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Abstract: Currently, the nanoparticle functionalization effect on supramolecular peptide-based hy-
drogels remains undescribed, but is expected to affect the hydrogels’ self-assembly and final magnetic
gel properties. Herein, two different functionalized nanoparticles: citrate-stabilized (14.4 + 2.6 nm)
and lipid-coated (8.9 & 2.1 nm) magnetic nanoparticles, were used for the formation of dehydropeptide-
based supramolecular magnetogels consisting of the ultra-short hydrogelator Cbz-L-Met-Z-APhe-
OH, with an assessment of their effect over gel properties. The lipid-coated nanoparticles were
distributed along the hydrogel fibers, while citrate-stabilized nanoparticles were aggregated upon
gelation, which resulted into a heating efficiency improvement and decrease, respectively. Further,
the lipid-coated nanoparticles did not affect drug encapsulation and displayed improved drug release
reproducibility compared to citrate-stabilized nanoparticles, despite the latter attaining a stronger
AMF-trigger. This report points out that adsorption of nanoparticles to hydrogel fibers, which display
domains that improve or do not affect drug encapsulation, can be explored as a means to optimize
the development of supramolecular magnetogels to advance theranostic applications.

Keywords: magnetic gels; drug release; magnetic hyperthermia; magnetic lipogels; supramolecular
hydrogels; magnetic nanoparticles; self-assembly; nanoparticle functionalization

1. Introduction

Supramolecular magnetogels basically comprise two main components: the hydrogel
and the magnetic nanoparticles. Following a stimulus, the self-assembly of the supramolec-
ular hydrogelators is driven towards a kinetically-trapped intertwined fibrillar structure,
such that solvent pocket microdomains are formed. This process takes place through the
cooperative effect of different non-covalent intermolecular interactions: hydrogen bonding,
van der Waals, electrostatic, and /or hydrophobic and aromatic interactions [1-7].

For example, dehydropeptide-based hydrogelators, such as the minimalist Cbz-L-
Met-Z-APhe-OH (see Structure S1 in Supplementary Materials), have been used due to the
simplicity of producing biocompatible systems at low cost, and its promising properties
for drug delivery [8-10]. The aforementioned dehydropeptide uses of a non-polar amino
acid, methionine, to induce hydrophobic collapse, while the dehydrophenylalanine moiety
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provides a means for -7 interactions (like the N-capping group) and conformational
constraints in the peptide backbone, meaning that it promotes the self-assembly into
fibers and provides resistance to enzymatic degradation [8-10]. As assessed in this work,
the hydrogel displays a moderate gelation kinetics and elastic modulus, which allows
following the impact of the nanoparticles, so that diverse parameters can be optimized.
Further, the gels can be formed in a skin pH range of 4-6 [11], thus being suitable for dermal
application.

The retention or entrapment of nanoparticles during the gelation process allows
for the tailoring and modulation of the matrix structure, along with the possibility of
tuning different physical properties [3,12,13]. The modulation of the matrix structure
also enables optimizing the loading of a wide variety of hydrophilic and hydrophobic
drugs, reducing potential side effects, and enabling higher doses in therapy at the right
location when using magnetogels for drug delivery. In this regard, taking advantage of the
magnetic nanoparticles, the application of a magnetic field gradient allows the control and
targeting of the nanosystem to a specific location [14-16], which can be further coupled
with an alternating magnetic field (AMF), such that the nanoparticles can absorb energy
and then release it as heat [17-20]. As a consequence, there is a synergistic effect that
involves this magnetic hyperthermia and the subsequently associated enhancement of
drug release [21-23], such that a much higher therapeutic efficiency can be attained. Along
these lines, among transition metal ferrites, manganese ferrite nanoparticles exhibit very
suitable magnetic properties, particularly in terms of the high magnetic susceptibility
and in terms of magnetophoretic mobility, which render them as an appealing option to
improve the supramolecular magnetogels for drug delivery applications [24,25]. Further,
manganese ferrites display good biocompatibility and the large saturation magnetization
reduces the required concentration of nanoparticles, thus averting side effects [8,25].

Supramolecular magnetogels endorsed with bare nanoparticles were demonstrated to
be easily prone to aggregation, which led us to limit the concentration of nanoparticles that
were encapsulated [8,9]. Alternatively, the use of a thick shell coating the nanoparticles
was confirmed to hamper the gelation process, with the additional cost of requiring a larger
concentration of hydrogelator to compensate for the bulkier nanocomposite [10]. On the
other hand, forcing the supramolecular design strategies to conjugate the nanoparticles
with the hydrogelator molecules has also been considered [25-27]. In general, these existing
strategies for supramolecular magnetogels either imply complex fabrication steps and /or
fail on the homogeneous incorporation of high concentrations of magnetic material and
target drugs, which strongly limit their usability in theranostics. Furthermore, the current
literature on supramolecular magnetogels lacks exploration of the composite function-
alization and its effect on supramolecular magnetic gels properties. Consequently, the
large amounts of hydrogelator employed and the aggregation of nanoparticles in most of
the reported systems have demonstrated lower heating efficiency, hindering the sought
on-demand controlled release of the payload.

Doxorubicin is one of the most commonly used chemotherapeutic drugs in a wide
variety of cancers. However, its various side effects (e.g., neutropenia and heart failures)
lead to a worsening of the patient’s quality of life, which can be improved through incorpo-
ration with drug delivery system to increase the safety profile of the therapy. Considering
this need, a useful strategy could be the encapsulation of doxorubicin in liposomal systems,
such as the liposomal formulation Doxil®, or the use of citrate-stabilized nanoparticles,
which strongly adsorb the positively charged drug molecules through electrostatic interac-
tions [28].

Herein, supramolecular magnetogels endorsed with high nanoparticle concentration,
employing a lipid coating (magnetoliposome-like structure) or citrate stabilization, are eval-
uated. Whereas the citrate stabilization provides electrostatic stabilization, the lipid coating
assessment tackles the strategy, not only to ensure the steric stabilization of manganese
ferrite nanoparticles, but also to provide the structure with enough hydrophobic cavities
for an efficient drug loading and subsequent controlled drug diffusion. This option to ob-
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tain magnetogels systems, compared with the use of negatively-charged citrate-stabilized
nanoparticles, demonstrates that the gelation becomes optimized, such that the concentra-
tion of stable magnetic nanoparticles within the gel is increased. As a consequence, besides
improving the system stability and magnetic properties, the strategy demonstrates the role
of the magnetic nanoparticles taking advantage of the hyperthermia they are responsible
for, on drug release, using the antitumor drug doxorubicin.

