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Using cross-wavelets to decompose the time-frequency

relation between oil and the macroeconomy∗
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Abstract

A large body of empirical literature has suggested that oil price shocks have an impor-

tant effect on economic activity. But in most of the literature the analysis is exclusively

done in the time domain. However, interesting relations exist at different frequencies.

We use (cross) wavelet analysis to uncover some of these relations, estimating the spec-

tral characteristics of the time-series as a function of time. Our analysis suggests that

the volatility of both the inflation rate and the output growth rate started to decrease

in the decades of 1950 and 1960, suggesting that the great moderation started then,

but that it was temporarily interrupted due to the oils crisis of the 1970s, whose effects

extend until the mid 1980s. We also show that while at business cycle frequencies oil

prices lead industrial production, in the very long run production increases lead oil price

increases. The exception to this long-run relation occurred between the mid 1970s and

mid 1980s. Our analysis also suggests that monetary policy became much more efficient

after 1980 to deal with the inflationary pressures of oil shocks.
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1 Introduction

A large body of empirical literature has suggested that oil price shocks have an important

effect on economic activity. Hamilton (1983, 1985, 1996), Burbidge and Harrison (1984),

Santini (1985), Gisser and Goodwin (1986), Rotemberg and Woodford (1996), Bernanke et al.

(1997), Aguiar-Conraria and Wen (2007) and many others have provided empirical evidence

that oil prices were significant determinants of U.S. economic activity.

All these papers follow the VAR tradition to identify the oil shocks and to study its effects

on macroeconomic variables (imposing some kind of short run or long run restrictions). Still,

some authors are suspicious of these conclusions. As Hooker (1996) showed, the correlation

between oil prices and economic activity is much less clear after 1985.

Mork (1989) attributed this instability of the empirical relation between oil prices and

output to misspecification of the functional form. As Mork noted, until 1980 almost all oil

price changes were upward. Only after 1980 we observed consistent oil price decreases. Mork

(1989) showed that the reaction of output to positive and negative changes of oil prices was

asymmetric.

To model this asymmetry, Hamilton (1996 and 2003) introduced the concept of net oil

price increases. According to Hamilton it is not the oil price increase per se that causes output

disruptions but net oil price increases. His measure of the net oil price increase is defined as

the amount by which oil prices in quarter t exceed their peak value over the previous 12 or

36 months. Raymond and Rich (1997) used a Markov switching framework to model the

asymmetric impact of oil shocks.

More recently, other approaches have been followed. For example, Kilian (2007) looks at

historical accounts and industry sources to identify exogenous oil production shortfalls. A

similar approach, which looks at prices instead of quantities, is followed by Cavallo and Wu

(2006). Their measure of oil shocks is based on exogenous events that trigger substantial

fluctuations in spot oil prices and are constructed to be free of endogenous and anticipatory

movements. Once these nonlinear methods are considered, the basic results obtained in the
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1980s with linear methods are replicated.

The cited works share a common feature. The analysis is done exclusively in the time

domain. The frequency domain is left out. However, some interesting relations may exist at

different frequencies. For example, it is possible that oil prices may act like a supply shock

in the short or medium-run (high and medium frequencies), therefore affecting industrial

production, while, in the longer run (lower frequencies) it is the industrial production, through

a demand effect, that affects oil prices. These types of relations are difficult to uncover using

time-domain methods.

To uncover relations at different frequencies, it is common to utilize Fourier analysis.

However, under the Fourier transform, the time information of a time-series is completely

lost. Because of this loss of information it is hard to distinguish transient relations or to

identify when structural changes do occur. Moreover, these techniques are not appropriate to

deal with non-stationary time-series. To overcome the problems of analyzing non-stationary

data, Gabor (1946) introduced the Short Time Fourier Transform. The basic idea is to break

a time series into smaller sub-samples and apply the Fourier transform to each sub-sample.

However, as Raihan et al. (2005) pointed out, this approach is inefficient because the frequency

resolution is the same across all different frequencies.

As an alternative, wavelet analysis has been proposed. Wavelet analysis performs the

estimation of the spectral characteristics of a time-series as a function of time revealing how

the different periodic components of the time-series change over time. While the Fourier

transform breaks down a time series into constituent sinusoids of different frequencies and

infinite duration in time, the wavelet transform expands the time series into shifted and

scaled versions of a function — the so-called mother-wavelet — that has limited spectral band

and limited duration in time.

