
U
m

in
ho

 |
 2

02
0

Er
tu

gr
ul

 D
og

ru
lu

k
S

id
e

-C
h

a
n

n
e

l T
im

in
g

 A
tt

a
ck

 o
n

 C
o

n
te

n
t

P
ri

va
cy

 o
f

N
a

m
e

d
 D

a
ta

 N
e

tw
o

rk
in

g

Ertugrul Dogruluk

Side-Channel Timing Attack on
Content Privacy of Named Data Networking

november 2020

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Doctoral Thesis

Doctor of Philosophy Degree in Electronics and Computer Engineering

Thesis supervised by
Joaquim Macedo
Antonio Costa

Ertugrul Dogruluk

Side-Channel Timing Attack on
Content Privacy of Named Data Networking

november 2020

Universidade do Minho
Escola de Engenharia
Departamento de Informática

DIREITOS DE AUTOR E CONDIÇÕES DE UTILIZAÇÃO DO TRABALHO POR TERCEIROS

Este é um trabalho académico que pode ser utilizado por terceiros desde que respeitadas as regras

e boas práticas internacionalmente aceites, no que concerne aos direitos de autor e direitos conexos.

Assim, o presente trabalho pode ser utilizado nos termos previstos na licença abaixo indicada. Caso o

utilizador necessite de permissão para poder fazer um uso do trabalho em condições não previstas no

licenciamento indicado, deverá contactar o autor, através do RepositóriUM da Universidade do Minho.

Atribuição-NãoComercial-SemDerivações

CC BY-NC-ND

https://creativecommons.org/licenses/by-nc-nd/4.0/

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Acknowledgments

First of all, I would like to express my thanks to Professor Joaquim Macedo and Professor Antonio Costa,

for supervising this study.

I would like to thank Professor Joaquim Macedo for his guidance, support, and valuable scientific advice

in order to contribute to this study. His scientific suggestions used to improve this study, especially guiding

the right research direction.

I would like to thank Professor Antonio Costa for his technical support and scientific advice for any

step of this study. He supervised the scenario implementation related works and suggested the scientific

contributions for this study.

I have enjoyed working with both of them. They spent a lot of time with me for revising this thesis in order

to improve the quality of this study. Without their effort and support, this work would never be achieved,

especially in a pandemic period.

I had useful discussions with Óscar Gama, who is a postdoctoral researcher member of Computer Com-

munications, and Networks (CCN) lab. I’m so grateful to get his support and his given scientific ideas for

my research.

I thank Professor Alexandre Santos and members of the Department of Informatics to support the labo-

ratory environment and research facilities for this study.

To my family, especially my parents Yasar and Sebahat Dogruluk, for the unconditional support, love,

and understanding during these years that I have been away from home.

Thank you all for supporting me to archiving my goal.

Statement of Integrity

I hereby declare having conducted this academic work with integrity.

I confirm that I have not used plagiarism or any form of undue use of information or falsification of results

along the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho.

ABSTRACT

A diversity of current applications, such as Netflix, YouTube, and social media, have used the Internet mainly

as a content distribution network. Named Data Networking (NDN) is a network paradigm that attempts to

answer today’s applications need by naming the content. NDN promises an optimized content distribution

through a named content-centric design. One of the NDN key features is the use of in-network caching

to improve network efficiency in terms of content distribution. However, the cached contents may put the

consumer privacy at risk. Since the time response of cached contents is different from un-cached contents,

the adversary may distinguish the cached contents (targets) from un-cached ones, through the side-channel

timing responses. The scope of attack can be towards the content, the name, or the signature. For instance,

the adversary may obtain the call history, the callee or caller location on a trusted Voice over NDN (VoNDN)

and the popularity of contents in streaming applications (e.g. NDNtube, NDNlive) through side-channel

timing responses of the cache.

The side-channel timing attack can be mitigated by manipulating the time of the router responses. The

countermeasures proposed by other researches, such as additional delay, random/probabilistic caching,

group signatures, and no-caching can effectively be used to mitigate the attack. However, the content

distribution may be affected by pre-configured countermeasures which may go against the goal of the

original NDN paradigm. In this work, the detection and defense (DaD) approach is proposed to mitigate the

attack efficiently and effectively. With the DaD usage, an attack can be detected by a multi-level detection

mechanism, in order to apply the countermeasures against the adversarial faces. Also, the detections can

be used to determine the severity of the attack. In order to detect the behavior of an adversary, a brute-force

timing attack was implemented and simulated with the following applications and testbeds: i. a trusted

application that mimics the VoNDN and identifies the cached certificate on a worldwide NDN testbed, and

ii. a streaming-like NDNtube application to identify the popularity of videos on the NDN testbed and AT&T

company. In simulation primary results showed that the multi-level detection based on DaD mitigated the

attack about 39.1% in best-route, and 36.6% in multicast communications. Additionally, the results showed

that DaD preserves privacy without compromising the efficiency benefits of in-network caching in NDNtube

and VoNDN applications.

v

RESUMO

Várias aplicações atuais, como o Netflix e o YouTube, têm vindo a usar a Internet como uma rede de

distribuição de conteúdos. O Named Data Networking (NDN) é um paradigma recente nas redes de co-

municações que tenta responder às necessidades das aplicações modernas, através da nomeação dos

conteúdos. O NDN promete uma otimização da distribuição dos conteúdos usando uma rede centrada

nos conteúdos. Uma das características principais do NDN é o uso da cache disponivel nos nós da rede

para melhorar a eficiência desta em termos de distribuição de conteúdos. No entanto, a colocação dos

conteúdos em cache pode colocar em risco a privacidade dos consumidores. Uma vez que a resposta

temporal de um conteúdo em cache é diferente do de um conteúdo que não está em cache, o adversário

pode distinguir os conteúdos que estão em cache dos que não estão em cache, através das respostas de

side-channel. O objectivo do ataque pode ser direcionado para o conteúdo, o nome ou a assinatura da

mensagem. Por exemplo, o adversário pode obter o histórico de chamadas, a localização do callee ou do

caller num serviço seguro de voz sobre NDN (VoNDN) e a popularidade do conteúdos em aplicações de

streaming (e.g. NDNtube, NDNlive) através das respostas temporais de side-channel.

O side-channel timing attack pode ser mitigado manipulando o tempo das respostas dos routers. As

contramedidas propostas por outros pesquisadores, tais como o atraso adicional, o cache aleatório /prob-

abilístico, as assinaturas de grupo e não fazer cache, podem ser efetivamente usadas para mitigar um

ataque. No entanto, a distribuição de conteúdos pode ser afetada por contramedidas pré-configuradas

que podem ir contra o propósito original do paradigma NDN. Neste trabalho, a abordagem de detecção e

defesa (DaD) é proposta para mitigar o ataque de forma eficiente e eficaz. Com o uso do DaD, um ataque

pode ser detectado por um mecanismo de detecção multi-nível, a fim de aplicar as contramedidas contra

as interfaces dos adversários. Além disso, as detecções podem ser usadas para determinar a gravidade

do ataque. A fim de detectar o comportamento de um adversário, um timing attack de força-bruta foi

implementado e simulado com as seguintes aplicações e plataformas (testbeds): i. uma aplicação segura

que implementa o VoNDN e identifica o certificado em cache numa plataforma NDN mundial; e ii. uma

aplicação de streaming do tipo NDNtube para identificar a popularidade de vídeos na plataforma NDN da

empresa AT&T. Os resultados da simulação mostraram que a detecção multi-nível oferecida pelo DaD aten-

uou o ataque cerca de 39,1% em best-route e 36,5% em comunicações multicast. Para avaliar o efeito nos

pedidos legítimos, comparou-se o DaD com uma contramedida estática, tendo-se verificado que o DaD foi

capaz de preservar todos os pedidos legítimos.

vi

CON T EN T S

Abstract v

Resumo vi

List of Figures x

List of Tables xii

List of Acronyms xiii

1 Introduction 14

1.1 Context 14

1.2 Motivation and Objectives 15

1.3 Research Methodology 17

1.4 Summary of Contributions and Publications 17

1.5 Thesis Layout 19

2 Named Data Networking 22

2.1 Context 22

2.2 Content Delivery Networks 23

2.3 Content-Centric Networking 24

2.4 Named Data Networking Architecture 24

2.4.1 Negative Acknowledgment Packets 26

2.4.2 Names 26

2.4.3 Data-Centric Security 26

2.4.4 In-Network Storage 27

2.4.5 Routing and Forwarding 27

2.4.6 Table Management 28

2.4.7 NDN Transport Function 30

2.5 Security 31

2.5.1 Data-Centric Authentication 31

2.5.2 NDN Certificate 32

2.5.3 Self-Certifying Content Name 35

2.5.4 NDN Trust Management Applications 36

2.6 Privacy 38

2.6.1 Internet vs. NDN Privacy 39

2.6.2 Cache Privacy 41

vii

viii contents

2.6.3 Content Privacy 42

2.6.4 Name Privacy 42

2.6.5 Signature Privacy 42

2.7 Why Named Data Network? 43

2.8 Research Challenges 46

2.9 Summary 46

3 Side-Channel Timing Attack and Countermeasures 48

3.1 Context 48

3.2 Side-Channel Timing Attack 49

3.2.1 Content Retrieval Time 49

3.2.2 Attack Scope 50

3.2.3 Attack Success Calculation 52

3.3 Side-Channel Timing Attack on NDN Applications 54

3.3.1 Streaming over NDN 54

3.3.2 Voice over NDN 56

3.4 Countermeasures 59

3.4.1 Cache Available Methods 60

3.4.2 Cache Disabled Methods 62

3.5 Related Works 63

3.5.1 NDN Related Works 63

3.5.2 IP Related Works 65

3.6 Discussion 66

4 Attack and Privacy Model Development 67

4.1 Context 67

4.2 Brute-force attack development 68

4.2.1 Attack Procedure 68

4.2.2 Random Probing Function 70

4.2.3 Attack Scope on Applications 71

4.3 Detection and Defense Privacy model 73

4.3.1 Adversary Face Detection Methods 75

4.3.2 Countermeasures Impact and Severity of Attack 78

4.3.3 DaD Configuration on Applications 83

4.4 Summary 84

5 Experimental Framework and Implementation 86

5.1 Context 86

5.2 Named Data Networking Simulator 86

contents ix

5.2.1 Network Simulator 3 87

5.2.2 ndnSIM Helpers 88

5.2.3 ndnSIM Components 91

5.3 Named Data Network Forwarder Daemon 92

5.3.1 NFD Modules 92

5.3.2 Content Store 96

5.3.3 NDN Testbed 97

5.4 Implementation 97

5.4.1 NDN Applications 100

5.4.2 Core Components 101

5.4.3 Scenario programs 102

5.4.4 Orchestration scripts 105

5.5 Summary 106

6 Scenarios and Results 107

6.1 Context 107

6.2 Scenario Implementations 108

6.2.1 Network Topology 113

6.2.2 Attack Implementation 116

6.2.3 Attack Scope 118

6.3 Results 121

6.3.1 Attack Performance and Findings 122

6.3.2 Attack Detection Results 125

6.3.3 Countermeasures 133

6.4 Source Code 140

6.5 Discussion 140

7 Conclusions 142

7.1 Summary of Thesis 142

7.2 Reviewing Objectives 143

7.3 Summary of Main Contributions 144

7.4 Future Works 146

7.5 Final Considerations 147

Bibliography 148

L I S T O F F I G U R E S

Figure 1.1 Thesis Layout. 20

Figure 2.1 CDN Architecture (adapted from [1]). 23

Figure 2.2 Internet vs. NDN hourglasses (adapted from [2]). 25

Figure 2.3 Packet types in NDN (adapted from [2]). 25

Figure 2.4 NDN forwarding engine model (adapted from [3]). 28

Figure 2.5 Single Interest/Data packet forwarding mechanism (adapted from [2]). 29

Figure 2.6 Data packet authentication in NDN (adapted from [4]). 32

Figure 2.7 NDN Certificate Format (adapted from [5]). 33

Figure 2.8 NDN Certificate Naming. 34

Figure 2.9 A Interest packet for certificate request (adapted from [5]). 35

Figure 3.1 CRT measurements using one repetition of the same packet. 50

Figure 3.2 Side-channel timing attack on cached content. 52

Figure 3.3 Attack design and scopes: (a) Identifying closest hop cached contents. (b)

Identifying distance hops cached contents. 53

Figure 3.4 Video streaming and audio Packet Format. 55

Figure 3.5 NDN streaming applications namespace (adapted from [6]). 55

Figure 3.6 VoNDN combined paths (adapted from [7]). 57

Figure 3.7 Side-channel timing attack on VoNDN trust scheme: (a) First time for certificate

lookup, (b) Future request the certificate from CS. (adapted from [8]). 58

Figure 3.8 Statically configured countermeasures. (a) NDNtube countermeasure configu-

ration, (b) VoNDN countermeasure configuration. 60

Figure 4.1 Brute-force side-channel timing attack flowchart. 69

Figure 4.2 Comparison between traditional and brute-force attacks: (a) Traditional single

target probing, (b) Randomized brute-force for multiple targets. 70

Figure 4.3 NDNtube attack topology sample. 72

Figure 4.4 Side-channel timing attack on close and away targets: (a) Determine Bob’s and

Alice’s certificate from the edge router location, (b) Determine Bob’s certificate

from away router location. 73

Figure 4.5 Attack detection by hop counts. 77

Figure 4.6 A qualitative analysis of the countermeasures impact on the attack success. 79

Figure 4.7 Attack states (phases) and applied countermeasures. 80

x

l ist of figures xi

Figure 4.8 Detection and Defense (DaD) flowchart algorithm. 85

Figure 5.1 ns-3 core structure (adapted from [9]). 88

Figure 5.2 ndnSIM work-flow. 89

Figure 5.3 NFD integration to ndnSIM core (adapted from [10], [11] [12]). 91

Figure 5.4 NFD modules (adapted from [13]). 93

Figure 5.5 RIB manager (adapted from [13]). 95

Figure 5.6 Scenario implementations. 99

Figure 5.7 Applications: class diagrams. 100

Figure 5.8 Scenario programs: common structure. 103

Figure 6.1 NDNtube-like application attack design. 109

Figure 6.2 Trusted VoNDN-like application attack design. 111

Figure 6.3 Physical tree topology of the simulation scenario. 114

Figure 6.4 Real network topology conversion for NDNtube: (a) Raw AT&T network topology,

(b). Rocket-fuel converted AT&T for ndnSIM. 115

Figure 6.5 NDN testbed topology (adapted from [14]). 116

Figure 6.6 Simple attack cache hit ratio result. 117

Figure 6.7 NDNtube attack scenario sample (example) on AT&T. 119

Figure 6.8 VoNDN attack scenario sample (example) on NDN-testbed. 120

Figure 6.9 NDNtube brute-force attack performance on CS scenarios. 123

Figure 6.10 VoNDN brute-force attack performance on forwarding strategies. 124

Figure 6.11 Determine certificate locations in VoNDN. 125

Figure 6.12 Attack CRT detection values evaluation: (a) NDNtube global CRT values. (b)

VoNDN global CRT values. 127

Figure 6.13 NDNtube global CHR results (edge routers). 129

Figure 6.14 VoNDN global CHR results (edge routers). 130

Figure 6.15 NDNtube global hop counts. 131

Figure 6.16 Relative hop count frequencies on NDNtube. 132

Figure 6.17 VoNDN global hop count results. 133

Figure 6.18 NDNtube attack mitigation results in LRU cache policy. 134

Figure 6.19 Comparisons of applied countermeasures in VoNDN best-route forwarding strat-

egy. 136

Figure 6.20 Comparisons of applied countermeasures in VoNDN multicast forwarding strat-

egy. 136

Figure 6.21 VoNDN Global CRT results for the adversary and legitimate nodes. 137

Figure 6.22 VoNDN adversary and legitimate nodes hop count metrics. 138

L I S T O F T A B L E S

Table 2.1 Forwarding Information Base Process. 28

Table 2.2 Pending Interest Table Process. 30

Table 2.3 Information privacy considerations on Internet, CDN and CCN/NDN. 40

Table 2.4 IP and NDN limitations between and comparison (adapted from [15]). 44

Table 2.5 Operational differences between IP, CDN and CCN/NDN. 45

Table 4.1 DaD algorithm description and parameters. 82

Table 5.1 Linux machines setup. 87

Table 5.2 The ns-3 features. 87

Table 5.3 ndnSIM code guide. 89

Table 5.4 Implementation: major components organized by type and folder. 98

Table 6.1 NDNtube attack scenario configuration. 110

Table 6.2 VoNDN attack scenario configuration. 112

Table 6.3 Tree topology delays (min/max) between nodes linked directly. 114

Table 6.4 AT&T topology link bandwidth and delays. 115

Table 6.5 NDN-testbed bandwidth and delays of the links. 116

Table 6.6 Scenario configurations. 121

Table 6.7 Tree topology CRT Analysis. 126

Table 6.8 VoNDN CRT average values for legitimate and adversary nodes. 138

Table 6.9 VoNDN hop count countermeasure results. 139

xii

L I S T O F A C RON YMS

ANDaNA Anonymous Named Data Networking Application

CA Certificate Authority

CCN Content Centric Network

CDN Content Delivery Network

CHR Cache Hit Ratio

CRT Content Retrieval Time

CRL Certificate Revocation List

CS Content Store

DNS Domain Name Server

DON Data-Oriented Network

DoS Denial of service

FIB Forwarding Interest base

FIFO First In First Out

ICN Information-Centric Network

IETF Internet Engineering Task Force

IKB Interest-key Binding

IoT Internet of Things

ISP Internet Service Provider

IP Internet Protocol

LFU Least Frequently Used

LRU Least Recently Used

NACK Negative Acknowledgment

NDN Named Data Network

NFD Named Data Network Forwarding Daemon

NLSR Named Data Network Link-State Routing Protocol

OCSP Online Certificate Status Protocol

OSPF Open Shortest Path First

PIT Pending Interest Base

PPKD Publisher Public Key Digest

RDR Real-Time data Retrieval

RIB Routing Information Base

RTT Round-Trip Time

RTSD Real-Time Streaming Data

SCN Self-certifying Content Name

SIP Session Initiation Protocol

TCP Transmission Control Protocol

TLS Transport Layer Security

TLV Type-Length-Value

UDP User datagram protocol

URL Uniform Resource Locator

VoIP Voice over Internet Protocol

VoNDN Voice over Named Data Networks

xiii

1

I N TRODUCT ION

This chapter starts with a contextualization on Named Data Networks, as a new network architecture based

on the emerging content-centric paradigm. Then the motivation and objectives of this work are presented,

followed by the research methodology used. The major contributions of this work are also summarized.

1.1 Context

The Internet is being reshaped to handle content production and distribution, as nowadays users desire,

for example, to watch movies and use social networking. Moreover, the number of IoT (Internet of Things)

devices over the Internet is increasing enormously. However, such activities may not be the most appro-

priate to be done over the Internet, because this network was conceived for point-to-point communications.

To overcome the problems raised by this communication paradigm, Content-Centric Networks (CCN) have

been proposed. According to this new paradigm, replicas of content(s) are generated and cached. The aim

of caching is to reduce the latency and data loss, thereby improving the distribution efficiency of popular

content(s). For instance, the content-delivery networks (CDN) are (currently) used to replicate cache servers

and increase content distribution. The Named Data Networks (NDN) paradigm was presented as the next

version of CCN networks. The NDN is designed with a name-based network and cache (e.g. buffer-memory),

presented by [16]. Through the in-network caching and named contents, the NDN promising a maximum

content distribution compared with other CCN networks.

The NDN is based on a content-centric design, which does not require the content source and the

destination address. Therefore, the NDN is supposed to provide better privacy because of the lack of

source/destination addresses. However, the previously cached content, in spite of its benefits, may be

targeted by side-channel timing attack to threaten the NDN privacy [16], [17], [18], [19]. Depending on

the scope of the attack, the adversary may identify the location of producer and consumer by distinguishing

cached and un-cached contents through the time differences from the cache.

Since the attack is based on time responses from the router cache, it can be mitigated by certain config-

urations based on the manipulation of the time. To mitigate the attack, static configurable countermeasure

methods (delay, randomized cache, and encryption) were proposed by other researches [20], [17], [21],

14

1.2. Motivation and Objectives 15

and [19]. However, any additional delay or name encryption may disable (reduced availability) of the cache,

which can be considered as against in-networking caching based NDN design. Therefore, the statically con-

figured countermeasures can be considered as a trade-off between the content distribution and privacy.

1.2 Motivation and Objectives

The in-network caching feature may arise the content privacy concerns in NDN. The adversary may identify

the previously cached contents from which he can target sensitive information. In the side-channel timing

attack, the adversary analyses the time responses from the cache of the router. The attacker can identify

the producer, content name, and the certificate through the attack. The attack models were discussed by

[17], [21], [18]. However, these can be considered as incapable to define the multiple targets and meet

with the recent attack models.

The timing attack can be mitigated by an additional delay from the router cache response. Effectively,

the statically configured countermeasure methods to mitigate the side-channel timing attack by serving

the contents depending on various delay methods. Nevertheless, the countermeasure methods effectively

mitigate the side-channel timing attack, they can reduce the performance of the NDN content distribution

paradigm. For instance, any additional delay [17] into router content delivery may affect the content distri-

bution efficiency because the legitimate requests are also affected by countermeasures. On the other hand,

the contents must be cached in order to increase content distribution. Therefore, any additional delay to

cache or completely disabled cache approaches ([21]) may be against the NDN paradigm.

Thus, this work was mainly motivated by overcoming the countermeasure distribution efficiency con-

cerns, considered on the NDN paradigm. To achieve this main goal, the attack detection methods were

presented to detect and distinguish the adversarial face1 from other legitimate faces (consumers). Thus,

a countermeasure method can be only applied to the adversary’s face and the privacy and the distribution

efficiency preserved dynamically.

Additionally, the detection methods can be used to obtain the severity of the attack. The attack can be

classified as minor, moderate, and severe through the obtained detection metrics. Also, multiple counter-

measure methods can be applied by the severity of attack definition respectively. For instance, the cache

can be turned off on the adversary’s face when a severe attack is detected on it, which can also be used to

terminate the attack completely.

On the other hand, the scope of the attack and detectionmechanismsmay be different depending on NDN

applications. For instance, the certificate privacy can be important on trust-based applications such as two-

way communication application and name privacy can be important considering the video/audio streaming

1 In NDN, the interfaces are called as face.

16 Chapter 1. Introduction

applications in NDN. Therefore, the attack and detection mechanisms can be modeled accordingly in NDN

applications such as NDNtube and VoNDN.

As the motivation of works is identified above, this research is formed by three main research questions

can be defined by the following:

A. What kind of attack design can be achieved to increase the attack success?

B. Is it possible to mitigate the attack with the current countermeasures without compromising the NDN

cache-store efficiency?

C. Is it possible to detect an adversary face to apply multiple countermeasure methods on different

NDN applications?

To answer these research questions above, this work addresses the following aspects, namely: i. The

side-channel timing attack configuration and its threats to consumer/producer privacy, ii. Use the coun-

termeasures only under the attack to the particular attack detected face. iii. Understand the adversary

behavior on NDN applications and obtain the attack detection. Hence,

The main objective of this work is the reduction in the impact of side-channel timing attack

countermeasure methods on NDN content distribution performance.

The side-channel timing attack is a threat to cached content in NDN. At the same time, it can be miti-

gated by countermeasure approaches as described by literature. However, these approaches may reduce

the NDN content distribution efficiency while protecting the cache. To overcome this problem, the attack

detection methods are evaluated to detect the attack. Through this strategy, efficiency can be maximized

while mitigating the attack.

Further objectives are identified by the followings to support the main work objective:

• Understand the NDN architecture and its features. Survey the content privacy threats on in-network

caching.

• Survey the side-channel timing attack and its countermeasure methods for content privacy.

• Understand the attack behavior and survey usable attack detection methods on related attacks.

• Develop an alternative attack design that is used to increase the success of the attack.

• Propose and develop a privacy model approach to preserve the cached contents while not compro-

mising the distribution performance.

• Implement the scenario based on NDNtube and VoNDN applications to analyze the attack and DaD

findings.

1.3. Research Methodology 17

1.3 Research Methodology

To pursue the main objective of this work, the research methodology was identified by the list of objectives

above. To achieve these, the NDN paradigm and its instruments were surveyed by bibliographic sources

(IEEE, ACM, Springer, etc.). The literature allowed this work to understand the in-network caching content

threats on privacy and their possible solutions in NDN. Therefore, this work focused on cache privacy-related

works especially an attack-type called side-channel timing attack in NDN. The related works showed that

the countermeasure methods can be a trade-off between privacy and cache efficiency respectively.

To overcome the statically configured countermeasures efficiency issues, the side-channel timing attack

detection methods were presented to detect an adversary face to apply countermeasures. Therefore, the

detection and defense (DaD) based algorithm was proposed. The DaD is used to detect the adversary’s

face and apply multiple countermeasures. Also, the different countermeasures are applied by the severity

of the attack.

To meet with the work objective and algorithm implementation, the attack scenario implementations

were scripted (C++, Python, SQL, and R) on the NDN simulator (ndnSIM) to evaluate the attack and DaD

findings on NDNtube and VoNDN applications. In this implementation, an attack model called brute-force

side-channel attack was developed to increase the attack success rate for multiple targets, compared to

the traditional attack model.

1.4 Summary of Contributions and Publications

The conducted work of this research addresses the importance of side-channel timing attacks on NDN

content privacy and proposed an efficient method to mitigate the attack for NDN applications. Considering

the work objectives identified above, the contributions were summarized as follows:

1. Survey traditional side-channel timing attack and propose a model that can be used to increase

attack success.

The traditional attack design can be based on singular targets as described by recent researches.

This may reduce the efficiency of attack considered for multiple targets and recently proposed attack

designs. In this work, a brute-forced side-channel timing attack was developed to increase the attack

success for multiple targets.

2. Survey the countermeasures to mitigate the side-channel timing attacks in NDN. Study on attack

detection methodologies in NDN.

The countermeasures can be effectively used to mitigate the attack. Also, these methods can reduce

the content distribution which can be stated against the NDN paradigm. To reduce the countermea-

sure affects on distribution efficiency, the cache poising attack detection methods were investigated

18 Chapter 1. Introduction

which can have similarities with a side-channel timing attack. Through the detected attack, possible

detected adversary node

3. Propose and develop Detection and Defense (DaD) approach that is used to distinguish the legitimate

and adversary node then engage with the multiple the countermeasure methods.

The DaD is an approach to detect the attack first then the countermeasure method is applied. Ad-

ditionally, the DaD uses multiple attack check periods to identify attack existence. If the attack has

existed during these check periods, the DaD applies countermeasures starting with less effective

countermeasures to more effective ones.

4. Analyze brute-force attack results on NDN applications

The attack detection can be different on application and attack intention. For instance, the attack

behavior is different on name and certificate attack. To differentiate an attack behavior, the brute-

force is applied on streaming and VoNDN applications which are developed for this work as well.

Therefore the DaD is proposed for streaming and VoNDN Instead of proposing a generic DaD for all

NDN applications.

The following full-conference (Scopus-indexed) and journals (SCI-indexed) publications were produced to

meet the objectives of this work.

[journal-2] Content Privacy Preserving Approach in Video Streaming over Named Data Net-

works (with Costa A. and Macedo J.), 2020. [preparation].

Summary. The streaming application (NDNtube) was developed and the brute-force attack was imple-

mented in this work. The DaD algorithm was implemented and compared with the static countermeasure

method on a large-set network topology set (AT&T).

[journal-1] Public Key Certificate Privacy in VoNDN: Voice over Named Data Networks (with

Gama O., Costa A., and Macedo J.), IEEE, IEEE Access, 2020. [published]

Summary. In this work, the DaD algorithm was implemented to mitigate the attack. To do so, an NDN

application called Voice over NDN (VoNDN) was developed to illustrate the attack. The brute-force attack

results were presented which targeted the certificate privacy in trusted VoNDN application. To mitigate the

attack, a static countermeasure method and DaD implemented. The DaD performance was evaluated and

compared to the static countermeasure method.

[conference-3] A Detection and Defense Approach for Content Privacy in Named Data Net-

work (with Costa A. and Macedo J.), IFIP-IEEE International Conference on New Tech., Mobility and Security,

24-26 June 2019, Canary Islands-Spain. [published]

Summary. The content retrieval time (CRT) and the attack success calculations were presented. The

brute-force based side-channel timing attack was presented to increase the success of the attack which

targets to name privacy. To mitigate this attack, the DaD algorithm firstly presented in this work, which

https://doi.org/10.1109/ACCESS.2020.3014898
https://doi.org/10.1109/NTMS.2019.8763835

1.5. Thesis Layout 19

detects the attack first then applies three countermeasures depending on the severity of the attack. The

brute-force attack and countermeasures results were presented on large-set AT&T network topology using

the NDNtube-like streaming application.

[conference-2] Identifying Previously Requested Content by Side-Channel Timing Attack in

NDN (with Costa A. and Macedo J.), Springer, Future Network Systems and Security (FNSS), 2018-Book

Chapter in Communications in Computer and Information Science. 9th-12th July, Paris-France. [published]

[citation ≥2]

Summary. A side-channel timing attack scenario was implemented on tree (16 nodes) topology using

the ndnSIM 2.5. The attack results were presented for the streaming application analyzed by cache hit

ratio results. Also, a detection and countermeasure algorithm was presented to preserve privacy in NDN.

The algorithm detects the attack based on RTT and cache hit ratio to apply random cache. Also, threshold

value calculations for the RTT and cache hit ratio are presented to detect the adversary.

[conference-1] Evaluating privacy attacks in Named Data Network (with Costa A. and Macedo

J.), IEEE, IEEE Symposium on Computers and Communications (ISCC) 2016-Full Paper, 27th-30th June,

Messina-Italy. [published] [citation ≥9]

Summary. The Named data networking and privacy-related timing attacks are surveyed. Also, a detection

method (cache hit ratio) was proposed to detect the adversary and apply a delay to the adversary.

1.5 Thesis Layout

The thesis is structured of seven chapters that were used to presenting the state of the art, the background

of the research, the problem definition and its challenges, proposed approach, experimental setup, main

results, and conclusions. Also, a summary of Chapters is presented by the following. Figure 1.1 illustrates

the thesis working methodology.

Chapter— 2 Named Data Networking. This chapter firstly presents the IP network weakness for the

content distribution and how it temporarily recovered from that weakness by discussing various caching

server network designs. Then, this chapter introduces the NDN paradigm that attempts to remove the

IP weakness by featuring in-network cache design while using different packet types. The chapter also

summarizes NDN applications and content privacy threats especially on name, content, and signature

(certificate).

Chapter— 3 Side-Channel Timing Attack and Countermeasures. This chapter discusses the side-channel

timing attack and its countermeasure methods. This chapter also shows the privacy threats on the name,

cache, and certificate in NDN. The side-channel timing attack success calculation and potential privacy

risk in NDN applications are shown in this chapter. Lastly, the countermeasure methods proposed by other

authors are discussed and pointed out the countermeasure methods efficiency affects the NDN cache-store.

https://doi.org/10.1007/978-3-319-94421-0_3
https://doi.org/10.1109/ISCC.2016.7543908

20 Chapter 1. Introduction

Figure 1.1: Thesis Layout.

Chapter— 4 Attack and Privacy Model Development. In this chapter, the main contributions of this work

are detailed. First, the brute-force side-channel timing attack design is introduced, then the Detection and

Defense (DaD) algorithm is proposed to mitigate the side-channel timing attack in the NDN.

Chapter— 5 Experimental Framework and Implementation. This chapter mainly presents the network

simulator 3 based NDN simulator (ndnSIM) features and objectives of the scenario implementation. Also,

1.5. Thesis Layout 21

the NDN application layer protocol (NFD) features are described which is mostly used to implement the

experimental objectives. Finally, the implemented components are detailed and discussed.

Chapter— 6 Scenarios and Results. In this chapter, the attack and countermeasure implementations

were presented by elaborative results. To achieve the main objectives of this work, the adversary configu-

ration and scenario topology setups are presented in this chapter. Also, the attack scenario findings and

applied countermeasure methods are presented on small and large (real) network topology.

Chapter— 7 Conclusions. In this chapter, the main work contributions and its findings are discussed

with providing the direction of future works. Also, the attack and countermeasures results were revised in

this chapter.

2

NAMED DATA NETWORK ING

This chapter details the Named Data Networking concepts, comparing with the mechanisms in use currently

on the Internet to deal with efficient global content distribution. The NDN architecture is presented, as well

as all its components, with special attention to the routing and forwarding mechanisms based on names

and contents. Finally, the NDN built-in security model is discussed and privacy issues are enumerated as

research challenges.

2.1 Context

In the 80s the communication between computers brought global scale communication. Thus, the network

and transport layers (IP and TCP protocols) were suggested for universal communication between comput-

ers. A set of procedures and rules defined by standard communication protocols (TCP/IP) were used to

interconnect network devices over the Internet. Its communication network protocols were designed for

point-to-point communications. The Internet idea was created to support people’s communication and not

multimedia content production and distribution. With the appearance and popularity of WWW, the Internet

becomes a technology used to produce and consume real-time multi-cast multimedia such as online ra-

dio/video channels. However, the Internet was not designed for such a usage pattern, which brings a need

for a real-time multi-cast design for today’s Internet.

However, the usage of the communication world has changed dramatically since then. The growth of

network devices, user expectations, the evolution of services, and ubiquitous interconnectivity are forcing

the Internet to be overwhelmingly used for content distribution. Due to the TCP/IP paradigm network,

the over usage of the Internet is creating network traffic congestion, server failures, and other unexpected

network problems [2], [16].

The Information-Centric Networking (ICN) [22] is an emerging network approach that is an alternative

to the IP. It aims to improve the scalability, cost reduction, network performance compared with the IP.

Content-Centric Networking (CCN) [23] stands one of the approaches to ICNs. The CCN aims to content

caching with various packet types, application layers, and protocol. Through these features, the CCN offers

simpler and more potential options for alternate network paradigms.

22

2.2. Content Delivery Networks 23

NDN [16] is another ICN flavor, network paradigm alternative for TCP/IP networks. It is an ongoing

project that proposes to transform the existing Internet design into content-centric architecture, to maximize

the content 1 distribution efficiency. NDN is based on human-readable names and keeps the contents in

the cache, thus facilitating content distribution and providing low latency [3].

2.2 Content Delivery Networks

The CDN networks [24], [25], [26] are built to support content distribution over the IP, an aspect of ICN

architecture. The CDN is a collaborative collection of network segments into the Internet (IP), where the

content(s) is replicated over the mirrored cache servers to perform effective and transparent delivery of

contents to the end consumers. In CDN, the distribution services are about to replicate content(s) and

cache the content(s) from the content provider to the distributed web servers [1].

The CDN name resolvers direct to the global Domain Name Servers (DNS), which can be used for load

balancing. Briefly, the DNS resolves a domain name to IP addresses. For instance, consumer requests for

a Uniform Resource Locator (URL), and DNS decides according to the hostname. Another benefit of the

DNS service, they can take a role as a load balancer for CDNs as described by [26]. For instance, when

DNS requests a certain domain name that is handled by a CDN, it determines the closest location to look-up

that the DNS request to handle it. The DNS server does a geographic lookup based on the DNS resolver’s

IP address and then returns an IP address for an edge server that is physically closest to that area.

Figure 2.1: CDN Architecture (adapted from [1]).

1 In this work, the terms “data” and “content” are used interchangeably.

24 Chapter 2. Named Data Networking

The CDN has four basic components: CDN provider, surrogate, content provider, and end consumers.

As Figure 2.1 illustrates, the content provider is the one who delegates the URL names of content(s) to be

propagated to the CDN provider. Web caching is mainly implemented by proxy servers, whereas content

replication is the main practice on CDNs. A company or proprietary organization (Akamai, Cloudflare,

MaxCDN, etc.) can be a CDN provider. These organizations are providing infrastructure features to content

producers to serve content in a timely and reliable.

2.3 Content-Centric Networking

The CCN (also called Data-Oriented Networks (DON)) architecture emphasizes the content directly reachable

and routable. The CCN architecture can be adapted to IP and non-IP network architectures. The main

objective of CCN is securing the content rather than securing the channel. Secured based content provides

a flexible and scalable network. The CCN also identifies the contents by a name instead of IP address [27].

Through named and signed contents, their distribution can be done by caching servers such as CDNs as

described by [28].

The CCN has mainly two packet types, The Interest Packet and Data packet. The Interest packet identifies

the content that needed to be retrieved and is sent by the consumer. Then, the content publisher issues

a content to be cached by nodes and retrieved by the consumer. Each of the interest packets is signed by

the consumer and the content packets are signed by its producers, to maintain the integrity of the content.

CCN defines three types of entities: i. The Forwarding Interest base (FIB) is a table of name and cor-

responding of outgoing faces. The FIB is responsible to route the interest packets on longest prefix name

matching. ii. The Pending Interest Table (PIT) is used to record faces by incoming and pending Interest

packets. iii. The Content Store (CS) is used to cache the contents on caching servers or routers as described

by [29].

The CCN is a form of ICNs. These concepts are known under different terms, including but not limited to:

Network of Information (NetInf), Named Data Networking (NDN), and Publish/Subscribe Networking [22],

[30].

In the next section, the Named Data Networking (NDN) [16] architecture is discussed in detail and NDN

features are studied by comparing NDN with current TCP/IP networks.

2.4 Named Data Networking Architecture

The works of [16], [3] and [2] have proposed the NDN project, a network paradigm that is an evolution of

the IP architecture. In NDN, any packet object can be named instead of naming the endpoints. This is a

2.4. Named Data Networking Architecture 25

feature that changes the network semantics from packet delivery to the identified destination address to

caching data by a given name.

Figure 2.2: Internet vs. NDN hourglasses (adapted from [2]).

The hourglass model is used as a means of describing the Internet design. Today’s Internet hourglass

architecture represents a design in layered systems that aim to support a diversity of applications and

implementations. The hourglass centers on the universal network layer (i.e., IP). This thin waist is a key

enabler of Internet growth, by letting the techniques of upper and lower layers to innovate independently, as

described by [16]. In summary, the IP was designed to establish a communication network. However, the

growth of social networks and applications has led to the use of the Internet as a content distribution network.

Therefore, using the distribution networks via the communication network is error-prone and complex to

solve. As Figure 2.2 illustrates, NDN keeps the same Internet hourglass-shaped architecture by replacing

the thin waist with named data other than communication endpoints. This semantic changes the network

from delivering the packet to the given destination address to a caching data packet that is identified by a

given name.

Data Name

Optional Parameters

Data Name
Meta Info

DATA
Signature

Interest Packet Data Packet

Figure 2.3: Packet types in NDN (adapted from [2]).

NDN is based on two main packet types: interest packets and data2 packets. Interest packets are issued

by the consumers and data packets by the producers. The content name in the interest packet identifies

the request of the consumer, for example, /pt/uminho/algoritmi is a name for a content, expressed in a

2 In this thesis the terms “data” and “content” are used interchangeably.

26 Chapter 2. Named Data Networking

structured way. It can be used to name contents related to the Algoritmi research center. As shown in

Figure 2.3, the producer includes a signature in the data packet. Mechanisms for signing and verifying the

integrity of the contents have been proposed for NDN, such as the one described in [16], [3].

In the following subsections, the four main NDN elements are discussed, the benefits of the design

choices identified, and the challenges presented.

2.4.1 Negative Acknowledgment Packets

Technically, the NDN has two packet types of interest and data. However, the negative acknowledgment

packet is another packet type it is used to identify the error reasons, when failures occur. The NACK is

wrapped with one of error reason such as e.g., duplicate, congestion, no route, denial of service, and time-

out, by the PIT, and sent to the FIB. In NDN, if the interest gets the existed content packets (retrieved), it

is named as a satisfying interest, else the router gives up searching the data and the packet becomes a

NACK by PIT and interest packet named as unsatisfied interest [31].

2.4.2 Names

The NDN name design is structured hierarchically, for instance, a video file may be produced by uminho

<uminho/vnetlab/intro.mpg>. Similarly to the uniform resource locator (URL), with name components

separated by ’/’ in a readable address format.

To request data by name, the consumer must build a name for the intended data. A name creation may

be based on a deterministic algorithm, which lets the consumer and producer to gain information for the

same name. A consumer may also retrieve contents by a partially known name. This technique is also

known as “longest prefix matching” by interest selectors. They are used to precisely identify the content

object. Retrieving data with a partially known name can be supported by a set of interest selectors.

Also, any NDN application and consumer is able to create their namespaces, to increase mapping data

and its usage of the network. The naming of the data allows increasing mainly the functionality of data

distribution, mobility, delay-tolerant networking, and multicast operations.

2.4.3 Data-Centric Security

To ensure the integrity of the data, each data packet is digitally signed by its producer. This is also known

as NDN data-centric security, as discussed by [2]. It also supports data trust and allows the consumer

to check the producer’s public key validity. The validation can be also done by a hierarchical trust model,

where some namespaces can be certified (certificate) by private companies or entities (third-parities).

2.4. Named Data Networking Architecture 27

The third parity of NDN application layers can manage the access control to data through encryption and

distribution of the keys. Additionally, using the signatures on control messages and network packets allows

securing the routing protocols.

2.4.4 In-Network Storage

NDN supports that any data packet can independently be retrieved from the network. Thus, the NDN router

can cache data packets in CS (Content Store), to satisfy future incoming interests for contents. The CS is

similar to today’s buffer memories in IP routers. However, each NDN router can reuse a data packet while

the IP routers cannot. Note that NDN handles the repositories (e.g. CS) and network channels as data

retrieval sources.

On the other hand, the CS is a benefit for network congestion. In the presence of congestion, if it occurs

for any reason, CS re-transmits the data. Imagine two congested links along a path between a consumer

and a producer. If the requested data packet gets through the first congested link somehow, but couldn’t

get through the second one, then the data packet is dropped. But it remains in the CS of the intermediary

node. Then, the consumer’s interest becomes timed-out and the interest packet is resent. Caching will

allow the data packet to be retransmitted to the consumer over only the second congested link. However,

on the traditional Internet, the retransmission of the data packet can only be done by the content producer,

and the data packet has to pass through the first congested link again.

So, CS presents optimal data delivery for static content, while getting supported by today’s in-network

repositories without having an application layer overlay. Even the dynamic contents, such as broadcasting

or real-time conferencing, can benefit from CS in case of a packet loss.

2.4.5 Routing and Forwarding

In an NDN router, the forwarding of interest packets and data packets is carried out by three engines:

Pending Interest Table (PIT), Forwarding Information Base (FIB), and Content Store (CS) [3].

CS represents a cache for data packets, similar to Internet routers buffer memory. FIB is a name prefixes

routing table and respective outgoing interfaces, used to route interests. PIT is a pending interest table and

a set of corresponding incoming interfaces.

As Figure 2.4 illustrates, when a consumer interest is received, a lookup is made on the CS for previously

cached content that matches the name requested. If there is a matching content, it is sent as a reply with

a data packet. If the data packet is not in the CS, the router checks the data name in the PIT. If there is

a matching name in the PIT, the router records the incoming face of the interest for the future reply and

stops the procedure. If not, a new PIT entry is created for that name, recording the incoming interface, and

a lookup is done on FIB. The interest is routed using FIB information to the producer. For each forwarding

28 Chapter 2. Named Data Networking

CS PIT FIB

PIT

CS
Discard

Data

DataData

Upstream

InterestInterest

Data

Downstream

add incoming
interface

Drop or
NACK

cache

Delete PIT entry

Create PIT
entry Matched content name

Longest prefix matched

lookup hit

lookup miss

Figure 2.4: NDN forwarding engine model (adapted from [3]).

interest packet, the longest name prefix match is a lookup in the FIB, which determines where to send it.

The list of outgoing faces of the FIB matched entry is an important reference for the routing. In case a name

is not found in FIB, the interest becomes unsatisfied. When all FIB lookup misses are replied with a NACK

packet, the forwarder can limit the requests [16], [3]. For example, This can be used to mitigate the denial

of service attack in NDN, as described in [32].

When a data packet arrives at the downstream router, the PIT of this router is checked for a matching

entry. If a match is found, the data packet is forwarded and stored to the CS, and the PIT removes the

entry. If the signature verification of the data packet fails, the PIT discards it.

2.4.6 Table Management

The NDN forwarding path contains three tables: FIB, PIT, and CS. Also, these tables can be managed by

special NDN applications (NFD, NLSR, and RIB [33], [33]). These can be used, for example, routing for

routing information to each other to populate the tables.

As Figure 2.5 illustrates, the FIB is used to forward the interests to the potential sources. The FIB is

updated by FIB management protocol, which is operated by the routing a forwarding application layer.

Table 2.1: Forwarding Information Base Process.

Name

prefixes
Stale Time Interfaces ranked by forwarding Policies

Name

prefix
Time

Interface

ID

Routing

preference
RTT

Packet

status

Rate

limit

2.4. Named Data Networking Architecture 29

Figure 2.5: Single Interest/Data packet forwarding mechanism (adapted from [2]).

As Table 2.1 shows, the FIB manager processes these take the orders from the routing information base

(RIB), that receives the routing pieces of information (static or dynamic) from the NDN application daemon

(e.g. NFD) [34], [33].

The CS is searched before the incoming Interest is given to the forwarding strategy for further processing.

This way, the cached data, if available, can be used to satisfy the Interest without actually forwarding the

Interest anywhere else.

CS performance has an impact on the performance of the NDN network because it stores a large number

of packets, and virtually every request packet accesses the CS. The choice of the underlying data structure

30 Chapter 2. Named Data Networking

for an efficient lookup, insertion, and deletion, and the cache replacement algorithm (e.g., FIFO, LRU, LFU)

are crucial for maximizing practical benefits of in-network caching.

The PIT tracks each Interest packets that are forwarded upstream toward the content producer. Table

2.2 shows that it also records recently satisfied interests for several measurements (namely send-time,

output, and input used interfaces, and interest lifetime) and loop detection (nonce list) purposes.

Table 2.2: Pending Interest Table Process.

Names List of Nonce List of ongoing interfaces List of ongoing interfaces

Content

name
Nonce Interface ID Lifetime Interface ID Send-time

2.4.7 NDN Transport Function

The Internet was developed to manage point-to-point communication functions. The transport layer is one

of the layers on the Internet stack. It provides communication between applications within layered protocols

such as i. User datagram protocol (UDP), ii. Transmission Control Protocol (TCP). The transport layer may

also provide the management of error corrections such, as ACK and NACK.

In NDN, there is no transport layer. The transport functions are not in a separate layer and may not be

separated from other layers, like on the Internet. Today’s transport functions like ordered reliable delivery,

demultiplexing, congestion control, are part of the forwarding layer or application layer. This can be done

using the names at the NDN stack by applications. For instance, the trust scheme, and application process

reliability controls.

Any NDN router can manage the traffic load by controlling PIT size on a hop-by-hop base. For example,

if a router is overloaded by incoming traffic, it simply resizes PIT and CS or stops sending interest to the

next NDN hop. This feature illustrates that NDN may eliminate dependency on end consumers’ traffic

congestion control, as proposed by [16].

NDN C++ library with eXperimental eXtensions (ndn-cxx) can implement the NDN primitives. These

can be used to write various NDN applications such as NFD, NLSR, NAC, NDNS, etc. Application-driven

development also increases the functionality of certificate verification. NDN application research maintains

five key areas: i. trust models, ii. namespaces, iii. in-network storage, iv. packet sync and, v. bootstrapping

and discovery.

The reliable content delivery can be done by the application or supporting libraries which may monitor

the status of outstanding Interest packets and retransmit them (e.g. after a timeout). Also, each NDN

router has a flow balance mechanism available to control its network traffic, by limiting the PIT at each hop.

This brings effective network congestion control to the NDN. For instance, in case of network congestion

occurred, it may be mitigated by CS. Thus, NDN can avoid the kind of congestion collapse that can occur

2.5. Security 31

in today’s Internet when a packet is lost near its destination and repeated retransmissions from the source

host(s) consume most of the bandwidth.

2.5 Security

In NDN, security is a built-in data function, rather than being a function of how and where data is obtained.

The producer signs the data packet binding its name to data. In NDN, it is mandatory to use signatures.

So, each data packet and corresponding application must meet security requirements.

The signature allows the determination of the data producer, letting the consumer’s trust into a data

packet to be de-bound from its origin. NDN supports a fine-grained trust scheme. This allows determining

whether a public key owner is an acceptable content publisher, for a specific piece of the data, into a

particular context.

2.5.1 Data-Centric Authentication

The data producer generates the digital signatures used to authenticate the data packets. The signature

binds the producer name with the data packet. To authenticate the signature, a consumer can verify the

digital signature using the producer public key certificate, regardless of the data packet location.

A consumer may also bind the publisher’s public key of the requested interest packet that is called

PublisherPublicKeyDigest (PPKD). With PPKD within the interest packet, a matching data must have the

same digest in its PPKD, to validate the data publisher. This match-up is also known as the interest-key

binding (IKB) rule, as described in [35].

A data producer binds the name and digital signature key of a data packet together, to indicate the

certificate name, which is called a KeyLocator. It is used to retrieve the publisher’s public key and to

determine the legitimate data name by the consumers.

The consumer simply verifies the identity name of the content producer, which is associated with the

producer public key into a certificate name. Therefore, the consumer or the router can discard directly data,

if the certificate does not provide correct identification of the producer.

Since the PIT can hold each interest packet that is sent and waiting for content as a response, it can be

used to verify the content publisher’s signature from previously cached requests.

To trust the content publisher’s public key, a consumer may ask for the validity of the public key included

in a certificate. This may occur in another operation, called a chain of trust. The process requires getting

multiple public-key certificates, that must be validated until reaching a valid root signature. The verification

is done using the chain of trust. A root certificate can be the trust anchor, from which is derived all chain

32 Chapter 2. Named Data Networking

of trust. When is digitally established the trust chain, the consumer can authenticate the signature using

the public key certificate.

Figure 2.6: Data packet authentication in NDN (adapted from [4]).

The trust must be established to eliminate the fake (un-legit) content producer(s) that may produce fake

data with a legitimate data name. In theory, a trust chain example is illustrated in Fig. 2.6, between the

content and the signer, between the signer and the keys of the administrators, between administrators’

keys and other administrators’ keys, and finally between administrators’ keys and the configuration key.

2.5.2 NDN Certificate

Similarly to any data packet in NDN, a certificate bounds a public key with the name through a signature.

If the identifier is a data name, the data packet containing public key bits is considered effectively as a

certificate [36].

Figure 2.7 illustrates the NDN certificate. In NDN, a certificate can be presented as like any other content

that is carrying a public key. The “key” refers to a content packet that carries a public key. The KeyLocator

refers to the certificate issuer or certificate authority.

A data packet seals the binding between name and data through a digital signature. The advantage of

using the certificate as a data packet is that a consumer can retrieve and validate a certificate by issuing an

interest packet. Indeed, the public key certificate has the general format of a data packet. For instance, a

producer expresses a certificate challenge using name and content to carry the public key bits. Next, there

is a discussion about why X.509 [37] is not suitable for the NDN certificate.

2.5. Security 33

Figure 2.7: NDN Certificate Format (adapted from [5]).