2. Materials and Methods
2.1. Synthesis Procedure of Magnetic Nanoparticles
2.1.1. Preparation of Citrate-Stabilized Manganese Ferrite Nanoparticles

A modified synthesis of citrate-stabilized nanoparticles was adapted from refer-
ence [29]. Trisodium citrate dehydrate (1 mmol) and NaOH (4 mmol) were added to 19 mL
of ultrapure water at 100 °C. A 1 mL aqueous solution of FeSO4-7H,0 (1.33 mmol) and
MnSO4-HO (all reagents from Merck-Sigma, St. Louis, MO, USA) (0.66 mmol) was added,
drop by drop, into the mixture under vigorous agitation. After 2 h, the solution was cooled
down to room temperature, washed through magnetic decantation with water/ethanol 1:1,
and dried at 100 °C.

2.1.2. Preparation of Lipid-Coated Manganese Ferrite Nanoparticles

Lauric acid (1 mmol) and NaOH (4 mmol) were added to 19 mL of ultrapure water at
100 °C. A 1 mL aqueous solution of FeSO4-7H,0 (1.33 mmol) and MnSO,4-H,0 (0.66 mmol)
was added, drop by drop, into the mixture under vigorous agitation. After 2 h, the solution
was cooled down to room temperature, washed through repeated centrifugation with water,
and dried at 100 °C. The stock solution was prepared by dispersion of the nanoparticles
(4 mg) in 2 mL of 2 mM L-x-phosphatidylcholine (from egg yolk, egg-PC) (Merck-Sigma,
St. Louis, MO, USA) solution through sonication at 190 W. The lipid-coated nanoparticles
were then washed and purified with ultrapure water by magnetic decantation.

2.2. Self-Assembly of Magnetogels
2.2.1. Optimization of Hydrogel Gelation

Gelation optimization was carried out through turbidity measurements at 500 nm. The
hydrogel and glucono-é-lactone (GdL) concentrations were screened. The self-assembly
was induced by dissolving the hydrogelator in basic pH through the addition of 2 v/v%
NaOH (1 M) and, then, glucono-6-lactone (GdL) was added to decrease the pH homoge-
neously. A solution of 0.05 wt% hydrogel was used to assess the fiber-catalyzed secondary
nucleation. The aggregates fraction, f(t), was defined as follows:

f(t) _ Tobs - Tfree (1)
Tagg - Tfree

where Ti, Ty, and T stand for turbidity measured at 500 nm observed at time ¢, before
the addition of GdL and when aggregated (turbidity at t = 5 k), respectively. An empirical
exponential decay function was fitted according to Equation (2) [30]:

T(t) = T() @)

of (1 ettt

where ke is the rate constant (inverse of the relaxation time) of fibril formation and ¢,
is the point of the maximum elongation rate. This constant rate includes various steps
and its interpretation between different systems is misleading. As a result, other models
were fitted to understand the influence of the parameters on the nucleation and elongation
rates. Saitd’s fractional aggregation model has been successful in the aggregation studies
of $-amyloid, calcitonin, prion, and «-sinuclein [31-33]. At a concentration larger than
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critical micellar concentration ([M] > cmc), the aggregation can be described by a two-step
mechanism scheme [33]:

noM(monomers) = My, (micelle) Lt p,
k
M+ P, = Pyiq.

In this mechanism, k, and k. represent the average nucleation and growth rate con-
stants, M is the monomer, M;,, represents the micelle (precatalytic form of the monomer),
P, is the nucleus of fibril with # monomer molecules, and P, is the extended fibril with
1 4 1 monomer molecules; thus, P is both a product and catalyst in the growth step reaction.
The fibril formation can be described according to the equation:

0 (e(1+p)kst _ 1)

ft) = 1 +pe(l+p)k5t ®3)
where ks = k.[M] is the effective growth rate constant, p = %’, and the initial condition
is f(0) = 0. The secondary nucleation was evaluated through the aggregation models of

Knowles et al. [30,34] and Cohen et al. [35]. The former model describes the concentration
of monomer in the fibers according to the equation:

_ fe—1,—
f(t) -1 _efCJre"tJrC,e kt ke mlie k1 @)

where m;; is the total hydrogelator concentration and k = /2myoikk_. In the absence
of fibrils, at the beginning of the aggregation,

+k,me!
C. = tot 5
- T ®)
where k4 is the polymerization rate and k_ is the secondary nucleation (fragmentation).
The latter model describes the concentration of monomer in the fibers according to the
equation:

B B_ et %
flt) =1- <B++++Ci:’(t B::_Cé+ ) — ekt (6)
where ¥ = 2k+k2m(0)"2+1 is associated with the secondary pathways, k; is the fibril-
catalyzed secondary nucleation, and k,, = k_ whenn, = 0,Cy = =+ A2/ (2K2),
A = y/2kik,m(0)" is related with the rate of formation of new aggregates through
primary pathways, By = (keo T kjoo)/(2K), ko = +/2Kk2/[n2(np +1)] +2A2/n., and
kjoo = \/k% —4C;C_x?2. The parameters 1. and 1, describe the dependencies of the pri-

mary and secondary pathways, and m(0) is the initial concentration of soluble monomers.

2.2.2. Development of Magnetogels

The prepared nanoparticles were added to the hydrogel solution at a final volume
of 200 puL and at the required concentration from a starting solution at 2 wt%. All hydro-
gel/magnetogel solutions were left standing at room temperature until the gel phase was
attained. Here, the unit wt% stands for m/v%.

2.3. Spectroscopic Measurements
2.3.1. General Methods

Fluorescence measurements were carried out using a Horiba-Jobin Yvon Fluorolog
3 spectrofluorimeter (HORIBA Jobin Yvon IBH Ltd., Glasgow, UK), equipped with double
excitation and emission monochromators, Glan-Thompson polarizers (HORIBA Jobin
Yvon IBH Ltd., Glasgow, UK), and a temperature-controlled cuvette holder. Fluorescence
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emission spectra were corrected for the instrumental response of the system. The excitation
of the hydrogelator was set at 280 nm, and the emission spectrum was collected between
290 nm and 600 nm with a slit of 6 nm in both excitation and emission. Absorption spectra
were recorded in a Shimadzu UV-3600 Plus UV-Vis-NIR spectrophotometer (Shimadzu
Corporation, Kyoto, Japan).

The fluorescence quantum yield, @;, can be determined by Equation (7) (standard
method) [36,37],
(A;Fn?)
(AsFn?)

where A is the absorbance at the excitation wavelength, F is the integrated emission area,
and # is the refraction index of the solvents. Subscripts r and s refer to the reference
and sample compound, respectively. The absorbance value at excitation wavelength was
always less than 0.1 in order to avoid inner filter effects. L-Tryptophan in aqueous buffer
solution (pH = 7.2) was used as a reference (&, = 0.14 at 25 °C) [38].