One major advantage afforded by the wavelet transform is the ability to perform natural

local analysis of a time series in the sense that the length of wavelets varies endogenously.

It stretches into a long wavelet function to measure the low frequency movements; and it

compresses into a short wavelet function to measure the high frequency movements. In order
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to capture abrupt changes, for example, one would like to have very short functions (narrow

windows). At the same time, in order to isolate slow and persistent movements, one would

like to have very long functions (wide windows). This is exactly what can be achieved with

the wavelet transform.

We know from the Heisenberg uncertainty principle that there is always a trade-off between

localization in time and localization in frequency; in particular, we cannot ask for a function

to be, simultaneously, band and time limited. However, a mother wavelet can be chosen with

a fast decay in time and frequency which, for all practical purposes, corresponds to an effective

band and time limiting; see Daubechies (1992).

As a coherent mathematical body, wavelet theory was born in the mid-1980s (Grossmann

and Morlet 1984, Goupillaudand et al. 1984). After 1990, the literature rapidly expanded

and wavelet analysis is now used extensively in physics, geophysics, astronomy, epidemiology,

signal processing, oceanography, etc. Interestingly, and in spite of all its potential advantages,

this technique is very rarely used in Economics. The pioneering work of Ramsey and Lampart

(1998a and 1998b) and Ramsey (1999) is unknown to most of the economists, who reveal

a strong preference for traditional econometric methods, overlooking the potential for using

wavelets to analyze economic data. Notable exceptions to this rule are Raihan et al. (2001

and 2005), Gençay et al. (2001 and 2005), Wong et al. (2003).

Probably, one of the reasons why wavelets are not more popular in the economics literature

is related to the difficulty to simultaneously analyze two (or more) time-series. In Economics,

these techniques have either been applied to a single time-series (e.g. Raihan et al. 2005)

or used to individually analyze two time-series (one each time), whose decompositions are

then studied using traditional time domain methods, such us correlation analysis or Granger

causality (see Ramsey and Lampart, 1998a and 1998b).

In this paper, we present three tools, Cross Wavelet Transform, Cross Wavelet Coherence,

and the phase difference, proposed by Hudgins et al. (1993), Torrence and Compo (1998), and

Jevrejeva et al. (2003) that overcome this problem. Cross wavelet tools generalize wavelet

methods, allowing the analysis of time-frequency dependencies between two time-series. With
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these tools, we are able to use wavelet analysis to directly study the interactions between

two time-series at different frequencies and how they evolve over time. We will develop time-

frequency concepts that are analogous to measures typically used by economists, such as

covariance, correlation and causality.

We use these tools to analyze the impact of oil price changes in two macroeconomic vari-

ables: Industrial Production and Inflation.

This paper proceeds as follows. In section 2, we briefly present some of the properties that

a proper wavelet must satisfy, and introduce the reader to the most popular complex wavelet:

the Morlet wavelet. We also give a brief description of the Continuous Wavelet Transform.

This paper proceeds as follows. In section 2, we discuss the Continuous Wavelet Trans-

form (CWT),1 its localization properties and discuss in some detail the optimal characteristics

of the Morlet wavelet. Section 3 describes the Cross Wavelet Transform (XWT), the Cross

Wavelet Coherence (WTC), and the phase difference and discusses how to assess their sta-

tistical significance. In section 4, we use the wavelet power spectrum, wavelet coherency and

wavelet phase-difference to analyze our data. Section 5 concludes.

2 Wavelets: The dynamical decomposition of time

2.1 The wavelet

We start by introducing some mathematical notation. In what follows, L2 (R) denotes the set

of square integrable functions, i.e. the set of functions defined on the real line such that

Z ∞

−∞
|x (t)|2 dt <∞. (1)

Since the above quantity is usually referred to as the energy of the function x, this space

is also known as the space of functions with finite energy. As it is well known, one can define

1For a review of the discrete wavelet transform and some of its applications to economic data, the reader
is referred to Crowley (2007).
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in L2 (R) an inner product

hx, yi :=
Z ∞

−∞
x (t) y∗ (t) dt (2)

and an associated norm kxk := hx, xi
1
2 . Here, and throughout the paper, the asterisk super-

script will be used to denote complex conjugation and the symbol := means “by definition”.

