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Abstract. The main focus of an Intelligent environment, as with other
applications of Artificial Intelligence, is generally on the provision of
good decisions towards the management of the environment or the sup-
port of human decision-making processes. The quality of the system is
often measured in terms of accuracy or other performance metrics, cal-
culated on labeled data. Other equally important aspects are usually
disregarded, such as the ability to produce an intelligible explanation for
the user of the environment. That is, asides from proposing an action,
prediction, or decision, the system should also propose an explanation
that would allow the user to understand the rationale behind the output.
This is becoming increasingly important in a time in which algorithms
gain increasing importance in our lives and start to take decisions that
significantly impact them. So much so that the EU recently regulated on
the issue of a "right to explanation". In this paper we propose a Human-
centric intelligent environment that takes into consideration the domain
of the problem and the mental model of the Human expert, to provide
intelligible explanations that can improve the efficiency and quality of
the decision-making processes.
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1 Introduction

Artificial Intelligence is nowadays used in virtually all aspects of our lives, con-
trolling our routines in pervasive and transparent ways, but nonetheless taking
decisions with significant influence. These applications range from innocuous
ones such as image or speech classification, used in our smartphones and vir-
tual assistants [1], to critical ones such as autonomous vehicle driving, health
diagnostics, or crime/re-incidence risk assessment [2].

Generally, the more complex the problem/domain is, the more complex the
models learned are. Consequently, they are also harder to understand. This poses
an interpretability problem: we often get a decision from a model, but we lack
the information to properly judge and evaluate the decision. How good is it?
How good are neighboring decisions? What is the rationale behind it?
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There are domains in which the lack of an explanation is not relevant. How-
ever, in domains in which the lives of people are significantly affected, expla-
nations are of the utmost importance. For instance, an individual should not
be sent to jail or a credit card should not be denied with a simple "yes or no"
answer. Such decisions should come with a proper explanation, that would allow
the interested parties to understand the reasons behind the decision. Indeed, we
often fail to understand how these complex models work. This is not a problem
while models work as expected. However, when there is the need to debug them,
we often learn that we do not understand their inner workings.

One of the best arguments in favor of the need for explanations, even when
a model is apparently working appropriately, is given by [3]. The authors con-
ducted an experiment whose task was to classify pictures containing either wolfs
or huskies. While the model performed fairly well, the use of saliency maps
showed that the model was not deciding based on the pixels that constituted the
animal, but was actually using the background of the picture which contained
mostly snow in the case of wolves, and grass in the case of huskies. If we were
to provide the model with an image of a wolf standing on a grassy background,
it would probably get it wrong and we would have no idea why.

The need for explanations in AI is thus evident, much more so in critical
applications. Indeed, the EU recently regulated on the "right to explanation"[4],
ensuring that any decision uttered by an automated algorithm that has critical
and binding decisions must be accompanied by an intelligible explanation.

In line with this view, in this paper we propose a human-in-the-loop system,
that combines Human experts and Machine Learning. The system continuously
learns from the interaction with the Human experts, and the efficiency of this
process is improved through elements of explainable AI such as interpretability,
interactivity or counterfactual analyses. The system is also developed bearing in
mind the mental model of the Human expert and the specific domain of fraud
detection. However, the approach is general enough to be used in other domains.

2 Explanations and Human Factors

The concept of Explainable Artificial Intelligence (xAI) is related with the abil-
ity of a Human to understand the decision process of algorithms. In this context
it is important to first make the distinction between two important terms: ex-
planation and interpretability.

Indeed, one can explain a decision process without actually understanding
the model which generated such decision, or the intricate relationships between
cause and effect in the decision process [5]. Thus, the ability to understand how
a decision algorithm behaves when its inputs are sightly altered relates to the
interpretability of the model. In other words, the ability to predict how changes in
the input change the decision output. On the other hand, explainability is related
to how the human cognition can understand the mechanics of the decision from
their natural perception. The subtle difference is that to explain a decision we do
not need to understand how a decision could be altered if inputs were different.
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An explanation can also vary according to its degree of completeness, which
is the extent to which it allows a complete understanding of all the domains for
each attribute in the decision-making process [6].