@5 = ¢r (7)

2.3.2. Fluorescence Anisotropy Measurements

The steady-state fluorescence anisotropy values, r, provide information on the average
microviscosity of the gel matrix where the fluorophore is localized and can be determined
by Equation (8) [39],

_ Iw—Ghlvu ®)
where Iyy and Iy are the intensities of the emission spectra obtained with vertical and
horizontal polarization, respectively (for vertically polarized excitation light), It;y and
Iy are the emission intensities obtained with vertical and horizontal polarization (for
horizontally polarized excitation light), and G = Iy /Iy is the instrumental correction
factor.

2.3.3. FRET Measurements

The drug incorporation into the magnetogels network was investigated by Forster
Resonance Energy Transfer (FRET). FRET efficiency, ®rrrr, defined as the proportion of
donor molecules that have transferred their excess energy to acceptor molecules, can be
expressed by Equation (9) [39],

Ipa

Prrer = 1— 7= 9
D

where Ip4 and Ip are the donor integrated fluorescence intensities in the presence and

absence of an acceptor, respectively. FRET efficiency can also be determined using the

donor-acceptor intermolecular distance, Rp 4, and the Forster radius (critical diameter), Ry,

through Equation (10) [39],

1
PrRer = ————2- (10)

6
R
()
The Forster radius, Ry, the distance at which FRET efficiency is 50%, can be deter-
mined by the spectral overlap, J(A) between the donor fluorescence emission and the

acceptor absorption, according to Equations (11) and (12) (with Ry in A, Ain nm, £ 4(A) in

M~ em—1) [39],
Ry = 02108 x [K2<1>Dn*4](/\)}1/6 (11)

T = [T Ib(ead)rtar 12)

where x? = 2/3 is the orientational factor assuming random orientation of the dyes, ®p is
the donor fluorescence quantum yield in the absence of energy transfer, # is the refraction
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index of the medium, Ip(A) is the fluorescence spectrum of the donor normalized so that
Jo  Ip(A)dA = 1,and € 4(A) is the molar absorption coefficient of the acceptor.

2.4. Characterization Techniques
2.4.1. Scanning Transmission Electron Microscopy (STEM)

STEM images were recorded using a NanoSEM—FEI Nova 200 (FEI Company, Hills-
boro, OR, USA), operating at 15 kV, coupled to an Electron Dispersive Spectroscopic ana-
lyzer (EDS) and Electron Backscatter Diffraction EDAX—Pegasus X4M analyser (AMETEK
Inc., Berwyn, PA, US) and detection system (EBSD) at SEMAT (Servicos de Caracterizagao
de Materiais, Guimaraes, Portugal). After preparation of the hydrogel, a small portion
of each sample was placed onto a TEM 400 mesh copper grid with Formvar/Carbon (ref.
5162-4 from Agar Scientific), held by tweezers and the excess solution was cleaned. The
processing of STEM images was performed using Image] software (National Institutes
of Health (NIH), version 1.52p, Bethesda, MD, USA),which consisted of enhancing local
contrast and adjusting brightness followed by a manual selection of fibers.

2.4.2. X-ray Diffraction

A conventional PAN’alytical X'Pert PRO diffractometer (Malvern Panalytical Ltd.,
Malvern, UK) was used for X-ray diffraction (XRD) analyses, operating with Cu K
radiation, in a Bragg-Brentano configuration.

2.4.3. Raman Spectroscopic Measurements

Raman spectroscopy was used to assess the effect of nanoparticles in the secondary
structure of the hydrogel fibers. Measurements were performed at room temperature with
a Jobin Yvon T64000 triple Raman Spectrometer (HORIBA Jobin Yvon IBH Ltd., Glasgow,
UK), equipped with a liquid nitrogen cooled charge couple device (CCD) detector, with
a resolution better than 1 cm™!. The excitation line, 514.5 nm, of an argon ion laser was
focused onto the sample using a x50 objective (focused to ~1.5 um of diameter) of an
Olympus Microscope BHSM (Olympus Corporation, Tokyo, Japan) in a backscattering
geometry. The spectra were acquired with a measured power of about 350 uW on the
sample, with a spectral acquisition time of 45 s averaged over 10 scans, over the range
770-1800 cm 1.

2.4.4. Magnetic Properties

Magnetic measurements were performed using a SQUID magnetometer from Quan-
tum Design (Quantum Design Inc., San Diego, CA, USA). The magnetization dependence
with temperature in zero-field-cooling (ZFC) and field-cooling (FC) conditions was per-
formed at 100 Oe in the 10-320 K range. Hysteresis loops were measured at different
temperatures up to an external field of 50 kOe.

2.4.5. Rheology

The viscoelastic characterization of gels was performed with a stress-controlled rota-
tional rheometer Anton Paar MCR300 (Anton Paar GmbH, Graz, Austria). Liquid samples
were loaded into the Couette geometry of the rheometer and temperature was kept at
25 °C during testing. After a five hour rest period ensuring gel setting and structural
equilibrium of samples, a sweep in the strain amplitude was performed from 0.001% to
500% to assess the linear regime of viscoelasticity and the large amplitude oscillatory strain
(LAOS) regime.

2.5. Drug Release Assays
2.5.1. Incorporation of Doxorubicin
To study the incorporation and microenvironment of doxorubicin in gels through

fluorescence spectroscopy, the drug was added to gel solutions prior to gelation, for a
final concentration of 20 uM (to guarantee that fluorescence intensity is proportional to
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concentration). From the hydrogelator solution, 200 uL were transferred to a fluorescence
microcuvette and left standing until the gel was formed.

2.5.2. Drug Release to pH = 7 Buffer

To assess doxorubicin release through fluorescence spectroscopy, gels (100 uL) loaded
with 0.1 mM doxorubicin were prepared and left stabilizing overnight in Amicon® Ultra-
0.5 mL centrifugal filters (MilliporeSigma, St. Louis, MO, USA) with a 0.1 pm pore size.
Then, the filter tube was immersed in pH = 7 buffer (800 uL) to keep pH constant (besides
neutralizing the gels), and left standing at room temperature, with or without an alternating
magnetic field (AMF). The AMF was generated in a custom-designed solenoid device
(800 turns per meter, length: 31 cm and internal diameter: 4.8 cm) by applying an alternating
electric current. A magnetic field of 2.98 mT at 1000 kHz was used. Aliquots were taken and
replaced with pH =7 buffer, then fluorescence was measured to determine the concentration
at each time point. Release profile assays were performed in triplicate.