Given a function x (t) ∈ L2 (R), we will denote by X (f) the Fourier transform of x (t):

X (f) :=

Z ∞

−∞
x (t) e−i2πftdt. (3)

We recall the well-known Parseval relation, valid for all x (t) , y (t) ∈ L2 (R) :

hx (t) , y (t)i = hX (f) , Y (f)i , (4)

from which the Plancherel identity (which sates that the energy of a function is preserved by

the Fourier transform) immediately follows:

kx (t)k2 = kX (f)k2 ; (5)

see, for example, Körner (1988).

The minimum requirements imposed on a function ψ (t) to qualify for being a mother

(admissible or analyzing) wavelet are that ψ ∈ L2 (R) and also fulfills a technical condition,

known as the admissibility condition, which reads as follows:

0 < Cψ :=

Z ∞

−∞

|Ψ (f)|
|f | df <∞. (6)

The wavelet ψ is usually normalized to have unit energy: kψk2 =
R∞
−∞ |ψ (t)|

2 dt = 1.

The square integrability of ψ is a very mild decay condition; the wavelets used in practice

have much faster decay; typical behavior will be exponential decay (|ψ (t)| ≤Me−C|t|,for some

constants C and M) or even compact support.

For functions with sufficient decay it turns out that the admissibility condition (6) is
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equivalent to requiring

Ψ (0) =

Z ∞

−∞
ψ (t) dt = 0. (7)

This means that the function ψ has to wiggle up and down the t-axis, i.e. it must behave

like a wave; this, together with the decaying property, justifies the choice of the term wavelet

(originally, in French, ondelette) to designate ψ.

2.2 The continuous wavelet transform

Starting with a mother wavelet ψ, a family ψs,τ of “wavelet daughters” can be obtained by

simply scaling ψ by s and translating it by τ

ψs,τ (t) :=
1p
|s|

ψ

µ
t− τ

s

¶
, s, τ ∈ R, s 6= 0. (8)

The parameter s is a scaling or dilation factor that controls the length of the wavelet (the

factor 1/
p
|s| being introduced to guarantee preservation of the unit energy,

°°ψs,τ

°° = 1) and τ
is a location parameter that indicates where the wavelet is centered. Scaling a wavelet simply

means stretching it (if |s| > 1), or compressing it (if |s| < 1).2

Given a function x (t) ∈ L2 (R) (a time series), its continuous wavelet transform (CWT),

with respect to the wavelet ψ, is a function Wx (s, τ) obtained by projecting x (t) , in the L2

sense, onto the over-complete family
©
ψs,τ

ª
:

Wx (s, τ) =
­
x, ψs,τ

®
=

Z ∞

−∞
x (t)

1p
|s|

ψ∗
µ
t− τ

s

¶
dt. (9)

The importance of the admissibility condition (6) comes from the fact that it guarantees

that it is possible to recover x (t) from its wavelet transform; see e.g. Daubechies (1992):

x (t) =
1

Cψ

Z ∞

−∞

∙Z ∞

−∞
Wx (s, τ)ψs,τ (t) dτ

¸
ds

s2
. (10)

2Note that for negative s, the function is also reflected.
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Since we can go from x (t) to its wavelet transform, and from the wavelet transform back

to x (t),3 we can conclude that both are representations of the same mathematical entity.

They just present information in a different manner, allowing us to gain insights that would,

otherwise, remain hidden. It is also important to observe that the energy of x (t) is preserved

by the wavelet transform, in the sense that

kxk2 = 1

Cψ

Z ∞

−∞

∙Z ∞

−∞
|Wx (s, τ)|2 dτ

¸
ds

s2
(11)

and that a Parseval type identity also holds

hx, yi = 1

Cψ

Z ∞

−∞

£
Wx (s, τ)W

∗
y (s, τ) dτ

¤ ds
s2

(12)

for x, y ∈ L2 (R) .

Because the wavelet function ψ (t) may, in general, be complex, the wavelet transform

Wx may also be complex. The transform can then be divided into its real part, R{Wx} , and

imaginary part, I {Wx} , or in its amplitude, |Wx| , and phase, φx (s, τ) = tan−1
³
I{Wx}
R{Wx}

´
. The

phase of a given time-series x (t) can be viewed as the position in the pseudo-cycle of the series

and it is parameterized in radian ranging from −π to π. For real-valued wavelet functions the

imaginary part is zero and the phase is undefined. Therefore, in order to separate the phase

and amplitude information of a time series it is important to make use of complex wavelets.