The unsuitability of X.509 for NDN Certificates. The X.509 standard defines the traditional point-

to-point Internet certificate format. However, X.509 cannot be adapted for NDN (except the public key bits),

due to the format differences between the two certificates. Firstly, the NDN trust requires a relationship be-

tween the name and the key name. On the other hand, the X.509 has only its naming system, which makes

it inadequate for its operations with an NDN certificate. For instance, NDN can have a strict hierarchical

naming system. In the NDN mechanism, a name converting can be also used between multiple naming

systems. However, an X.509 may not have a strict hierarchical structure to convert names because an

X.509 certificate name is a string (e.g. Google Internet Authority G2) [38], [5]. Secondly, X.509 requires

auxiliary dependencies, such as the Certificate Revocation List (CRL) and Online Certificate Status Protocol

(OCSP), built over IP [4]. The retrieval of X.509 certificates is only feasible over an established point-to-point

channel.

For all these reasons, NDN requires an own certificate design for the operational challenges described

before. As a summary:

• NDN is based on a naming scheme and requires trust between a name and key name.

• The NDN certificate must be retrieved independently from the network.

• NDN certificate has no dependency on IP.

Certificate Requirements. A certificate may have the same requirements of a data packet and can

be retrieved from the CS, thus allowing the validation procedure for both keys and data. However, the

data packet form does not include support for specific requirements for the certificates, such as additional

information. The certification structure requires an extension of the data packet format.

The requirements are classified by Naming Convention, MetaInfo, Content, and SignatureInfo [38], [5],

as presented following:

34 Chapter 2. Named Data Networking

Naming Convention. The generation of a unique certification name requires a name convention for

the name components, as shown in Figure 2.8. The name is divided into several components with different

semantic. These are Subject, KeyID, IssuerID, and Version.

Figure 2.8: NDN Certificate Naming.

• Subject. A name for data packet.

• KeyID. A name is used to identify a key that is bind with the subject. It uses as the crypto hash

function of the public key, such as SHA-256, the same as X.509.

• IssuerID. A name that distinguishes the certificate by multiple certificate authority (CA).

• Version. A name is used to distinguish the certificates of the same subject name by the same

issuer.

MetaInfo. The MetaInfo consists of additional information for the data packet, namely the ContentType,

FinalBlockId, and FreshnessPeriod. Since the data packet has public key bits, ContentType is used to define

the content as a certificate key. When the content cannot fit in a single data packet, the FinalBlockID is

used to identify the certificates in more than one data segments. The optional FinalBlockId identifies the

final block in a sequence of fragments. It should be present in all fragments to provide advanced warning

of data packet fragmentation. The FreshnessPeriod is defined by the producer to indicate how long a router

should cache the certificate before being discarded. Note that, the FreshnessPeriod should not be confused

with the ValityPeriod for certificates.

Content. The certificate content has a hash public key format (SHA-256). This encoded information is

the same as the X.509 public key format. It should be noted that this crypto hash function can be changed

accordingly to the network needs.

SignatureInfo. The identification as a statement of certificate issuers and its attributes are in Sig-

natureInfo. SignatureType and KeyLocator are the classifications of statements. The SignatureType and

KeyLocator specifies the type of signature (e.g. RSA with SHA-256) and key name (e.g. /ndn/pt/min-

ho/ertugrul/KEY/32). However, the lengths of the statements are not sufficient to accommodate more

attributes. To accommodate more attributes for extensible authentication, Type-Length-Value (TLV) blocks

extend SignatureInfo. These are consumer-driven attributes which categories are non-critical and critical.

If verification fails in a critical attribute certificate, the certificate becomes invalid. The consumer can

also drive a non-critical attribute. Two certificate attributes are defined following:

2.5. Security 35

• ValidityPeriod. This is a critical attribute for a certificate and a restriction for the lifetime of a signa-

ture. The classifications of timestamps of the certificate validity are the start time (NotBefore) and

expiration timestamp (NotAfter) of the certificate validity.

• AdditionalDescription. Its classification is a non-critical attribute and it describes additional informa-

tion, such as a set of key-value pairs. The key-value pair can be optionally identified by the issuer, to

keep the maximum integrity of a certificate.

Certificate Request Procedure. The owner of the key may request a certificate, to verify its key.

The first procedure is the selection, by the owner, of an issuer profile, loaded into the certificate agent (e.g.

/ndn). Then, the agent of the certificate may ask for additional information (e.g., the email address of the

NDN-testbed, for instance) to the owner of the key. With the additional information, the certificate agent

follows the issuer profile rules, to convert an email address (e.g. ertugrul@vnetlab.gcom.di.uminho.pt)

to an NDN name (e.g. /ndn/pt/minho/ertugrul). Then, the certificate agent builds the key name (e.g.

/ndn/pt/minho/ertugrul/43/KEY) by knowing the requesting public key.

Interest packet structure for a certificate request. The certificate request is expressed in the

Interest name, using encoding information. As shown in Figure 2.9, the Interest name of a certificate

request has six components.

/[ServicePrefix]/Request/[KeyName]/[KeyBits]/ChallengeSelection/[AgentKeyBits]

Figure 2.9: A Interest packet for certificate request (adapted from [5]).

• ServicePrefix. A service that provides where an Interest packet needs to be forwarded.

• Request. Identifies a request name for the certificate.

• KeyName. A public-key name.

• KeyBits. Public-key bits.

• ChallengeSelection. Additional information section and needed to be answered to the certificate

requester.

• AgentKeyBits. An agent key to keeping maintenance.

2.5.3 Self-Certifying Content Name

Self-certifying content names to names (SCN) for contents, where the name itself is cryptographically struc-

tured. This can be used to determine the integrity of the producer. The simplest form of self-certification,

hash-verified data, simply names a piece of content directly by its cryptographic digest (ex: SHA-1) [39].

36 Chapter 2. Named Data Networking

The SCN can be also used to mitigate an attack called cache poisoning in NDN. Maliciously constructed

contents may fill the content store, to affect its cache structure. This adversarial behavior is called cache

poisoning. The SCN allows the routers to identify whether a given content is a “legitimate answer” for a

specific interest packet. Each name contains two parts: i. publisher’s public key, and ii. object identifier.

More specifically, the work of [35] proposed Interest-Key Binding (IKB) rules for SCNs. The IKB rule of each

interest must reflect the public key of the producer.

2.5.4 NDN Trust Management Applications

In this section, we evaluate the trust management (schema) applications and their features in NDN.

Application layer Trust Model. The NDN application layer may take responsibility for the trust. The

trust model defines the processes used to certify public keys using certificates and validate packet signatures.

The application layer trust model defines the requirements of identity certificates. The application layer trust

model is used to validate command interests. Command interests are digitally signed interest packets. They

are crucial in many contexts. For instance in routing contexts. The link-state routing module may require a

trust model to sign routing messages [40]. This trust management can be done by NDN routing application

(e.g. NLSR) or other trust management applications. The command types, such as faces, FIB, and strategy-

choice, are sent to the Forwarder engine while routing commands are sent to the routing manager ([34]). In

this application, the layer trust model uses command interests, and a routing manager trust model, is next

presented. In the following sections, a set of specific application trust models are presented, like command

interest, routing trust model, building management trust model, video/voice trust model, vehicular and

other examples.

Command Interest. The command interest is used to issue authenticated control commands.

The command interest has five components after the management name-space, and it looks like this:

/signed/interest/name/<timestamp>/<nonce>/<signatureInfo>/<signatureValue>. The command inter-

est will be invalid under the following four conditions:

1. If the interest has one or more missing components (signatureValue, signatureInfo, nonce, and

timestamp),

2. If the signature fails with the public-key by SignatureInfo,

3. If the key is not trusted for signing the control command by the responsible trust model,

4. If the content producer has already received a valid signed Interest.

Routing Manager Trust Model. The routing manager may rely on its trust model to validate routing

type command interests. The manager may identify the conditions for keys to be trusted to sign routing

commands. The corresponding trust model must be able to answer these questions:

2.5. Security 37

1. How to authenticate signers?

2. Who are the trusted signers for routing command interests?

The name of the key with an NDN regular name expression defines the trusted signers [41]. If the regular

expression does not match the signing key, the command interest will be invalid. The signers must follow

the rules that manage how a signing key is validated through a trust chain back to a trust anchor. The au-

thentication and identification of the signers follow the NDN Validator Configuration File Format specification

[41].

Link State Routing Trust Model. Currently, NDN uses a featured routing protocol called NDN-based

link-state routing [40]. It uses names to identify data, networks, processes, routers, and keys. Link state

routing is also using underlying communication channels, such as Ethernet, TCP/UDP/IP.

The link-state routing application protocols may use their trust model or other NDN trust applications to

distribute keys and do derivative trust operations. From the trusted application, an application can fetch

and verify the data signature through the KeyLocators. However, the authenticity of the fetched key is

challenging. To overcome the authenticity errors, the link-state routing requires a simple hierarchical trust

model that proposes a trust relationship for bound names and keys. For example, a root key belongs

to an administrator, and the under-layer of the root key holds the site keys, which are owned by a site

administrator. The site keys sign the operator keys, which in turn sign the router keys and the link-state

routing process of the NDN router. Lastly, the key signs of the routing content originated by link-state. This

matched name trust delegation can be represented as “/root/site/operator/router/process”, as described

by ([3]).

Building Management System Trust Model. Since NDN separates the namespace from the trust

model, it becomes an ideal network design for Building Management Systems (BMS) as firstly proposed by

[3]. More specifically, the BMS design uses trust by control sensors proposed and publishes the content in

three namespaces [42]:

1. A namespace for application data access for physical building operations;

2. A namespace for bootstrapping and device discovery;

3. A namespace for trust management for keys that identifies the faculty roles and relationships of the

principal, i.e. the building management.

The authorization of the keys may limit its scope in the trust hierarchy. For example, the hierarchy authorizes

the keys to sign a particular name. To overcome this limit, a BMS is proposed by [42]. This BMS is a

hardware tool that separates a hierarchical namespace for content, encryption-based access controls, and

proprietary protocols.

38 Chapter 2. Named Data Networking

Video/Voice Streaming Trust Model. A simple multimedia control system, video conferencing,

teleconferencing, and live-media broadcasting can be supported by all NDN applications that are receiver-

driven. Since NDN does not require a centralized server, it supports multi-user peer-to-peer voice/video

application protocols, such as VoCCN (Voice-over CCN) proposed by [7], Real-Time Streaming Data (RTSD)

[43], and Real-Time data Retrieval (RDR) [44] for the RTSD applications.

The trust may vary according to the application protocol requirements. For instance, to verify the trust

in per-packet on its signature, the RTSD uses trust schemes, such as a model called schematizing trust

in NDN, as described by [4]. Another serverless NDN chat application is called ChronoChat, as described

by [45]. The application is supported by a non-hierarchical trust model and presents an encryption-based

access control.

Vehicular Network Trust Model. NDN supports vehicular networks for location-based content re-

trieval and trust model proposals. The vehicular applications also include updates in the NDN architecture

to include 3G/LTE, WiFi, WiMAX, and DSRC/WAVE [3]. The router can cache a broadcasted certificate to

provide secure data to other vehicles or send it to the corresponding certificate authorities to control the

certificate integrity [46].

Usable Trust Model. In theory, the trust chain must have to collaborate with the chain members.

However, in practice, if any chain member configuration(s) setting mismatch (expired or issuer name) to

the next chainmember, in this case, the trust chain may end up with non-trivial or error-inclined. A weak trust

implementation error may compromise the sensitive private keys. For example, if a producer associates

the consumer management with the consumer keys rather than with the administrator keys, it can allow

one consumer to authorize another consumer without the authorized administrator’s permission. To tackle

this problem, the trust relationships must be captured by a set of trust schema agent called schematizing

trust in NDN, as proposed by [4]. A system-level agent can interpret well-defined rules and execute the

signing and authentication procedures, to establish integrity. The proposed trust schema agent is based on

a notation for the authentication and signaling process. Such notation can be the usual NDN name pattern.

Next Generation NDN Repository. The repository (repo) is a larger version of CS in NDN. The repo

can exist in any NDN node, to preserve data. The repo protocol uses the NDN client library that is used to

reading, insert, and deletion of data objects.

The repo semantics is based on signed interests that includes <SignatureInfo> and <SignatureValue> as

the implementation identified by [47].

2.6 Privacy

The digitally signed packets do not guarantee to protection against traffic analyzes as described by [48].

Since each NDN node must have cache content, the privacy concerns increase for cached content. Each

2.6. Privacy 39

cached content may be targeted by an adversary in NDN. The recently cached content characteristics may

be different than uncached ones, the adversary uses this information by determining the cached contents

from CS.

When a consumer retrieves the data packet, the network infrastructure may keep information about the

requested content, to improve the throughput and latency of the network. The information may present

publicly the consumer, the content producer, the public key certificate, the name, and the content size. The

adversary may reveal this information to determine cached content from CS.

Suppose the adversary (Adv.) wants to determine whether a consumer (Bob) has recently requested a

data packet (C) or not. If the Adv. share the first-hop router (R) with Bob, the Adv. measures the estimated

RTT (round trip time) [R ⟷ Adversary]. Then, it issues interest of the content (C) and compares these two

RTT values, to determine if C has been recently cached by R3. Also, the Adv. may determine whether the

producer (Alice) has been recently asked for the content (C) or not.

Similarly, suppose that Alice and Adv. share the same router or separated at least by one router. The

Adv. estimates RTT [Alice ⟷ Adv.] and then issues an interest requesting for C. The Adv. concludes that

at least one consumer has requested C and cached by the router(s) if this RTT is lower than the former

RTT. Lastly, the Adv. may combine these two attack types against Bob and Alice to determine if they have

exchanged packets recently or they exchange packets in real-time two-way communication, e.g. SSH or

voice/video [17]4.

Since the interaction between the Adv. and the router is natural, the two attack types are simple and

do not require the Adv. to have any privileges. Such attack types, named ”timing attacks”, allow the Adv.

to learn whether a neighbor consumer recently requested a certain content. The timing attacks and its

countermeasures are studied in the next Chapter 3.

2.6.1 Internet vs. NDN Privacy

Due to the architectural differences between the IP and NDN, the privacy issues may be different from each

other. The IP communication networks may offer weaker privacy than NDN. For instance, an adversary

node may find out what is in the IP packet by checking the payload, or who has requested the content

packet by inspecting the destination, and address, as described in [20].

However, NDN only is interested in what data is being requested and not who is requesting it, and routers

cannot have any information regarding the consumers. Ideally, even if the router has been compromised,

it may facilitate observation of what data packet is being requested without identifying who is requesting it

(one is connected to the same host) as discussed by [16].

3 We do suppose Bob and Adv. only connected to the router. If there are other users, this will not change the nature of the attack

4 In the real-time voice/video attack, the Adv. must be physically neighbor to the target (e.g., same shared Ethernet interface)

40 Chapter 2. Named Data Networking

Table 2.3: Information privacy considerations on Internet, CDN and CCN/NDN.

Privacy

Considerations

Base

Internet

Model

CDN CCN/NDN

Source

Address

End-points

identifiable

End-points

may be

identifiable

Ideally,

end-points are

not identifiable

due to

lack of source

address

Destination

Address

Destination

addresses

identifiable

Destination

addresses

may be

identifiable

Destination

addresses are

not identifiable

due to lack of

destination address

Round

Trip-Time

Identifiable

between

source-destination

Identifiable

between

edge server

to

destination

Identifiable

between

node

to destination

Content

Name

Indicates

content

producer

May be

indicate

content

producer

Due to lack of

source address,

content name

does not

indicates producer

Packet

Size
Identifiable

Identifiable

at edge

cache server

Identifiable

at each

cache node

Cache
Does not

have cache

Only

represented

at edge

cache server

Each node

cache is

identifiable

Certificate

Public Key

Certificates may

indicate

content

producer

(if certificate

exist)

Public key

Certificates may

indicate

content

producer

at edge

cache server

Public key

Certificates mayindicate

content

producer

at each

node

Table 2.3 compares the base IP and CCN/NDN privacy considerations in their caching server/router.

The privacy survey analysis from [48], [49], [50], [51], [52] have classified the privacy considerations under

seven main subjects.

Source Address. The source is used to identify the content producer on the Internet and NDN. If the

communication established point-to-point the content source address may be used to illustrate its producer

2.6. Privacy 41

such as in the base-Internet model. If the communication is based on content-centric such as CCN/NDN,

the content may be retrieved by several cache nodes, making it hard to define who produced the con-

tent. Therefore, every-node caching networks such as CCN/NDN are privacy-friendly due to lack of source

address as described by [51].

Destination Address. Similarly, like an identifiable source address, the destination address may be

identifiable in the Internet base model, the packets are carrying the destination address, which may affect

consumer privacy. However, if the networks are based on content (content-centric), the content does not

have a destination address because they can be answered by any caching based nodes as described by

[52].

Round-Trip Time. The RTT is a time measurement value between issuing a content request and

obtaining its answer. The caching networks aim to achieve RTT value close to 0, to improve content

distribution efficiently. However, the attack may take advantage of this value, to identify cached/un-cached

contents. This may affect content privacy.

Content Name. The content name is used to identify the contents. In the base Internet model, the

IP name identifies the content producer. In case of CDNs may illustrate the source-destination address. If

CDNs are content-centric, it’s a challenge to identify where the content is produced. However, in the caching

networks (CCN/NDN), the contents may be cached by several nodes, which does not identify where the

was content retrieved from.

Packet Size. Whether the content is encrypted or not, the content size can be identifiable in base

Internet and caching networks.

Cache. Since the base Internet model does not have a cache 5, the cache privacy does not matter. In

caching networks, the adversary may able to identify cache size and content by multiple requests.

Certificate. If the base Internet model has a trust model, to build-in the integrity of contents, the pro-

ducer public keys may be used to identify the producer. This issue is the same in caching networks. Indeed,

the cached certificates are used to increase the content distribution, therefore the cached certificates are

used to identify producer and consumer in real-time communications.

NDN architecture may promote some important privacy issues, mainly caused by the semantic richness

of the content names as pointed out by [16]. The main privacy issues are studied in the next subsections.

2.6.2 Cache Privacy

The NDN contents may be cached within defined cache policies, therefore, the node’s cache presents how

many contents have been cached and what is the size of the node’s cache. Indeed, the number of cached

contents may illustrate the number of consumers who are requesting the contents from the cache.

5 During the transmission, the cables can carry the contents for a while, that considered as a temporary cache, we are ignoring

that.

42 Chapter 2. Named Data Networking

In this case, the adversary takes advantage of RTT replies by timing attack, to identify cached contents

number and the size of the node’s cache. For instance, if the adversary is sharing the first hop with the

target (consumer), the privacy risk is maximized due to the limited number of consumers sharing that cache.

If not, the adversary still may determine away hop’s cache, by analyzing multiple RTT replies.

2.6.3 Content Privacy

In IP, the channel may be secured between the end-points. That limits the adversary, to inspect the

source/destination address, type of service, and additional packet information.

However, NDN packets are individually secured by content-centric design and cached in the node. That

advantage the adversary effectively inspects the content of each node whether they are secured or not.

Ideally, the CCN/NDN contents provide strong privacy because of a lack of source/destination address.

However, the contents are available for any consumer that ask for it, the adversary can monitor cached

contents for censorship purposes as described by [53].

2.6.4 Name Privacy

Currently, the HTTP header names (IP to URL name, metadata, content-type, content length, etc.) may

reveal information about the packet itself. To overcome this issue, the header names can be encrypted by

HTTPS (secure HTTP) connection.

However, the NDN router routes data packets based on names and each human-readable name is related

to the content itself. Such a human-readable name design may have an increased level of threat to the

content names than IP URLs. Since, we cannot use a secured channel in NDN because its content-centric,

the work [21] suggested encrypted names, to increase the level of name privacy in NDN. However, the

content names must have to be visible for NDN, the encrypted names are not an ideal solution for content

names. Even if the content name is not human-readable, the content name can be still threatened by an

adversary because the name of the content may require an NDN Domain Name Server (NDNS) that is

proposed by [54], which translates the encrypted names to human-readable.

2.6.5 Signature Privacy

All NDN contents are digitally signed by its producer, to provide integrity and guarantee on provenance

which makes all signatures publicly verifiable by the NDN nodes and application layers 6.

6 Currently the NDN offers RSA and ECDSA signature algorithms.

2.7. Why Named Data Network? 43

However, digitally signed contents are may leak sensitive information about the content signer. Because

contents carry a public key that is publicly fetchable by any consumer, the adversary may be able to

determine content producer by using a timing attack.

For instance, the two-way conversation tool VoCCN [7] is based on signed contents, to keep content

integrity between the callee and caller7. In this structure, the certificates may be used to verify the content

producer. Since the certificates are effectively a content and cached in the NDN node by the application

layer, the adversary may use the timing differences, to identify the call history by timing attack.

2.7 Why Named Data Network?

NDN is a CCN’s academic dual. However, NDN does not offer IP adaptation at all, but it may use existing

CCN components such as packets, name, and caching nodes. The NDN was proposed to overcome IP

operational limitations. The improvements can be categorized by processing, failure handling, transmission,

control, and storage (buffer-memory) as presented by the works [52] and [15].

Table 2.4 shows IP major limitations, in four critical network functions: data processing, transmission,

control, and storage. The first column identifies the function, the second column classifies the problems

identified for that function, the third column explains the limitation in IP and the fourth column shows the

NDN approach [15].

Processing. The IP router is not able to diagnose the data failures, it simply drops the content. However,

NDN has a sophisticated mechanism to identify the reason for failure and taking the required actions. Also,

NDN provides implicit content management such as re-locating contents by needs and increasing cache

capacity/based on time-frequency, which IP cannot.

Transmission. The CDNs reduce the traffic-load in IP. However, the caching servers may not meet

the requirements at a large Internet-scale. They have to be explicitly created according to demand. Also,

the complexity of security requirements may lead to less efficient content distribution. Nevertheless, CDNs

help mitigate the traffic-load of the Internet. The NDN is content-centric and overcomes CDNs complexity of

transmissions with the caching role of each node. The NDN packets (Interest and Data) signed by consumer

and producer, doesn’t require middleware security protocols. However, the trust authorities may be needed,

to build the integrity of data packets.

Congestion Control. Each NDN router records all requests and caches the contents, is able to reply

to the next requests, even if one or more node fails. This brings less network congestion and it can control

the network, which IP cannot.

7 In this tool, the callee and caller are an effective content producer and consumer

44 Chapter 2. Named Data Networking

Table 2.4: IP and NDN limitations between and comparison (adapted from [15]).

Limitations Classification of Problems IP NDN

Diagnosing failures
A host cannot identify

the reasons of failure

Application layer

identifies the failure

Processing Content and network

handling

Internet services

regulation leads to

lack of content handling

Able to re-locate

contents

Efficient transmission

of content oriented traffic

Current CDNs reduce

the traffic-load but cannot

meet with Internet scale.

Each NDN node

caches content

Security of transmission
Destination and

source can be identified.
Content-centric

Transmission

Internet security Several add-ons needed.
Certificate

management required

Control Congestion control

Only for end to end

(some routers

have limited

capability for

congestion

control)

Each node is

stateful, and

records where the

data is located.

Content aware

network

Content only available

in end-to-end points.

Each node

caches the content

Content security
Signed content

without being re-requested again.

Application layer

signs the content

Content integrity
Content segments can be dropped

and have to be retransmitted

Lost content

segments

can be completed by

content store
Storage

Content caching
CDNs have to request

from publisher

If content is cached,

no need to request

from producer

Storage. In NDN, routers cache the contents, signed by a producer, before issue as a data packet.

Caching data packets also keeps content integrity, which eliminates segments drops during the transfer. In

NDN, the content may be signed by the application layer, to resend content to the next-coming request.

The operational differences between IP and NDN can be classified as shown in Table 2.5. We have cat-

egorized six main differences (addressing, routing, forwarding, congestion control, security, and in-network

caching).

Addressing. In IP, the packets identify the source and destination address. In NDN the packets refer

to the data or interest name, not packet destination and source.

Routing. In IP (one-way traffic), the packets are not recorded in the routing table (except the address

prefixes permanent table), which makes the forwarding process stateless. However, the permanent routing

tables may cause an overhead (e.g. limited scalability) in large scale ISP topologies because of its one-way

2.7. Why Named Data Network? 45

Table 2.5: Operational differences between IP, CDN and CCN/NDN.

Operations
Base IP

Model
CDN CCN/NDN

Addressing IP IP, Name Named data

IP prefix IP, Name Name prefix

Single next-hop Multi-path Multiple interfacesRouting

(FIB) Stateless

FIB

Stateful FIB

may be supported

Fully supported

stateful FIB

Stateless

packet

forwarding

Unique

State

Stateful forwarding

at all

nodes

Packets

not recorded in

routing table

Packets

may be

recorded at

replica nodes

Packets

are recorded in

every node

Forwarding
Permanent

routing table

Probe

only

replica nodes

Probe

each faces

at

each node

Congestion

control

Not

supported

Supported

only at

replica nodes

Can be done

in data plane by

forwarding strategies,

interest table,

and content store

in each nodes

Security
Only

Channel

Channel

and

Content

Content-centric

In-network

caching

Not

supported

Not

Supported

Supported by

each node

traffic. In NDN, the Pending Interest Table (PIT) stores the interest packets, while CS (Content Store) the

data packets. In the meanwhile Forwarding Table (FIB) observes the content and records the network route.

The FIB can handle the packet drops or identify legitimate interests by probing the router’s interfaces.

Forwarding. In IP based networks, the forwarding interfaces are not recorded in the table. It is a simple

design for forwarding without any observation, which makes the forwarding stateless. However, the cache

providers (CDNs) can record their interfaces to decide: what packets to forward to which interfaces, and

load-balancing data forwarding among the interfaces.

In NDN, each node can examine packets, that makes the forwarding stateful. For instance, the tables can

register how many satisfied (data retrieved by interest)/unsatisfied (data not retrieved by interest) packets

46 Chapter 2. Named Data Networking

occurred, to measure performance. Also, based on a forwarding state, the adaptive forwarding strategies

can be done by the network forwarder in NDN.

Congestion control. The one-way traffic may follow any route to reach the content producer in the

IP network. This network behavior may lead to network congestion. The NDN overcomes (or mitigate) the

network congestion because the router is only interested in content from the closest location. For instance,

the congestion control can be done by PIT, CS, and FIB in NDN application layers.

Security. In IP, content security is achieved by securing the channel between hosts, and also the content

itself. Therefore, the secured contents are only available for whoever is requested. The NDN security is

content-oriented which makes the contents retrievable by next-coming requests.

In-network caching. The naive solution to increase data distribution is the use of CDN nodes answering

the coming interests. In NDN, the content can be cached by any node, establishing the in-network caching.

2.8 Research Challenges

Similarly like the CCN network, the NDN offers data-centric authenticity, confidentiality, and integrity. The

cryptography keys are used to bind names to a data packet. Because certificates are considered as a data

packet, the NDN leveraged to address the research challenges of trust and key management.

NDN also offers the self-certifying name for per-packet data, which enables any node can verify published

packet name that matches its content. In this case, the data name can be bind by the NDN application.

Considering the names for application data, storage, certificate, routing and communication, the name-

space management does stand as another research challenge as described by [3].

Lastly, the NDN architecture design poses content privacy challenges. Each node’s cached contents

may introduce cache size, cached names, and cached certificates in the content store. Considering each

NDN node must have cached the content, the content privacy stands as another research challenge as

pointed out by [16].

2.9 Summary

The NDN network proposes a transformation from today’s Internet model to a new content-centric based

architecture. It also promises maximized content distribution within application layers and protocols. Also,

the application-driven based approach engages testing purposes and provides additional features to the

original vision for the NDN research.

Since NDN is based on content (content-centric), the security is also content-driven. To provide integrity

and origin authentication, a trust model is required. However, the NDN security has some operational

challenges that make it as open research, such as the trust model used by application layer protocols.

2.9. Summary 47

Lastly, the NDN nodes (routers) use a Content Store to provide caching, so that may cause privacy issues

about cache, content, name, and signature. This chapter briefly illustrated privacy challenges that can be

threatening to cached contents by applying an adversary monitoring technique called a side-channel timing

attack. The next Chapter 3 is focused on the side-channel timing attack and its possible countermeasures

in NDN.

3

S I DE - CHANNEL T IM ING ATTACK AND COUNTERMEASURES

Privacy is a valuable asset that must be protected. It is usually regarded at two levels. Protecting specific

user information, like age, sex, physical address, or identifiable individual information. Protecting informa-

tion about user activities or sequences of activities, while using network applications. Extensive knowledge

of this information makes individuals vulnerable to several other threats.

In this chapter, side-channel timing attacks and their effect on privacy are described, more specifically

in the context of content-centric networks like NDN. Two real-time applications are used as an example:

streaming over NDN (NDNtube) and Voice over NDN (VoNDN). Side-timing attacks and countermeasures

can be tunned for each application. Then, a set of countermeasures, described in the literature, are

presented, classified, and compared with each other. Most relevant related works are also described,

either for NDN and for IP networks. The chapter ends with a discussion on the trade-offs of common

countermeasures on content distribution.

3.1 Context

NDN is widely assumed to provide better privacy than point-to-point (IP) due to the former’s lack of source

and destination addresses. However, its content-centric design may maximize the privacy concerns com-

pared to traditional point-point design [16].

In NDN, every node must cache transit data, to maximize the distribution of contents. When a cached

content is re-requested by any consumer, the cache replies with content from the cache. Otherwise it

lookups the content till its producer. Therefore, there is a slight time difference between cached and un-

cached contents. The adversary node or application uses this difference to know if a given content is

cached by the router(s) in the producer path. This attack is called a side-channel timing attack, because

the adversary is located side by side of the consumer, and they are connected to the same router. Through

this attack, the adversary may affect the privacy of content, name, cache, and signature (certificate).

48

3.2. Side-Channel Timing Attack 49

3.2 Side-Channel Timing Attack

The privacy-oriented side-channel timing attack can be based on information gathering from the computer

implementation systems, rather than exposing software and algorithm weaknesses. The gained information,

such as timing responses of the packet can be used to identify private information by an adversary. Also,

the side-channel timing attack does not require any advanced configuration, because some information is

publicly available and be retrieved by any network consumer [55].

In NDN, either or not the content is previously cached by CS, the consumer retrieves the packet in time

which is called round trip time (RTT). It is defined as a time difference between the sent interest packet

and received the data packet. Therefore, the RTT of cached content is shorter than the RTT of un-cached

content. In an attack, the adversary takes advantage of the RTT differences to identify the cached and

un-cached targets (contents) from the router.

Considering all nodes must cache the data, the privacy of cached contents can be potentially targeted by

side-channel timing attacks in NDN. The works [16], [56], [57], [17], [21], [58], [53], and [18] discussed

that the side-channel timing attack may affect the information privacy in NDN. Depending on the scope of

the attack, mainly the adversary is able to identify the name, cache (e.g. size, content popularity), and the

signature (e.g.certificate) through the side-channel timing attack.

3.2.1 Content Retrieval Time

In NDN, the RTT is used by routing strategies to find the optimal routes to send packets. These routes are

chosen based on the shortest RTT between consumers and content providers. It is expectable that the RTT

for cached contents is lower than the RTT for un-cached ones. Therefore, the adversary may use the RTT

differences to identify the cached targets. In NDN, the RTT can be also used for other purposes, such as

network performance evaluation.

In this work, the Content Retrieval Time (CRT) was defined to specify the RTT only for content retrieval.

The CRT definition was used for cached and un-cached contents between the edge router and the consumer

(adversary included). The CRT is the time between sending the interest and retrieving the content. The

cached contents are replied from the content store of the intermediate routers between the consumer and

the producer, and the un-cached contents are replied from the content producer.

In this work, the CRT calculation was adapted from the TCP/IP RTT estimation [59]. Figure 3.1 illustrates

the CRT calculation from the edge router to the adversary node. In this example, the adversary sends

“Interest 1” and retrieves “Data 1”, and then repeats again the same “Interest 1”. Then, the adversary

analyzes the obtained CRT1 and CRT2 values to conclude whether “Data 1” was cached or un-cached

from the edge router. The targeted “Data 1” is considered cached by the edge router if the adversary

obtains CRT1 = CRT2, within very small error tolerance.

50 Chapter 3. Side-Channel Timing Attack and Countermeasures

Figure 3.1: CRT measurements using one repetition of the same packet.

Whenever an interest is forwarded to the upstream node, the router starts a timer, which will be used

to measure the CRT. When the data packet corresponding to the nth interest arrives at the router, this

calculates the new CRT by the equation:

< CRT >n= 𝛾∗ < CRT >n–1 +(1 – 𝛾) ∗ CRTn (1)

where n is the number of received data packets and 0 < 𝛾 < 1. If 𝛾 is equal to 1 – 1
n , then the real CRT

is obtained. If 𝛾 is close to 1, then the weighted average CRT is insensible to delay changes for a short time

interval. If 𝛾 is close to 0, then the weighted average CRT is very sensitive to new delay changes. These

CRT calculations are presented for the same interest name sequence.

Note that, the adversary can use a different attack sequence of interests, depending on the attack design.

3.2.2 Attack Scope

In the NDN side-channel attack, the scope of the attack may vary by the intention of an adversary and

targeted to a specific application (e.g. NDNtube and VoNDN). Based on the CRT values, information privacy

can be threatened by the adversary as described by [16], [17], and [21]. In the side-channel timing attack,

the adversary defines the targets by their content name (e.g. /ndn-content) or content segment (e.g. /ndn-

content/%00%12%34). The adversary can target the following components: i. Name: The name of the

content is defined by its producer and content itself. The adversary may also target the name to obtain the

popularity of content. ii. Cache: When an adversary distinguished between cached and un-cached targets,

this may also identify the size of the cache and top monitor the popular content(s) by their locations/regions.

iii. Signature: In NDN, every data packet can be signed by its producer. This signature can be verified by

3.2. Side-Channel Timing Attack 51

certificates and these are also cached by routers. In this attack, the adversary may target the certificate to

identify the user by measuring the CRT of the cached certificate.

Name privacy. In NDN, the name of the content can be threatened by the side-channel timing attack.

The name of the content is not only visible, but it is also semantically related to the content packet and is

used in routing protocols. In NDN, the requested data packet does not carry any information about who

requested it. However, the targeted names may be used to obtain the popularity of the content from the

cache of the routers.

Besides the content, the routing information, trust information, forwarding strategies are also named in

NDN. Because the names are humanly-readable, any named segment or content can be targeted by an

adversary. For instance, the large streamed content can be divided into segments and these cached by the

routers. Also, the retrieved target may not be consumable by the adversary because the retrieved target

is only a segment. Thus, the adversary only interested in the existence of the cached targets which are

recently cached by the edge routers [53], [18], and [51].

Cache privacy. The targeted content names may also be used to identify or estimate the cache instru-

ments such as size and policy. For instance, the LRU (least-recent-used) policy can be chosen for popular

contents these can be cached by caching routers. Also, depending on the popularity of the content, the

content producer may resize the cache to maximize the distribution for the particular popular content(s).

When an adversary identified the cached target by CRT, it may also identify the size of the cache by

other identified targets. Through this attack, the adversary may know where the popular content has been

recently cached and how long it stayed popular. The adversary can use this attack for content monitoring

regional or country wise.

Signature privacy. The trust may be required on applications such as two-way communication appli-

cation (e.g. VoNDN–voice-over NDN). In this application, the certificate authority may issue a public key

certificate to the callee/caller for their integrity. Since NDN treats the certificate as like any other content,

the certificates are also cached by the router. In this case, the certificates can be targeted and these may

be used to locate the callee or caller in VoNDN. Ideally, the certificates can be produced by the certificate

authority (CA) or self-signed. In large-scale applications, the trust may be maintained by a chain where the

certificates are signed by Certification Authorities (CA). The certificates also publicly available which also

helps the adversary to define the targets.

Let suppose, Alice and Bob exchange their certificates to establish a conversation. NDN certificates may

be at least cached by one hour (freshness) if needed by Alice or Bob. In this attack, two adversaries can

be located side by side to Alice and Bob. If the adversary successfully retrieved Bob’s certificate from Alice

router and vice-versa, the adversary can estimate the call time, when it establishes, and who established

the call.

52 Chapter 3. Side-Channel Timing Attack and Countermeasures

3.2.3 Attack Success Calculation

Through the collected CRT values, the adversary may distinguish the targets for the edge router or away

routers. In order to understand better the attack, the attack success probability is discussed next. For

this goal, let us consider the attack scenario illustrated in Figure 3.2. The consumer Alice (U) requests a

content (C) from its Producer (P), and then C is cached by the edge router (R). The content C is signed by its

producer P to keep its integrity. The Adversary (A) is probing the named C to learn if Alice (U) has requested

it recently. If C is cached by R, then A succeeds on the attack. To distinguish the cached and un-cached

targets, adversary A must probe the content C multiple times (at least two, to detect timing differences)

increase the attack success rate.

Figure 3.2: Side-channel timing attack on cached content.

The attack success calculation can depend on several aspects. For instance, the scope of attack and

cache configurations may be different on different NDN applications (e.g. NDNtube and VoNDN) which can

be an important factor for the attack success. In streaming, largely produced NDNtube contents are not

structured as a single piece but split into content objects. In this case, the probability of attack may be

increased because each segment must be cached by the edge router. In this case, the attack is designed

by target prefix (/ndntube/videos/video-1), unlike the traditional segment-based attack design. When an

attack is established, R replies to the request of A with a segment (/ndntube/videos/video-1/%00%12%34),

which was previously requested by U. However, an adversary can increase the attack success rate by

probing more than one content object from edge router R. The attack probability calculation is presented

next.

Let us suppose that U sends the interest packets (/ndntube/videos/video-1) with a constant bit rate

(CBR), P publishes the contents (/ndntube/videos/video-1) for U and these contents (including segments)

are cached by R. The adversary A targeted a content segment (/ndntube/videos/video-1/%00%12%34)

that has been recently requested by U and cached by R. Also, A repeats the targets to increase the attack

success, for example, eight times.

Let us suppose a content object is sent in n segments and Pfailure is the attack failure probability for

the adversary knowing if one segment is cached or un-cached. So, the probability of the adversary failing

3.2. Side-Channel Timing Attack 53

the attack with n available segments is (Pfailure)n. Consequently, the attack success probability of the
adversary to know if one segment is cached or un-cached is expressed by:

Psuccess = 1 – (Pfailure)n (2)

To illustrate the situation just described, a three nodes topology was created using the NDNtube applica-

tion, as shown in Figure 3.2. According to the simulations that we ran in this attack scenario, using a 100

interest/s, the least recent used (LRU) policy, and a CS size of 100 packets, the obtained attack success

probability was Psuccess = 0.41 for a single content object (cf. Figure 6.6 at Chapter 6). Consequently,

the attack failure probability was Pfailure = 1–0.41 = 0.59. So, if the content is split into eight segments
and the adversary tries to retrieve at least one of the segments to have success on the attack, then the

attack success probability is Psuccess = 1–0.598 ≈ 0.85, assuming the attack failure probability is the
same for one segment and the single content object. Note that this attack success probability is calculated

for an NDNtube application. For other attack designs and/or applications, the attack success probability

can be of course distinct.

On the other hand, the sequence number may not be mandatory to establish an attack. Through our

simulation experiences, the attack success probability can be higher if prefix matching is allowed from the

application (e.g. NDNtube or VoNDN). For instance, instead of requesting a certain sequence number (e.g.

/ndntube/videos/video-1/%00%12%34), the adversary can request a prefix (e.g. /ndntube/videos/video-1)

and router replies the request with its segment (e.g. /ndntube/videos/video-1/%00%12%34).

(a) (b)

Figure 3.3: Attack design and scopes: (a) Identifying closest hop cached contents. (b) Identifying distance hops

cached contents.

The CRT side-channel timing attack can be designed based on two adversary models: i. one able to

identify the target at the edge router (Figure 3.3a), and ii. another able to identify the cached targets from

away routers (Figure 3.3b). When an adversary collected all possible CRT values, it can take three different

assumptions about where the target has been cached.

54 Chapter 3. Side-Channel Timing Attack and Countermeasures

First, the maximum CRT value shows that the target is not cached by any NDN routers. Second, the

minimum CRT value indicates the target has been recently cached by the edge router. Third, if the CRT is

between a minimum and a maximum value, the adversary concludes that the content was cached by an

away router.

Additionally, more than one adversary can be used to determine the established call between Bob and

Alice when adversaries get the shortest CRT for their certificates, as illustrated in Figure 3.3a. On the other

hand, a single adversary may still determine targets from away location, as illustrated in Figure 3.3b.

3.3 Side-Channel Timing Attack on NDN Applications

This section presents the possible attack models applied in NDN applications. In this work, the attack

models were focused on two NDN applications: i. streaming application, which the application has a single

producer and many consumers; and ii. voice-over NDN, which present two-ways communication between

two peers.

3.3.1 Streaming over NDN

A streaming media user can be listening to media or watching a video in real-time or pre-recorded over

the Internet (IP) by current streaming applications. In streaming, continuous content is delivered by the

producer to the consumer. The video may be delivered to be saved in the cache for later on-demand

playback by CDN caching servers. In this way, a streaming producer may handle failures and diversity,

such as traffic congestion, multiple versions of an encoder, different device video resolution, etc.

Architecture of NDN streaming applications. The video distribution applications benefit from the

NDN architecture. The live streaming tools (NDNlive, NDNvideo, and NDN-RTC) and pre-recorded and live

stream tools (NDNtube) were proposed by [6], [60], and [61], and [43]. Instead of relying on centralized

servers as it is constructed with current streaming applications, the NDN design may make the servers

robust by naming the streaming packets, which can be independently retrieved from the network layer.

Through NDN, the applications fetch the streamed content by names, and the content can be delivered

either by the producer or by any router’s CS. That also removes the third-party application requirements of

managing and locating streamed contents as designed in NDNtube [61] and video-conferencing applications

[43].

The audio conference tool (ACT) architecture over NDN, proposed by [62], takes the advantages of

named data to locate the conference, the speakers, and to fetch packets from speakers. The tool also

announces the conference by using a signaling protocol, which is called the Session Description Protocol

(SDP) [63]. The name is constructed as /ndn/broadcast/conference/session/speaker-list, for example.

3.3. Side-Channel Timing Attack on NDN Applications 55

When the voice packet is generated by the speaker, the ACT server caches the data in SDP format, which

describes the name prefix that can be used for media type, voice data, and public key locator.

/ndn/pt/uminho⏟⏟⏟⏟⏟⏟⏟⏟⏟
routable prefix

/NDN_x⏟⏟⏟⏟⏟
application

/stream_1⏟⏟⏟⏟⏟
stream ID

/video⏟
media

/content⏟⏟⏟⏟⏟
content

/frame_num⏟⏟⏟⏟⏟⏟⏟
frame

/%00⏟
segment

Figure 3.4: Video streaming and audio Packet Format.

Figure 3.5: NDN streaming applications namespace (adapted from [6]).

Figure 3.4 and Figure 3.5 illustrate a generic name hierarchy on NDN streaming applications. The large

video content is split by video segments with its frame number. The NDN video and audio name components

are presented by the following:

routable prefix: This is used to identify the interest and to forward it in the NDN network.

application: The NDN_x is used to identify the NDN application name such as live streaming, video,

RTC, and Tube.

stream ID: This is an identifier used to distinguish one stream among the others.

media: This is used to identify the content type for /video and /audio.

content: The audio and video frames are structured in the content and it may be also used to identify

the streaming information, such as codec H.264 and metadata.

frame: It identifies each audio and video frame by a number.

segment: It identifies each data frame segment.

The content name may also include a content verification parameter and is identified by the MetaData

section of a data packet, as described by [44]. Each frame is signed by the producer and signature carried

within namespace <stream>/key in MetaData. The MetaData parameter may also include a freshness

period (e.g. ≈1000ms) of the data packet, which also defines the cache time for the data packet by its

producer.

56 Chapter 3. Side-Channel Timing Attack and Countermeasures

Possible attack scopes on NDN streaming applications. The pre-recorded and live contents can

be published by NDNtube, NDNvideo, and NDNlive applications. To answer live and future requests when

the producer becomes off-line, the video and its segments can be cached by routers. Through this approach,

the load of the producer can be reduced and the video distribution maximized [6], [61].

The audio/video segments are cached by the CS and each segment can be targeted by a side-channel

timing attack. The video segments can be targeted by an adversary to obtain the location of the targets.

The attack can be designed for a single segment by an adversary to identify the popularity of video. Also,

the attack can be configured to monitoring the cache to obtain the video types or contents by the region.

3.3.2 Voice over NDN

Voice over IP (VoIP) is a transmission method of voice/video communication over IP. VoIP requires inter-

mediary exchange protocols, such as Real-Time Transport Protocol (RTP) or Secured RTP (SRTP), and a

signaling protocol, e.g. Session Initiation Protocol (SIP) to establish a call, as described in [64].

Voice over CCN (VoCCN). In CCN networks, the data flows directly from the producer to the consumer.

Therefore, the media and signaling paths can be defined between the producer and the consumer. Based

on this idea, the VoCCN design has been proposed by [7]. In VoCCN, the signaling and media paths can be

combined and the voice packets can directly flow between callee and caller without requiring any translation

middleware because packets can flow directly between callee and caller.

Architecture of Voice over NDN (VoNDN). Similarly to VoCCN, this work introduces voice-over NDN

(VoNDN) as a use case for testing purposes.

As Figure 3.6 illustrates, the NDN name can be used to establish signaling and media paths for

voice/video calls. The SIP may be used to create a signal path from Alice to Bob. A SIP invitation message

carries a randomly generated symmetric key k. The caller (Alice) can encrypt the key block (k) using callee’s

(Bob) public key (B_pub). When creating a signaling interest packet the caller would include both the en-

crypted block (B_pub((k))) and the authenticated SIP message ((k)(SIP_INVITE)). The callee, on receiving

the interest, could decrypt the key block with its private key, recover (k), and use it to verify and decrypt the

SIP_INVITE. The caller would then use key (k) to encrypt its SIP_RESPONSE message1.

When the signaling path is securely established, the SIP packets are replaced by RTP media packets.

As seen in Figure 3.6, the SIP exchange section is replaced by the call identification (call-id), together with

other required information and a sequence number (seq-no) used to control different media fragments.

Possible attack scopes on VoNDN. Theoretically, the secured VoNDN conversation may face side-

channel timing attacks. The aforementioned attributes of encrypted traffic (trusted conversation) of the

side-channel information may be used to leak insights from the communication users. Since the callee and

caller are presented as producer and consumer, the cached contents may be used to identify the callee

1 In VoNDN, the callee and the caller play the role of producer and consumer at the same time.

3.3. Side-Channel Timing Attack on NDN Applications 57

Figure 3.6: VoNDN combined paths (adapted from [7]).

or the caller (conversation pairs), the location, and the time of the established conversation. For instance,

Zhang et al. [8] shows how to reveal the voice call history of the user by side-channel timing attack in

IP. The attack method also can reveal the call history of a group call in VoIP. The timing attack is aimed

against the victim’s SIP proxy server. The other work Lauinger et al. [65], [56] studied the side-channels

on Voice-over CCNs. It is shown that an adversary can replicate the VoCCN packets to learn the size of

the cached voice packets. Because the voice is encoded using by variable-bit-rate encoding scheme, each

voice packets can be shaped by its phrases. This may lead to learning the previously spoken voice packets

even the conversation is encrypted between VoIP pairs as described by [66], [67].

In VoNDN, the voice packet public-key integrity is established by the certificate and may be managed

by a SIP authentication domain, such as an inter-domain authentication protocol (e.g. IP authentication

protocol RFC4474 [68]). To expedite the next request(s), the certificate is cached for a certain period by a

SIP proxy.

As Figure 3.7 illustrates, the certificate from the caller’s domain is cached by callee’s proxy. The adver-

sary takes advantage of the SIP processing time to obtain a certificate that has been cached or not. Through

the time responses of certificates, the adversary may obtain the VoNDN call history of a SIP domain.

In this work, the Content Retrieval Time (CRT) is defined as the period between sending the interest and

retrieving the respective content, which can be cached or un-cached. As certificates are treated as contents,

the CRT definition can be also applied for the certificates.

58 Chapter 3. Side-Channel Timing Attack and Countermeasures

(a) (b)

Figure 3.7: Side-channel timing attack on VoNDN trust scheme: (a) First time for certificate lookup, (b) Future request

the certificate from CS. (adapted from [8]).

Figure 3.7a illustrates that the caller has to get the certificate from the certification authority since it is

not cached by CS. This certificate request process time is calculated by equation:

CRTuncached = T1 + T2 + Td + T3 + T4 (3)

where:

T1: the content retrieval time for sending the SIP_INVITE message.

T2: the processing time for the SIP message.

T3: the signature verification time for Alice’s identity.

T4: the CRT time response from Alice SIP proxy (e.g. content store).

Td: the CRT time for the intended lookup certificate.

As illustrated in Figure 3.7b, if Alice’s certificate has been cached by CS, then its request process time

is calculated by the equation:

CRTcached = T1 + T2 + T3 + T4 (4)

In this example, the adversary targeted Alice’s certificate by distinguishing the cached and un-cached cer-

tificate CRT responses.

3.4. Countermeasures 59

Note that, only the caller’s (Alice) side is illustrated in Figure 3.7. On the other side, similarly, the callee

(Bob) receives the invitation from the caller that needs to be verified and fetch with the caller’s (Alice)

certificate from the SIP server. Thus callee can validate the signature of the caller to establish the call.

Determine close and away targets. In naive condition, the certificate can be replied from the

corresponding CS to the callee and caller in VoNDN. The adversary may use cached certificate CRT value

to determine the consumer location or established call time. Note that, if the certificated packet is only

issued for a certain consumer, the adversary cannot determine the content because of a lack of the private

key. Still, the adversary can knowledge the existence of the location of the cached content because of

knowing the public key.

On the other hand, the adversary can determine the distance of a certificate from its cache using the

CRT information. Let us suppose that the side-channel timing attack CRT measurement for a certificate is

CRT2 (retrieved content from CA), CRT1 is the CRT from the edge NDN router, CRTe is the expected CRT

of the intended content lookup, and 𝜀 is a very small time difference. According to Chaabane et al. [53]

and Mohaisen et al. [18], after collecting the CRT samples, the adversary concludes that:

• if |CRTe – CRT1| < 𝜀, the target certificate has been cached by the edge router.

• if |CRTe – CRT2| < 𝜀, the target certificate is not cached by any router, except the certificate

authority.

• if CRTe > CRT1 and CRTe < CRT2, the target certificate has been cached by away routers.

Note that, the adversary can still predict the certificate location (number of hops) by relying on CRT1

and CRT2 values.

3.4 Countermeasures

In NDN applications (NDNtube and VoNDN), the side-channel timing attack can be mitigated by statically

(always-on) pre-configured countermeasures on the caching routers. These can be based on the manipulate

of the CRT values of the NDN router. Through this, the adversary may not able to distinguish between cached

and un-cached CRT values which can be used to obtain the cached contents or the certificates. In this work,

the countermeasure methods were classified by i. cache available and ii. cache disabled approaches.

Figure 3.8 illustrates the main concept of the countermeasure approaches for NDNtube and VoNDN

applications. In NDNtube, the adversary attempts to retrieve a segment that belongs to a video. On the

other hand, the adversary focuses a certain named certificate in trusted-NDN applications (e.g. VoNDN).

Figure 3.8a shows Alice requested content from the streaming producer and it replied the content seg-

ments, were cached by the router and CRT calculated as Δ1 + t1. If Alice re-request a segment, the

60 Chapter 3. Side-Channel Timing Attack and Countermeasures

(a) (b)

Figure 3.8: Statically configured countermeasures. (a) NDNtube countermeasure configuration, (b) VoNDN counter-

measure configuration.

cache replies to this request instead of sending it till the producer, and the CRT is calculated as Δ1. In this

scenario, the adversary pursues the CRT of Δ1 to obtain the target that has been cached recently.