3. Results
3.1. Optimization of Hydrogel Gelation Kinetics

Turbidity kinetic assays were carried out to optimize hydrogel gelation, which is
required to ensure quasi-homogeneous encapsulation of nanocomposites. Initially, the
hydrogelator molecules were majorly organized in a mixture of micelles/aggregates and
free monomer as suggested by fluorescence emissions at 450 nm and 360 nm, respectively
(Figure 1A).

A B C = 0.2/0.5 wt%/wt% (H/GdL)
15} = 0.3/0.5 wt%/wt% (H/GdL)
1.0r NaOH PN - : = 0.4/0.5 wi%/wt% (HIGdL)
——_oh K J . Nucleus  ~ Fibris 0.311.0 wt%/wt% (H/GdL)
e 0, 0,
_ o _1nh LA K Kn \W\/f 3 -‘?‘ 0.3/1.5 wtt%/wt% (H/GdL)
E 2h :,/" \'.\\\‘ ) _1.0r P
s 3h '/ NS Monomer  Aggregates/ K &
05 - --4hn J/ ’\ Micelles \—2/ [] ! y
—.—-5h /I’ \ ->‘ [
Iy kn: nucleation 0.5f . .
P // ke: elongation "
A Sr- g k.: fragmentation
i ka: fibril y . "
0.0 == 0.0l
300 350 400 450 500 0 1 2 3 4 5
X (nm) time (hours)
5 0.30
. 0% 20°C ——0.3 NaoH
15D © s E " agF —o G b
’ = 10% 20°C _ 4 e ’ 0.4 wi% = 20°C
0% 30°C = - - - 03w%30°C = - 30°C
0°/: 0% £ " — — 0.3Wt%40°C Zozsl w4000
€3l " k, (h7) — © 03 Wt% 1.0 W% GdLf
1.0 . & 5 1.0 -noc - 0.3W% 1.5 Wt% GdL| @ -
= ] % 4 N o
g A o k) £
. Saf - 8
. € 020}
0.5 g 8 L <% .
. ! 2, : .
L] - . J
. H . ;
0.0 z 0.1
550

2

3 4
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0.2 0.4 0.6 0.8
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0
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5 650

A (nm)

Figure 1. (A) Fluorescence emission spectra of the hydrogelator (0.3 wt%) over time after the gelation trigger (0.5 wt%).

(B) Scheme of the evaluated pathways during the gelation process, where the fibril-catalyzed secondary nucleation

contribution was found to be negligible. (C) Gelation kinetic profile dependence on hydrogelator and GdL concentration,
(D) fibril concentration and temperature. (E) Average nucleation and elongation rate constants obtained from the Sait6’s
aggregation model fitting to turbidity profiles at increasing temperatures (hydrogel 0.3 wt%, GdL 0.5 wt%). Fluorescence

emission (F) and anisotropy 7 (G) of Nile Red (2 uM) in hydrogels prepared at different hydrogelator-to-GdL ratios and

temperatures (fixed hydrogel and GdL concentration).

Once gelation is initiated (after the addition of GdL), both emission bands increase, in-
dicating the occurrence of a reorganization process. Here, the models of Knowles et al. [34]
and Cohen et al. [35] (commonly used for 3-amyloid aggregation) were also used as a
strategy to assess the possible occurrence and influence of monomer independent (k;
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fragmentation) and /or monomer dependent (ky; fibril-catalyzed secondary nucleation)
secondary pathways (Figure 1B).

The gelation is characterized by a sigmoidal profile, which is a common feature of
fibrillation processes comprising a nucleation and elongation phase (Figure 1C,D) [30].
Increasing the hydrogelator concentration at the same GdL (0.5 wt%) concentration resulted
in an increase of the nucleation rate, while the elongation rate decreased. The increase
in GdL concentration promoted both the nucleation and elongation phases. Hereby, the
primary nucleation process is dependent on both the hydrogelator and GdL, while the
elongation process is majorly affected by the GdL. The elongation phase dependence on
GdL concentration (for a fixed hydrogelator concentration) demonstrates that its rate can
be increased if more protons are made available over time, considering that GdL proton
dissociation is also a kinetically-dependent process [40]. Such results evidence that an
increase of hydrogelator concentration has to be accompanied by an increase of GdL
concentration to keep the molar equivalents, thus favoring both nucleation and elongation.
Notably, by increasing both hydrogelator and GdL concentrations, no major differences
were obtained for the final pH, while increasing GdL alone strongly decreased pH (Table S1
in Supplementary Materials).

A weak scaling of the half-time with the initial monomer concentration was obtained
(—0.63), which is characteristic of monomer independent secondary pathways (such as frag-
mentation). Yet, the light scattering kinetic profiles cannot be satisfactorily matched using
fixed k,, /k— and k4 k;, parameters in the Knowles’ aggregation model (Figure S1 in Supple-
mentary Materials) [35]. The addition of pre-formed fibrils inhibited the average nucleation
phase and enhanced the average elongation phase (Figure 1D), i.e., the secondary nucle-
ation rate can be neglected. Further, increasing the hydrogelator decreased both secondary
pathways rates, while GdL enhanced the monomer independent pathway and inhibited the
monomer-dependent pathway (Table S2 in Supplementary Materials). Nonetheless, self-
assembly can be majorly attributed to the primary pathways. Temperature exponentially
affected the average nucleation and elongation phase, which is associated with a faster
GdL proton dissociation (Figure 1E) [40]. As a result, overall gelation can be enhanced by
increasing both GdL and hydrogelator concentrations and preparing the gel at 30 or 40 °C,
which favors the primary pathways (nucleation and elongation).

The dye Nile Red was used to evaluate the effect of preparation conditions on the
microenvironment, as it is a solvatochromic probe that has almost negligible emission in
water, but intensely emits fluorescence in non-polar environments [41-44], as observed after
hydrogel formation (Figure 1F). Furthermore, the emission is accompanied by a blue-shift
with a reduction of polarity [41-44]. Here, Nile Red is localized in a microenvironment
with a polarity between acetone and ethanol [41]. The higher Nile Red fluorescence
emission intensity on the gels prepared at 30 °C and 40 °C suggests that more hydrophobic
regions were made available. The fluorescence anisotropy values reveal similar fluidity
compared to the hydrogel prepared at room temperature. Although increasing GdL (fixed
hydrogelator concentration at 0.3 wt%) also contributed for more hydrophobic regions, the
microfluidity was lower than that obtained by increasing the hydrogelator concentration
(fixed GdL concentration at 0.5 wt%). As such, increasing both GdL and hydrogelator
concentrations (0.4 hydrogelator-to-GdL ratio or higher) promotes more hydrophobic
regions with higher microviscosity.