Explanation is naturally easier on some models, namely statistical or rule-
based algorithms. It is much harder and less intuitive in ensemble models or
under the umbrella of the connectionist methods, namely with algorithms such
as Recorrent Neural Networks (RNNs). Indeed, explanations and interpretability
are particularly difficult in these so-called "black-box" models, that are charac-
terized by high complexity and abstraction levels. Nonetheless, many different
approaches are being undertaken in both explainable and black-box models,
which are reviewed in the next section.

2.1 Approaches to enhance explainability and interpretability

The research community has developed several approaches to improve explana-
tions and interpretability in Machine Learning (ML) models. These approaches
are sometimes specific to a given algorithm, or generic and applicable to a broad
range of them.

One of the most interesting examples is the use of counterfactuals or evidence
based on the interpertability of the model. These require a deep understanding
of the machine learning model being used and how changes in the input may
alter the decision outcome [7]. These decisions are categorized by the complete
categorization of a specific decision and or how the decision would be altered
given some changes in the input.

This is a generic idea which may have different implementations depending
on the algorithm being studied. In the literature we can find this approach in
linear classification algorithms [8] where a linear machine learning algorithm is
exploited to find how changes in coefficients or inputs change the final decision.

Black box models, such as mutlilayer perceptrons, can also embed this ap-
proach. In [9], a genetic algorithm is used to search an output domain to provide
suggestions for credit risk assessment, which can be perceived as an approach
to interpret and explain a neural network decision process. This approach is
similar to a technique known as LIME: Local Interpretable Model-Agnostic Ex-
planations [10], which develops an approximation of the model by testing what
happens when certain aspects within the input of the model are changed. It is
about trying to recreate the outputs through a process of experimentation.

Still in the domain of credit scoring, there are also examples of ensemble
explanation, implemented through layers of interpertability of machine learn-
ing models [11]. In this approach, the decision making process is explained in
different steps by an expert rule based system.

In the case of black box models, there are techniques to recreate the decision
process through the analysis of the internals of such models. In the case of
neural networks and deep learning models, there is a technique called Deep Lift
[12]. It works by taking the output and attempting to interpret the neurons
that are significant to the original output. In short, it performs a sort of feature
selection to explain the decision process based on the activated neurons. A similar
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approach to Deep Lift is the layer-wise relevance propagation technique [13]. It
also works backwards from the output, identifying the most relevant neurons
within the neural network.

The general perception is that all models can be explained to some extent,
some more than other. Moreover, some are easy to explain (generally those
under a symbolic approach to AI) while other are more challenging (generally
the connectionist models). However, explanations should also consider the mental
model of the user and the domain of the application. In this paper we describe
an intelligent environment for the domain of fraud detection, that incorporates
a series of concepts from explainable systems, and that is built to integrate with
the work of a Human auditor.

3 An Explainable Intelligent Environment for Tax Fraud
Detection

The importance of explaining decisions in an Intelligent Environment has al-
ready been addressed in Section 2. However, nowadays, explanations are not
only desirable from a perspective of interpretability but are starting to become
a legal requirement. In the context of the GDPR, the EU recently regulated on
algorithmic decision-making and, specifically, addressed the issue of a "right to
explanation"[4]. There are particularly sensitive domains in which algorithmic
decisions significantly affect one’s life, such as credit scoring, sentencing, or fraud
detection.

In this paper we present one such environment, in the domain of finan-
cial fraud detection, in the context of the Neurat funded project (31/SI/2017
- 39900). This environment is being built as a cooperative system in which Ma-
chine Learning tools and Human experts work together to increase the efficiency
of tax audits.

However, the use of Machine Learning, and in particular of supervised meth-
ods, requires vast amounts of labeled data. The problem is that data can only
be labeled by Human experts (auditors) and, in this case, it comes at a high
cost: auditors must undergo extensive training and their time is very limited. As
a consequence, they are able to review but a small portion of the transactions
of a company, usually by sampling, and thus provide a small amount of labeled
data.

An Active Learning (AL) approach is being followed to implement this en-
vironment [14]. Generally, AL approaches aim to make ML less expensive by
reducing the need for labeled data. To achieve this, a so-called Oracle, which
may be a Human expert or some automated artifact, is included in an cycle in
which a ML model is continuously improved by training on a growing pool of
labeled data. The key element in this approach is the selection strategy for un-
labeled data, which will optimize selection queries so that learning occurs faster.
Different data selection strategies may be implemented. However, the goal is the
same: to cover the search space as quickly as possible, minimizing the necessary
labeled data. ML accuracy is maintained while reducing the training set size.
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However, we introduce two major changes to the "traditional" AL scheme
(Figure 1). First, we consider a pool of models rather than a single model
[15]. New models are trained and added to the pool, which constitute a vot-
ing/averaging ensemble whose weights are continuously optimized by a Genetic
Algorithm. Over time, models with a smaller weight are removed from the en-
semble. This allows the system to converge while using relatively simple models,
trained with partial data, instead of a very large and complex one.