Figure 3.8b shows a similar attack scenario on the trusted VoNDN application. The adversary follows

the same procedure to succeed in the attack for the targeted certificates.

Since the Δ1 and Δ2 can be used to illustrate for all cached contents and the adversary pursues it,

the countermeasure methods can be based on increasing the CRT value of Δ1 and Δ2 with some addi-

tional value from the configuration, as discussed next. Based on the countermeasure configurations, the

attack can be mitigated on the adversary face (face1). However, these countermeasures are based on the

static configuration which also affects the legitimate node requests (face0). Therefore, the pre-configured

countermeasures are not able to distinguish between adversary and legitimate nodes.

3.4.1 Cache Available Methods

The cache available countermeasure methods are used to increase the value of Δ to all faces (face0 and

face1) and these can be classified into three groups: i. delay content, ii. random caching, and iii. group

signatures.

Delay content. Data delivery in the NDN is affected by a certain delay imposed by the routers. This

delay can be a solution to prevent cached content attacks. Let us consider Δ the default delay value which

presents the CRT of cached targets. In a side-channel timing attack, the adversary tries to figure out the Δ
value. The adversarial CRT calculation can be challenged if a delay of 𝜏 was chosen based on a random

function by the router. In this case, expected CRT is increased for the adversary, which concludes that the

target has not to be cached by the edge router. However, an additional delay to Δ may reduce the content

distribution for the cached contents.

3.4. Countermeasures 61

On the other hand, because of the attack repetitions, the adversary may find a delay of 𝜏 by analyzing

the CRT samples from the router. The value of 𝜏 can be changed by proposed algorithms. For instance,

instead of using a constant 𝜏, Schinzel and Sebastian [69] proposed a 𝜏 value based on cryptographic

(unpredictable) function. Through, the unpredictable delay function of the 𝜏, the adversary may not able to
obtain the cached targets in the router.

A similar delay countermeasure method was proposed by work Acs et al. [17] to preserve privacy in

NDN. The delay was applied to all faces to mitigate the timing attack in NDN. This delay can be classified

by three configurations: fixed, randomized, and unpredictable. To improve distribution efficiency, the delay

is configured only for the first requests. Therefore, the first adversary’s requests miss the cache and the

attack may not succeed for the cached target as proposed by [17] and [53].

Randomly caching. To reduce the cache redundancy, the capacity of the cache can be defined using

probabilistic order as presented by [70]. On the other hand, the probabilistic cache can be used to mitigate

the side-channel timing attack. The router can be configured for randomly caching, one named as may be

cached another may not be cached depending on the probability configuration. The contents can be also

cached by random anonymity set (k), to mitigate the side-channel attack in NDN. Acs et al. [17] and [53]

proposed a random caching, that selects the contents by depending on the random number (k) to mitigate

the attacks on the edge router.

Thus, the index of the first cache hit in the output sequence is expected to be random and ideally should

not leak information about the router’s cache. However, the adversary may also learn the anonymity set

value after various cache miss attempts. Therefore, the random value can not be fixed, it should rely on

various k-anonymity set (e.g. probability rate).

Group signatures. In a side-channel timing attack, the adversary uses the CRT estimation to know

where the certificate is cached. Cham et al. [71] proposed a group signature to make public signatures (e.g.

public key certificate). The signature and the certificate can be associated with a group of users, but not to

a specific member of that group. The receiver knows that the signature is valid for any group member. For

instance, a conference video/call may use a group signature for privacy protection because the adversary

cannot know which member of the group is doing the call.

The other work Boneh et al. [72] proposed a short group signature scheme. In this approach, the main

goal is to provide the security level of RSA signatures while reducing the length of the signature to accelerate

the verification in the group.

In both methods, the certificate can be cached only with a group member to achieve perfect privacy for

the certificate.

62 Chapter 3. Side-Channel Timing Attack and Countermeasures

3.4.2 Cache Disabled Methods

The cache disabled countermeasure approaches offer a “perfect privacy” by fully supported anonymity

tools. However, the disabled caching approaches can be completely against the NDN paradigm, considering

the content distribution must have to be maintained with in-network caching on NDN. In disabled cache

approaches, the CRT is obtained as Δ+t (Figure 3.8), which is considered as the maximum delay for Alice

(face0) and Adversary (face1) faces.

Turned-off caching. In NDN, the CS can be configured for not caching. If there is no content held in

the cache, the side-channel timing attack cannot be done. However, the cache is important for the NDN,

as it is required for content distribution. So, directly giving up on the caching is not a good option in NDN,

as discussed in [17].

Anonymous Named Data Networking Application. The Onion Routing (Tor) was employed layers

of concentric encryption and intermediate nodes responsible for peeling off layers as packets travel through

the overlay which is commonly referred to as onion routing as proposed by [73]. DiBenetetto et al. [21]

developed the Anonymous Named Data Networking Application (ANDaNA) a tool to mitigate timing attacks

in NDN. ANDaNA is another practice of Tor, built on top of NDN, that provides privacy and anonymity to the

consumers. With this tool, the requested names are encrypted and then verified by the nodes and delivered

to the user as data. In particular, ANDaNA mitigates timing attacks from linking the retrieved contents in

CS. ANDaNA relies on multiple paired-centric layers of encryption and routes content from the consumer

via a chain of routers. First, the router decrypts received content then it forwards the content to the next

router.

PrivICN. The PrivICN is a tool based on name encryption similar to ANDaNA. The tool encrypts the

name components except for the longest prefix of the content as presented by [19]. Therefore, the cache

is partially available only for the longest prefixes. However, the adversary still can succeed in the attack

considering the longest name prefix target to locate target locations.

Bloom filtering. The name privacy can be maintained by bloom filters as presented by [53]. In this

approach, the consumer can compute hierarchical bloom filter as HB = (B1, B2, ..., Bn), where Bn is the

bloom filter of name component up to n-th component. For example, a consumer can compute a filter B1
of /ndn, B2 of /ndn/pt, and B3 of /ndn/pt/minho for the content of /ndn/pt/minho. Thus, a router can

check the filter Bn from the cache, if it cached it replies to the consumer. If not, the router checks Bn in

PIT. If Bn existed in PIT, the bloom filter of the corresponding PIT is updated (add one) and the interest

dropped since a request has already been forwarded. Otherwise, it follows the usual NDN paradigm. With

this approach, the name in the interest request is obfuscated resulting in transforming it into a random

string of bits. However, bloom filters can introduce false positives in name matching.

Kondo et al. [74], also presented a similar filter-based approach to preserve name privacy in NDN. This

work distinguished the legitimate requests from others based on the filtering. Through the bloom filters,

3.5. Related Works 63

the name of content becomes unreadable because the human-readable name was transformed into a

random-looking string of bits.

3.5 Related Works

In this section, the related works were presented based on the side-channel timing attack and countermea-

sures on NDN and point-to-point protocols. Also, the scope of the attack was analyzed by the comparison

of NDN and IP.

3.5.1 NDN Related Works

The privacy issues were discussed by several NDN research works. The following works were surveyed

these mainly focused on NDN security and privacy.

Attack related works. The work [75] presented an attack-type that is for Geo-locating the consumers

in the NDN-testbed. The consumer may have the information about the hop count that is used to obtain the

hops between the routers. The adversary may use this information to obtain consumers’ cached contents

by NDN-testbed hops. This attack is similar to a side-channel timing attack because the cached contents

hop counts can be slightly noticeable for non-cached contents. To mitigate the attack, it was prosed that

the hop count information may be turned-off for the users.

The works [56], [16], [18], [57], [65], [21], and [17] discussed the side-channel timing attack and its

countermeasures in ICN and NDN. The traditional attack models were presented to design the adversary

application. Also, different countermeasures were proposed to mitigate the attack which will be discussed

next.

Countermeasure related works. The work [17] widely studied the cache privacy and the adversary

threats to the consumer and producer privacy on the NDN paradigm. Also, countermeasure methods were

proposed to mitigate the attack based on the other work [20] -k anonymity based delay algorithms (no

cache, delay, and random cache). These countermeasure methods applied to privacy-sensitive contents

can be indicated by its producer and consumer.

The delay may be used to mitigate the side-channel attack on privacy-sensitive indicated contents. How-

ever, an additional delay may imply a trade-off between privacy and latency because it is also applied to

legitimate requests. For instance, a higher 𝜏 value can disable the cache on routers as discussed by [17]

and [53]. Also, user-driven countermeasures may not be usable in the real world. For instance, what is

private for a user may not be private by other users.

The work [18] presented an extensive study for timing attacks on ICN privacy. The side-channel timing

attack and its findings were presented with possible countermeasures methods to mitigate the attack in ICN

64 Chapter 3. Side-Channel Timing Attack and Countermeasures

networks. The trade-offs of countermeasures were evaluated by primary results, especially on additional

delay approach algorithms. Also, they proposed a user-driven countermeasure method called “Vanilla”.

For privacy-sensitive contents, an edge router caches the content from the producer and keeps the retrieval

times of the first interest and delay the next coming requests. However, the per-client solution will not be

feasible, because of the large number of consumers and content distribution efficiency.

The NDN promising maximum in-network caching feature to achieve lower latency for requested contents.

However, the work [76] stated that the cache may not be necessary to be configured for maximum size. For

instance, the cache can have the same performance on different distributions. Through not caching each

content, privacy can be preserved for a timing attack. This method can reduce the attack performance but

considering at least one segment must be cached by a router, this can be still targeted by an adversary.

The work [21] presented an anonymity tool called ANDaNA that is built on top of NDN. The tool provides

maximized consumer anonymity through unreadable (encrypted) name-spaces. However, when the name-

spaces became unreadable except for whoever asks for it, the usage of CS becomes useless because no

consumer can retrieve contents from CS. Similarly like ANDaNA, the work [19] also presented a system

tool called PrivICN that relies on an encryption scheme on contents. In the other work Kondo et al.[74] and

[53] proposed a name filtering against information leakages in NDN. Also, the work [53] discussed that

bloom filters introduce false positives and periodically require resetting and reducing the performance of

the cache.

Effectively, the un-readable name and filtering techniques may prove “perfect privacy” but also comes

with the disabled cache. Since NDN promising the contents must be cached to achieve low latency, the

name filtering and encryption approaches may not be the most feasible for the NDN paradigm.

The group signatures can be used to preserve the signature (certificate) privacy as proposed by Cham et

al. [71] and Boneh et al. [72]. Consequently, the privacy of the certificate or content can be maintained in

the trusted group. However, considering collaborating with the group members, such a group trust scheme

relies on limited configurations for verification and identification.

The work [57] studied possible privacy risks and their countermeasures cost of the performance in

NDN. The work also studied possible naïve countermeasure methods such as selective tunneling, selective

caching, and attack detection to overcome countermeasure performance issues.

Surveys. The surveys [53], [51], [50], [49], [77], and [78] studied the security and content privacy

threats/countermeasure methods in other future Internet architectures and Information-Centric networks.

Consequently, the related surveys indicated the side-channel timing attack can be a privacy threat to future

Internet architectures because these promising the in-network caching.

The countermeasure methods also addressed by the survey works. In brief, these were classified by

no-cache, delay with different (-k), randomly caching, and the unreadable content names.

3.5. Related Works 65

3.5.2 IP Related Works

The consumer-driven approach is implemented using the work [20] -k anonymity based delay algorithms

(no cache, delay, and random cache) to web browser histories. The k-anonymity delay-based algorithms

can also be applied in NDN routers. Through these router manipulations, the adversary may not identify the

cached contents in NDN. However, the countermeasures can be affected by the CS performance, because

the response of contents has an additional delay. This approach is a trade-off between privacy and latency.

To the best of our knowledge, each of the contents has to be considered as private rather than distinguish

the contents for private and non-private.

The work [69] presented the side-channel timing attack on web applications and proposed several coun-

termeasures to mitigate it. The countermeasure methods were based on response time and this was

classified by fixed, random, and unpredictable delays on web applications.

The work [8] proposed a side-channel timing attack, to expose calling history in VoIP services. The SIP

providers may rely on the user certificate model, to keep the integrity of communication between end-users.

For instance, the caller’s certificate can be cached by callee’s proxy server to accelerate the next requests.

The SIP response can be different from each other because of cached certificates. The adversary uses the

timing attack by probing content requests to identify caller and callee call history. Similarly like other works,

they also proposed additional delays for SIP responses for VoIP service providers. The other [79] study,

created a timing attack model for tracing the VoIP encrypted calls over the Internet. The adversary tracks

watermarked packets between VoIP peers.

The work [80] presented an attack-type on electronic gadgets these are similar to a side-channel timing

attack. The adversary deploys the attack on cache memory of a particular TV box and sport tracking kits.

Also, the devices are using encryption to protect their contents. However, the products may offer the

transmission characteristics from various data rate encoding which this information may be identical for

particular media content. Therefore, the adversary may conclude that what movie has been played by

caching a simple encoded movie title from the TV box.

The work [81] studied the timing attacks and classified them into two types; direct timing and cross-site

timing attack on the point-to-point protocol. The adversary measures the HTTP request responses to identify

recently cached websites.

66 Chapter 3. Side-Channel Timing Attack and Countermeasures

3.6 Discussion

In this Chapter, possible cache privacy-related side-channel timing attacks and its countermeasures are

presented. It’s shown that the time difference between cached and un-cached content can be used to

determine sensitive information regarding content name, cache size, and signature.

To show attack findings, possible attack scenarios are studied on NDN applications (streaming and

VoNDN). In steaming NDN applications, an adversary can determine the popularity of the streamed content

by targeting the streamed video segments (e.g. NDNtube). This attack also is used to monitoring the

cache to determine the streamed video types or contents by the region. On the other hand, an attack

can be a threat considering user privacy by determining the cached certificate location in trusted NDN

applications (e.g. VoNDN). An adversary obtains sensible information such as the location and the time of

the conversation between callee and caller in trusted-VoNDN.

The attack can be mitigated by previously studied countermeasure methods on the NDN applications.

In this Chapter, the countermeasures are categorized by cache available and disable methods. These

methods are based on the time manipulation of the retrieval time (CRT) between user and router. Through

these methods, an adversary may not able to distinguish between cached and un-cached targets.

The related works presented by point-to-point and NDN works in sense of their attack models and coun-

termeasures. It is shown that the current countermeasures are considered as a trade-off between privacy

and content distribution efficiency.

4

ATTACK AND PR I V ACY MODEL DEVE LOPMENT

The side-channel timing attack can be used to identify previously cached contents effectively. However, the

traditional attack designs may be considered as old-fashioned and inefficient compared to today’s attack

designs. Thus, in this chapter, the brute-force (burst-like) method is adapted (re-designed) to the side-

channel timing attack to improve the success of the attack.

To mitigate side-channel timing attacks (traditional and brute-force), the countermeasure methods were

discussed previously. However, these statically configured method(s) may not be efficient approaches con-

sidering the NDN content distribution. In this chapter, to apply the countermeasures only under the attack

the detection methods are discussed and an approach called detection and defense (DaD) is presented.

4.1 Context

This chapter introduces the main contribution of the work, by presenting: i. design an attack model that

is based on brute force to increase the attack success compared to traditional designs, and ii. an efficient

countermeasure model that based on detection to mitigating the brute-force based side-channel timing

attack.

The traditional attack models may not be the most efficient ones when multiple targets are considered.

Therefore, in this work, a method called brute-force was adapted to a side-channel timing attack to engage

in multiple targets. Also, additional attack configurations and scope of attacks were discussed to increase

the success of the attack.

The side-channel timing attack can bemitigated by previously configured countermeasures such as unpre-

dictable delay, random, and no-cache configurations. However, these configurations may affect legitimate

requests from the cache performance. To protect legitimate requests and improve the content distribution

performance a novel privacy model called detection and defense (DaD) is introduced in this chapter. The

model intents are that the proposed countermeasures can be only applied faced to the existence of an

attack. To achieve this design, attack detection methods also are proposed.

67

68 Chapter 4. Attack and Privacy Model Development

Based on the above discussion, the main contributions of this work are summarized in the following

items:

• A novel attack model designed based on brute-force to increase attack success rate compared to

traditional attack.

• Discuss possible attack scope for NDNtube and VoNDN applications.

• Propose detection methods for adversarial faces in a side-channel timing attack.

• Propose a privacy model that is based on the detection of the attack and its severity, then apply a

multi-level countermeasure method.

4.2 Brute-force attack development

In traditional side-channel timing attack design, an adversary defines the targets for objects of particular

content (segments). However, this type of attack uses to be inefficient in terms of success, when it is

directed simultaneously to multiple named streamed content or certificate.

In this work, an attack design called brute-force was adapted to the side-channel timing attack. Using a

brute-force attack, the adversary can target multiple contents and attack them in a short period. This attack

can be also considered as a burst attack that is using repeated short bursts of targets at random intervals

[82].

In the brute-force attack, the adversary tries all possible combinations of password dictionaries until

getting one that matches [83], [84]. To mitigate this attack, the web providers limit the requests for a short

period (e.g. several failed passwords attempts) and enhancing the complexity of the password dictionary

(e.g. requiring special characters).

In this work, the brute-force was configured for the content names measuring the response times from

the edge router. In this attack, an adversary defines the targets by content segments trying to retrieve

them in a short time. These targets can be streamed content segments or public-key certificates which can

be defined by the requirement of the attack. Additionally, this brute-force attack was designed to retrieve

streamed content or certificate by randomly and at the same time in order to increase the attack success.

Next, this work’s brute-force design algorithm and its random probing function are presented.

4.2.1 Attack Procedure

Figure 4.1 illustrates the brute-force attack process to success the attack for the multiple targets (Tn).
These can be the predefined name of content or certificate to start the attack procedure for data packets.

4.2. Brute-force attack development 69

Targets
T1, T2, ...Tn

Random Select
Tx

Send Interest
I (Tx)

Wait for Data

NACK
or

Data?

Content wasn't
available

NACKGet Content Retrieval Time
CRT1(Tx)

for first request

Repeat request (n-1) times:
Send Ii (Tx) & Get CRTi(Tx)

Data

Tx was cached
 at edge router

Tx obtained from
 away router

For all i repetitions
| CRT1(Tx) - CRTi (Tx) | < e

?

No

Yes

Start

End

Thread

Figure 4.1: Brute-force side-channel timing attack flowchart.

If the target (e.g. streamed content or certificate) has not been produced by its producer, the NACK packet

occurs with “content wasn’t available” message.

70 Chapter 4. Attack and Privacy Model Development

The adversary may repeat the attack several times to distinguish the targets between cached and un-

cached. In each repetition, the adversary retrieves different or same CRT values to conclude the target is

cached by edge or neighbor/away routers. As shown in Figure 4.1, the adversary selects a target (Tx)
randomly from all targets (Tn). In order to succeed in the attack, the adversary must repeat each target
at least two times. In this algorithm, the attack repetition is defined as n – 1 which can be varied by

side-channel attack design. Then a set of CRT values (CRTi) are obtained for repetition of a target (Tx).

When the attack is finished, the adversary nodes can identify the target location by comparing their CRT.

For instance, if the difference between the first CRT and all the others is small (less than 𝜖), the CRTi
presents the target (Tx) has been recently cached by the by edge router otherwise it is cached from away

routers. Also, the adversary can identify target’ geographic distances in terms of hops by analyzing away

routers CRTi as also studied by [75].

4.2.2 Random Probing Function

Figure 4.2 illustrates the main differences between traditional and brute-force attack designs. In this ex-

ample, each letter represents a content or its segment, B and E are cached contents, and the rest are

un-cached ones.

Figure 4.2: Comparison between traditional and brute-force attacks: (a) Traditional single target probing, (b) Random-

ized brute-force for multiple targets.

4.2. Brute-force attack development 71

Figure 4.2a illustrates the adversary design in the traditional attack. This attack has a sequential design in

which the adversaries may retrieve the targets one by one with at least two repetitions (CRT2). Considering
the importance of attack reliability, retrieving the targets one by one maybe not be the most efficient attack

design. For instance, the adversary may succeed in the attack for B, but E could be discarded before the

next attack time.

In the brute-force implementation, the adversary to improve the success ratio of the attack to retrieve

targets randomly and in a short time (brute request). Figure 4.2b illustrates an example of the brute-force

attack design with repetitions of four (CRT4) for each target. Instead of probing 1 a single target, multiple

targets can be identified in a brute-force attack.

The random probing increases the attack success ratio when compared with the sequential traditional

design. For instance, as illustrated in Figure 4.2, the random probing boosts the attack for E and B and

succeeds in the attack for both contents. However, this action wouldn’t be possible in Figure 4.2a, because

the E could be already discarded from the cache (depending on its cache policy).

Therefore, the attack can be configurable for multiple targets to succeed adversary may able to config-

ure the multiple targets by the brute-force attack. Additionally, the adversary is also able to identify the

approximate locations for the missed contents by comparing their CRTs.

4.2.3 Attack Scope on Applications

The attack success can be increased by brute-force with random probing functionality, compared to tradi-

tional attack design. Also, the scope of attack can be different on NDN applications. Therefore, in this work,

the scope of brute-force attacks was classified based on two NDN applications: i. NDNtube presented as

a YouTube-like user experience by serving dynamically generated video play-list and streaming (live-video)

which serves the contents from one to many [61], and ii. VoNDN, a two-way voice conversation between

peers and secured by a public key certificate scheme that exchanges the voice/video packets one-to-one

[7].

Streaming-like (NDNtube) application. Figure 4.3 shows the consumer (Alice) requesting video

(video-1234) from NDNtube producer and the corresponding answers with video frames (segments). In

NDNtube, a video can be large enough to not be encapsulated by a single packet. Therefore, the media

has to be split into data segments (e.g. video frames) to be delivered to the consumer. Also, the segments

are cached by cache router to maintain the quality of the media.

In NDNtube, the cached video segments can be targeted by a brute-force attack. The scope of attack can

be considered as monitoring the famous contents by also identifying their location. By brute force attack,

the adversary can define multiple targets (various videos) to know what kind of video is being consumed by

the router, by identifying the cached targets. Figure 4.3 also shows an example of an attack for a single

1 definitions for “retrieve” and “probing” are used interchangeably in this thesis.

72 Chapter 4. Attack and Privacy Model Development

Figure 4.3: NDNtube attack topology sample.

target (/video-1234). In this example, an adversary only probing the root of the target (/video-1234) from

the router and it replied with a cached segment of that content (/video-1234/%00%12%34) to the adversary

node. Note that, the scope is knowing the existence of the cached segment, not decoding the frame video.

Trusted Voice over NDN application. In VoNDN, the callee and the caller may exchange the cer-

tificates, these can be self-signed or produced by the certificate authority (CA). The certificates and media

packets can be cached by routers to increase the availability of contents when required by callee and caller.

However, the adversary may be targeted the cached certificates on trusted voice over NDN. Through this

attack, the adversary may knowledge about where the callee or caller is located and also estimate the

established conversation time.

On the other hand, targeted cached certificates may be present more than the locations to the adversary.

In trusted based VoNDN, the attack is based on two adversary models: i. one able to identify the certificate

at the edge router (Figure 4.4a), and ii. another able to identify the cached certificate from away routers

(Figure 4.4b). Also, the attack can be configured for multiple targets.

The CRT side-channel timing attack has been based on two adversary models: i. one able to identify the

certificates at the edge (closest) router (Figure 4.4a), and ii. another able to identify the cached certificate

from away (more than one hop) routers (Figure 4.4b). When an adversary collects all possible CRT values,

it can do three assumptions about where the certificate (target) has been cached.

First, the maximum CRT value shows that the certificate is not cached by any NDN routers except CA.

Second, the minimum CRT value indicates the certificate has been recently cached by the edge router.

Third, if the CRT is between a minimum and a maximum value, the adversary concludes that the content

was cached by an away router. Note that, this router can be one hop (neighbor) or more than one hop

away.

Additionally, more than one adversary can be used to determine the established call between Bob and

Alice by attacking their certificates (Figure 4.4a). On the other hand, a single adversary may still determine

Bob’s certificate from away location (Figure 4.4b).

4.3. Detection and Defense Privacy model 73

Figure 4.4: Side-channel timing attack on close and away targets: (a) Determine Bob’s and Alice’s certificate from

the edge router location, (b) Determine Bob’s certificate from away router location.

According to the cached certificate CRT comparisons, the scope of the trusted VoNDN attack can be

summarized by the following determinations:

• Figure 4.4a illustrates that the adversaries (Adversary-1,-2) estimate the time of an established call

between Alice and Bob from their edge routers by looking up their certificates (a_cert and b_cert).

• Figure 4.4a illustrates that the adversary (Adversary-1) identifies that who had a conversation with

Bob recently by looking up to Alice’s certificate (a_cert) from edge router. Also, the approximated

the location of Alice by looking up to Bob’s certificate (b_cert) from away location.

• Figure 4.4a and 4.4b are illustrated that the adversaries (Adversary-1,-2) identify where the call was

established between Bob and Alice by comparing CRT responses of the certificates (a_cert and

b_cert).

4.3 Detection and Defense Privacy model

Effectively, the side-channel timing attack can be mitigated by pre-configured countermeasure configura-

tions, which were previously discussed (available cache and disabled methods Section 3.4). However,

these methods may not be the most efficient ones, considering their configuration is static. This may re-

duce the certificate distribution efficiency for legitimate requests as described by [21], [53], and [18]. Thus,

the countermeasures configurations can be considered as a trade-off between privacy and certificate distri-

bution efficiency. To maintain the certificate distribution efficiency and protect the cached certificates this

work proposes an approach called detection and defense (DaD).

74 Chapter 4. Attack and Privacy Model Development

The DaD is based on attack detection that can distinguish between legitimate and adversary faces.

Through this adversary detection, the countermeasure method can be only applied to adversary detected

face and legitimate requests can be preserved, without being affected by the available countermeasures.

Also, the detection can be used to identify the severity of the attack. Then, different countermeasures can

be applied to mitigate the attack. The DaD is based on three attack detection phases where available cache

methods are applied in the first and second phases and disabled cache in the third phase.

The DaD identifies the attack in three phases as follows: i. minor phase, where the attack is detected

in the first detection phase period window (TIME) and sets the adversary’s face is configured with the

available cache countermeasure for a time period, ii. moderate phase, where the attack persists in the

second detection phase and sets the adversary’s face is configured with a more effective available cache

countermeasure compared to the first detection phase, and iii. severe phase, where the attack detected

in the third detection phase, and the adversary’s face is configured with the most effective countermeasure

(disabled cache) to mitigate the attack.

The DaD framework can be summarized as follows:

Detection methods and threshold calculations: To apply the countermeasure methods to the

adversary’s face, the detection methods were presented. These are based on calculations as following: i.

cache hit ratio (CHR), ii. hop counts, iii. shortest CRT value, and iv. statistically analyzed name prefix.

To detect the adversary’s face a detection method threshold is needed. The DaD proposes a dynamic

threshold value calculation using a pre-defined time. The calculations to detect the adversarial face will be

presented in the next subsection.

During the attack, the CHR may indicate the adversary face in most of the NDN applications compared to

other detection methods. Therefore, in this work, DaD detection is using the CHR to detect the adversary’s

face. However, the DaD can re-adapted to other detection methods to detect the adversary’s face.

Countermeasures impact and severity of attack: Besides adversary detections, these can be

used to obtain the severity of the attack and apply different countermeasures. Instead of applying a single

countermeasure, DaD uses three different countermeasures (unpredictable delay, probabilistic caching,

and no-cache) and these are applied according to the severity (minor, moderate, and severe) of the attack.

In this work, DaD is applied to NDNtube and VoNDN applications to detect the adversary’s face. In these

applications, each consumer node sends an interest packet within 100 interest/sec. by a constant bit rate

(CBR). DaD considers the node as an adversary in case of face’s CHR value is up to the CHR threshold.

Also, this detection is different in used applications. For instance, DaD analyzing 50 packets in every 0.5s in

NDNtube and 20 packets in every 0.2s in VoNDN applications. Thus, DaD distinguishes between legitimate

and adversary nodes with detection methods which are discussed in the next subsection.

DaD configuration on NDN applications: The detection methods and threshold calculation time

can be different depending on the NDN application. In DaD, more than one detection method can be used

4.3. Detection and Defense Privacy model 75

on privacy-sensitive applications such as VoNDN. Therefore, various detection methods can be adapted for

the VoNDN and NDNtube applications.

From the simulation experiences, pre-defined CHR threshold values were used to detect the adversary

faces by following values: 5% CHR in NDNtube (name-privacy) and 1% CHR in VoNDN (certificate-privacy)

applications. Also, DaD collects these values every in 0.5 s in NDNtube and 0.2 s in VoNDN and apply

countermeasures.

Next, the detection methods/thresholds such as cache hit ratio, hop counts, and CRT are presented.

4.3.1 Adversary Face Detection Methods

In this work, side-channel timing attack detection methods were surveyed. However, the number of related

work in timing attacks on NDN is limited. For this reason, this work focused on to cache pollution attack

detection method which has attack similarities with the side-channel timing attack in NDN [57]. In the

cache pollution attack, the adversary may request the same content multiple times to disable the cache

function of the router. Also, the adversary may create fake popularity for the contents to interfere with the

distribution performance.

To detect an attack, the works [85] and [86] proposed that the cache hit ratio (CHR) can be used to

detect the attack in cache pollution-related attacks. Due to the attack similarities between cache pollution

and side-channel timing attack, the DaD attack detection is based on CHR calculations.

In DaD, the detection is face-based. The detection methods can detect the possible adversary face by

getting metrics from NDN Forwarding Daemon (NFD). NFD is used as a network forwarder in the network

layer. Therefore, the DaD can be used to distinguish between legitimate and adversary nodes to apply

multiple countermeasures methods only to the adversary detected face.

In this work, three main detections methods were studied to mitigate the side-channel timing attack as

following: i. cache hit ratio (CHR), ii. hop counts, and iii. content retrieval time (CRT).

Cache hit ratio (CHR). During the attack, if the target has been requested previously and cached, the

cache hit occurs in the next incoming request to the router. Therefore, the CHR can be used to identify

the existence of the attack as proposed by [57]. On the other hand, in a side-channel attack, the adversary

increases the CHR when the attack succeeds. Thus, the CHR can be used to obtain the following: i. the

performance of the attack and ii. identify the face of the router that is being attacked.

Ideally, the cache hit ratio can be calculated periodically by an NDN application (e.g. NFD) to identify

the face of the router that is being attacked in NDNtube or VoNDN. The average CHR of all edge routers is

calculated by the total cache hits of each edge router using the following equation:

CHR =
∑n

k=1 (total_cache_hits)k
R

∗ 100% (5)

76 Chapter 4. Attack and Privacy Model Development

where n is the total number of the edge routers in the network, and R is the total number of requests

received by the edge routers, which is equal to the total number of cache hits plus the total number of

cache misses.

The adversary may repeat the request to increase the success of the attack. Thus, the CHR can be used

to measure the performance of the attack configuration. Our previous work studied CHR attack performance

calculation for name privacy of the streaming NDN application (NDNtube) [87]. The results showed that

the CHR increases if the adversary succeeds in the attack for previously cached contents.

Besides the attack performance calculation, the CHR can be used not only to detect an attack but also

to identify the face of the router that is being attacked. For instance, the CHR can be used to identify the

adversary in an attack detection for cache pollution [86] [85]. Also, the works [57], [88], and [89] claims

that the side-channel timing attack can be identified by cache hit and misses.

In DaD, the attack detection is based on CHR calculation per face for VoNDN application. To detect the

adversary’s face, the DaD uses the CHR threshold value. If a face’s CHR value calculated is higher than

the threshold, that face of the router is considered an adversary. Thus, the DaD distinguishes between

legitimate and adversary nodes to apply countermeasures.

CHR threshold calculation. In DaD, the CHR threshold parameter is used to identify the face of the

router that is being attacked. This parameter is calculated as follows. A set of m requests is collected

regularly during ΔT seconds. The total number of cache hits is calculated for the new set of requests,

which we consider to be the ith collected set. So, the average CHR of this new set (chri) is calculated by
the following equation:

chri =
∑m

k=1 CHk
m

(6)

where CHk represents the cache hit of the kth
request in the new set. The CHk is one if the kth

request

gets a cache hit and zero in case of a cache miss. Then, the new global average CHRj is computed by

the following weighted moving average equation:

CHRj = (𝛼 × CHRj–1) + (1 – 𝛼) × (chri) (7)

where CHRj–1 represents the last CHR value, chri is the new value calculated by Eq. 6, and 𝛼 is a weight

factor between 0 and 1. The CHRj is very sensible to the new chri value if 𝛼 is close to 0, and little

sensible if 𝛼 is close to 1. In DaD, 𝛼 should be chosen close to 0, because an attack increases the CHRi
when it is established, and so the system can detect it quickly. For this reason, 𝛼 was set close to 0 in

our experimental NDN-testbed scenario. The router is considered under attack if CHRj is higher than the

threshold CHR. The CHR thresholds were identified as follows: 5% CHR in NDNtube (name-privacy) and 1%

CHR in VoNDN (certificate-privacy) applications. Note that, these thresholds can be defined manually, or

dynamically by an algorithm based, for instance, on machine learning techniques.

4.3. Detection and Defense Privacy model 77

Hop counts. When an interest packet is sent, the hop count increments by one whenever it passes

through an intermediate router. For instance, the minimum hop count occurs when the content (e.g. media,

voice, certificate) is cached by the edge router, as illustrated in Figure 4.5.

Figure 4.5: Attack detection by hop counts.

When the content is cached by the edge router and re-requested by a consumer (adversary included)

the minimum hop count occurs for the corresponding face. Otherwise, a higher hop count occurs between

1 < hop_count ≤ maximum. During the attack, the hop count variance may change dramatically for

the adversary face [86] [90]. This variance can be motivated by the request repetitions.

Ideally, the hop count of the adversary’s face may be calculated with a minimum in streamed contents.

The reason is that these contents are cached by multiple routers (broadcast or multicast). Thus, the

adversary’s minimum hop counts can be significantly higher than the legitimate consumer which can be

used to distinguish between adversary and legitimate faces.

On the other hand, the other hop counts may be used to detect the adversary’s face in certificate-based

attacks. For instance, the certificates may not be cached as streamed contents (NDNtube) by the edge

routers. Thus, the hop count of the adversary’s face may be calculated higher than the legitimate nodes

which can be used to distinguish between adversary and legitimate faces.

Shortest CRT value. The shortest CRT value identifies the cached target by the edge router. However,

also retrieving other un-cached contents, the adversary node may reach the highest CRT values in a short

time. Ideally, this increases the CRT frequency for the targets and the threshold can be used to detect

the attacked router so the adversary’s face. For instance, an adversary can be detected if any face’s CRT

is lower than its threshold value (e.g. CRTn < CRTthreshold) which is based on CRT calculations as

previously presented (Subsection 3.2.1).

Name prefix. In the brute-force attack, the attack is based on multiple targets. This changes the

pattern of the requested contents and can be used to identify the adversary face on the router [65], [74].

For instance, when an adversary targeted the certificates (e.g. /domain/vondn/KEY/cert-target), a number

of certificate requests can be increased comparing the other requests (e.g. /vondn/media). Therefore, an

adversary face can be detected by statistically analyzing the number of requests for the name prefixes.

On the other hand, the adversary may be targeting a specific namespace rather than other names-

paces that belong to the same domain. In this brute-force attack scenario, the amount of request may be

78 Chapter 4. Attack and Privacy Model Development

increased for particular namespaces (e.g. /uminho/eng/di) compared to other name-spaces (e.g. /umin-

ho/eng/dps). This can be identified statistically by analyzing the requests of each namespace.

Discussion. In this work, four detection methods were studied to detect an adversary face in NDNtube

(streaming) and trusted-VoNDN applications. These methods can also correlate with each other. For in-

stance, an adversary face can have an increased CHR value and name prefix requests while its hop count

and CRT are calculated as a minimum. If these four metrics are available from the applications, the com-

bination of all metrics maybe provides almost “perfect privacy” to the NDN applications.

Note that, the CHR value is generically available for all caching NDN applications and this makes it an

effective detection method. On the other hand, privacy concerns may be different in NDN applications. For

instance, an adversary may identify the location of the callee or the caller by identifying cached certificate

CRTs on a trusted-VoNDN application. Ideally, in this attack, an adversary requests a number of certificates,

and legitimate nodes usually request a single certificate in a short time. Because of this difference, CHR

and name-prefix detections can be used to detect an adversary effortlessly compared to the NDNtube

application.

In NDNtube, an adversary may use the attack for monitoring. In this case, a streamed content is cached

by corresponding routers, and the adversary uses CRT responses from the edge routers. Since an adversary

attacks multiple targets, several hop counts maybe occurred for the corresponding face. For instance, some

targets may be cached and others are cached by a neighbor or away routers. Thus, a hop count information

can be a metric to detect the adversary node in streaming-like NDN applications such as NDNtube.

4.3.2 Countermeasures Impact and Severity of Attack

The face of the router that is being attacked can be identified by the detection methods to apply counter-

measures. However, configuring the router with static countermeasures may not be the most appropriate

approach, considering that each of the countermeasures configurations effects can be different on mitiga-

tion and distribution efficiency.

In DaD, an adversary detected face can be set with different countermeasures. When the adversary

is detected by CHR, the countermeasure is only applied to the possible identified face. The side-channel

adversary detection by CHR can be used: i. to configure a countermeasure when the adversary is detected,

and ii. to determine the severity of the attack which can be used to set different countermeasures.

Countermeasure impact. The DaD is based on three naïve countermeasures to apply available cache

configuration by the following:

i. unpredictable delay: The attack can be mitigated by uniform (fixed), random distribution, and unpre-

dictable delays. However, because the unpredictable delay may be the most challenging to solve by

the adversary that is compared to other delay distributions (fixed or random). This is explained by

the complexity of the cryptographic function of unpredictable delays.

4.3. Detection and Defense Privacy model 79

The unpredictable delay is calculated by a hash function [69], [88]. This function can be expressed

by h(u, k) modmmax = h(k), where k is a cryptographic integer hash code from the key that generates

unpredictable delay h(k). Then, this delay is added to the adversary detected face to challenge the

adversary CRT calculations.

ii. probabilistically caching: The edge router can cache the contents by probabilistically [70]. This

can be used to mitigate the brute-force attack. The DaD offers the contents that can be cached by

p=10% probabilistically selection to the adversary detected face. This means that the edge router

is randomly selecting (based on probabilistic function) the content from its cache and answering

(random distribution) to the adversary detected face instead of answering directly.

Note that, in case of a detected face is directed to multiple addresses (devices), the legitimate con-

sumers also are affected by the probabilistic cache. In this case, the edge router can probabilistically

cache for all faces because it can be a challenge to distinguish between adversary and legitimate

faces.

iii. no caching: This completely disables the cache and the adversary cannot succeed in any attack.

Figure 4.6: A qualitative analysis of the countermeasures impact on the attack success.

Figure 4.6 compares qualitatively the success of an attack based on default and countermeasures con-

figurations efficiency to mitigate the attack. In this graph, the success of the attack is analyzed based on

the cache hit ratio (CHR). For instance, the attack cannot have any success rate in no-cache configuration

because it completely disables the cache.

On the other hand, the additional unpredictable delay can be considered to have a better distribution

efficiency than the probabilistic cache, because the contents can be already cached by the router in the delay

80 Chapter 4. Attack and Privacy Model Development

configuration. In this case, the adversary may determine that additional delay by multiple trails of attacks.

However, the cache cannot be fully loaded by a randomized distribution configuration. Therefore, in an

ideal situation of attack, the unpredictable delay configuration can be considered less effective compared

to a randomized distribution configuration.

Note that configuring the router with a high unpredictable delay or low probabilistic rate of caching may

affect severely the content distribution efficiency.

Determine the severity of attack. In DaD, the CHR can be also used to identify the severity of

the attack. For instance, if the attack is detected in a period (TIME) and continued in the next detection

states, the attack can be considered severe. Note that, the detection period can be tuned by application

(NDNtube or VoNDN) configurations. For instance, the adversary was not detected in a higher attack check

time because it was already completed the attack. On the other hand, a shorter check time may slow the

process of the router. Therefore, through several simulation experiences, an optimum DaD period check

attack time was defined as 0.5s for NDNtube and 0.2s for VoNDN applications.

Figure 4.7: Attack states (phases) and applied countermeasures.

4.3. Detection and Defense Privacy model 81

According to the attack severity, different countermeasures methods can be applied to mitigate the

attack and maintain the content distribution, as illustrated in Figure 4.7. For instance, the unpredictable

delay can be applied in the first detection state (minor), the probabilistic caching in the second detection

state (moderate), and no-cache in the last state (severe) to mitigate the effect of the attack. Also, when a

detected attack is severe, the no-cache countermeasure is applied while the attack persists. If the adversary

withdraws the attack in any detection state, the router is set to the default state (e.g. default LRU caching).

In this work, the attack severity is obtained by the CHR threshold. These values were used to detect the

adversary faces by following values: 5% CHR in NDNtube (name-privacy) and 1% CHR in VoNDN (certificate-

privacy) applications. Also, DaD collects these values every in 0.5 s in NDNtube and 0.2 s in VoNDN. The

countermeasures phases (minor, moderate, and severe) are applied for 3 s in NDNtube and 2 s in VoNDN

respectively.

In NDNtube, DaD analyzing ≈50 packets (100 packets/0.5s) every 0.5 seconds to define the severity of

the attack. If a face is detected as an adversary DaD sets the attack states (minor, moderate, and severe)

for 3 seconds respectively.

In VoNDN, DaD is analyzing ≈20 packets every 0.2 seconds for all faces. Like NDNtube, DaD sets the

minor, moderate, and severe states (phases) for 2 seconds depending on the severity of the attack.

Next, the DaD algorithm and its configuration for NDNtube and VoNDN are presented.

Detection and Defense (DaD) algorithm. DaD can be designed for any NDN application to maintain

privacy and content distribution. In fact, instead of setting the router with a static countermeasure method,

DaD applies dynamically three countermeasures when the router is under attack.

In this work, the DaD algorithm was designed for both name and certificate privacy in a trusted VoNDN

and streaming NDNtube applications. Ideally, the algorithm can be implemented in the application layer to

protect cached streamed content and certificates. This design is based on the CHR threshold to detect the

adversary face during the attack. DaD checks the existence of an attack and applies the countermeasures

every TIME seconds.

If the CHR is above the CHR threshold, the DaD identifies it as an adversary’s face and defines the

severity of attack as minor, moderate, or severe. To protect the content and certificate privacy in ND-

Ntube and VoNDN, DaD was designed based on the following three countermeasures: unpredictable delay,

probabilistic cache, and no-cache.

The DaD algorithm is presented in Figure 4.8. The algorithm uses two attack states (attack detected,

no-attack detected), determined by the attack detection method, which is in this case is based on CHR

metrics. i. no attack detected. The default cache replacement policy is applied to all faces, which may

be, for instance, LRU. ii. attack detected. The attack is detected by the detection threshold in the router.

The DaD uses, the cache hit ratio to detect the attack. However, other detections mechanisms, such as

CRT and name-prefix analyzes can be adapted to the algorithm.

82 Chapter 4. Attack and Privacy Model Development

Depending on the severity of the attack, three countermeasures can be applied by DaD to the detected

adversary face. Let us consider the application runs at the default phase (no attack detected) and the

DaD checks the existence of the attack every TIME seconds. Let us consider that TIME is equal to two

seconds for the VoNDN application. If the attack is detected after the check time, the router switches from

the default phase to the attack detected phase. In this case, the DaD identifies the attack as minor for 2

seconds and applies a delay phase to the adversary’s face. If the attack continues in the next attack check,

then DaD considers the attack as moderate and sets the router for the random phase for another 2 seconds

to the adversary’s face. In the next attack check, if the attack persists, DaD sets the adversary’s face of the

attacked router for no-cache and keeps always in this state while the attack exists in the next attack checks.

If the attack is withdrawn in any phase, then the router returns to the default phase and the whole process

restarts again.

Table 4.1: DaD algorithm description and parameters.

inputs TIME cacheHitTreshold

auxiliary

processes

getCacheHitRatio()

apply_defaultPolicy()

apply_Delay()

apply_Random()

apply_noCache()

attack state
ATTACK_DETECTED

delayPhase

randomPhase

noCachePhase

NO_ATTACK_DETECTED defaultPhase

Table 4.1 shows the main parameters and the attack phases used by the DaD algorithm. The TIME and

the cacheHitTreshold are pre-defined parameters used by this algorithm. TIME is the period used to detect

the existence of an attack per face. So, it is the check attack time, which means that every TIME seconds

the router is checked for an attack for each face. The router is considered under attack when the cache hit

ratio (CHR) is higher than the cacheHitTreshold for a certain face. The auxiliary getCacheHitRatio() process

is used to obtain the CHR from each face of the router where DaD is running. If the attack is detected

(ATTACK_DETECTED), then distinct countermeasures are applied according to the severity of the attack

during the pre-defined time (TIME).

So, to recapitulate the DaD procedure for contents (streamed or certificate), when an attack is firstly

detected, the router enters the delay phase (delayPhase) and keeps in this phase until the next attack

check, which will occur TIME seconds later. During the delay phase, all contents are sent through the

detected face with an additional unpredictable delay set by the apply_Delay() process. If the attack persists

in the second attack check, then the attack detected face enters the random phase (randomPhase). During

4.3. Detection and Defense Privacy model 83

this phase, the cached contents are selected from the router’s cache with the apply_Random() process to

be distributed to the adversary detected face. This random distribution is based on a probabilistic function.

If the attack persists in the third detection period check, then the attack detected face enters the no-cache

phase (noCachePhase) and stays in this phase while the attack persists. During this phase, no contents are

stored in the cache of the detected face. If the attack is withdrawn in any phase of the ATTACK_DETECTED

condition, the router switches to the default phase (defaultPhase).

If the CHR is not above the cacheHitTreshold, then no attack is detected (NO_ATTACK_DETECTED),

which establishes the default phase by setting the apply_defaultPolicy() process. In this phase, DaD applies

the default caching policy to the router.

The DaD uses the CHR detection metric in privacy-sensitive applications (e.g. trusted VoNDN) to identify

the adversary node. However, this metric depends on the type of application. Since it is not possible to

define a priori a threshold for all applications, this may require that the attack check period (TIME) be

adjusted automatically by the application. In this way, the DaD algorithm could be adapted to the NDNtube

and VoNDN applications, as discussed next.

4.3.3 DaD Configuration on Applications

The caching strategy and the scope of the attack can be various on VoNDN and NDNtube applications. Thus,

the detection methods can be also different on applications to distinguish between adversary and legitimate

faces. In this work, the privacy-oriented issues were discussed on the NDNtube and VoNDN applications.

Ideally, the DaD can be tuned according to the NDNtube and VoNDN applications.

NDNtube and VoNDN are considered large-scale real-time applications. In these applications, the back-

bone routers’ CHR can be calculated high because of the edge routers’ requests. Therefore, the cache hit

ratio detection is only feasible in the edge router’s in the NDNtube and VoNDN applications by naïve DaD

design.

DaD in NDNtube application. NDNtube can distribute pre-recorded video by split frames to the cache.

The adversary may deploy a brute-force attack for multiple targets to determine the popularity of video. This

attack can be also considered as monitoring and censorship in the content locations.

NDNtube is a large-scale application and a single detection method (cache hit ratio) may be used to

obtain the adversary face and severity of the attack on the edge router. In this detection, the adversary’s

face is detected if it overcomes the thresholds in 0.5 seconds. Then, multiple countermeasures can be

applied depending on the severity of the attack: i. unpredictable delay, ii. probabilistic cache, and iii.

no-cache.

In NDNtube, DaD continuously gets the CHR from each face and analyzing ≈50 packets (100 pack-

ets/0.5s) every 0.5 seconds. If a face’s CHR is over 5%, DaD sets the minor attack phase for 3 seconds

and keeps detecting the attacks every 0.5 seconds. If the attack continues, DaD sets the moderate phase

84 Chapter 4. Attack and Privacy Model Development

for another 3 seconds and checks the attack every 0.5 seconds. If the attack continues, DaD sets a severe

phase and keeps it while the attack is detected.

DaD in trusted VoNDN application. The adversary may identify the consumers’ private information,

such as approximated locations through a targeted certificate in VoNDN. In trusted VoNDN application, the

certificates provide integrity for callee and caller. The certificate can be issued by CA or self-signed. However,

the cached certificate may provide such pieces of information when it is targeted by the adversary, namely: i.

the name of callee/caller, ii. the location of callee/caller, and iii. the approximate time of the conversation.

In VoNDN, the adversary’s face is detected if it overcomes the thresholds in 0.2 seconds. Then, multiple

countermeasures can be applied by depending on the severity of the attack: i. unpredictable delay, ii.

probabilistic cache, and iii. no-cache. In this design, the CHR threshold value can be used to obtain the

adversary’s face and to identify the severity of the attack. Also, the DaD allows updating the threshold value

in each pre-defined time to make decisions about the adversary and countermeasure.

In VoNDN, DaD considers adversary face if a face’s CHR up to 1%. In this application, DaD is analyzing

≈20 packets every 0.2 seconds for all faces. As presented previously, DaD sets the minor, moderate, and

severe phases depending on CHR thresholds these calculated every 0.2 seconds.

4.4 Summary

This chapter presented the contributions of this work. First, an attack design called brute-force (burst-like)

was presented that increases the success of the attack comparing to the traditional attack design. In this

attack model, multiple targets can be defined by an adversary and probing the targets using a random

function. Also, the attack scope is analyzed for NDNtube and VoNDN applications.

To mitigate such brute-force and traditional attack models, the countermeasure methods such as un-

predictable delay, randomized distribution (based on probabilistic function), and no-cache are used. The

countermeasure affects the attack effects and the content distribution performance was also illustrated. The

attack detection methods (CHR, hop count, name-prefix, and CRT) were presented to detect the adversary’s

face and the severity of the attack.

A combined approach with detection and countermeasure method was presented to mitigate the side-

channel timing attack efficiently in NDN applications. Instead of a statically configured router with a coun-

termeasure, this work approach called detection and defense (DaD) applies the multiple countermeasure

methods only in the attacked router. The various countermeasures methods can be applied from less to

more effective ones depending on the severity of an attack. Through that, legitimate requests can be also

protected because no countermeasure was applied to un-attacked routers.

4.4. Summary 85

Figure 4.8: Detection and Defense (DaD) flowchart algorithm.

5

EXPER IMENTAL FRAMEWORK AND IMPLEMENTAT I ON

In this chapter, a description of the framework used for the implementation is presented, followed by an

overview of the proposed modules designed and implemented to create the testing scenario. Also, the used

simulator instruments and their usage were discussed to develop this work implementation.

5.1 Context

The NDN research has two main experimental platforms to test and improve the NDN instruments, these

are i. NDN simulator (ndnSIM) and ii. NDN-testbed. Both instruments were developed to update and

upgrade the NDN paradigm libraries (ndn-cxx) and NDN daemons.

In this work, all experiment scenarios and supporting modules were coded on the NDN simulator

(ndnSIM). Also, the ndnSIM components such as consumer, producer, content store policies, NDN forward-

ing daemon (NFD), and forwarding strategies are presented. They were used to build attack implementation

scenarios. The latest version 2.6 (Jan.2019) [12] of ndnSIM with and integration of NFD 0.6.5 [33] was

used in the implementation discussed in this chapter.

5.2 Named Data Networking Simulator

The ndnSIM is an open-source simulator platform that is used to conduct the research needs of the NDN

architecture. The simulator is based on the ns-3 (network simulator 3) [91] simulator platform which is

also used to script the C++ based network simulations.