3.2. Nanoparticles Characterization

Nanoparticles of manganese ferrite with different coatings were prepared using differ-
ent synthetic methods, and are named, from now on, as citrate-stabilized or lipid-coated
manganese ferrite nanoparticles. The X-ray diffraction (XRD) patterns of both samples
present well-defined peaks (Figure 2A,B) characteristic of a crystalline structure, which
was obtained without calcination. The diffraction peaks of the MnFe,Oy crystalline spinel
structure are observed at 20 =29.7° (22 0),34.9° (31 1), 36.5° (22 2),42.5° (4 00), 52.7°
(422),56.2° (333)and (511),61.8°(440),65.0°(531),70.1° (6 20), 73.1° (5 3 3), 74.0°



Nanomaterials 2021, 11, 16 9 of 21

(622),78° (444),85.6° (642),885° (73 1)and (55 3), according to CIF file 2300618 (space
group Fd-3m). Rietveld analysis was performed using the FullProf software suite, confirm-
ing the spinel structure. As in previous works [45,46], we considered it to be important to
use microabsorption correction [47], resulting in fits with good R values. The calculated
parameters are presented in Table S3 in Supplementary Materials, offering a larger size of
the crystalline domains in the nanoparticles that are citrate-stabilized. Additional diffrac-
tion peaks were observed for the lipid-coated nanoparticles, occurring at positions similar
to those reported for layered manganese laurate [48], which can be ascribed to ordered
lauric acid molecules at the surface of manganese ferrite.

The UV-visible absorption spectra of the prepared nanoparticles are represented in
Figure 2C. From the Tauc plot (inset of Figure 2C), the optical band gap (Eg) between the
citrate-stabilized and lipid-coated manganese ferrite nanoparticles was determined and a
linear relation was obtained for an indirect semiconductor with a band gap of 1.13 eV and
1.19 eV, respectively, which are similar to the previous reported value of 1.08 eV [49].

The sedimentation profiles for bare, lipid-coated, and citrate-stabilized nanoparticles are
displayed in Figure 2D. The dependence of the sedimentation rate on nanoparticle concen-
tration (obtained through fitting of a Becquerel function or compressed hyperbola) [50] is
included (values are reported in Table S4 in Supplementary Materials). The citrate-stabilized
nanoparticles sedimentation profile suggests the occurrence of nanoparticles aggregation into
stable agglomerates [51,52], which settle down at a faster rate than single nanoparticles. The
lipid-coated nanoparticles show a sedimentation rate independent of the used concentration
range (0.025-0.2 wt%). Hereby, the longer-term stability of the lipid-coated nanoparticles is
expected to provide homogeneous gels at higher concentration of nanoparticles, compared to
the ones that are citrate-stabilized.
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Figure 2. X-ray diffraction pattern of (A) citrate-stabilized and (B) lipid-coated manganese ferrite nanoparticles. Gray lines:
experimental patterns; black lines: fitted patterns; dotted lines: fitted background; the vertical lines in (B) are the Bragg
diffraction positions of manganese laurate. (C) Absorption spectra of citrate-stabilized (CS, black line) and lipid-coated (LC,
blue line) MnFe,O4 nanoparticles. Inset: Tauc plot of citrate-stabilized and lipid-coated nanoparticles. (D) Sedimentation
profiles of the citrate-stabilized (squares), lipid-coated (triangles), and bare (line) MnFe,O4 nanoparticles at 0.2 wt% (black),
0.1 wt% (red), 0.05 wt% (green), and 0.025 wt% (blue). Inset: sedimentation rate dependence on nanoparticle concentration.
The citrate-stabilized aggregation rate is included (black squares). (E) Magnetization hysteresis loops of citrate-stabilized
and lipid-coated manganese ferrite nanoparticles measured at room temperature (T = 300 K). Inset: Enlargement of the

loops in the low field region.



Nanomaterials 2021, 11, 16

10 of 21

The magnetic hysteresis loops show that the saturation magnetization (emu/g) is
higher for the citrate-stabilized nanoparticles than for the lipid-coated nanoparticles
(Figure 2E), which can be explained by taking a different stoichiometry into account in
the manganese ferrite in the two samples, as pointed out by the different lattice constant
obtained in the X-ray diffraction analysis. A smaller size and a higher wt% of organic
matter present in the second sample can also influence the final value of saturation mag-
netization. Consequently, considering that SAR « Mg? (SAR—specific absorption rate),
the lipid-coated nanoparticles are expected to have lower heating efficiency than the
citrate-stabilized nanoparticles [53,54]. The low M, /M;s ratio, of around 0.1 (see Table S5
in Supplementary Materials), is an indication that both types of nanoparticles display a
superparamagnetic behavior [54].

3.3. Development of Magnetogels

An empirical equation was used to assist the estimation of the conditions required
to maximize the homogeneity of the gel (see deduction, discussion and Figure S2 in
Supplementary Materials). Figure 3 displays plots of the obtained kemp /kgeq for various
nanoparticle concentration and GdL-to-hydrogelator concentration ratio. The estimation
implies that the gelation conditions have to guarantee a kemp /Keeq > 41.7, so that when
gel fraction f(t) attains 0.9, the nanoparticles suspended fraction is also at 0.9 (if v =1 and
a = 0.5 is assumed).

Figure 3. Surface plots of kemp/kseq dependence on nanoparticle concentration and the GdL-to-
hydrogelator concentration ratio for: (A) bare nanoparticles, (B) the citrate-stabilized nanoparticles
aggregation rate, (C) the sedimentation rate, and (D) lipid-coated nanoparticles. The gray planes
define the estimated Kemp/kseq Tequired to guarantee that when the gel is about 10% of gelation
completion, 90% of the nanoparticles remains in suspension (v = 1, a = 0.5, dark gray plane; v = 0.5,
a =0.5, gray plane).

Gels prepared with 1.5 wt% GdL and 0.3 wt% hydrogelator retained the nanoparticles,
though the pH value was lower than 4. Increasing the hydrogelator content to 0.5 wt%
and reducing GdL to 1 wt% (has higher microviscosity) allowed the preparation of homo-
geneous magnetogels at 0.1 wt% of nanoparticles, with a pH of ~5. The 0.2 wt% content
of nanoparticles can also be prepared at 0.5 wt% of hydrogelator and 1 wt% of GdL but
preparation at 30 °C or 40 °C is required (yields kemp /kseq larger than 200). Nonetheless,
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the parameter v obtained from curve fitting was around 0.5, thus decreasing the required
Kemp /Kseq to 14, which allowed the possibility of obtaining quasi-homogeneous gels at 0.1
wt% of nanoparticles at a [GAL]/[hydrogelator] ratio of 2 (see magnetogels and respective
pH values in Figure S3 in Supplementary Materials).