Secondly, we add another input to the Oracle, which in this case is the Hu-
man auditor. The auditor has access to the selected instance i, which is now
accompanied by a prediction p and an explanation e. Both are provided by the
ensemble f and are a result of f(i), that is, of asking the current ensemble to
classify a specific instance. Now, when the auditor receives the instance to label
(that is, when the auditor performs an audit action), he also receives the label
proposed by the system as well as an intelligible explanation for it, tailored for
this specific domain.

Fig. 1. Overview of the main elements of the proposed environment for fraud detection.

To achieve this, we are using a modified version of the CART algorithm[16].
This algorithm allows to build a Decision Tree from a group of observations.
Each node of the tree contains boolean rules about the observations (e.g. value
of variable x is greater than y) and each leaf contains the result of the prediction
for a given path in the tree. While the tree is being built, the training set is
increasingly split at each node, leading to smaller sub-sets of the data. This
splitting process ends when one or more stopping criteria are met, which may
include a minimum size of the split or a minimum degree of variance/purity.

Variance denotes how much the values for the dependent variable of a split
are spread around their mean value (in regression tasks), while purity considers
the relative frequency of classes: if all classes have roughly the same frequency
the node is deemed "impure". The Gini index is used in the CART algorithm to
measure impurity [17].
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Formula 1, as proposed by [18], describes the relationship between the out-
come y and features x. Each instance of the training set is attributed to a single
leaf node (subset Rm). I{x ∈ Rm} is a function that returns 1 if x is in the
subset Rm or 0 otherwise. In a regression problem the predicted outcome ŷ = cl
of a leaf node R1 is given by the average value of the instances in that same
node.

ŷ = f̂(x) =

M∑
m=1

cmI{x ∈ Rm} (1)

While the algorithm can be used for both classification and regression tasks,
in this work we use a regression tree, as the task is to assign a value between 0
and 10 which represents the degree of certainty of a given instance to constitute
fraud.

3.1 Generating interpretable explanations

A Decision Tree is, in itself, an explainable model: it can be analyzed visually to
understand which variables and values are used at each level to take a decision.
However, this may be difficult for example if the tree is too large. There is also
additional information that can be provided that is not explicitly in the tree’s
structure. In this section we detail the explainable elements that are generated
by the system, to support the Human auditor in decision-making.

When the tree is being built and each split generated, additional information
is stored in the node which includes: the boolean rule that generates the split
(mentioning the variable and the value interval), the prediction ŷ based on that
split (i.e. the average or most frequent value, depending on the problem), mea-
sures of dispersion or purity (variance, standard deviation and Gini index), and
the indexes of the instances in the split.

These values are then used to provide a notion of confidence and support to
the decision-maker. Confidence is given by dispersion and purity measures: the
lower the dispersion or the higher the purity, the higher the confidence on the
decision is. Support is given by the number of instances in the split: the higher
the number of instances, the higher the support is.

This information on the nodes allows to incorporate a group of explainable
elements in the user interface. Figure 2 shows a prototype of the graphical user
interface that is used to provide explanations. When an auditor wants to analyze
a specific instance she/he selects that instance and is redirected to this interface,
which receives the data of the instance, the prediction, and an explanation. The
user interface has three main areas, marked in the Figure as (a) - Explore, (b) -
Decision path and (c) - Last results.

Area (a) allows the user to explore the search space and analyze each fea-
ture according to their relative importance. Features and values are collected
from the internal nodes when traversing the tree to make a prediction. In this
context, feature relevance is based on how much that split/feature decreases dis-
persion/purity. For each feature that the interface shows the following elements
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Fig. 2. Prototype of the main screen of the application, with some of the explainable
elements created, and three main areas highlighted: Explore (a), Decision Path (b) and
Last Results (c).

