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Abstract. Since sheet metal forming has a high percentage contribution in the overall design costs of a new car, this 
engineering area assisted in the last decades to considerable development efforts. The present challenge is to simulate all 
the production stages, from the initial blank sheet to the final part ready to assembly. On this particular issue of multi-
step deep-drawing simulation, this work presents a new remapping method called Incremental Volumetric Remapping 
(IVR) developed to minimize the error that occurs, when performing the variable transfer operation between two 
different meshes. The IVR method is based in a volumetric approach where the calculus of the remapped state variables 
is obtained by means of a weighted average of the intersection volume between the meshes. The method performance is 
tested and compared with a standard extrapolation-interpolation, by applying a numerical example of the 
Numisheet’2005 Conference, “The Channel Draw/Cylindrical Cup Benchmark”. 

 

INTRODUCTION 

One of the common problems when referring to the 
numerical simulation of multi-step processes concerns 
the mesh modifications over the simulation, which 
may involve, for instance, several trimming or 
remeshing operations. Therefore, along each one of 
these mesh modifications, some kind of remapping 
procedure is required to transfer the state variables and 
other quantities from the previous to the next mesh. 
When reporting the finite element method, the 
remapping problem can be described as an 
approximation of a field of quantities at a distribution 
of discrete points, which represent a donor (initial) 
domain, given their values to a different distribution of 
discrete points (target domain) [1]. Several methods 
can be found in literature that address this subject, in 
particular, Jiao and Heath [2] group four most relevant 
strategies: Pointwise interpolation and extrapolation; 
Area-weighted averaging; Mortar elements methods; 
or Specialized methods according the application. In 

this work, a new method called Incremental 
Volumetric Remapping (IVR) method is presented and 
applied to solid finite “brick” element meshes that 
attempts to minimize, the error that occurs during the 
state variable transfer operation, for instance, with the 
classical extrapolation-interpolation methods. The IVR 
method can be classified as a conservative rezoning 
one, since the state variables values to put in the new 
Gauss points (of the target mesh) are determined by a 
weighted average of the intersecting volumes between 
the target and donor meshes. Apart of the method 
description for the state variables transfer problem, a 
different approach is presented to address the 
determination of the intersection volumes, by a 
discrete and incremental manner. To test the 
performance of the IVR method, a multi-step example 
of the Numisheet’2005 Conference – “Channel 
Draw/Cylindrical Cup Benchmark #3” – is used, as 
well as other remapping method  (extrapolation-
interpolation by shape functions inversion) to compare 
the obtained results. All the simulation stages were 
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carried out with the DD3 family of home codes [3-5] 
developed at CEMUC (Coimbra University 
Mechanical Engineering Research Center). In 
particular the DD3IMP static implicit code for deep 
drawing simulation, the DD3OSS static implicit code 
for the springback prediction and the DD3TRIM code 
to trim hexahedral finite element meshes and also to 
execute the remapping stages. 

REMAPPING PROCEDURE 

One classical way to remap a given mesh domain is 
to apply extrapolation-interpolation based methods, 
that, in most cases, make use of the finite element 
shape functions. In these methods, firstly, the state 
variables are extrapolated (by inversion of the shape 
functions) from the Gauss points to the nodes of the 
donor mesh (see figure 1.a and 1.b) and then two 
consecutive interpolation operations are performed. 
The first one, transfers the quantities from the nodes of 
the donor mesh, to the nodes of the target mesh  
making use of the shape functions of the donor 
element that contains the target node (figure 1.c), and 
the second one, from the nodes to the Gauss points of 
the target mesh (figure 1.d).   

 

FIGURE 1.  Schematic 2D representation of the main stages 
of a typical extrapolation-interpolation remapping method: a) 
Donor and target meshes; b) Extrapolation stage; c) First 
interpolation stage; d) Second interpolation stage.   

The IVR method is based on the concept, reporting 
the finite element theory, that the state variables values 
in all the points of a Gauss volume (an eighth part of 
the standard brick element) are equal to the state 
variable quantity placed in the correspondent Gauss 
point. Therefore, the variables quantities to be placed 
in a given Gauss point of the target mesh element can 
be in this way determined by the calculus of a 
weighted average. The weight function to be used is 
the Gauss volume percentage of each donor element 
that is inside of the target Gauss volume 
(corresponding to the Gauss point in evaluation). 
However, this kind of volume formulation brings the 
difficult problem of calculating intersecting volumes 
of elements belonging distinct meshes (see figures 2.a 
and 2.b) [1,6]. This issue is here overcome by using an 
incremental volumetric scheme to determine the 
intersecting volume between two elements. The 
methodology begins with the division of the Gauss 
volume of the target element (figure 3.a, 3.b), in a 
predefined number of parts (figure 3.c). After the 
target Gauss volume partition, a loop is performed to 
determine which donor Gauss volume contains the 
centroid of each small part (figure 3.d).  