3.4. Gels Microviscosity

The effect of the nanoparticles in the gels matrix microenvironment was studied
using Nile Red as a fluorescence probe, while considering its sensitivity to polarity and
viscosity [55,56]. In the 2040 °C temperature range, no major fluorescence emission decay
changes were observed, which might be associated with the structure maintaining its
integrity. A steep fluorescence emission decrease indicated that the phase transition occurs
above 45 °C for the hydrogel and the citrate-stabilized nanoparticle-containing magneto-
gels, while in the lipid-coated nanoparticle-containing magnetogels, it was shifted to 50 °C
(Figure 4A). The fluorescence anisotropy increases at the phase transition temperature,
which might be associated with a fluorescence emission lifetime decrease (Figure 4B) [57].
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Figure 4. (A) Nile Red (2 uM) maximum fluorescence emission dependence on the temperature
of hydrogel, citrate-stabilized (CS), and lipid-coated (LC) nanoparticles containing magnetogels.
Inset: Normalized maximum fluorescence emission dependence on the temperature of the respective
gels. (B) Nile Red fluorescence anisotropy dependence on temperature. Inset: Nile Red maximum
emission wavelength dependence on temperature.

The results suggest that citrate-stabilized nanoparticles destabilized the hydropho-
bic domains, leading to a microviscosity reduction and polarity increase of the cavities
where Nile Red is localized, which might occur through hydrogen bonding and ionic
interaction between the nanoparticles and the fibers. The polarity in the hydrogel is sim-
ilar to acetone, which was changed towards ethanol after addition of citrate-stabilized
nanoparticles. Furthermore, after phase transition and at 0.1 wt% of citrate-stabilized
nanoparticles, the Nile Red emission wavelength (640 nm) became close to the reported
maximum wavelength in water (657 nm) [42]. The lipid-coated nanoparticles induced a
lower fluorescence anisotropy than citrate-stabilized nanoparticles and one that is similar
to the reported anisotropy values of Nile Red in mixed vesicles and micelle membranes [44],
thus suggesting that lipid-fiber domains are formed with a polarity similar to the fibers
and a viscosity near that of membranes.

3.5. Gels Secondary Structure

The Raman spectra of the hydrogels and magnetogels (0.1 wt% of nanoparticles)
were obtained to assess influence of nanoparticles in the secondary structure, which are
displayed in Figure 5. Reported Raman shifts of the phenylalanine phenyl ring and
methionine side chain (CH3 deformation at 1440 cm~! and CH, wagging at 1320 cm ') are
also displayed [58,59]. Structural changes upon the addition of lipid-coated nanoparticles
were suggested by the appearance of a band at 982 cm~!. Gaussian curves were fitted
to the major phenyl ring signal at around 1003 cm™~! (see Figure S4 in Supplementary
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Materials). A blue shift and decreasing cross-section were observed with an increasing
nanoparticle concentration. The latter effect can be associated with an increasing exposure
of the aromatic rings to a more hydrated environment [60].
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Figure 5. Raman scattering spectra of the hydrogel and magnetogels containing lipid-coated (LC) and
citrate-stabilized (CS) nanoparticles. Vertical lines represent the reported Raman shifts of methionine
(Met) and phenylalanine (Phe).

The Amide I region (1580-1700 cm™1) arises from the C=0O stretching vibration, which
is sensitive to changes in backbone peptide conformation [61]. Deconvolution of the amide
I band in its sub-bands is correlated with various secondary structure contributions (see
Figure S5 in Supplementary Materials) [60-62]. A major contribution at 1637 em~! is
common to all systems, which can be associated with a major 3-sheet content [61,62]. The
band at 1338 cm ! also confirms the predominance of the 3-sheet in all gels [61].

3.6. Rheological Properties

Large amplitude oscillatory shear strain sweeps (LAOSS) were carried out to assess
the effect of the nanoparticles on the gels structure (Figure S6 in Supplementary Materials).
Further, the effect of temperature at 37 °C on the hydrogel shear elastic and loss moduli was
also assessed (Figure S6), the decrease of which evidences the phase transition behavior
observed in the microviscosity studies. The addition of nanoparticles reduced the elasticity
of gels, as previously observed for other systems [10,63]. Interestingly, the lipid-coated
nanoparticles induced a lower elasticity than the citrate-stabilized nanoparticles, which
was similar to their influence on the gels” microviscosity. Further, the strain at which G/
crosses G” increased in the presence of citrate-stabilized nanoparticles (at 0.05 wt%). As a
result, the profiles suggest that different structures were obtained for each nanoparticle
content, compared to the bare gel. The lipid-coated nanoparticle-containing magnetogel
displays the Payne effect characteristic of viscoelastic matrices reinforced by solid fillers,
i.e., a local maximum of G” concomitant with a significant decrease of G/, which can be
associated with the breakage and recovery of weak interaction bonds linking adjacent
clusters, aggregation/disaggregation of nanoparticles, or molecular disentanglement [64].

3.7. Electron Microscopy

Figure 6 displays the STEM images of the citrate-stabilized and lipid-coated nanopar-
ticles in solution and incorporated into the hydrogel matrix (magnetogels) prepared at
0.5 wt% of hydrogelator. The negative charge of the citrate molecules stabilizing the
nanoparticles ensured there were well dispersed nanoparticles with an average size of
14.4 £ 2.6 nm (see histograms in Figure S7 in Supplementary Materials), though some ag-
gregates were observed (Figure 6A). Alternatively, the lipid-coated nanoparticles, with an
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500 nm

average size of 8.9 & 2.1 nm, displayed a tendency to form spherical aggregates, which can
be associated with the dynamic membrane coating being prone to self-assembly (Figure 6B).
The hydrogel network is also displayed for a matter of comparison with the magnetogels.
The preparation conditions used here afforded a network comprised of thin and thick short
fibers with a cross-section of 21.3 & 3.4 nm and 48.4 & 13.8 nm, and with an average length
of 1030 + 389 nm.

Figure 6. Scanning transmission electron microscopy (STEM) images of (A) citrate-stabilized nanoparticles, (B) lipid-

coated nanoparticles, and (C) the hydrogel structure. Magnetogels containing (D) citrate-stabilized nanoparticles and (E,F)

lipid-coated nanoparticles prepared at 0.5 wt% of hydrogelator, 1 wt% of GdL, and 0.05 wt% of nanoparticles.

Furthermore, different effects on the magnetogels microstructure were observed when
using the two types of nanoparticles. The citrate-stabilized nanoparticles are randomly
distributed within the hydrogel matrix as aggregates. This stems from the fact that the
magnetogels based on N-protected peptides lacked a cationic group in the hydrogelator
structure electrostatically interacting with these negatively-charged stabilized nanoparti-
cles and fixing them in the matrix. Nevertheless, the lipid-coated nanoparticles displayed
an affinity towards the fibers surface, rendering them more adequate to avoid any poten-
tial leaking of nanoparticles. Furthermore, upon gelation, the lipid-coated nanoparticle
aggregates become destabilized, as no aggregates were observed (see Figure 6E,F).