The ndnSIM can be installed in Linux environments (primarily Ubuntu), either natively or in a Virtual

Machine. In this work, the ndnSIM 2.5 was installed on Ubuntu 16.04. The simulator also integrates the

NFD version 0.6.5, which is presented in the next section.

Table 5.1 shows the configurations of ndnSIM simulation setups. In this work, two machines were

used because of scenarios script for long-term periods which may take days to complete. The VM was

86

5.2. Named Data Networking Simulator 87

Table 5.1: Linux machines setup.

Machines Linux
ndnSIM

version

NFD

version
RAM CPU

Virtual

Machine

Ubuntu

16.04
2.6 0.6.5 4gb

2 cores (psychical)

4 threads (virtual cores)

Native

Machine

Ubuntu

16.04
2.6 0.6.5 16gb

4 cores (psychical)

8 threads (virtual cores)

used mainly for testing purposes and to run small simulations, while the Native OS was used to run larger

simulations.

5.2.1 Network Simulator 3

Network simulator 3 (ns-3) [92] is a discrete-event network simulator targeted primarily for research and

educational use. It has been developed to provide an extensible network simulation platform to be used by

researchers and developers for experimental network application simulations. The ns-3 is based on network

models, that aim to analyze how data packet performs and provides a simulation engine to conduct the

simulation experiments.

Unlike its predecessor ns-2 [9], the ns-3 may support the existing Internet protocols (IP) and other

networks (non-IP) such as NDN. NS-3 is not backward compatible with ns-2. It is a completely new simulator

mainly written in C++. Also, ns-3 can be extended by external software libraries and run simulations scripted

in Python or C++. Currently, the ns-3 is primarily used on Linux systems, but it can also run on FreeBSD,

macOS, and also on Windows systems using the Cygwin platform [9].

Table 5.2: The ns-3 features.

Components ns-3

Languages C++ and Python

Packets The buffer answers realistic to the stream

Simulations Provides a lower base level of abstraction

Maintenance Actively maintained (email support)

Visualization Python

Network layer IP and non-IP architectures

Table 5.2 shows the main features of ns-3. Through the open-source C++ and Python supported libraries,

the ns-3 may provide long-term maintenance support in IP and non-IP networks. Also, the ns-3 performs the

most realistic simulations e.g. buffer memories can send the packets in bits as real streaming applications.

This also engages with a lower base level of abstraction such a realistic consumer and producer behavior

as described by the ns-3 tutorial book [91].

88 Chapter 5. Experimental Framework and Implementation

ns-3 is built with a build tool called waf which is directly configured and builds the ns-3. Figure 5.1

illustrates how to add module (IP or non-IP) into the wscipt which is used to identify new protocol addition.

Then, this new protocol can be compiled by ./waf which is a python-based build tool. After executing

the ./waf command, the simulation calls that protocol with the packet header and timer to structure the

simulation experiment.

Figure 5.1: ns-3 core structure (adapted from [9]).

5.2.2 ndnSIM Helpers

To meet with NDN architecture and its application need, the ndnSIM was created as an ns-3 module that

implements NDN communication models. So far, the ndnSIM has two versions: ndnSIM 1.0 ([10]) and

ndnSIM 2.x ([11], [12]). The main difference between these two versions, the ndnSIM 2.x is supported by

NFD integration which ndnSIM 1.0 does not have.

ndnSIM is implemented as an additional network-layer protocol that can be run on top of any link-layer

(L2) such as PPP, MAC, VLAN, WIFI, CSMA, etc., network-layers(L3) such as IPv4, IPv6 and NAT, and

transport-layers (L4) such as TCP and UDP. With this approach, the IP networks can be also adapted to the

ndnSIM.

The key features of ndnSIM can be summarized as follows:

• Supports to NDN packet formats such as interest, data, NACK, and certificate.

• Includes the NDN C++ libraries (ndn-cxx).

• NFD integration and management.

5.2. Named Data Networking Simulator 89

ndnSIM is implemented with different C++ libraries to simulate NDN entities such as FIB, PIT, CS, and

Faces. These modular structures enable each module for modification or replacement without affecting

others. Also, the ndn-cxx libraries extend for NDN needs by new releases.

ndn-cxx is a C++ library for NDN primitives that can be used for NDN applications. The ndn-cxx li-

brary is used to support the following simulation components: NDN Forwarding Daemon (NFD), NDN

Link-State Routing Protocol (NLSR), Next-generation NDN repository (repo-ng), multi-user NDN chat appli-

cation (ChronoChat), Sync library for multi-user real-time applications (ChronoSync), NDN essential tools

(ndn-tools) and traffic generator for NDN (ndn-traffic-generator) as described by [93].

Table 5.3: ndnSIM code guide.

location description

model/ NDN base: L3Protocol, faces (Face, NetDeviceTransport, AppLinkService)

NFD/ NDN Forwarding Daemon (NFD) source code

ndn-cxx/ ndn-cxx library source code

apps/
Producer and consumer applications (ConsumerCbr, ConsumerWindow,

ConsumerBatches, ConsumerZipfMandelbrot).

utils/ Helpers for data structure and topology reader

helper/ Contain several example scenarios

ndnSIM code guide. Table 5.3 shows the location of ndn components in ndnSIM. Depending on the

need of the simulation scenario, the components can be used to create simulations.

Figure 5.2: ndnSIM work-flow.

Figure 5.2 shows the workflow on ndnSIM. The real topology datasets can be read by the simulator to

get realistic simulation results. Also, the simulator provides several content store implementations to be

90 Chapter 5. Experimental Framework and Implementation

used according to the needs of the scenario application. These implementations can be installed to nodes

by NDN stack helper. The forwarding strategies may require knowledge of FIB information that can be

managed by configurable “global router helper” and “manual FIB” helpers.

Also, different forwarding strategies can be configured by the following: i. best route: where packets

are routed to the best path of nodes, ii. multicast: where packets are routed to a group of nodes, and iii.

broadcast: where packets are routed to all nodes. As like NDN, the forwarding strategies are associated

with name-spaces and can be installed distinctively to each node.

The ndnSIM helpers are required to perform detailed tracing and NDN network traffic flow of the nodes.

The scenario that was created in this work uses some of the ndnSIM helpers to meet the application needs.

The used ndnSIM helpers for this work experiment scenario are described as follows:

ns3::ndn::ConsumerCbr The scenario consumer(s) sends the interest packets within ConsumerCbr

pattern. In the ConsumerCbr application, the interest name prefixes can be configurable with a sequence

number. Also, the interest frequency can be defined by various rates such as uniform (0, 1/frequency),

random, and exponential distribution (mean of 1/frequency). Each of the interest packets sized ≈40kB in

ConsumerCbr.

ns3::ndn::Producer: The Producer application replies to the incoming Interest packets with a data

packet. The published data packet includes a name, that must match the Interest packet name. The

producer application payload size is configured for 1024 bytes and each of the data packets is signed with

RSA signature.

ns3::ndn::StackHelper: Stack Helper class is used to install ndnSIM network stack on requested

nodes and configure parameters.

ns3::ndn::GlobalRoutingHelper: The global routing controller FIB helper interacts with the NFD FIB

manager by sending special Interest commands to the manager, to add/remove a next-hop from FIB entries

or add routes to the FIB. The CalculateRoutes class is also used to calculate the shortest path and

install routes to all name prefix origins under GlobalRoutingHelper.

ns3::ndn::StrategyChoiceHelper: StrategyChoiceHelper interacts with the NFD Strategy Choice

manager by sending Interest commands to the manager to specify the desired per-name prefix forward-

ing strategy for one, more than one or all the nodes of a topology. BestrouteStrategy and Multicast

strategies are also used in the scenario created in this work.

SetOldContentStore: The default CS is configured for LRU cache policy which is an efficient data

caching for popular contents. We have also applied various caching policies to mitigate the side-channel

attack, such as random and probabilistic caching policies.

ndn::L3RateTracer: It is an NDN network-layer rate tracer to obtain the Interest and the Data packets.

These metrics are obtained per packets forwarded by the node.

ndn::CsTracer: It is used to obtain measures of cache hits and misses on the nodes.

https://ndnsim.net/current/doxygen/namespacenfd_1_1fw.html#a86071fe6f8b97c0b6e6abdf25c7960b5
https://ndnsim.net/current/doxygen/namespacenfd_1_1fw.html#a385cd279f03b2e9fa048fe2e4e60d204
https://ndnsim.net/2.0/doxygen/broadcast-strategy_8hpp.html
http://ndnsim.net/2.5/doxygen/classns3_1_1ndn_1_1ConsumerCbr.html
https://ndnsim.net/2.1/doxygen/classns3_1_1ndn_1_1Producer.html
http://ndnsim.net/current/doxygen/classns3_1_1ndn_1_1StackHelper.html
http://ndnsim.net/current/doxygen/classns3_1_1ndn_1_1GlobalRoutingHelper.html
http://ndnsim.net/current/doxygen/classns3_1_1ndn_1_1StrategyChoiceHelper.html
http://ndnsim.net/current/cs.html#content-store
http://ndnsim.net/current/doxygen/classns3_1_1ndn_1_1L3RateTracer.html
http://ndnsim.net/current/doxygen/classns3_1_1ndn_1_1CsTracer.html

5.2. Named Data Networking Simulator 91

ndn::AppDelayTracer: It is used to obtain application-level delays, observed between issuing Interest

and receiving Data packet.

In last, the script can be compiled by ./waf and several simulation metrics can be also collected. To

set the simulation to run multiple times and visualize its findings, a python script was also created.

5.2.3 ndnSIM Components

The ndnSIM 2.x is structured in three main components: i. ndnSIM core, where the NDN packets are

managed, ii. the upper layer, where ndn and non-ndn applications and NetDevices (point-to-point, CSMA,

wireless, etc.) are managed, and iii. NFD, which is integration to NDN protocol stack.

Figure 5.3: NFD integration to ndnSIM core (adapted from [10], [11] [12]).

Figure 5.3 illustrates the structural diagrams for ndnSIM 1.0 and ndnSIM 2.x. The simulator has two

main releases, the ndnSIM 1.0 [10] (has no sub-release) and ndnSIM 2.x [11], [12] (has sub-releases).

Besides an NFD integration, both releases have common component-level abstractions:

ndn::L3Protocol: An ns-3 abstraction of NDN stack implementation. It provides tracing sources from

Interest and Data packets from lower and upper layers through Faces(App and NetDevice), to measure

http://ndnsim.net/current/doxygen/classns3_1_1ndn_1_1AppDelayTracer.html

92 Chapter 5. Experimental Framework and Implementation

NDN performance. The NDN protocol stack can be installed to each node in a similar way similar to IPv4

and IPv6 protocol stacks.

ndn::AppFace: An abstraction that implements uniform communication primitives to send Interest and

received Data packets with applications.

ndn::NetDeviceFace: An abstraction to implement the communication with other simulated nodes

such as link-level congestion mitigation modules.

ndn::cs::*: An abstraction for in-network storage for data packets. Four main life-time tracking abstrac-

tions (::LRU, ::LFU ::FIFO, ::Random) are defined under ndn::cs.

Security: In the ndn-cxx library, the certificates and their corresponding identities are managed by

ndn::security::KeyChain. The basic signing process is to create a KeyChain instance and supply

the data packet and signing certificate name to KeyChain::sign() method [93].

Applications: ndnSIM has built-in consumer and producer applications. The applications have various

parameters that can be configured by the user, used to generate user-driven network traffic.

ndn::*Tracer: To collect and analyze statistical information from interest, data packets, and traffic, can

be done using tracer helpers.

In ndnSIM 2.x, the packet forwarding is separated into the forwarding pipelines and strategies. Through

that, the NFD maintains the network for where the packets need to be forwarded by various strategies on

ndn-cxx (CS, PIT, and FIB).

As a summary, the ndnSIM 2.x is supported by the following features; i. the forwarding and management

are directly done by NFD, ii. the ndn-cxx library, and iii. the trust management with certificate packet format.

5.3 Named Data Network Forwarder Daemon

In ndnSIM 2.x, the NFD is a network forwarder that is used to implement the NDN protocol. The NFD exten-

sion brings modularity and extensibility to evolve the NDN applications, protocol features, and algorithms.

The main functionality of NFD is forward interest and data packets by abstracting lower-level transport

mechanisms into the NDN faces. Also, the CS, PIT, and FIB can be maintained on each node by NFD.

Through these components, it can support multiple forwarding strategies, face management, control, and

monitor.

5.3.1 NFD Modules

In this section, a description of the major NFD models is presented. These modules can be upgraded by

NFD releases 1.

1 http://named-data.net/doc/NFD/current/

https://named-data.net/doc/ndn-cxx/current/index.html
https://named-data.net/doc/ndn-cxx/current/index.html
https://named-data.net/doc/ndn-cxx/current/index.html
http://named-data.net/doc/NFD/current/

5.3. Named Data Network Forwarder Daemon 93

Figure 5.4: NFD modules (adapted from [13]).

Figure 5.4 illustrates the NFD modules. The NFD has five modules that implement core NDN modules

(ndn-cxx, core, and tools) As illustrated in Figure 5.4, the NFD has the following inter-dependent modules:

ndn-cxx library, Core and Tools. The core, NFD tools, ndn-cxx, and NDN essential tools are common

services shared between NFD modules. Also, these services include cryptographic hash computations, face

monitoring, and DNS resolver.

Faces. The Face is the generalization of the interface. The packets are sent and received by each

Face (similar to a physical interface). It also implements Face abstraction on top of different transport

mechanisms such as i. An interface to communicate to the physical link, ii. An overlay communication

channel between a remote node and NFD, and iii. inter-process communication between a local app. and

NFD.

94 Chapter 5. Experimental Framework and Implementation

Through the implemented Face abstractions NDN network layer packets have a best-effort delivery service

for send/receive Interest, Data, and NACK packets. Then, the Face manages underlying communication

such as sockets.

The face is based on the FaceSystem-ProtocolFactory-Channel-Face hierarchy. A ProtocolFactory man-

ages the multicast and channels (unicast) faces of the particular protocol. Channel presents a local endpoint

of the protocol and owns unicast faces on a particular protocol.

Tables. The Table is a module that provides a data structure. The FIB is used to forward the Interest

packet to the potential sources of matching Data packet. The NFD’s FIB is similar to an IP’s FIB except it

allows for a list of the outgoing face(s) rather than a single one. Also, the outgoing faces are stored on FIB

entry, which are references for forwarding.

To satisfy the next coming Interest requests, the data packet can be cached by CS. The NFD offers

multiple cache replacements policies such as FIFO and LRU and resizing cache by contents.

In NFD, each PIT entry is identified by an Interest packet. The PIT entry presents a pending Interest

and satisfied Interest packets. If it is not answered by a data packet, the Interest packet is considered an

unsatisfied interest entry.

The Dead Nonce table is used for loop detection purposes in PIT. The stored Nonces are used to identify

loop detection in PIT entries. When a Nonce is deleted (dead) from PIT entry, the Interest name and Nonce

are added to Dead Nonce List.

The StrategyChoice table contains the FIB forwarding strategy selected for each namespace.

The Measurements table is used to measure PIT entries and forwarding strategies.

The NameTree is a common indexed Name for PIT, FIB, StrategyChoice, and Measurements tables.

Forwarding. The Face Table is a table of Faces that is managed by Forwarder (e.g. NFD). A Forwarding

Pipeline operates on the Interest, Data, NACK packets, or PIT entry. It is triggered by a specific event: i.

loop detection in PIT entries, ii. An Interest that needs to be forwarded out of a face, and iii. reception

of an Interest packet. The name-based scoping is a scope control of Interest and Data according to their

name-space.

Forwarding Strategies. A Forwarding Strategy is a decision-maker about where an Interest packet

needed to be forwarded. The list of NFD forwarding strategies is defined by i. best route strategy, sends

Interest packet to lowest cost upstream router(s), ii. multi-cast strategy, sends all Interest packets to

all upstream router(s), iii. access router strategy, designed for aka access for local site prefix on edge

routers, iv. client control strategy, a consumer application choose the outgoing face of Interest packet.

Management. To configure NFD and set/query, it’s internal tasks are done by the management appli-

cations. NDN management also offers the capability to monitor and control the NFD. NFD management is

divided by management modules, and each of them is responsible for a subsystem of NFD.

The forwarder status manager is providing statistics about the forwarder and the status of NFD such as

version, NFD startup time, table entry counts, and packets (Interest, Data, and NACK) counts.

5.3. Named Data Network Forwarder Daemon 95

The face manager is responsible to create and destruct the faces for all protocol types. The manager

can change the attributes of any face.

The FIB manager allows the authorized administer (by default its RIB management), to update/modify

the FIB of NFD. The administer can ask the FIB to do: i. add/remove the next hop from a name prefix and

ii. update the routing of a next-hop.

The strategy choice manager is responsible for setting and unsetting the forwarding strategies from the

strategy choice table for namespaces in NFD.

RIB Management. The Routing Information Base (RIB) stores dynamic and static routing namespaces

registration. The RIB is used to calculate the next hops for FIB entries in FIB.

Figure 5.5: RIB manager (adapted from [13]).

Figure 5.5 illustrates, the FIB and RIB are updated by the RIB manager. The RIB can be registered by

any applications, operators, and NFD. One of NDN routing protocol application called Named Data Link

State routing protocol (NLSR) provides a routing protocol to populate the RIB as proposed by [40]. The

NLSR calculates the routing table using link-state routing and can provide multiple faces for name prefix.

NFD Tools. The NFD tools are used to manipulate/update the tables, forwarding strategies, and check

NFD status by pre-identified tools in NFD. New tools may be added to the NFD with updated versions for

real-applications. The set of tools are used for the administrator and daemon as follows:

The nfdc is a tool that is used to change the RIB, FIB, and StrategyChoices table. The nfd-status is a

tool used to read the NFD version and status information.

The nfd shows the subcommands for help, modules, and config information.

The nds-status-http-server is a daemon application that shows NFD status via HTTP protocol.

The nfd-autoreg is an application that automatically registers the name prefixes when a new needed

Face is established.

The ndn-autoconfig is an application to run the NDN hub discovery procedure. This is a procedure

that is used to detect the network changes or discover the NDN router to gain connectivity of the NDN.

The ndn-autoconfig-server is a server implementation for the NDN hub discovery procedure.

96 Chapter 5. Experimental Framework and Implementation

The ndnpeek is a simple consumer application that sends an Interest packet and expects a Data packet

in return.

The ndnpoke is a producer application that creates the only payload and publishes a single Data packet.

The ndncatchunks is a consumer application that fetches Data packets with segments.

The ndnputchunks is a producer application that creates Data packets with segments.

The ndnping and ndnpingserver are testing tools for the reachability of two nodes.

The ndndump is a network traffic analyzer tool that captures NDN packets.

The ndn-dissect is a packet for the inspector of NDN.

5.3.2 Content Store

The content store is used to cache the data in ndnSIM. The requested data packets are placed in the cache

as long as according to the configured cache policy.

The CS is implemented in nfd::cs::CS class. This has two main sub-classes as followings: i. lookup

table and ii.replacement policy.

look-up table. In CS, the lookup table is a name-based index of CS entities.

replacement policy. The cache replacement policy manages the limits of CS capacity. When it is

full of cached contents, it discards (flushes) the cached contents to able to cache new entities. Also, the

NFD offers multiple cache replacement policies by ndnSIM 2.x, including LRU (least recently used) and

priority-FIFO (first-in-first-out) policies.

The LRU cache policy flushes the least recently used contents from the CS. Also, LRU uses one queue

to obtain data usage in CS. Its table iterator is relocated to the tail of the queue when an entity is used or

refreshed. When an entry needs to be evicted, its table iterator and table entry are erased from its queue.

In priority-FIFO, three queues are used to track the data packets in CS. These queues are identified by

the following i. unsolicited: a queue that contains the entries with unsolicited contents, ii. stale: a queue

that contains entries with stale contents, and iii. FIFO, a queue that contains entries with fresh content. If

an entry matches one of these queues, it only appears once in that queue.

The table iterator can be stored in any of the queues. This establishes a relationship between the table

and the queues. The operations are classified by the followings:

• When an entry is inserted in the table.

• When an entry evicted and its table iterator erased from the head of queue and entry also erased

from the table.

• When an entry became stale, the table iterator is moved from the FIFO queue to the stale queue.

5.4. Implementation 97

• When an unsolicited entry is updated with solicited content, the table iterator is moved from unso-

licited queue to FIFO queue.

The CS also offers a probabilistically caching contents of the nodes. This can be adapted to LRU, FIFO,

and other policies. These cache policies are selected accordingly to the application’s configuration.

5.3.3 NDN Testbed

The NDN-testbed is created to test the NDN paradigm and daemons underlaying of TCP/IP. Currently, the

NDN-testbed consists of 42 NDN represented routers on the research institutions and the universities [14].

Also, the NDN-testbed has been established and maintained at the University of Minho since 2016.

The main reason to join the NDN-testbed was to develop this work scenario to run over the NDN-testbed.

However, the scenario implementation faced some challenges considering the NDN-testbed updates and

getting permission from other nodes.

Therefore, the extracted NDN-testbed topology was used to simulate the applications over ndnSIM instead

of the NDN-testbed.

5.4 Implementation

To achieve the work objectives, some components were built in C++ 11 and in Python in order to integrate

the ndnSIM simulation framework. The components are organized according to the type of component:

• NDN Applications - includes a BadGuy (the attacker application) able to perform brute force ran-

dom attacks to a pre-configured set of name prefixes, vondn-app (VoNDN Caller/Callee) and ndntube-

app (a stream consumer application)

• Core Components - includes a new content-store implementation, called content-store-privacy,

that implements the DaD algorithm proposed in this work

• Scenario programs - a simulation main program, for each simulated scenario, including a vondn-

simulation and a ndntube-simulation, that loads the proper network topologies and creates and

configures the simulation respectively for VoNDN and NDNtube application scenarios

• Orchestration scripts - ex: run.py, written in python, this script is used to repeat each simulation

scenario for a predefined number of times, for each different set of parameters, being able to change

the topology, the cache policies, application instances, simulation duration, etc. The python scripts

also process the simulation results and build the expected graphs.

98 Chapter 5. Experimental Framework and Implementation

Following the ndnSIM best practices, all components were kept on external ndnSIM ”scenario” directory,

to isolate them for future ndnSIM version upgrades. The components are organized in subdirectories

according to the type of component as describe in Table 5.4.

ndnSIM ndnSIM/scenario directory

sub-dir Components

./scenarios Contains the scenario main programs:

vondn-scenario.cpp and ndntube-scenario.cpp.

All created simulation programs placed in this directory will be compiled by

./waf command. Contains also a sub-directory called “disabled” used to

place the disabled scenarios not to be compiled.

./extensions Contains the application programs and NDN core components:

BadGuy.{hpp,cpp}, vondn-app.{hpp,cpp}, ndntube-

producer.{hpp,cpp} and ndntube-consumer.{hpp,cpp}.

The applications created and the NDN core components are placed here.

The extensions are also compiled by ./waf command and linked to scenario

main programs.

./topology Contains all network topologies used in the simulations:

simple.txt, small-tree.txt, tree.txt, testbed.txt, vondn.txt and

streaming.txt.

Some topologies, like simple and small-tree are useful to run small tests

for debugging or visualization. Others are more realistic, like NDN-testbed,

that was derived from NDN real testbed as already explained.

./build Contains generated executable files for each simulation:

vondn-scenario and ndntube-scenario.

When the scenario and extensions are successfully compiled by ./waf, an

executable file is generated for each scenario’s main program.

./results Contains results files built by the simulations, during each run.

Results are generated by tracers objects, carefully created and defined in

the simulation main program. Results are stored as compressed files (.bz2)

./graphs Contains a set of R scripts used to collect and process the result files gen-

erated by the simulation: preprocess.R, rates.R, cachehitratio.R, ...

The R scripts produce graphs in several formats (ex.: .pdf and .eps) inside

this folder.

Table 5.4: Implementation: major components organized by type and folder.

https://github.com/cawka/ndnSIM-scenario-template

5.4. Implementation 99

Figure 5.6: Scenario implementations.

100 Chapter 5. Experimental Framework and Implementation

Figure 5.6 illustrates the implementations of the /scenario directory for this work. In this implementa-

tion, the VoNDN and NDNtube applications were placed in /scenarios and their extensions were placed

in /extensions directory. The ./run.py was configured to set several simulations for different avail-

able scenarios, algorithms. Also, a python script was used to create database files (.db) to be analyzed by

R scripts (cache hit ratio, hop counts, and content retrieval time) and graphs (.eps).

5.4.1 NDN Applications

Figure 5.7 shows the C++ classes used. The top parent class is ns3::ndn::App, defines com-

mon methods to all applications, like startApplication and stopApplication, for instance. Also, some

virtual methods that have to be defined later on all subclasses, like onInterest or onData that

are called when the interest packet or data packet is received by the application. The classes

ns3::ndn::Producer and ns3::ndn::Consumer inherit from the it, implementing the basic func-

tionality of a producer and a consumer. A more specific consumer application, already present in ndnSIM,

is the ns3::ndn::ConsumerCbr, that request interest with a configured fixed frequency, originating a

constant bit rate stream of data packets to be received. This application is therefore used as a base class

for NDNtube consumers but also for the BadGuy.

ns3:ndn::ConsumerCbr

+ m_frequency
+ m_first_time

+ sendNextPacket
+ onData
...

ns3:ndn::Consumer

+ m_seq, m_rtt, ...

+ sendPacket
+ scheduleNextPacket

+ onData
+ onNack
+ onTimeout
...

ns3:ndn::App

+ m_active, m_face, m_appId

+ onInterest
+ onData

+ StartApplication
+ StopApplication

ns3:ndn::Producer

+ m_prefix
+ m_signature
+ m_KeyLocator
...

+ onInterest
...

ns3:ndn::BadGuy

+ m_spy_prefix
+ m_spy_bruteforce
+ m_interest_repeat
...

+ sendPacket
+ scheduleNextPacket
+ onData...

ns3:ndn::NDNtubeConsumer

+ m_seq, m_rtt, ...

+ sendPacket

+ scheduleNextPacket
+ onData...

ns3:ndn::VoNDNApp

+ m_seq, m_rtt, ...

+ sendPacket
+ scheduleNextPacket
+ onData
+ onInterest

ns3:ndn::NDNTubeProducer

+ m_prefix

+ onInterest
...

Figure 5.7: Applications: class diagrams.

The class ns3::ndn:BadGuy was created to implement the brute force algorithm already described

in the previous Chapter 4. Before starting some attributes may be configured to change the behavior of

5.4. Implementation 101

the application, like the prefix to be spied on (SpyPrefix), the brute force behavior activation (BruteForce),

and the number of repetitions for each interest (InterestRepeat). A number of valid names are also, to be

added to the prefix. If not specified all possible node names are used together with the spy prefix to create

potential target names to attack. When the application starts a target name is selected randomly, and an

interest packet is issued, for a number of repetitions. Since BadGuy inherits from ConsumerCbr, the rate

of requests is defined by the m_frequency configured value.

Regarding ns3::ndn::NDNtubeConsumer it simply extends the behavior of the existing Consumer-

Cbr, to simulate a client requesting a video stream. Each stream is identified with a prefix name, and each

packet on sequence is numbered. The NDNtube consumer application increments the sequence number

and sends a new Interest packet for that sequence number. The process repeats at each time interval. The

ns3::ndn::NDNtubeProducer is also a simple extension of ns3::ndn::Producer. The producer

producing the video with /ndntube/videos/(video-..) to the NDNtube consumers.

Finally, VoNDNApp is also based on the same base classes. The first version was only a combination

of the ConsumerCbr and the Producer on a single node, simultaneously sending Interest packets and

producing data packets for interests received. The caller node, running an instance of the VoNDNApp,

combines the name of the callee and the configured call-id into a full name of the form /vondn/<callee-

name>/call-id/<call-id> to identify the voice data packets originated by the callee and continuously send

interest for that name with a sequence number as a suffix. In a similar way, the callee requests interest

on data packets named /vondn/<caller-name>/call-id/<call-id>. This simulates the media streams for

voice/video conversation. Later the signaling was added when the call starts. The caller sends a special

interest packet with call-request (/vondn/<callee-name>/call-id/<call-id>/call-request the callee answers

back with a data packet accepting the connection. Before starting requesting media data packets, they

both request each other public key certificate using the name /ndn/domain/vondn/KEY/<node-name>.

The adversary may, therefore, try to target the certificates on cache but also the media data packets of

the conversation. A voice conversation may have periods of silence alternated with periods of talk, while a

uniform distribution of interest request is more adequate to simulate voice/video calls. The default behavior

used is a uniform distribution.

5.4.2 Core Components

For the implementation of the DaD algorithm, the first question that must be addressed is where to add

it, which components in the simulator to modify, or new components to add to implement the required

functionality.

Considering the ndnSIM software architecture described in Figure 5.7 and 5.8, we can see that there is

a set of major components that implement the core elements of an NDN router, but also a set of pluggable

components that can be added without interfering with major blocks. Core elements are, for instance, the

102 Chapter 5. Experimental Framework and Implementation

data structures that support all the required tables (CS, FIB, PIT), the Face objects that abstract the con-

nectivity to external routers and internal components (applications, tables), a major pipeline for processing

interest packets and another one for processing data packets. The pluggable components allow inserting

new cache policies and new forwarding strategies, without modifying the internal structure.

Since the DaD algorithm changes the way information is cached or not in CS or the way the infor-

mation is retrieved and delivered from CS when under attack, it seemed natural from the beginning to

implement it as a new content store policy. The approach followed was therefore to design a new class

ns3::ndn::cs::Privacy (content-store-privacy.hpp, content-store-privacy.cpp), that in practice wraps

the expected behavior of existing content stores, including the set of cache replacement policies already

available, and adds in some extra functionality. When interest arrives a name lookup occurs, it is an oppor-

tunity to do a real lookup on supporting content store implementation and run the DaD algorithm. The first

task is to update the cache hit and misses measures and the cache hit ratio for the incoming face. Next, a

decision is taken regarding attack detection. If the state is considered to be no an attack is detected, the

data packet is returned normally. If an attack is detected, the action is taken according to its severity as

previously described.

5.4.3 Scenario programs

The scenario programs are also written in C++ and they follow the usual structure of a ndnSIM simulation,

also similar to normal NS-3 simulation. The process is illustrated in Figure 5.8 in a generic way. The

common part of the structure can be detailed by the following sequence of actions:

1. Parse command-line arguments.

The following are examples of the considered parameters:

• topology - the name of the topology file to use;

• algorithm - mitigation algorithm to use (if any);

• badCount - number of bad nodes, running the adversary application, to consider in the simu-

lation;

• prodCount - number of regular nodes, running normal application to consider for producers;

• goodCount - number of regular nodes, running normal application to consider for consumers;

• folder - folder to save the simulation result files;

• run - the number of the simulation run.

2. Load a topology from an external file.

5.4. Implementation 103

1. Parse command line
arguments

2. Load and parse
topology

3. Configure NDN stack

4. Configure the
forwarding strategy

5. Create random
generator

6. Randomly select good
and bad guys

7. Configure good guys
applications

8. Configure bad guys
applications

9. Compute routes

10. Install tracers

11. Run the simulation

CommandLine cmd;
cmd.AddValue ("topology", "Topology", topology);
...

AnnotatedTopologyReader topologyReader(..-);
topologyReader.SetFileName (...)
topologyReader.Read ();

StackHelper helper;
helper.SetOldContentStore(...)
helper.Install(nodes);
... StrategyChoiceHelper::Install(

 nodes, "/ndn/...",
 "/localhost/nfd/strategy/best-route")
...

while (badGuys.size () < badCount) {
 x = rand->GetValue(0,candidates.size());
 ...
...

Config::SetGlobal ("RngRun", IntegerValue (Run));
rand=CreateObject<UniformRandomVariable>();
...

AppHelper ConsumerApp("...");
ConsumerApp.SetAttribute(...)
ConsumerApp.install(...)

AppHelper BadGuy("ns3::ndn::BadGuy");
BadGuy.SetAttribute(...)
BadGuy.install(...)
...

ndnGlobalRoutingHelper.CalculateRoutes ();
...

AppDelayTracer::InstallAll (results_file);
CsTracer::InstallAll(... , ..)
... Simulator::Run ();

 Simulator::Destroy ();
...

Figure 5.8: Scenario programs: common structure.

Topology is loaded using and object of class ns3::AnnotatedTopologyReader. The reader

validates the topology and loads it to memory as a set of nodes and links with properties.

3. Configure NDN stack and install it on each node of the topology.

The helper class ns3::ndn::StackHelper is used to configure NDN stack. One of the things

that must be configured is the cache policy to use on nodes. The ndnSIM simulator already in-

cludes a set of cache replacement algorithms, like LRU (Least Recently Used), FIFO (First In First

Out), LFU (Least Frequently Used), Random, etc. One of the available policies may be selected

and applied. For instance, considering only as an example the LRU, the ns3::ndn::cs::Lru,

ns3::ndn::cs::Probability::Lru and ns3::ndn::cs::Privacy::Lru classes can be

used. This last one implements also the DaD algorithm.

The cache policies are applied to all nodes, but the bad nodes (adversaries) need always to change it

to a no-cache policy because they must avoid their cache during the timing attacks on target names.

4. Define and apply forwarding strategy to all nodes.

Only two strategies were considered to be applied on the nodes, using the helper

class ns3::ndn::StrategyChoiceHelper: the best route strategy (named

104 Chapter 5. Experimental Framework and Implementation

/localhost/nfd/strategy/best-route) and the multicast strategy (/localhost/nfd/strategy/multicast).

This strategy is used to populate the FIB with the name prefixes produced by the producer nodes.

5. Configure the random generator seed, based on the simulation run, and create an

object of class ns3::UniformRandomVariable for random number generation.

Following the NS-3 design, the random seed for (pseudo) random numbers is fixed for each run and

depends only on the run number, making it reproducible. This is a very important design feature

of NS-3. Different runs use different seeds and therefore generate different sequences of random

numbers.

6. Randomly select.

prodCount number of nodes for producers, badCount number of nodes for bad guys, goodCount

number of nodes for consumers.

7. Configure and install applications on bad guys nodes.

Usually, a special ns3::ndn::BadGuy consumer application that implements the brute-force at-

tack algorithm. A start event and a stop event must be scheduled to start the application at the

beginning of the attack and stop it at the end of the attack period. The attack period is predefined

for each scenario.

8. Configure and install applications on good nodes, both producer and consumer.

Here the configuration may change according to each application and will be explained later on for

each application scenario in the following sections. Again, start and stop events must be generated

to allow the applications to start and stop as expected. Applications start a small random amount of

time after the simulation starts and end with simulation.

9. Compute routes and populate FIB on all nodes.

Using a ns3::ndn::GlobalRoutingHelper object, the routing can be configured. All names

produced by good guys applications are registered and short path trees are calculated using method

CalculateRoutes. Routes are installed for all prefixes origins.

10. Install Tracer objects to collect and dump results to the result files.

Examples of the tracers used are ns3::ndn::AppDelayTracer, that can collect and register

application-level delays, and ns3::ndn::CsTracer, that can collect and register information

about cache events, like cache hits and cache misses. Results are stored on a zipped file, in the

results folder, named using a combined string containing the topology name, number of good and

bad guys, and simulation run for easy post-processing.

5.4. Implementation 105

11. Define simulation time and run the simulation.

Schedule a stop event to end the simulation, and start it by calling Simulator::Run().

Based on this common structure, specific scenarios were produced. The two main scenario programs

created are including a ndntube-scenario and a vondn-scenario.

ndntube scenario. The ndntube-scenario program creates only one producer and a set of good-

Count consumers.

The NDNtube producer is installed on the previously randomly selected producer node. It is configured

to produce a stream of video with prefix name ”/ndntube/videos/...”. Packets are signed by the producer,

and by default have a freshness of 1000ms and a virtual payload size of 1024.
An NDNtube consumer app is also installed on all randomly selected consumer nodes. They are all

configured to consume a specific stream produced by the NDNtube producer.

vondn scenario. For the vondn-scenario program, nodes engage in a conversation on pairs. On

each simulation a total of goodCount nodes is engaged on vondn conversations. Each pair of nodes is

randomly chosen from the set of eligible consumer ones. For each pair, first, the callee is selected, a call-id

is generated, unique for each call, and then the caller is also selected. Each node signs the data packets

using a key named /ndn/domain/vondn/KEY/<node-name>. Each node is simultaneously a producer and

a consumer inside the call. Packets produced by a node engaged in a VoNDN call use a naming format

/vondn/<node-name>/call-id/<call-id>.

A Certification Authority, named CACert, is also placed randomly on a node in the topology. The CACert

provides certificates for all keys with prefix ”/ndn/domain/...”. Each node that needs to validate a key

certificate, issues an interest with the key name. If the certificate data packet is not cached on any node,

the interest will reach the CACert node that answers it with a signed data packet. For simplicity, only one

CACert node is used, instead of a full hierarchy of public key certification authorities (CA).

5.4.4 Orchestration scripts

As mentioned, a Python script called run.py is used to run a specific simulation scenario a specific number

of times for each configuration. The script can run the same program for different caching policies, defined

in the script and including the DaD algorithm, for different topologies, for a different amount of good and

bad guys, and for a number of runs. For each simulation, one or more result files are produced, by each

tracer.

After running all simulations, the run.py also initiates the post-processing of all results. The first step of

result post-processing consists in transforming the zipped text files into a structured database table. Each

result file is unzipped and loaded to an SQLite .db file. Each log text line is separated in a set of fields,

into a record inserted in a table, for further processing.

106 Chapter 5. Experimental Framework and Implementation

The next phase of post-processing is done using the R script and also called from the run.py script.

Data on tables are summarized and aggregated by categories. For instance, delay values or cache events

can be aggregated by node type, for good guys or for bad guys, and statistics like average and others can

be computed for all the simulations runs. Intermediary results are stored again on the disk, now as R data

files.

The last phase of post-processing is to produce the graphs. Again this is done by specific R scripts for

each graph, called by run.py, using the data files stored in the previous phase.

Source code. This work was implemented using the external scenario directory of ndnSIM. Through

that, only the implementations were complied with instead of compiling complete ndnSIM. Also, the sce-

nario implementation support is an open-access for future work implementations. The scripts C++, Python

(2.7.12), SQL, and R (3.5.2) can be accessible at the author GitHub account — https://git.io/Jey7B.

5.5 Summary

To create the scenario strategies, the ndnSIM framework and this work’s main scenario instruments are

illustrated in this chapter. An overview of the simulation framework and NFD components were presented,

together with the modules created to implement.

Next, the implemented scenario findings and results will be presented based on the NDNtube and the

VoNDN applications.

https://git.io/Jey7B

6

SCENAR IOS AND RESULTS

In this chapter, a set of experimental results obtained using simulation are presented and analyzed. The

chapter starts by defining the experimental objectives. Then, the scenarios that were developed for testing,

with the NDNtube and VoNDN applications, attack models, and countermeasures, are detailed. Also, in

these scenarios, network topologies (AT&T and NDN-testbed) are used to collect and analyze more realistic

results.

To mitigate the attack in both applications, the traditional and DaD countermeasures are applied and

their results are compared in this chapter.

6.1 Context

To evaluate the attack and countermeasures the experimental scenario objectives are identified. The exper-

iment objectives are directly related to the work objectives and are identified as the followings:

1. Reproduction of the applications to be presented as NDNtube and VoNDN.

2. Development of an attack application that is utilized by brute-force and randomized probing opera-

tions.

3. Implementation of the attack scenario on NDNtube and VoNDN applications to analyze attack find-

ings.

4. Simulation of the scenarios using real data-set topologies such as AT&T and NDN-testbed.

5. Implementation of the DaD algorithm and compare the results with statically configured countermea-

sure ones (e.g. probabilistic caching) to mitigate the brute-force attack.

Scenario configurations. In implementations, different cache policies and forwarding strategies are

used to analyze/understand the attack findings and adversary behavior on NDNtube and VoNDN.

107

108 Chapter 6. Scenarios and Results

i. In NDNtube, the attack scenario is analyzed on different NDN content store policies (LRU, LFU,

and FIFO), respectively. In each policy, the performance of attack and adversary face detection

results (CRT, CHR, and hop count) are analyzed for the NDNtube application. To mitigate the attack,

statically countermeasures (nfd:probabilistic and nfd:freshness) methods are compared

with the DaD (nfd:dad) for the distribution and mitigation performance.

ii. In VoNDN, the attack performance, and adversary behavior are analyzed under the following NDN

forwarding strategies: a. Best route strategy: The best route strategy forwards an Interest packet

to the upstream with the lowest routing cost. b. Multicast strategy: The NDN multicast strategy

forwards every Interest to all upstreams (next-hops), indicated by the supplied FIB entry.

The adversary face detection methods (CRT, CHR, and hop count) are analyzed in VoNDN. Also,

the statically configured countermeasure (nfd:probabilistic) is compared with the DaD

(nfd:dad) in regard to mitigation and distribution performance.

6.2 Scenario Implementations

The cache policy and the scope of the attack can be different for each application. Therefore, in this work, the

NDNtube-like and VoNDN-like applications were developed to analyze adversary node behaviors during the

attack. To generate network traffic, the applications were simulated using real data-set topologies. Through

these implementations, the adversary detections were suggested for streaming and VoNDN applications

respectively.

The NDNtube and VoNDN applications were reproduced with their basic features to obtain the attack

findings. To understand and analyze an adversary behavior, the consumer nodes are sending their packets

within flow with a packet rate of 100 packets/s in NDNtube and VoNDN testing scenarios. This means

a constant bit rate of 819.2 Kbps per flow for a packet size of 1024 bytes, and 51.2 Kbps per flow for a

packet size of 64 bytes. In these scenarios, the consumers are constantly consuming content which creates

a negligible gap between sending and receiving the packets.

NDNtube-like attack scenario. Figure 6.1 illustrates the NDNtube-like streaming application in per-

spective on how the design of applications and adversaries can be done. In this scenario, a single producer,

producing content to consumers, mimics streaming video-like applications. Also, the consumers are con-

figured with a unique streamer id and request the contents with streaming_app/videos/video-1/unique-

streamer-id from the producer. In the NDNtube application, each of the gateway routers is used to cache

the video segments that can be retrieved by the consumers.

In the streaming scenario demonstration (Figure 6.1), the adversary pursues the video segments cached

by gateway routers previously. Therefore, the adversary (adversary-1) can knowledge about the popularity of

streamed contents, recently cached by the edge routers these requested by streamers (streamers-1). In the

https://ndnsim.net/current/doxygen/namespacenfd_1_1fw.html#a86071fe6f8b97c0b6e6abdf25c7960b5
https://ndnsim.net/current/doxygen/namespacenfd_1_1fw.html#a385cd279f03b2e9fa048fe2e4e60d204

6.2. Scenario Implementations 109

Figure 6.1: NDNtube-like application attack design.

attack, the adversary only probes the target (e.g. streaming_app/videos/video-1) then the gateway routers

(edge, neighbor, and away) replies a video segment (e.g. streaming_app/videos/video-1/%00%12%34)

that has been cached recently. In an ideal attack, the adversary repeats each target at least four times to

differentiate that the target has been cached by the first router or the away routers. Also, other adversaries

are (adversary-...) attacking other streamers (streamers-..) to conclude that the streamed contents are

cached by the edge, neighbor, and away routers. In this attack, the adversaries only determine the popularity

of the streamed contents by their locations.

Table 6.1 shows the configurations of the attack on the NDNtube-like application on AT&T topology. The

AT&T topology has 625 nodes in total, from which 156 leaves (consumers), 140 evils (adversaries), and

one producer (NDNtube producer) were selected randomly for each one of the 10 simulation runs. The

attack was applied to default CS policies (LRU, LFU, and FIFO) to evaluate the behavior of the attack (in

total 30 runs). The adversaries have as targeted the video segments named as /ndntube/videos/video-...

and cached by gateway (edge) routers. In the NDNtube-like attack scenario, the adversaries, the streamers,

and the producer were randomly selected for each scenario run, the results collected from each of CS

policy (LRU, LFU, and FIFO) and 30 simulation runs in total. The targeted video segments were retrieved

by brute-force and each target request was repeated 4 times to increase the attack success. When the

attack is finished, the adversaries compare the CRTs these collected from the gateway routers to decide

where/when the certificates have been cached.

NDNtube configuration. In the NDNtube application, each of the streamed content (e.g. pre-recorded

video and live-video) is produced by a single content producer. Each of the content is signed by the pro-

110 Chapter 6. Scenarios and Results

Table 6.1: NDNtube attack scenario configuration.

Network

topology
AT&T

Total nodes 625

Backbones 221

Attacked

edge router
108 routers

Target

quantity
≈55% of total consumer nodes

Adversary

quantity
≈45% of total consumer nodes

Streaming

producer
/ndntube/videos/

Consumers /ndntube/videos/...

Targets /ndntube/videos/...

Attack

repetition
4 for each target

CS

policies

* LRU

* LFU

* FIFO

CS size 1000 packets

CRT

decisions

* cached by edge router

* cached by neighbor router

* cached by away router

ducer but it is not validated by a certificate authority. The consumers are sending their packets at a constant

rate (100 packets/s) to the content producer. The producer virtual payload size is defined as 1024 bytes

for streamed contents. Note that, because NDNtube is implemented only for the attack purposes, encod-

ing/decoding audio and video compression formats (e.g. H.264, MPEG-2) were not implemented.

The attack success and detection may be different on NDN CS policies. In NDNtube, the attack scenario

was implemented using ndnSIM content policies: i. LRU, which removes the least recently used streamed

content segment when the CS is full. ii. LFU, in which the least frequently used cache block is removed

whenever CS is overflowed. iii. FIFO, where streamed contents are evicted in the same order as they come

into CS.

VoNDN-like attack scenario. Figure 6.2 illustrates the two-way communication VoNDN application in

perspective on how the design of applications and adversaries can be done. In this scenario, the callee and

caller publish their interest and data packets to each other without relying on any middle transmission server

such as a SIP proxy or a SIP server. To establish a call, the callee and caller exchange data using each-

other their unique-call-id (/vondn/user/unique-call-id). To authenticate the conversation, the CA publishes

certificates (e.g. /ndn/domain/vondn/KEY) and these can be cached by gateway routers. Also, the callee

6.2. Scenario Implementations 111

or the caller can authenticate themselves by digital signing data packets, using public-key cryptography. For

that public-key certificates are required, issued by CA authority.

NDN-testbed
gateways

In
te

re
st

caller-1 callee-1
Certificate
Authority

D
a

ta

adversary-1

In
te

re
st

D
a

ta

router-1

adversary-2

router-2 router-3 router-4 router-5 router-6

caller-..

callee-..

adversary-..

adversary-..

callee-..

adversary-..caller-..

adversary-..

Figure 6.2: Trusted VoNDN-like application attack design.

In a trusted-VoNDN application demonstration (Figure 6.2), the adversary nodes (adversary-1 and

adversary-2) pursues the targets that are recently cached by gateway routers to knowledge Callee (e.g.

Bob) and Caller (e.g. Alice) locations. Each of targeted certificate (e.g. /ndn/domain/vondn/KEY/[cert-

name+digest]), was requested and delivered to the caller or callee. Caller (caller-1) public-key certificate

is used by the Callee (callee-1), while the callee-1 public-key certificate is used by the caller-1, to validate

the signature and authenticate each-other packets. In this attack, the adversary probes multiple certificates

(targets) by brute-force and randomly to maximize the success of the attack as it was previously designed

and presented in Chapter 4. Additionally, the attack is repeated at least four times to differentiate the target

that has been cached by the edge router or the other routers (neighbor and away). Finally, the adversary

can analyze these four CRT samples to conclude that the target has been cached or not by the edge router.

Also, other adversaries are (adversary-...) attacking to other caller and callee (callee-... and caller-...) to

conclude that their certificates are cached by the edge, neighbor, and away routers. For instance, the

adversary-1 identifies the following locations: i. If the Callee-1 certificate is retrieved from router-1 the tar-

get is located at an edge router, ii. If the Callee-1 certificate is retrieved from router-2 the target is located

at a neighbor router, and iii If the Callee-1 certificate is retrieved from router-3 the target is located at away

router(s). These decisions are also taken by adversary-2 for router-4, 5, and 6.

Table 6.2 shows the adversary configuration for the attack scenario. In this model, the selected adversary

nodes (≈40%) targeted the certificates (e.g. /ndn/domain/vondn/KEY/[cert-name+digest]) that were previ-

ously cached by routers and produced by certificate authority (e.g. /ndn/domain/vondn/KEY). Each named

certificate has an unique sha-256 cryptographic digest function (e.g. .../sha256digest=fde78cbdff...c4106)

to authenticate the callee and the caller’s identity.

112 Chapter 6. Scenarios and Results

Table 6.2: VoNDN attack scenario configuration.

Network

topology
NDN-testbed

Total nodes 462

Attacked

edge routers
42 routers

Legitimate

nodes
≈60% of total consumer nodes

Adversary

nodes
≈40% of total consumer nodes

Certificate

authority (CA)
/ndn/domain/KEY/

Targets /ndn/domain/vondn/KEY/...

Attack

repetition
4 for each target

KEY digest sha256

CS policy LRU

CS size 1000 packets

CRT

decisions

* cached by edge router

* cached by neighbor router

* cached by away router

The extracted NDN-testbed topology consists of 42 global routers (edge, neighbor, and away). To es-

tablish a VoNDN conversation, an additional 10 consumers (callee and caller) are added to each global

router. Therefore, the VoNDN attack scenario is used 462 (420+42) nodes in total and 210 paired VoNDN

conversations occurred.

In VoNDN, the NDN-testbed nodes are used to transmit voice/video and certificate packets to the VoNDN

consumers via 42 gateway routers. In this scenario, 10 leaf nodes (callee and caller) were assigned to each

edge router to represent the callee and the caller. The adversaries attack these 42 edge routers to obtain

≈60% legitimate cached certificate locations.

In the simulation, the adversaries, the callee(s), and the callers were randomly selected for each sim-

ulation run. The results were collected from in total of 20 simulation runs for each forwarding strategy

(best-route and multicast) with LRU CS policy. The targeted certificates were retrieved by brute-force and

each target request was repeated 4 times to increase the attack success. When the attack is finished, the

adversaries compare the CRTs of certificates that were collected from the routers to decide where/when

the certificates have been cached. As shown in Table 6.2, the NDN-testbed routers were classified by the

following terms: i. edge routers represent the first-hop routers of the leaf nodes, ii. neighbor routers are

the second hop routers of the leaf nodes, and iii. away routers are those located at more than two hops

away from the leaf nodes. A certificate authority may be located in an away router.

6.2. Scenario Implementations 113

VoNDN configuration. In the VoNDN scenario, each content (e.g. voice/video, media, and certificate)

is signed by its callee and caller to authenticate the conversation. To verify the callee and caller public

keys, the certificate authority (CA) publishes a certificate that binds the name and the public-key with a CA

signature. The certificates are cached by the NDN-testbed routers to establish the call session the next

time. The trusted VoNDN application scenario was implemented to analyze brute-force attack findings.

In the VoNDN application, the callee and caller are paired and send their packets at a constant rate

(100 packets/s) to each other. Also, the callee and caller are configured to request a data packet, that can

be presented as voice/video, media, and certificate. These can be requested by an interest packet (≈50

kB). Note that, the voice conversation does not have any silence period because the callee and callers are

configured with a default constant bit rate. Also, because VoNDN is implemented only for attack purposes,

encoding/decoding voice and video format (e.g. H.264) were not implemented.

In the VoNDN scenario, each named data packets is signed by using public-key cryptography. to provide

the integrity of the callee and caller. This can be trusted by a certificate authority or self-signed certificates.

