techniques,

in the confluence of several mathematical domains (logic, algebra,

topology, probability, category theory), able to conceptualise and

predict behaviour of quantum computational systems, and to pro-

vide a rich, formal framework for their specification, analysis and

development.

The conceptualisation of quantum computing predated its tech-

nological realisation: in a way physicists are making it happen.

Similarly, in the 1930’s, Turing machines anticipated digital com-

puters. It seems history is repeating itself. Differently, however,

from what happened before, we have now the chance to get theory

427

2020 IEEE/ACM 42nd International Conference on Software Engineering Workshops (ICSEW)



in place before technologies emerge and popularise. The remain-

ing of this paper briefly discusses a number of topics that may be

relevant for this agenda.

2 THE RESEARCH CHALLENGES

Progress in quantum computing, related algorithmic techniques and

applications, cannot ignore the fact that current methods and tools

for quantum software development are still highly fragmentary and

fundamentally ‘low-level’. Reasoning directly with quantum gates

is as limited as assembling logical gates in classical algorithm design.

It sweeps under the carpet all key ingredients of a mature software

engineering discipline: compositionality, abstraction, refinement,

high-order and property-enforcing type schemes.

On the other hand, the standard mathematical formulation of

quantum mechanics in terms of Hilbert spaces, and the associated

von Neumann approach to its logical structure, is unable to provide

a sufficiently abstract framework for specifying and analysing quan-

tum processes and, in particular, to incorporate classical, macro-

scopic noise into the picture, in an effective, not implicit way.

In this context, we identify the following main issues around

which any roadmap for a Software Engineering discipline meeting

rigorous scientific standards should be structured: i) how (quantum)

systems are modelled, ii) how models are composed, and finally, ii)

how properties of their behaviours are anticipated, expressed and

verified. More concretely, research on an Engineering discipline

relevant for quantum computing should seek for

(1) appropriate semantic structures, able to comply with different

types of classical control (non deterministic, probabilistic,

continuous) and quantum data, as well as to capture a suit-

able notion of program approximation upon which a theory

of quantum program refinement and equivalence can be

based;

(2) an algorithmic calculus, stemming from the semantics above,

for the systematic derivation of quantum programs in a com-

positional way;

(3) a new family of dynamic logics, parametric in the interfering

(classical) computational paradigm, to support the formula-

tion of contracts for quantum algorithms and their composi-

tional verification;

(4) a framework for coordination of distributed quantum compu-

tational systems — a main requirement for obtaining opti-

mally responsive global quantum networks, but currently

largely overlooked.

The next section details specific research paths/strategies to

realize these objectives. In this exercise, one must taken into ac-

count that quantum computing is significantly different from its

classical counterpart. Even more, its evolution has influenced the

way the proper foundations of quantum mechanics are currently

perceived. The phenomenon of entanglement is a much-cited ex-

ample: a paradox in the 1930’s, a theorem thirty years later, with

Bell’s non-locality result, and, finally, three decades afterwards, a

main computational resource to explain e.g. teleportation protocols.

On the other hand, the patrimony collected over time in classical

software engineering is most valuable at two levels. First to set a

collection of themes to look at in the new setting: compositionality,

abstraction, etc. Secondly, and most concretely, because it seems

likely that, at least for a reasonable time span, classical and quan-

tum software will coexist and the engineering process will need to

deal with their hybrid development seamlessly.

3 RESEARCH DIRECTIONS

Systems’ models, architectures, and properties constitute three main

topics unavoidable in any roadmap to Software Engineering. In

broad terms they capture three substantive perspectives which un-

derly any effective design discipline: abstraction, compositionality

and the ability to reason formally on the engineered artefacts. From

our perspective, they are equally relevant to a research agenda for

quantum software engineering. This section proposes a number of

concrete research directions in each of these three areas, regarded

from a formal methods point of view. We do not claim their cen-

trality: at this stage what seems important is to discuss new ideas

and illustrate what can be done.

3.1 Models

Models are pervasive in the engineering practice, and the software

domain is not an exception. Irrespective of the myriad of (textual, di-

agrammatic, formal, etc.) notations used in practice, models should

always be understood in the sense they are in e.g. school physics

problem-solving. There, once a problem is understood, a mathemat-

ical model is built as an appropriate abstraction, on top of which

one reasons about the behaviour of the system until a ‘solution’ is

found.