3.8. Hyperthermia Studies

The calorimetric approach was carried out to assess the magnetic nanoparticle hyper-
thermia effect in gels, while considering the medical threshold limit of
Hyf <5x 10° Am~1s1[65,66], or Hyf < 4.85 x 108 A m~1 s [66], depending on
the area exposed. The increase in temperature over time, when the nanoparticles are
dispersed in aqueous solution and in gels while applying an alternating magnetic field, is
displayed in Figure 7.
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Figure 7. The temperature variation over time of (A) citrate-stabilized and (B) lipid-coated nanopar-
ticles at 1 mg/mL (0.1 wt%) in water and in gels (C,D) respectively) under different magnetic field
strengths and frequencies.

In water solution, the citrate-stabilized nanoparticles attained higher temperatures
than the lipid-coated nanoparticles, which could be associated with the different stoichiom-
etry in the spinel ferrites belonging to the two samples, with the different average sizes,
and with the fact that the lipid-coated nanoparticles are more likely to aggregate in aque-
ous solution. In both cases, the increments in temperature decreased when the magnetic
nanoparticles were incorporated in the gels, likely because some of the heat generated was
employed for inducing local changes in the gel structure.

Furthermore, nanoparticles at high concentration within the gels underwent stronger
magnetic dipolar interactions, which has a detrimental effect in the heat delivery capac-
ity [67,68]. The heating efficiency was quantitatively evaluated through the intrinsic loss
power (ILP) (see Table S6 in Supplementary Materials). While the ILP decreases for the
citrate-stabilized nanoparticles around 80% when incorporated into the gels, for the lipid-
coated nanoparticles no major changes were obtained. Accordingly, despite being less
efficient than citrate-stabilized nanoparticles, the lipid-coated nanoparticles keep a similar
heat delivery capacity when they are incorporated in the gels.

3.9. Drug Release Assays
3.9.1. Incorporation of Doxorubicin

Previously, supramolecular dehydropeptide-based hydrogels have shown promising
results as drug delivery nanosystems [8]. Here, the nanoparticles concentration effect over
doxorubicin incorporation is assessed. FRET (Forster Resonance Energy Transfer) process
from the emissive moieties of the hydrogel aromatic moieties (acting as the energy donors)
to doxorubicin (acting as the energy acceptor) allowed us to follow the encapsulation
of doxorubicin owing to the overlap between the drug absorption band and hydrogel
fluorescence emission (see Figure S8 in Supplementary Materials).

Fluorescence spectra of hydrogel and magnetogels at 0.025 wt% of citrate-stabilized
and lipid-coated nanoparticles, with and without doxorubicin, are displayed in Figure 8.
The absence of doxorubicin results in a strong fluorescence emission (Figure 8A) of the
aggregates associated with the stacking of the aromatic rings (Amax ~ 450 nm).
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Figure 8. (A) Fluorescence emission spectra (Aexc = 375 nm) of hydrogel (I) and magnetogels contain-
ing citrate-stabilized (II) and lipid-coated (III) manganese ferrite nanoparticles (0.025 wt%) incorpo-
rating the doxorubicin and comparison with the plain gels. (B) Fluorescence spectra (Aexc = 480 nm)
of directly-excited doxorubicin in gels, (I) and magnetogels con-taining citrate-stabilized (II) and
lipid-coated (III) manganese ferrite nanoparticles (0.025 wt%) incorporating the doxorubicin and
comparison with the plain gels

The addition of citrate-stabilized nanoparticles induced a red-shift (Figure 8B), which
was modulated by increasing the nanoparticle concentration (see Figure S9 in Supplemen-
tary Materials). The lipid-coated nanoparticles induced a thinning of the emission band
shape, suggesting that the variety of microenvironments in the vicinity of the fibers was
restrained.

Doxorubicin displays reverse solvatochromism, making the assignment of its location
ambiguous [69]. Further, the assays with Nile Red demonstrated that a higher concentration
of citrate-stabilized nanoparticles was observed to increase the polarity of the gel hydropho-
bic cavities. Thus, the decreasing fluorescence emission ratio of doxorubicin between the
peaks at A = 560 nm and A = 600 nm upon addition of citrate-stabilized nanoparticles might
be associated with an increasingly acidic region and its location in cavities, which are desta-
bilized by the increasing concentration of nanoparticles (see Figure S10 in Supplementary
Materials) [69]. Nonetheless, the possibility of aggregation is not excluded, considering that
at 10 uM, a fraction of 47% is dimerized [70,71], and the obtained spectra in gels resemble
the fluorescence emission spectrum of a doxorubicin concentrated solution (0.1 mM) at
pH =7 (see Figure 511 in Supplementary Materials). The lipid-coated nanoparticles do not
show the same effects, as the wavelength and emission ratio remain mostly unchanged,
i.e., no major changes are induced in the doxorubicin location microenvironment. The fluo-
rescence quenching by increasing nanoparticle concentration further suggests its proximity
to the nanoparticles.

The hydrogelator fluorescence quantum yield at a nanoparticle concentration of 0.025 wt%
was determined through Equation (7). The calculated FRET efficiencies (®prgr), Forster ra-
dius (Ry), and donor-acceptor distances (Rp,4) are presented in Table 1. As reported in other
systems [8,63], the distances between the fiber aromatic groups and doxorubicin remain
similar with or without nanoparticles, and suggests a host-guest type interaction [8,63].

Here, similarly to the obtained results with Nile Red, the lipid-coated nanoparticles
induced a lower anisotropy, while the fluorescence emission spectrum remains similar,
suggesting the occurrence of lipid-fiber domains. Overall, the high anisotropy values
suggest that doxorubicin has affinity towards the gel network fibers and the nanoparticles
affect the arrangement of the fibers.
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Table 1. Forster Resonance Energy Transfer (FRET) efficiencies (PrrgT), fluorescence quantum yields of the donor (hydrogel

aggregates) (@OD), donor-acceptor distances (Rp4) and steady-state fluorescence anisotropy (r) values for gels with an

incorporated drug. Anisotropy value of doxorubicin in glycerol (at 25 °C): r = 0.285.