On the other hand, the voice/video, media, and certificate packets can be transmitted with different

routing strategies to recover the packet loss (e.g. due to traffic congestion). The attack scenario was

implemented using two routing strategies: i. best route, where packets are routed through the best path

between the nodes and ii. multicast, where packets are routed to group nodes forwarding strategies. These

were implemented with least recently used (LRU), this cache replacement policy discards the least recently

used certificate first from the content store.

In both applications (NDNtube and VoNDN), the CHR, CRT, and hop count metrics were collected and

analyzed to evaluate the attack and the results.

6.2.1 Network Topology

Realistic Internet network topologies are of considerable importance to network researchers. To achieve

the most realistic attack scenario, real data-set topologies were used. To do that, the NDN-testbed and

AT&T network topologies were used. These topologies are extracted using the rocket-fuel data set [94]. The

AT&T network topology raw data set was converted to ndnSIM format by ndnSIM rocket-fuel extension.

Rocket-fuel mapper. The rocket-fuel is a mapper engine that is used to convert the real-set network

topology to the simulation format. Rocket-fuel extracts the backbone (weights and link latencies) using the

information present in the connectivity structure of the NDN routers. Trace-route data obtained as part of

topology (such as AT&T) measurement itself used as input. Rocket-fuel also can collapse the interfaces on

the same router (alias resolution), leading to more accurate ISP maps. Rocket-fuel minimizes the number

of paths measured between the same pair of nodes to reduce measurements required to collect an ISP

map [94], [95], [96].

114 Chapter 6. Scenarios and Results

As a summary, the rocket-fuel can be used by i. To create the topology based on the real-topology. ii.

To convert the raw topology sets to the NDN simulator format.

The following scenario topologies were simulated in this work: i. tree, ii. AT&T, and iii. NDN-testbed. The

streaming-like (NDNtube) application was simulated on tree and AT&T topologies. The VoNDN application

was only simulated on the NDN-testbed topology.

Tree topology. Figure 6.3 illustrated the tree topology, it is formed by sixteen consumers (called leaf),

eight backbone (bb) routers, eight central gateway routers (cgw), and one producer (gw-root). Two adversary

nodes (leaf-6 and leaf-13) were placed into the topology. The bandwidth of the links was 10, 100, and 1000

Mbps respectively.

cgw-7

cgw-3
Leaf - 6

Leaf - 13

gw-root

Backbones (bb)

Gateways (cgw)

Adversary Leafs

Legitimate Leafs

1000 Mbps

100 Mbps

10 Mbps

Figure 6.3: Physical tree topology of the simulation scenario.

The minimum and maximum delays of the links are presented in Table 6.3 and were obtained from the

data set of a real topology. NFD was configured for best-route strategy, to have the best network paths to

the consumer nodes.

Table 6.3: Tree topology delays (min/max) between nodes linked directly.

Delays (ms) bb cgw leafs gw-root

bb 2.51 / 7.56 3.11/ 9.10 - 4.77

cgw 3.11 / 9.10 - 0.15 / 9.67 -

The adversary nodes sent interest packets at a rate of 100 packets/s with malicious interest prefixes,

and the legitimate nodes at a rate of 100 packets/s sending unique (not requesting the same content

name again) interest prefixes. The legitimate leaf nodes were configured to generate interest traffic with a

randomized uniform (7 leaves) pattern, which is distribution in range (0, 1/Frequency) and an exponential

pattern (7 leaves), which exponential distribution with mean 1/Frequency.

ISP topology. The map dataset of the ISP AT&T topology (Figure 6.4) was used to simulate the stream-

ing application NDNtube. In the raw data of Figure 6.4a, the red, green, and blue nodes represent respec-

6.2. Scenario Implementations 115

tively the edges, gateways, and border routers. Then raw topology was converted by the rocket-fuel mapper

to be readable for ndnSIM.

Figure 6.4b illustrates one of the simulations run for AT&T topology. In each simulation run, the border

routers were selected randomly for the producer node, as well as the edge routers for the leaves (legitimate

consumers and adversaries). In this topology, the adversary nodes attack each of the gateway router (edge)

to obtain the existence of cached targets.

Figure 6.4: Real network topology conversion for NDNtube: (a) Raw AT&T network topology, (b). Rocket-fuel converted

AT&T for ndnSIM.

Table 6.4 shows the bandwidth and delay values of the different types of links. In this ISP topology,

the best-route forwarding strategy is selected under different CS policies (LRU, LFU, and FIFO). In the

NDNtube application, all good leafs are directed to the producer, to request the data packets at a rate of

100 packets/s. The video segments are cached by gateway and backbone routers and these are presented

as intermediate nodes.

Table 6.4: AT&T topology link bandwidth and delays.

Link Type
Delay Bandwidth

min. max. min. max.

Client-Gateway 10 ms 70 ms 1 Mbps 3 Mbps

Gateway-Backbone.

Gateway-Gateway
5 ms 10 ms 10 Mbps 20 Mbps

Backbone-Backbone 5 ms 10 ms 40 Mbps 100 Mbps

NDN-testbed topology. The VoNDN was simulated on a real NDN-testbed topology. The testbed is con-

sists of 42 NDN routers on the global participating institutions [14]. To understand the NDN paradigm and

116 Chapter 6. Scenarios and Results

its instruments, the University of Minho is participating in the NDN-testbed project since 2016. Currently,

the minho NDN-testbed node is operated at Computer Communication and Networks (CCN) laboratory to

contribute NDN researches [97].

Figure 6.5: NDN testbed topology (adapted from [14]).

Figure 6.5 illustrates the current global NDN-testbed topology with its gateway routers. This topology was

implemented in the NDN simulator (ndnSIM).

Table 6.5 shows the minimum and maximum delays of the links and bandwidths of the NDN-testbed. In

NDN-testbed, the link delay may vary between the nodes. This is caused by a link design between nodes.

For instance, minho node is only linked with basel, coruna, copelabs, urjc, and padua. Also, the callee and

caller are leaf nodes of the NDN-testbed.

Table 6.5: NDN-testbed bandwidth and delays of the links.

Testbed

link type
Delay (ms) Bandwidth (Mbps)

leaf-router 1 1000

router-router 2-155 1000

6.2.2 Attack Implementation

The attack application was written in C++ according to C++11 standard and using C++11 standard libraries,

and compiled with ndnSIM 2.6. In this application, the targets and attack repetitions can be formed by the

adversary. Also, the application was based on a randomized function to probe the targets.

6.2. Scenario Implementations 117

rtr−1

0 20 40 60

0%

25%

50%

75%

100%

Simulation Time(sec.)

C
a
c
h
e
 H

it
 R

a
ti
o

Node

rtr−1

Figure 6.6: Simple attack cache hit ratio result.

Figure 6.6 illustrates the implemented simple attack scenario result for the NDNtube application. This

simple scenario is consists of three nodes to illustrating the attack probability which was also presented

previously (Subsection 3.2.3). In this scenario, the producer node issues the streamed contents for /nd-

ntube/videos, the consumer node (leaf-1) requests/consumes contents (/ndntube/videos/video-1) with

consumer CBR application. Also, each of the produced contents is signed by the producer with the public

key to maintaining the integrity of the content.

The produced contents (segments) are cached by an intermediate (edge) router (rtr-1). The router’s CS

caches the streamed contents by the size of 100 packets with the LRU cache policy (ndnSIM default). In this

simple attack scenario, an adversary node was placed at side of the consumer (leaf-1) node and targeted

named video segments of /ndntube/videos/video-1 and /ndntube/videos/video-2. Note that, this scenario

assumes that an adversary already had acknowledged the CRT value previously that occurs between router

to the consumer.

When the attack is completed for /ndntube/videos/video-1 and /ndntube/videos/video-2, an adversary

analyzes their CRT values to conclude which one has been cached recently. Because the consumer (leaf-1)

already consumed content (/ndntube/videos/video-1) previously, the CRT of /ndntube/videos/video-1 is

slightly smaller than /ndntube/videos/video-2. Also, an adversary retrieves one of these video content

segments (e.g. /ndntube/videos/video-1/%FE%09%C3) which can be considered as a frame of the video.

To measure the performance of the attack, the edge router’s cache hit ratio (CHR) was calculated during

the attack period as previously illustrated in Subsection 3.2.3 (Figure 3.2). In this particular attack scenario,

the CHR was obtained 41% of the edge router for a single content object (Figure 6.6). In this attack design,

118 Chapter 6. Scenarios and Results

the attack was configured by attack repetitions by four times to increase the success of the attack. But, this

can be varied by the attack design.

Note that, this success is calculated by this attack design which means that the success rate can be

changed by the attack design and application. For instance, a larger set CS (>100) may increase the attack

success depending on the application configuration.

6.2.3 Attack Scope

In this work, the attack implementations are based on name privacy and certificate privacy. To illustrate

that the attack scopes are defined as a content monitoring on NDNtube and a certificate-based attack on

VoNDN scenario configurations.

Next, simple attack scenarios are presented to illustrate the attack findings for both applications respec-

tively.

Random node selection. In the NDNtube-like scenario, the single producer and the backbone routers

were selected from backbone (bb-) nodes of AT&T topology. In both attack applications, the all-nodes

(consumers, producers, and adversaries) were selected and placed randomly in each simulation run.

In the VoNDN-like attack scenario, the consumers were selected and renamed as good-leaf, the adversary

nodes were renamed and selected as evil-leaf, the gateways (edge routers) presented as gateway (gw-) nodes

in NDN-testbed topology.

NDNtube attack scenario on AT&T topology. In NDNtube, a producer was selected from backbone

(bb-) node candidates and produced /ndntube/videos to consumers (leafs). Also, the gateway (gw-) and

backbone (bb-) nodes were used to cached video segments. The adversary nodes (evil-leaf), attempt to

learn video segment locations by probing the targets with brute-force and randomly. In this design, the

adversaries were randomly located in the network and retrieved contents from the edge routers, which

were previously requested by the leaf nodes. Also, the scenario is configured with 30 simulation runs (LRU,

LFU, and FIFO). In all scenarios, the producer, leafs (consumers), and evil (adversary) nodes are randomly

selected for each run.

As Figure 6.7 shows a part of AT&T topology is extracted out of 625 nodes to illustrate brute-force imple-

mentation and attack findings. In this streaming-like application, a randomly selected producer (bb-12841),

consumers (leafs), an adversary (evil-leaf-13120), backbone (bb-), and gateway (gw-) were randomly se-

lected from the number of node candidates. Also, each bb and gw is caching contents from bb-12841 with

the LRU cache policy.

In this sample of attack, some targets (/ndntube/videos/video-1, 2, and 3) were defined and ran-

domly retrieved by an evil-leaf-13120 node. For instance, if a leaf node requested content with the name

(/ndntube/videos/video-2) then, an intermediate node or the producer replied with a video segment prefix

(/ndntube/videos/video-2/%FE%2) to the evil-leaf-13120.

6.2. Scenario Implementations 119

Figure 6.7: NDNtube attack scenario sample (example) on AT&T.

In traditional timing attack designs, the adversary defines the target with its prefix. Unlike other at-

tack scenarios described in the scientific literature, our attack design uses brute force that is based on

leaf names (e.g. /ndntube/videos/video-2) and the corresponding gateway (edge router) replies with seg-

ment (/ndntube/videos/video-2/%FE%2) with lowest CRT. In this sample scenario, an adversary is also

able to determine the away targets by comparing their retrieved CRTs. For instance, an adversary can

assume that the target /ndntube/videos/video-3 (Cluster-B) is located close to the edge router (neighbor)

and /ndntube/videos/video-1 is located to away router (Cluster-C) by analyzing their CRT differences.

In this attack scenario, the scope of the attack is considered as monitoring the popular streaming or

pre-streamed content(s) by their locations. Note that, the CRT values were only used to illustrate the attack

findings which can be varied by adversary location.

VoNDN attack scenario on NDN-testbed topology. The public key certificate is based on names,

these are produced by the Certificate Authority (CA). In the VoNDN attack scenario, the trusted certificate

may present the callee or the caller locations, established call time, and who established the call.

Figure 6.8 illustrates the attack demonstration which was selected from 462 nodes NDN-testbed topology.

The callee and callers exchange packets these presented as certificate, voice, and SIP within call identifier.

In this scenario, each of callee and caller have a unique call identifier (e.g. /vondn/good-leaf-12625/call-

120 Chapter 6. Scenarios and Results

Figure 6.8: VoNDN attack scenario sample (example) on NDN-testbed.

id/2629757). Also, callee or callee can verify each other public key by requesting a certificate that is

published whether self-signed or signed by the certificate authority (ndn/domain/KEY).

In this attack, the adversary targeted three named certificates these were cached by gateway (gw-) routers.

There were three VoNDN conversations between the six good-leafs and they also exchange the certificates

respectively. The CRT values were compared to conclude the estimated target locations for three targets

(good-leaf-12951, 23017, and 12734). In this sample, the adversary concluded that the good-lead-12951

was located the same as the adversary (edge router), the good-23017 was located at the neighbor router,

and the good-leaf-12734 was located by the away router. Through this attack, the adversary can estimate,

when the conversation is started and the location of the callee and caller.

6.3. Results 121

6.3 Results

To analyze the simulated scenario results, the metrics CRT, CHR, and hop counts were analyzed. These

results are collected from different CS policies (LRU, LFU, and FIFO) and forwarding strategies (best-route

and multicast–under LRU). The results were analyzed based on the following: i. to evaluate the brute-force

attack performance for multiple targets in trusted VoNDN application using the CHR results, ii. to analyze

the attack based on the location information about the callee and the caller, iii. to compare DaD perfor-

mance with a static countermeasure (probabilistic caching) to mitigate the brute-force timing attack, and

iv. to analyze the performance of the content distribution between a statically configured countermeasure

(probabilistically caching) and DaD by analyzing the CRT and hop count metrics.

In this work, the probabilistically caching was implemented that stands as a static router configuration

to be compared with DaD. This comparison attempts show that how DaD can be an efficient approach to

mitigate the attack and maintaining the legitimate requests in both NDNtube and VoNDN applications.

Scenarios. In both applications (NDNtube and VoNDN), the performance of the attack is measured by

the obtained CHR metric on the default scenario (no-countermeasure applied). To detect an adversary’s

face, the detection metrics (CRT, CHR, and hop count) are presented for NDNtube and VoNDN respectively.

The implemented countermeasures (nfd:probabilistic, nfd:freshness and nfd:DaD) results

are compared/evaluated for attack mitigation and distribution efficiency.

Table 6.6: Scenario configurations.

scenarios

VoNDN NDNtube

best-route
multicast

multicast

default

(without countermeasures)
LRU

LRU,

LFU, and

FIFO.

with

countermeasures

statically nfd:probabilistic
nfd:probabilistic

nfd:freshness

dynamically nfd:dad nfd:dad

Table 6.6 shows the scenario settings of the results. In NDNtube, NDN CS policies (LRU, LFU, and FIFO)

are applied to obtain the metrics. In VoNDN, NDN forwarding strategies (best-route and multicast) are used

to obtain the metrics. The default settings presented the attack results on application scenarios without

any countermeasure applied. The countermeasures are classified into two groups:

i. Static countermeasures. The static countermeasures are applied to mitigate the attack also analyze

their distribution efficiency on the applications. The cache is configured by nfd:probabilistic

within a 10% probabilistic rate to mitigate the attack on NDNtube and VoNDN. Also, another coun-

termeasure is called nfd:freshness applied to NDNtube that is used to manipulate the cache

122 Chapter 6. Scenarios and Results

responses. As presented previously (Subsection 3.3.1), the default freshness time is configured

1000ms for the NDNtube application. In order to mitigate the attack, nfd:freshness is set by

100ms to mitigate the attack on the default LRU scenario.

ii. Dynamic countermeasure. The nfd:DaD is implemented to mitigate the attack while protecting the

legitimate requests (maintaining the content distribution) in NDNtube and VoNDN. In DaD, the attack

checked dynamically (e.g. 0.5 s in NDNtube and 0.2 s in VoNDN) then multiple countermeasures

are applied only to detected adversary face(s). The applied countermeasure period is defined by the

characteristic of the application (e.g. 3 s in NDNtube and 2 s in VoNDN).

6.3.1 Attack Performance and Findings

In this section, the attack findings and DaD results are presented for VoNDN and NDNtube simulation

scenarios respectively. The performance of the attack (attack success) was evaluated on AT&T and NDN-

testbed topologies. In these experiments, the cache hit ratio (CHR) was used to measure the adversary’s

attack performance for the targets in NDNtube and VoNDN applications.

In both scenarios, the brute-force attack was used to obtain the cached and un-cached targets. The

adversaries configured to attack the targets (100 targets/sec.) by its randomized probing function.

Performance of attack in NDNtube. In NDNtube, the adversaries targeted the cached video seg-

ments to monitor famous video contents. The application can be configured by different CS policies to

increase content distribution. Therefore, in this experiment, the performance of the attacks was analyzed

by different CS policies (LRU, LFU, and FIFO) on the gateway (edge) routers on AT&T ISP topology.

Figure 6.9 illustrates the logarithmic CHR results on different CS scenarios in NDNtube. In these sce-

narios, the adversaries are configured to start the attack between 20-40s. However, the attack is finished

around ≈35 because adversaries finished the attack before the 40s. Also, the preparation of attack takes

≈1s, so the attacks occurred between ≈21-35s. The following average CHR values were obtained globally

from all edge routers (gw-): ≈16.4% in nfd:LRU, ≈15.9% in nfd:FIFO, and ≈18.0 in nfd:LFU during

the attack period (≈21-35s). In these scenarios, the attack results showed that an adversary can succeed

more in the least frequently used policy because it keeps the famous contents in CS compared to other

cache policies. Note that, the attack success can be different depending on the number of targets, quantity

of adversary, topology, and CS policy.

In NDNtube, the adversaries were able to locate the targets as the following clusters: i. 30.4% for edge

clusters, ii. 18.2 % for neighbor clusters, and iii. 51.4% for away clusters. These results were obtained by

nfd:LRU (default) scenario without any countermeasures applied.

Performance of attack in VoNDN. With multicast forwarding strategy, multiple paths are followed

by data packets, and contents are cached in more routers, while in best-route only the best path’s routers

6.3. Results 123

●

●

● ●
●

●
●

● ● ●
● ● ●

● ●
●

● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ●
● ● ●

●
● ● ● ● ● ●

● ● ●
●

●

●

●

● ●

●
●

● ●

●

●

●
●

● ● ●

22.5 25.0 27.5 30.0

0.7%

5.0%

36.8%

0.7%

5.0%

36.8%

0.7%

5.0%

36.8%

Attack time (seconds)

C
a

c
h

e
 h

it
 r

a
ti
o

 (
C

H
R

)

NDNtube ● nfd:LRU nfd:FIFO nfd:LFU

Figure 6.9: NDNtube brute-force attack performance on CS scenarios.

cache the content. In these experiments, the adversaries can distinguish between cached and un-cached

targets through the retrieved CRT values and take an attack decision about the callee and caller locations.

Figure 6.10 shows the results of the CHR values to measure the performance of the attack for best-

route and multicast forwarding strategies with LRU configuration VoNDN on NDN-testbed topology. In this

experiment, the average of CHR was calculated globally based on all edge routers, as defined by previous

Chapter 4, Eq. 5. The attack period was configured between 20-40s. The attack preparation takes ≈1s

that is started by ≈21s. Also, the adversaries finished the attack before the 40s because the attacks were

completed by ≈34s for pre-defined targets. In this scenario, the certificates were previously cached by

edge routers which were used to establish a voice/video conversation.

The adversaries targeted the certificates to know the location of callee and caller (≈60% of legitimate

nodes) by distinguishing between cached and un-cached certificates. To improve the success of the attack,

the brute-force procedure can be repeated by an adversary. By accomplishing this, an adversary can

distinguish between first and last repetitions. In this attack scenario, the adversary nodes retrieve the targets

with four repetitions (Table 6.2). Forty percent of adversary nodes were able to target 252 certificates (60%

of 420 legitimates) to identify the locations of legitimate nodes (callee and caller). The attack performance

124 Chapter 6. Scenarios and Results

●

●

●

●

●

●
●
●
●●●●

●
●
●●●●

●

●●
●
●●●●

●
●

●
●●●

●
●●●

●

●●●●●
●●

●

●●
●
●

●●
●
●

●
●●●●●

●●●●
●●
●
●
●
●
●
●
●●●●●●

●
●

●●
●●●

●

●
●●
●
●●
●

●
●●
●●
●●
●
●●●

●
●●

●
●●●●●

●●
●●●

●●●●

●

●●●●
●
●
●
●
●

●

2%

14%

100%

0 10 20 30 40

Simulation Time (seconds)

C
a
c
h
e
 H

it
 R

a
ti
o

Scenario ● nfd:best−route nfd:multicast

Figure 6.10: VoNDN brute-force attack performance on forwarding strategies.

measured in terms of global CHR, given by Eq. 5, presented the following values for the edge routers:

≈5% for nfd:best-route and ≈47.8% for nfd:multicast. Also, when an attack succeeds the CHR

increases when not vise-versa. Thus, PID (proportional-interval-derivate) behavior occurs during the attack

period.

Certificate location determination in VoNDN. The public key certificates are cached by the NDN-

testbed routers. Since the adversary targets the consumers’ certificates, these can identify the location of

the consumer.

If the target (certificate) has been cached in the edge router, then the adversary hits the cache and

obtains the minimum CRT. Through this attack, an adversary can identify the targets that have been cached

by the edge router. Moreover, the adversary can determine the un-cached target locations by analyzing the

CRT values. For instance, the maximum CRT reveals that the certificate has not been cached by any

router, except by its producer (CA). If the CRT obtained is between minimum and maximum, an adversary

concludes that the target has been cached by neighbor routers.

In this experiment, the adversaries were configured to distinguish the location of the cached and un-

cached certificate by comparing each of the collected CRTs. The CRT values are used to classify the

targets, based on three locations: i. cached by edge routers, ii. cached by neighbor routers, and iii. cached

by away routers.

Figure 6.11 shows the results of the target locations based on the CRTs obtained in the VoNDN multicast

default scenario without countermeasures. In this experiment, the adversaries were configured to target

6.3. Results 125

70.8%

17.4%

11.8%

0%

10%

20%

30%

40%

50%

60%

70%

80%

edge router neighbor router away router

a
tt

a
c

k
 s

u
c

c
e

ss
 f

re
q

u
e

n
c

y

Figure 6.11: Determine certificate locations in VoNDN.

all certificates these are cached by various locations (edge, neighbor, and away). Also, the legitimate and

adversary nodes are selected randomly on each attack scenario (20 simulation runs in total). The computed

location findings are based on all adversary’s CRT calculations. The adversaries concluded that the targets

were located on the testbed routers (42 in total) as follows: i. 70.8% cached by the edge router (≈30

routers), ii. 17.4% (≈7 routers) cached by the neighbor router, and iii. 11.8% (≈5 routers) cached by the

away routers or certificate authority in the testbed topology. In this attack scenario, the adversaries are

configured to attack all possible targets at the same time. Because of this, the success of the attack is

computed highest of the edge router. Also, the forwarding strategy increased the success of the attack

because every node cached the certificates with multicast.

6.3.2 Attack Detection Results

In a side-channel timing attack, the attack purpose (scope) can be different from the attack configuration

and the application. Thus, the attack detection methods and their threshold values can be different for the

applications. To detect the face of the router that is attacked, the detection methods (CRT, CHR, and hop

counts) were analyzed on the NDNtube and the VoNDN applications.

During the attack, each adversary repeats the targets at least four times which changes abnormally to

the pattern of the metrics (CRT, CHR, and hop counts) and these variance values can be used to define a

threshold for applications.

In this work implementations, the thresholds are pre-defined for NDNtube and VoNDN respectively. Also,

the threshold values can be computed dynamically depending on the application and its cache policy. Note

that, because of the factors (e.g. cache policy, attack design/scope, network topology, packet losses,

etc.), the detection metric threshold values cannot be defined as a fixed value to be applicable on all NDN

applications.

126 Chapter 6. Scenarios and Results

Next, the detection methods results are presented only to illustrate how the metrics variances changes

during the attack and can be used to detect an adversary’s face.

Content Retrieval Time (CRT) detection results. The average CRT of the adversary’s face may be

calculated as minimum or maximum during the attack. In this experiment, the CRT values were analyzed

during the attack period on the NDNtube and VoNDN applications. These values were analyzed for legitimate

and adversary nodes to understand the adversary behavior.

Table 6.7: Tree topology CRT Analysis.

Leaf

Estimated CRT

Threshold(s)

No Attack

first CRT

sample(s)

CRT

Variation (%)

1 0.03122045 0.03099957 –0.71%
2 0.03124 0.03100993 –0.74%
3 0.03123136 0.0310034 –0.73%
4 0.03122998 0.03100182 –0.73%
5 0.03122413 0.03099494 –0.73%
6 0.03122487 0.0194212 –37.80%
7 0.03122427 0.03099683 –0.73%
8 0.03122295 0.030993578 –0.73%
9 0.03123878 0.03101116 –0.73%
10 0.03123794 0.03100934 –0.73%
11 0.03123692 0.03100801 –0.73%
12 0.03123955 0.03101118 –0.73%
13 0.03123717 0.0144831 –53.64%
14 0.03123604 0.03100802 –0.73%
15 0.03123482 0.03100664 –0.73%
16 0.03123906 0.03101061 –0.73%

Firstly, the NDNtube was simulated on the tree topology (Fig. 6.3) to analyze the values of both the CRT

samples and the CRT threshold, the scenario ran the attack and no attack periods. Table 6.7 shows the

CRT threshold values were used to identify the attack of the adversarial node. The attack is detected when

the CRT of the sample is below the CRT threshold. Then, we ran the scenario under attack and collected

the first CRT samples. The results between the threshold and first samples are showed that CRT values

may change, because of real throughput delays and congestion. However, both the expected CRT under no

attack and the CRT variation (regarding the CRT threshold) reduced between ≈37% - 53% for leaf 6 and leaf

13. Therefore, these leaves are considered adversarial nodes in this particular scenario. The experimental

results showed that the CRT of the adversarial leaves were shorter than the CRT of the legitimate leaves.

The second experiment was simulated using the large set topology. The NDNtube application was simu-

lated using the AT&T (Fig. 6.4) topology and the VoNDN application was simulated using the NDN-testbed

6.3. Results 127

(Fig. 6.5) topology. In these experiments, the total amount of 50% adversaries were placed on NDNtube

and 40% on VoNDN.

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

nfd:LRU

0 20 40 60

0.01

0.10

1.00

Simulation time (seconds)

C
R

T
 v

a
lu

e
s
 (

m
s
)

NDNtube Adversary Legitimate

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

nfd:LRU(best−route)

0 20 40 60

0.01

0.10

1.00

Simulation time (seconds)

C
R

T
 v

a
lu

e
s
 (

m
s
)

VoNDN Adversary Legitimate

(a) (b)

Figure 6.12: Attack CRT detection values evaluation: (a) NDNtube global CRT values. (b) VoNDN global CRT values.

To understand the adversary behavior during the attack, the attack scenarios were configured to attack all

possible targets (brute-force), these recently cached by gateway routers. Figure 6.12 illustrates the average

CRT results collected from each node’s faces (legitimates and adversaries). Unlike Tree topology, the

adversarial faces CRT average was increased compared to legitimate CRT average. Because the adversary

can also identify the neighbor and away routers, the maximum CRT values may present the neighbor or the

away target locations.

Figure 6.12a illustrates themaximum, minimum, and average CRT values in the NDNtube-like application.

The adversary concludes that the target was cached by the edge router if its CRT is less than the un-cached

target(s). During the attack period, the adversary node faces CRT global average calculated 0.406 ms

and the legitimate node faces CRT global average obtained 0.196 ms. The adversarial node faces CRT

≈69% increased compared to legitimate node faces during the attack. In this particular scenario, CRT

values of adversaries’ were obtained dramatically above from legitimate CRT. This CRT variance can be

used to distinguish between legitimate and adversary nodes. For instance, the attack can be detected by

pre-defined CRT threshold values in a pre-defined attack detection period.

128 Chapter 6. Scenarios and Results

Figure 6.12b illustrates the CRT values on each face in the VoNDN-like application on NDN-testbed. In

this experiment, the CRT results were different than a streaming-like application because of the purpose

of attack, cache strategy, and topology. During the attack, 0.27 ms CRT average on the adversary’s faces

and 0.055 ms CRT average on the legitimate node faces were measured on nfd:LRU scenario.

In summary, legitimate nodes CRT values computed almost stabile on NDNtube and VoNDN. During the

attack, the adversary’s node CRT values are computed abnormally compared to legitimate nodes. These

variances are caused by the following: i. lowest CRT values (compared to legitimate) present targets are in

cached , ii. maximum CRT values present the targets are cached by neighbor routers, away routers, or they

are not existed (NACK packets). Thus the CRT can be used to identify the face of the node that is attacked

on the edge router. Through this identification, the router can set countermeasures to adversary detected

faces.

Cache hit ratio (CHR) detection results. During the attack, the CHR increases for the face of

the adversary. This certainly occurs because of the attack repetitions for the intended target which also

reveals to possible adversary face. The obtained CHR values were analyzed to illustrate the variance during

the attack. In this implementation, the NDNtube was simulated on AT&T topology and the VoNDN was

simulated on the NDN-testbed topology.

NDNtube CHR results. In NDNtube, the CHR of edge router (namely gateway) was analyzed on LRU,

FIFO, and LFU cache policies. When a target was cached and retrieved four times by an adversary, the

face’s CHR may be increased on the edge router.

Figure 6.13 illustrated the CHR values (min., max., and average) during the simulation time (60 seconds)

and the attack period is defined between ≈20-40 seconds. However, the attack was completed at ≈35

seconds because the targets were successfully retrieved before 40 seconds. In this scenario, the prepara-

tion of the attack takes ≈1 s therefore CHR values are analyzed after 21s. To distinguish the adversary

face from the legitimate face, the CHR was analyzed during the attack period and no-attack period of the

edge routers (gw-).

The multicast forwarding strategy was selected for the NDNtube with the following CS policies: nfd:LRU,

nfd:FIFO, and nfd:LFU. The CHR values obtained by globally (from all edge routers) and following CHR

average values obtained by following CS scenarios: ≈16.4% in nfd:LRU, ≈15.9% in nfd:FIFO, and

≈18.0% in nfd:LFU during attack period (≈21-35 seconds). These results are showing that an adversary

increases the CHR value during the attack and can be used to detect an adversary’s face.

On the other hand, the CHR average values were also obtained in the no-attack period (0-21 seconds) to

differentiate the adversary faces from legitimate faces. The following global CHR values were obtained by

following CS scenarios: ≈0.03% in nfd:LRU, ≈0.004 in nfd:FIFO, and ≈0.01 in nfd:LFU policies. These

values are computed lowest because legitimate nodes don’t request the same content twice (expect the

packet losses).

6.3. Results 129

●

●●●

●

●
●

●

●

●
●
●

●
●●

●●●●
●

●

●
●●

●

●
●
●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●
●

●
●

●●

●

●

●

●●

●

●
●

●
●
●
●

●●
●

●●

●

●

●

●
●
●

●

●
●

●●
●
●

●

●

●
●
●

●

●

●●
●●
●

●●

●

●

●●
●

●

●

●●
●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●
●●
●

●

●●
●
●
●
●●●
●●●●●

●
●●●●

●
●●
●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●

●
●●●●●

●
●●●
●
●●
●●●●

●●●
●

●

●

●

●●

●
●
●●

●

●

●
●

●●●

●

●

●
●

●

●

●

●
●

●
●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●●
●
●
●
●

●

●

●

●
●●●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●
●●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●
●

●●

●●
●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●
●

●
●

●

●
●

●

●●
●

●

●

●●

●

●
●

●
●

●
●

●●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●●

●●

●

●●

●
●
●
●
●

●
●
●
●

●
●
●
●

●
●
●

●

●

●

●

●●

●●●

●

●

●●

●●

●

●●
●

●●

●●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●

●
●

●

●

●
●

●
●

●

●
●●
●

●
●●
●
●

●

●●

●●●

●

●

●

●

●

●

●
●●

●●●●

●

●
●

●

●
●
●

0 20 40 60

1.0%

10.0%

100.0%

1.0%

10.0%

100.0%

1.0%

10.0%

100.0%

Simulation time (seconds)

C
a

c
h

e
 h

it
 r

a
ti
o

 (
C

H
R

)

NDNtube ● nfd:LRU nfd:FIFO nfd:LFU

Figure 6.13: NDNtube global CHR results (edge routers).

VoNDN CHR results. Figure 6.14 shows the global CHR values of the edge routers on the VoNDN. The

CHR values (min., max., and average–data presented in dots) were analyzed in best-route and multicast

forwarding strategies in LRU. In this scenario, the callee and caller (legitimate nodes) are exchanged the

certificate presented packets, at the beginning of the simulation period ≈0-5 s and the attack occurred in

≈21-35 s.

In VoNDN, the min., max., and average CHR values were obtained on nfd:best-route and

nfd:multicast forwarding strategies. During the attack period, the global CHR average values were

obtained on edge routers by following forwarding strategies: ≈5% in nfd:best-route and ≈47.8% in

nfd:multicast during the simulation time (0-60 s).

In summary, in both NDNtube and VoNDN scenarios, the CHR noticeably increases during the attack

period. Through this, a CHR threshold can be defined to distinguish the adversary faces from legitimate

faces.

130 Chapter 6. Scenarios and Results

●

●

●

●

●

●
●
●●●●●

●
●●●●●

●
●●●●●●●●

●
●
●●●●●●●

●
●●●●●●●

●
●●●

●
●●●

●
●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●

●●●
●
●●●●●

●
●●●

●●
●●●●●●●●●

●
●●●●●

●●●●●●●●●●
●●●●●

●●●
●
●

0 10 20 30

1.0%

10.0%

100.0%

1.0%

10.0%

100.0%

Simulation time (seconds)

C
a

c
h

e
 h

it
 r

a
ti
o

 (
C

H
R

)

VoNDN ● nfd:best−route nfd:multicast

Figure 6.14: VoNDN global CHR results (edge routers).

Hop count detection results. Because of the attack repetitions, the hop count information is obtained

lowest for the face of the router that is being attacked compared to the legitimate faces. Through this

difference, a hop count threshold value can be identified to detect the adversary’s face. For instance, if the

target has been cached by the edge router, a hop count for adversary node obtained for “1”. If not, higher

hop counts occur for neighbors and away routers. In this experiment, the hop counts were analyzed on

NDNtube (AT&T topology) and VoNDN (NDN-testbed topology).

NDNtube hop count results. In NDNtube, the adversary targets the video segments that were cached

by the edge routers. Also, the adversary can obtain an approximate location of the un-cached targets

comparing their CRT. When a cached video segment is cached by an edge router and targeted by an

adversary repeatedly (four times), the frequency of hop count “1” increases for the adversary’s face. Also,

other hop count frequencies have occurred for the neighbor and the away routers.

Figure 6.15 illustrates the global hop counts for the adversary and legitimate node faces on NDNtube in

LRU, FIFO, and LFU scenarios during the simulation time (0-60 s). In these results, the average, min., and

6.3. Results 131

●

●

●

●

●

●

●●

●●●

●

●●●

●●

●

●●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●●●

●

●●●●●●

●

●

●●●

●●

●

●●

●

●

●●

●●●●●

●

●

●

●

●

●

●●●

●

●●●

●

●

●●

●

●

●●●●●●

●

●

●●

●

●

●

●●

●

●●●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●●●●●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●●

●

●●

●

●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●

●

●●

●

●●

●●

●

●

●●●

●●

●●●●●●●●●●●●●●

●

●●●

●

●●●

●●●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●

●●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●●●●●

●

●●●●●

●

●

●●●●

●

●●●

●

●●●●

●

●●●●●●●●●●●●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●●●●●●●●●●●●

●

●

●

●●●●●

●

●●●●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●●

●●●

●

●

●

●

●

●●●●●●●●●

●

●●

●

●

●

●

●

●●●

●

●●●●●●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●●●●●●●

●

●

●●

●

●●●

●

●●●●●●

●

●●●

●

●

●

●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●

●●●●●●●●●●●

●

●●●

●

●●●●●

●

●

●●●●●

●

●●●●●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●●●

●

●●●●

●

●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●

●

●

●

●

●●

●

●

●

●●●

●●

●

●●

●●●

●

●

●●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●●

●●

●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●

●●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●●●●●●

●

●●●●●

●

●●●●●●

●

●●

●

●●●●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●●●

●

●

●●●●●●

●

●

●

●●

●

●●

●

●

●●●

●

●●●●●●●●●●●

●

●●

●

●

●●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●●●●●●

●

●

●

●

●●

●●●●

●

●

●

●

●●

●●

●

●●

●●

●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●●

●●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●●●●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●●●●●●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●

●●

●●●●●

●

●

●

●●●●

●

●

●●

●

●●●●●●

●

●

●●●●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●●

●

●●●

●

●

●●

●

●●

●

●

●●●●●

●

●●

●

●

●

●

●●

●

●

●

●

●●●

●

●●

●

●●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●●●●

●●

●●

●

●●●●

●

●

●●●●●●

●

●●●●●●

●

●●●●●

●

●●●●●●●●●●●

●

●

●

●●●●●●

●

●●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●●●●●

●●

●●●

●●●

●●

●●

●

●●

●

●●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●●●●

●

●●

●

●

●●

●●

●

●●●●●

●

●●●●●

●

●●

●

●

●

●

●

●

●●●

●

●●

●●●

●

●

●●●●

●

●●

●

●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●●●

●

●●

●

●●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●●

●●●

●

●●●

●

●

●●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●●

●

●

●●●

●●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●

●

●

●●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●●

●

●

●

●●

●●●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●●●

●

●●

●

●●●●

●

●●●●●●●●●●

●

●●●●●

●●●

●●●

●●

●●●●

●

●●

●

●●●●●●

●

●

●

●●●●●

●

●●●●

●

●●

●●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●●●●

●

●●●●●●●●●●●●●●●●

●●●

●

●

●●●●

●

●●

●

●

●

●●●●●●●●●●●●●●●

●

●●●●●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●●●●●

●●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●

●●

●●●

●

●

●●

●●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●●

●

●●●●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●●

●

●●●

●

●●

●

●●●●●●●●●

●

●

●

●

●●●

●

●●●

●

●●

●

●

●

●●●●●

●

●●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●●●

●

●●

●●●●●●●●●●

●

●●●●●

●

●

●●●●●●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●●●●

●

●●

●

●

●●●

●

●

●

●

●●●●●●●

●

●●

●

●●●●

●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●●●●

●

●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●●●

●

●

●

●

●

●●●

●

●●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●●●●●●●●●

●

●

●

●●

●

●●

●

●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●●

●

●●

●

●

●

●

●●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●●●●●●●●●●

●

●●●●●●●

●

●

●

●●●

●

●●●●●●●●●●●●

●

●●●●●●●

●●

●●

●

●

●

●

●

●●●

●

●

●●●●●●●●●●●●●●●●●●

●

●

●●●●

●

●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●●●

●

●●

●

●●●

●

●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●

●

●

●●

●

●●●

●

●

●

●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●●●●●●●●

●●

●●●

●●●

●

●●

●

●

●

●

●●●

●

●●●●

●

●●●●●

●

●

●

●

●●

●●●

●●

●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●

●●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●●●●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●●

●

●●●

●●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●

●

●●

●●

●

●

●●●

●

●●●●●●

●●

●●●●●●

●

●●●●●●●●●

●●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●●●●●●●●●●●●

●●

●●●●●●●●●

●

●●

●

●

●●●●●●

●

●

●●

●

●

●

●

●●●●

●

●●

●

●●

●

●●●

●●

●

●●●●

●

●●

●

●●●●●●

●

●●●●

●

●●

●

●

●

●

●●

●●●●●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●●

●●●●

●

●

●●●●●

●

●

●

●●

●

●

●

●

●

●

●●●

●●

●●

●

●●●

●

●●●●

●●

●●●●●●

●

●

●●●

●

●

●

●

●

●

●

●

●●●

●

●●●●●

●

●

●

●●

●

●

●●

●

●

●●

●

●●

●

●●●

●

●

●●

●

●

●

●●

●●●●●

●

●

●

●●●●●●●

●

●●●●●●●●●

●

●●●●

●

●●

●

●

●●●

●●

●

●

●●

●

●●●

●●●●●

●●

●

●

●

●

●

●●●●

●●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●●●●

●

●

●●●●●●

●

●●●●

●

●●●

●

●●●●●

●

●

●●

●●

●●

●

●

●

●●●●●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●●●●

●

●

●

●●●

●

●

●

●●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●●●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●●●

●

●

●●●●

●

●●●

●

●

●

●

●●●●

●

●

●

●

●

●

●●

●

●●●●

●

●

●●

●

●●●●

●

●

●●

●●●●●●●●

●●●●

●

●

●

●

●●●●●

●

●●●

●

●

●●●●●

●

●

●

●●●

●●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●●●●●

●

●●●●●●●●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●●

●

●●●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●●●●●●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●

●

●

●●

●

●

●

●●●●●●●●●

●

●

●

●

●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●●●●●●●●●●

●

●●●●●

●

●●●●

●

●●●●●●●●●●●

●

●●●●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●●●●●

●

●●●●●●●●

●

●●●●●●

●

●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●●

●●

●

●

●●●●

●

●●●

●

●●●●●

●

●●●

●

●●

●●●

●

●

●

●

●

●

●●

●●●●●

●

●●

●

●●●●●

●

●

●

●

●●●●●●

●

●

●●●●

●

●

●●

●

●

●●

●

●

●

●

●

●●●●●●

●

●●●●●●

●

●●

●

●

●

●

●●●●●●●●●●●●●●●●●

●

●●●

●

●●●

●

●●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●●●

●●

●

●

●

●

●●●

●

●

●●

●

●●●

●

●

●●

●

●●

●●●●●●●

●

●

●

●●●

●●

●

●

●●●

●●

●

●●

●

●●

●●

●

●●

●●

●

●●

●

●

●●●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●

●●

●

●

●

●

●

●

●

●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●

●●

●

●

●●●●●●●

●

●●●●

●

●●●●●●●●

●

●●●●●●●

●●●●

●●

●

●

●

●

●●

●

●

●●●

●

●

●●●

●

●●●

●

●

●●●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●●

●

●

●●

●

●●

●

●●●●

●

●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●

●●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●

●

●

●

●●●●●●

●

●●

●

●●●

●

●●

●

●●●

●

●●

●

●

●

●

●

●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●●●●●●●●●●●●●●●●

●

●●●●

●

●●

●

●●

●

●●●

●●●●

●●●

●

●●●●●●●

●

●●●●

●●

●●●●

●

●

●

●●●

●

●●●

●

●

●

●

●

●

●

●●●●

●●●

●

●

●

●

●●

●

●●●●●●●●●●●●●●●●

●●

●●

●

●●●

●

●●●●●●

●

●

●

●

●●

●

●●●

●

●●●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●●

●

●●

●

●

●

●●●●

●

●

●

●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●●●●●●●

●

●●●●●●●●

●

●●●●●●●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●

●●

●

●●

●

●

●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●●

●

●●●

●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●●●●●●●●●●●

●

●●●

●

●●●●

●●

●●

●

●

●

●●

●

●●●●●

●●

●

●

●

●●

●

●

●

●

●●●

●

●●

●

●●

●●

●

●

●

●●●

●

●●●●●●

●

●●●●●

●●

●●●●●●●

●

●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●

●

●●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●●●

●

●●●●●

●

●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●●●

●

●

●●●

●

●●●

●

●●●●●●●

●

●

●

●

●●

●

●

●

●●●●●

●

●●●●●●

●

●●

●

●●●●●

●

●●

●

●

●

●

●

●●●

●●

●●●

●

●●●●

●

●●●

●

●

●

●

●

●

●

●

●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●

●

●●●

●

●●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●●●

●

●

●

●●

●

●●

●

●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●

●

●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●●

●

●

●

●●

●

●

●●

●

●●

●

●●●

●

●●●

●

●●●●●●

●

●

●

●

●

●●

●

●

●

●●●●

●

●

●

●

●●

●

●●●●●●●●

●

●

●

●

●●●

●

●●

●

●●●●●●●

●

●

●●●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●●

●

●

●●

●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●●

●●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●●●●●●●●●●

●

●

●

●●

●

●●

●

●●●

●

●

●

●●●●●●●●●●●●

●

●

●

●

●

●

●

●●

●

●●●●

●

●●

●

●

●●●●

●

●

●

●

●

●●●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●●●●

●

●●●●●●●●●●●

●

●●●●

●

●

●

●

●

●●●●●●

●

●

●

●

●●●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●●●

●●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●●●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●●

●●

●

●●

●

●

●●●●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●●●

●

●

●

●●●●●

●

●

●●

●●●●

●

●

●

●

●●

●●●●

●

●●

●

●●●●●●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●●●

●

●●

●

●●●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●●

●

●●

●●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●●●●●●●●●●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●●

●

●●●

●

●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●●●●●

●

●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●●●●●●

●

●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●●

●

●

●

●

●

●

●●

●●

●●

●

●

●●●

●●

●●

●

●

●

●

●

●●

●

●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●

●

●●

●●●●

●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●

●

●

●●

●

●●●●●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●●●

●

●●●●●

●●

●

●

●●●

●●

●

●

●

●●

●

●●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●●●

●

●

●

●

●

●●

●

●●

●

●●

●●●●●●

●

●

●●

●

●●●●

●●●

●●

●●

●

●●

●

●●●●

●

●●●●

●

●●●

●●

●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●

●

●●●

●●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●●●●●●●●

●

●●●●

●

●●●

●

●●●●●●●●●●

●

●●

●

●

●

●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●●●

●

●●●

●

●

●●●

●

●

●

●●●●

●

●

●●●

●

●●

●

●●

●

●●

●

●

●●●●●

●

●●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●●●●●

●

●

●

●

●●

●

●

●

●●●

●

●

●●

●

●

●●

●

●

●

●●

●

●●●●●●●

●

●

●●●●●

●

●●

●

●

●

●●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●●●●

●

●●●

●

●

●

●●●●●

●

●●●●

●

●●●●

●

●●

●

●●●●●●●●●

●

●●●●●●

●

●

●

●●●

●

●●●●●

●●●●

●

●●

●●

●

●●

●

●

●

●●●

●

●

●

●●

●

●●●●●●●●●●

●

●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●

●

●●●●●●

●

●●●●●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●●●●●

●

●

●

●●●●●

●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●●●●

●

●

●

●●

●

●●●●●●

●

●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●●

●

●●

●

●

●

●

●

●●●●●●

●

●●●●

●

●●

●

●●●●●●●●●●

●

●●

●

●●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●●●●●●●●●●●●●●●●

●

●●●●

●

●

●

●

●

●●

●

●

●

●●●●●●●●

●

●●

●

●●●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●●●●

●

●●●●

●●

●

●

●

●

●●●●●●●

●

●

●●

●

●●

●

●

●●●●

●

●●●●●

●

●●

●

●●●

●

●●●●

●

●●

●

●

●

●●●●●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●●

●●

●●

●

●●

●●

●

●

●

●

●

●●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●●●

●

●●●

●●

●

●

●●●

●●

●

●●

●●●

●●●

●●

●●

●●

●

● ●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●●●

●

●●●

●●

●

●

●

●●

●●

●●

●●

●●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●

●●●

●

●●●●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●●●●

●

●●●●

●

●

●●

●

●

●

●●

●

●●●

●

●●●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●●

●

●

●

●●

●

●

●

●●●●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●●●

●

●

●●●

●

●●●●●●

●●

●

●

●●●●●

●

●●

●

●

●

●

●

●●●●

●

●

●

●●●●

●●●●●●

●

●

●

●

●●●●●

●●

●●●●●●●● ●

●

●

●

●

●

●●

●●●

●

●●●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●●●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●●●

●

●

●

●

●●●

●

●●

●●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●●●●

●

●●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●●

●

●●●

●

●●●●●●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●●●●

●

●●●●●

●

●

●●●●●●●●●

●

●●●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●●

●●●●●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●

●

●

●

●

●●●

●

●●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●●●●●

●

●●●●●●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●●●

●

●●●●

●

●●●

●

●

●

●●

●

●

●

●

●

●●●●●●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●

●

●

●

●

●●●●●

●

●●●

●●

●

●●

●●

●

●●

●

●

●

●

●●

●

●●

●

●●●●●●●

●

●

●●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●●●

●

●●●●●●

●

●

●●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●●●

●

●

●●●●

●

●

●

●●●

●

●●●●●●●●

●

●●

●

●●●●●●●●●●●●●

●

●●●●●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●●

●

●●●

●

●

●

●●●●●●●●●●●

●

●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●●●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●●

●

●●

●

●●●●●●●●

●

●●●●

●

●

●

●

●

●

●

●

●●●●●

●

●

●●

●

●

●

●

●

●●●●●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●●●●

●

●

●

●●

●

●●

●

●

●●

●

●●●●

●●

●

●

●

●

●

●

●●●●

●

●●

●

●

●●●

●

●

●

●●

●

●●●●●●●●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●●●●●●●●

●

●●

●

●●●

●

●●●●●

●

●●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●●●●●●

●

●

●

●

●

●●●●●

●

●

●

●

●●

●●

●

●●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●●

●

●

●

●●

●●●

●

●●

●

●

●

●●●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●●●

●

●

●

●●●●

●

●●

●●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●●●●●●●●●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●●●

●

●

●●●●●●●

●

●●

●

●●●●●●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●

●●

●●●●●

●

●

●

●●●●

●

●

●●

●

●●●●●●

●

●

●●●●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●●

●

●●●

●

●

●●

●

●●

●

●

●●●●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●●●

●●

●

●

●

●

●

●

●

●

●●

●●●●●

●●

●

●●●

●

●●

●●●●

●

●●●

●

●

●

●●●●●

●●

●

●●●

●

●●

●

●●●

●

●●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●●

●

●

●●●●●

●

●

●●●●●●●●

●

●

●

●●

●●

●

●●

●●

●

●●

●

●●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●●●

●●

●●

●

●

●●●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●●

●●●

●

●●●

●●●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●●

●

●

●●●●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●●

●

●

●●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●●

●

●●●●

●

●

●●

●

●

●●

●●●

●

●

●

●

●●●●●●

●

●

●

●●

●●●

●

●

●●

●●

●●

●

●

●●●●●●

●●

●

●●●

●

●

●

●●●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●●

●●

●

●

●

●●●●●●

●

●

●●●●●●

●

●

●

●●

●

●●●●●●●●●●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●●●

●●

●●●

●

●

●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●●

●●

●●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●●

●

●●●●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●●●●●●●●●●

●

●●●●●

●

●

●

●●

●

●

●●●

●●●

●

●

●

●

●

●

●●

●

●●

●

●●●

●

●●●●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●●●

●●

●

●●

●●●●

●

●●●

●

●

●

●

●

●●

●

●

●●●

●

●●●

●

●●

●

●

●

●

●

●●●

●●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●●●●●●●●●●

●●

●●●●●

●

●

●●●●

●

●●●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●●●●●

●

●

●

●

●

●

●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●

●

●●●●●●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●●●

●

●

●

●●●

●

●●●

●

●

●●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●●

●●

●●

●

●●

●

●●

●

●

●

●

●●●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●●●

●

●●●●

●

●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●●

●

●

●

●●

●

●

●

●●●

●

●

●●●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●●●●●●●●

●

●

●

●

●

●●●

●

●

●

●

●

●●●●

●

●

●●

●

●

●●●●●

●

●

●

●●●

●

●

●●

●●

●

●

●

●

●

●●●

●

●

●●●●●●●●●●●●●●●●●●

●

●

●●●●

●●

●

●

●

●●

●

●

●●●

●●

●

●

●

●

●●●●●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●●●●●●

●

●●

●

●●●

●

●●

●

●

●●●●●●●●

●

●●●

●

●●

●

●

●

●●

●

●

●●●●●●●●●●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●●

●

●●

●

●●●●●●●●●●

●

●

●●●●

●

●●●

●

●●●

●●●

●●●●●

●

●●●

●

●●●●

●

●

●●●●●●●●●

●●●●●●●●

●●

●●●

●●●

●

●●

●

●

●

●

●●●

●

●●●●

●

●●●●●

●

●

●

●

●●

●●●

●●

●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●

●●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●●

●●

●●●

●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●●

●

●●●

●●

●●●●

●

●●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●●

●●●●

●

●●

●

●●●

●

●

●●●

●

●●●

●

●●

●

●

●

●●

●

●

●●●

●

●●●●●●

●

●●●●●●●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●●

●●●●●●●●●●●●

●

●

●

●

●●●●

●

●

●●●

●

●

●

●

●

●

●●●

●

●●●

●

●

●●

●

●

●

●

●

●●●●

●

●

●●●

●●

●

●●●●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●●●●

●

●

●●

●

●●●●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●●●●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●●