Different effects in computational models, for example partial-

ity, non determinism, probabilism, etc, are formally captured by

monads, as in e.g. [4]. A number of proposals for monads capturing

quantum features have recently appeared [1, 8, 10] which may lay

the (semantic) foundations for quantum programming languages

in the spirit of Moggis’s pioneering work [11].

In particular, this may be a way to bring quantum and cyber-

physical programming together. Actually, recent developments on

the semantics of (classical) hybrid components introduced a new

monad capturing continuous evolution in a topological setting

which caters for stability aspects [12]. This can be lifted to the

quantum domain seeking for a coherent, unified view of both classi-

cal and quantum hybrid devices and their interaction. The relevance

of this comes form the fact that quantum devices will soon become

part of major cyber-physical systems, entailing the need for precise

behavioural specifications of their interaction with (macroscopic)

continuous processes. Indeed, harnessing superposition states, eas-

ily affected by context, to produce very precise sensors, or using

solid-state quantum sensors to measure very small magnetic fields,

are technological possibilities identified in the 2016 Manifesto [13]

as short term developments.

3.2 Architectures

Software architecture emerged as a proper discipline within Soft-

ware Engineering from the need to explicitly consider, in the de-

velopment of increasingly larger and more complex systems, their

overall structure, organisation, and emergent behaviour. As a model,

an architecture acts as an abstraction of a system that suppresses

details of its constituents, except for those which affect the ways

they use, are used by, relate to, or interact with other components.

428



Architectural approaches based on exogenous coordination mod-

els, as popularised in e.g. the Reo framework [2], seem worth to

explore, given its enforcement of a clear separation of computation

and interaction loci, and the intrinsic, sui generis parallelism inher-

ent to the quantum computational model. Actually, the combination

of quantum computational systems is largely overlooked despite

being a fundamental ingredient of future architectures, in which

distributed quantum computations may run, possibly aided by long-

range classical communication, over classical or quantum data. A

first challenge in this direction will aims at exploring what an alge-

bra of mixed classical and quantum systems could be. Note that, as

intermediate states in a quantum computation cannot be observed,

even sequential composition is quite different from the classical

case. Entanglement, on its turn, requires a new understanding of

parallel composition. On the one hand, it restricts the interleaving

abstraction, widely used in the analysis of classical concurrent pro-

cesses. On the other, it may bring to scene new synchronisation

mechanisms.

In a sense the mathematical structure underlying ‘categorical

quantum mechanics’ [9] already possesses the basic ingredients for

a calculus of quantum processes: composition (via tensor), measure-

ments of entangled states (allowed by the compact closed structure),

feedback (through dagger) and probabilistic branching (via biprod-

ucts), and last but not least, a formal diagrammatic notation [5].

3.3 Properties.

A plethora of logics is used in Software Engineering to support the

specification of systems’ requirements and properties, as well as to

verify whether, or to what extent, they are enforced in specific im-

plementations. Broadly speaking, the logics of dynamical systems

are modal, i.e. they provide operators which qualify formulas as

holding in a certainmode. In mediaeval Scholastics such modes rep-

resented the strength of assertion (e.g. ‘necessity’ or ‘possibility’).

In temporal reasoning they can refer to a future or past instant, or

a collection thereof. Similarly, one may express epistemic states

(e.g. ‘as everyone knows’), deontic obligations (e.g. ‘when legally

entitled’), or spatial states (e.g. ‘in every point of a surface’). Dy-

namic logic [7] is a well-known, successful modal logic to reason

about (classical) programs and establish software correctness. Its

extension to the quantum domain is not new (see references be-

low), but much is required to tune its application to large, complex

(quantum) systems. For example, how can contract-based design, a

so successful paradigm in the classic software engineering practice,

be extended to the quantum domain?

The work of Baltag and Smets [3], Panagaden [6] and Ying [15],

proposes different dynamic logics able to express and reason about

quantum programs. Some of our recent work is focused on a very

general framework for the development of dynamic logics ‘on-

demand’, i.e. parametric on program constructs and the structure

of truth spaces. Theoretical aspects of such logics, such as com-

plexity, decidability and calculi, also come up parametrically. Both

quantum and classical (probabilistic) features can be combined in

this framework, from which a corresponding family of Hoare logics

for the quantum domain can be generated. In particular, three re-

search challenges emerge: i) the characterisation of a contract-based

development discipline for assertional reasoning about quantum

programs; ii) the proposal of a dynamic logic incorporating (classi-

cal) noise at the expression level to reason about probabilistically

controlled fault-tolerance in quantum programs; and, finally, iii) the

identification of a semantic bridge between ‘categorical quantum

mechanics’, which may be seen as a type theoretic form of quantum

logic, and dynamic logics supporting assertional reasoning.