R R
0 0 a 0 DA
System Content (wt%) PrRET D (nm) (nm) r
H 0.66 0.012 2.1 1.9 0.17
0.025 0.33 0.001 1.7 1.4 0.16
CS 0.05 - - - - 0.15
0.1 - - - - 0.14
0.025 0.33 0.010 2.3 2.0 0.13
LC 0.05 - - - - 0.11
0.1 - - - - 0.11

2 Relative to L-tryptophan in aqueous buffer solution, pH = 7.2 (¢, = 0.14 at 25 °C) [39]. The error rate is about 10%.

3.9.2. Doxorubicin Release Assays

In a previous drug release assay of hydrogels, a mixed behavior of gel erosion and
drug diffusion was observed [8]. Doxorubicin release from the hydrogel and magnetogels
to pH =7 buffer (to keep pH conditions constant and neutralize gels) was assessed.

The release profiles of the hydrogel and both limiting conditions (0.1 wt% of nanopar-
ticles) of magnetogels are displayed in Figure 9A. Similarly to previous results for dehy-
dropeptide hydrogels (without nanoparticles) and other magnetogels [62], an initial burst
release occurs, followed by a slow release phase. Moreover, both systems display a low
drug release profile that can be associated with the strong interactions established between
the drug and gels components. Such profiles are useful for therapeutic applications, as
the systems can be loaded with high amounts of chemotherapeutic drugs and ensure a
prolonged and controlled release of a therapeutically relevant dose in the target site.
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Figure 9. Cumulative doxorubicin percentage release profiles from the hydrogel and gels containing
citrate-stabilized (CS) and lipid-coated (LC) nanoparticles (0.1 wt%) (A) without an externally applied
alternating magnetic field (AMF) and (B) comparison of the magnetogels release when an AMF is
applied for 30, 60, and 90 min between t =4 h and t = 6 h. (C) Cumulative doxorubicin released at
t = 6 h. (D) Variation of doxorubicin percentage released between t=4 h and t = 6 h, that is, for a
period of 2 h.
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Quantitative analysis of the cumulative drug release profiles without a magnetic field
was carried out through the fitting of various mathematical models (see Tables S7 and S8
in Supplementary Materials) [72-75].

Overall, the obtained Gompertz model fitting suggests that both nanoparticles limited
the maximum drug quantity released, while the Korsmeyer-Peppas mechanistic model
(0.45 < n < 0.89) points to a mechanism that combines diffusion and erosion drug release
(non-Fickian release) [72-74]. The latter contribution was also evidenced by the good fitting
of the first-order model (associated with the diffusion of water-soluble drugs in porous
matrices) and the Hixson-Crowell model (describes systems where changes in the surface
area and diameter occur over time, but the initial geometrical shape is kept constant).

An alternating magnetic field (AMF) was applied for 30, 60, and 90 min, 2.98 mT
at 1000 kHz after 4 h, which resulted into an increase of cumulative doxorubicin release
comparatively to the systems that were not subjected to the AMF (Figure 9B,C). To remove
the contribution from preparation anomalies, the enhancement of drug release was further
evidenced by comparing the amount of drug release in the period betweent=4hand t=6h
(Figure 9D), that is, during two hours. The enhancement is larger in the citrate-stabilized
nanoparticles than lipid-coated nanoparticles, which might be associated with the higher
heating efficiency. However, the enhanced drug release displays a non-linear relation with
the AMF exposure time. This can be associated with the nanoparticles being distributed as
aggregates, as opposed to the lipid-coated nanoparticles that incrementally enhanced drug
release, as the sample was exposed to longer periods. Further, gels subjected to the AMF
for 30 min revealed a decrease of fluorescence anisotropy to 0.12 for the citrate-stabilized
nanoparticles, while in the lipid-coated ones, it remained close to 0.15, i.e., the citrate-
stabilized nanoparticles heating induced an irreversible collapse of the gel network that
led to an increased variance of drug released, while the other nanoparticles might have not
affected the network structure.

As a result, the incremental drug release enhancement and retention of the lipid-coated
nanoparticles developed here indicate that this supramolecular system architecture is a
suitable approach for controlling drug release, since the heating-induced effect displayed
improved reproducibility. However, lipid-coated nanoparticles with a higher heating effi-
ciency and gels that can homogeneously include more nanoparticles are required in future
developments to improve the percentage of drug released upon the AMF-trigger, as suggested
from the higher triggered release from citrate-stabilized nanoparticle-containing gels.

4. Conclusions

Pursuing the effect of citrate and lipid-functionalized nanoparticles in the development
of supramolecular magnetogels, the gelation of the hydrogel Cbz-L-Met-Z-APhe-OH was
systematically optimized by using kinetic models to prepare homogeneous magnetogels,
while considering both the kinetics of gelation and sedimentation of nanoparticles. Lipid-
coated nanoparticles formed lipid-fiber domains and increased the gel irreversible phase
transition temperature. The heating efficiency of lipid-coated nanoparticles was improved
(maximum heat and reproducibility) when they were incorporated in the gels, while a
detrimental effect was obtained for citrate-stabilized nanoparticles. Further, the former
did not produce major changes in doxorubicin encapsulation, while the latter increased
the micropolarity of its location and induced aggregation. The magnetogels revealed
similar doxorubicin release profiles and AMF-trigger was stronger in the citrate-stabilized
nanoparticles, though the triggered release was more reproducible in the lipid-coated
nanoparticle-containing gels.

Overall, the lipid-coated nanoparticles displayed promising results for future de-
velopments of supramolecular magnetogels aiming at the control of drug release. This
was mainly associated with the improved nanoparticle distribution (along the hydrogel
fibers), unaffected heating efficiency upon gelation, and reproducible triggered drug re-
lease. On the other hand, despite the higher heating efficiency of the negatively-charged
citrate-stabilized nanoparticles in solution, they are prone to aggregation upon gelation,
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which is reflected in a decreased heating efficiency, and local inhomogeneous distribution
consequently leading to less reproducibility in drug release.

Hereby, this work reveals that negatively-charged stabilized and lipid-coated nanopar-
ticles affect the final gel architecture differently and, thus, also affect its properties and
the encapsulation of drugs in different ways. Further, comparison of both systems points
out that on-demand drug release in dehydropeptide-based supramolecular magnetogels
can be optimized by developing nanoparticles that can adsorb onto hydrogel fibers, while
providing domains that improve or do not affect drug encapsulation (lipid-coated nanopar-
ticles). In particular, the unaffected drug encapsulation and reproducible release from
the lipid-coated nanoparticle-containing gels, upon application of AMEF, is anticipated
to potentiate the supramolecular magnetic gels in drug delivery towards on-demand
drug release.

Future developments will be focused on improving heating efficiency of the lipid-
coated nanoparticles and the synergy between hyperthermia and triggered drug release,
without inducing a major collapse of the hydrogel.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/2079-499
1/11/1/16/s1, Structure S1: Hydrogelator structure, Table S1: Final hydrogel pH, Figure S1: Knowles’
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