 

FIGURE 2.  Schematic 2D explanation of the IVR method: 
a) Donor and target meshes; b) Gauss volumes intersection; 
c) Target Gauss volume partition and intersection.  
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For the point search procedure in the donor Gauss 
volumes, it was chosen to apply the volume 
coordinates method that is straightforwardly and 
avoids predictably higher time consuming iterative 
algorithms, such as, those based in the parametric 
inversion of the element shape functions [7].  The state 
variable quantity that is assigned to each single Gauss 
volume part is equal to the state variable quantity of 
the donor Gauss volume, in which the volume part 
centroid is located (figure 2.c). The total donor Gauss 
volume contribution for the target Gauss volume (in 
evaluation) is computed by summing all the small part 
volumes that belongs to the donor Gauss volume. The 
calculus of the state variable quantity α to be placed in 
a Gauss point of the target element is given by the 
equation: 
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where iVj is j Gauss volume part of the target mesh 
contained by the donor Gauss volume i, iVtot is i total 
donor Gauss volume. NG is the number of donor 
Gauss volumes and NL the number of linear divisions 
of the target Gauss volume to be partitioned. αi is the 
state variable quantity of the i donor Gauss volume. 

FIGURE 3.  Brick element decomposition: a) Original 
element; b) Division in Gauss volumes; c) Individual Gauss 
volume partition; d) Single Gauss volume part 

For the nodal variables treatment, it is used the 
general methodology, aforementioned for the 
extrapolation-interpolation methods: The nodal values 
are interpolated from the nodes of the donor mesh to 

the nodes of the target mesh (figure 1.c) using the 
shape functions of the donor elements.  

NUMERICAL EXAMPLE TEST 

To test the performance of the developed IVR 
method, face the briefly explained extrapolation-
interpolation one, it was chosen to use one of the 
Numisheet’2005 Conference Benchmarks (see 
reference [8] for details). The “Channel 
Draw/Cylindrical Cup Benchmark #3” is divided in 
two stages. In this study, the focus will be putted only 
in the mesh transition between stages, where the 
trimming, remeshing and remapping operations take 
place. In the analysis, the used trimmed blank, called 
Specimen A (figure 4) is obtained by cutting the 
Stage 1 channel draw panel after springback. It was 
chosen to use the DP600 material data from the stage 1 
simulation results. This trimmed blank is subsequently 
deep-drawn in stage 2.        

FIGURE 4.  Location of the trimming positions in the Stage 
1 channel draw panel, to create the Specimen A blank that 
will be deep-drawn in stage 2.  

The trimming operations are executed with the 
home code DD3TRIM [5] to obtain the trimmed 
meshes, as well as, to perform the rotation and 
translation of the mesh to setup the blank for the 
second stage. In stage 1 forming, the original blank 
(1066.8mm × 254.0mm × 1.0mm) is submitted to a 
principal load direction that is subject to cyclic 
bending and unbending loading imposed by the 
drawbeads. Thus, in the original mesh discretization, it 
was chosen to use a mesh with three layers in 
thickness direction and to put more elements in the 
longitudinal direction to better predict the plastic strain 
gradients developed in the drawbead influence region.  
Has a consequence, the number of elements of the 
Specimen A trimmed mesh in the transversal direction 
is much lower that in the original longitudinal one (see 
figure 5.a). Since in the stage 2 the punch tool is 
axisymmetric, it is imperative to homogenize the 
number of elements in the longitudinal and transversal 
directions of the mesh (figure 5.b). For that purpose, a 
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simple remeshing algorithm is used to reduce or 
increase the number of elements in a given direction.   

FIGURE 5.  Number of linear divisions in the longitudinal 
and transversal directions of the trimmed meshes, before a) 
and after b) the remeshing operation. 

Due to the difficulty of measuring the effective 
error in a single remapping operation, because of the 
discrepancy of the nodes and Gauss points location, in 
the analysis the remapping error is measure after two 
consecutive remapping operations. Thus, after 
remapping the mesh that results from the remeshing 
operation, the original mesh is remapped with the 
information of the remeshed one and, in this way, the 
accuracy of the remapping methods can be accessed 
and compared (figure 6).   
 

FIGURE 6.  Evaluation procedure to estimate the 
remapping error after two consecutive remapping operations.  