4 CONCLUDING

Although information technology became ubiquitous in modern

life long before a solid scientific methodology, let alone formal

foundations, has been put forward, the ultimate goal of a software

engineering discipline is the development of methods, techniques

and tools for formal – and preferably automatic – analysis and

verification of computational systems.

Our starting point is that, just like classical computation, quan-

tum algorithmics will greatly benefit from a mathematically based

approach, able to conceptualise, and predict behaviour, and to pro-

vide a rich, formal framework for specifying, developing and veri-

fying quantum algorithms. Such foundations are produced in the

confluence of several mathematical disciplines and lessons learnt

from the Software engineering practice. A few challenges and pos-

sible research direction were proposed in this paper to foster what

we see as an urgent discussion.

Acknowledgments. This work was supported by ERDF, through COM-

PETE 2020 Programme, and FCT (Fundação para a Ciência e a Tecnolo-

gia), the Portuguese funding agency, within project POCI-01-0145-FEDER-

030947.

REFERENCES
[1] S. Abramsky, R. Barbosa, N. Silva, and Z. Zapata. 2017. The Quantum Monad on

Relational Structures. In 42 Symp. Mathematical Foundations of Computer Science
(LIPIcs), K. G. Larsen et al (Ed.), Vol. 83. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 35:1–35:19.

[2] F. Arbab. 2004. Reo: a channel–based coordination model for component compo-
sition. Mathematical Structures in Comp. Sci. 14, 3 (2004), 329–366.

[3] A. Baltag and S. Smets. 2011. Quantum logic as a dynamic logic. Synthese 179, 2
(2011), 285–306.

[4] L. S. Barbosa. 2003. Towards a calculus of state-based software components.
"Jour. Universal Comp. Sci." 9, 8 (2003), 891–909.

[5] B. Coecke and A. Kissinger. 2017. Picturing Quantum Processes: A First Course in
Quantum Theory and Diagrammatic Reasoning. Cambridge University Press.

[6] E. D’Hondt and P. Panangaden. 2006. Quantum weakest preconditions. Mathe-
matical Structures in Computer Science 16, 3 (2006), 429–451.

[7] David Harel, Dexter Kozen, and Jerzy Tiuryn. 2000. Dynamic Logic. MIT Press.
[8] I. Hasuo and N. Hoshino. 2017. Semantics of higher-order quantum computation

via geometry of interaction. Ann. Pure Appl. Logic 168, 2 (2017), 404–469.
[9] C. Heunen and J. Vicary. 2019. Categories for Quantum Theory. Oxford University

Press.
[10] B. Jacobs, J. Mandemaker, and R. Furber. 2016. The expectationmonad in quantum

foundations. Inf. Comput. 250 (2016), 87–114.
[11] E. Moggi. 1991. Notions of Computation and Monads. Information and Computa-

tion 93, 1 (1991), 55–92.
[12] R. Neves, L. S. Barbosa, D. Hofmann, and M. A. Martins. 2016. Continuity as

a computational effect. J. Log. Algebr. Meth. Program. 85, 5 (2016), 1057–1085.
https://doi.org/10.1016/j.jlamp.2016.05.005

[13] QUROPE – Quantum Information Processing and Communication in Europe.
2016. Quantum Manifesto: A new era of technology. Available from qurope.eu.

[14] S. Stepney, S. Abramsky, A. Adamatzky, C. G. Johnson, and J. Timmis. 2008. Grand
Challenge 7: Journeys in Non-Classical Computation. In Visions of Computer
Science, E. et al Gelenbe (Ed.). BCS, 407–421.

[15] M. Ying, S. Ying, and X. Wu. 2017. Invariants of quantum programs: characteri-
sations and generation. In 44th ACM SIGPLAN Symp. Principles of Programming
Languages, POPL, 2017, G. Castagna and A. D. Gordon (Eds.). ACM, 818–832.

429