In particular, it is convenient to choose ψ (t) to be progressive or analytic, i.e. to be such that

Ψ (f) = 0 for f < 0; in this case, if x (t) is real, a variant of the reconstruction formula, in

which the parameter s can be restricted to positive values only, is possible:

x (t) =
2

Cψ

Z ∞

0

∙Z ∞

−∞
R
¡
Wx (s, τ)ψs,τ (t)

¢
dτ

¸
ds

s2
, (13)

3One can also limit the integration over a range of scales, performing a band-pass filtering of the original
series.
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one also has

kxk2 = 2

Cψ

Z ∞

0

∙Z ∞

−∞
|Wx (s, τ)|2 dτ

¸
ds

s2
(14)

and

hx, yi = 2

Cψ

Z ∞

0

£
Wx (s, τ)W

∗
y (s, τ) dτ

¤ ds
s2
; (15)

see Daubechies (1992), pp. 27-28, Kaiser 1994, pp. 70-73 or Mallat (1998), pp.82-83 for more

details about analytic wavelets. Throughout the rest of the paper, since, in the practical

economic applications, we will use an analytic wavelet, we always assume that the scaling

parameter s takes positive values only.

In view of the energy preservation formula (14), and in analogy with the terminology

used in the Fourier case, the function |Wx (s, τ)|2 is usually referred to as the wavelet power

spectrum (sometimes also called the scalogram, see Flandrin 1988).

2.3 Localization properties

Let the wavelet ψ be normalized so that kψk = 1 and define its center μt by

μt =

Z ∞

−∞
t |ψ (t)|2 dt. (16)

In other words, the center of the wavelet is simply the mean of the probability distribution

obtained from |ψ (t)|2. As a measure of concentration of ψ around its center one usually takes

the variance σt:

σt =

½Z ∞

−∞
(t− μt)

2 |ψ (t)|2 dt
¾ 1

2

. (17)

In a total similar manner, one can also define the center μf and variance σf of the Fourier

transform Ψ(f) of ψ.

The interval [μt − σt, μt + σt] is the set where ψ attains its "most significant" values

whilst the interval
£
μf − σf , μf + σf

¤
plays the same role for Ψ (f) of ψ. The rectangle

[μt − σt, μt + σt]×
£
μf − σf , μf + σf

¤
in the (t, f)−plane is called the Heisenberg box or win-
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dow in the time-frequency plane. We then say that ψ is localized around the point
¡
μt, μf

¢
of the time-frequency plane with uncertainty given by σtσf .

The uncertainty principle, first established byWerner Karl Heisenberg, gives a lower bound

on the product of the standard deviations of position and momentum for a system, implying

that it is impossible to have a particle that has an arbitrarily well-defined position and mo-

mentum simultaneously. In our context, the Heisenberg uncertainty principle establishes that

the uncertainty is bounded from below by the quantity 1/4π:

σtσf ≥
1

4π
. (18)

It is also known that the equality in (18) is attained if and only if the function ψ is a

(translated and modulated) Gaussian: ψ (t) = aeiμf te−b(t−μt)
2

; see Messiah (1961).

It follows from the Parseval relation (4) that

Wx (s, τ) =
­
x (t) , ψs,τ (t)

®
= hX (f) ,Ψs,τ (f)i

(19)

where X (f) and Ψs,τ (f) are the Fourier transforms of x (t) and ψs,τ (t) ,respectively.

If the mother wavelet ψ is centered at μt and has variance σt and its wavelet transform

Ψ (f) is centered at μf with a variance σf , then one can easily show that the daughter wavelet

ψτ,s will be centered at τ + sμt with variance sσt, whilst its Fourier transform Ψs,τ will have

center μf
s
and variance σf

s
. Hence, (19) shows that the continuous wavelet transformWx(s, τ)

gives us local information within a time-frequency window

[τ + sμt − sσt, τ + sμt + sσt]×
hμf
s
− σf

s
,
μf
s
+

σf
s

i
(20)

In particular, if ψ is chosen so that μt = 0 and μf = 1,then the window associated with ψτ,s

becomes

[τ − sσt, τ + sσt]×
∙
1

s
− σf

s
,
1

s
+

σf
s

¸
(21)
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In this case, the wavelet transform {Wψf} (s, τ) will give us information on x (t) for t near

the instant t = τ , with precision sσt, and information about X (f) for frequency values near

the frequency f = 1
s
, with precision σf

s
. Therefore:

• small values of s correspond to information about x (t) in a fine scale and about X (f)

in a broad scale,

• large values of s correspond to information in a broad scale about x (t) and in a fine

scale about X (f),

• although the area of the windows is constant at all scales, A = 4σtσf , their dimensions

change according to the scale; the windows stretch for large values of s (broad scales

s — low frequencies f = 1/s) and compress for small values of s (fine scale s — high

frequencies f = 1/s).