●●

●●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●●●

●

●

●

●●●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●●●●●

●

●

●

●

●●

●●●●

●

●●

●

●●●

●●

●

●●●●●

●

●●

●

●●

●●

●

●●

●

●●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●●

●●

●●●●●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●●●

●

●●●

●●

●●●●

●

●

●●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●●●●

●

●

●

●

●●●●●

●

●●●

●

●

●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●●●

●

●

●●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●●●●●

●

●●●●●●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●●

●

●●●●●●●

●

●●●●●●●●●●●●●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●●●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●●

●

●●●●●●●●

●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●●●

●

●●●●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●●

●●●●●●●●●●●●●●●●●●●●●

●

●●●

●●

●

●●●●

●

●

●●

●●

●

●●●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●●●●

●

●

●

●●●●

●

●●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●

●

●●●●

●

●

●

●●

●

●

●

●●●

●

●●●●●●

●

●●●

●

●●●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●●●●●●●●●●●

●

●●

●

●●●●●

●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●●●●

●

●●●●●●●

●●

●

●

●●

●

●●●●●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●●●

●

●●●●

●

●

●●

●

●

●●

●●

●

●

●●●●

●

●●

●●●

●●●●

●

●●●

●

●●●

●

●●●●●

●

●

●●●●

●

●●●

●●●●

●●

●

●

●

●

●●

●●

●●●

●

●●●

●●●

●

●

●

●●

●

●●

●

●

●

●

●

●●●●●●

●

●●●●●●

●

●

●

●

●

●

●

●●

●

●●●●

●●

●●

●●●

●

●

●

●●

●

●

●●●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●●●

●●

●

●

●●●

●●

●

●●

●

●●

●●

●

●●●

●

●

●●

●

●

●●●●●●●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●●●●●

●

●●●●●●●●

●

●●●●●●●

●●●●●

●

●

●

●●

●

●●●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●●●●

●●

●

●

●

●

●●

●

●

●●●

●

●

●●●

●

●●●

●

●

●●●

●

●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●●●●●

●

●●●●●●●●●●●●●●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●●●●

●

●

●

●

●●●●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●●●●●

●

●●●●

●

●●●

●

●●

●

●

●

●

●

●●●●

●

●●●●●●

●

●●

●

●●

●

●●●●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●●

●

●●●●●●

●

●●●●●

●

●●●●●●

●

●●

●

●●

●

●

●

●

●●●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●●●●●●

●●●●

●●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●●●●●●●

●

●●●

●●

●

●●●●

●●

●

●

●

●●

●●

●

●●

●

●

●●

●●

●●●

●

●

●

●

●●●●

●

●

●

●●●●

●

●

●

●●

●

●●

●

●●●●●●

●

●

●

●●

●

●●●

●

●

●

●●●●●●

●

●●●●●●●●●●●●

●

●

●

●●●●●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●●●●●

●

●●●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●●

●

●

●●●●●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●●

●●

●

●

●

●

●

●●●

●

●

●●●●

●

●●●

●

●●●●●

●

●

●●

●

●●

●

●

●

●

●

●●●

●

●

●

●●

●

●●●

●

●

●●●●●●●

●

●●●●●

●

●

●

●

●

●

●●

●

●●

●

●●●●●●

●●

●●●

●

●●

●

●

●

●

●

●●●●●●

●

●●

●

●●●●●●

●

●●

●●

●●●●●●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●●●

●

●

●●

●

●●●●●●●

●

●●●

●

●

●

●●●●●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●●●●●●●●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●●●●●●●

●

●

●●●●●●●●●●●

●

●●

●

●

●

●

●

●

●

●●●●●●

●

●●●●●●●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●●●

●

●

●●●

●

●●

●

●●●●

●●

●●

●

●

●●

●●

●

●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●

●●

●●

●

●

●

●●●

●

●●●

●

●●

●

●●●●●

●

●●

●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●●

●

●

●●

●●●●●●●●●

●

●

●●

●

●

●●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●●●●●●●

●

●●●●●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●●●●●●●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●

●●●●

●

●●●

●

●●●

●●

●

●

●

●

●●●

●

●●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●●●

●

●

●

●●

●

●●

●

●●●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●●●

●

●●

●●

●

●

●●

●

●●●●●●

●

●

●

●

●

●●

●

●

●

●●●●

●

●

●

●

●●

●

●

●●

●●●●

●

●●

●

●

●

●●

●

●

●

●

●●●●●

●

●

●

●

●●●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●●●●●●●●●●●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●●●●●●●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●●●●

●

●●●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●●●●●●●●●●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●●

●

●●

●

●●

●●

●●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●●

●●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●●

●

●●

●

●

●●●●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●●●

●●●

●●

●●

●

●

●

●●

●

●

●●

●

●

●

●●●

●

●

●●

●

●

●●●

●●

●

●●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●●

●

●

●●

●●●

●

●●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●

●

●●●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●

●

●●●

●

●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●●●●●●●●●

●

●●●●●

●

●●●●●

●

●●

●●

●●●

●

●●

●

●

●●

●

●●●●●●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●●●●

●

●

●

●●●●●●●

●

●

●

●

●

●●●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●●

●●

●●

●

●

●

●

●

●

●●

●●

●●

●

●

●●●

●●

●●

●

●

●

●

●

●●

●

●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●

●

●●

●●●●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●●●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●●●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●●

●

●

●●●

●

●●

●●

●

●●●

●●

●

●

●●●●

●●●

●

●

●

●

●

●

●●●●●●

●

●

●●

●

●●●●

●●●

●●

●●

●

●●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●●

●

●

●●

●●

●

●●●

●●

●

●●●●●

●

●

●●

●●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●●●

●●

●●●●

●●

●

●●●

●

●

●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●●●●

●

●●●

●

●

●

●●●●●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●●●●

●●●●

●●

●

●●

●●●

●●●●

●

●●

●●

●

●●

●

●

●

●●●

●

●

●

●●

●

●●●●●●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●●

●●●

●

●

●●●

●

●●

●●●●●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●●●

●

●

●

●

●

●●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●●

●

●

●●

●●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●●●●●●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●●

●

●●●●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●●●●●●

●

●●●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●●

●

●

●

●●

●

●

●●●

●●●

●

●

●

●

●

●

●

●●

●●

●

●●●

●

●●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●●

●●

●●

●

●

●●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●●●●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●●

●

●●

●●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●●●

●

●

●

●●

●

●●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●●● ●

●●●

●

●

●●

●

●

●

●

●●●

●

●●●●●

●

●●●●●●●●●

●

●●

●

●

●

●●●

●●●●●●●●●●●

●●

●●●●●●●●●●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●●●

●

●

●●●

●

●

●●

●●

●●

●●

●●●●

●

●

●

●●

●

●

●●

●●●●●●●

●

●●●●●●●●●●●●

●

●

●●

●

●

●

●

●●●●

●

●●●●●●

●

●

●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●●

●

●●●●●●● ●

●

●

●●

●

●

●●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●●

●

●

●

●●●

●

●

●

●

●●

●

●

●●

●

●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●●●●●●●●●

●

●

●

●●

●

●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●●●●●●

●

●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●●

●

●●●●●●

●

●●●

●

●●●

●

●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●

●●●

●●●

●

●

●

●

●●

●

●

●●

●

●

●●●

●

●

●

●●●

●

●●●●●●●●

●

●

●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●●●

●

●

●

●

●

●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●

●

●●

●

●

●

●●●

●

●

●●●●●

●

●●●●●●●●

●

●●

●

●●●●●●

●

●●●●●●●●●●●

●

●

●

●●

●

●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●●●

●

●●

●●

●●

●

●

●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●●●

●

●

●

●●●●●●●●●

●

●●

●

●●●●

●

●●●●●●●●●●●●●●●●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●●

●●●

●

●●●

●●

●

●

●

●

●

●●

●

●●

●

●

●●●

●

●●●●●

●

●●●

●

●

●

●

●

●●

●

●●●●●●●●●

●● ●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●

●

●●●●

●

●

●

●

●

●

●

●●●●●

●

●●●

●

●

●●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●●

●

●●●

●

●●●●●

●●

●

●

●

●●

●

●

●●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●●●

●

●

●

●●●●●●●

●●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●●●

●●●●●●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●

●●

●●●●●

●

●

●

●●●●

●

●

●●

●

●●●●●●

●

●

●●●●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●●

●

●●●

●

●

●●

●

●●

●

●

●●●●●

●

●●

●

●

●

●

●●

●

●

●

●●●●

●

●

●

●●●●●●●●●●●●●●●●

●

●●●

●

●●

●

●

●●●●

●●

●●●●●●●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●●●●●●●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●●

●

●●

●

●●●●●

●●●●●●●●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●

●

●●

●

●●

●

●●●

●

●

●

●

●

●●

●

●

●●●

●

●●

●

●●

●

●●

●

●●

●●

●●●

●

●●

●●

●

●

●

●

●

●

●●

●●●

●

●●

●

●●●●●●

●

●●

●

●

●●●

●

●●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●●●●●

●

●

●●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●

●●

●●●

●

●

●

●

●●

●●●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●●

●

●●●●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●●

●

●

●●●

●

●

●●●

●

●●●●

●●

●●●

●

●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●●●●●●●

●

●●●●●●●●●●●●●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●

●

●●

●●

●

●

●●

●

●●

●

●

●

●

●●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●●

●●●

●●●●

●

●●●●●●

●●

●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●●●●

●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●●●

●

●

●●

●

●

●

●

●●●●●

●

●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●●

●

●●●

●

●●●●●

●●

●

●

●●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●●

●

●

●

●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●

●

●

●

●

●

●●●

●

●

●●●●●●●●●●●●●●

●

●●●

●

●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●●●●●

●

●●

●

●●●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●●●

●

●

●

●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●

●●●

●●●

●

●●

●

●

●

●

●●●

●

●●●●

●

●●●●●

●

●

●

●

●●

●●●

●●

●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●

●●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●●

●

●

●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●●

●

●

●

●

●

●●●

●

●●

●

●

●●

●●●●●

●

●

●

●

●

●●●

●

●●

●

●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●●●●●●●●●

●

●

●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●●●

●

●●●

●

●

●

●

●●

●

●●●●

●

●

●

●●●●●●●●●●●●●●

●

●●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●●

●

●●●

●●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●

●

●●

●

●●

●

●

●

●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●

●

●

●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●●

●

●●●

●

●

●

●

●

●●●

●●

●●

●

●●●

●

●

●

●

●●

●●●●●

●

●●

●●

●●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●●●

●

●

●●●●

●

●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●●●●

●

●●●●●●

●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●●●●

●

●

●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●

●

●

●

●●●●●

●

●●●

●

●

●●●●●

●

●

●

●●●

●●

●

●

●

●●

●●●

●

●

●

●

●

●

●●●●●●●●●●●●●●

●

●●●●

●

●●●

●●

●

●

●

●

●

●●

●●●

●

●

●●●

●

●

●

●●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●●

●

●

●

●●

●●

●

●●

●

●●

●

●

●

●●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

● ●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●●

●

●

●

●

●●

●●●●●●

●

●

●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●

●

●

●

●●●●

●

●●●●●●●

●

●

●●●●●●●●●●●●●

●●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●

●

●●

●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●●●

●

●●●

●

●●●

●

●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●

●

●●●●

●

●●●

●●

●

●

●

●

●

●●●●●●

●

●●●●●●

●

●

●

●●●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●●●●●●●●●●●

●

●●●

●●●●●

●

●

●

●●●

●●

●

●

●●●

●●

●

●●

●

●●

●●

●

●●

●●

●

●●

●

●

●●●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●

●●

●●●

●

●

●

●●●●

●

●

●●●

●

●

●●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●●●●

●●

●

●

●

●

●●

●

●

●●●

●

●

●●●

●

●●●

●

●

●●

●

●●●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●●●

●

●

●●●●

●

●●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●

●

●●

●

●

●

●

●●

●

●

●●●●●●●●

●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●

●●●

●

●●

●

●

●

●●

●●

●

●

●●●

●●

●●●●

●

●●●●●●●●●●

●

●●●●

●

●●●●●●●

●●

●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●●●●●●●●●●●●●

●

●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●

●

●●●●

●

●●

●●●●●●●●

●

●●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●

●

●

●●

●

●

●

●●●

●

●●●●●●

●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●

●

●

●●

●

●

●●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●●●

●●

●●●

●

●

●

●●●●●●

●

●●

●●

●

●●●●

●

●●

●●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●

●

●

●

●

●

●

●●●

●●●

●

●

●

●

●

●●●●●

●

●

●

●●

●

●●

●

●●●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●●●

●

●●●

●

●●●●●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●●●

●

●

●

●

●

●

●

●

●●●●

●

●

●●

●●

●

●

●●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●●

●●

●●●●●●●●

●

●

●

●●●

●

●●●●

●

●●●●●●●●●●

●●

●

●

●●

●

●

●●●

●

●●●●●●●●●●●●

●

●●●

●

●

●

●

●●

●●●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●●

●●

●

●

●

●

●

●●●●

●

●●

●

●●●●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●●●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●●●●

●

●●

●

●●●

●

●●●●●●●●●

●

●●●●●●●

●

●●●●

●

●●●●●●

●

●●●●●

●●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●●

●

●●●

●●●

●●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●●●

●

●●

●

●●●●

●

●●●●●●●●●●●●●●●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●●●●●●

●

●

●

●●●●●●●●●●●●●●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●●

●●●

●

●●●●

●●

●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●●●●●●●

●

●●●●

●

●

●

●●●

●

●●

●

●●●●●●●●●●●●●●

●

●●●

●

●●

●●

●

●●

●

●

●●●●

●

●

●

●

●●

●

●●

●

●

●

●

●●●

●●●

●

●

●●●●●

●

●●●●

●

●●

●

●

●

●

●

●●●●●

●

●●●●

●

●●●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●●

●

●●●

●●

●

●

●●●

●

●●●

●

●●

●

●

●●●●●

●

●

●

●

●

●●●

●

●●●

●

●

●

●

●

●

●●●●

●●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●●●

●

●●

●

●

●

●●

●

●

●

●●●●

●

●

●●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●

●

●

●●●●

●

●●

●

●●●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●●●●●●●●●●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●●●●●●●●

●

●●●●●●

●

●●●●●

●

●

●

●

●

●

●●●●

●

●

●

●

●●

●

●

●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●●

●●●●

●

●●●●●●●●●●●●●●●●

●●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●●

●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●●

●

●

●

●

●

●

●●

●●

●●

●

●

●●●

●●

●●

●

●

●

●

●

●●

●

●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●

●

●●

●●●

●

●●●

●

●●

●●

●

●

●●●

●●

●●●

●●

●

●●●●

●

●●●

●●●●●●

●

●

●●

●

●●●●

●●●

●●

●●

●

●●

●

●●●●

●

●●●

●●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●●●●●●

●

●●

●

●●

●

●●●

●●●●●●●

●

●

●

●

●

●

●

●

●

●●●●

●

●●●

●

●

●

●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●

●●

●●

●

●●

●

●

●

●●●

●

●

●

●●

●

●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●●●●●

●

●

●●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●●

●

●●

●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●

●

●●●●●●

●

●

●

●●●●●●●●

●

●

●●

●●●●

●

●●●

●

●

●

●●

●

●

●

●●

●

●●

●

●●●●●●●

●

●●●

●

●●●

●

●●●

●

●●

●

●

●●

●

●●●

●

●●●

●

●●●●●●●●●●

●●●

●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●●●

●●

●

●

●

●●

●

●

●●

●

●●●●

●

●

●●●●●●●●●

●

●●●

●

●●

●

●●●

●

●●

●●●●●●●

●

●

●

●●●●●

●

●●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●●●●●●●●●●●●

●

●●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●●●

●

●

●●●●●●●●

●

●●●

●

●

●

●

●

●

●●●

●

●

●●●

nfd:LRU nfd:FIFO nfd:LFU

0 20 40 60 0 20 40 60 0 20 40 60

1

3

5

Simulation time (seconds)

H
o

p
 C

o
u

n
t

(n
u

m
b
e

r)

NDNtube Adversary Legitimate

Figure 6.15: NDNtube global hop counts.

max. of hop counts were illustrated for the adversary and the legitimate faces respectively. The following

average hop counts were obtained: i. adversary faces: 1.40 in nfd:LRU, 1.95 in nfd:FIFO, and 1.52 in

nfd:LFU. ii. legitimate faces: 3.72 in nfd:LRU, 4.15 in nfd:FIFO, and 4.15 in nfd:LFU.

The results show that the hop count average is noticeably lower than the legitimate requests. To show

this, Figure 6.16 illustrates the relative frequencies of hop counts on “attack” and “no attack” scenario

simulations. In these results, the lowest hop count “1” presented the cached target from the first hop. For

instance, with LFU, the frequency of “1” hop count is 20.5% under the attack period and 0.0% with no

attack period.

These results show that a hop count threshold can be identified to detect the adversary face in NDNtube.

As proposed in DaD, the hop counts can be useful information to detect the adversary face to apply the

countermeasures.

VoNDN hop count results. In VoNDN, the hop counts were obtained from best-route and multicast

forwarding strategies. In this experiment, the hop count metrics were analyzed globally from the NDN-

testbed edge routers.

Figure 6.17 illustrates the hop count results (0-60 s) on best-route and multicast forwarding strategies

in the VoNDN application. In these results, the average, min., and max. of hop counts were illustrated for

the adversary and the legitimate faces respectively. In the attack period, the adversary nodes targeted all

132 Chapter 6. Scenarios and Results

20.5

1.1

4.7

24

14.5
15.5

11.3

8.4

0 0.1

4.8

30.6

18.2

20.3

14.5

11.6

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 > 8

%

LFU sceanrio hop counts

attack

no attack

15.8

0.9

4.7

25.9

15.4
16.4

11.9

9

0 0.2

4.7

30.1

18.1

20.9

14.4

11.6

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 > 8

%

LRU scenario hop counts

attack

no attack

12.3

17.3

12.9

30.9

19.5

3.2
3.9

00

18.6

14.2

35.2

23.6

3.5
4.7

0

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 > 8

%

FIFO scenario hop counts

attack

no attack

Figure 6.16: Relative hop count frequencies on NDNtube.

possible targets to retrieve information about where, when, and who requested them. Because adversaries

have targeted all certificates, the best-route hop count result is calculated 1 for the adversary nodes. How-

ever, the adversary nodes have more information about other cached targets in a multicast scenario which

can be used to identify neighbor and away targets.

The average hop count results (0-60 seconds) were obtained by the following: i. adversary faces: ≈1 in

nfd:LRU(best-route) and ≈1.04 in nfd:LRU(multicast). ii. legitimate faces: 2.43 in nfd:LRU(best-route) and

nfd:LRU(multicast) scenarios. These results showed that the average of hop counts was obtained lowest

for the adversary’s faces compared to the legitimate faces. Thus, a hop count threshold can be defined to

detect the adversary’s faces in VoNDN.

Discussion. To show that the adversary nodes can have abnormal behavior from legitimate nodes,

the detection methods were analyzed during the attack and no-attack. The CRT, CHR, and hop count

experiments were evaluated. These experimental results showed that the adversary certainly reveals itself

during the attack because attack repetitions and detection methods can be used to detect the adversary’s

face.

To detect an adversary’s face a single detection method can be used. However, each detection threshold

value must be computed to be properly tunned for a certain NDN application. On the other hand, the

adversary can learn information in trusted applications (e.g. where, when, and who), when the adversary

targets the certificate privacy. Therefore, more privacy-worried trusted applications (e.g. certificate privacy),

6.3. Results 133

● ● ● ● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ●● ● ●● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●●● ● ● ● ● ● ●● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ●● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ●● ●● ● ● ● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●●● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ●● ● ● ●● ●● ●● ● ● ● ●● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ●● ● ● ●● ●● ● ● ● ●● ● ● ● ● ● ●● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ●● ● ● ● ●● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ●● ● ● ● ● ●● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●● ● ●● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ●●● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ●● ● ● ● ● ● ●● ● ● ● ●● ● ● ● ●●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ●● ●● ● ● ● ● ●● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ●● ●● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ●● ●● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●●●● ●● ● ● ● ● ● ●● ● ●● ● ● ● ● ● ● ● ● ● ●●● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ●● ● ●●● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ● ●● ● ● ●● ● ● ● ●● ●● ● ● ● ●● ● ●● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ● ● ●●● ● ● ●● ● ● ● ●● ●● ● ● ●● ● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●●● ● ● ● ●● ● ●● ● ● ●● ● ●● ● ●● ● ●● ● ●●● ●●● ● ● ● ● ● ● ● ● ● ●● ● ● ●● ●●● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●●● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ●● ●● ● ●● ●● ● ● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ●● ● ● ●● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ●● ● ●● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●●● ●● ● ● ● ● ● ●●● ● ●● ● ● ●●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ● ● ●● ●● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ●●● ● ●● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ●● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ●● ● ● ● ● ●● ● ● ● ● ● ● ● ●●● ●● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ●●● ● ● ● ●

●

●

●

●●●●●●●●●●

●

●

●●

●

●●●

●

●●

●●

●

●●

●

●

●

●●●

●

●●●

●

●

●●

●

●

●

●

●●●●

●●

●

●

●

●

●

●

●

●●●●●

●

●●●●

●

●●

●

●

●

●

●

●

●

●●●

●

●●●●

●

●

●

●

●●●

●●

●

●●

●

●●●●●

●

●

●

●●

●

●●●●●

●

●●

●

●●●●

●●

●

●

●●●

●

●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●

●

●

●

●

●●●●●●●●●●●●

●

●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●

●●

●

●

●

●

●

●●●●●●

●●●●

●●●●●●●●●●

●

●

●

●

●

●●

●

●●

●

●

●

●●●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●●●●

●

●

●●●

●●

●

●

●

●

●●●

●●●

●

●

●

●●●●●●●●●●●●

●

●●●●●●

●

●

●●●

●

●

●●

●

●●

●●●●●●●●

●●●

●

●

●

●

●

●●

●

●●●●●●

●●●

●

●●●●●

●

●

●

●●

●

●

●

●●●

●●●●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●●●

●●

●

●●

●●

●

●●

●

●

●●

●●●●

●

●●●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●●●

●●

●

●

●

●●●●●●

●●●

●

●●

●

●

●●

●

●

●●●

●

●●●●●●●●●●

●●●

●●●●

●

●

●

●●

●

●

●

●●

●

●●●● ●●●●●

●●

●

●●●

●

●●

●

●

●

●●●

●

●●

●●

●

●

●

●

●●●●●●●●●●●●●●●●

●

●

●

●

●

●●●

●

●

●●

●●●

●

●

●

●●●●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●●●●●●

●

●●

●●●

●

●

●●

●

●●

●

●

●

●●●

●

●

●

●

●●

●●●●

●

●●●

●

●●

●

●●●●●●●●

●

●

●

●●

●

●●●

●

●

●●●

●

●●●

●

●

●

●

●●

●●●

●●●●

●

●●

●

●

●●

●●●●●●●●●●

●

●

●

●●●●●●●●●●●

●

●●●●●●●

●

●●●●

●

●●

●

●

●●

●●●●●●●

●

●●●●●●

●

●

●

●

●●

●

●

●

●●

●

●●●

●

●

●●

●●●●●

●

●

●●

●

●●

●

●

●●

●●●●

●

●●

●

●●

●

●●

●

●●

●

●

●

●●●●●

●

●●●

●

●

●

●

●●●●●

●

●●

●●

●

●

●

●

●●●●●

●

●●

●●●

●

●

●●●

●

●●●●

●

●

●●●

●

●●●●

●

●●●●●●●●●●●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●●●●●

●

●

●

●

●●

●

●

●●

●

●●●●●●

●

●●●

●

●

●●●●

●

●●●●●●●●●●

●

●

●

●

●●●●●●●●●●

●●

●●

●

●

●●●

●

●●

●

●●

●

●●●

●

●●●●●

●●

●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●

●

●

●●

●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●

●

●●●

●

●●

●

●

●

●

●●●●●●

●

●●●

●●●

●●●●●

●

●●

●●

●

●

●

●●●●●●●

●

●●

●

●●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●●

●

●●●●

●

●●●●●

●

●●●●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●●

●●

●

●

●●●●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●●

●●●●

●

●

●●●

●

●

●

●

●

●

●●●

●

●●●●●

●

●●

●

●

●

●●●●●

●

●

●●●

●

●●

●

●

●●

●

●●●●●

●

●●●●●●●●●

●

●

●

●

●●●●●●●

●

●●●●●●●●●

●●

●

●

●●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●●

●●

●●●●●●●●●●

●

●

●●●●●●

●

●

●

●●●

●

●

●●●●●●●●●

●

●●●

●●

●●

●

●

●

●●

●●

●●●●●

●

●●●

●

●●●●

●

●●

●

●●●

●

●●●●●●●

●

●●●●●●●●●●●

●

●●

●

●●

●●

●

●

●

●●●●●

●

●●●●

●

●●●●●●●●●●●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●●●●●●

●

●

●

●●●

●

●●

●

●

●

●●●●

●●

●

●●●●●●●

●

●●●●●●●●●●●

●

●

●

●

●

●●●●●●

●

●●●●●●●

●

●●●

●

●●●●●●●●●

●

●●●●●●

●

●

●

●

●

●●●●●●●●●●●●

●

●

●●●●●●

●

●

●

●

●●●●●●●●●

●

●●

●

●

●●●●●●●●●●●

●

●●

●

●●●●●

●

●●●●●

●

●●●

●

●●●●

●

●●

●

●●●●

●

●

●

●●●●●●●●

●

●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●

●●

●

●

●

●

●

●

●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●●

●

●●

●

●

●

●●●

●

●●●●●●●●●●●●●

●

●

●●

●

●

●●●●

●

●

●

●●●●●●●●●●●●●●●●●

●

●●

●

●

●

●●●

●

●●

●

●●●

●

●●●●●●●●

●

●●●

●

●●●●●●

●

●

●

●●●●●●●●●●

●●●

●●

●

●

●●

●

●

●

●●

●●

●

●●●

●●●●

●

●

●

●●●

●●

●

●●

●

●

●●

●

●

●●●

●

●

●●

●●

●

●●

●●●

●●

●●

●●

●

●

●●●●

●●

●●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●

●

●

●

●

●

●●●

●

●●

●●

●●

●

●●

●

●●

●

●

●

●●

●

●●●●

●

●

●●●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●●●●●●

●●

●

●●

●

●

●●●

●

●

●●●●

●●

●

●

●

●●

●

●●●●●●

●

●

●

●●

●

●●●

●

●

●●

●●

●●

●

●

●

●

●

●●●●●

●

●●●●●

●

●●●●

●●

●

●●

●●

●

●

●●●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●●●●

●

●

●

●●●

●●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●●

●●

●

●

●

●●●●●●

●

●●●

●

●●●

●●●

●

●●●●

●●

●●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●●

●●

●●

●●

●●

●

●

●●

●●●●●●●●

●●●●●

●

●●●●●

●

● ●

●

●●

●

●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●

●

●

●

●●●●●●●●●●

●

●●

●

●

●

●

●●

●

●●●

●

●

●●

●●●●●●●●●

●●

●

●

●

●

●●●

●

●

●●

●

●●●●

●●●●●●

●

●●●●●●

●

●

●

●●●●●●●

●●

●●●●●●●●

●

●

●

●

●

●●●●●

●

●●●●

●

●

●

●

●●

●

●

●●●

●

●

●●

●●

●

●

●●

●

●

●●●

●

●

●

●●

●

●

●●●●●●●●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●●●

●

●●

●

●

●

●

●

●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●●

●

●●●●●

●

●●●●●

●●

●●●●●●

●

●●●●●

●

●

●

●●●

●●●

●●●

●

●●●●

●

●●●●

●

●

●

●

●●●●●●●●●●●●●●

●

●●●●

●

●●●

●

●●

●

●●●●●

●

●●●●●●●●●

●

●●●●●●●●●

●

●●●●●

●●

●

●

●●●

●

●●●●●

●

●●●●●●

●

●

●

●●●●

●

●●●●●●●

●

●

●●●●●●●●●●

●

●●●

●

●●●

●

●

●

●

●●

●

●●

●

●

●●●

●

●●●●

●

●●●●●

●

●●●

●

●●●●●●●●

●

●●●●●●●●●●●

●●●

●●●●●●●

●

●●

●

●●

●

●●●●●●

●

●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●

●

●

●●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●

●

●

●●●●●●●●●●

●

●●

●

●●●●●

●

●●●●●●●●●

●●

●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●

●

●●

●

●

●

●●●●●●

●

●

●

●

●

●

●●●●●●●●

●

●

●●●●●●●●●●

●

●

●●

●●●●●●

●

●●●●●

●

●●●

●

●●

●●●

●●●●

●

●●●●●●●●●●●●

●

●●●

●

●●●

●

●●

●

●●●●●●

●●

●●

●

●●

●

●●●●●●●●●●

●

●●●●●●●●●

●

●●

●

●●●●●●

●

●

●

●●

●

●●●●●●●●

●●

●●●●●●●●●●

●

●

●

●●●●●●●●●●

●

●●●

●

●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●

●

●●●

●

●●●●●●●

●

●●●●●●●●●

●

●

●

●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●

●

●●●

●

●●●●●●●

●

●●●●●●●●●●

●

●●●●●●

●

●●●

●

●

●

●●●●●●

●

●●●●●●●●●●●●●

●

●

●

●●●●●●●●●

●●

●●●

●

●●●●●

●

●●●●●●●●●

●

●●●●●

●

●

●

●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●

●

●●●

●

●

●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●

●

●

●●●●●●●●●

●

●

●

●●

●

●●●●●●●●●●●●●●

●

●●

●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●

●

●●●●●●●●●

●

●●●

●

●●●●●●●●●●

●

●●●●

●

●●●●●

●

●

●

●

●

●

●●

●

●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●

●

●

●

●●●●●

●

●

●

●●

●

●●●●●●●●●●

●

●

●

●●

●

●

●

●●●●●●

●

●●●●

●●

●●●●●●●●●●●

●

●●

●

●●●●●●

●

●●●●●●●●

●

●●

●

●●●

●

●

●

●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●

●

●●●

●

●●

●

●●●●●●●●●●●●●●●

●

●●●●

●

●

●●

●●●●●●●●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●●●●●

●

●●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●●

●●●●●●●●●●

●

●●●●

●

●

●

●●●●●●●●●

●●

●

●

●●●●●●●●●●●●●

●●●

●

●

●

●

●

●

●

●●

●●●

●

●●●●●

●

●

●

●

●

●

●

●●●●●●

●

●●

●

●

●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●

●

●●●●

●

●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●

●

●

●

●●●●●●●●●

●

●●

●

●●●●

●

●

●

●

●

●●●

●

●●●

●

●

●●●●●●●●●

●●●

●

●

●●●●●●●●

●

●●

●

●●●●●●

●

●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●●●

●

●

●●

●

●●

●●●●●

●

●

●

●

●●●●●●●●

●●

●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●

●

●●●●●

●●

●●●●●●●●●●●

●

●●

●

●●●

●

●●●●

●

●●●●●●●●●●●●

●●

●●●●●

●

●

●●●

●●

●●●●

●

●

●●●●●●●●●●●

●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●●

●●●

●

●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●

●

●●●●●●●●●●●

●

●●

●●

●

●

●●●●

●

●●●●●

●●

●

●

●

●

●●●●●

●

●●●●●●●●

●

●●●●●●●●●●

●

●

●●●

●

●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●

●

●● ●

●

●●

●

●●

●

●

●

●

●●●●●●●

●

●

●●●●●●●●●●●●●●●●

●

● ●

●●●●●●●●●●●

●

●●

●

●●

●

●●●●●

●

●

●

●

●

●

●●●

●

●●●●●●●●

●

●

●●●●●●●●●●●●

●

●●

●

●●●●●●

●

●

●●●

●

●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●

●

●

●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●

●

●●

●

●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●

●●

●

●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●

●

●●●●●●

●

●

●

●

●●●●

●

●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●

●

●

●

●●●●●

●

●●●

●

●

●●

●

●

●

●●

●

●●

●

●●

●●

●●●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●

●●

●●●

●

●●●●●●

●

●●

●

●●●●●●●●●●●

●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●

●●●●●●●●

●

●●●●●

●

●●●●●

●

●

●

●

●●●●●●●●●

●

●●●●●

●

●●●●

●

●●●●●●●●●●●●●

●

●

●

●

●●●

●

●

●

●

●●●●●●●●●●

●

●● ●

●

●

●●●

●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●

●●●●●

●

●

●●●●

●

●●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●

●

●

●

●●●●

●

●

●

●

●

●

●

●●●●

●

●

●

●●●●●●●

●

●●●●●●●●●●●●

●

●●●

●●

●

●●

●●●●●

●

●

●

●

●

●●●

●

●●●●●●

●

●

●

●●●

●

●●

●

●●●●●●●●

●

●●●

●

● ●

●

●

●●●

●

●

●

●●

●

●

●●

●

●

●●●

●

●●●●●●●●●

●

●●●●●

●

●●●●

●

●

●●●●

●

●●

●●

●●

●

●

●

●●●●●●

●

●●

●

●●●●●

●

●●●●●●

●

●●●●

●

●●●●

●

●

●

●●

●

●

●

●●

●

●●●

●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●

●

●●

●

●●●

●

●●●

●

●

●

●●●●●●●

●

●

●●

●

●

●

●

●●●●●●●●

●

●●●●●●●●●

●

●

●

●●●●●●

●

●●●

●

●●●●●●

●

●●●●

●

●●●●●●●●●●●●●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●●●●●

●

●

●

●

●

●●●●

●●

●●

●

●

●

●●●●●●

●

●

●●●●

●

●

●●

●

●

●

●●●●●●●●●

●

●●●●●●●●●

●

●●●

●

●●

●

●●●●●●●●●●

●

●●

●

●●

●

●

●

●

●●

●

●

●●●

●●●

●●●●●●●

●

●

●

●

●●●

●

●●●●

●

●

●

●

●

●●●●●●●

●●

●

●

●

●

●

●●

●

●●●●●●●●●●●●●●

●

●●●●●●

●

●●●

●

●

●

●●●●●●●●

●

●

●

●●●●●

●

●●●●

●

●●

●

●

●

●●●●●

●●

●●

●

●

●●●

●

●●

●

●

●●

●●●●

●

●●●●

●

●

●

●

●

●

●●

●

●●●●●●●●●●

●

●●●●●●

●

●●

●●●

●

●●●●●●

●

●●

●

●●

●

●●●●

●

●●●●

●

●●●●●●

●

●

●

●

●

●

●●●●●●●●●●●●

●

●

●●●●●●●

●●

●

●

●●●●

●

●●●●●●●●

●

●●●●●●

●

●●

●

●●

●

●

●

●●●●

●

●●●●●●

●

●●●●●●●●●

●

●

●

●●●●

●

●

●

●●

●

●

●●●

●

●

●●

●

●

●

●●●●●

●

●●●●●

●

●●

●

●●●●●

●●

●

●

●

●●●●●●●●●

●

●

●

●●●●●●●●

●

●●

●●

●●●●

●●

●

●●●

●●

●

●

●●●

●

●●●●

●

●

●●

●

●●●●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●

●

●●●●●●●●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●●●

●

●

●

●●●●●●

●

●

●●

●

●

●

●●●●

●

●●

●

●●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●●●●

●

●●

●

●

●

●●●●

●

●

●

●

●●●●●

●

●●●●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●●●

●

●

●●

●

●●

●

●

●●●

●

●●

●

●

●

●●●●●●

●●

●

●

●

●

●

●●●●

●

●●●●●

●

●

●●●

●

●

●

●

●●●●

●

●●●

●

●●

●

●●●

●

●●●

●

●●●●●●●●●●●●●●●●

●

●●

●

●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●●●

●

●

●●

●

●●

●

●●●

●

●

●

●●

●

●

●

●

●●●●●●●●●

●

●●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●

●

●

●

●

●

●●●●●●●●●●●

●

●

●●

●●●●●

●

●●

●

●

●

●

●●●

●●

●●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●●

●●

●●●●●●

●●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●●

●

●●●●●●

●

●

●

●

●●

●

●●●●●

●●

●

●●

●

●●●●●●●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●●●

●●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●●

●

●●

●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●

●●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●

●●

●●

●

●

●●●●●●

●

●●●●●●

●

●●●

●

●

●

●

●●●●●●●●●

●●

●

●●●●●●●●●●●●●

●

●●●●●

●

●●●●●●

●

●●

●

●

●●●●

●

●

●●

●

●

●●●●●●●

●

●●●●●●●●

●

●●●●

●●●

●●●

●

●●●●

●

●●●●●●

●

●●

●●●●

●●

●

●●●●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●●

●

●

●

●●●

●

●

●●●

●

●●●

●

●●●

●

●

●

●

●

●●●●●●

●

●●●●●●●

●●

●

●

●●●

●

●

●

●

●●

●

●

●●

●●

●

●

●●

●

●●

●

●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●

●

●

●●

●

●●●●●●●●

●●●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●●●

●●

●

●

●●

●

●●●●

●

●●●●

●●

●●

●

●●●●●●●

●●

●●●●●●

●

●

●

●

●

●●

●

●●

●

●●●●●●

●

●●●●●●●●

●

●●●●

●

●●●●●●●

●●

●●●●●●●

●●

●●

●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

● ●●●●●●●●●●

●

●●

●●●●

●

●●●●●

●

●

●●●●●●●●●●

●

●●

●

●●●●●●●

●

●●●●●

●

●●

●

●●●

●●●

●●●●●●●

●

●●

●

●●●●●●●●

●

●●●●

●

●●

●

●

●●●●●●●●●●

●

●

●

●●

●●

●●●●●●●●●●●●●

●●

●●

●

●●●●●●●●●●

●

●●●●●●●●●●●

●●●

●●●●●●●

●

●●●●●●●●●●●

●●●

●●

●

●

●●●

●

●

●●

●

●

●

●●●●●

●

●●●

●●

●●●●●

●

●●●●

●

●●●

●

●

●

●●●●

●

●●●

●

●●●●●●●●

●

●●

●

●

●

●

●●●

●

●●

●

●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●

●●

●

●●●●●●●●●●●●

●

●●

●

●●

●

●●●●●

●

●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●●

●

●

●

●●●●●●●●●●●● ●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●

●

●

●●●●●●●

●●

●

●

●

●●●●

●

●●●●●●

●

●

●

●

●●●●●●●●●●●●

●●

●●●●●●●●● ●

●

●

●

●●●●●●●● ●●●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●●●●

●

●●●●●●●

●

●

●

●●

●

●

●●●

●

●

●

●●●●

●

●

●

●●●●●●●

●

●

●●●

●

●

●●●●●

●

●●

●

●

●

●●

●

●

● ●●●●

●●

●●●● ●

●

●

● ●

●

●

●

●●●●●●●

●

●

●

●●

●

●●●

●

●●●

●

●●●

●

●●

●

●

●

●

●●●

●

●

●

●

●●●●

●

●●

●

●

●

●●●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●

●

●●●●●●●●● ●●●

●

●●●●

●

●●●

●

●●●

●

●

●

●●●●●

●

●

●

●●●●●●●●●●●●●

●

●

●●

●

●●

●

●●●

●

●

●●●●

●●

●

●

●

●

●●●●●●●●●●

●

●

●

●

●

●

●●●●●●●●

●

●● ●

●

●●●●●●●

●

●

●●

●

●

●

●

●

●

●●●●●●

●

●●

●●●

●●●●●●●

●

●●●●

●

●●●

●

●

●

●●●●●●●●●

●●

●●●●●●●●

●

●●●●

●

●●●●

●

●●●●●●●

●

●

●●●●

●

●●

●●

●●●●●

●

●

●●●●●

●

●●●●●●●

●

●

●

●●

●

●●●●●●●

●●●

●●

●●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●●●

●

●

●

●

●●

●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●●

●●

●●

●●●●

●

●●

●

●●●●●

●

●

●

●

●●

●

●●●●●●

●●

●

●●

●

●

●●●

●●

●●●●●●●●●

●

●●

●●

●●

●●

●

●

●●

●

●●●

●

●

●

●

●●

●

●

●

●●●●●●●●

●●●

●

●●

●

●●●●

●

●

●●●●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●●●●●●●●●●●

●

●

●

●●●●●●●

●

●

●

●●●●

●

●●

●

●

●

●●●

●

●●●●●●●●●

●

●

●

●

●●●

●

●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●

●

●●

●

●●●●●●●

●

●●

●

●

●●●●●

●

●

●●

●

●

●●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●●

●

●●

●●

●●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●●●●●●●●

●

●

●

●●●●●●●

●

●●●

●

●●●●●

●

●

●

●●●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●●

●●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●●

●

●

●

●●●●

●

●●

●

●

●

●●

●

●

●

●●●

●

●

●

●●●●

●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●

●●●

●

●

●

●●●

●

●●●

●

●

●

●

●

●●●●●

●

●●●●●●●

●

●●

●

●

●●

●

●

●

●

●●●●●

●●●

●●●●●●●●●●●●●

●

●●●

●●

●●●●

●●

●

●

●

●

●●●●●●●

●

●

●●

●

●

●●●●

●

●

●

●●

●

●●●

●

●

●

●●

●●●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●●●●●●●●

●●

●●●●●●●

●

●●●●●●●

●●

●

●

●

●

●●●●

●

●

●

●●

●

●●●●●●

●

●

●

●●●●●●●●

●

●

●

●●

●

●

●

●

●●●●●●●●●●

●

●●●●●●●

●

●●

●

●●●●●●●●●●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●●●●●●●●

●

●

●

●

●

●

●●●●●●

●

●●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●●●

●

●

●

●●

●

●●●●●●

●

●

●

●

●

●●●●●●

●

●

●

●●●●●●●●●●●●●●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●●●

●

●●●●●●

●

●●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●●

●

●

●●●●●●●●●●●●●

●

●

●

●

●●●●

●●●

●

●●●

●

●●

●●

●●

●

●

●

●

●●

●

●●●●●●●●●

●

●

●●●

●

●●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●●●●

●

●

●●●

●

●●●●●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●●●

●●

●●

●

●●

●

●

●

●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●●

●

●●●●

●

●

●

●●●

●

●●

●

●●●●●●●●●

●

●●

●●

●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●

●

●

●●●●

●

●●●

●

●●●●●●●●●

●

●●●●

●

●

●

●●●●●●●●●●●

●

●●

●

●

●

●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●

●

●●●

●

●●●●

●

●●●●●●●

●

●●

●

●●●●●

●

●

●

●●●

●

●●●●

●

●

●

●

●

●

●

●●

●

●●●

●

●●●

●

●●

●

●

●

●

●●

●

●

●●●●●●●●●●●

●

●●

●

●●●●●

●

●

●

●

●●●●●

●●

●

●●●●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●●●●

●

●●

●

●

●

●●

●●●●

●

●

●●

●

●

●

●●●●

●

●●

●●●●

●

●●●●●●●●●●

●

●●●●

●●

●

●

●

●

●●●●●

●

●

●

●

●●●●●●●●●

●

●

●

●●●●●●●●●●●●

●

●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●

●

●●

●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●

●●

●●●●●●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●●

●●●

●

●●●●●

●

●●●●●●●●●●

●

●●

●

●●●●●●●

●

●●●

●

●

●●●●●

●

●●●●●

●

●

●

●●●●●

●

●●●

●

●●●●●

●

●●●

●●

●●

●

●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●

● ●

●

●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●

●

●

●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●●●●●●●

●●

●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●

●

●

●

●●●●●●●●●●●

●●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●●●●●●●●●●●●

●

●●●●

●

●

●●

●

●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●

●

●●●●

●

●

●

●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●

●

●●●●●●●

●

●●●●●

●

●●

●

●

●

●

●●●●●●●●●●●

●

●

●

●●●●●

●

●●●●●

●●

●●●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●

●

●●

●

●

●

●●●●●●●●●●●●●

●

●●●●●●

●

●●

●

●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●

●

●

●

●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●

●

●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●

●

●●

●

●

●

●

●●●●●●●●●●

●

●●

●

●

●

●●●●●●●●

●

●

●●

●

●

●

●●●

●

●

●

●●

●

●

●●

●

●

●

●●●

●●

●

●●●

●●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●●

●●

●

●

●●●

●●

●●

●●●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●●

●●●●

●●●●

●

●

●

●

●

●

●●●●●●●●●●●●

●

●●●

●

●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●

●

●

●

●

●

●●●●●●●●●

●

●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●

●

●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●●

●●●●●●●●

●

●●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●

●

●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●

●

●

●●●●●●●●

●

●

●

●

●

●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●

●

●●●

●

●●●●●●●●●

●

●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●

●●●●

●●●

●

●●●●●●

●

●●●●●

●

●●●●●●●●●●●

●

●●●

●

●●●●●●

●

●●●

●

●●●

●

●●●

●

●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●●●●●●●●●●●●

●

●●●

●

●●

●

●●●●●●●●●●●●●●

●

●

●

●●●●●

●

●

●

●●

●

●●●●●●

●

●●

●

●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●

●

●●

●

●●

●

●●●●●●●●●

●

●

●

●

●

●●●●●●●●●●

●

●●

●

●●●●●●●●

●

●●

●

●

●●●●●

●●

●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●

●

●

●

●

●

●●●●●●●●

●

●●●●●●●

●

●●●●●●

●

●

●●●●●●

●

●●

●●

●●●

●

●

●

●

●●●●

●

●●●

●

●●●●●

●

●

●

●

●●●●●●●●●●●

●

●●●●●●

●●

●●●

●

●●●

●

●●●●●●

●

●●

●

●●●●●●●

●●

●●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●

●

●

●

●●●●●●●●

●

●

●

●●

●●●●●●●●

●

●

●

●●●●●●●●●●●

●●

●●●

●

●

●●

●

●

●●●●●●●●●●

●

●●●●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●●

●

●●

●

●●●●●●●●●●●

●

●

●●●

●

●

●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●●

●●●

●

●

●●●●●●

●

●

●

●●●●●●●●

●●●

●

●

●●●●●

●

●●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●●●●

●●

●

●

●

●●

●●●

●

●

●

●

●

●

●●●●

●●

●

●●●●●

●

●●

●●●

●

●●

●

●●●●●●

●

●●●●

●

●

●●

●

●

●

●

●●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●

●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●● ●

●

●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●

●

●

●

●● ●

●

●●

●

●

●

●●●●●

●

●●●●●

●

●●●●●●●

●●

●●●●

●

●●●●

●

●

●

●●●●●●●●

●

●●●●●●

●

●

●●

●●

●●●●●

●

●●

●

●●●●●●●●●●●●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●●

●

●

●

●●●

●

●●●●

●

●●●●

●

●●●

●

●●●●

●

●

●

●●

●

●●●●●

●

●●●●●●

●

●●●●●●

●

●●

●

●●●

●●

●

●●●

●

●

●●●●●

●

●●●●●

●

●

●

●●●●

●

●

●

●

●●●●●●●

●

●●●

●●

●

●

●●●●●●

●

●●●●●

●

●●●●●●●●●●●

●

●●

●

●●●

●

●

●

●●●●●●●●●●

●●

●●

●

●

●

●●●

●

●

●

●●●●●

●

●

●●●●●●●●

●●

●

●

●●

●

●●

●

●●●●

●

●

●

●●●●

●

●●●●●●

●

●

●●

●●●

●

●●

●

●●●●●

●●

●●●●

●

●●●●

●

●●●●●●

●

●●

●

●

●●●●●●●●

●

●●●●●

●

●●●●

●

●●●●

●●

●●●●

●

●●●

●

●

●

●

●●●

●●●

●●

●●●●

●

●●●

●

●●

●

●●●●●●●

●

●●

●●

●

●

●●●●●

●●

●

●

●●●●●●●●

●●

●●

●

●

●

●

●●

●●●●●●●●●

●

●

●

●

●●●

●●●

●

●

●

●

●

●●●●●

●●

●●●●●●●●

●●

●

●

●●

●

●●●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●●●●●

●

●●

●

●

●●

●

●●●●●

●

●

●

●

●●●

●

●●●

●

●

●●●●●

●●●

●

●●●●●

●

●

●●

●

●

●

●●

●●

●

●●●●

●

●

●

●

●

●●●

●

●●●●●●

●●●

●

●●

●●●

●

●●●●

●

●

●

●

●●●●●

●

●

●

●

●

●●●●

●

●

●●●

●●

●

●

●

●

●●●●●●●●●●

●●

●

●

●

●

●

●●●●

●●

●

●

●●

●●

●

●

●●

●

●●

●

●●●●

●

●●●●

●

●

●●●●

●

●

●

●

●

●●●●

●

●

●

●

●

●●●

●

●●

●●●●●

●

●

●

●●●

●

●

●

●●

●

●

●

●●

●

●

●●

●●●

●●

●

●

●

●●

●

●

●●

●●

●

●●●●●

●●

●●●

●

●

●

●●●●●●●●

●

●●●

●●●●

●

●

●

●

●●●●

●

●

●

●

●●

●●

●●

●

●

●●

●●

●●

●●

●

●●●●●

●●●●

●

●

●

●●

●●●

●●●●●●●●

●

●●

●

●●●

●●

●

●●

●●●●●

●

●

●

●●●●●●●●

●

●

●

●●

●

●●

●

●●●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●●●●●●●●●● ●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●

●

●●●●●●

●

●●

●

●●●

●

●●●●●●●●●●●●●

●

●

●

●

●●●●●●● ●●●

●

●●●●●●●

●

●●●●●●●

●

●

●

●●●●●●●

●

●● ●

●

●●●

●

●

●

●

●●●●●●●●●

●

●

●

●

●●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●

●

●●●●●● ●

●

● ●

●

●

●

●●●●

●

●●●●●●●

●

●

●●

●

●

●●●●●

●●●

●

●●●●●●●

●

●●

●

●●●●●●●●●●●

●

●●●

●

●●●

●

●●

●

● ●

●

●

●

●

●●●●●●●● ●

●

●

●

●●●●●●●●●●●●

●

●

●

●●●●●●●

●

●

●●●●●

●

●●●●●●

●

●●

●●

●●

●

●●●●●●●

●

●●

●

●●●●●

●

●

●

●

●

● ●

●

●●●

●

●●●●

●

●●●●●

●

●●●●

●

●

●

●

●

●

●●●●●●●●● ●

●

●

●

●●●●●●●●●●●●

●

●

●●●●●●

●

●●●●

●

●

●●●●

●

●●●

●

●●

●

●●

●●

●

●

●

●●●●

●

●●●●

●

●

●●●

●

●●●

●

●

●●●●●●●●●●●●●●

●

●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●●●●●●

●

●●

●

●●

●

●

●

●

●

●

●●●●●●●●●●

●

●●

●

●●●●●●●●

●

●

●

●

●

●●●●

●

●●●

●●

●

●●●

●

●

●●●

●

●

●●●

●

●●

●

●●●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●●

●

●●●

●

●●

●

●●●●●●●

●

●

●●●

●

●●

●

●●●●●

●

●

●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●●●●●●●●

●

●●

●

●●●●●●●●●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●●●

●●●

●●

●●●●

●●

●●●●●●

●

●

●●●●●●●●●

●

●●●●

●

●●●●●

●

●●

●

●●●

●

●

●

●●●

●

●●●●●

●

●●

●

●

●

●

●

●●●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●●●●●

●

●●●●●●●●●●

●

●

●●

●

●●●

●

●●

●

●●

●●●

●

●

●

●

●●●●●●●●

●

●

●●●

●

●

●●●

●

●●

●

●●●●●

●●

●●●

●

●●●

●

●●

●●

●●●●●●●●●

●

●

●

●●●●●

●●

●●●●●●●●●

●

●●

●

●●●●●●●●

●

●

●●●●●●●●●

●

●

●

●

●

●

●●●●

●

●

●

●

●●●●●●

●

●●●

●

●

●

●

●●●

●

●

●●

●●

●●●

●

●

●

●

●

●

●

●

●●●●●●

●

●●

●

●

●●●●●●

●

●●●●●

●

●●

●

●

●

●●●●

●

●●●

●

●

●●●●●

●

●

●

●

●

●●●●●●

●

●●

●

●

●●

●

●●●●●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●●

●

●

●●

●

●●●●

●●●

●

●

●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●●●●●●●●●●

●

●

●

●●●●●

●

●●●

●

●●

●

●●

●

●●●●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●●●

●

●●●

●

●●

●

●

●

●●●

●

●

●

●●●●●

●●●●

●

●

●●●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●●●

●

●●

●

●●

●

●

●●●

●●●

●

●●●

●●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●●●

●

●

●

●

●

●

●●●●●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●●●

●●

●●

●

●

●

●●

●

●●

●●●

●

●

●●

●

●●

●

●

●●●●●●

●●●●●●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●●

●●●●

●●●

●●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●●

●

●●

●

●

●

●

●●●●●●●

●

●

●●

●

●

●

●

●●●●

●

●●●

●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●

●●●●

● ●

●

●

●● ●●●●

●

●●

●

●

●

●●

●

●●

●

●●●●●

●●

●

●●● ●●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●●

●●●●●●●●

●

●

●

●

●

●●●●

●

●●●

●

●

●

●●

●

●● ●●●

●●

●●●

●

●●

●●●● ●

●

●●●

●●

●

●

●

●●●●

●

●●

●

●

●

●

●●

●●●●

●

●● ●●● ●

●

●

●

●●

●

●●●● ●

●

●

●

●

●

●●●●● ●●

●●

●●●●●

●

●●●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●●●●

●

●●●

●

●

●●●●●●●●●● ●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

● ●

●

●●

●

●●●

●●

●

●

●

●●

●

●

●

●

●

●

●●●●

●

●●●●●

●

●

●

●

●●

●

●

●

●

●●●●●●●●●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●●

●●●●●

●●

●●●

●

●

●

●

●

●

●

●●●●●●●

●

●●

●

●●●

●

●

●

●●●●●●●

●

●●●●

●

●

●●●

●

●

●

●●●●●

●

●●

●

●●●

●●

●

●

●●

●

●●

●

●●

●

●●

●

●●●●●●●●●

●

●

●

●

●

●

●

●●●●

●

●●●●●

●

●●

●

●●●●

●

●●●●

●

●

●

●

●●

●

●

●●●●

●

●●●

●

●●●

●

●●●●●

●

●●●●●●●

●

●●●●

●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●●●●●●

●

●●●●●●●●

●

●●

●

●●

●

●●

●

●

●

●

●●●●●●●●●

●

●

●

●●●●●●●

●

●

●●

●

●●

●

●

●

●●●●

●

●

●

●

●●

●

●●●●

●

●

●

●

●●●●

●

●●●●●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●●●

●

●●●

●

●

●

●

●

●

●

●

●●●●●●●●●

●

●

●

●

●

●

●●●●

●

●●●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●●●●●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●●

●

●

●●

●

●●●

●

●

●●

●

●●●

●

●

●●●

●

●●●●

●

●

●

●

●

●

●

●

●●

●

●●●●

●

●

●

●

●●●

●

●●●

●

●

●

●●●●

●

●

●

●

●

●

●

●●●●●●

●

●●

●

●●●

●

●●●●

●

●●

●

●

●●●●

●

●

●●

●

●

●

●●●●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●●●●

●●

●

●●●●●●●●●●●●●

●

●

●

●●●●●●●●

●

●

●

●

●

●

●

●●●●●●●●●

●

●

●

●

●

●●●●

●

●

●●●●●●

●

●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●

●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●●●●

●

●●●●

●

●

●

●

●●

●

●●●●●●●

●●

●

●●

●

●●●●

●

●

●

●

●

●●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●●●

●●

●●●●

●

●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●

●

●●●

●

●●●●●

●

●●●●●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●●●●●

●

●

●●

●●

●

●●●●

●

●●●

●●

●

●

●

●

●

●●●●●●●

●

●●●●●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●●●●●●●●

●

●●

●

●●●●

●●

●

●●

●

●

●

●●

●●

●●

●

●

●●

●

●●●●●

●

●

●●

●

●

●

●●

●

●●

●

●●

●

●

●●●●●●

●

●●

●

●

●

●

●

●●●●●

●

●

●

●

●

●●●

●

●●●

●

●

●

●

●●

●

●

●●

●●●●

●

●●

●

●

●●

●

●

●

●●

●

●●●●●●●

●

●

●●●●

●

●

●

●●

●

●

●

●

●

●●●●●

●

●

●

●

●●

●

●

●

●

●●●

●

●●●●

●

●

●

●

●

●●●●●●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●●●●●●

●

●●●

●

●

●●●●●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●●●

●

●

●

●

●●●●

●●

●●●●●●

●

●

●

●

●●●●

●

●

●

●●

●●

●

●●●

●

●●●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●●●●●

●

●●

●

●

●●●●●●●●●

●

●

●

●

●●●●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●●

●

●

●●●

●●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●●●

●

●

●●●●

●

●

●

●

●

●●●●

●

●

●●

●

●●

●●●●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●●●●

●●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●●

●●●●●●●

●

●

●

●●●

●●

●

●

●●●

●

●

●

●●●●●●●●

●

●

●

●

●

●●●

●

●●

●

●

●

●●

●

●

●

●●●●●●

●

●

nfd:LRU(best−route) nfd:LRU(multicast)

0 20 40 60 0 20 40 60

1

3

5

Simulation time (seconds)

H
o

p
 C

o
u

n
t

(n
u

m
b
e

r)

VoNDN Adversary Legitimate

Figure 6.17: VoNDN global hop count results.

a combination of all the three (CRT, CHR, and hop count) could provide a better decision to detect an

adversary’s face. The purpose of the detection phase is to have a clear a precise decision on a simple

matter “face is under attack” or face is “not under attack”.