Remapping Results 

In the conducted remapping tests with the IVR 
method, three values of NL (equation 1) where tested 
(5, 10, 15) in order study the influence of this 
adjustable parameter, in the accuracy of the remapping 
operation. In all the presented results, the state variable 
in evaluation is the stress component σxx, since in this 
problem, this variable has strong gradients distribution 
and, therefore, the remapping error assumes more 
significance. In figures 7 to 11 the stress distribution 
can be visualized and the obtained results for each one 
of the methods and parameters qualitatively compared. 
Observing the results for the extrapolation-

interpolation method (figure 8) and comparing with 
the original mesh ones (figure 7) it is easily perceptible 
that the method conducts to a softening and distortion 
of the original gradients.  

 

FIGURE 7.  Stress variable σxx [MPa] distribution for the 
original mesh.  

 

FIGURE 8.  Stress variable σxx [MPa] distribution for the 
original mesh remapped with the extrapolation-interpolation 
method. 

In the IVR treated meshes (figures 9, 10, 11) the 
original global gradients are kept. However, it is 
noticeable the presence of artificial transversal stripes, 
that are justified by the discrete base formulation of 
the method and the high element density in the 
longitudinal direction in the initial mesh. Nevertheless, 
this effect is effectively attenuated by the increase of 
the NL parameter, what indicates that the high 
mismatch of elements between the two meshes 
recommends the use of higher NL values. This 
conclusion is confirmed by the error analysis taken by 
plotting the number of nodes as  function of their 
absolute error values (see figures 12 to 15) and by the 
mean measured error for each case (see table 1). By 
comparing the two remapping methods, it can be 
stated that the IVR method generates smaller error 
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values, even in the lowest NL value tested, face the 
standard extrapolation-interpolation one.  

 
 

FIGURE 9. Stress variable σxx [MPa] distribution for the 
original mesh remapped with the IVR method, with NL 
equal 5. 

 
 

FIGURE 10.  Stress variable σxx [MPa] distribution for the 
original mesh remapped with the IVR method, with NL 
equal 10. 

 
 

FIGURE 11.  Stress variable σxx [MPa] distribution for the 
original mesh remapped with the IVR method, with NL 
equal 15. 

While in the extrapolation-interpolation method 
(figure 12), the error values spreads above 100 MPa, 
for the IVR case, the plotted error values are always 
under 85 MPa. When observing only the NL parameter 
influence on the error distribution and quantity for the 
IVR method, it clearly notice that the error distribution 
moves towards the left side of the graphs (figures 13, 
14 and 15), that is, to lower error values as the NL 
value increases.  

TABLE 1. Remapping error of σxx variable for the 
different methods and parameters. 

Method Mean Error [MPa] 
Extrapolation- Interpolation  54.7 
IVR (NL = 5) 29.8 
IVR (NL = 10) 17.5 

IVR (NL = 15) 12.4 

In the mean error evaluation (table 1) the difference 
between the two remapping methods can be 
significant, observing that the mean error associated to 
the extrapolation-interpolation method is 1.85 times 
higher than the IVR method, for NL equal 5, and 4.4 
times, when NL equal 15. 
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FIGURE 12.  Frequency error distribution for the original 
mesh remapped with the extrapolation-interpolation method. 
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FIGURE 13.  Frequency error distribution for the original 
mesh remapped with the IVR method, with NL equal 5.  
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FIGURE 14.  Frequency error distribution for the original 
mesh remapped with the IVR method, with NL equal 10. 
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FIGURE 15.  Frequency error distribution for the original 
mesh remapped with the IVR method, with NL equal 15. 

CONCLUSIONS  

In this work a new algorithm to treat the state variable 
transfer problem between two distinct finite element 
meshes has been described. The IVR method is based 
in a volumetric approach where the state variable 
value to put in a target Gauss point is determined by a 
weighted average of the intersection volume between 
the target and donor meshes. Apart of the transfer 
problem issue, a discrete methodology is taken to 
easily determine the intersection volumes without 
being necessary to calculate any kind of geometrical 
intersections between elements that can be very 
delicate to achieve in terms of efficiency and 
algorithmic reliability. In the performance tests, two 
consecutive remapping operations based on the 
Numisheet’2005 Benchmark #3 data, were executed 
by the IVR method and by a classical extrapolation-
interpolation one. The IVR has conducted to very 
effective results towards the reduction of the 
remapping error, as well as, to maintain the state 
variables gradients, avoiding excessive numerical 
smoothing and distortion. Furthermore, the method has 
the advantage of being adjustable, to the meshes 

asymmetries and dimensions and, therefore, to the 
remapping accuracy by means of a linear parameter 
described in the text.    
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