2.4 The Morlet wavelet: optimal joint time-frequency concentra-

tion

There are several types of wavelet functions available with different characteristics, such as,

Morlet, Mexican hat, Haar, Daubechies, etc.; see, e.g. Daubechies (1992), Mallat (1998) or

Meyer (1993). Since the wavelet coefficients Wx (s, τ) contain combined information on both

the function x (t) and the analyzing wavelet ψ (t), the choice of the wavelet is an important

aspect to be taken into account. This will depend mainly on the particular application one

has in mind. In this paper we choose a complex wavelet, as it yields a complex transform,

with information on both the amplitude and phase, which is essential for the analysis we want

to perform. One of the most popular wavelets used is the Morlet wavelet, first introduced in

Goupillaudand (1984), which is defined as

ψη (t) = π−
1
4

µ
eiηt − e−

η2

2

¶
e−

t2

2 , (22)
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Figure 1: On the left: the Morlet wavelet ψ6 (t) – real part (solid line) and imaginary part
(dashed line). On the right: its Fourier transform.

the term e−
η2

2 being introduced to guarantee the fulfillment of the admissibility condition;

however, for η ≥ 5 this term becomes negligible. The simplified version

ψη (t) = π−
1
4 eiηte−

t2

2 (23)

of (22) is normally used (and still referred to as a Morlet wavelet). Our results in the next

section, were obtained with the particular choice η = 6.

This wavelet has interesting characteristics. First of all, it is (almost) analytic. The Fourier

transform of the “true” Morlet wavelet (22) is, in fact, supported in (0,∞), but that of (23)

has some mass on (−∞, 0):

Ψη (f) = π
1
4

√
2e−

1
2
(2πf−η)2 (24)

For η > 5, this mass is, however, negligible, so, for all practical purposes, the wavelet can

be considered as analytic; see Foufoula-Gergiou and Kumar (1993).

The wavelet (23) is centered at the point
¡
0, η

2π

¢
of the time-frequency plane; hence, for

the particular choice η = 6, one has that the frequency center is

μf =
6

2π
≈ 1 (25)
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and the relationship between the scale and frequency is simply

f =
μf
s
≈ 1

s
. (26)

It is also very simple to verify that the time variance is σt = 1/
√
2 and the frequency

variance is σf = 1/
¡
2π
√
2
¢
. Therefore, the uncertainty of the corresponding Heisenberg box

attains the minimum possible value σtσf = 1
4π
and one can thus say that the Morlet wavelet

has optimal joint time-frequency concentration.4

2.5 Transform of finite discrete data

If one is dealing with a discrete time series {xn, n = 0, ..., N − 1} of N observations with a

uniform time step δt, the integral in (9) has to be discretized and is, therefore, replaced by a

summation over the N time steps; the CWT of the time series {xn} is thus given by

W x
m (s) =

δt√
s

N−1X
n=0

xnψ
∗
µ
(n−m)

δt

s

¶
, m = 0, 1, . . . , N − 1. (27)

Although it is possible to calculate the wavelet transform using the above formula for each

value of s and m, one can also identify the computation for all the values of m simultaneously

as a simple convolution of two sequences; in this case, one can follow the standard procedure

and calculate this convolution as a simple product in the Fourier domain, using the fast Fourier

transform (FFT) algorithm to go forth and back from time to spectral domain; this is precisely

the technique prescribed by Torrence and Compo (1998).5

As with other types of transforms, the CWT applied to a finite length time series inevitably

suffers from border distortions; this is due to the fact that the values of the transform at the

beginning and the end of the time series are always incorrectly computed, in the sense that

they involve “missing” values of the series which are then artificially prescribed; the most

4This could be antecipated by noting that ψη is a simple modulated Gaussian.
5A program code based on the above procedure is also available at the site

http://paos.colorado.edu/research/wavelets/.
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common choices are zero padding — extension of the time series by zeros — or periodization.