6.3.3 Countermeasures

To mitigate the attack, the countermeasures based on static probabilistic and DaD were configured with

the NDN forwarding daemon (NFD), which was used as a network forwarder.

As previously introduced (Chapter 4), the DaD algorithm can be based on various attack detection metrics

such as CRT, CHR, hop count, and name prefix. In this implementation, the DaD only configured by CHR

detection with its pre-defined moving average threshold to detect an adversary on NDNtube and VoNDN.

The following CHR threshold values were identified by the following applications: i. In NDNtube, the CHR

threshold is identified as 5% CHR to detect the adversary for the LRU scenario. ii. In VoNDN, CHR threshold

values are used as 1% for best-route and 5% for multicast forwarding strategies. The threshold values are

calculated based on legitimate requests without attack for both applications. For instance, the NDNtube

consumers using the cache more than the VoNDN consumers because of the NDNtube streamed content

requests.

134 Chapter 6. Scenarios and Results

Next, collected countermeasure results based on static probabilistic caching and DaD are presented and

compared to mitigate the attack on NDNtube and VoNDN application respectively.

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

0.7%

1.8%

5.0%

13.5%

36.8%

22.5 25.0 27.5 30.0

Attack time (seconds)

C
a

c
h

e
 h

it
 r

a
ti
o

 (
C

H
R

)

NDNtube ● nfd:DaD nfd: Probabilistic (10%) nfd:Freshness

Figure 6.18: NDNtube attack mitigation results in LRU cache policy.

Applied countermeasures on NDNtube. In NDNtube the video segments can be also cached by

the freshness period of the segment. Additionally to probabilistic caching, the segments were configured by

the freshness period (≈100ms) to mitigate the attack. In NDNtube, the DaD threshold (CHR) configured

as 5% to detect the adversary and the detection period configured as 0.5 seconds and applies each attack

phases (minor, moderate, and severe) for 3 seconds (Subsection 4.3.2).

The DaD dynamically detected the attack and took countermeasure actions instead of statically configured

routers to mitigate the attack. Figure 6.18 illustrates that the DaD was dynamically mitigated the attack

in NDNtube and CHR was obtained 0.7% in attack period with its three phases (no-cache included). This

result also illustrated that all DaD countermeasures were applied to adversarial faces because the attack was

considered as severe. Also, the statically applied (for all faces) countermeasures CHR results were obtained

by the following: i. ≈4.1% in nfd:probabilistic and ii. ≈3.7% in nfd:freshness scenarios.

In no-countermeasure applied nfd:LRU policy, the average CHR is obtained ≈16.4% (Subsection 6.3.1).

This CHR decreases under applied countermeasure configurations (DaD, probabilistic, and freshness). The

countermeasure results are shown that the average CHR obtained minimum (≈0.7%) in the DaD cache

configuration. This may also show the legitimate requests are protected. On the other hand, the stati-

6.3. Results 135

cally configured countermeasures (probabilistic and freshness) are decreased the CHR compared to no-

countermeasure applied CHR. However, these countermeasures (probabilistic and freshness) were not

performed effectively (≈4.1% and ≈3.7%) compared to DaD (≈0.7%) to mitigate the attacks.

Applied countermeasures on the VoNDN. The countermeasures were implemented in VoNDN with

the best-route and the multicast forwarding strategies on the default LRU scenario. The following configu-

rations were used to mitigate the brute-force attack:

1. The edge routers were statically configured with a probabilistic caching of 10% of content cache

acceptance by randomly chosen of the data packet that can be cached. The global CHR results

(adversary’s faces) of these edge routers were analyzed and compared with the LRU, which is used

replacement policy in ndnSIM.

2. The edge routers were configured within a DaD algorithm, which identifies the face of the router

that is being attacked by checking the CHR threshold every 0.2 seconds and applying each counter-

measures phase during 2 seconds (Subsection 4.3.2). When an attacked face is detected, the DaD

applies countermeasure strategies, depending on the severity of the attack. To detect the face that

is being attacked and apply countermeasures, the CHR threshold values were used. In this work,

the threshold values were identified only for this particular attack scenario which may be different on

other NDN applications. Through the VoNDN simulation experiences, a predefined CHR threshold

was identified by moving average values as 1% CHR for best-route and 5% CHR for multicast forward-

ing strategies. If the attack was withdrawn by an adversary or does not exist, the DaD applies the

default (LRU) phase.

In VoNDN, the implemented DaD checks the existence of an attack on the faces every 0.2 seconds and

the countermeasure phases (each for 2 sec.) is only applied to the attacked edge routers, to protect the

legitimate certificate requests from the edge router(s). The DaD detects the attack by checking the CHR

(Eq.7 with a 𝛼=0) threshold on every face.
Figure 6.19 illustrates the VoNDN CHR results obtained with a brute-force attack, considering the use of

the probabilistic caching (10%) and the DaD in the edge routers. In both cases, the best-route forwarding

strategy was used. An average CHR of 0.69% was obtained in the attack period with the probabilistic caching,

which mitigated the attack ≈30.3% when compared with the results of the default LRU scenario (Figure

6.10). On the other hand, the DaD detects the attacked router first then applies different countermeasures

phases while the attack persists with a 1% CHR threshold. If no attack is detected, then DaD sets the router

face to the default phase. The average CHR obtained was 0.42%, which represents attack mitigation of

≈57.5%, when compared to the default LRU best-route scenario. The DaD also performed 39.1% improved

the attack mitigation compared to the probabilistic caching configuration.

Figure 6.20 shows the CHR results obtained in a multicast forwarding strategy in VoNDN. The disconti-

nuities seen at 21s, 24.5 s, and 27.5 s in the DaD graphics of Figure 6.20 (and Figure 6.19) are due to the

136 Chapter 6. Scenarios and Results

●●●●●●●●●●●

●
●
●●●●●●

●●

●

●
●
●
●

●

●●
●

●●●
●
●
●

●
●
●

●●
●●

●
●

●
●
●

●
●●●

●

●●
●

●

●

●●●
●●

●

●●
●
●
●

●

●●
●●

●
●

●
●

●●●●
●
●

●
●●

●

●

●
●
●●

●
●
●

●●●
●
●
●
●

●
●

●

●
●
●
●

●●

●

●

●

●
●
●

●

●

●

●●

●

●●

●
●

●

●
●
●

●
●

●
●●

●●0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

20 25 30 35 40

Attack period (seconds)

C
a
c
h
e
 h

it
 r

a
ti
o
 (

C
H

R
)

Scenario
● nfd: Probabilistic (%10)

nfd: DaD

Figure 6.19: Comparisons of applied countermeasures in VoNDN best-route forwarding strategy.

●●●●●●●●●●●

●

●

●
●

●

●
●
●

●

●

●
●
●
●
●●

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

20 25 30 35 40

Attack period (seconds)

C
a
c
h
e
 h

it
 r

a
ti
o
 (

C
H

R
)

Scenario
● nfd: Probabilistic (%10)

nfd: DaD

Figure 6.20: Comparisons of applied countermeasures in VoNDN multicast forwarding strategy.

application of the countermeasures. Using the probabilistic caching (10%) for all faces, an average CHR

of 8.12% was obtained during the attack period. This configuration mitigated the attack by about 83.9%

when compared with the default LRU scenario in multicast (Figure 6.10). The CHR threshold in DaD was

configured to 5% for a multicast attack scenario. In this case, an average of CHR 5.15% was obtained,

which mitigated the attack 89.8%, when compared to the default LRU multicast scenario (Figure 6.10), and

mitigated the attack 36.6%, when compared with the probabilistic caching.

6.3. Results 137

Countermeasures distribution efficiency evaluation. The DaD only applies the countermeasures

to the attack detected faces instead of setting countermeasures to all faces. Thus, legitimate requests and

privacy can be preserved by the DaD. To show this, the CRT (best-route) and hop counts (multicast) were

analyzed on default (LRU) and countermeasures (Probabilistic and DaD) VoNDN scenario.

Countermeasure distribution efficiency CRT results. Figure 6.21 illustrates the global CRT results

(best-route) for both adversary and legitimate nodes considering on default LRU (best-route), probabilistic

caching, and DaD scenarios during the attack time (≈21-35 s). If the target is cached by the edge router,

the minimum CRT values are obtained for adversary nodes otherwise it obtains increased CRT values

for neighbor and away targets. To show the countermeasures (probabilistic and DaD) results to mitigate

the attack on the default (LRU) scenario, the CRT values were analyzed. When the probabilistic and the

DaD were applied, the adversary node’s CRT value increases for the targets which are illustrating the attack

mitigation rate. In this case, the adversary may not able to identify the location of the cached target because

of unsteady collected CRTs.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

nfd:LRU(best−route) nfd:Probabilistic nfd:DaD

24 28 32 36 24 28 32 36 24 28 32 36

0.01

0.10

1.00

10.00

Attack time (seconds)

C
R

T
 v

a
lu

e
s
 (

m
s
)

VoNDN Adversary Legitimate

Figure 6.21: VoNDN Global CRT results for the adversary and legitimate nodes.

The countermeasures (probabilistic and DaD) can be used to mitigate the attack. However, the CRT

results showing that the static probabilistic caching also increases the legitimate node CRTs, which reduces

the content distribution performance for the legitimate nodes. To preserve the legitimate nodes’ requests,

138 Chapter 6. Scenarios and Results

the DaD applies the countermeasures only to the face that being attacked. Thus, an average of CRT is

calculated as the same (0.056 ms) for nfd:DaD and nfd:LRU (best-route).

Table 6.8: VoNDN CRT average values for legitimate and adversary nodes.

scenarios
CRT average (ms)

legitimate adversary

LRU (best-route) 0.056 0.270

probabilistic 0.093 0.328

DaD 0.056 0.419

Table 6.8 shows, the CRT metrics these illustrated in Figure 6.21 in VoNDN. During the attack period,

the legitimate CRT metrics were preserved by the DaD, compared to the probabilistic caching. Also, the

CRT values of the adversaries are higher than those of the legitimate nodes because the adversaries were

also targeted to un-cached certificates to obtain neighbor and away routers. Because DaD only applies

the countermeasures to the adversary’s faces, the average CRT of DaD calculated 0.419 ms which is

higher than the CRT of probabilistic (0.328 ms). Thus, DaD mitigated more attack than static probabilistic

countermeasure while protecting legitimate requests.

● ● ● ● ● ● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

● ● ● ●

●

●

●

● ●

● ●

●

● ● ●

● ●

●

●

●

●

● ● ● ●

●

●

●

● ● ● ● ● ●

●

● ●

●

● ● ●

●

●

● ●●

●

● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ●

●

●

●

● ● ● ● ● ● ●

●

● ●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ●

●

●

●

● ● ●

● ●

● ● ● ● ● ●

●

●

●

● ● ● ●

●

●

●

●

● ●

● ● ● ●

● ● ●

● ● ●

●

● ● ● ● ● ● ● ● ●

●

● ● ● ●

●

● ●

●

●

● ● ● ●

●

●

●

●

● ● ● ●

● ●

● ● ● ● ●

●

●

●

● ●

●

● ●

● ●

●

●

●

● ● ●

●

● ●

● ●

●

●

●

● ●

● ●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ● ●

●

●

● ●

● ●

●

●

● ● ● ● ●

●

● ●

●

●

● ● ●

●

● ● ● ●

●

●

●

●

● ● ● ● ●

●

●

●

● ● ● ● ● ● ● ●

● ● ●

●

●

●

● ● ● ● ●

●

●

●

● ● ●

●

● ●

●

●

●

● ● ● ●

●

●

●

●

●

● ● ●

●

● ● ●

●

●

●
●

●

● ●

●

● ●

●

●

●

● ● ● ● ●

● ●

● ● ●

●

●

●

●

●

● ●

● ●

● ● ●

●

●

● ● ● ● ●

● ●

● ● ● ● ●

●

● ● ●

●

● ● ●

● ●

● ● ● ● ● ● ●

● ●

●

●

●

● ● ● ●

●

● ●

●

●

●

● ●

●

● ● ●

●

● ●

●

● ● ● ● ● ● ●

●

●

● ●

●

●

● ●

●

● ●

●

●

●

● ● ● ● ●

●

● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ●

●
●

●

●

●

●

● ●

●

● ●

●

●

●

● ● ● ● ●

●

● ●

●

● ● ● ● ●

●

●

● ● ● ● ●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

● ● ● ● ● ● ● ● ● ● ●

●

● ●

●

●

●

●

● ● ● ● ● ●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ●

●

●

● ●

● ●

●

●

●

●

● ● ● ● ●

●

● ●

●

● ● ● ●

●

● ● ● ● ● ● ●

●

● ●

●

● ● ●

●
●

●

●

●

●

●

● ● ●

● ●

● ●

●

●

●

●

●

●

● ●

●

● ● ●

● ● ● ●

● ●

●

● ● ●

●

●

●

●

● ●

●

● ● ● ● ●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●

●

● ● ●

●

● ● ● ●

●

● ●

●

●

●

●

●

●

● ●

●

●

● ● ● ● ●

●

● ● ●

● ●

●

●

● ● ● ● ● ● ●

●

● ● ●

●

● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

● ● ● ● ● ●

●

● ● ● ● ●●

●

●

● ● ● ● ● ● ● ● ●

● ●

●

●

● ● ● ●

●

●

● ● ●

●

● ● ● ● ●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●
●

● ● ● ● ● ●

●

● ● ●

●

●

● ● ● ● ● ●

●

● ● ● ● ● ● ●

●

● ●

●

● ●

●

●

●

● ● ●

●

● ● ● ● ● ● ●

●

● ●

●

●

●

●

●

● ● ● ● ●

●

● ● ● ● ●

●

● ● ● ● ●

● ●

●

●

● ● ● ● ● ●

● ●

● ● ●

● ●

● ● ● ● ● ● ● ●

●

● ● ● ● ●

●

●

●

● ● ● ● ● ● ● ● ●

●

●

● ● ● ● ●

●

●

●

●

● ●

●

●

● ●

● ●

● ● ●

● ●

● ●

● ● ●

●

●

● ●

● ●

●

●

● ●

● ●

●

●

●

● ● ●

●

●

●

●

● ●

●

● ● ●

●

● ● ●

●

●

●

● ●

●

●

● ● ●

● ● ●
●

● ● ● ● ●

● ● ● ● ●

●

●

● ●

●

●

● ●

●

● ●

● ● ● ●

●

●

● ● ● ●

●

●

● ●

● ● ● ● ● ● ● ● ●

●

●

●

● ●

● ● ● ●

●

●

●

● ●

● ●

●

● ● ● ●

● ● ●

● ●

● ●

●

●

●

● ●

●

●

●

● ● ● ●

●

●
●

●

● ● ● ●

●

● ●

●

● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

● ● ● ●

● ● ● ● ● ●●

●

● ●

●

●

● ●

●

● ●

●

●

● ● ● ● ● ●

●

● ●

●

●

● ●

● ● ● ● ●

● ● ●

●

● ●

●

● ●

● ● ● ● ● ●

● ●

● ● ●

●

● ● ● ●

●

● ●

● ●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

● ● ● ●

● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ●

●

● ●

●

● ● ●

●

● ●

●

●

●

● ●

●

●

● ● ● ●

●

●

● ● ● ● ● ● ●

●

● ● ● ● ●

●

● ●

●

● ● ● ●

●

● ● ● ●

●

● ●

●

● ● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ●

●

●

● ●

●

● ● ● ●

●

● ●

●

●

●

● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ●

●

● ● ● ●

●

● ●

● ●

● ● ● ●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ●

●

● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ●

●

●

●

● ● ● ● ●

●

● ● ● ● ● ●

●

● ● ● ● ●

●

●

● ● ●

●

● ●

●

●

●

●

●

● ●

●

● ● ● ● ● ● ● ● ● ● ●

●

● ● ●

●

● ●

●

● ● ● ● ● ● ● ● ● ● ●

●

● ● ●

●

●

● ● ● ● ●

●

● ● ● ● ●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ●

●

●

●

● ● ●

●

● ● ● ●

● ●

● ● ● ●● ● ● ● ● ● ●

●

● ● ● ● ● ●

●

●

●

● ● ●

●

● ● ● ● ● ● ● ●

●

●

● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

● ●

●

● ● ● ●

●

● ●

●

●

● ● ● ● ● ●

●

●

●

● ● ● ● ●

●

●

●

● ● ● ● ●

●

● ● ● ●

●

● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●

●

● ● ● ●

●

●

● ● ● ● ● ● ● ●

●

●

●

● ●

●

● ● ● ● ● ● ● ● ● ●

●

● ●

●

● ● ● ● ●

●

● ● ● ● ● ●

●

● ● ● ●

●

● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ●

● ●

● ● ● ●

●

●

●

● ● ● ● ● ● ●

●

● ●

●

●

●

●

●

● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ●

● ●

● ● ● ● ●

●

● ● ● ● ● ● ●

●

● ● ● ● ● ● ●

●

● ● ●

●

●

● ● ● ● ● ●

●

●

● ● ● ● ● ●

●

● ●

●

● ● ● ● ● ● ● ● ● ● ●

●

●

● ● ● ●

●

●

●

●

● ● ● ●

●

● ● ● ●

●

● ● ●

● ● ●

●

●

●

● ● ● ● ●

●

● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ●

●

●

●

● ● ● ●

●

● ● ● ● ● ●

●

● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

● ● ● ●

●

● ● ●

●

●

●

● ●

●

● ●

●

● ● ● ● ●

●

● ● ● ● ●

●

● ● ● ●

●

● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ●

●

● ●

●

●

● ●

●

●

● ● ● ●

●

● ●

●

● ● ● ● ●

●

● ● ● ● ●

●

● ● ● ● ● ●

●

● ●

●

● ●

●

● ●

●

● ● ● ● ● ●

●

● ● ● ● ● ●

●

● ● ● ● ● ● ●

●

● ● ● ● ●

●

● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ●

●

● ● ● ● ●

●

●

●

●

● ●

●

● ●

●

●

●

● ● ● ● ● ● ●

●

● ● ● ● ●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

● ● ●

●

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ●

●

● ● ● ● ●

●

●

●

●

● ● ● ●

●

● ● ● ● ● ● ●

●

● ● ●

●

●

●

●

● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ●● ● ● ● ● ●

●

● ●

● ●

● ●

● ●

● ●

●

● ●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

●

● ●

● ●

●

●

●

●

● ●

● ●

●

●

●

● ● ●

●

● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ●

●

●

● ● ● ● ● ●

●

● ● ● ● ●

●

● ● ● ● ● ●

●

● ● ● ●

●

● ●

●

● ●

●

●

● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ●

● ●

● ● ●

●

● ● ● ● ●

●●

●

● ●

●

●

● ●

●

●

● ●

●

● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ●

●

● ●

●

● ●

●

● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ●

● ●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

● ●

●

● ●

●

●

● ● ● ● ● ● ●

●

● ● ● ● ● ●

●

● ● ● ● ●

● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ●

●

●

●

● ● ● ● ●

●

● ● ● ● ● ● ●

●

● ● ● ●

●

●

● ● ●

●

●

● ●

● ● ● ● ● ● ● ● ●

●

●

● ●

●

● ●

●

●

● ● ●

● ●

●

● ● ● ● ●

●

● ● ● ●

● ●

● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ●

●

●

● ●

● ● ● ● ● ● ● ●

●

●

● ●

● ● ● ●

● ● ●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ●

●

● ● ●

● ●

●

● ●

● ● ●

●
●

● ● ● ●

● ● ●

● ● ●

●

●

● ●

● ● ● ● ● ● ● ●

●

● ● ● ●●

●

● ● ● ●

● ●

● ●

●

● ● ●

●

●

● ●

●

●

● ● ● ●

● ●

● ●

●

● ● ● ● ●

●

● ● ● ● ●

●

● ● ●

●

● ● ● ● ●

●

● ●

●

● ● ● ●

●

● ● ● ●

●

●

● ● ● ● ● ●

●

● ● ● ●

● ●

● ● ● ● ● ●

●

● ● ● ●

●

● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ●

● ●

● ●

●

● ●

●

●

● ●

●

● ●

●

● ● ● ●

●

●

●

● ● ● ●

●

●

● ● ● ● ●

●

● ●

●

●

●

●

● ● ● ● ●

●

●

●

● ● ●

●

● ●

●

● ●

●

●

●

● ● ● ●

●

●

●

●

●

●

● ●

●

● ● ● ● ● ● ● ● ●

●

●

●

●

● ● ●

●

● ●

●

●

●

● ● ● ● ● ● ● ●

● ●

●

●

●

●

●

●

● ●

●

● ● ● ●

●

● ● ● ● ● ●

●

●

●

●

●

● ● ● ●

● ●

●

● ●

●

●

●

●

● ● ●

●

●

● ● ●

●

●

●

● ●

●

● ●

●

● ●

● ●

● ● ● ● ●

●

●

●

●

●

● ● ● ● ● ● ● ● ●

●

● ● ● ●

●

● ●

●

● ●

●

● ●

● ●

●

●

●

●

● ● ● ●

●

●

●

●

● ● ● ●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ●

● ● ● ● ●

●

●

● ● ● ●

●

●

● ●

●

● ●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

● ● ● ● ● ●

●

● ●

● ● ● ●

●

●

●

●

● ●

●

●

● ● ● ● ● ● ● ●

●

●

● ● ● ●

●

● ● ● ●

●

●

● ● ● ●

●

●

●

●

●

●

●

● ●

●

● ● ●

●

● ● ● ●

●

●

●

● ● ● ●

●

● ● ● ● ● ● ●

●

● ● ● ● ● ●

●

● ● ● ● ● ● ●

●

● ●●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ●●

●

●

● ●

● ● ● ● ● ●

●

●

●

● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

● ●

●

●

●

● ● ●

●

● ● ● ● ● ●

● ●

●

●

● ● ● ● ●

●

●

● ●

● ● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ●

●

● ● ●

●

● ● ●

●

●

●

●

●

●
●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

● ● ● ●

● ● ●

●

● ●

● ●

● ●

●

●

●

●

● ●

●

● ● ● ●

●

●

●

● ● ●

●

● ● ●

●

●

●

● ●

●

● ● ● ● ● ● ●

●

● ● ● ● ● ●

●

● ● ●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ●

●

● ●

●

● ● ● ●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

● ● ● ●

●

● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ●

●

● ●

●

● ●

●

● ● ● ● ●

●

● ● ● ● ● ● ● ● ●

●

●

● ●

● ● ●

●

● ● ● ● ●

●

● ●

●

● ● ● ● ● ●

●

●

●

●

● ● ● ● ● ●

●●

●

● ● ● ● ●

●

● ● ● ● ●

● ●

● ● ●

●

● ● ● ● ●

● ●

● ●

●

● ●

● ●

● ●

●

●

●

● ● ● ● ●

●

●

●

●

● ● ● ● ● ● ● ●

●

●

● ●

●

●

●

●

●

● ●

●

● ●

●

● ●

●

●

●

● ●

●

● ● ● ● ●

●

● ● ● ● ●

●

● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ●

●

●

● ●

●

● ●

●

● ● ● ● ●

●

● ● ●

●

● ● ●

●

●

● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

● ● ●

●

●

● ●

●

● ●

● ●

●

●

● ● ●

● ● ●

●

● ●

●

●

●

●

●

● ● ●

●

● ●

●

●

● ●

● ● ●

●

●

● ● ● ● ● ● ● ●

●

●

● ●

●

●

● ● ●

● ●

●

●

●

●

● ● ● ● ●

●

●

●

● ● ● ● ● ● ● ●

●

●

●

●

●

●

● ●

●

●

● ● ● ● ● ●

●

●

●

● ● ●

●

● ●

● ● ●

● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

● ● ●

●

●

●

● ● ● ● ● ●

●

●

● ●

● ● ● ●

●

● ● ● ●

●

● ● ● ●

●

● ● ●

●

● ●

●

●

●

● ●

●

● ● ● ● ● ● ● ● ●

●

● ● ●

● ●

●

●

●

●

● ● ● ● ●

●

●

●

● ●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

● ● ●

●

●

●

●

●

●

● ● ● ●

●

●

● ●

●

● ● ● ●

●

●

● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

● ● ●

●

● ●

●

●

●

● ●

●

●

●

●

● ● ● ● ●

● ●

● ● ●

● ●

● ● ●

●

●

●

●

● ● ● ●

●

●

● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

● ● ● ● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

● ● ● ●

●

●

● ●

● ●

●

●

● ● ● ● ●

●

●

● ●

●

● ● ●

●

●

● ● ●

●

●

●

● ● ● ●

●

●

●

● ● ● ● ● ● ● ●

●

●

● ● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

● ●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●●

● ● ●

●

● ● ●

●

●

●

●

●

● ● ● ●

●

● ●

●

●

●

●

●

●

● ● ● ● ●

● ●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

●

●

●

● ● ● ●

●

● ● ● ● ● ● ● ● ●

●

● ●

●

● ●

● ● ●

●

●

●

● ●

● ●

● ● ● ● ●

● ●

●

● ●

●

● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ●

● ●
●

● ●

●

●

● ● ● ●

●

●

● ● ● ●

●

●

● ● ● ● ● ● ●

●

● ● ●

●

● ● ● ● ● ●

●

●

●

●

● ●

●

●

●

● ● ● ●

●

●

●

● ● ●

●

● ●

●

● ●

●

●

●

● ●

●

●

●

●

● ● ●

● ●

● ● ● ●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ●

●

● ● ● ●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ●

●

●

● ●

● ● ● ● ●

●

●

●

●

●

●

● ● ● ●
●

● ●

● ●
●

● ● ● ●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

● ●

●

● ● ● ●

●

●

● ● ● ●

●

●

●

● ●

●

● ● ● ●

● ● ●

●

●

● ●

●

●

●

● ●

●

●

●

●

● ● ●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

● ● ●

● ●

●

●

● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ●

●

●

● ● ● ● ●

●

●

●

●

●

● ● ● ● ●

●

● ● ● ● ● ●

●

● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ●

●

●

●

● ● ● ● ● ● ●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

● ● ● ● ● ● ● ●

●

● ●

●

● ● ● ●

●

● ●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●

●

●
●

●

● ●

●

●

●
●

● ●

●

● ●

●

● ● ● ● ● ● ●

●

● ● ● ●●

●

●

● ● ● ●

● ●

● ● ● ● ● ● ● ● ● ● ● ●

●

● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●

●

● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ●

●

● ●

●

●

● ●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

● ●

●

● ●

● ●

● ●

●

●

●

●

●

●

● ●

●

● ● ●

●

●

●

● ●

●

●

●

●

●

●
●

● ●

●

● ●

●

● ● ● ●

●

●

● ●

●

●

●

●

●

●

● ●

●

● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ●

●

● ●

●

● ●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ●

●

●

● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ●

●

● ● ● ● ● ●

●

●

●

● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

● ●

●

● ● ● ● ●

●

● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ●

●

● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ●

●

●

●

● ● ● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

●

● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ●

●

●

●

● ● ● ● ●

●

● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ●

●

● ●

●

● ● ●

●

● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ●●

●

● ● ● ● ●

●

● ● ● ● ● ● ●

●

● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ●

●

●

●

● ● ● ● ● ● ● ● ●

●

● ●

●

● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ●

●

● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ●

●

● ● ● ●

● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ●

●

● ● ● ● ● ● ●

●

● ●

●

● ●

●

● ●

●

● ● ● ● ● ●

●

● ●

●

●

● ● ● ● ●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

● ●

● ● ●

● ● ● ● ●

● ●

●

● ●

●

●

●

●

●

●

● ●

●

● ● ●

● ● ●

● ●

●

●

●

●

● ●

● ●

● ●

●

●

● ● ● ● ● ● ● ● ● ● ●

●

● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ●

●

● ● ● ● ● ●

●

●

●

● ● ● ●

●

● ● ● ●

●

● ●

●

● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ●

●

● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

● ●● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ●

●

● ● ● ●

●

●

●

●

●

● ●

●

●

●

● ● ● ● ● ● ● ●

●

● ● ● ● ●

● ●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ●

●

●

●

● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ●

●

● ●

●

● ● ● ● ● ●

●

●

● ● ● ● ●

●

● ● ● ● ●

●

●

●

● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ●

● ● ● ● ● ● ● ● ● ● ●

●

● ● ●

●

●

●

●

● ●

● ●

●

●

●

● ●

●

●

● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ●

●

● ● ● ● ●

●

●

● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

● ●

●

●

● ● ● ● ●

●

● ● ● ●

●

●

● ● ● ● ●

●

● ● ●

● ●

● ● ● ● ● ● ●

● ● ●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ●

●

●

●

●

● ● ● ● ● ● ●

●

●

●

●

● ● ●

●

●

●

● ● ●

●

●

● ● ● ●

●

● ● ● ● ● ● ● ●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

● ●

●

● ● ●

●

● ● ●

●

● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ●

●

● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

● ● ●

●

● ●

●

● ● ● ● ● ● ●

●

● ● ●

●

●

●

● ●

●

● ● ● ● ● ● ● ● ●

● ●

●

● ●

● ● ●

●

● ● ● ● ●

●

● ● ● ● ● ●

●

●

●

●

● ●

●

● ● ● ● ● ●

●

● ● ●

● ● ● ●

● ●

●

● ●

●

●

● ● ●

●

● ● ●

●

●

●

● ● ● ●

●

● ●

●

● ● ● ● ●

●

● ● ● ● ● ● ● ● ●

●

●

●

●

●

●
●

● ●

●

● ● ● ●

●

● ●

●

● ● ●

●

●

● ● ● ● ●

● ●

● ● ●

●

● ●

●

● ●

●

● ● ● ● ●

●

●

●

● ● ● ● ● ● ● ● ●

●

● ●

●

● ● ● ●

●

●

● ●

●

●

● ●

●

●

●

● ● ● ● ● ●

●

● ● ● ●

● ●

● ● ● ●

●

● ● ●

●

● ● ● ●

● ● ● ●

●

●

●

●

● ●

●

● ● ● ●

●

● ●

●

● ● ●

●

●

● ●

●

●

● ● ● ● ●

●

● ●

●

● ●

● ●

● ● ● ● ●

● ●

● ● ● ● ●

●

● ● ●

●

●

● ● ● ●

● ●

● ● ●

● ●

●

● ● ● ●

●

●

● ● ● ● ● ● ●

●

● ●

● ●

●

● ● ● ● ●

●

● ● ● ●

●

●

●

●

● ●

●

●

● ●

●

● ● ●

● ● ● ● ● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

● ●

● ● ●

● ●

●

●

● ●

●

● ●

●

●

● ● ● ●

● ●

● ● ● ●

● ● ●

●

●

●

●

●

●

●

●

● ● ● ●

● ● ● ●

● ●

● ● ● ● ●

●

●

●

●

●

● ●

●

●

● ● ● ●

● ●

●

● ● ●

● ● ●

● ● ●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ●

●

●

●

● ● ● ● ● ●

●

●

● ● ● ● ●

●

● ● ●

●

● ● ●

●

●

● ● ●

●

●

●

●●

●

●

● ● ● ●

●

●

● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ●

●

●

●

● ●

● ●

● ● ● ● ●

●

● ● ● ● ●

●

●

●

●

●

●●

●

● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

● ● ●

●

● ● ● ● ● ●

●

●

●

● ● ● ● ● ●

●

● ●

●

●

●

● ● ● ● ●

●

● ●

●

● ● ● ●

●

● ● ● ● ●

●

●

● ● ● ● ● ●

●

● ● ● ● ●

●

● ●

●

●

●

●

●

●

●

●

● ● ● ●

●

● ● ● ●

●

● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ●

●

● ● ● ●

●

●

●

●

●

● ● ● ● ●

●

● ● ● ● ●

●
● ●

● ●

● ●

●

● ●

●

●

●

● ● ●

●

●

●

● ● ● ● ●

●

●

● ● ● ●

●

● ● ●

●

● ● ●

●

● ●

●

●

●

●

● ● ●

●

●●

●

● ● ● ● ●

●

● ● ● ●

●

●

● ● ●

●

●

●

● ●

●

●

● ●

●

● ● ●

●

● ● ● ● ● ● ●

●

● ●

●

● ● ● ● ● ● ● ● ● ●

●

● ●

●

●

● ●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●

●
●

●

●

●

●

●

● ●

●

●

● ● ● ●

●

●

●

● ● ●

●

● ●

●

● ● ● ● ●

●

● ● ● ● ● ● ● ● ●

●

● ● ● ●

●

● ● ● ● ●

●

● ● ● ● ● ●

●

●

● ●

●
●

● ● ● ● ● ●

●

●

●

●

●

● ● ●

● ● ●

● ● ● ●

●

● ● ●

●

● ●

●

● ● ● ●

●

●

●

● ● ● ●

●

● ● ●

●

●
●

●

● ●●

●

● ● ●

● ●

●

●

● ●

●

●

●

● ●

●

● ●

●

● ● ● ● ●

● ●

●

●

●

●

●

● ●

●

● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ●

●

●

●

●

●
●

● ●

● ● ● ●

●

●

●

● ● ● ●

●

●

●

●

●

●

● ●

● ●

● ● ●

● ●

●

●

● ● ●

●

●

●

● ● ●

● ●

●

● ●

●

● ●

●

●

●

●

●

● ●

● ●

●

●

● ●

● ●

●

●

●

●

●

● ●

●

●

●

● ● ● ●

●

●

● ● ●

● ● ● ● ●

●

● ● ●

●

●

●

●

● ●

● ●

●

● ●

●

● ● ●

● ● ● ● ● ●

●

●

●

●

●

●

●

● ●

● ●

●

● ● ●

●

●

● ● ● ● ●

●

●

● ● ● ●

●

●

●

●

● ● ● ● ● ●

●

● ●

●

● ● ● ● ● ● ●

●

● ●

●

● ● ●

●

● ● ● ●

●

●

●

●

●

● ● ● ●

●

● ● ● ●

●

●

●

●

● ●

●

●

● ● ● ●

●

●

● ●

●

●

●

●

● ● ● ●

●

●

●

●

● ●

●

●

●

●

●

● ● ●

● ●

●

● ●

●

● ● ● ●

●

●

● ●

● ●

●

● ● ●

●

● ● ●

●●

●

● ● ●

● ● ●

●

●

●

● ●

●

●

● ● ●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ●

●

● ●

●

●

●

● ●

●

● ●

●

● ● ● ● ●

●

●

●

●

●

● ● ● ● ●

●

●

●

● ● ●

●

●

●

●

●

●

●

● ● ●

●

● ●

●

● ● ● ● ● ● ● ● ● ●

●

●

●

●

● ● ●

●

● ●

●

●

●

●

● ●

●

● ● ●

●

●

● ●

●

●

●

●

● ● ● ● ●

●

●

● ● ●

●

● ●

●

● ● ●

●

● ●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ●

●

● ● ● ●

●

● ● ● ● ●

●

● ●

●

●

● ● ● ● ● ● ● ● ● ●

●

● ●

●

●

● ● ●

●

● ● ●

●

● ● ●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

● ●

●

●

●

●

●

● ● ●

●

●

● ●

●

●

●

● ● ● ●

●

●

● ● ●

●

●

●

● ●

●

● ●

●

●

●

●
● ●

●

●

●

● ● ●

●

●

●

● ● ●

●

●

●

● ● ● ● ● ● ●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

● ●

●

● ●

● ●

●

●

●

●

●

● ● ●

● ●

● ● ●

●

● ● ● ● ●

●

●

●

● ●

●

● ● ● ●

●

● ●

●

●

●

●

● ● ● ●

●

●

● ● ● ● ● ●

●

●

● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ●

●

● ● ●

●

● ● ● ● ● ● ●

●

●

● ●

●

●

●

●

●

●

●

● ● ● ●

●

● ● ●

●

● ● ● ●

●
●

●

● ●

●

● ●

●

●

●

●

● ● ●

●

●

●

● ●

●

●

●

●

●

●

●

● ● ●

● ●

●

● ● ●

●

●

● ●

●

● ● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

● ●

●

●

● ●

● ●

●

●

● ● ● ●

● ●

● ● ● ● ● ● ● ●

●

●

● ● ● ● ●

●

● ● ● ● ●

●

● ●

● ●

● ●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

● ● ● ●

●

●

● ● ● ● ●

●

● ●

●

● ● ●

●

●

●

●

● ● ● ● ●

●

● ●

●

●

● ●

●

● ●

●

●

●

● ●

● ●

● ●

●

●

●

● ● ● ● ●

●

●

●

●

●

● ●

●

●

●

●

● ● ● ● ● ● ● ●

● ● ●

●

●

● ● ● ● ● ●

●

●

● ● ● ●

●

● ● ●

●

●

●

● ●

●

●

●

● ● ● ●

●

● ●

●

● ● ●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

● ●

●

●

●

● ● ● ●

●

● ● ●

● ●

●

●

● ●

●

●

●

● ● ●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

● ● ●

● ●

●

●

● ● ●

●

●

●

● ●

●

●

●

● ● ●

●

●

● ●

●

●

●

●

● ● ●

●

●

●

● ● ● ●

●

● ● ● ●

● ●

●

●

●

● ● ● ● ● ● ●

●

●

●

● ●

● ● ● ● ● ● ● ● ●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

nfd:LRU(multicast) nfd:Probabilistic nfd:DaD

24 28 32 36 24 28 32 36 24 28 32 36

1

10

100

Attack time (seconds)

H
o
p

 C
o
u
n

t
(n

u
m

b
e
r)

VoNDN Adversary Legitimate

Figure 6.22: VoNDN adversary and legitimate nodes hop count metrics.

6.3. Results 139

Countermeasure distribution efficiency hop count results. Figure 6.22 shows the global hop-

count results on default LRU (multicast), probabilistic, and DaD scenarios during the attack time (≈21-35

s). If the attack is successful, the minimum hop count metric can be obtained because of adversary hits

the edge routers. If an attack is not successful, the maximum hop count metrics obtained. Because of

no-countermeasure applied in LRU (multicast) scenario, the adversary’s average of hop-count metrics is

obtained minimum (≈1.04) than the average of legitimate node’s hop counts (≈2.38) during the attack.

To mitigate the attack on the default (LRU) scenario, the countermeasures (probabilistic and DaD) were

set. When countermeasures are applied, the hop count of adversaries increases. However, the hop counts

of legitimate nodes also increase in probabilistic caching configuration, because of its set to all faces. On

the other hand, the DaD only set the countermeasures to attack the detected face, which preserved the

hop counts of legitimate requests.

Table 6.9: VoNDN hop count countermeasure results.

scenarios
hop count (average)

legitimate adversary

LRU (multicast) 2.38 1.04

probabilistic 2.43 1.84

DaD 2.38 35.9

Table 6.9 shows the average hop count metrics for the applied countermeasures (probabilistic and DaD)

to mitigate the attacks on the default multicast (LRU) VoNDN scenario. During the attack period (21-40 s),

the default scenario presented an average hop count of 2.38 for legitimate nodes and 1.04 for the adversary

nodes.

The probabilistic and DaD scenarios are applied to mitigate the attack on the default scenario. In the

probabilistic scenario, the average of adversaries hop count increased to 1.84 from 1.04 (default). This

reveals the attack mitigation of about 55% on the default scenario. However, the probabilistic caching

also increased the average hop counts of the legitimate certificate requests from 2.38 (default) to 2.43.

Therefore, 2% of the VoNDN conversation traffic between the callee and the caller may be considered as

affected or delayed because of the probabilistic scenario.

In DaD, the legitimate requests preserved and the average hop count was equal to the value obtained in

the LRU (default) scenario (2.38). These values suggest that DaD may have applied the countermeasures

only to the attack detected faces. In DaD, the average hop count was increased to 35.9 from 1.04 for the

adversary nodes. These results are showing that the performance of attack is significantly decreased under

DaD’s multiple countermeasure configuration.

140 Chapter 6. Scenarios and Results

6.4 Source Code

All scenarios were scripted by the C++11 library in ndnSIM 2.6. The scenario implementations and required

tools can be publicly accessible at the author GitHub account— https://git.io/fjZjZ.

6.5 Discussion

To understand the side-channel timing attack findings and detection the NDNtube-like and the VoNDN-like

applications are developed respectively. These applications are simulated on topology sets (AT&T and

NDN-testbed) to obtain realistic scenario findings.

The brute-force attack performance was evaluated for NDNtube streamed segments on the tree and AT&T

topologies. The CHR was used to evaluate the performance of the attack on NDNtube CS policies (LRU,

LFU, and FIFO). In NDNtube, the adversaries succeeded to obtain the popularity of targets by following

clusters: edge, neighbor, and away clusters under by nfd::LRU (default) scenario. These results showed

that the adversary may reveal information from cached CRT value, especially where the streamed content

is cached to identify the popularity of contents in NDNtube. Identifying the popularity can be critical for

network privacy and security. For instance, an adversary can target the popular contents to make them

unavailable by requesting unpopular contents to the cache (similar sense of cache poisoning).

VoNDN attack scenario was evaluated on the NDN-testbed topology. In this scenario, the adversaries tar-

geted 252 certificates to know the callee or caller locations. The adversaries were able to know the locations

(edge, neighbor, and away) of certificates based on CRT analysis. The cached certificate may reveal such

information about the conversation (e.g. who, when, and where) in the trusted-VoNDN application. In the

VoNDN scenario, the attack results were analyzed on NDN forwarding strategies (best-route and multicast)

respectively. Because the certificates are available for each callee and caller, the attack results showed

that the callee and caller locations can be identified by the side-channel timing responses of the cache.

To detect an adversary’s face, the detection methods were analyzed on NDNtube and VoNDN applications

respectively. The metrics of CRT, CHR, and hop count are analyzed of the under attack and no-attack

periods. These results showed that the metrics (CRT, CHR, and hop count) of the adversary’s face changed

abnormally compared with the legitimate faces. More specifically, because of the attack repetitions, the

CHR increases for the adversary’s faces and this can be certainly used to detect an attack. However,

the other metric results are also presented and these can be used to detect an adversary’s faces on the

applications.

To mitigate the attack the countermeasures were developed on NDNtube and VoNDN. A static counter-

measure probabilistic (nfd::probabilistic) cache evaluated for NDNtube and VoNDN. Additionally,

another static countermeasure (nfd:freshness) only applied to the NDNtube. The results showed that a

static method may not be the most effective to mitigate the attack. Also, the results showed that a statically

https://git.io/fjZjZ

6.5. Discussion 141

configurable approach affects legitimate requests and content distribution efficiency. Then this work’s main

approach (nfd::DaD) is tested for both mitigation and distribution efficiency on NDNtube and VoNDN. The

mitigation results showed that the mitigation is improved by DaD because of its multiple countermeasure

configuration. Also, it is shown that the multiple countermeasures only applied to adversary detected face

because of its detection configuration.

Note that, the scope of attack and detection thresholds were identified only for NDNtube and VoNDN

applications. In this work, different cache policies and forwarding strategy configurations are used to show

differences in the detection threshold and method. Thus, the detection methods and their threshold value

can be re-adapted depending on the NDN application and cache policy.

7

CONCLUS IONS

In this chapter, the work conclusions are presented. The work’s main objectives and experimental objectives

are also reviewed. Also, possible future works and considerations are presented.

7.1 Summary of Thesis

The growth of network devices and ubiquitous interconnectivity are forcing the Internet to be overwhelm-

ingly used for content distribution. NDN paradigm attempts to recover this issue to maximize the content

distribution with the in-network caching feature to answer today’s application needs. The NDN features on

packet types, application layers, and protocols literature were surveyed in Chapter 2.

Besides the benefits of caching, the previously cached contents may be faced with an attack called side-

channel timing differences. The possible scope of the attack on the VoNDN and NDNtube scenarios and

possible countermeasure methods were surveyed in Chapter 3. However, the countermeasure methods

presented by other works may be considered a trade-off between privacy and the efficiency of content

distribution. Therefore, this issue had motivated this work, to identify the main objective as to propose an

efficient approach to mitigate the side-channel timing attacks and maintain the content distribution in NDN.

The main objective of the work led to focus the adversarial face detection methods. Through dynamic

adversary detection, the countermeasure methods can be only applied to adversary’s faces to maintain

legitimate requests and content distribution. To achieve this goal, multiple countermeasures based on

detection methods (mainly: cache hit ratio, hop count) were proposed by a privacy model called DaD, were

it presented in Chapter 4.

On the other hand, an attack model called brute-force was developed to meet with today’s attack trends.

Through, brute-force, the adversary may identify multiple targets to increase the success of the attack.

To differentiate the attack behavior on the applications, two NDN simulation scenarios (NDNtube and

VoNDN) prototypes were implemented. Also, taking into consideration the different scope of an attack, DaD,

and attack findings results was presented. The results showed that the DaD can be used to maintain the

legitimate requests and content distribution of both NDNtube and VoNDN simulation scenarios.