(depending on whether the variable is numeric or nominal): the domain of the
feature (range/enumeration of possible values), the interval/values for which the
prediction holds (blue bar or values highlighted in blue), and the value of the
feature in the instance being audited (gray dot).

This allows the auditor to gain a sense of how risky the decision is. If the
value of a given feature is very close to the upper or lower limits of the blue
bar, it indicates that a slight change of this feature towards the limit would
significantly alter the prediction of the tree. Likewise, the size of the blue bar is
also related to this sense of risk: the shorter the bar the more risky the decision
is. In the case of a nominal feature, multiple values can be highlighted to show
for which values of the enumeration the prediction holds. The risk of the decision
grows with fewer highlighted values.

In Figure 2, the graphical interface is shown in "Edit Mode". This means
that the user may change the values of the variables to perform a counterfactual
analysis. That is, what would be the prediction if the value of a feature had
been v2 instead of v1. These "what-if" scenarios allow the auditor to interact
with the tree and to understand how predictions would change under different
scenarios. This contributes significantly to the interpretability and interactivity
of the explanation, as addressed in Section 2. The user does this by changing the
value of the features by means of a slider, or by selecting a value from a list. The
scenarios created by the user can be added to area (c), to be compared. The user
can also reset area (a), returning all the values and the associated prediction to
the initial state of the instance being audited.
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There is also a pagination mechanism that controls the amount of information
provided to the user, to avoid overload. Indeed, depending on the training set,
the number of levels/nodes/features on a tree may be too large to be efficiently
analyzed by a Human. In that sense, in this interface we show only the n most
relevant features. The user can then choose to request additional features (and
the associated prediction) by clicking on the "More variables" button. These are
gradually added upon request by decreasing relevance.

In the left side of the interface there is the area marked as (b). This area shows
the path followed through the tree to make the prediction. Like in (a), this area
may not show the whole path as it implements the same pagination mechanism:
when features are added to (a) they are also added to (b). This element allows
the user to understand (part of) the reasons for a given prediction: "because
feature f1 is smaller or equal than v1 and feature f2 equals v2".

In this area the user may also click on a specific node to see its details (Figure
3). The details show, in the left side, the information for the feature that is also
visible on (a). On the center and right, the "details" modal provides information
regrading the confidence and support of the prediction. The graphical represen-
tation shows the prediction (blue dot) and the interval given by the standard
deviation. A smaller interval indicates an increased confidence as instances in
this split are more closely distributed around the mean, and vice-versa.

Fig. 3. Details of a split node, with confidence and support measures.

The central part of the modal shows values which include the support (num-
ber of instances in this split) and a button that allows the user to access the
instances that fall into this split. The user may thus visualize the instances,
which are shown sorted by similarity to the current instance in descending or-
der. Similarity is calculated based on a weighted sum of differences, given by the
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euclidean distance for numerical variables and by the cosine similarity for the
vector of nominal data (if any). While visualizing specific instances the user may
add them to a list for comparison (area (c)).

As the user moves down the path, splits become smaller but confidence in-
creases. It is up to the user to decide how far down to travel: an early stop may
lead to a more general decision (with high support and potential low confidence),
while going further down will lead to low support but high confidence. Finally,
in area (c) the user has access to a list of previous prediction results (the sce-
narios that were simulated) and/or to actual instances that were visualized by
the user and added for comparison. This allows to more easily compare a group
of scenarios or real cases and their results.

4 Conclusions and Future Work

With the growing use of AI models in our daily lives and the impact of their
decisions, their inner workings must be more closely scrutinized. More and more
we require not only a decision or a prediction, but also an intelligible explanation
that we can use to judge the quality of the decision. However, the vast majority
of existing AI systems do not consider this kind of elements. In this paper we
presented an adapted version of a human-in-the-loop system, based on Active
Learning. We expand the "traditional" process flow with the provision of predic-
tions and corresponding explanations for the unlabeled data that is presented to
the Human expert. We believe that the provision of these explanations will con-
tribute to the efficiency of the interaction between the Human and the system, as
well as to the quality of the decisions made by the Human. The quantification of
such improvements will be carried out in future work. Among other aspects, the
proposed system considers elements such as interactivity, counterfactual expla-
nations, simulation, and rule-based explanations. The approach was developed
taking into consideration the mental model of the auditor. Nonetheless, it is
generic enough to be used in other domains, thus contributing to an increased
awareness of users towards the Machine Learning models that they interact with.
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