Since the “effective support” of the wavelet at scale s is proportional to s, these edge-effects

also increase with s. The region in which the transform suffers from these edge effects is called

the cone of influence (COI). In this area of the time-frequency plane the results are unreliable

and have to be interpreted carefully. In this paper, the cone of influence is defined, following

Torrence and Compo (1998), as the e-folding time of the wavelet at the scale s, that is, so

that the wavelet power of a Dirac δ at the edges decreases by a factor of e−2. In the case of

the Morlet wavelet this is given by
√
2s, and in all the pictures is marked as a shadow in the

wavelet plot.

3 Data analysis with wavelets6

3.1 Wavelet Power Spectrum

We simply define the wavelet power as |W x
n |
2 . Following Torrence and Compo (1998), the

statistical significance of wavelet power can be assessed relative to the null hypotheses that

the signal is generated by a stationary process with a given background power spectrum (Pf).

Torrence and Compo assumed a first order auto-regressive model and, using Monte Carlo sim-

ulations, showed that on average, the local wavelet power spectrum is indistinguishable from

the Fourier power spectrum. They then derive, under the null, the corresponding distribution

for the local wavelet power spectrum,

D

Ã
|W x

n (s)|
2

σ2x
< p

!
=
1

2
Pfχ

2
v, (28)

at each time n and scale s. The value of Pf in (28) is the mean spectrum at the Fourier

frequency f that corresponds to the wavelet scale s (in our case s ≈ 1
f
, see equation (26)) and

v is equal to 1 for real and 2 for complex wavelets.

6We thank Bernard Cazelles for letting us use his MatLab software package in Cazelles, et al. (2007). The
MATLAB functions used can be downloaded at http://ecologie.snv.jussieu.fr/cazelles/wavelets/.
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Figure 2: Wavelet Power Spectrum–The dashed black contour designates the 5% significance
level against an AR1 (see Aguiar-Conraria et al. 2007 for details) and the cone of influence,
which indicates the region not affected by edge effects is also shown. The color code for power
range from blue (low power) to red (high power). The white lines indicate the maxima of the
undulations of the wavelet power spectrum.

In Figure 2, we can see the estimated power spectrum for several time series for the

United States economy: inflation (based on the Consumer Price Index), Oil Prices (growth

rate) and Industrial Production Index (growth rate). The dashed black contour designates

the 5% significance level against an AR1 (see Cazelles et al. 2007 for details) and the cone

of influence, which indicates the region not affected by edge effects, is also shown. The color

code for power range from blue (low power) to red (high power). The white lines indicate the

maxima of the undulations of the wavelet power spectrum.

It is clear that the different time series have different characteristics in the time-frequency

domain. During the late 1940s and early 1950s, the inflation rate variance was quite high

both at low and high scales. Again in the 1970s and 1980s, probably as a consequence of

very active oil shocks, the variance of the inflation rate became higher, but in this case, the

effect is clearer at medium and high scales, suggesting that we were facing medium and long

term shocks to inflation. The power, at all scales, of the industrial production was quite high

until 1950s. After that, it has been steadily decreasing, with an exception between mid 1970s

and mid 1980s, when the variance at the business cycle frequency (3 to 8 years) was quite

high. It has become common in the literature to argue that we have been observing, in the

last two decades, a decrease in the volatility of GDP in the United States (e.g. see Blanchard
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and Simon 2001). Some authors call it the "Great Moderation". In reality, we can observe

that this is a secular, and not decadal, trend. Imediatly after World War II, the volatility was

quite high at business cucly frequencies. In the 1960s, the volatility decreased at all scales.

It then increased again, probably due to the oil shocks, at the business cycle frequency in the

1970s, however this increase was temporary.

If we look at the power spectrum of the Oil Prices growth rate, we observe that until 1970s

there was not much action, between 1975 and 1980, both low and medium scales 1
12
∼ 6 years

(high and medium frequencies) show high power We observe similar effects in late 1980s and

early 1990s, and again in 2000. A structural change occurred in the Oil Price in the mid

1970s. These changes are related to the oil crisis that occurred in the 1970s, after which oil

prices became market based and much more volatile.