142

7.2. Reviewing Objectives 143

7.2 Reviewing Objectives

The work and experiment objectives were identified in Chapter 1. This section reviewed the achieved work

and experimental objectives also answering the research question of this work. The objectives were reviewed

by the following:

i. Survey the NDN architecture and cache privacy-related issues.

This objective was carried out in Chapter 2 with a bibliographic review about NDN. Also, the content-

centric network designs and features are introduced such as security, routing-forwarding, and transport

functions. The in-network caching design also revised to improve the scalability, cost reduction, network

performance while increasing the privacy of content. In this chapter, the NDN privacy threats were pointed

out about the cache, content, name, and signature (certificate).

ii. Survey the side-channel timing attack and its countermeasure methods to preserve

content privacy.

After identified the NDN cache privacy threats, an attack-type called side-channel timing and its coun-

termeasures were surveyed in Chapter 3. It was shown that the attack scope can be used to identify the

previously cached contents in NDN, these names are used to obtain the producer and consumer locations.

Also, usable countermeasure statically configured methods were discussed which were presented by other

researchers. To illustrate the countermeasures efficiency on content distribution, countermeasures are

classified mainly based on cache available and unavailable methods. It is also discussed why the statically

configured countermeasures can be inefficient when considering the distribution of content in NDN.

iii. Understand the adversary node behavior and survey the usable attack detection tech-

niques.

After pointing out statically configured countermeasure methods efficiency concerns, a new approach

was proposed to overcome these issues by Chapter 4. To gain this objective, the attack detection methods

were surveyed. However, the lack of side-channel timing attack detection methods in a bibliographic review

led to similar attack detection methods. To achieve usable detection methods (mainly cache hit ratio and

hop counts), similar cache poisoning detection methods were surveyed and pointed can be adapted for the

side-channel timing attack. Through the detection methods, the adversary face can be detected to apply a

countermeasure mechanism.

iv. Develop an attack model to increase the success of the attack for multiple targets.

The traditional side-channel timing attack may be configurable for a single target which may affect the

performance of the attack.

In this work, an attack model is designed to improve the attack success for multiple targets. To achieve

that, this attack model is inspired by brute-force design which is considered a recent model and commonly

used in today’s attack modeling. Through the brute-force attack based implementation, the adversary can

obtain multiple targets as designed in Chapter 4.

144 Chapter 7. Conclusions

Additionally, the brute-force is designed based on the random function to attack targets randomly instead

of sequential order. Through this design, the adversary may also identify the scope of the attack on different

NDN applications. For instance, an adversary may target the certificate on trusted applications such as

VoNDN.

v. Design and propose a privacy model to preserve content privacy while also not compro-

mising the NDN distribution performance.

Depending on the attack configuration and application, the scope of the attack can be different. The

adversary may obtain the consumer and producer locations through the attack. Therefore, in this work,

multiple detection methods are proposed to be used on privacy-sensitive applications such as VoNDN.

On the other hand, the detection methods were used to obtain the severity of the attack. Through this

identification, the attack is classified by minor, moderate, and severe to apply multiple countermeasures

methods. Theremultiple detection and countermeasure based privacy model “detection and defense (DaD)”

was presented in Chapter 4. Through the DaD algorithm, the adversary face can be detected to apply

multiple countermeasures depending on the attack severity.

vi. The attack and DaD implementations are based on NDN applications.

To achieve the work objectives, the experimental frameworks and scenario implementations were ad-

dressed in Chapter 5. In this work, the scenario was implemented and simulated on the NDN simulator.

Also, used ndnSIM and its forwarding daemon (NFD) components were evaluated by bibliographic and

developer guidelines in this Chapter 5.

The implemented scenario results were presented in Chapter 6. The NDNtube and VoNDN applications

were developed to simulate the brute-force findings. To achieve realistic results, the attack scenario was

developed and applied to network topologies such as AT&T and NDN-testbed. The adversary nodes were

configured to target the name of the content and certificate. The results also analyzed several attack sce-

narios on each application. Also, the statically configured countermeasure and dynamically configured DaD

implementations result were analyzed. The results showed that the DaD was able to detect the adversarial

nodes to applied the countermeasures to only the detected faces.

7.3 Summary of Main Contributions

Regarding scenario findings and results, the achieved main contributions of the thesis was summarized by

the following items:

i. Propose a privacy model approach (DaD) to preserve content privacy.

The countermeasure efficiency issues were pointed out by other research works. To overcome this issue,

the detection methods were proposed by [88], [87], and [89] to distinguish the legitimate nodes from the

adversaries.

7.3. Summary of Main Contributions 145

The possible side-channel timing attack and an attack detection approaches were proposed by [88]. The

detection was identified by the cache hit ratio that can be used to identify the adversary node to also apply

additional delay methods (fixed, random, and unpredictable) to mitigate the attack.

The traditional attack model and detection results were presented by the work [87]. In addition to the

cache hit ratio detection metric, the CRT values were proposed and analyzed to detect an adversary on

streaming application (16 nodes tree-topology). It was shown that the CRT values were decreased between

37.80% and 53.64% in under attack compared with no-attack periods to detect an adversary [87]. Also, an

algorithm was presented to mitigate the attack that was based on CRT and cache hit ratio threshold values.

The sophisticated detection based privacy model was presented by [89] which was called Detection and

Defense (DaD). It is based on multiple detections and countermeasures methods to meet with the “perfect

privacy” approach. In DaD, the detection methods used to detect the adversary face to distinguish from

the legitimate nodes. Also, the severity of the attack can be obtained by periodically attack detected faces.

Thus, attack detection can be also used to apply multiple countermeasures methods to mitigate the attack

by also obtaining their severity.

ii. Design an attack model that can be used to increase the multiple targets.

The single segment based attack was implemented by the work [87]. The attack scenario based on tree

topology and adversaries has targeted the video-like segments to success in the attack. The success of the

attack was calculated up to 90% based on the cache hit ratio on targeted routers.

To meet with today’s attack models, the single segment based attack was upgraded by brute-force

implementation as presented by the [89]. The adversary was able to define multiple targets to increase

the success of the attack. Additionally, a randomized function was implemented to brute-force design to

maximize the attack success. To achieve realistic results and adversary behavior, the attack scenario was

implemented on the AT&T topology.

iii. Implement the brute-force attack and DaD algorithm.

The brute-force attack was implemented on AT&T and NDN-testbed topologies to obtain realistic results

by [89] and [98] work. It was shown that the cache hit ratio was obtained ≈20% for the attack routers on

the VoNDN-like scenario. Through this attack, the adversaries able to obtain the ≈65% of video-segment

locations. In NDNtube, the adversaries were able to locate the targets as following the clusters: i. 30.4%

for first, ii. 18.2% for neighbor, and iii. 51.4% for away routers (Subsection 6.3.1).

On the other hand, the work [98] implemented the brute-force attack on a trusted VoNDN-like application

scenario that was developed and simulated on NDN-testbed topology. An attack model called brute-force

was that increases the success of attack compared to traditional attack designs. The brute-force configured

adversaries have targeted 252 certificates these are cached by NDN-testbed edge router. The success of

attacks obtained by following: 0.9% CHR in best- route, 50.4% CHR in multicast communications. Also,

35% of adversaries were able to determine the location of cached targets by following: 70.8% cached by

the closest, 17.4% cached by the neighbor, and 11.8% cached by away routers.

146 Chapter 7. Conclusions

iv. Analyze the DaD mitigation results on trust-based VoNDN-like scenario.

The DaD was implemented as a cache policy to mitigate the brute-force attack on VoNDN as presented

by [98]. The detection was based on the cache hit ratio with threshold values. In this scenario, the static

countermeasure method (probabilistic caching) was applied and dynamic DaD results were presented and

compared. The results showed that the DaD improved the attack mitigation by about 39.1% in best-route

and 36.6% in multicast while protecting the legitimate requests when compared to the traditional static

probabilistic configurations.

To illustrate that, the DaD can be used to preserve the legitimate request while mitigating the attack,

the mean of legitimate hop counts were analyzed during the attack period. The results showed that the

DaD (average ≈2.38) preserved ≈2.1% legitimate request, compared to statically configured probabilistic

countermeasure method (average ≈2.43).

v. Analyze the DaD mitigation results on NDNtube-like scenario.

In default scenario (no-countermeasure applied), the average CHR is obtained ≈16.4% under nfd:LRU

policy (Subsection 6.3.1). To mitigate the attacks, the countermeasures are attempting to decrease the

CHR which is obtained under no-countermeasure applied nfd:LRU (default) scenario.

The DaD dynamically detected the attack and took countermeasure actions instead of statically configured

routers to mitigate the attack [journal-2 1]. It was shown that the DaD was dynamically mitigated the attack

in NDNtube and CHR was obtained 0.7% in the attack period. This result also illustrated that all DaD

countermeasures were applied to adversarial faces because the attack was considered as severe.

Also, the statically applied countermeasure results were presented and compared with the scenario of

the DaD. The CHR results were obtained by the following: i. 4.1% in nfd:probabilistic and ii. 3.7% in

nfd:freshness respectively.

The countermeasure results showed that the CHR is decreasing under the countermeasure methods

compared to the no-countermeasure(s) applied scenario. These countermeasures results are showed that

the attacks are more mitigated in DaD (≈0.7%) configuration compared to statically configured counter-

measures (probabilistic ≈4.1% and freshness ≈3.7%) in NDNtube (Subsection 6.3.3).

7.4 Future Works

This section conceptually suggests possible future works these can be the next step or alternative work for

this research.

• The attack scope and findings can be different on applications. Thus, the brute-force attack scenario

can be implemented on different NDN applications to study its findings. For instance, ideally, the

vehicular location can be obtained through the scenario that we developed on the VANET NDN

1 journal-2 is under-preparation (Section 1.4)

7.5. Final Considerations 147

application [99]. To mitigate this an optimal DaD can be proposed. The scenario findings and DaD

design can be studied by further works.

• In this work, the scenarios were simulated on ndnSIM. It was used to collect and simulate realistic

application simulations on the real-set topologies. To achieve the adversary results, the NDN appli-

cations (NDNtube and VoNDN) can be implemented over the real NDN-testbed by possible future

implementations. However, currently, this can be still a challenge considering access to nodes and

NDN-testbed policies.

Limitations of work. In this work, the detection thresholds are suggested based on ndnSIM simulation

experiences and application behaviors (NDNtube and VoNDN). In both applications, the attacks are detected

dynamically based on pre-defined detection CHR threshold values. However, these detection threshold

computations can be defined by further tuning or automatic process using machine learning algorithms

according to traffic patterns and complex networks.

7.5 Final Considerations

This work presented a new approach to mitigating the side-channel timing attack on NDN content privacy.

The proposed countermeasure methods by researches may be considered to be against to NDN paradigm.

To overcome this issue, this work proposed detection methods to distinguish the adversary from legitimate

nodes. The results showed that the countermeasures efficiency concerns can be overcome by identifying

the adversary.

In this work, some applications were re-produced because of the lack of accessible implementation files.

Therefore, the applications (except the main contribution) files are publicly available to support future cache

privacy-related projects in NDN.

On the other hand, the ndnSIM and NFD can be stated as limited for cache-related developments. The

ndnSIM and NFD developers can be more focused on cache-related works to enable future developments,

considering the side-channel timing attack is a threat to content privacy in NDN.

B I B L I O G R A PH Y

[1] K. Stamos, G. Pallis, and A. Vakali, “Caching techniques on CDN simulated frameworks,”

Lecture Notes in Electrical Engineering, vol. 9 LNEE, pp. 127–153, 2008. [Online]. Available:

https://doi.org/10.1007/978-3-540-77887-5_5

[2] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and R. L. Braynard,

“Networking named content,” in Proceedings of the 5th international conference on Emerging

networking experiments and technologies - CoNEXT ’09, vol. 30, no. 2. New York, New York, USA:

ACM Press, 2009, p. 1. [Online]. Available: https://doi.org/10.1145/1658939.1658941

[3] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, K. Claffy, P. Crowley, C. Papadopoulos, L. Wang, and

B. Zhang, “Named data networking,” ACM SIGCOMM Computer Communication Review, vol. 44,

no. 3, pp. 66–73, jul 2014. [Online]. Available: https://doi.org/10.1145/2656877.2656887

[4] Y. Yu, A. Afanasyev, D. Clark, K. Claffy, V. Jacobson, and L. Zhang, “Schematizing Trust in

Named Data Networking,” in Proceedings of the 2nd International Conference on Information-Centric

Networking - ICN ’15, vol. 0030. New York, New York, USA: ACM Press, 2015, pp. 177–186.

[Online]. Available: https://doi.org/10.1145/2810156.2810170

[5] Y. Yu, “Usable Security For Named Data Networking,” Ph.D. dissertation, Uni-

versity of California, 2016. [Online]. Available: https://pdfs.semanticscholar.org/2ab3/

65161a0d1703b65072e3bcd3f28d467e1c71.pdf

[6] D. Kulinski and J. Burke, “NDNVideo : Random-access Live and Pre-recorded streaming

using NDN,” Technical Report NDN-0007, no. September, pp. 1–17, 2012. [Online]. Available:

http://www.named-data.net/techreport/TR007-streaming.pdf

[7] D. Van Jacobson, M. Stewart, J. Thornton, and R. Braynard, “VoCCN: Voice Over Content-Centric

Networks,” ReArch, 2009. [Online]. Available: https://doi.org/10.1145/1658978.1658980

[8] G. Zhang, S. Fischer-Huebner, L. A. Martucci, and S. Ehlert, “Revealing the Calling History of SIP

VoIP Systems by Timing Attacks,” in 2009 International Conference on Availability, Reliability and

Security. IEEE, 2009, pp. 135–142. [Online]. Available: https://doi.org/10.1109/ARES.2009.129

148

https://doi.org/10.1007/978-3-540-77887-5_5
https://doi.org/10.1145/1658939.1658941
https://doi.org/10.1145/2656877.2656887
https://doi.org/10.1145/2810156.2810170
https://pdfs.semanticscholar.org/2ab3/65161a0d1703b65072e3bcd3f28d467e1c71.pdf
https://pdfs.semanticscholar.org/2ab3/65161a0d1703b65072e3bcd3f28d467e1c71.pdf
http://www.named-data.net/techreport/TR007-streaming.pdf
https://doi.org/10.1145/1658978.1658980
https://doi.org/10.1109/ARES.2009.129

bibliography 149

[9] N. Kamoltham, K. N. Nakorn, and K. Rojviboonchai, “From NS-2 to NS-3 - Implementation and eval-

uation,” 2012 Computing, Communications and Applications Conference, ComComAp 2012, pp.

35–40, 2012.

[10] A. Afanasyev, I. Moiseenko, and L. Zhang, “ndnSIM: NDN simulator for NS-3,” NDN Technical

Report, pp. 1–7, 2012. [Online]. Available: http://named-data.net/techreport/TR005-ndnsim.pdf

[11] S. Mastorakis, A. Afanasyev, I. Moiseenko, and L. Zhang, “ndnSIM 2 . 0 : A new version of the

NDN simulator for NS-3,” NDN, Technical Report NDN-0028, Tech. Rep., 2015. [Online]. Available:

https://named-data.net/wp-content/uploads/2013/07/ndn-0028-1-ndnsim-v2.pdf

[12] S. Mastorakis, A. Afanasyev, I. Moiseenko, and L. v. Zhang, “ndnSIM 2: An updated

NDN simulator for NS-3,” no. NDN-0028, Revision 2, pp. 1–8, 2016. [Online]. Available:

https://named-data.net/wp-content/uploads/2016/11/ndn-0028-2-ndnsim-v2.pdf

[13] A. Afanasyev, J. Shi, B. Zhang, L. Zhang, I. Moiseenko, Y. Yu, W. Shang, Y. Huang, J. P.

Abraham, S. Dibenedetto, C. Fan, D. Pesavento, G. Grassi, G. Pau, H. Zhang, T. Song,

H. B. Abraham, P. Crowley, S. O. Amin, V. Lehman, and L. Wang, “NFD Developer’s

Guide,” NDN, Technical Report NDN-0021, vol. 4, pp. 1–56, 2015. [Online]. Available:

https://named-data.net/wp-content/uploads/2016/10/ndn-0021-7-nfd-developer-guide.pdf

[14] Named-data.net, “NDN Testbed - Named Data Networking (NDN),” 2015. [Online]. Available:

https://named-data.net/ndn-testbed/

[15] D. Saxena, V. Raychoudhury, N. Suri, C. Becker, and J. Cao, “Named Data Networking:

A survey,” Computer Science Review, vol. 19, pp. 15–55, 2016. [Online]. Available: http:

//dx.doi.org/10.1016/j.cosrev.2016.01.001

[16] L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. D. Thornton, D. K. Smetters, B. Zhang,

G. Tsudik, D. Massey, C. Papadopoulos, L. Wang, P. Crowley, and E. Yeh, “Named Data

Networking (NDN) Project,” NDN, Technical Report NDN-0001, Tech. Rep., 2010. [Online]. Available:

http://named-data.net/techreport/TR001ndn-proj.pdf

[17] G. Acs, M. Conti, P. Gasti, C. Ghali, and G. Tsudik, “Cache privacy in named-data networking,”

Proceedings - International Conference on Distributed Computing Systems, pp. 41–51, 2013.

[Online]. Available: https://doi.org/10.1109/ICDCS.2013.12

[18] A. Mohaisen, H. Mekky, X. Zhang, H. Xie, and Y. Kim, “Timing Attacks on Access Privacy

in Information Centric Networks and Countermeasures,” IEEE Transactions on Dependable

and Secure Computing, vol. 12, no. 6, pp. 675–687, 2015. [Online]. Available: https:

//doi.org/10.1109/TDSC.2014.2382592

http://named-data.net/techreport/TR005-ndnsim.pdf
https://named-data.net/wp-content/uploads/2013/07/ndn-0028-1-ndnsim-v2.pdf
https://named-data.net/wp-content/uploads/2016/11/ndn-0028-2-ndnsim-v2.pdf
https://named-data.net/wp-content/uploads/2016/10/ndn-0021-7-nfd-developer-guide.pdf
https://named-data.net/ndn-testbed/
http://dx.doi.org/10.1016/j.cosrev.2016.01.001
http://dx.doi.org/10.1016/j.cosrev.2016.01.001
http://named-data.net/techreport/TR001ndn-proj.pdf
https://doi.org/10.1109/ICDCS.2013.12
https://doi.org/10.1109/TDSC.2014.2382592
https://doi.org/10.1109/TDSC.2014.2382592

150 bibliography

[19] C. Bernardini, S. Marchal, M. R. Asghar, and B. Crispo, “PrivICN: Privacy-preserving content retrieval

in information-centric networking,” Computer Networks, vol. 149, pp. 13–28, 2019. [Online].

Available: https://doi.org/10.1016/j.comnet.2018.11.012

[20] E. W. Felten and M. A. Schneider, “Timing attacks on Web privacy,” Proceedings of the 7th ACM

conference on Computer and communications security - CCS ’00, pp. 25–32, 2000. [Online].

Available: https://doi.org/10.1145/352600.352606

[21] S. DiBenedetto, P. Gasti, G. Tsudik, and E. Uzun, “ANDaNA: Anonymous Named Data Networking

Application,” in Proceedings of the Network and Distributed System Security Symposium, 2011.

[Online]. Available: http://arxiv.org/abs/1112.2205

[22] S. Eum, K. Pentikousis, I. Psaras, D. Corujo, D. Saucez, T. Schmidt, and M. Waehlisch,

“Information-Centric Networking (ICN) Research Challenges,” Tech. Rep., jul 2016. [Online].

Available: https://www.rfc-editor.org/info/rfc7927

[23] W. M. , Mosko I., Solis C., “Content-Centric Networking (CCNx) Semantics.” [Online]. Available:

https://tools.ietf.org/pdf/rfc8569.pdf

[24] L. Peterson, B. Davie, and E. R. van Brandenburg, “Framework for Content Distribution Network

Interconnection (CDNI),” Tech. Rep., 2014. [Online]. Available: https://tools.ietf.org/html/rfc7336

[25] T. Dalgleish, J. M. G. Williams, A.-M. J. Golden, N. Perkins, L. F. Barrett, P. J. Barnard,

C. Au Yeung, V. Murphy, R. Elward, K. Tchanturia, and E. Watkins, Content Delivery

Networks, ser. Lecture Notes Electrical Engineering, R. Buyya, M. Pathan, and A. Vakali,

Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, vol. 9, no. 1. [Online]. Available:

https://doi.org/10.1007/978-3-540-77887-5%0A

[26] M. Pathan, R. Buyya, and A. Vakali, “Content delivery networks: State of the art, insights, and

imperatives,” Lecture Notes in Electrical Engineering, vol. 9 LNEE, pp. 3–32, 2008. [Online].

Available: https://doi.org/10.1007/978-3-540-77887-5_1

[27] A. Ghodsi, T. Koponen, J. Rajahalme, P. Sarolahti, and S. Shenker, “Naming in content-

oriented architectures,” in Proceedings of the ACM SIGCOMM workshop on Information-centric

networking - ICN ’11. New York, New York, USA: ACM Press, 2011, p. 1. [Online]. Available:

https://doi.org/10.1145/2018584.2018586

[28] W. You, B. Mathieu, and G. Simon, “How to make content-centric networks interwork with CDN

networks,” in 2013 Fourth International Conference on the Network of the Future (NoF). IEEE, oct

2013, pp. 1–5. [Online]. Available: https://doi.org/10.1109/NOF.2013.6724511

https://doi.org/10.1016/j.comnet.2018.11.012
https://doi.org/10.1145/352600.352606
http://arxiv.org/abs/1112.2205
https://www.rfc-editor.org/info/rfc7927
https://tools.ietf.org/pdf/rfc8569.pdf
https://tools.ietf.org/html/rfc7336
https://doi.org/10.1007/978-3-540-77887-5%0A
https://doi.org/10.1007/978-3-540-77887-5_1
https://doi.org/10.1145/2018584.2018586
https://doi.org/10.1109/NOF.2013.6724511

bibliography 151

[29] C. Ghali, G. Tsudik, and C. A. Wood, “When Encryption is Not Enough : Privacy

Attacks in Content-Centric Networking,” Proceedings of ACM ICN, 2017. [Online]. Available:

https://doi.org/10.1145/3125719.3125723

[30] “Information-Centric Networking Research Group.” [Online]. Available: https://irtf.org/icnrg

[31] P. Jacobson, V. and Burke, J. and Zhang, L. and Zhang, B. and Claffy, K. and Papadopoulos, C.

and Abdelzaher, T. and Wang, L. and Halderman, J. and Crowley, “Named Data Networking Next

Phase (NDN-NP) Project May 2014 - April 2015 Annual Report,” Named Data Networking (NDN),

Tech. Rep., 2015. [Online]. Available: https://named-data.net/project/annual-progress-summaries/

ndn-ar2017/

[32] C. Yi, A. Afanasyev, L. Wang, B. Zhang, and L. Zhang, “Adaptive forwarding in named data

networking,” ACM SIGCOMM Computer Communication Review, vol. 42, no. 3, p. 62, 2012.

[Online]. Available: http://dx.doi.org/10.1145/2317307.2317319

[33] B. Zhang, L. Zhang, I. Moiseenko, A. Afanasyev, J. Shi, Y. Yu, W. Shang, Y. Li, S. Mastorakis,

Y. Huang, J. P. Abraham, E. Newberry, T. Liang, K. Schneider, S. Dibenedetto, C. Fan, S. Shannigrahi,

C. Papadopoulos, D. Pesavento, G. Grassi, G. Pau, H. Zhang, T. Song, H. Yuan, H. B. Abraham,

P. Crowley, S. O. Amin, V. Lehman, M. Chowdhury, A. Gawande, L. Wang, and N. Gordon,

“NFD Developer’s Guide,” NDN, Technical Report NDN-0021, no. June, 2018. [Online]. Available:

https://named-data.net/wp-content/uploads/2016/10/ndn-0021-7-nfd-developer-guide.pdf

[34] A. Afanasyev, J. Shi, B. Zhang, L. Zhang, I. Moiseenko, Y. Yu, W. Shang, Y. Huang,

J. P. Abraham, S. Dibenedetto, C. Fan, D. Pesavento, G. Grassi, G. Pau, H. Zhang,

T. Song, H. B. Abraham, P. Crowley, S. O. Amin, V. Lehman, and L. Wang, “NFD

Developer ’ s Guide,” NDN, Technical Report NDN-0021, Tech. Rep., 2015. [Online]. Available:

https://named-data.net/wp-content/uploads/2016/10/ndn-0021-7-nfd-developer-guide.pdf

[35] C. Ghali, G. Tsudik, and E. Uzun, “Elements of Trust in Named-Data Networking,” ACM SIGCOMM

Computer Communication Review, vol. 44, no. 5, pp. 12–19, feb 2014. [Online]. Available:

http://arxiv.org/abs/1402.3332

[36] Y. Yu, “Public Key Management in Named Data Networking,” NDN, Technical Re-

port NDN-0029, 2015. [Online]. Available: http://named-data.net/publications/techreports/

ndn-0029-1-public-key-management-ndn/

[37] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk, “Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation List (CRL) Profile,” Tech. Rep. 1, 2008. [Online].

Available: https://tools.ietf.org/html/rfc5280

https://doi.org/10.1145/3125719.3125723
https://irtf.org/icnrg
https://named-data.net/project/annual-progress-summaries/ndn-ar2017/
https://named-data.net/project/annual-progress-summaries/ndn-ar2017/
http://dx.doi.org/10.1145/2317307.2317319
https://named-data.net/wp-content/uploads/2016/10/ndn-0021-7-nfd-developer-guide.pdf
https://named-data.net/wp-content/uploads/2016/10/ndn-0021-7-nfd-developer-guide.pdf
http://arxiv.org/abs/1402.3332
http://named-data.net/publications/techreports/ndn-0029-1-public-key-management-ndn/
http://named-data.net/publications/techreports/ndn-0029-1-public-key-management-ndn/
https://tools.ietf.org/html/rfc5280

152 bibliography

[38] C. Bian, Z. Zhu, A. Afanasyev, E. Uzun, and L. Zhang, “Deploying key management on NDN testbed,”

Ndn, Tr, vol. 9, no. February, 2013. [Online]. Available: https://named-data.net/wp-content/

uploads/TRpublishkey-rev2.pdf

[39] D. K. Smetters and V. Jacobson, “Securing network content,” named-data.net, 2009. [Online].

Available: https://named-data.net/wp-content/uploads/securing-network-content-tr.pdf

[40] L. Wang, V. Lehman, A. K. Mahmudul Hoque, B. Zhang, Y. Yu, and L. Zhang, “A Secure Link

State Routing Protocol for NDN,” IEEE Access, vol. 6, pp. 10 470–10 482, 2018. [Online]. Available:

https://doi.org/10.1109/ACCESS.2017.2789330

[41] “NDN Regular Expression — ndn-cxx: NDN C++ library with eXperimental eXtensions 0.5.1-74-

gb1a2a4b4 documentation.” [Online]. Available: https://named-data.net/doc/ndn-cxx/current/

[42] W. Shang, Q. Ding, A. Marianantoni, J. Burke, and L. Zhang, “Securing building management

systems using named data networking,” IEEE Network, vol. 28, no. 3, pp. 50–56, 2014. [Online].

Available: https://doi.org/10.1109/MNET.2014.6843232

[43] P. Gusev, Z. Wang, J. Burke, L. Zhang, T. Yoneda, R. Ohnishi, and E. Muramoto, “Real-time streaming

data delivery over Named Data Networking,” IEICE Transactions on Communications, vol. E99B,

no. 5, pp. 974–991, 2016. [Online]. Available: https://doi.org/10.1587/transcom.2015AMI0002

[44] S. Mastorakis, P. Gusev, and A. Afanasyev, “Real-Time Data Retrieval in Named Data Networking,”

in IEEE International Conference on Hot Information-Centric Networking. IEEE, 2018. [Online].

Available: https://named-data.net/publications/hoticn18realtime-retrieval/

[45] Z. Zhu, A. Afanasyev, Y. Yu, and L. Zhang, “ChronoChat : a Server-less Multi-User Instant Message

Application Over NDN,” NDN, Technical Report NDN-0008, Tech. Rep., 2014. [Online]. Available:

http://named-data.net/techreport/TR008-chronos.pdf

[46] S. Signorello, M. R. Palattella, and L. A. Grieco, “Security challenges in future NDN-enabled VANETs,”

Proceedings - 15th IEEE International Conference on Trust, Security and Privacy in Computing and

Communications, 10th IEEE International Conference on Big Data Science and Engineering and 14th

IEEE International Symposium on Parallel and Distributed Proce, pp. 1771–1775, 2016. [Online].

Available: https://doi.org/10.1109/TrustCom.2016.0272

[47] “Repo Protocol Specification - repo-ng - NDN project issue tracking system.” [Online]. Available:

https://redmine.named-data.net/projects/repo-ng/wiki/Repo_Protocol_Specification

[48] M. Ambrosin, A. Compagno, M. Conti, C. Ghali, and G. v. Tsudik, “Security and Privacy Analysis of

NSF Future Internet Architectures,” IEEE Communications Surveys and Tutorials, vol. 20, no. 2, pp.

1418–1442, 2018. [Online]. Available: https://doi.org/10.1109/COMST.2018.2798280

https://named-data.net/wp-content/uploads/TRpublishkey-rev2.pdf
https://named-data.net/wp-content/uploads/TRpublishkey-rev2.pdf
https://named-data.net/wp-content/uploads/securing-network-content-tr.pdf
https://doi.org/10.1109/ACCESS.2017.2789330
https://named-data.net/doc/ndn-cxx/current/
https://doi.org/10.1109/MNET.2014.6843232
https://doi.org/10.1587/transcom.2015AMI0002
https://named-data.net/publications/hoticn18realtime-retrieval/
http://named-data.net/techreport/TR008-chronos.pdf
https://doi.org/10.1109/TrustCom.2016.0272
https://redmine.named-data.net/projects/repo-ng/wiki/Repo_Protocol_Specification
https://doi.org/10.1109/COMST.2018.2798280

bibliography 153

[49] M. Ambrosin, A. Compagno, M. Conti, C. Ghali, and G. Tsudik, “Security and Privacy Analysis of

National Science Foundation Future Internet Architectures,” IEEE Communications Surveys Tutorials,

vol. 20, no. 2, pp. 1418–1442, 2018. [Online]. Available: https://doi.org/10.1109/COMST.2018.

2798280

[50] R. Tourani, S. Misra, T. Mick, and G. Panwar, “Security, Privacy, and Access Control in

Information-Centric Networking: A Survey,” IEEE Communications Surveys and Tutorials, vol. 20,

no. 1, pp. 556–600, 2018. [Online]. Available: https://doi.org/10.1109/COMST.2017.2749508

[51] W. Ding, Z. Yan, and R. H. Deng, “A Survey on Future Internet Security Architectures,” IEEE Access,

vol. 4, pp. 4374–4393, 2016. [Online]. Available: https://doi.org/10.1109/ACCESS.2016.2596705

[52] G. Xylomenos, C. N. Ververidis, V. A. Siris, N. Fotiou, C. Tsilopoulos, X. Vasilakos, K. V.

Katsaros, and G. C. Polyzos, “A Survey of Information-Centric Networking Research,” IEEE

Communications Surveys Tutorials, vol. 16, no. 2, pp. 1024–1049, 2014. [Online]. Available:

https://doi.org/10.1109/SURV.2013.070813.00063

[53] A. Chaabane, E. De Cristofaro, M.-A. Kaafar, and E. Uzun, “Privacy in Content-Oriented Networking:

Threats and Countermeasures,” ACM SIGCOMM Computer Communication Review, vol. 43, no. 3,

pp. 26–33, 2012. [Online]. Available: https://doi.org/10.1145/2500098.2500102

[54] A. Afanasyev, X. Jiang, Y. Yu, J. Tan, Y. Xia, A. Mankin, and L. Zhang, “NDNS: A DNS-like name service

for NDN,” 2017 26th International Conference on Computer Communications and Networks, ICCCN

2017, no. Section II, 2017. [Online]. Available: https://doi.org/10.1109/ICCCN.2017.8038461

[55] P. C. Kocher, “Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other

Systems,” in National Renewable Energy Laboratory (NREL), 1996, pp. 104–113. [Online]. Available:

https://doi.org/10.1007/3-540-68697-5_9

[56] Tobias Lauinger, “Security & Scalability of Content-Centric Networking,” no. September, p. 60, 2010.

[Online]. Available: http://tuprints.ulb.tu-darmstadt.de/2275/1/ccn-thesis.pdf

[57] T. Lauinger, N. Laoutaris, and P. Rodriguez, “Privacy Risks in Named Data Networking: What is

the Cost of Performance?” Acm Sigcomm, vol. 42, no. 5, pp. 54–57, 2012. [Online]. Available:

https://doi.org/10.1145/2378956.2378966

[58] A. Compagno, M. Conti, E. Losiouk, G. Tsudik, and S. Valle, “A Proactive Cache Privacy Attack on

NDN,” in NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. IEEE,

apr 2020, pp. 1–7. [Online]. Available: https://doi.org/10.1109/NOMS47738.2020.9110318

https://doi.org/10.1109/COMST.2018.2798280
https://doi.org/10.1109/COMST.2018.2798280
https://doi.org/10.1109/COMST.2017.2749508
https://doi.org/10.1109/ACCESS.2016.2596705
https://doi.org/10.1109/SURV.2013.070813.00063
https://doi.org/10.1145/2500098.2500102
https://doi.org/10.1109/ICCCN.2017.8038461
https://doi.org/10.1007/3-540-68697-5_9
http://tuprints.ulb.tu-darmstadt.de/2275/1/ccn-thesis.pdf
https://doi.org/10.1145/2378956.2378966
https://doi.org/10.1109/NOMS47738.2020.9110318

154 bibliography

[59] Douglas E. Comer, Internetworking with TCP/IP. Prentice-Hall, 2000. [Online]. Available:

https://dl.acm.org/citation.cfm?id=518740

[60] P. Gusev and J. Burke, “Ndn-Rtc,” Proceedings of the 2nd International Conference on

Information-Centric Networking - ICN ’15, pp. 117–126, 2015. [Online]. Available: https:

//doi.org/10.1145/2810156.2810176

[61] L. Wang, “NDNlive and NDNtube : Live and Prerecorded Video Streaming over NDN,” NDN Technical

Report NDN-0031, pp. 1–10, 2015. [Online]. Available: https://named-data.net/publications/

techreports/ndn-0031-1-ndnlive-ndntube/

[62] Z. Zhu, S. Wang, X. Yang, V. Jacobson, and L. Zhang, “ACT: Audio Conference Tool Over Named

Data Networking,” ACM SIGCOMM workshop on Information-centric networking, vol. 11, p. 68, 2011.

[Online]. Available: https://doi.org/10.1145/2018584.2018601

[63] M. Handley, V. Jacobson, and C. Perkins, “SDP: Session Description Protocol,” Network Working

Group, Tech. Rep., 2006. [Online]. Available: https://doi.org/10.17487/rfc4566

[64] R. Birke, M. Mellia, M. Petracca, and D. Rossi, “Experiences of VoIP traffic monitoring in a

commercial ISP,” International Journal of Network Management, vol. 20, no. 5, pp. 339–359, aug

2010. [Online]. Available: https://doi.org/10.1002/nem.758

[65] T. Lauinger, N. Laoutaris, and P. Rodriguez, “Privacy Implications of Ubiquitous Caching in Named

Data Networking Architectures,” Acm Sigcomm, vol. 42, no. 5, pp. 54–57, 2012. [Online]. Available:

https://old.iseclab.org/papers/ccn-cache-attacks-iseclab-0812-001.pdf

[66] C. V. Wright, L. Ballard, S. E. Coull, F. Monrose, and G. M. Masson, “Spot Me if You Can:

Uncovering Spoken Phrases in Encrypted VoIP Conversations,” in 2008 IEEE Symposium on

Security and Privacy (sp 2008), vol. 179, no. 7. IEEE, may 2008, pp. 35–49. [Online]. Available:

https://doi.org/10.1109/SP.2008.21

[67] S. Chen, R. Wang, X. F. Wang, and K. Zhang, “Side-channel leaks in web applications: A reality

today, a challenge tomorrow,” Proceedings - IEEE Symposium on Security and Privacy, pp. 191–206,

2010. [Online]. Available: https://doi.org/10.1109/SP.2010.20

[68] J. Peterson and C. Jennings, “Enhancements for Authenticated Identity Management in the Session

Initiation Protocol (SIP),” The Internet Society (2006), Tech. Rep., 2006. [Online]. Available:

https://tools.ietf.org/pdf/rfc4474.pdf

[69] S. Schinzel, “An Efficient Mitigation Method for Timing Side Channels on the Web,” 2nd

International Workshop on Constructive Side-Channel Analysis and Secure Design (COSADE),

https://dl.acm.org/citation.cfm?id=518740
https://doi.org/10.1145/2810156.2810176
https://doi.org/10.1145/2810156.2810176
https://named-data.net/publications/techreports/ndn-0031-1-ndnlive-ndntube/
https://named-data.net/publications/techreports/ndn-0031-1-ndnlive-ndntube/
https://doi.org/10.1145/2018584.2018601
https://doi.org/10.17487/rfc4566
https://doi.org/10.1002/nem.758
https://old.iseclab.org/papers/ccn-cache-attacks-iseclab-0812-001.pdf
https://doi.org/10.1109/SP.2008.21
https://doi.org/10.1109/SP.2010.20
https://tools.ietf.org/pdf/rfc4474.pdf

bibliography 155

pp. 1–6, 2011. [Online]. Available: https://www.researchgate.net/publication/336209882_An_

Efficient_Mitigation_Method_for_Timing_Side_Channels_on_the_Web

[70] I. Psaras, W. K. Chai, and G. Pavlou, “Probabilistic in-network caching for information-centric

networks,” in Proceedings of the second edition of the ICN workshop on Information-centric

networking - ICN ’12. New York, New York, USA: ACM Press, 2012, p. 55. [Online]. Available:

https://doi.org/10.1145/2342488.2342501

[71] D. Chaum and E. Van Heyst, “Group signatures,” Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 547 LNCS,

no. iii, pp. 257–265, 1991. [Online]. Available: https://doi.org/10.1007/3-540-46416-6_22

[72] D. Boneh, X. Boyen, and H. Shacham, “Short Group Signatures,” Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.

3152, pp. 41–55, 2004.

[73] R. Wiangsripanawan, W. Susilo, and R. Safavi-Naini, “Design principles for low latency

anonymous network systems secure against timing attacks,” Conferences in Research and

Practice in Information Technology Series, vol. 68, pp. 183–191, 2007. [Online]. Available:

https://dl.acm.org/doi/10.5555/1274531.1274553

[74] D. Kondo, T. Silverston, V. Vassiliades, H. Tode, and T. Asami, “Name filter: a countermeasure

against information leakage attacks in named data networking,” IEEE Access, vol. 6, pp.

65 151–65 170, 2018. [Online]. Available: https://doi.org/10.1109/ACCESS.2018.2877792

[75] A. Compagno, M. Conti, P. Gasti, L. V. Mancini, and G. Tsudik, “Violating consumer anonymity:

Geo-locating nodes in named data networking,” Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9092, pp.

243–262, 2015. [Online]. Available: https://doi.org/10.1007/978-3-319-28166-7_12

[76] S. K. Fayazbakhsh, Y. Lin, A. Tootoonchian, A. Ghodsi, T. Koponen, B. M. Maggs, K. C. Ng, V. Sekar,

and S. Shenker, “Less Pain, Most of the Gain: Incrementally Deployable ICN,” Proceedings of the

ACM SIGCOMM 2013 Conference on SIGCOMM, vol. 43, no. 4, p. 147, 2013. [Online]. Available:

http://dl.acm.org/citation.cfm?id=2486001.2486023

[77] R. Gorrieri, R. Lanotte, A. Maggiolo-Schettini, F. Martinelli, S. Tini, and E. Tronci, “Automated

analysis of timed security: a case study on web privacy,” International Journal of Information

Security, vol. 2, no. 3-4, pp. 168–186, 2004. [Online]. Available: http://link.springer.com/10.

1007/s10207-004-0037-9

https://www.researchgate.net/publication/336209882_An_Efficient_Mitigation_Method_for_Timing_Side_Channels_on_the_Web
https://www.researchgate.net/publication/336209882_An_Efficient_Mitigation_Method_for_Timing_Side_Channels_on_the_Web
https://doi.org/10.1145/2342488.2342501
https://doi.org/10.1007/3-540-46416-6_22
https://dl.acm.org/doi/10.5555/1274531.1274553
https://doi.org/10.1109/ACCESS.2018.2877792
https://doi.org/10.1007/978-3-319-28166-7_12
http://dl.acm.org/citation.cfm?id=2486001.2486023
http://link.springer.com/10.1007/s10207-004-0037-9
http://link.springer.com/10.1007/s10207-004-0037-9

156 bibliography

[78] N. Kumar, A. K. Singh, and A. Aleem, “Security Attacks in Named Data Networking : A

Review and Research Directions,” vol. 34, no. 6, pp. 1319–1350, 2019. [Online]. Available:

https://doi.org/10.1007/s11390-019-1978-9

[79] X. Wang, “Tracking Anonymous Peer-to-Peer VoIP Calls on the Internet Categories and Subject

Descriptors,” in ACM conference on Computer and communications security. ACM Press, 2005,

pp. 81–91. [Online]. Available: https://doi.org/10.1145/1102120.1102133

[80] T. S. Saponas, J. Lester, and C. Hartung, “Devices That Tell On You : Privacy Trends in Consumer

Ubiquitous Computing,” 16th USENIX Security Sympsosium 2007, pp. 1–23, 2007. [Online].

Available: https://homes.cs.washington.edu/~sagarwal/tracker.pdf

[81] A. Bortz and D. Boneh, “Exposing private information by timing web applications,” Proceedings of

the 16th international conference on World Wide Web - WWW ’07, p. 621, 2007. [Online]. Available:

http://portal.acm.org/citation.cfm?doid=1242572.1242656

[82] T. N. D. Pham, C. K. Yeo, N. Yanai, and T. Fujiwara, “Detecting flooding attack and accommodating

burst traffic in delay-tolerant networks,” IEEE Transactions on Vehicular Technology, vol. 67, no. 1,

pp. 795–808, 2018. [Online]. Available: https://doi.org/10.1109/TVT.2017.2748345

[83] A. Hayes, “Network service authentication timing attacks,” IEEE Security and Privacy, vol. 11, no. 2,

pp. 80–82, 2013.

[84] J. Owens and J. Matthews, “A Study of Passwords and Methods Used in Brute-Force SSH Attacks,”

leet, 2008. [Online]. Available: https://people.clarkson.edu/~owensjp/pubs/leet08.pdf

[85] L. Yao, Z. Fan, J. Deng, X. Fan, and G. Wu, “Detection and Defense of Cache Pollution Attacks Using

Clustering in Named Data Networks,” IEEE Transactions on Dependable and Secure Computing,

vol. PP, no. c, pp. 1–1, 2018. [Online]. Available: https://ieeexplore.ieee.org/document/8493281/

[86] M. Conti, P. Gasti, and M. Teoli, “A lightweight mechanism for detection of cache pollution attacks

in Named Data Networking,” Computer Networks, vol. 57, no. 16, pp. 3178–3191, 2013. [Online].

Available: http://dx.doi.org/10.1016/j.comnet.2013.07.034

[87] E. Dogruluk, A. Costa, and J. Macedo, “Identifying Previously Requested Content by Side-Channel

Timing Attack in NDN,” in Communications in Computer and Information Science, aug 2018, vol.

878, pp. 33–46. [Online]. Available: https://doi.org/10.1007/978-3-319-94421-0_3

[88] E. Dogruluk, A. Costa, and J. Macedo, “Evaluating privacy attacks in Named Data Network,” in

Proceedings - IEEE Symposium on Computers and Communications, vol. 2016-Augus. IEEE, jun

2016, pp. 1251–1256. [Online]. Available: https://doi.org/10.1109/ISCC.2016.7543908

https://doi.org/10.1007/s11390-019-1978-9
https://doi.org/10.1145/1102120.1102133
https://homes.cs.washington.edu/~sagarwal/tracker.pdf
http://portal.acm.org/citation.cfm?doid=1242572.1242656
https://doi.org/10.1109/TVT.2017.2748345
https://people.clarkson.edu/~owensjp/pubs/leet08.pdf
https://ieeexplore.ieee.org/document/8493281/
http://dx.doi.org/10.1016/j.comnet.2013.07.034
https://doi.org/10.1007/978-3-319-94421-0_3
https://doi.org/10.1109/ISCC.2016.7543908

bibliography 157

[89] E. Dogruluk, A. Costa, and J. Macedo, “A Detection and Defense Approach for Content Privacy

in Named Data Network,” 2019 10th IFIP International Conference on New Technologies, Mobility

and Security (NTMS), pp. 1–5, 2019. [Online]. Available: https://doi.org/10.1109/NTMS.2019.

8763835

[90] L. Deng, Y. Gao, Y. Chen, and A. Kuzmanovic, “Pollution attacks and defenses for Internet

caching systems,” Computer Networks, vol. 52, no. 5, pp. 935–956, 2008. [Online]. Available:

https://doi.org/10.1016/j.comnet.2007.11.019

[91] “ns-3 Tutorial,” Tech. Rep., 2017. [Online]. Available: https://www.nsnam.org/docs/release/3.18/

tutorial/ns-3-tutorial.pdf

[92] NS3 Development Team, “NS3 discrete-event network simulator for Internet systems,” 2020.

[Online]. Available: https://www.nsnam.org/

[93] Named-data.net, “ndn-cxx overview — ndn-cxx: NDN C++ library with eXperimental eXtensions

0.4.0-beta2-10-g664dc03 documentation,” 2015. [Online]. Available: https://named-data.net/doc/

ndn-cxx/current/

[94] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson, “Measuring ISP Topologies With Rocketfuel,”

IEEE/ACM Transactions on Networking, vol. 12, no. 1, pp. 2–16, feb 2004. [Online]. Available:

http://ieeexplore.ieee.org/document/1268075/

[95] N. Spring, R. Mahajan, and T. Anderson, “Quantifying the Causes of Path Inflation,” p. 113, 2003.

[Online]. Available: https://doi.org/10.1145/863969.863970

[96] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson, “Inferring link weights using end-to-end

measurements,” p. 231, 2002. [Online]. Available: https://doi.org/10.1145/637235.637237

[97] J. Dehart, “Status and Upcoming Changes NDN Retreat,” 2016. [Online]. Available: https:

//named-data.net/wp-content/uploads/2016/11/ndn1611_jdehart.pdf

[98] E. Dogruluk, O. Gama, A. D. Costa, and J. Macedo, “Public Key Certificate Privacy in VoNDN: Voice

Over Named Data Networks,” IEEE Access, vol. 8, pp. 145 803–145 823, 2020. [Online]. Available:

https://doi.org/10.1109/ACCESS.2020.3014898

[99] G. Grassi, D. Pesavento, G. Pau, R. Vuyyuru, R. Wakikawa, and L. Zhang, “VANET via

Named Data Networking,” in 2014 IEEE Conference on Computer Communications Workshops

(INFOCOM WKSHPS), vol. 19, no. 8. IEEE, apr 2014, pp. 410–415. [Online]. Available:

http://ieeexplore.ieee.org/document/6849267/

https://doi.org/10.1109/NTMS.2019.8763835
https://doi.org/10.1109/NTMS.2019.8763835
https://doi.org/10.1016/j.comnet.2007.11.019
https://www.nsnam.org/docs/release/3.18/tutorial/ns-3-tutorial.pdf
https://www.nsnam.org/docs/release/3.18/tutorial/ns-3-tutorial.pdf
https://www.nsnam.org/
https://named-data.net/doc/ndn-cxx/current/
https://named-data.net/doc/ndn-cxx/current/
http://ieeexplore.ieee.org/document/1268075/
https://doi.org/10.1145/863969.863970
https://doi.org/10.1145/637235.637237
https://named-data.net/wp-content/uploads/2016/11/ndn1611_jdehart.pdf
https://named-data.net/wp-content/uploads/2016/11/ndn1611_jdehart.pdf
https://doi.org/10.1109/ACCESS.2020.3014898
http://ieeexplore.ieee.org/document/6849267/

	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Acronyms
	1 Introduction
	1.1 Context
	1.2 Motivation and Objectives
	1.3 Research Methodology
	1.4 Summary of Contributions and Publications
	1.5 Thesis Layout

	2 Named Data Networking
	2.1 Context
	2.2 Content Delivery Networks
	2.3 Content-Centric Networking
	2.4 Named Data Networking Architecture
	2.4.1 Negative Acknowledgment Packets
	2.4.2 Names
	2.4.3 Data-Centric Security
	2.4.4 In-Network Storage
	2.4.5 Routing and Forwarding
	2.4.6 Table Management
	2.4.7 NDN Transport Function

	2.5 Security
	2.5.1 Data-Centric Authentication
	2.5.2 NDN Certificate
	2.5.3 Self-Certifying Content Name
	2.5.4 NDN Trust Management Applications

	2.6 Privacy
	2.6.1 Internet vs. NDN Privacy
	2.6.2 Cache Privacy
	2.6.3 Content Privacy
	2.6.4 Name Privacy
	2.6.5 Signature Privacy

	2.7 Why Named Data Network?
	2.8 Research Challenges
	2.9 Summary

	3 Side-Channel Timing Attack and Countermeasures
	3.1 Context
	3.2 Side-Channel Timing Attack
	3.2.1 Content Retrieval Time
	3.2.2 Attack Scope
	3.2.3 Attack Success Calculation

	3.3 Side-Channel Timing Attack on NDN Applications
	3.3.1 Streaming over NDN
	3.3.2 Voice over NDN

	3.4 Countermeasures
	3.4.1 Cache Available Methods
	3.4.2 Cache Disabled Methods

	3.5 Related Works
	3.5.1 NDN Related Works
	3.5.2 IP Related Works

	3.6 Discussion

	4 Attack and Privacy Model Development
	4.1 Context
	4.2 Brute-force attack development
	4.2.1 Attack Procedure
	4.2.2 Random Probing Function
	4.2.3 Attack Scope on Applications

	4.3 Detection and Defense Privacy model
	4.3.1 Adversary Face Detection Methods
	4.3.2 Countermeasures Impact and Severity of Attack
	4.3.3 DaD Configuration on Applications

	4.4 Summary

	5 Experimental Framework and Implementation
	5.1 Context
	5.2 Named Data Networking Simulator
	5.2.1 Network Simulator 3
	5.2.2 ndnSIM Helpers
	5.2.3 ndnSIM Components

	5.3 Named Data Network Forwarder Daemon
	5.3.1 NFD Modules
	5.3.2 Content Store
	5.3.3 NDN Testbed

	5.4 Implementation
	5.4.1 NDN Applications
	5.4.2 Core Components
	5.4.3 Scenario programs
	5.4.4 Orchestration scripts

	5.5 Summary

	6 Scenarios and Results
	6.1 Context
	6.2 Scenario Implementations
	6.2.1 Network Topology
	6.2.2 Attack Implementation
	6.2.3 Attack Scope

	6.3 Results
	6.3.1 Attack Performance and Findings
	6.3.2 Attack Detection Results
	6.3.3 Countermeasures

	6.4 Source Code
	6.5 Discussion

	7 Conclusions
	7.1 Summary of Thesis
	7.2 Reviewing Objectives
	7.3 Summary of Main Contributions
	7.4 Future Works
	7.5 Final Considerations

	Bibliography