3.2 The Cross Wavelet and the Phase Difference

Probably, one of the reasons why wavelets are not more popular in the Economics literature

is because it has been a difficult task to use wavelets to analyze two, or more, time series

together. Hudgins et al. (1993), Torrence and Compo (1998), and Jevrejeva et al. (2003)

showed how the Cross Wavelets can be used to quantify relationships between two time series

in the time-frequency space.

The cross wavelet transform of two time series, x = {xn} and y = {yn}, first introduced

by Hudgins et al. (1993) is simply defined as

W xy
n =W x

nW
y∗
n , (29)

where W x
n and W y

n are the wavelet transforms of x and y, respectively. The cross wavelet

power is given by |W xy
n |.

While the wavelet power spectrum depicts the variance of a time series, with times of large

variance showing large power, the cross—wavelet power of two time series depicts the covariance

between these time series at each scale or frequency. Therefore, cross—wavelet power gives us
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a quantified indication of the similarity of power between two time series.

As in the Fourier spectral approaches, the cross wavelet coherence can be defined as ratio

of the cross-spectrum to the product of the spectrum of each series, and can be thought of as

the local correlation between two CWTs. Here, again, we follow Jevrejeva et al. (2003) and

define the wavelet coherence between two time series x = {xn} and y = {yn} as follows:

R2n (s) =
|S (s−1W xy

n (s))|
S (s−1 |W x

n |)
1
2 S (s−1 |W y

n |)
1
2

, (30)

where S denotes a smoothing operator in both time and scale.

Smoothing is a necessary step, because, without that step, coherence is identically one at

all scales and times. In Fourier analysis we overcome this problem by smoothing the cross-

spectrum before normalizing. For wavelet analysis and, in particular with the Morlet wavelet,

one can follow Torrence and Webster (1998): the smoothing is achieved by a convolution in

time and scale. The time convolution is done with a Gaussian and the scale convolution is

performed by a rectangular window; see Grinsted et al. (2004) for details.

Theoretical distributions for WTC have not been derived yet. So to assess the statistical

significance of the estimated wavelet coherence we follow Grinsted et al. (2004) and use Monte

Carlo methods. Again, see Grinsted et al. (2004) for details.

Phase differences are useful to caracterize phase relationships between two time series,

x = {xn} and y = {yn}. As we said before, the phase of a given time-series, φx, can be viewed

as the position in the pseudo-cycle of the series.The phase difference, φx,y, caracterizes phase

relationships between the two time-series. The phase difference is defined as

φx,y = tan
−1
µ
I {W xy

n }
R{W xy

n }

¶
, with φx,y ∈ [−π, π] . (31)

A phase difference of zero indicates that the time series move together (analogous to

positive covariance). If φx,y ∈
¡
−π
2
, π
2

¢
then the series move in-phase, with the time-series y

leading x.if φx,y ∈
¡
−π
2
, 0
¢
On the other hand, if φx,y ∈

¡
−π
2
, 0
¢
then it is x that is leading.
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Figure 3: On top: Cross Wavelet Coherency. The dashed black contour designates the 5%
significance level against an AR1 (obtained by Monte Carlo simulations) and the cone of
influence, which indicates the region not affected by edge, effects is also shown. The color
code for power range from blue (low coherency — close to zero) to red (high coherency — close
to one). In the bottom: Phase Difference between the two series computed with the wavelet
transform in the indicated periodic band.

We have an anti-phase relation (analogous to negative covariance) if If φx,y ∈
¡
π
2
, π
¤
∪
¡
−π, π

2

¤
.

If φx,y ∈
¡
π
2
, π
¢
then x is leading. Time-series y is leading if φx,y ∈

¡
−π,−π

2

¢
.

On the left, figure 3 gives us the coherence and phase relations between oil prices and in-

dustrial production. Several structural changes occurred. In the 1950s, there is high coherency

at large scales (in the 10 ∼ 16 years band).7 Between mid 1960s and 1990, we can see a high

coherence at medium scales (4 ∼ 8 years). Looking at the phase difference in the 10 ∼ 16

years band, we can see a positive relation between industrial production and oil prices, with

industrial production leading, for all periods, except between 1975 and 1985. This suggests

that in the very long run, increases in the industrial production lead to increases in the oil

price, suggesting that these oil price increases are demand-driven. The exception to this rule

happened between 1975 and 1985, a period during which oil markets were quite turbulent and

successive supply crises occurred (for example, we had the Arab oil embargo in late 1973 early

7Note however that this band is affected by edge effects, so the results should be interpreted conservatively)
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1974 and the Iranian Revolution in 1979). If we look at the 4 ∼ 8 years band, we see that the

phase difference is contained between −π and −π
2
for most of the time, suggesting an inverse

relation between oil prices and industrial production, with oil prices leading. This means that

the Industry reacts to increases in the oil prices, and hence in the production costs, decreasing

output. This relation seems to have changed after 1996, but this region is affected by edge

effects, so it is to early to draw serious conclusions.

On the right of figure 3 , we see that the relation between oil prices and inflation is even

stronger and more stable. The phase differences reveal a very stable relation. At large scales

(10 ∼ 16 years band) the phase difference has consistently been between zero and π/2. The

same happens at medium scales (4 ∼ 8 years band), after 1960 and until 2002 (after this

year edge effects are no longer irrelevant). This suggests that oil price increases lead the

consumer price index increases. Looking at coherency some different patterns emerge. There

is a structural change in the late 1960s, coinciding with the six-day war of 1967. Before that

time, there were not many periods of high coherence. In the 1970s there is high coherency

at both medium (4 ∼ 8 years band) and large scales (12 ∼ 16 years band). During the 1980

decade, we observe high coherence in the 8 ∼ 16 years band After 1990, only at very high

scales do we observe strong coherency. This suggests that monetary authorities became more

proficient on avoiding the inflationary effects of oil price increases. Some political economy

major events that happened during these decades may explain this evolution. The decade of

1970 is the decade of the big oil shocks. Then in 1980 there was a strong shift in the American

monetary policy. In July 1979, Paul Volcker had been nominated, by President Carter, the

Chairman of the Federal Reserve Board. Volker announced a fierce fight against inflation and

implemented a very restrictive monetary policy as a reaction to the inflationary pressures of

the second oil shock. In 1987, and during entire decade of 1990, when Alan Greenspan was

the chairman of the Federal Reserve, inflation was under control.
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4 Conclusion

Wavelet analysis is an important addition to time-series methods with practical applications

in Economics, which allows us to decompose relationships in the time-frequency domain.

We illustrated how wavelet analysis can naturally be applied to the study of business cycles

(given its periodic nature), or to any field of economics, or finance, especially when there is

a distinction between short and long-run relations. Wavelet analysis can help us to interpret

multi-frequency, non-stationary time-series data, revealing features we could not see otherwise.

We have argued that the wavelet transform is much better suited for economic data than the

Fourier transform. The main advantage of the wavelet approach is the ability to analyze

transient dynamics, both for single time-series or for the association between two time-series.

We showed that some of the shortcomings that economists have found when applying

wavelet techniques to study two or more time series disappears once the concept of cross

wavelet is introduced. We used tools that, to our knowledge, have not been used yet by

economists: the Cross Wavelet Coherence and the phase difference. While the wavelet power

spectra quantifies the main periodic component of a given time-series and its time evolution,

the Cross Wavelet Transform and the Cross Wavelet Coherence Wavelet are used to quantify

the degree of linear relation between two non-stationary time-series in the time—frequency

domain. Phase analysis is a nonlinear technique that makes possible to study the phase

synchronization of two time-series.

We have studied the relation between oil and output and uncovered an interesting relation:

while at business cycle frequencies (3-8 years) oil prices lead industrial production, with oil

price increases having negative effects on production, in the very long run we observe a different

causal relation, with production changes leading oil price changes, suggesting that these are

demand driven. The exception to this long-run relation occurred between the mid 1970s and

mid 1980s, a time during which oil crisis were clearly a supply problem.

The relation between oil price increases and inflation was also studied. This relation proved

to be more stable with oil price increases leading inflation increases across all timescales. But
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an interesting feature was also apparent, the tight monetary policy of the 1980s proved to be

successful, with a decrease of the inflationary impact of oil price shocks. During the 1990s,

monetary policy was also very efficient on controlling the inflationary impacts of oil price

increases.

We have also shown that the volatility of both the inflation rate and the output growth

rate started to decrease in the decades of 1950 and 1960, suggesting that the great moderation

started then, but that it was temporarily interrupted due to the oils crisis of the 1970s, whose

effects were felt until the mid 1980s.
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